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Abstract

This thesis addresses the topic of controlling, estimating and managing het-

erogeneous multi-agent systems, namely interacting devices with different

actuation and sensing capabilities, and the difficulties involved with migrating

from theory alone to practice. For the sensing point of view, great attention is

placed in inter-agent bearing sensing capabilities, where the agents can only

measure their relative direction vectors expressed in their own local reference

frames. This arises from the simplicity of such sensors and their processing

pipelines; indeed, a bearing vector can be easily extrapolated from an optical

camera and minimum computer vision algorithms. From the control point

of view, gradient descent methods and Nonlinear Model Predictive Control

play the lead role. The former is well suited for minimizing potential cost

functions and for proving stability of the considered systems while the latter

perfectly fits in the heterogeneous frameworks, with agents having different

actuation constraints. A wide range of scenarios is presented. First of all,

the control and stabilization of an heterogeneous bearing-based formation

by the use of Bearing Rigidity Theory is investigated and the superiority of

an heterogeneous control approach over a mixture of homogeneous ones

is showed. Then, the localization of an uncooperative target by a group of

seekers from their perturbed bearing measurements is tackled adopting an

active-sense approach which maximizes the estimation accuracy. A novel

NMPC trajectory controller for tilting quadrotors i proposed to fill the gap

between under-actuated coplanar aerial platforms and inefficient tilted mul-

tirotors. Finally, the implementation challenges of multi agent controllers are

investigated by dealing with the autonomous landing of a drone on a moving

platform.

iii





Contents

1 Introduction 1

2 Bearing-based heterogenous control 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Preliminaries on bearing rigidity theory . . . . . . . . . . . . . 11

2.3 Heterogeneous formation characterization . . . . . . . . . . . 18

2.3.1 Single agent model . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Networked system model . . . . . . . . . . . . . . . . 21

2.4 Bearing rigidity-based formation control . . . . . . . . . . . . 22

2.4.1 Stabilization control Law . . . . . . . . . . . . . . . . . 23

2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Preliminary comparative assessment . . . . . . . . . . 27

2.5.2 Monte-Carlo campaign validation . . . . . . . . . . . . 30

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Bearing-based target localization 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Target localization task . . . . . . . . . . . . . . . . . . . . . . 37

3.3 WLS-based target position estimation . . . . . . . . . . . . . . 40

3.3.1 Iterative WLS solution . . . . . . . . . . . . . . . . . . 41

3.3.2 Algorithm initialization . . . . . . . . . . . . . . . . . . 42

3.3.3 Localization uncertainty . . . . . . . . . . . . . . . . . 44

3.4 Active sense control approach . . . . . . . . . . . . . . . . . . 44

3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Model Validation: localization uncertainty . . . . . . . 47

3.5.2 Solution Validation: observer performance . . . . . . . 48

3.5.3 Solution Validation: controller performance . . . . . . 50

4 Tilting quadrotor 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



4.2.1 Actuation analysis and comparison with tilted solutions 62

4.3 Control architecture . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Nonlinear model predictive controller . . . . . . . . . . 65

4.3.2 Low-level controllers . . . . . . . . . . . . . . . . . . . 67

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Model parametrization . . . . . . . . . . . . . . . . . . 68

4.4.2 NMPC implementation . . . . . . . . . . . . . . . . . . 69

4.4.3 Benchmark trajectories . . . . . . . . . . . . . . . . . . 70

4.4.4 FL comparison controller . . . . . . . . . . . . . . . . . 73

4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Bearing based autonomous landing 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Problem formulation and modeling . . . . . . . . . . . . . . . 79

5.2.1 Quadrotor UAV model . . . . . . . . . . . . . . . . . . 79

5.2.2 Target model . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Agents’ interactions . . . . . . . . . . . . . . . . . . . . 81

5.3 System overview . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Relative pose estimation . . . . . . . . . . . . . . . . . 83

5.3.2 Nonlinear model predictive control . . . . . . . . . . . 86

5.4 Performance assessment . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Controller implementation . . . . . . . . . . . . . . . . 88

5.4.3 Validation scenario definition . . . . . . . . . . . . . . 89

5.4.4 GAZEBO realistic simulations . . . . . . . . . . . . . . . 90

5.4.5 Laboratory experiment . . . . . . . . . . . . . . . . . . 93

6 Conclusion 99

Bibliography 103

vi



1Introduction

In the last decades, multi-agent systems have gained increasing attention

thanks to their advantages over single agent approaches. Indeed, having a

group of small, agile, autonomous devices that act cooperatively to reach

a common goal reveals to be more efficient, more robust, more safe than

a large, fragile, single agent (Dorri et al., 2018; Cao et al., 2012). In this

framework, multi-agent systems have been deeply adopted in search and

rescue applications (Drew, 2021), localization (Aragues et al., 2011), coop-

erative transportation (Ota, 2006) and mapping (Kovacina et al., 2002) to

mention a few. However, managing multi-agent systems involves dealing

with additional complexity coming from:

• Communication. A multi-agent system is truly cooperative only if the

single elements of the group exchange information about their own

states and measurements. Depending on the nature of the task such

communication could involve time delays, packet losses, asynchronous

requirements. Additionally, the communication infrastructure or com-
munication graph may not be complete. This requires great care to

ensure that the control objective are still reached.

• Coordination. Once the common objective is defined, there is the need

to share it to all the agents. This sometimes involves reevaluating

common control strategies for single element systems to better fit the

multi-agent scenario. These include leader-follower approaches (Cao

et al., 2015), formation control techniques (Oh et al., 2015) and flock-

ing (Olfati-Saber, 2006).

• Distribution. Robustness cannot be guaranteed if the control algorithms

are centralized, as a failure of the main agent would compromise the

whole system. For this reason multi-agent solutions should implement

distributed algorithms to increase robustness and flexibility (Xiao et al.,

2019).

At the same time, working with multi-agent systems can involve using het-
erogeneous agents, i.e., agents with different actuation, communication and

sensing capabilities. Such a choice can span from specific application needs
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or constraints and requires the control design to be carried out with great

care to maximize the overall performance.

Sensing apparatus - The sensing apparatus of an agent is the first component

enabling it to interact with the environment and for this reason it is a crucial

part of the design process. When dealing with multi-agent infrastructures,

each components normally needs to sense and estimate the relative position

and orientation of the other agents. The easiest way to obtain this is to

resort to absolute position measuring system, such as GNSS devices combined

with 9dof-IMUs (accelerometers, gyroscopes, magnetometers) to retrieve

the agents pose (position and orientation) with respect to a fixed, common

and known reference frame. On one hand this approach is by far the sim-

plest from the agents point of view as they just have to exchange their own

measurements and it can deliver high accuracy, for example employing Real-

time kinematic positioning (RTK) systems. On the other hand, it requires

external devices, satellites for GNSS, anchors for anchor-based localization

systems such as Ultra-Wide Band (UWB) approaches, for instance. Moreover,

depending on an external infrastructure can pose a security risk for many

applications, as a failure on the global positioning system could compromise

the whole architecture. Finally, full orientation retrieval through IMUs re-

quires a clean, static, unperturbed magnetic field otherwise the heading of

the agents cannot be fully resolved. This limits the application of IMUs for

robust orientation estimation to outdoor environment.

With this in mind, other sensing approaches should be considered for critical

applications in which depending on a centralized positioning system is not an

option. In this framework, inter-agent sensing perfectly fits. In broad terms,

the basic concept of inter-agent sensing is having each agent measuring a

quantity yij that depend only on the relative state of the measuring agent

(agent i) and the measured agent (agent j). It can be formulated as

yij = f i(xj − xi), (1.1)

where f i(·) is a possibly non linear function that takes as input the relative

state xj − xi of the two agents and outputs the measurement taken by the

i-th agent. It is important to notice that each agent can have a different

measuring functions, here the concept of heterogeneous sensing. The other

crucial aspect is that the measuring function acts on the difference between
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the two agents states, where this difference could be the standard Euclidean

one or even more complex representations if the agents state is a non trivial

manifold such as the quaternion manifold S3. Nevertheless, it should be

clear that as long as the agents state difference xj − xi remains constant, in

first approximation, no variation of the the measurement can be detected.1

This is the first intrinsic property of inter agent measurement. For example,

for multi-agent systems acting on Euclidean spaces such as Rk, coordinated

translations, namely translation of the measuring and measured agents in

which both components keep the same velocity vector are trivial examples of

maneuvers that do not affect inter-agent measurements. In Rd, three major

inter agent measurements can be listed for their importance in real world

applications:

1. Relative distance measurements - relative distance measurements are in

the form yij =
⃦⃦⃦
xj − xi

⃦⃦⃦
≥ 0, they can be acquired by range sensors.

Distance measurements do not provide direction information between

the pair ij, but they are very useful for determining communication

ranges and avoiding collisions.

2. Relative bearing measurements - relative bearing measurements are in

the form yij = xj−xi

∥xj−xi∥ ∈ Sd−1 = {x ∈ Rd : ∥x∥ = 1}, they can be

acquired by optical cameras and angle of arrival (AoA) sensors. This

kind of measurements are the natural dual for the distance ones as they

provide direction data but not distance information.

3. Relative pose measurements - relative pose measurements directly ac-

quire yij = xj − xi ∈ Rk and they are the only ones that do not cause

loss in information. The can be acquired, for example, combining

bearing and distance sensors.

Recalling that the initial objective was to have the multi-agent system to

be able to estimate the relative position of each components, it should be

trivial to see that relative pose measurement sensors are the ones that require

the minimum effort: as long as the communication graph, namely the graph

that determines which agent is able to communicate with, is complete, then

1Here deterministic measurements are considered, if stochastic approaches are instead
adopted, the noise distribution could be space dependent, then the above assumption
does not hold anymore.
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every agent can know its relative position w.r.t any other agent by simply

combining the measurements along a path connecting the two. The price

to pay for such simplicity is the need to employ more complex sensors. On

the other hand, using bearing or distance sensors is less demanding from

an hardware point of view, but the relative position retrieval is by far more

complex. The communication graph must satisfy stricter requirements and

a whole mathematical theory, the rigidity theory has been developed for

investigating these scenarios.

At the same time, when working with real sensors, it is important to remember

that all measurements are affected by noise. While it is easy to deal with

noises on pose measurements as they are additive to the actual data of

interest, bearing and distance noises are non-additive and definitively non

linear, which increases the complexity of localization algorithm.

Agents actuation - The agents actuation capabilities determine how they can

actively interact with the environments. In the context of this thesis, the

interest is focused on the movement capabilities of the agents, rather than,

for instance, grasping capabilities, actuator redundancy, etc. In most of real

world applications, agents can be divided in ground agents and aerial ones,

noticing that boats and underwater vehicles can be easily approximated by

ground or aerial ones, respectively, when considering their configuration

space: R2 for the former and R3 for the latter. When necessary, an orientation

must also be taken into account, this mean a heading angle for ground agents

and a full three dimensional frame rotation encapsulation for aerial ones. In

the most general sense, a full 3D agent can be modeled as

ṗ = v (1.2a)

q̇ = 1/2 q ◦ ω+ (1.2b)

v̇ = f1(p, q, v, ω, u) (1.2c)

ω̇ = f2(p, q, v, ω, u), (1.2d)

where (1.2a) and (1.2b) are the linear and angular kinematics, (1.2c) and (1.2d)

are the linear and angular dynamics equations. The state x is composed

by the variables p ∈ R3, the agent position, q ∈ S3, the agent orientation,

encoded with a quaternion, w.r.t. a fixed frame, v ∈ R3, the agent linear

velocity and finally ω ∈ R3, the agent angular velocity. In eq (1.2b) the

4 Chapter 1 Introduction



Table 1.1: Characterization of 3D agent actuation capabilities.

condition actuation example
rk F = 6 fully-actuated coplanar quadrotor
rk F < 6 under-actuated tilted multicopter

null F > 1 over-actuated tilting quadrotor

Figure 1.1: Coplanar quadrotor used in the SPARCS lab of the Department of
Information Engineering, University of Padova.

standard quaternion algebra is adopted with · ◦ · the quaternion product op-

erator and ω+ the pure quaternion associated to ω. The agent input vector is

instead u ∈ Rm. The agent first order actuation capabilities can be evaluated

inspecting the maps f1 and f2. Be F1(x) ∈ R3×m and F2(x) ∈ R3×m the so

called allocation matrices, the linear approximation of f1 and f2 w.r.t. the

input u,

F1(x) = ∇uf1, F2(x) = ∇uf2, (1.3)

then the actuation capabilities are determined inspecting the rank and the

nullity of F =

⎡⎢⎣F1

F2

⎤⎥⎦ ∈ R6×m and are reported in table 1.1 (Michieletto et al.,

2018).
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Figure 1.2: Tilted, fully actuated exarotor. Image courtesy of the c-square lab of the
Department of Management and Engineering, University of Padova.

Three examples are reported in the following. The coplanar quadrotor,

figure 1.1 is an under-actuated platform as it is no able to generate thrust on

its x and y-local axes, even more trivially, it has only four inputs therefore it

cannot possibly allocate arbitrary six dimensional thrust and torque vectors.

The tilted multicopter, figure 1.2 is instead a fully-actuated platform (as

long as a there are at least 6 rotors and the tilted axes are not oriented

in degenerate configurations). While the above mentioned examples have

static allocation matrices eq (1.3), the tilting quadrotor, which will be deeply

discussed in chapter 4, has dynamic allocation matrix. On one hand, given a

fixed state x, in that configuration the tilting quadrotor is under-actuated. On

the other, at a different state x′, the platform is still under-actuated but the

achievable thrust and torque vectors can change. This allows it to reach an

hybrid concept of full actuation as long as it is allowed to reorient its spinning

axes. Considering instead ground vehicles, example of fully-actuated devices

are robot equipped with omnidirectional wheels, while the unicycle is an

example of under-actuated vehicle with state dependent actuation matrix,

figure 1.3.
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Figure 1.3: An Unmanned Ground Vehicle driven by a differential drive system
used in the SPARCS lab of the Department of Information Engineering,
University of Padova. Only two controllable spinning wheels make it
an under-actuated platform that can only rotate and move along its
longitudinal axis.

Heterogeneous multi-agent - with a clear picture of what heterogeneous sens-

ing and actuation means, it is then possible to give an example of hetero-

geneous multi-agent system. Consider the task of inspecting a canyon, one

could set up a base station at the top of it and deploy a ground vehicle at its

bottom to perform the actual inspection, exploiting is better payload capacity

compared to an aerial vehicle. At the same time multiple UAVs could be

tasked to provide connectivity between ground station and inspecting robot

and localization services.

Thesis structure - This thesis addresses the issue of managing heterogeneous

multi-agent system focusing on four connected use cases. First of all, het-

erogeneous multi-agent formation, namely multi-agent system in which the

agent are further constrained in keeping a specific, fixed spacial disposi-

tion, is considered when the agents can only acquire inter-agent bearing

measurements (chapter 2). To this aim, the standard, homogeneous rigidity

theory is expanded to account for heterogeneous actuation and a specific
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gradient descent controller is designed and validated with formal proof and

by simulations, showing that is outperforms an hierarchical controller com-

bining standard homogeneous rigidity-based techniques. Moving forward,

the problem of bearing-based target localization is discussed and tackled

with an active-sense approach (chapter 3). In detail, a complete formation of

seekers has to localize and uncooperative target using only noisy bearing mea-

surements. As the seeker are able to move, an active-sense based controller

is designed such that the seekers move to configurations that reduce the

estimation uncertainty. From a rigidity perspective, this turn out to be strictly

related to increasing the robustness of the formation. To address the gap

between theory and real world applications of bearing-based approaches for

multi-agent systems, chapter 4 proposes a Nonlinear Model Predictive Con-

trol approach for the tilting quadrotors. Tilting quadrotors can indeed supply

the right actuation properties required by the less demanding bearing rigidity

theory in R3×S1 without the need to use inefficient fully actuation platforms.

Finally, an heterogeneous multi-agent application: the autonomous landing

of a quadrotor on a moving platform, is discussed in chapter 5. Once again,

the aerial vehicle can only sense its bearing vector w.r.t. the target and its

altitude to the ground. Model predictive control is exploited to control the

relative state of the two agents and manage tracking and landing phases.

Simulation and real world experiments show the challenges in applying the

theory on the field.
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2Bearing-based
heterogenous control

This chapter tackles the problem of heterogeneous formation control under

bearing measurement. To achieve that, Bearing Rigidity Theory is exploited

and extended to take into account different agent actuation capabilities.

2.1 Introduction

In a broad sense, bearing rigidity theory aims at investigating the stiffness

properties of given multi-element systems whose components are mutually

constrained in terms of relative orientation (Ahn, 2020). In the last years,

the study of such a theory has been deeply encouraged by the emergence

of multi-agent systems as an enabling paradigm in several contexts. The

bearing rigidity framework, indeed, suitably fits for applications related to

the estimation and control of mobile agent formations wherein the involved

devices are aware of their orientation w.r.t. some neighbors in the group.

In this perspective, bearing constraints are virtual and the rigidity property

of the multi-element system relies on the preservation of the agent interac-

tions (Zhao and Zelazo, 2019).

One of the aims of the bearing rigidity theory is the identification of the

conditions under which the geometric pattern induced by a set of points in

any metric space can be uniquely determined by the bearing vectors between

these points (Michieletto et al., 2021). Hence, bearing rigidity notions can

be exploited in the design of multi-agent formation control laws, especially

by accounting for the system rigidity as an architectural requirement for the

convergence of the agents to a desired spatial configuration. Thus, recently,

several bearing rigid based formation stabilization approaches have been pro-

posed for multi-agent systems modeled as frameworks embedded in SE(2),
SE(3), and more generic smooth manifolds (Michieletto and Cenedese, 2019;

Schiano and Giordano, 2017; Chen et al., 2019a; Stacey and Mahony, 2017).
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Most of the existing strategies apply to homogeneous formations, intended

for groups of agents characterized by the same actuation capabilities. For

instance, in (Zelazo et al., 2015), a distributed bearing-only formation con-

trol strategy is outlined for a team of unmanned ground vehicles (UGVs),

ensuring the global asymptotic stability when the agents sensing interplay is

minimal to guarantee the bearing preservation only in case of translations

and scaling of the whole multi-robot system. Similarly, in (Schiano et al.,

2016), a decentralized formation controller is designed and tested on a group

of quadrotors aiming at steering the team of unmanned aerial vehicles (UAVs)

towards a formation defined in terms of desired bearings.

Motivated, instead, by the IoT perspective, encouraging also the cooperation

among devices with various actuation capabilities, this chapter focuses on

heterogeneous formations, meant as multi-element systems whose compo-

nents have different degrees of freedom (dofs) as to controllable variables.

Assuming all the involved agents to be characterized by (local) communi-

cation and bearing sensing capabilities, the given contribution consists in

the design of a distributed control law to stabilize a group of heterogeneous

agents by preserving the existing bearing measurements. In doing this, the

heterogeneous formations are modeled as generalized frameworks, namely

frameworks embedded in the differential manifold R3 × S3 which allows

to describe the pose (position and orientation) of a rigid body in the 3D

space by adopting the quaternion formalism (Michieletto and Cenedese,

2019), enriched with a mathematical codification of the agents actuation

capabilities. The effectiveness of the proposed controller is confirmed by

both rigorous proof of convergence and numerical results of an extensive

simulations campaign. In particular, accounting for a formation involving

(fully actuated) aerial and ground vehicles, the outlined solution is compared

with an ad-hoc designed leader-follower combination of the bearing rigidity

based controllers in (Michieletto and Cenedese, 2019) and (Zelazo et al.,

2015) for the stabilization of planar and (fully-actuated) aerial multi-agents

systems, respectively.

The rest of the chapter is organized as follows. section 2.2 recaps the main

notion of Bearing Rigidity Theory. section 2.3 is devoted to the modeling

of the heterogeneous formations. The proposed distributed control solution

10 Chapter 2 Bearing-based heterogenous control



is described insection 2.4 and its effectiveness is discussed in section 2.5.

Section 2.6 summarizes the principal strengths of the proposed approach.

2.2 Preliminaries on bearing rigidity
theory

Before diving into the specific applications of Bearing Rigidity Theory for

heterogeneous formation, in this section the main results for classical homo-

geneous Rigidity Theory (Michieletto et al., 2021) are summarized. Initially, a

formal definition of formation is required. We consider formations composed

by n ≥ 3 agents whose configuration belong to the domains Di, i ∈ 1, . . . n.

Such formations can be modeled as a framework pairing the agent spatial
displacement and sensing interaction.1

Definition 2.1 (Framework in D̄). A framework in D̄ is an ordered pair (G, x)
consisting of a connected (directed or undirected) graph G = (V , E) with

|V| = n, and a configuration x ∈ D̄ = ∏︁n
i=1Di.

The two components of the framework characterize a formation in terms

of both agents configuration and interaction capabilities. G describes the

available bearing measurements associating each agent to a vertex. It can

be directed or undirected reflecting the possibility of the agents interactions

to be either unidirectional or bidirectional. Anyway, in rigidity theory it is

normally assumed to be time invariant. The formation configuration x ∈ D̄
is associated with the set {xi ∈ Di}n

i=1 describing the agent configurations

so that xi ∈ Di coincides with the i-th agent position when it is modeled as

a particle point, and with the pair of its position and (partial/full) attitude

when the rigid body model is assumed. Our attention is now restricted to

non-degenerate formations:

Definition 2.2 (Non-Degenerate Formation). A n-agents formation modeled

as a framework (G, x) in D̄ is non-degenerate if the agents are univocally

1The configuration domain Di does not need to be the agent state. However, for first order
models, the two concepts are equivalent.

2.2 Preliminaries on bearing rigidity theory 11



placed, i.e., two agents can not have the same position, and not all collinear,

namely the matrix of the coordinates describing their positions is of rank

greater than 1.

The sensing capability and the configuration of a formation characterizes

its bearing rigidity properties. According to the framework model, any

edge ek = eij = (vi, vj) ∈ E (|E| = m) represents a bearing measurement

bk = bij ∈ M recovered by the i-th agent which is able to sense the j-th

agent, i, j ∈ {1 . . . n} , i ̸= j. The bearing measurement domain can thus

be defined as M̄ := Mm.2 Depending on the chosen model, the available

measurements can be expressed in a common frame or according for local

frames attached to each agent; however, in both cases, these are related to

the framework configuration as stated in the following definition where an

arbitrary edge labelling is introduced.

Definition 2.3 (Bearing Rigidity Function). Given a n-agents formation

modeled as a framework (G, x) in D̄, the bearing rigidity function is the map

associating the configuration x ∈ D̄ to the vector bG(x) =
[︂
b⊤

1 . . . b⊤
m

]︂⊤
∈ M̄

stacking all the available bearing measurements.

Starting from definition 2.3 it is possible to introduce the first notion related

to the bearing rigidity theory, namely the equivalence and congruence of

different frameworks.

Definition 2.4 (Bearing Equivalence). Two frameworks (G, x) and (G, x′) are

Bearing Equivalent (BE) if bG(x) = bG(x′).

Definition 2.5 (Bearing Congruence). Two frameworks (G, x) and (G, x′) are

Bearing Congruent (BC) if bK(x) = bK(x′), where K is the complete graph

associated to G.

Two examples of Bearing Equivalent and Bearing Congruent frameworks are

shown in figure 2.1.
2It is assumed that all the agents have the same sensing apparatus. Otherwise each agent

would have had a different bearing measurement domainMi i ∈ {1 . . . n}.
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1

2

3 1

2

3

(a) Two bearing equivalent frameworks.
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(b) Two bearing congruent frameworks.

Figure 2.1: Example of bearing equivalent (a) and bearing congruent (b) frame-
works in (R2)3. Solid black lines represent the edges in E =
{(1, 2), (1, 3)} while dashed edges are in K \ E . In (a), both frame-
works keep unchanged the edges in E and therefore they are bearing
equivalent. However, (2, 3) changes as agent (3) is moved: therefore
there is no bearing congruence. On the other hand, in (b) the scaling
operation preserves also (2, 3) and therefore the two frameworks are
bearing congruent.

Using the preimage under the bearing rigidity function, the set

Q(x) = b−1
G (bG(x)) ⊆ D̄

includes all the configurations x′ ∈ D̄ such that (G, x′) is BE to (G, x), while

the set

C(x) = b−1
K (bK(x)) ⊆ D̄

contains all the configurations x′ ∈ D̄ such that (G, x′) is BC to (G, x).

Proposition 2.1. It holds that C(x) ⊆ Q(x).

Proof. Assume that the |EK| edges of K are labelled such that the the first m

are also the edges of G. Suppose that x′ ∈ C(x); then from definitions 2.3

and 2.5, b′
k = bk for k ∈

{︁
1 . . .|EK|

}︁
, where b′

k, bk ∈ M are the bearing

measurements associated to the k-th edge of (K, x′), (K, x), respectively. This

implies that also b′
k = bk for k ∈ {1 . . . m}, hence bG(x) = bG(x′), which is

exactly definition 2.4 and x′ ∈ Q(x).

As the bearing bK associated to the complete graph carries the greatest

amount of information, it is the reasonable to use it to uniquely characterize

the formation shape.

2.2 Preliminaries on bearing rigidity theory 13



(a) D̄ = (R2)3, BF (b) D̄ = (R2 × S1)3, BF (c) D̄ = (R3 × S3)3, BF

(d) D̄ = (R2)3, BR (e) D̄ = (R2 × S1)3, BR (f) D̄ = (R3 × S3)3, BR

Figure 2.2: Examples of BF (a, b, c) and BR (d, e, f) formations embedded in
different domains. Unidirected sensing links are represented by black
edges. Directed sensing links are represented by blu arrows and red
double arrows.

Definition 2.6 (Formation shape). Given a formation modeled as a frame-

work in D̄ (G, x), its shape is characterized by the collection of all the possible

bearing measurements, namely, by the vector bK(x) ∈ S2n(n−1) where K is the

complete graph associated to G.

The definition of Q(x) and C(x) allows to introduce the (local and global)

properties of bearing rigidity.

Definition 2.7 (Bearing Rigidity in D̄). A framework (G, x) is (locally) Bear-
ing Rigid in D̄ if there exists a neighborhood U(x) ⊆ D̄ of x such that

Q(x) ∪ U(x) = C(x) ∪ U(x). (2.1)

Figure 2.2 shows examples of bearing rigid and bearing flexible (non rigid)

flexible for different domains.

Definition 2.8 (Global Bearing Rigidity in D̄). A framework (G, x) is Globally
Bearing Rigid in D̄ if every framework which is BE to (G, x) is also BC to

(G, x), or equivalently if Q(x) = C(x).

The meaning of the sets U(x), C(x),Q(x) ⊂ D̄ is graphically represented in

figure 2.3. The requirement of “closeness” in the configurations space is

missed in definition 2.8 of global bearing rigidity. As a consequence, this

14 Chapter 2 Bearing-based heterogenous control



D

bG(·)
bG(x)

bK(x)

bK(·)

manifold projection

M|ǫ|

M|ǫK|

Figure 2.3: Graphical representation of the sets Q(x), C(x),U(x) ⊆ D̄ involved in
the definition of bearing rigidity and global bearing rigidity.

property results to be stronger than the previous one as proved in the next

theorem.

Theorem 2.2. A GBR framework (G, x) is also BR.

Proof. For a GBR framework (G, x), it holds that Q(x) = C(x). Consequently,

condition (2.1) is valid for U(x) = D̄ demonstrating that the framework is

BR.

All the properties previously defined concern rigidity for static frameworks.

Nevertheless, in real-world scenarios agents belonging to a formation are

generally able to move. For this reason, the analysis of bearing rigidity for

dynamic agents formations, which will serve as base for the development of

bearing-based controllers, is performed. Dynamic agents formations can be

modeled as frameworks (G, x) where the configuration can change over time,

namely x = x(t) ∈ D̄, while the graph G is fixed. The goal for the rest of this

section is to identify the constraints under which a given dynamic formation

can deform while maintaining its rigidity, i.e., preserving the existing bearings

among the agents.

For a given formation the instantaneous variation vector δ(t) ∈ Ī represents

a deformation of x(t) taking place in an infinitesimal time interval. This

vector belongs to the instantaneous variation domain Ī := ∏︁n
i=1 Ii whose

identity depends on the space of agent controllable variables through the

agent command space Ii. The characterization of Ii is made by the adopted

2.2 Preliminaries on bearing rigidity theory 15



dynamic model and the same applies for the function that relate d
dt

x(t) to

δ(t).

Remark. Normally, it holds that d
dt

x(t) ̸= δ(t), namely, the time derivative of

the configuration do not coincide with the instantaneous variation vector.

For homogeneous formations, it is assumed that all agents have the same

command spaces, that is Ii = I, and thus Ī = In. The introduction of δ(t)
allows to describe the bearing measurement dynamics in terms of configu-

ration deformations. The relation between δ(t) and the time derivative of

the bearing rigidity function, clarified in the next definition, constitutes the

starting point for the study of the rigidity properties of dynamic formations.

Definition 2.9 (Bearing Rigidity Matrix). For a given (dynamic) framework

(G, x), the bearing rigidity matrix is the matrix BG(x(t)) that satisfies the

relation

ḃG
(︂
x(t)

)︂
= d

dt
bG
(︂
x(t)

)︂
= BG

(︂
x(t)

)︂
δ(t). (2.2)

The dimension of the bearing rigidity matrix typically depends on the spaces

M̄ and Ī. Nevertheless, one can observe that the null space of BG(x(t))
always identifies the (first-order) deformations of the configuration x(t) that

maintain the bearing measurements unchanged. From a physical perspective,

such variations of (G, x) can be considered as sets of command inputs to

provide to the agents to instantaneously drive the formation from the initial

configuration x = x(t) to a final configuration x′ belonging to Q(x).

Definition 2.10 (Infinitesimal Variation). For a given (dynamic) framework

(G, x), an infinitesimal variation is an instantaneous variation δ(t) ∈ Ī that

allows to preserve the relative direction among the interacting agents.

Lemma 2.3. For a given (dynamic) framework (G, x), an infinitesimal variation
in an instantaneous variation δ(t) ∈ Ī such that δ(t) ∈ ker

(︂
BG
(︂
x(t)

)︂)︂
.

For a given (G, x), there are many infinitesimal variations. However, there

exists infinitesimal variations that hold for any graphs. This follows from the

next results.
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Theorem 2.4. Given a (dynamic) framework (G, x) and denoting as K the
complete graph associated to G, it holds that ker

(︂
BK

(︂
x(t)

)︂)︂
⊆ ker

(︂
BG
(︂
x(t)

)︂)︂
.

Proof. Since each edge of the graph G belongs to the graph K, the equation

set defined by BG
(︂
x(t)

)︂
δ(t) = 0 constitutes a subset of the equations set

defined by BK
(︂
x(t)

)︂
δ(t) = 0. Then δ(t) ∈ ker

(︂
BK

(︂
x(t)

)︂)︂
implies δ(t) ∈

ker
(︂
BG
(︂
x(t)

)︂)︂
.

In the light of theorem 2.4, the notion of trivial variations is introduced

by considering the infinitesimal variations related to the complete graph K
associated to G. These ensure the measurements preservation for each pair of

node in the formation (x′ ∈ C(x)), i.e., the formation shape preservation.

Definition 2.11 (Trivial Variation). For a given (dynamic) framework (G, x),
a trivial variation in an instantaneous variation δ(t) ∈ Ī such that shape

uniqueness is preserved.

Lemma 2.5. For a given (dynamic) framework (G, x), a trivial variation in
an instantaneous variation δ(t) ∈ Ī such that δ(t) ∈ ker

(︂
BK

(︂
x(t)

)︂)︂
, where

BK
(︂
x(t)

)︂
is the bearing rigidity matrix computed for the complete graph K

associated to G.

Theorem 2.4 is fundamental for the next definition that constitutes the core

of the rigidity theory.

Definition 2.12 (Infinitesimal Bearing Rigidity in D̄). A (dynamic) frame-

work (G, x) is Infinitesimally Bearing Rigid in D̄ if

ker
(︂
BK

(︂
x(t)

)︂)︂
= ker

(︂
BG
(︂
x(t)

)︂)︂
Otherwise, it is Infinitesimally Bearing Flexible.

A framework (G, x) is IBR if all its infinitesimal variation are also trivial.

Contrarily a framework is IBF it there exists at least an infinitesimal variation

that wraps the configuration x = x(t) in x′ ∈ Q(x) \ C(x).
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For now on, the time dependency is dropped out to simplify the notation.

2.3 Heterogeneous formation
characterization

Given the Bearing Rigidity Theory introduction provided in the previous sec-

tion, it is possible to move forward to characterize heterogeneous formations

with n ≥ 3 agents.

2.3.1 Single agent model

In the most general sense, each i-th agent, i ∈ {1 . . . n}, in a heterogeneous

formation can be modeled as a rigid body acting in 3D space. Thus, its

spatial displacement can be characterized by introducing the local frame Fi

(body frame), having origin Oi coincident with the agent center of mass and

axes identified by the unit vectors {e1, e2, e3} defining the canonical basis

of R3, and the inertial frame FW (world frame), fixed and common, even

if unknown, for all the formation components. Its configuration space is

therefore characterized by the position of Oi in the world frame and the

orientation of Fi w.r.t. FW . The former data can simply be encoded by the

vector pi ∈ R3 of the coordinates of Oi in FW while the latter admits a great

variety of representations: rotation matrices, Euler Angels, DCM, quaternions.

Here, the latter is adopter, as it does not have singularities and it is more

computational efficient. Therefore, the unit quaternion qi = [ηi ϵ⊤
i ]⊤ ∈ S3

defines the rotation of Fi w.r.t. FW . Finally, the vector xi = [p⊤
i q⊤

i ]⊤

belonging to the differential manifold R3 × S3 identifies the i-th agent pose

in world frame, i.e., its time-varying configuration. In view of section 2.2, we

have that Di = R3 × S3, i ∈ {1, . . . n}.

Introducing the linear velocity vi ∈ Vi ⊆ R3 of Oi w.r.t. FW and the angular

velocity ωi ∈ Ωi ⊆ R3 of Fi w.r.t. FW , both in body frame, the i-th agent

kinematics is governed by

ṗi = Rivi, q̇i = 1
2M(qi)ωi, (2.3)
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where Ri ∈ SO(3) is the rotation matrix associated to qi and the matrix

M(qi) ∈ R4×3 maps the agent angular velocity into the time derivative of its

quaternion based orientation

M(qi) =

⎡⎢⎣ηi −ϵ⊤
i

ϵi ηi13 + [ϵi]×

⎤⎥⎦ , (2.4)

with [x]× ∈ R3×3 the skew symmetric matrix associated to x ∈ R3. Note that

the quaternion time derivative equation (2.3) is equivalent to eq. (1.2b) in

chapter 1.

The linear and angular velocity in eq (2.3) can be interpreted as the con-

trollable variables of the i-th agent. When Vi = Ωi = R3, the agent is

fully-actuated: it can translate and rotate in any direction of the 3D space

having three translational and three rotational controllable degrees of free-

dom (cdfos). When Vi or Ωi ⊂ R3, instead, the agent is under-actuated and

its movement is constrained only in some directions, having less than 6 cdofs.

In view of section 2.2 we then have that dim(Ii) = ci ∈ {0 . . . 6} are the i-th

agent cdofs. The agent actuation capabilities are then characterized by the

selection map

Si : Ii → Vi × Ωi, δi ↦→
[︃
v⊤

i ω⊤
i

]︃⊤
. (2.5)

which translates the infinitesimal variation vectors δi into the admissible

linear and angular velocities.

Hereafter the following decoupling hypothesis is assumed in regard to the

agent translation and rotation movements, nonetheless the control law de-

scribed in section 2.4 is valid also when this is not in place, with minor

suitable changes.

Assumption 2.1. Any i-th agent can provide decoupled translation and

rotation commands, meaning that δi in (2.5) is made up of two components

that can be independently assigned. Formally, δi = [δ⊤
p,i, δ⊤

o,i]⊤ ∈ Ii =
Ip,i × Io,i with δp,i and δo,i, respectively associated to the agent linear and

angular velocity, Ip,i and Io,i representing the i-th agent instantaneous position
and orientation variation domains.
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Under assumption 2.1, the i-th agent total number of cdofs results ci =
ct,i + cr,i with ct,i = dim(Ip,i) = dim(Vi) and cr,i = dim(Io,i) = dim(Ωi)
denoting its translational and rotational cdofs, respectively. Moreover, the

selection map Si of eq. (2.5) can be split into the following terms,

Sp,i : Ip,i → Vi, δp,i ↦→ vi (2.6a)

So,i : Io,i → Ωi, δo,i ↦→ ωi, (2.6b)

with bijective Sp,i. In addition, accounting for real-world scenarios, hereafter,

the structure of the maps Sp,i, So,i is assumed as follows.

Assumption 2.2. The maps Sp,i, So,i are linear, hence it is

vi = Sp,i(δp,i) = Sp,iδp,i Sp,i ∈ R3×cp,i , (2.7a)

ωi = So,i(δo,i) = So,iδo,i So,i ∈ R3×co,i . (2.7b)

The next example aims at clarifying the introduced model.

Example 2.1. For a UGV that can can rotate only around the z-axis of its

body frame and translate on the (xy)-plane, we have Vi = span{e1, e2} and

Ωi = span{e3}, and thus Ip,i = R2, Io,i = R, Sp,i = [e1 e2], and So,i = e3.

Example 2.2. An under actuated unmanned aerial vehicle (4dofsUAVs) can

freely translate in the 3D space but only rotate around its vertical axis.

Namely, it has Vi = R3 and Ωi = span(e3). Being fully actuated w.r.t. the

translations Ip,i = R3 and Sp,i = I3. Instead, it has only one rotational dof;

therefore, Io,i = R and So,i =
[︃
0 0 1

]︃⊤
.

As the considered agents belongs to R3 × S3 and each agent is characterized

by the local frames Fi, their bearing measurements are also acquired w.r.t.

those frames:

bij = R⊤
i p̄ij ∈ S2, p̄ij =

pj − pi⃦⃦⃦
pj − pi

⃦⃦⃦ ∈ S2. (2.8)

In eq. (2.8), p̄ij is the bearing vector of the j-th agent acquired by the i-th one

expressed in the global reference frame. R⊤
i ∈ R3×3 rotates the measurement
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Figure 2.4: agents sensing interaction - magenta arrow indicates the bearing mea-
surement of i-th agent w.r.t. its j-th neighbor.

back to the i-th local frame. A graphical representation of the vector bij is

given in figure 2.4.

Finally, each agent is also supposed to communicate with its neighbors. In

particular, it can share the retrieved measurements, allowing the sensed

formation components to estimate their relative orientation.

2.3.2 Networked system model

Stacking the position and orientation of all the formation components into

the vectors p = [p⊤
1 . . . p⊤

n ]⊤ ∈ R3n and q = [q⊤
1 . . . q⊤

n ]⊤ ∈ S3n, respectively,

the time-varying configuration of the whole system is, thus, represented by

x = [p⊤ q⊤]⊤ ∈ R3n × S3n. Furthermore, introducing the vector u =
[v⊤

1 . . . v⊤
n , ω⊤

1 . . . ω⊤
n ]⊤ ∈ ∏︁n

i=1 Vi ×
∏︁n

i=1 Ωi and accounting for (2.3), the

evolution of the formation is governed by

ẋ =

⎡⎢⎣D1(q) 03n×3n

04n×3n D2(q)

⎤⎥⎦u = D(q)u, (2.9)

where D1(q) = diag(Ri) ∈ R3n×3n and D2(q) = diag(1
2M(qi)) ∈ R4n×3n are

diagonal block matrices. In detail, under assumption 2.2, the relation (2.9)

can be rewritten introducing the commands vector δ = [δ⊤
p,1 . . . δ⊤

p,n δ⊤
o,1 . . . δ⊤

o,n]⊤

belonging to the instantaneous variation domain Ī = ∏︁n
i=1 Ip,i ×

∏︁n
i=1 Io,i hav-

ing dimension c = ct + cr with ct = ∑︁n
i=1 ct,i and cr = ∑︁n

i=1 cr,i. It holds

that

ẋ = D(q)

⎡⎢⎣Sp 0
0 So

⎤⎥⎦ δ = D(q)Sδ, (2.10)

with Sp = diag
(︂
Sp,i

)︂
∈ R3n×ct , So = diag

(︂
So,i

)︂
∈ R3n×co . Given these premises,

any heterogeneous formation can be modeled as a generalized framework
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which extends the one of definition 2.1, whose dynamic behavior is described

by eq (2.10).

Definition 2.13 (Generalized Framework). A generalized framework is an

ordered triple (G, x,H) consisting of a connected graph G = (V , E) with

|V| = n ≥ 3 and |E| = m, a configuration x ∈ R3n × S3n, and a collection of

instantaneous variation domains H = {I1 . . . In}.

Note that the agent sensing is not assumed to be be bidirectional, as bij and

bji carry different information as an effect of being acquired in the local

agent frames. Therefore, the sensing graph G = (V , E) is directed.

To summarize, heterogeneous formations differs from homogeneous ones for

the following aspects:

• All agents use the same embedding domain D = R3 × S3 even if the

belong to subspaces of it.

• The difference in true embedding domains is modeled in terms of actua-

tion capabilities and then it is captured by agent-specific instantaneous

variation domains Ii.

2.4 Bearing rigidity-based formation
control

With a 3D heterogeneous formation properly defined, it is now possible to

address the main task of this chapter, the design of a distributed controller

aiming at stabilizing those formations through the solution of the following

problem.

Problem 2.1 ((Bearing Based) Formation Stabilization). For a given hetero-

geneous formation modeled as a generalized framework (G, x,H) subject

to (2.10), consider a desired formation shape described by b∗
K ∈ S2n(n−1)

which is feasible meaning that it exists a configuration x∗ such that b∗
K =
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bK(x∗). The (bearing based) formation stabilization problem consists in asymp-

totically zeroing the shape error eK(x) ∈ R3n(n−1) defined as

eK(x) = bK(x)− b∗
K. (2.11)

Problem 2.1 is here faced resting on the main notions of the bearing rigidity

theory, applied to heterogeneous formations.

2.4.1 Stabilization control Law

Inspired by (Zhao and Zelazo, 2019; Schiano et al., 2016; Zelazo et al.,

2015; Michieletto and Cenedese, 2019), the bearing rigidity matrix is here

exploited in the solution of problem 2.1. Indeed, accounting for the bearing
error eG(x)∈R3m as

eG(x) = bG(x)− bG(x∗) = bG(x)− b∗
G, (2.12)

it is possible to prove that its dynamics ėG(x) = ḃG(x) = BG(x)δ asymptot-

ically converges to zero by selecting the command vector as follows with

kc > 0 be a tunable gain

δ = kcB⊤
G (x)b∗

G. (2.13)

Proposition 2.6. Given a generalized framework (G, x,H) subject to (2.10),
and a feasible bearing measurements vector b∗

G ∈ S2m , it holds that eG(x) = 03m

is an asymptotically stable equilibrium point for the dynamics of the bearing
error (2.12) driven by the control law (2.13), namely for the system

ėG(x) = −kcBG(x)B⊤
G (x)eG(x). (2.14)

Proof. Let consider the positive definite Lyapunov function

V(eG(x)) = 1
2kc

eG(x)⊤eG(x), (2.15)

whose derivative V̇(eG(x)) = −eG(x)⊤BG(x)B⊤
G (x)eG(x) is negative semi-

definite since the product BG(x)B⊤
G (x) is a positive semi-definite matrix

for any x ∈ R3n × S3n. It follows that eG(x) = 03m is a simple stable
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equilibrium point for the bearing error dynamics, which converges to the set

Z = {eG(x) | x ∈ U(x∗), V̇(eG(x)) = 0}, where U(x∗) is a neighborhood of x∗.

Now, exploiting the properties of the adjoint operator, the definition (2.12)

and the fact that B⊤
G (x)bG(x) = 0c due to (2.24), one can realize that the

equilibrium condition V̇(eG(x)) = 0 implies that B⊤
G (x)bG(x∗) = 0c. Then,

accounting for the Taylor’s expansion given x∗ = x + dx, it follows that

B⊤
G (x)bG(x + dx) ≃ B⊤

G (x)
(︂
bG(x) +∇xbG(x)dx

)︂
,

= B⊤
G (x)∇xbG(x)dx. (2.16)

Hence, according to (2.10), there exists δ ∈ Ī such that

B⊤
G (x)eG(x) ≃ −B⊤

G (x)⊤∇xbG(x)D(q)Sδ. (2.17)

On the other hand, exploiting the chain rule, the relation (2.10) and the

bearing matrix definition, one can observe that

∇xbG(x)D(q)S = BG(x), (2.18)

leading to the conclusion that the condition V̇(eG(x)) = 0 implies B⊤
G (x)BG(x)δ =

0c. In the light of this fact, given that ker(B⊤
G (x)BG(x)) = ker

(︁
BG(x)

)︁
, the

elements in the set Z are associated to δ ∈ ker
(︁
BG(x)

)︁
. Hence, eG(x) =

bG(x)−
(︂
bG(x) + BG(x)δ

)︂
= 03m belongs to Z.

Given these premises, it is then possible to prove that the infinitesimal rigidity

property introduced in definition 2.12 is a sufficient condition for the solution

of problem 2.1.

Proposition 2.7. Consider a desired formation shape defined by b∗
K∈S2n(n−1).

For any IBR generalized framework (G, x,H) whose corresponding configuration
x is in the neighborhood U(x∗) of x∗ such that b∗

K = bK(x∗), the control
law (2.13) solves the formation stabilization problem.

Proof. For any IBR generalized framework (G, x,H) with x ∈ U(x∗), bG(x) =
bG(x∗) implies bK(x) = bK(x∗), and viceversa (Michieletto et al., 2021).

Thus the shape error (2.11) asymptotically converges to zero as long as the
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bearing error (2.12) asymptotically converges to zero. This concludes the

proof in the light of proposition 2.6.

Starting from the expression of a single bearing measurement, it is possible

to show that the proposed control law is also distributed. First of all, the time

derivative of eq. (2.8) is

ḃij = d

dt

⎛⎜⎝R⊤
i

pj − pi⃦⃦⃦
pj − pi

⃦⃦⃦
⎞⎟⎠

= R⊤
i

d

dt

⎛⎜⎝ pj − pi⃦⃦⃦
pj − pi

⃦⃦⃦
⎞⎟⎠+ d

dt

(︂
R⊤

i

)︂ pj − pi⃦⃦⃦
pj − pi

⃦⃦⃦ (2.19a)

= 1
dij

P(bij)(R⊤
i Rjvj − vi) +

[︂
bij

]︂
×

ωi (2.19b)

= 1
dij

P(bij)(R⊤
i RjSp,jδp,j − Sp,iδp,i) +

[︂
bij

]︂
×

So,iδo,i

where dij =
⃦⃦⃦
pj − pi

⃦⃦⃦
is the distance between the i-th and the j-th agent, P(·)

is the orthogonal projection operator:

P : R3 → R3×3, x ↦→ I3 −
x⊤x
xx⊤ , (2.20)

and

[·]× : R3 → R3×3, x =
[︃
x1 x2 x3

]︃
↦→

⎡⎢⎢⎢⎢⎣
0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎥⎥⎥⎥⎦ (2.21)

is the skew symmetric operator.

Going from eq (2.19a) to eq (2.19b) requires some additional steps. The

rotational component results from:

d

dt

(︂
R⊤

i

)︂ pj − pi⃦⃦⃦
pj − pi

⃦⃦⃦ =
(︂
Ri [ωi]×

)︂⊤
p̄ij

= [ωi]⊤× R⊤
i p̄ij = − [ωi]× bij =

[︂
bij

]︂
×

ωi.

(2.22)

2.4 Bearing rigidity-based formation control 25



While the translational one is

R⊤
i

d

dt

⎛⎜⎝ pj − pi⃦⃦⃦
pj − pi

⃦⃦⃦
⎞⎟⎠ = R⊤

i

d

dt

pij⃦⃦⃦
pij

⃦⃦⃦ = R⊤
i

ṗij

⃦⃦⃦
pij

⃦⃦⃦
− pij

d
dt

⃦⃦⃦
pij

⃦⃦⃦
⃦⃦⃦
pij

⃦⃦⃦2

= R⊤
i

1⃦⃦⃦
pij

⃦⃦⃦
⎛⎜⎜⎝ṗij −

pijp⊤
ij⃦⃦⃦

pij

⃦⃦⃦2 ṗij

⎞⎟⎟⎠

= 1
dij

R⊤
i

⎛⎜⎜⎝I3 −
pijp⊤

ij⃦⃦⃦
pij

⃦⃦⃦2

⎞⎟⎟⎠ ṗij

= 1
dij

R⊤
i P(pij)(Rjvj −Rivi)

= 1
dij

R⊤
i P(pij)Ri(R⊤

i Rjvj − vi)

= 1
dij

P(bij)(R⊤
i Rjvj − vi).

(2.23)

Then, the k-th row of the bearing rigidity matrix, the one associated to the

measurement bij takes expression

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[︃
03×3(i−1) −dijP(bij)Sp,i 03×3(j−i−1) dijP(bij)R⊤

i RjSp,j

03×3(n−j+i−1) [bij]×So,i 03×3(n−i)

]︃ if i < j,

[︃
03×3(j−1) dijP(bij)R⊤

i RjSp,j 03×3(i−j−1) −dijP(bij)Sp,i

03×3(n−1) [bij]×So,i 03×3(n−i)

]︃ if i < j.

(2.24)

Denoting with Ni the set of neighbors of any i-th agent, i ∈ {1 . . . n}, the

control law (2.13) can be rewritten in terms of agent commands as follows,

revealing its distributed nature⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δp,i = −kc

∑︂
j∈Ni

dijS⊤
p,iP⊤(bij)b∗

ij

+ kc

∑︂
j:i∈Nj

dijS⊤
p,iR⊤

i RjP⊤(bji)b∗
ji,

δo,i = kc

∑︂
j∈Ni

S⊤
o,i[bij]⊤×b∗

ij.

(2.25)

26 Chapter 2 Bearing-based heterogenous control



Figure 2.5: Desired formation shape - UAVs are represented by circles, UGVs by
squares; red arrows and blue arrows refer to the edges of GA and GG,
respectively, the dark green edge is the one exploited by the leader-
follower controller.

According to (2.25), each agent computes its commands exploiting the

recorded bearing measurements (Ni) and those gathered from the agents it

is sensed by (j : i ∈ Nj).3

2.5 Numerical results

To assess the performance of the stabilization control law (2.25), in this

section this is compared with a hierarchical combination of existing rigidity

based controllers designed for homogeneous formations. In doing this, the

intent is both to show the effectiveness of the proposed solution and to high-

light its structural simplicity mainly deriving from the general frameworks

model.

2.5.1 Preliminary comparative assessment

The attention is focused on a heterogeneous formation composed of three

fully-actuated UAVs and four fully-actuated UGVs. As per problem 2.1, the

control goal consists in the stabilization of the given formation toward a

desired shape: at the beginning all the agents are randomly placed on the

(x, y)-plane of FW ; whereas, in the final desired shape the UGVs are required

to be located on the corners of a square, while the UAVs fly over them in a

triangular configuration with a specific alignment between the two planar

shapes, as shown in figure 2.5.

3Since the interaction graph is assumed to be directed, the commands computation has to
be preceded with the measurement communication.
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The performance of the controller (2.25) is evaluated w.r.t. an ad-hoc strategy

that hierarchically solves problem 2.1 by focusing on the two homogeneous

sub-formations composed of only UAVs and only UGVs.

Such a strategy envisages to control them in a separate and parallel way and

to simultaneously act adjusting the relative displacement p̄ ∈ R3 between

the centers of mass, the relative orientation q̄ ∈ S3 between the local frames

of a generic couple made of a UGV and a UAV, and the whole formation scale

factor ρ ∈ R+. More specifically, the rigidity based distributed controllers pro-

posed in (Zelazo et al., 2015; Michieletto and Cenedese, 2019) are employed

to steer the two sub-formations so that their components achieve the desired

poses. In doing this, the aerial and ground sub-formations are modeled

as (homogeneous) frameworks (GA, xA) embedded in SE(3)3 and (GG, xG)
embedded in SE(2)4, respectively. It is possible to verify that both (GA, xA)
and (GG, xG) are IBR (definition 2.12). Concurrently to the sub-formations

stabilization, a leader-follower inspired strategy is employed to adjust the

parameters of the whole formation.

The multi-UGV subsystem acts as reference generator for the multi-UAV one.

Knowing the complete formation desired shape b∗
K and its own state xG, it

computes the reference values for the matching parameters p̄∗, q̄∗ and ρ∗.

Those references are passed to the multi-UAV subsystem where are used to

drive three independent PID controller that match the two sub-formation

relative displacement, orientation and scaling:

v̄A,w = PIDv(p̄∗ − p̄), (2.26)

ω̄A,w = PIDq(q̄∗ − q̄), (2.27)

sA = PIDρ(ρ∗ − ρ). (2.28)

The first PID, eq (2.26) computes the UAV-subsystem required common

linear velocity in the inertial reference frame v̄A,w ∈ R3 to zero the relative

displacement error p̄∗ − p̄. The second PID, eq (2.27) computes the UAV-

subsystem required common angular velocity in the inertial reference frame

ω̄A,w ∈ R3 to zero the relative orientation error q̄∗ − q̄.4 The third PID,

eq (2.28) computes the UAV-subsystem required common scale sA > 0 to

4With abuse of notation, here we use the difference operator to indicate (q̄∗)−1q̄.

28 Chapter 2 Bearing-based heterogenous control



(a) SA controller (b) MA controller

Figure 2.6: (a) Performance of the SA controller, (b) performance of the MA con-
troller - the trajectories of the UAVs are depicted in blue, the ones of the
UGVs in black.

zero the relative scale error ρ∗ − ρ. Once the three corrective terms are

compute, the single agent linear and angular velocities are derived:

vi = R⊤
i (v̄A,w + sA(pi − p̄A) +

[︂
ω̄A,w

]︂
×

(pi − p̄A),

ωi = R⊤
i ω̄A,w,

(2.29)

where p̄A ∈ R3 is the barycenter of the UAVs subformation. The specific

structure of eqs (2.29) ensures that the leader-follower approach does not

deteriorate the performances of the sub-formation stabilization controller.

Indeed, v̄A,w, ω̄A,w and sA are combined such that the resulting actions are

trivial motions (definition 2.11).

Hereafter, the described control strategy is referred as multi-action (MA)

controller, while the stabilization law (2.25) is indicated as single-action (SA)

controller.

Figure 2.6a reports the trajectories followed by the agents from their initial

to final positions (grey and black dots, respectively) thanks to the implemen-

tation of the SA controller (2.25). From figure 2.6b, instead, one can observe

that the agents trajectories are more complicated when the MA controller is

employed. This is due to the fact that the UAVs are required to simultaneously

reach their desired poses and to rearrange w.r.t. the whole desired formation

shape. Conversely, the SA controller aims at equally distribute the effort

among all the agents (based on the sensing graph G).
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2.5.2 Monte-Carlo campaign validation

A Monte-Carlo (MC) simulative campaign has also been conducted account-

ing for N = 100 different realizations of initial conditions of the given

formation stabilization problem. To approximate real-world behavior, and

in accordance with the existing literature, all bearing measurements have

been corrupted with additive Gaussian noise having zero mean and standard

deviation σ = 0.5◦. For a thorough discussion about noise generation on the

unit sphere, please refer to section 3.2. In particular, two different MC tests

(with N runs each) have been considered, highlighting the intrinsic trade-off

between stabilization speed and control effort.

The first evaluated performance index consists in the formation settling time
ts > 0, corresponding to the average time required to sufficiently align the

bearing measurements to the given, desired ones. Formally, ts is computed

as the average time required by

α(t) = 1
m

m∑︂
i=1

arccos
(︂
b⊤

i (x(t))b∗
i

)︂
, (2.30)

which represents the average of the unsigned angular error between the

desired bearings b∗
i and the measured ones bi, to go below the threshold ᾱ =

0.75◦. Motivated by the MC approach, the Empirical Cumulative Distribution

Function (ECDF) is considered. This is defined as

F̂ts(t) = 1
N

N∑︂
k=1

1ts,k(t), (2.31)

where, for each k-th trial, the indicator function 1ts,k(t) is equal to one when

t ≥ ts and zero otherwise. Conversely, the control effort is investigated

through the computation of the ECDF of the input energy required to reach

the settling condition. Formally, this is computed as

F̂Es(E) = 1
N

N∑︂
k=1

1Es,k(E), (2.32)

where the indicator function 1Es,k(E) accounts for the number of trials where

E ≥ Es with Es =
∫︁ ts

0
⃦⃦
δ(s)

⃦⃦
ds.
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In the first MC test, the tunable parameters of the SA and MA controllers have

been set so that the two solutions turn out to be equivalent in terms of control
effort. The results are reported on figure 2.7a. Observe that the proposed

SA controller (blue line) outperforms the MA controller (orange line) as

concerns the selling time (left panel). For the sake of completeness, the

settling time and control effort ECDFs of the UAVs and UGVs subformations

used in the multi-action controller are highlighted. Two observations are in

place.

• First, the UAVs achieve their desired poses ten times faster than the

UGVs: this highlights the key role played by the underlying topology.

• Second, the gap between the settling time ECDF restricted to the ground

multi-agent system stabilization and of the whole MA controller em-

ployment points out that the settling time strongly depends on the

alignment between the two sub-formations.

In this direction, the slower sub-formation stabilization performance can be

interpreted as a lower bound for the settling time in case of MA controller

adoption.

The results of the second MC test are reported in figure 2.7b. In this case, the

parameters of the SA and MA controllers are tuned so that the two approaches

exhibit the same settling times. In these conditions, the SA approach requires

a lower control effort (right panel) implying that the outlined formation

controller is more energy-efficient as compared to the MA one but not more

effective in terms of settling time (left panel).

The table 2.1 summarizes the main results, specifying the average settling

times and the average settling energies for both the MC tests5, and confirms

the overall better performance for the heterogeneous SA controller.

2.6 Discussion

Here, the principal aspects of the designed heterogeneous formation con-

trol are highlighted. First of all, the proposed distributed approach (2.25)

5These results are given only in terms of average because the wide range of MC realizations
yields high values of variance over the whole spectrum of simulations.

2.6 Discussion 31



ts Es

same SA 22.1s 1220
control effort MA 32.6s 1212

same SA 30.9s 829
settling time MA 31.5s 1447

Table 2.1: Results of MC tests - average value of settling time and control effort.

(a) Matched control effort Es

(b) Matched settling time trs

Figure 2.7: Results of MC tests - the figures shown the trend of the control in-
put ECDFs (2.31) (left column) and settling time ECDFs (2.32) (right
columns) in correspondence to the two MC test. (a) matched con-
trol effort scenario. (b) matched settling time scenario. Solid blue
lines represent the single-action controller, solid red lines represent the
multi-action controller, dashed yellow and purple lines represent the
individual UAVs and UGVs subformations considered in the multi-action
controller, respectively.
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depends on relative bearing information but also also on the inter-agent

distances and relative orientations. Nonetheless, these last can be estimated

through distributed consensus algorithms without employing additional sen-

sors (Kia et al., 2019). Then, contrarily to most of the existing formation

stabilization schemes, the designed control law (2.13) is not a classical gradi-

ent descent procedure, distinguishing w.r.t. the standard bearing based rigid

formation controllers (Zelazo et al., 2015; Schiano et al., 2016; Michieletto

and Cenedese, 2019). However, taking into account (2.18), one can observe

that the proposed controller can be interpreted as a gradient descent solu-

tion followed by a re-projection operation necessary to guarantee that the

configuration derived from the application of (2.13) is in R3n × S3n. Such a

re-projection is mainly due to the adopted rotation representation. Finally,

the proposed controller presents a single parameter to tune, having a sim-

ple structure if compared with the hierarchical MA approach introduced in

section 2.5. This, indeed, results to be structurally more complex involv-

ing multiple controllers operating at different levels (each of them, then,

involves one or more parameters to tune) and more demanding in terms

of agents interactions (sub-formations are required to communicate in a

bilateral manner).

In this chapter the problem of stabilizing an heterogeneous formation resort-

ing on only inter-agent bearing measurements has been addressed in the

mathematical framework of the bearing rigidity theory. Although the stability

of the proposed controller has been proven for noiseless scenario and the

robustness to disturbances on the measurements has been investigated by the

MC simulation campaign, the topic of noisy rigidity theory and noisy bearing

based approaches remains open and of interest, as every real life applications

must deal with non-perfect sensing apparatus. In the next chapter addresses

such issue from the point of view of the noisy bearing based localization

task, in which a team of agents must localize an uncooperative target by

measuring it perturbed bearing vectors.

2.6 Discussion 33





3Bearing-based target
localization

In this chapter bearing only measurements are adopted by a group of seeker

to estimate the position of an uncooperative target. The seeker actuation

capabilities are exploited by the active-sense paradigm to steer the agent and

reduce the estimation uncertainty.

3.1 Introduction

The target localization task involves the estimation of the position of an

object, a person, or an event based on the data collected by some sensing

agents while surveying a specific area of interest. This issue spans multiple

application scenarios, including environmental monitoring (e.g., radiation

sources identification and forest fires detection), territorial surveillance (e.g.,

intruders and/or potential threats recognition), and search-and-rescue mis-

sions (e.g., localization of victims of catastrophic events)(Robin and Lacroix,

2016).

Due to its widespread occurrence, the target localization problem remains an

intriguing research subject within the field of control. The current solving

methods vary depending on several application factors such as the number

of target and seeker agents, their ability to act (distinguishing between static

and dynamic agents), and the type of involved sensing data, including bearing

and/or distance measurements. In this chapter, the attention is focused on

the localization of a single static target through a group of dynamic seeker

agents having bearing sensing capabilities. In particular, the task is addressed

by accounting for the twofold aspect of the target position estimate and the

seeker agents control.

Related works - The problem of determining the unknown position of a certain

object by exploiting a given set of bearing measurements dates back to (Stans-

field, 1947) where the expected root-mean-square error on the target position
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estimate is adopted as the index for measuring the estimation reliability. Later,

multiple works cope with the bearing-based target localization task. Without

claiming to be exhaustive, (Kaplan et al., 2001) and (Bishop et al., 2009)

are mentioned, which specifically focus on the measurements features. In-

deed, in the former, a Maximum Likelihood approach is exploited to face

the non-linearities affecting the measurement noise, while in the latter the

task is formalized and addressed in a constrained geometric optimization

framework resting on the relative direction of the bearings. More recently,

similar measurement-aware methods have been proposed for the localization

of multiple static targets by means of a multi-agent formation in the context

of obstacle avoidance task (Chun and Tian, 2020), and for the localization of

a single dynamic target moving on a plane and tracked by a group of seeker

agents (Dou et al., 2020; Chen et al., 2023). In these works, the seeker

agents are steered along continuous predetermined (elliptical and circular,

respectively) trajectories, independently of the target localization uncertainty.

Conversely, trajectory optimization is studied in (He et al., 2019) where a

single seeker agent is required to track a target having unknown dynamics.

Along the same line, in (Xu, 2020) the trajectories of multiple sensing agents

are designed in order to minimize the mean-squared error on the estimation

of a single target position. In that work, the exploited measurements are

both angle and time of arrival.

Contributions - As in (Xu, 2020), an estimation and control framework to

displace a group of seeker agents in order to optimize the accuracy of the

estimated position of a target is proposed. On the other hand, the focus is

placed on bearing measurements. More in detail, the main contributions are

twofold:

• on the estimation side, a procedure exploiting the popular weighted

least square approach and entailing the iterative computation of the

covariance matrix on the estimated target position is proposed;

• on the control side, a regulation law for the seeker agents based on the

active-sensing paradigm (Varotto et al., 2021) is advised.

The outlined framework is validated by the numerical results of an extensive

Monte Carlo simulation campaign. The claim here is that the goodness of the

estimation outcomes is also guaranteed by an ad-hoc initialization procedure

for the proposed localization algorithm.
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Chapter Structure - The rest of the chapter is organized as follows. The

bearing-based target localization task is detailed in section 3.2 with special

regard to the measurements modeling. In section 3.3 the algorithm to

estimate the target position in 3D space is illustrated. Then, in section 3.4,

the control strategy to reduce the uncertainty on the estimated target position

is investigated. The performance of the designed estimation and control

framework is discussed in section 3.5.

3.2 Target localization task

In this chapter, the bearing-based target localization task consisting in the

estimation of the position of an unknown target through the exploitation of a

set of noisy bearing measurements collected by a group of seeker agents is

investigated.

The target position pt ∈ R3 is assumed to be fixed over time, while any

i-th seeker agent, i ∈ S = {1 . . . n}, n ≥ 2, is modeled as a particle point

having single-integrator dynamics. Denoting with pi(t) ∈ R3 the time-varying

position of the i-th seeker agent, it thus holds that

ṗi(t) = ui(t), (3.1)

with ui(t) ∈ R3 being the control input chosen in order to guarantee that

pi(t) ̸= pt,∀t. This assumption makes the considered seekers fully-actuated

platforms in R3. Any i-th seeker agent is supposed to know its position with

a certain level of accuracy, for example by adopting RTK positioning sensors.

To ease the notation, hereafter, the time dependency is dropped when not

strictly necessary.

Any i-th seeker agent is also supposed to be capable of acquiring a noisy

measurement of the bearing with respect to the target with sampling period

T > 0. Specifically, the bearing bit ∈ S2 is defined as

bit = f i(pt) = pt − pi

∥pt − pi∥
, (3.2)
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Figure 3.1: 3D and 2D graphical description of the relation between bearing vector
bit and its noisy measurement ˜︁bit.

where f i(·) : R3 → S2 is the bearing rigidity function associated to the i-th

seeker agent embedded in Di = R3.1 The measurement recorded at any

t = kT , k ∈ N, is then modeled as

˜︁bit = expbit
vi = cos(∥vi∥)bit + sin(∥vi∥)

∥vi∥
vi (3.3)

where, for any vector b ∈ S2, the exponential map expb(·) : TbS2 → S2

projects onto S2 the vectors belonging to the tangent space TbS2 of b. In (3.3),

the vector vi ∈ Tbit
S2 represents a perturbation that acts orthogonally to bit

and takes into account the sensor noise and the measurement uncertainties.

In the following, this is modeled as a normally distributed Gaussian random

vector having zero mean and positive semi-definite covariance matrix Σvi
∈

R3×3. In particular, since vi ∈ Tbit
S2 ⊂ R3, the covariance matrix is required

to have a zero eigenvalue corresponding to the eigenvector bit. To ensure

this property, Σvi
is defined as

Σvi
= P(bit)Σv̄i

P(bit)⊤, (3.4)

where Σv̄i
∈ R3×3 is a suitably selected positive definite matrix . A graphi-

cal representation of the bearing measurement (3.3) is given in figure 3.1,

highlighting the relation between the bearing bit and the perturbation vector

vi.

Finally, the seeker agents are assumed to constitute an ideal formation in

terms of communication, meaning that each group component can exchange
1Here the seekers are modeled as points in the 3D space and therefore they do not have

any frame attached to them. The bearing measurements are acquired in the common
frame FW .
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data with all the others without delays, interference, and/or information cor-

ruption and degradation. Accounting for the graph-based representation of

the formations, the seeker agents group is thus modeled as an homogeneous

framework embedded in D̄ = R3n with a complete indirect communication

graph.

The latter assumption will play a key role in the formulation of the target

position estimator of section 3.3 and the seeker controllers of section 3.4.

Nevertheless, keep in mind that, contrarily to the common practice used in

standard bearing rigidity theory, here the sensing graph and the communica-

tion graph of the seeker formation are completely different. The former has

no edges, as the seekers do not measure each other. The latter is complete.

A note about perturbation of bearing vectors - Bearing vectors on the three

dimensional sphere S2 are implicitly embedded in R3 as S2 ⊂ R3. Therefore,

the trivial solution to perturb a given bearing vector b0 ∈ S2 is to add a

random vector n ∈ R3 and the normalize the result,

b′
1 = b0 + n ∈ R3,

b1 = b′⃦⃦⃦
b′
⃦⃦⃦ ∈ S2.

(3.5)

While b′
1 maintains all the statistical properties of n, the following normaliza-

tion phase introduces non-linearities in b1 and very little can be said about

its statical distribution. A slightly better approach shapes the initial random

vector such that it belongs to the tangent plane of b0, then it adds it to the

original bearing and finally it normalizes the results,

b′
2 = b0 + P(b0)n ∈ R3,

b2 = b′⃦⃦⃦
b′
⃦⃦⃦ ∈ S2.

(3.6)

This approach lets b′
2 inherit the statistical properties of n and at the same

time constrains the perturbation direction to belong to the tangent space

P(b0). The normalization still remains. The last approach is the one adopted

in eq (3.3). The random vector n is drawn from the tangent space of b0 and
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then the manifold exponential operator is used to project it back to the S2

sphere,
n′ = P(b0)n ∈ R3,

b3 = expb0 n′ ∈ S2
(3.7)

the exponential map introduces a major useful property: the length l of the

arc identified by the two bearings b0 and b3 is equal to the norm of the

perturbation n′. Consequently, if n is drawn from a normal distribution, the

distribution of the angle between the b0 and b3, namely θ = arccos(b⊤
0 b3) = l,

is distributed according to a Generalized Chi Square distribution.

3.3 WLS-based target position estimation

The noisy bearing measurements introduced in section 3.2 can be interpreted

according to the popular additive noise model. Indeed, the expression (3.3)

of ˜︁bit can be rewritten as

˜︁bit = bit + ni = f i(pt) + ni, (3.8)

where ni ∈ R3, i ∈ S, is a function of both the bearing bit ∈ S2 and the

perturbation vector vi ∈ S2, namely

ni =
(︁
cos(∥vi∥)− 1

)︁
bit + sin(∥vi∥)

∥vi∥
vi. (3.9)

Note that figure 3.1 clarifies also the relation between the vectors vi ∈
Tbit

S2 ⊂ R3 and ni ∈ R3. All the seeker agents measurements can then be

collected in the so-called bearing measurements vector ˜︁bS ∈ S2n , defined as

˜︁bS =

⎡⎢⎢⎢⎢⎣
˜︁b1
...˜︁bn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
f1(pt)

...

fn(pt)

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
n1
...

nn

⎤⎥⎥⎥⎥⎦ = fS(pt) + nS, (3.10)

where fS(·) : R3n → S2n is the standard bearing function when the R3 domain

is taken into account as in section 2.2.

Since any vi ∈ R3 in (3.3) is modeled as a normally distributed Gaussian

random vector, nS ∈ R3 in (3.10) is supposed to approximates a Gaussian

random vector with i.i.d. components. The soundness of this assumption is
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confirmed by the numerical results in section 3.5.1. In light of this fact, the

bearing-based target localization task is tackled by adopting the well-stated

weighted least square (WLS) approach. In doing this, the target position

estimate p̂t ∈ R3 is determined as

p̂t = argmin
p∈R3

⃦⃦⃦˜︁bS − fS(p)
⃦⃦⃦2

W
, (3.11)

where W ∈ R3n×3n is a positive definite weight matrix whose selection is

discussed in the following.

3.3.1 Iterative WLS solution

The WLS problem (3.11) can be solved via the iterative procedure described

in algorithm 1 wherein, at each iteration, it is computed the solution of the

linearized WLS problem based on the linearization of the bearing rigidity

function around the current target position estimate (lines 3-5).

Remarkably, the Jacobian matrix FS(·) ∈ R3n×3 of the function fS(·) can be

computed in closed form and it results from the stacking of scaled projection

operators, namely

FS(p̂t) = ∂fS(p)
∂p

⃓⃓⃓⃓
⃓
p=p̂t

=

⎡⎢⎢⎢⎢⎢⎢⎣
1

∥p̂t−p1∥P(f1(p̂t))
...

1
∥p̂t−pn∥P(fn(p̂t))

⎤⎥⎥⎥⎥⎥⎥⎦. (3.12)

It can be observed that (3.12) corresponds to the bearing rigidity matrix

associated with the multi-agent formation embedded in R3 and composed

by n seeker agents and the target whose sensing capabilities are modeled

by a directed star graph having the target as the center of the ingoing edges

representing the bearing measurements acquired by the seekers.

The algorithm stops when ∥∆p̂t∥ ∈ R+, quantifying the innovation on the

target position estimate with respect to the previous iteration, is below a

given threshold ϵ ∈ R+ (line 6).

At this point the need of a fully connected graph should be clear. Algorithm 1

has a centralized structure and requires to collect data from all the agent
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Algorithm 1: Iterative least square algorithm.

Data: p̂t,0, ˜︁bS, ϵ, W
Result: p̂t

1 p̂t ← p̂t,0 ;
2 do
3 ∆˜︁b← ˜︁bS − FS(p̂t);
4 ∆p̂t ←

(︂
FS(p̂t)⊤WFS(p̂t)

)︂−1
FS(p̂t)⊤W∆˜︁b;

5 p̂t ← p̂t + ∆p̂t;
6 while∥∆p̂t∥ > ϵ;

at each iteration. The easiest way to achieve this requirement is to impose

the use of fully connected communication graph. While this condition is

definitively sufficient, it is necessary. Future works could consider using

partially connected communication graph among the seekers and exploit

distributed message passing techniques to share the data among the agents.

Remark 3.1. In the common bearing rigidity framework, the capability of

recovering the formation shape depends upon the bearing rigidity condition.

This is not the case as it is assumed that the seekers know in advance their

position. In this way the bearing based formation localization problem boils

down to a single agent (the target) localization task which can be theoretically

solved by two non-collinear bearing measurements.

3.3.2 Algorithm initialization

The goodness of the target position estimate outputted from algorithm 1

depends on its initialization (line 1).

If any prior information is available, e.g., in correspondence to the first

measurements acquisition, a suitable initial estimate guess p̂t,0 ∈ R3 is the

point that minimizes the distance from the lines passing through pi and

directed along ˜︁bit,∀i ∈ S. Introducing the seeker agents position vector

pS =
[︃
p⊤

1 . . . p⊤
n

]︃⊤
∈ R3n, it results that

p̂t,0 = argmin
p∈R3

d(p | pS, ˜︁bS), (3.13)
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where d(· | pS, ˜︁bS) : R3 → R is the cumulative distance function given the

seeker agents position and bearing measurements, namely it is

d(p | pS, ˜︁bS) = 1
2

n∑︂
i=1

(pi − p)⊤P(˜︁bit)(pi − p). (3.14)

Observe that the function (3.14) is convex and quadratic with respect to

the argument p, thus the global minimum for the problem (3.13) can be

computed as

p̂t,0 =
(︂
PS(˜︁bS)⊤PS(˜︁bS)

)︂−1
PS(˜︁bS)pS, (3.15)

where PS(·) : S2n → R3n×3 is the stacked projectors operator, so that it is

PS(˜︁bS) =
[︃
P(˜︁b1t)⊤ . . . P(˜︁bnt)⊤

]︃⊤
. Thus, exploiting the idempotent property

of PS(·), the vector p̂t,0 can be retrieved as

p̂t,0 = A−1y (3.16)

with matrix A ∈ R3×3 and vector y ∈ R3 defined as

A =
n∑︂

i=1
P(˜︁bit) and y =

n∑︂
i=1

P(˜︁bit)pi. (3.17)

Specifically, the existence of the solution (3.16) is guaranteed by the full

rankness of the matrix A: this condition holds when at least two bearing

measurements are not collinear.

When a target position estimation is already available, e.g., based on some

previous measurements set, the algorithm 1 can be initialized by exploiting

this information. In this case, it is, e.g., p̂t,0(t + T ) = p̂t(t).

Remark 3.2. Addressing problem (3.13) implies the computation of a target

position estimation which turns out to be a suboptimal solution for the target

localization task formalized as in (3.11). This is due to the fact that the

minimization problem (3.11) involves the notion of chordal distance over

S2, whereas (3.13) is based on the line distance. Accounting for figure 3.1,

(3.16) is computed by minimizing the (orange) projection along the direction

of ˜︁bit, whereas the solution of (3.11) is determined by minimizing the norm

of the (green) vector ni.
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3.3.3 Localization uncertainty

The covariance matrix associated to the target position estimate p̂t outputted

from algorithm 1 can be approximated using the linear regression theory.

Accordingly, it holds that

Σp̂t
=
(︂
(FS(p̂t)⊤WFS(p̂t))−1FS(p̂t)⊤W

)︂
ΣnS(︂

(FS(p̂t)⊤WFS(p̂t))−1FS(p̂t)⊤W
)︂⊤

,
(3.18)

where ΣnS
∈ R3n×3n is the positive definite covariance matrix of the noise

vector nS. The validity of (3.18) is confirmed by the numerical results in

section 3.5.1.

In the particular case wherein ΣnS
is known with a certain level of confidence,

it is suitable to select the weight matrix as W = Σ−1
nS

in order to have

Σp̂t
=
(︂
FS(p̂t)⊤Σ−1

nS
FS(p̂t)

)︂−1
. (3.19)

In this way, the target position estimate covariance matrix Σp̂t
results to

be dependent on the noise covariance matrix ΣnS
and on the matrix FS(p̂t)

which summarizes the relative position between the seeker agents and the tar-

get based on its current position estimate. This fact supports the employment

of an active-sensing approach in the design of the seeker agents controller:

the idea is to steer the seeker agents in order to minimize the uncertainty on

the estimated target position. Finally, note that the eq. (3.19) is the inverse

of the symmetric bearing rigidity matrix weighted by Σ−1
nS

.

3.4 Active sense control approach

To develop an ad-hoc active-sensing control approach for the seeker agents

group, the fact that the covariance matrix Σp̂t
is a function of the seeker

agents position pS (i.e., Σp̂t
= Σp̂t

(pS)) and its determinant constitutes a

measure of the volume of the uncertainty ellipsoid associated to the target

position estimate p̂t is exploited. Thus, given that det(M−1) = det(M)−1
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for any nonsingular matrix M, an active-sense control law based on the

maximization of the estimation reward

J(pS) = det
(︂
(Σp̂t

(pS))−1
)︂

(3.20a)

= det(FS(p̂t)⊤Σ−1
nS

FS(p̂t)), (3.20b)

relying also upon the weight matrix selection W = Σ−1
nS

, is designed.

The cost function (3.20) is unbounded from above and it has a singularity

when pi → p̂t for at least a seeker agent (in this case, it holds that J(pS)→
+∞). On the other hand, the uncertainty on the target position estimate is

intuitively reduced when the seeker agents approach the target itself.

Now, under the requirement of designing the control input ui of any i-th

seeker agent in order to guarantee that pi ̸= pt, the minimization of the

estimation reward (3.20) is addressed in a constrained framework, imposing

all seeker agents to move while maintaining their estimated distance with

respect to the target. In light of the assumed single integrator dynamic

model (3.1), the given constraint can be fulfilled by adopting a projected

gradient ascend control law. Formally, for any i-th seeker agent, the control

input is computed as

ui = k P(b̂it)J(pS) with (3.21a)

b̂it = p̂t − pi

∥p̂t − pi∥
, J(pS) = ∂J(pS)

∂pi

, (3.21b)

where k ∈ R+ is a tunable gain parameter and b̂it ∈ S2 in (3.21) represents

the estimated bearing of the i-th seeker agent with respect to the target

estimated position p̂t. Thus, the projector operator P(b̂it) ∈ R3×3 ensures

that the i-th seeker agent moves on the sphere centered in the estimated

target position with radius d̂it =∥p̂t − pi∥ ∈ R. Note that the Jacobian matrix

J(pS) ∈ R3×3 in (3.21) can be computed as the sum of two terms, namely

J(pS) = ∂J(pS)
∂b̂it

∂b̂it

∂pi

+ ∂J(pS)
∂d̂it

∂d̂it

∂pi

. (3.22)

One can verify that the first addendum in (3.22) belongs to the column

space of the matrix P(b̂it), i.e., to Im(P(b̂it)), while the second addendum is
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contained in its null space, i.e., ker(P(b̂it)). Then, the control input (3.21)

can be equivalently rewritten as

ui = k
∂J(pS)

∂b̂it

∂b̂it

∂pi

. (3.23)

By accounting for the case wherein the noise vectors n1, . . . nn are uncor-

related and characterized by diagonal covariance matrices, namely when

ΣnS
= diag(Σn1 , . . . Σnn) and Σni

= σ2
i I3 for all i ∈ S, it is possible to ex-

press the control input (3.21) in a more convenient closed form. Under these

conditions, indeed, the matrix Σ−1
p̂t

results to be

Σ−1
p̂t

=
n∑︂

i=1

1
σ2

i

1
d̂2

it

P(b̂it), (3.24)

and it can be interpreted as a weighted version of the matrix A in (3.17).

Note also that d̂it and b̂it in (3.24) can be seen as independent variables

that account for the radial and tangent direction of the gradient of the

estimation reward (3.20). Hence, J(pS) is trivially maximized by reducing

the estimated distance of the seeker agents with respect to the target or by

relocating the seeker agents. This observation is supported by the numerical

results provided in section 3.5.1.

It is important to understand that there is no unique possible choice of the

reward function. For example, minimizing the biggest eigenvalue of Σp̂t

while ensuring that the matrix remains positive definite, or minimizing its

trace (again, ensuring that it remains positive definite) could be reasonable

choices.

3.5 Validation

Firstly, the validity of the approximation (3.18) of the target position estimate

covariance matrix has to be asserted. Then, the performance of both the

outlined WLS-based target position observer and active-sensing controller

will be investigated.
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3.5.1 Model Validation: localization uncertainty

The expression (3.18) of the target position estimate covariance matrix comes

from the assumption that nS approximates a Gaussian random vector having

zero mean and a certain covariance matrix ΣnS
. Accounting for (3.9), it can

be observed that any i-th component ni, i ∈ S of the vector nS results from

the sum of two orthogonal terms. The first term is a downscaled version

of the vector vi, hence the Gaussian-based modeling turns out to be fairly

adequate, while this is not valid for the second term of (3.9) which entails

the corresponding measurement ˜︁bit to belong to the unit sphere S2.

Given these premises, remark that the performance of algorithm 1 rests upon

the selection W = Σ−1
nS

, hence it is necessary to ensure a good knowledge

of the covariance matrix of the vector nS whose components are supposed

to be uncorrelated and characterized by diagonal covariance matrices. In

the following, thus, the focus is placed on the effectiveness of the assumed

approximation

ΣnS
≈ Σv̄S

(3.25)

where Σv̄S
= diag

(︂
Σv̄i

)︂
∈ R3n×3n being Σv̄i

the design parameter introduced

in (3.4).

To assess (3.25), N = 1000 tests are performed simulating the target localiza-

tion task in correspondence to three different (initial) displacements of the

n = 3 seeker agents. Hereafter, Sa, Sb and Sc are introduced to denote the

three considered scenarios, ranging from a more clustered to a well-spaced

configuration, and the average angle θM ∈ [0, π] between each pair of bear-

ings is used as an index of the closeness of the seeker agents group. Formally,

this is

θM = 1
n(n− 1)/2

∑︂
i,j∈S,i ̸=j

arcsin(⃦⃦⃦ bit ⊗ bjt

⃦⃦⃦
), (3.26)

with · ⊗ · the cross product operator. In all the conducted tests, the target po-

sition is always equal to pt =
[︃
0 0 0

]︃⊤
m. Moreover, any bearing measurement

is generated according to (3.3) with different and independent noise profile

at each test. Specifically, the covariance matrix of the corresponding pertur-

bation vi is computed by exploiting (3.4) and setting Σv̄i
= (π/180) I3.
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For the analysis, the collection
{︂
p̂t,k

}︂N

k=1
of the (independent) estimates of the

target position is considered. The estimates are outputted from algorithm 1

whose stopping condition is regulated by the parameter ϵ = 10−4 m . Then,

the empirical target position estimate covariance matrix Σ̂p̂t
∈ R3×3 can

determined as

Σ̂p̂t
= 1

N − 1

N∑︂
k=1

(p̂t,k − ¯̂pt)(p̂t,k − ¯̂pt)⊤, (3.27)

where ¯̂pt ∈ R3 indicates the empirical target position estimate mean, namely

it is ¯̂pt = 1/N
∑︁N

k=1 p̂t,k.

Figure 3.2 clears up the relation between the covariance matrix Σp̂t
com-

puted as in (3.19) (hereafter termed theoretical covariance) and its empirical

counterpart (3.27) (hereafter termed empirical covariance), by reporting the

ellipsoidal covariance representation in correspondence to the three consid-

ered target localization scenarios. The results in figure 3.2 lead to two main

observations. First, the theoretical covariance over-approximates the em-

pirical one, ensuring a conservative target position estimation. Second, the

difference between the two covariances reduces when the seeker agents are

more spread (see figure 3.2c as compared to figure 3.2a, taking into account

the different scales of the axes). This last point will be better discussed in

the rest of the section. Nonetheless, it is possible to conclude that since the

theoretical covariance is a good approximation of the empirical, especially

in the more probable case in which the seeker agents are not all clustered

together, the soundness of assumption (3.25) is guaranteed.

3.5.2 Solution Validation: observer performance

The tests described in the previous section provide also some insights into the

performance of the proposed target position estimation method, i.e., of algo-

rithm 1. Indeed, the empirical mean ¯̂pt of the estimated target position turns

out to be biased for clustered configurations of seeker agents (¯̂pt =
[︃
0.12 0 0

]︃
m

in correspondence to to figure 3.2a). In addition, the clustered seeker agents

configuration leads to a high volume of uncertainty and also a low estimation

reward, while the well-spaced configuration (figure 3.2c) ensures greater

accuracy. This is justified by the fact that the volume of the covariance ellip-
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(a) clustered seeker agents configuration
pS = [︁

−15 0 0 −15 3 0 −15 0 1
]︁ m

θM = 0.16 rad
¯̂pt = [︁

0.12 0 0
]︁ m

J(pS) = 0.755× 103, cΣ = 105

(b) spaced seeker agents configuration
pS = [︁

0 15 0 −15 3 0 −15 0 1
]︁ m

θM = 1.05 rad
¯̂pt = [︁

0 0 0
]︁ m

J(pS) = 18× 103, cΣ = 3

(c) well-spaced seeker agents configuration
pS = [︁

0 15 0 −15 3 0 0 0 15
]︁ m

θM = 1.47 rad
¯̂pt = [︁

0 0 0
]︁ m

J(pS) = 24× 103, cΣ = 1.2

Figure 3.2: Ellipsoids representing the theoretical Σp̂t
(yellow) and the empirical

Σ̂p̂t
(blue) covariance matrices in correspondence to different seeker

agents configurations. The bearing measurements are marked in black.
Note that the scale in (a) is one order of magnitude larger than (b) and
(c).
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Figure 3.3: Number of iterations of algorithm 1.

soids strictly depends on the position pS of the seeker agents, but also on

their relative position with respect to the target according to (3.24). In the

three considered scenarios, the seeker agents are roughly placed at 15 m from

the target but the direction of the bearings varies. Intuitively, any bearing

identifies an infinite set of target position estimates lying on the line passing

through the corresponding seeker agent position. To resolve the correct dis-

tance, thus, at least another not collinear bearing is needed and, in particular,

the more the second bearing is orthogonal to the first one, the greater the

information provided. Lastly, it can be observed that the well-spaced seeker

agents configuration Sc yields also a covariance ellipsoid less flattened at

the poles: in this case, the condition number of the theoretical covariance

cΣ ∈ R approaches its minimum value. Note that when cΣ = 1 the covariance

ellipsoid is a sphere, in this case, the localization uncertainty is favorably

uniformly distributed on the three position components.

Figure 3.3 shows that the number of iterations required by algorithm 1 to

fulfill the stopping condition is no greater than four in all the considered

scenarios. This implies the goodness of the adopted initialization strategy

(section 3.3.1).

3.5.3 Solution Validation: controller performance

To investigate the performance of the outlined active-sensing control ap-

proach, the target localization scenario wherein the target position estima-

tion poorly performs is taken into account. Thus, the attention is focused on

the effects of the application of the control law (3.23) to any seeker agent

composing the clustered configuration (figure 3.2a). In detail, the bearing

measurements acquisition period is set to T = 0.1 s and the control gain to

k = 0.002.
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Figure 3.4: Estimation reward and condition number of the (theoretical) covariance
matrix.

Figure 3.4 reports the trend of the estimation reward J(pS) and of the

condition number of the covariance matrix Σp̂t
. Note that J(pS) reaches the

steady-state value∼23×103 in almost 15 s, concurrently the condition number

converges to 1.02 meaning that the covariance ellipsoid approximates a

sphere. The trajectories of the seeker agents are finally depicted in figure 3.5:

starting from a clustered configuration, the seeker agents are steered in some

new positions such that the resulting bearings are almost orthogonal among

them. Observe also that the proposed control law (3.21) should guarantee

that the seeker agents maintain constant the distance from the current target

estimation. This is not ensured in the practical discrete implementation,

however, such a distance can not decrease since any seeker agent velocity

vector turns out to be tangential to the bearing with respect to the target.

To conclude, this chapter shows how multi-agent systems can be exploited

to achieve high level goals such as target localization and how active-sense

frameworks can increase the performances of sensing algorithms by intelli-

gently controlling the agents. Once again, the usefulness of bearing sensing

techniques has been highlighted. A few final notes are in order though,

• The target was assumed to be static, this limits the practical applications

of the proposed approach. Nevertheless, as the WLS method is static

too, in the sense that it is not a dynamic localization algorithm and

the previous estimate is only used to initialize the new run, the target
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Figure 3.5: seekers trajectories.

position estimation phase is not supposed to be influenced by moving

targets. On the other hand, the active-sense controller relies on the

static target to guarantee that the seeker-target distances are kept

constant.

• As was mentioned above, the localization algorithm is not dynamic.

A better estimator should exploit the underlying target dynamics to

improve its performances.

• The seeker agents formation is assumed to know its relative positions

without the need of any inter-agent measurement and to be able to have

complete communication graph. In a more realistic scenario distributed

localization and active sense control should be adopted, in combination

with inter-seekers sensing. This would allow to relax the complete

sensing graph assumption.
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4Tilting quadrotor

In chapter 2 bearing rigidity theory was used to control an heterogeneous

formation having different actuation capabilities. In chapter 3 the task of

localizing an uncooperative target using a group of seeker and measuring

only bearing vectors has been addressed. From an actuation and sensing

point of view, in the simulative validation of chapter 2 the greatest degrees

of freedom are employed, i.e. fully actuated UAVs. In that way, it is actually

possible to apply thrusts and torques on the whole R6. At the same time, the

bearing measurements are acquired in the local frames of the agents. On

the other hand, the problem setup of chapter 3 adopts simple points in R3

to model the agents, resorting on the absolute communication capabilities

among the seekers to retrieve the underlying agents relative orientations.

At the same time, in practical application, it is difficult to have either a

proper fully actuated UAVs or a communication infrastructure that verifies the

assumptions of chapter 3. This chapter tries to bridge the gap between com-

plex and inefficient fully actuated UAVs and standard coplanar quadrotors,

proposing a new low level control law for tilting quadrotors.

4.1 Introduction

Quadrotors are probably the most widespread platforms among Unmanned

Aerial Vehicles (UAVs). Thanks to their low cost, high agility and flexibility,

they have gained increasing interest in recent years and they are currently

employed in a large variety of robotics applications, such as surveillance

(Semsch et al., 2009), monitoring (Ren et al., 2019), search and rescue

(Scherer et al., 2015), mapping (Christiansen et al., 2017) and data collection

(Liu et al., 2018), only to mention a few.

Standard quadrotors are under-actuated systems, with a tight coupling be-

tween the translational and the rotational dynamics. This prevents their

application in interactive tasks requiring the drone to exchange forces in

53



arbitrary directions, or in applications requiring challenging flights, with

decoupled position and rotation trajectories. In multi-agent scenarios, with

inter-agent bearing sensing capabilities, they are normally used for formation

embedded in D̄ = (R3 × S1)n as their four cdofs correspond to three dimen-

sional position in the space and heading (yaw) angle. This way of expressing

the platform configuration is sufficient to model their static behavior or their

equilibrium points. However, it falls short to encode their dynamic properties,

as planar quadrotors need to tilt and roll in order to acquire any kind of

horizontal acceleration. Consequently, a bearing sensor rigidly attached to a

coplanar quadrotor would tilt and roll too, and its field of view would end

up moving constantly.

The 1-dof tilting quadrotor design (Ryll et al., 2014), hereafter denoted as

tilting-quad, is a modification of the conventional quadrotor in which each

propeller, instead of being fixed along the vertical direction, is allowed to tilt

about a predefined axis, typically actuated by a servomotor. The presence

of 8 control inputs, namely 4 for the tilting angles and 4 for the spinning

rates of the propellers, makes the tilting-quad an over-actuated platform,

capable also of decoupling translation and rotation. This design, however,

presents new challenges from a control point of view. Indeed, the complexity

of the system dynamics is increased by the presence of five interconnected

moving bodies, namely the 4 rotors and the main frame, which introduces

additional nonlinear couplings. Moreover, its inherent over-actuation requires

the development of suitable allocation methods to efficiently exploit the

actuation redundancy.

Several strategies have been proposed in the literature to deal with the control

of tilting platforms. Focusing on trajectory tracking problems, proposed

solutions rely on PID based controllers with control allocators (Bin Junaid

et al., 2018; Oosedo et al., 2015), LQR techniques (Öner et al., 2008), H∞

control (Raffo et al., 2011), geometric control (Invernizzi and Lovera, 2017)

and back-stepping (Saif et al., 2018). These methods, however, are based

on strong assumptions about the model, such as small angle approximation

for system linearization, which heavily limits the set of feasible trajectories.

Promising results have been obtained with Feedback Linearization (FL): in

(Ryll et al., 2014), a dynamical FL strategy based on a simplified nonlinear

model of the tilting-quad is developed. This approach has proved to obtain
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accurate tracking performance of both positions and orientations, and also a

certain degree of robustness against unmodeled dynamics. However, since

it does not consider saturation constraints, its performance could degrade

with fast trajectories that require the system to operate close to the physical

limits.

In recent years, Model Predictive Control (MPC) (Rawlings et al., 2017) has

gained popularity in aerial robotics, thanks both to its predicting nature and

its ability to handle constraints. In the context of UAVs, however, due to the

high computational burden it requires, MPC has typically been used as a

trajectory planner rather than as a real-time controller acting at the motor-

level (Pozzan et al., 2022; Ganga and Dharmana, 2017). In (Bicego et al.,

2020), instead, a complete Nonlinear MPC (NMPC) framework is exploited

both as optimal trajectory planner and tracking controller also for a tilting

platform, but considering the same tilting angle for all the propellers. In

(Jacquet et al., 2020), a perception-constrained motor-level NMPC framework

has been developed also for over-actuated platforms with fixed propellers,

such as the Tilt-Hex (Ryll et al., 2017).

In this chapter, a motor-level NMPC controller is proposed for the tilting-quad

design introduced by (Ryll et al., 2014). Such controller provides directly the

low-level inputs, namely the tilting velocities and the spinning acceleration

of the propellers. This strategy has two main advantages: i) the low-level

constraints are inherently considered in the control problem; ii) the control

allocation is solved inside the NMPC optimization step allowing considering

energy consumption minimization and/or tilting angle penalization. As it

acts at the motor level, the proposed solution has also to cope with strong

real-time constraints. To this aim, a fast and efficient NMPC implementation,

based on (Chen et al., 2019b) is considered.

To stress its advantages, the proposed controller is tested on a realistic sim-

ulative setup, considering fast and challenging trajectories of increasing

complexity. Results show that the proposed NMPC controller performs better

than the state-of-the-art FL strategy proposed in (Ryll et al., 2014), providing

both accurate tracking performance and robustness to unmodeled dynam-

ics, even when the desired trajectory approaches the physical limits of the

system.
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Figure 4.1: Reference frames for a tilting quadrotor.

The remainder of the chapter unfolds as follows. In section 4.2 an accurate

model of the tilting quadrotor is reviewed; section 4.3 presents the proposed

NMPC scheme; In section 4.4 the performed experiments are described.

4.2 Modeling

In this section, an accurate mathematical model for a tilting quadrotor is

presented together with its simplified version suitable for the model predictive

control scheme.

Taking inspiration from (Ryll et al., 2014), the tilting-quad can be modeled

as a constrained multi-body system in which four motors and propellers

are linked to the main body by revolute joints. Six reference frames are

defined: Fo is the fixed, inertial frame; FB (body frame) is the frame rigidly

attached to the quadrotor center of mass (CoM) and Fi, i = 1, . . . 4 (motor
frames) are four frames rigidly attached to the CoM of the motors as shown

in figure 4.1. Let βi, with i = 1, . . . 4 be the angles that define the rotation of

the tilting planes of the propellers around the z-axis of the body frame. Then,

the relative orientations between the motor frames and the body frame are

completely characterized by the rotation matrices

BRi = RZ(βi)RX(αi) ∈ SO(3), i = 1, . . . 4 (4.1)

where αi ∈ R is the i-th propeller tilting angle w.r.t. the vertical position,

i.e., the angle between zi and z′
b. Eqs. (4.1) impose the geometric constraints
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among the quadrotor frames, which can be differentiated in order to obtain

the constraints on the angular velocities and angular accelerations:

ωi = BR⊤
i ωB +

[︃
α̇i 0 wi

]︃⊤
(4.2)

ω̇i = BR⊤
i ω̇B + ̇BR⊤

i ωB +
[︃
α̈i 0 ẇi

]︃⊤
(4.3)

where ωi ∈ R3 is the propeller angular rate in the motor frame, ωB ∈ R3 is

the quadrotor angular rate in the body frame and wi ∈ R, i ∈ 1 . . . 4 are the

propeller spinning rates and

̇BRi = BRi

⎡⎢⎢⎢⎢⎣
α̇i

0
0

⎤⎥⎥⎥⎥⎦
×

(4.4)

is the standard time derivative of a rotation matrix as a function of its non-

inertial angular rate. The i-th propeller angular dynamics expressed in Fi

has expression

τ i = Jiω̇i + ωi × Jiωi − τ i,ext (4.5)

where Ji ∈ R3×3 is the i-th rotor inertia matrix, τ i,ext is the drag torque due

to the propellers

τ i,ext =
[︃
0 0 −kmwi|wi|

]︃⊤
(4.6)

and km > 0 is the propeller drag coefficient. Be ei ∈ R3 the i-th vector of

the canonical base, then in eq (4.5), τi,x = e⊤
1 τ i is the motor tilting torque,

τi,y = e⊤
2 τ i is the reaction torque of the geometric constraint and τi,z = e⊤

3 τ i

is the motor spinning torque. On the other hand, the main body rotational

dynamics takes the form

τ B = JBω̇B + ωB × JBωB +
4∑︂

i=1

BRiτ i (4.7)
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where JB ∈ R3×3 is the main body inertia and τ B ∈ R3 is the total external

torque acting on the body, which accounts for the torque generated by the

thrust of the propellers, namely

τ B =
4∑︂

i=1
pi × BRiTi (4.8)

Ti =
[︃
0 0 kt,iwi|wi|

]︃⊤
(4.9)

with pi ∈ R3 the position of the motor frames w.r.t. the body frame and

kt,i ∈ R the i-th propeller thrust constant, which is positive for counter-clock-

wise propellers and negative for clock-wise ones. The complete dynamics of

a tilted quadrotor is finally obtained taking into account the the orientation

kinematics and the dynamics of the CoM, which are respectively

q̇ = 1
2M(qi)ωB, (4.10)

p̈ = −g + 1
mb

R(q)
4∑︂

i=1

BRiTi, (4.11)

where the quaternion q ∈ S3 is used to represent the orientation of the body

frame w.r.t FW . In (4.11), p ∈ R3 is the position of the CoM of the quadrotor

in the world frame, and mb > 0 is total quadrotor mass.

Combining the equations above, the non-linear dynamics ẋa = fa(xa, ua)
of a tilting-quad is retrieved. The state xa = [p⊤ q⊤ v⊤ ω⊤

B α⊤ α̇⊤ w⊤]⊤

consists of the body CoM position and body orientation, its linear and angular

velocities, tilting angles α = [α1 α2 α3 α4]⊤ and rates α̇ = [α̇1 α̇2 α̇3 α̇4]⊤ and

spinning rates w = [w1 w2 w3 w4]⊤. The subscript a is used to denote the

accurate model. Regarding the input ua = [τ ⊤
x τ ⊤

z ]⊤, it consists of the tilting,

τ x = [τ1,x τ2,x τ3,x τ4,x]⊤, and spinning, τ z = [τ1,z τ2,z τ3,z τ4,z]⊤, torques. Note

that, contrary to the common practice in coplanar quadrotor modeling, here

the propeller spinning rates wi can either be positive or negative. This does

not violate the unidirectional assumption though. Clock-wise propeller will

always have negative wi while counter clock-wise ones will keep positive

wi. To retrieve the close form expression of ẋa it is necessary to expand

the constraints imposed by eq (4.3). Each body-propeller joint enforces the

constraint

0 =
[︃
0 1 0

]︃ (︃
ω̇Pi
− BR⊤

i ω̇B − ̇BR⊤
i ωB

)︃
, (4.12)
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stating that the y-axis angular acceleration of FB w.r.t FPi
in FPi

must be

zero. This constraint is enforced by the second component of τ Pi
. In order to

do so the constrained state variable ωPi
must be written as a function of all

the other variables. The procedure is described in the following:

1. The i-th frame angular velocity ωi in eq (4.3) is substituted into eq (4.5)

giving

τ i = Ji

(︄
BR⊤

i ω̇B + ̇BR⊤
i ωB +

[︃
α̈i 0 ẇi

]︃⊤
)︄

+ωi×Jiωi−τ exti
. (4.13)

2. Then ω̇B can be removed exploiting eq (4.7) and thus obtaining

τ i = Ji

⎛⎜⎜⎜⎜⎜⎝BR⊤
i J−1

B

⎛⎝τ B − ωB × JBωB −
4∑︂

j=1

BRjτ j

⎞⎠+ ̇BR⊤
i ωB +

⎡⎢⎢⎢⎢⎣
α̈i

0
ẇi

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠

+ ωi × Jiωi − τ exti
. (4.14)

3. It is then possible to group the terms containing the i-th frame torques

τ i, i ∈ {1, . . . 4}:

0 = −τ i −
4∑︂

j=1
Ji

BR⊤
i J−1

B
BRjτ j + Ji

⎡⎢⎢⎢⎢⎣
α̈i

0
ẇi

⎤⎥⎥⎥⎥⎦+ ci, (4.15)

where

ci = Ji
BR⊤

i J−1
B (τ B − ωB × JBωB) + Ji

̇BR⊤
i ωB + ωi × Jiωi − τ exti

,

(4.16)

takes into account all other terms. Its value, if the tilting quadrotor

state x is known, is fully determined exploiting eqs (4.3, 4.4, 4.6, 4.8).
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4. At this point it is possible to rewrite eq (4.15) highlighting α̈i and ẇi:⎡⎢⎢⎢⎢⎣
α̈i

0
ẇi

⎤⎥⎥⎥⎥⎦ = J−1
i

⎛⎝τ i +
4∑︂

j=1
Ji

BR⊤
i J−1

B
BRjτ j − ci

⎞⎠ . (4.17)

5. Now there are N = 4 matrix equations (one for each propeller) that

provide α̈ and ẇ given the inputs τ i, i = 1, . . . 4. At the same time,

each equation introduces a constraint on the second components of τ i.

Those have the physical meaning for the reaction torques of the motor

joints, which must cancel any attempt to tilt the propeller frames along

their local y-axes. In light of this, the constraint matrix equation has

linear expression in the form 0 = Aτ y + b, where τ y = [τ1,y, . . . τ4,y]⊤.

6. To retrieve A ∈ R4×4 and b ∈ R4, first separate the known and unknown

parts of τ i and then restrict the analysis on the second row:

0 =
[︃
0 1 0

]︃
J−1

i

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦ τPi,y +

⎡⎢⎢⎢⎢⎣
τPi,x

0
τPi,z

⎤⎥⎥⎥⎥⎦+
4∑︂

j=1
Ji

BR⊤
i J−1

B
BRj

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦ τPj ,y +

⎡⎢⎢⎢⎢⎣
τPj ,x

0
τPj ,z

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠− ci

⎞⎟⎟⎟⎟⎟⎟⎠ .

(4.18)

7. The known term bi of b = [b1 b2 b3 b4]⊤ are

bi =
[︃
0 1 0

]︃
⎛⎜⎜⎜⎜⎜⎜⎝J−1

i

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
τPi,x

0
τPi,z

⎤⎥⎥⎥⎥⎦− ci

⎞⎟⎟⎟⎟⎟⎠+
4∑︂

j=1

BR⊤
i J−1

B
BRj

⎡⎢⎢⎢⎢⎣
τPj ,x

0
τPj ,z

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(4.19)

while the i, j-cell of A has expression

ai,i =
[︃
0 1 0

]︃
J−1

i

⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦+
[︃
0 1 0

]︃
BR⊤

i J−1
B

BRi

⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦ , (4.20)
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for j = i and

ai,j =
[︃
0 1 0

]︃
BR⊤

i J−1
B

BRj

⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦ , (4.21)

for j ̸= i.

At this point, to evaluate ẋa given the current state xa and the current inputs

ua, it is necessary to solve the constraint equations to retrieve τ y, after that

combining u and τ y yields α̈ and ẇ. The rest of ẋa directly follows.

This model will be used in section 4.4 to evaluate the performance of the

proposed control architecture, but it is important to notice that two major

simplifications remain: no air friction is considered and no propellers coupling

is considered.

To complete the tilting quadrotor model, it remains to address the actuation

devices, namely the motor driving the propellers and the servomotors driving

the tilting mechanisms, which provide τ z and τ x.

Propellers are normally driven by brushless DC (BLDC) motors; these devices

are paired with dedicated electronic speed controller (ESC). Therefore, the

quadrotor flight controller only needs to provide appropriate spinning rate

setpoints while the close loop response of ESC, BLDC and propeller can be

approximated by a low-pass filter whose bandwidth is larger than the one

of the main quadrotor body. The same applies for the tilting control, with

the only difference that BLDC motors are usually replaced by high precision,

high torque DC servomotors as the the accuracy in tracking the desired

tilting angle and tilting rate is critical. The low pass filter approximation

holds because, under realistic assumptions (i.e. Ji ≪ JB), the combined
dynamics of ωB, eq (4.5), and ωi, eq (4.7), compose four coupled two-time
scale dynamical systems. Section 4.3.2 will better explain this concept.

In the end, by simplifying the fast dynamics of the propellers and tilting

mechanisms and neglecting the second order term ωB × JωB, it is possible

to actuate the model directly in terms of tilting and spinning rates, α̇, w, as

long as high-frequency super low-level controllers, the one embedded in the

ESCs and in the servomotors, are correctly adopted. In this scenario, the
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new simplified state is xs = [p⊤ q⊤ v⊤ ω⊤
B α⊤]⊤, the new simplified input is

us = [α̇⊤ w⊤]⊤ and the model equations are given combining (4.10, 4.11)

with the simplified angular dynamics

τ B = JBω̇B −
4∑︂

i=1

BRiτ i,ext, (4.22)

ẋs = f s(xs, us) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
1
2M(qi)ωB

−g + 1
mb

R(q)∑︁4
i=1

BRiTi

J−1
B (τ B +∑︁4

i=1
BRiτ i,ext)

α̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.23)

This simplification brings tow major contributions:

• It is reasonable and add feasibility in the proposed control scheme:

the ESC controller act on the current loop of the motor, these loops

can easily have to run above 10 kHz. Designing an NMPC with such a

small sampling time that is also able to predict the full dynamics of the

quadrotor is not possible.

• The simplified model completely ignores the low pass filters on tilting

and spinning rate, at the point that the propeller and tilting mechanism

dynamics is neglected and only the first order kinematics remains. The

modeling error introduced by these assumptions makes the analysis

performed in simulation more meaningful.

4.2.1 Actuation analysis and comparison with tilted
solutions

At the beginning of this chapter, the interest in studying tilting quadrotor was

motivated claiming that they can bridge between efficient but under-actuated

coplanar quadrotors and fully-actuated but inefficient titled multirotors.

That claim is now discussed. Inspecting the simplified model (4.23), and

recalling the actuation properties discussed in chapter 1, a tilting quadrotor

has dynamic actuation matrix F(x) ∈ R6×4, where only the square of the

propeller spinning rates have been considered as inputs. Indeed, the tilting
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rates α̇ do not contribute in the first order linearization of the dynamics and

for this reason they have been omitted. More importantly in the body frame

of the quadrotor, the allocation matrix actually depends only on the tilting

angles α

F(α) =

⎡⎢⎣. . . kt

mb

BRie3 . . .

. . . J−1
B

(︂
ktpi × BRie3 − km

BRie3
)︂

. . .

⎤⎥⎦ . (4.24)

Recall that the allocation matrix defines the possible linear and angular

accelerations,

⎡⎢⎣v̇
ω̇

⎤⎥⎦ = F(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
w2

1

w2
2

w2
3

w2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4.25)

While rk F(α) = 4, i.e. the tilting quadrotor is not fully-actuated, the image

of the allocation matrix can be modified tuning the tilting angles α. In

principle, this allows to set-up an optimization problem that finds the tilting

configuration minimizing the control effort needed to generate a desired

linear and angular acceleration vector,

argmin
α
∥ū∥2

s.t.

⎡⎢⎣at

ar

⎤⎥⎦ = F(α)ū,

αi ∈ {αmin, αmax},

ūi ∈ {ūmin, ūmax},

(4.26)

where ū = [w2
1, w2

2, w2
3, w2

4]⊤ are the square of the propellers spinning rate,

at, ar ∈ R3 are the desired linear and angular acceleration, respectively and

αmin,max and ūmin,max are the lower and upper bounds for the tilting angles

and the input. Solving eq (4.26) allows to find the tilting configuration that

realizes the desired acceleration with the minimum effort, i.e. the most

efficient configuration. Therefore, as long as the actuation limits are not

violated, any feasible [a⊤
t a⊤

r ]⊤ can be optimally realized. The feasibility

is mostly imposed by the finite, non negative, input (the propellers are

unidirectional and cannot reverse their spinning direction) and by the limit

on the tilting angles. For example, common tilting-quadrotor builds limits

their tilting to ±60◦, both for mechanical reasons and for aerodynamical
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ones, as higher tilting angles would eventually cause strong, non negligible,

coupling effects. Finally, generating negative thrust on the body frame vertical

axis is impossible.

On the other hand, the tilted multicopter are intrinsically fully actuated

platforms (as long as a non-degenerate tilted configuration is chosen and

at least 6 rotors are adopted). Tilted multicopters can be seen and tilting

platform with fixed tilting angles α. This greatly reduce the mechanical

and control complexity but, at the same time, reduces the flexibility of the

devices. The tilt angles α are a design parameter for a tilted multicopter and

the designer must chose them weighting maneuverability and efficiency. The

former measures the amount of achievable linear and angular accelerations

and can be measured with, for instance, the smallest singular value of the

allocation matrix. Indeed, that value represents how difficult is to apply the

worst possible combination of linear and angular accelerations. If the value

is zero, the tilted platform is ill-designed and under-actuated. The latter

index, instead, represents how much of the input energy is wasted internally

to cancel the undesired torques and thrusts in order to obtain the desired

ones. This value is not fixed, but it changes depending on the trim point of

the multicopter. For instance, if the UAV mostly has to hover horizontally,

then the coplanar configuration has the absolute best efficiency. On the other

hand that is one of the ill-conditioned configurations. If the drone instead

has to hover in a tilted attitude, then the most efficient configuration will

be different. Lastly, it is important to remark that the tilted multicopter can

change its acceleration profile by just adjusting the propeller spinning rates

while in most of the cases, a tilting quadrotor need to update its tilting angles,

which in general introduces non negligible delays.

In conclusion, a tilted multicopter can be designed to be incredibly agile,

with the capability of generating thrust and torques in any arbitrary direction,

or it can be designed to be efficient, but it cannot be both things at the same

time. On the other hand, a tilting quadrotor, at the cost of an increase of

mechanical and control complexity, can achieve both goals by reorienting its

spinning axes.
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Figure 4.2: Control architecture.

4.3 Control architecture

With the advantages of tilting quadrotor over other configuration well as-

serted, the next step consist on presenting the proposed control law. The main

goal is to track fast and possibly unfeasible trajectories. To do so, the pro-

posed control architecture, depicted in figure 4.2, has two main components,

discussed in the next two subsections.

4.3.1 Nonlinear model predictive controller

The core of the controller is composed of a NMPC scheme that solves the

Nonlinear Programming problem (NLP) obtained by discretization of the

Optimal Control problem (OCP) of interest. Given N shooting intervals and

the evenly spaced sampling instants tk, k = 0, . . . N , the NLP takes the general

form (Chen et al., 2019b)

min
xk,uk

N−1∑︂
k=0

1
2
⃦⃦
hk(xk, uk)

⃦⃦2
W + 1

2
⃦⃦
hN(xN)

⃦⃦2
WN

(4.27a)

s.t. 0 = x0 − x̂mpc,0, (4.27b)

0 = xk+1 − ϕ(xk, uk), k = 0, . . . N − 1, (4.27c)

¯
rk ≤ rk(xk, uk) ≤ r̄k, k = 0, . . . N − 1, (4.27d)

¯
rN ≤ rN(xN) ≤ r̄N , (4.27e)

where x̂mpc,0 is the measurement of the current state, while ϕ(xk, uk) is the

numerical integrator that solves the initial value problem

ẋmpc(t) = fmpc(xmpc(t), umpc(t)), xmpc(0) = xk (4.28)
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at time tk+1 with umpc(t) piece-wise constant in the sampling instants. hk(·, ·)
and hN(·) are the output and final stage output function, respectively. rk(xk, uk)
and rN(xN) are the non-linear constraints. For the simplified tilting quadrotor

model (4.10, 4.11, 4.22) an integrated-NMPC is proposed, with the integral

component placed on the spinning rates. Therefore, the differential equa-

tion (4.28) has expression

ẋmpc =

⎡⎢⎣ẋs

w̄

⎤⎥⎦ = fmpc(xmpc, umpc) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
1
2M(qi)ωB

−g + 1
mb

R(q)∑︁4
i=1

BRiTi

J−1
B (τ B +∑︁4

i=1
BRiτ i,ext)

α̇r

̇̄wr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.29)

with xmpc = [p⊤ q⊤ v⊤ ω⊤
B α⊤ w̄⊤]⊤ the NMPC state and umpc = [α̇⊤

r
̇̄w⊤

r ]⊤

the NMPC input. α̇r, ̇̄wr are the tilting speed reference and the spinning accel-

eration reference, respectively. In order to reduce the NMPC computational

burden, the following transformations have been applied to the input-state

representation:

1. Firstly, the square of the propeller spinning rate w̄′
i = w2

i is adopted,

which leads to a linear dynamics in the input vector, indeed, inspecting

eqs. (4.6) and (4.9), it results

τ i,ext =
[︃
0 0 −k̄′

mw̄′
i

]︃⊤
Ti =

[︃
0 0 k̄′

tw̄
′
i

]︃⊤
(4.30)

where k̄′
m and k̄′

t are the adjusted drag and thrust coefficients. In almost

all practical application unidirectional propellers are employed and the

propeller thrust is always positive along the positive local z-semiaxes.

This implies that k′
t is always positive while k′

m is positive for counter

clock-wise propeller and negative for clock-wise ones.

2. w̄′
i is normalized, w̄i = w̄′

i/wmax, with wmax the higher achievable spin-

ning rate, in order to not have a multi-scale dynamics equation and

improve numerical stability. The proper scaling is then taken into ac-

count in the updated thrust and torque constants: k̄m = wmaxk̄′
m and

k̄t = wmaxk̄′
t.
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Regarding the model state constraints (4.27d) and (4.27e), the tilting angles

and the spinning rates are lower and upper bounded and the same applies

to all the inputs. In accordance to the receding horizon framework, at each

NMPC iteration, of the whole optimal input sequence u∗
mpx, only the first

element is sent to the low level controllers. While α̇r can be directly pushed

down the control pipeline, ̇̄wr firstly has to go through an integrator, and

then it needs to be denormalized and its squared root extracted, this gives

the required spinning rate setpoint wr for the low-level controllers.

4.3.2 Low-level controllers

The low-level controllers block simulate the motor ESCs and it is responsible

for bridging the NMPC commands α̇r and wr into motor tilting torques τ x

and motor spinning torques τ z. This is achieved by a pair of PID controllers

for each propeller, which run at a much higher frequency than the NMPC

in order to stabilize the fast dynamics of the motors. It is important to

remark that the propellers dynamics is highly coupled through the main body

one. Indeed, for each propeller, substituting (4.2) and (4.3) into (4.5) and

denoting with xi = [α̇i 0 wi]⊤ the state of the i-th propeller, yields

Jiẋi = −Ji

⎛⎜⎜⎜⎜⎜⎝BR⊤
i ω̇B + BRi

⎡⎢⎢⎢⎢⎣
α̇i

0
0

⎤⎥⎥⎥⎥⎦
×

ωB

⎞⎟⎟⎟⎟⎟⎠+ τ exti
+ τ i

−
(︂

BR⊤
i ωB + xi

)︂
× Ji

(︂
BR⊤

i ωB + xi

)︂
, (4.31)

which in first-order approximation represents a double integrator dynamics

for αi and a single integrator dynamics for wi subject to disturbances coming

from the main body dynamics ω̇B, ωB and the drag torque τ exti
. Therefore,

standard PIDs are expected to perform properly only under the assumption

that these disturbances remain limited. This constraint is already satisfied

for τ exti
, since it is a function of wi and it is reasonable to assume that

ω̇B, ωB remain bounded also when dealing with aggressive maneuvers in

real-world scenarios. The PIDs emulate the pairs ESC+BLDC motor and

servomotor, for the spinning and tilting branches, respectively. Their inputs

are the the spinning rate errors ew,i = wr − wi and the the tilting rate error

eα,i = α̇r − α̇i.
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Table 4.1: Accurate model parameters

Parameter Value

mb 2.62 kg
JB diag([0.03 0.03 0.06]) kgm2

kt 1.76× 10−5 N/s2

km/kt 0.05 m
Ji diag([0.135 0.135 0.26])×10−4 kgm2

Table 4.2: Accurate model limit values

Variable Range

|w| [100, 10 000] rpm
αi [−1.04, 1.04] rad
α̇i [−6, 6] rad/s
τi,x [−0.1, 0.1] Nm
τi,z [−1, 1] Nm

4.4 Simulation results

In this section, the proposed controller is evaluated in a simulative setup,

obtained by implementing in Simulink® the accurate model derived in sec-

tion 4.2.1 The NMPC controller is compared with a state-of-the-art FL control

scheme on different trajectories with increasing complexity. Both controllers

exploit the simplified model described by eq (4.23), initially assuming perfect

knowledge of the model parameters and state vector.

4.4.1 Model parametrization

In order to have realistic simulations, the high-accuracy model parameters

have been chosen to mimic as much as possible those of a real drone. They

are listed in tables 4.1 and 4.2. Specifically, a 40 cm-wide X-shaped quadrotor

1The code is available at https://github.com/sparcs-unipd/
NMPC-tilting-quadrotor.
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Table 4.3: NMPC weight matrices

Weight Value Weight Value

Wp 5 I3 Wv 0.5 I3

Wq I3 Wω 10 I3

Wα 1× 10−2 I3 Wα̇ 1× 10−3 I3

Ww̄ 1× 10−3 I3 W ̇̄w 1× 10−1I3

layout has been adopted with tilting axes parallel to the motor arms, which

gives

pi = 20 cm

⎡⎢⎢⎢⎢⎣
cos βi

sin βi

0

⎤⎥⎥⎥⎥⎦ (4.32)

with β1 = −π
4 , β2 = 3π

4 , β3 = π
4 , β4 = −3π

4 . The first and second propellers are

counter-clockwise while the third and fourth are clockwise. In the simulation,

the accurate model has been integrated using Runge-Kutta 4 with step size

Ts = 1 ms. Regarding the low-level PID controllers, they are obtained by

implementing eight independent the continuous time transfer functions in

standard form

P + I
1
s

+ D
Nd

1 + Nd
1
s

(4.33)

with P = 0.01, I = 0.1, D = 10−5, and Nd = 100.

4.4.2 NMPC implementation

The NMPC scheme presented in Section 4.3.1 has been implemented exploit-

ing MATMPC (Chen et al., 2019b). The simplified non-linear dynamics of

the tilting-quad (4.29) is discretized with step size Ts,MP C = 10 ms using

an explicit Runge-Kutta 4 integrator. CASADI (Andersson et al., 2019) au-

tomatically performs offline the differentiation of the model equations and

the interior point method HPIPM_SPARSE is used to solve the final sequential

quadratic programming problem. This latter choice has been experimentally

validated: it is faster than the other available solvers and it is sufficiently

robust for the considered model, i.e., no numerical artifact are visible in sim-

ulation. MATMPC implements a real-time iteration (RTI) scheme, in which

the sensitivities are adaptively updated online and only one SQP iteration is

performed. This allows to achieve a real-time feasible implementation. The
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cost function in (4.27a) is a quadratic form based on the difference between

the predicted state and input and the desired ones, namely

hk =

⎡⎢⎣xk − xk,r

uk − uk,r

⎤⎥⎦ ,

while the final cost is just the weighted square of the difference between the fi-

nal predicted state and the final desired one hN = xN−xN,r.2 The weight ma-

trices have structure W = diag(Wp, Wq, Wv, Wω, Wα, Ww̄, W ̇̄w, Wα̇) and

WN = diag(Wp, Wq, Wv, Wω, Wα, Ww̄) and their values are reported in

table 4.3. Finally, the prediction horizon has length N = 30 samples.

4.4.3 Benchmark trajectories

The controller is tested on infinity-shaped planar trajectories with a constant

attitude

pr(t) =

⎡⎢⎢⎢⎢⎣
ax sin(ωt)
ay sin(2ωt)

0

⎤⎥⎥⎥⎥⎦+ s(t), ω = 1 rad/s (4.34)

qr(t) =
[︃
1 0 0 0

]︃⊤
, (4.35)

that are parametrized by the x and y amplitude ax, ay, respectively. s(t) =
s1e

−t + s2e
−2t + s3e

−3t is an exponentially decaying smoothing function that

ensures zero initial condition for the position, velocity and acceleration

references. The final NMPC state and input reference trajectories result

xr = [p⊤
r q⊤

r v⊤
r ω⊤

B,r α⊤
r w̄⊤

r ]⊤ and u = [α̇⊤
r

̇̄w⊤
r ]⊤, with vr, ωB,r the analytical

derivatives of pr, qr and all the other values fixed to zero. In such a way the

NMPC cost will prefer to

• not deviate too much from the coplanar configuration: αr = 0;

• minimize the spinning rate, i.e,. the energy consumption of the tilting

quadrotor: w̄r = 0;

• not change tilting angles or spinning rate too fast: α̇r = ̇̄wr = 0.

2Notice that with abuse of notation, the quaternion error qk − qk,r is computed as the
imaginary part of qk ◦ q−1

k,r.
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Figure 4.3: Exemplifying realization of the desired trajectory on the xy-plane. It
starts from (0, 0) with zero initial velocity and acceleration and, after a
transient, it syncs with the infinity-shaped trajectory.

The effect with the greatest weight is selected by tuning Wα, Ww̄, W ̇̄w

and Wα̇). A possible trajectory realization is shown in figure 4.3 with

ax = 3 m, ay = 1.5 m. Table 4.4, instead, reports details of the six cho-

sen trajectories with increasing performance level (required tracking speed)

together with their maximum velocity vr,max and acceleration ar,max. The

infinity-shaped trajectory with constant attitude has been chosen to stress

the thrust-torque decoupling capabilities of the tilting quadrotor.
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ê p
[c

m
]

1.
5

0.
9

3
2.

5
7.

9
-

17
-

58
-

-
-

10
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Figure 4.4: Position error performance of the two controllers. The NMPC (solid
line) is able to track all four trajectories while the FL (dashed line) is
limited to the first two.

4.4.4 FL comparison controller

The FL controller proposed in (Ryll et al., 2014) is used as the baseline for

performance evaluation. This controller uses the same internal model of the

MPC with the only difference being that the propeller spinning rates are not

normalized. Introducing the third derivative of the quadrotor position and

the second derivative of its angular velocity the dynamics can be written as

⎡⎢⎣...p
ω̈

⎤⎥⎦ = A(α, w̄′)

⎡⎢⎣ ̇̄w′

α̇

⎤⎥⎦+ b(α, w̄′, ωB) (4.36)

with A(α, w̄′) ∈ R6×8 full rank as long as w̄′ ̸= 0. Then the FL controller can

be applied ⎡⎢⎣ ̇̄w′

α̇

⎤⎥⎦ = A†

⎛⎜⎜⎝
⎡⎢⎣...pc

ω̈c

⎤⎥⎦− b

⎞⎟⎟⎠+ (I8 −A†A)z (4.37)

where A† ∈ R8×6 is the Moore-Penrose pseudoinverse of A and ...pc, ω̈c are

the new control inputs of the linearized system which can be obtained by a

stabilizing static state feedback. The system overactuation (I8 −A†A) ̸= 0
is exploited in the additional input z ∈ R8 to steer ̇̄w′andα̇ acting on the
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Figure 4.5: Tilting angles and spinning rates computed by the NMPC for the fourth
trajectory. Heavy saturation is observable (see values in table 4.2).

non-empty kernel of A. Here z is obtained as the negative gradient of the

potential H(w) = ∑︁4
i=1 h(wi),

h(wi) =

⎧⎪⎪⎨⎪⎪⎩
kh1 tan2(γ1|wi|+ γ2) wmin < |wi| ≤ wrest,

kh2(|wi| − wrest)2 − (|wi|−wrest)2

|wi|−wmax
|wi| > wrest,

(4.38)

with γ1 = π
2(wrest−wmin) , γ2 = −γ1wrest and k1 > 0, k2 > 0 tuning gains. In

eq (4.38), wmin is the minimum allowed spinning rate (hard constraint),

wrest > wmin is instead the “rest” speed, for example the one required for

hovering. Finally, wmax > wrest it the maximum propeller speed. Such a

cost function is meant to keep the propeller speed inside the operative range

with asymmetric profile. The cost increases quadratically for rates above wrest

while it behaves as a hard barrier function as wi approaches wmin.

4.4.5 Discussion

The simulations results, in terms of average position error êp and average

orientation error êϑ, are reported in table 4.4. If the controller was unable to

track the relative trajectory, ‘-’ is used. The behavior of the position error for

some trajectories is also shown in figure 4.4. The NMPC control scheme is

able to track with negligible error up to the fourth trajectory and to stabilize

the system up to the fifth one. On the other hand, the FL controller is only
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Table 4.5: Average position and attitude error in presence of parameter uncertain-
ties on the second trajectory.

êp [cm] êϑ [mrad]
NMPC FL NMPC FL

mb

+5 % 9.7 2.9 12 81

+10 % 18 4.0 11 71

+15 % 26 5.5 11 63

+20 % 33 7.2 10 56

km

+5 % 3.4 2.7 17.4 104

+10 % 3.7 - 29.2 -

+15 % 4.2 - 42 -

+20 % 8.9 - 59 -

able to stabilize and track the first two trajectories. The reason is that the FL

control (4.37) is not able to cope well with input and state saturations and

even if the corrective term z is employed, it is not trivial how to choose it to

remain inside the feasibility sets. On the other hand, the predictive abilities

of the NMPC allow it to keep the trajectory even when the setpoints require

the saturation of the actuators as shown in figure 4.5.

As perfect knowledge of the model parameters is practically impossible,

robustness of the proposed NMPC controller is evaluated on the second

trajectory for different values of quadrotor mass mb and thrust coefficient

km. The cumulative results are reported in table 4.5 while the behavior of

the tracking error under different thrust coefficients is shown in figure 4.6

Even with 20 % error on the value of mb, both controllers are able to stabilise

and track the trajectory. The FL performs better in terms of position error

while the NMPC has better results in keeping the desired attitude. On the

other hand, even small variations on the motor thrust constant km leads to

the instability of the FL controller while the integral action of the NMPC

efficiently compensates for them.

A few final remarks a due. This chapter proposed a Nonlinear Model Predic-

tive Control approach for the motor-level control of tilting quadrotor as an

interesting alternative to coplanar and tilted multicopters. The simulations

results are promising and show how NMPC is the right tool to tackle the

intrinsic complexity of the tilting quadrotor and even under challenging tra-
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Figure 4.6: Position error ep of the NMPC when the motor thrust constant km is not
perfectly known.

jectories. Nevertheless, tuning and real time implementation issues remains;

the last column of table 4.4 show that even the most challenging trajectory

was tracked if and extended (NMPCe) prediction horizon of N = 50 samples

was adopted. The additional computational burden makes this solution not

feasible to be implemented onboard as the computational time would exceed

the maximum allowed. On one hand, non-uniform sampling grids could be

adopted, or better NMPC toolboxes could be tested, such as acados. The next

chapter is for this reason entirely devolved to the implementation problem of

NMPC algorithms for heterogeneous multi-agent system.
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5Bearing based
autonomous landing

While in the last chapter an NMPC controller for a tiling quadrotor was

proposed to address the limitations of standard planar quadrotors and the

complexity and inefficiency of tilted multicopters, in this last chapter a multi

agent application, namely the autonomous landing of a drone on a moving

platform, is addressed together with experimental validation.

5.1 Introduction

In addition to the specific mission accomplishment, UAVs must be able to

perform take-off and landing autonomously. Landing accuracy, in particular,

is a crucial aspect of the autonomous vehicles management, as they often

need to reach predetermined points for returning to base, payload unload-

ing/loading, recharging, and others. In recent years, there has been a focus

on the problem of landing on moving targets, which yields multiple potential

advantageous features, such as recharging the UAV at mobile stations rather

than fixed, in long-distance missions, or landing on a moving supporting

vehicles in emergency scenarios (Grlj et al., 2022).

In this chapter, an hybrid architecture, composed by an high level Nonlinear

Model Predictive Control (NMPC) and low level PID controllers, is exploited

to perform the autonomous landing of a UAV on a moving target. Differently

from the previous chapter, here then NMPC will not directly control the pro-

peller spinning rates as that will be the role of the low level PID controllers.

The NMPC will operate at an higher level, reducing its computational burden

and allowing of larger sampling times. In the considered scenario, no infor-

mation is exchanged between the aerial vehicle and the landing platform,

and only bearing and elevation measurements are acquired. In particular, no

GNSS or other absolute positioning devices (for outdoor or indoor scenarios)

are adopted. Compared with chapter 4, the focus here is not on the control
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of a challenging platform but instead it is about showing how NMPC can

be used as trajectory generator for a multi agent application and how this

affects the transition from simulation to real experiment.

Related works - Several contributions have been proposed in the automation

and robotics literature dealing with the landing of a UAV on a stationary

target, illustrating different modeling, perception and control strategies: for

instance, in (Li et al., 2019) the problem of landing is addressed by proposing

an AprilTag vision-based approach, in (Wynn and McLain, 2019) the landing

maneuver is tested in different light conditions (day and night), whereas

in (Shi et al., 2019) a learning-based approach is used to perform a precise

landing. Conversely, autonomous landing of a multi-rotor UAV on a moving

area by estimating its relative position has been an increasingly popular

research area of the last years. Indeed, many of these works use a global

positioning system combined with vision techniques to accurately estimate

the relative position between the UAV and the target (Xuan-Mung et al.,

2020; Baca et al., 2019). However, in some scenarios the use of GNSS or

similar systems is not feasible as they cannot be available or reliable due

to uncovered areas, malicious attacks, urban structures, or faulty hardware.

Common methods to avoid the employment of GNSS are based on the use

of alternative sensors such as standard and/or depth cameras, lightweight

LiDARs, rangefinders, or ultra-wideband sensors. Accordingly, several pro-

cedures based on PID loops to control the UAV dynamics and to accomplish

the landing on a moving target have been presented, assessing the use of

different types of sensors. With the focus on standard vision methodologies,

we mention in this sense (Xuan-Mung et al., 2020), where a visual servoing

approach is proposed basing again on the AprilTag system, and (Lin et al.,

2017), where computer vision algorithms are used to detect the landing pad

characterized by known features.

An alternative and overarching control approach, as introduced in chapter 4,

is based on MPC, which allows the UAVs dynamics and actuation limits to be

taken into account under a planning and control unified framework. With

respect to the application scenario of interest, in (Mohammadi et al., 2020)

a linear MPC is used to land on a mobile platform performing a straight

trajectory, while in (Paris et al., 2020) the authors focus on the robustness

issue in designing an MPC controller to land in wind conditions.
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The solution proposed in this chapter is developed along this methodolog-

ical direction and to this aim the rest of this work is structured as follows:

section 5.2 models the considered UAV platform, landing target, and their

mutual interaction; section 5.3 presents the considered tracking and land-

ing problem and introduces the adopted control architecture; section 5.4

discusses the experimental results.

5.2 Problem formulation and modeling

A standard, under-actuated coplanar quadrotor (Nascimento and Saska,

2019) tasked to track and to land on a moving platform (target) is considered.

In order to do so, the UAV can exploit only bearing measurements obtained,

for example, from a calibrated camera, its altitude from the ground, and

internal sensor data coming from an Inertial Measurement Unit (IMU). In

the following, UAV and target will be referred generically as agents, acting in

the given scenario.

5.2.1 Quadrotor UAV model

To derive the dynamic model of the quadrotor the Newton-Euler formalism is

applied in the same way it was used in chapter 4. Let Fo denote the common

inertial frame and FB the quadrotor body-fixed frame, whose origin OB is at

the center of mass (CoM) of the UAV. Moreover, let p ∈ R3 and v ∈ R3 be

respectively, the position and the linear velocity of OB in the inertial frame

Fo. Regarding the UAV attitude, the quaternion representation is once again

used in order to benefit from its computational efficiency; q ∈ S3 represents

the orientation of FB w.r.t. Fo while ω ∈ R3 represents the angular velocity

of the body-fixed frame with respect to the inertial world frame expressed in

FB.

The motion equations are derived considering the forces and torques that are

generated by the propellers, which are all assumed to have parallel rotation

axes e3 = [0 0 1]⊤ w.r.t. FB and with unidirectional spinning motion, i.e. wi >

0, i = 1...4, where wi are the propellers spinning rates. Under this assumption,

each propeller applies a thrust force fi = ktw
2
i and a drag torque τi =
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kmw2
i along e3; kt and km are respectively the thrust and drag aerodynamic

coefficients as in chapter 4. Combining all propeller contributions it is possible

to determine the total vertical thrust force and total steering moment acting

on the CoM of the quadrotor w.r.t. the body-fixed frame,

fz =
4∑︂

i=1
ktw

2
i , (5.1)

τ =
4∑︂

i=1
(ktpi × e3 + kme3)w2

i , (5.2)

where pi is the position of the i-th propeller in body-fixed frame and × is

the outer-product between vectors. The overall quadrotor model is hence

described by
ṗ = v

mv̇ = fzR(q)e3 −mg

q̇ = 1/2 M(q)ωB

Jω̇B = τ − ωB × JBωB

(5.3)

where m > 0 is the quadrotor mass and JB ∈ R3×3 is the inertia matrix

with respect to the body frame FB. Once the geometrical and aerodynamic

parameters of the quadrotor are known (by analysis or by estimation) it is

possible to design an invertible map (mixer) that translates the input vector

of the UAV from [w2
1 w2

2 w2
3 w2

4]⊤ ∈ R4
+ to [fz τ ]⊤ ∈ R4. Indeed combining

eqs. (5.1) and (5.2) yields

⎡⎢⎣fz

τ

⎤⎥⎦ =

⎡⎢⎢⎢⎣
[︃
kt kt kt kt

]︃
−kt [ez]×

[︃
p1 p2 p3 p4

]︃
+
[︃
km km km km

]︃
e3

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

=: F

⎡⎢⎢⎢⎢⎢⎢⎢⎣
w2

1

w2
2

w2
3

w2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (5.4)

and therefore [w2
1 w2

2 w2
3 w2

4]⊤ = F−1

⎡⎢⎣fz

τ

⎤⎥⎦. Unless degenerate configurations

are chosen, i.e. pi = a pj, i ̸= j and a > 0, then almost any positive thrust

and three dimensional torque can be allocated with a suitable combination of

square propeller speeds. Note that, eq (5.3) could also be derived imposing

α = 0 in eq (4.23) at page 62.
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5.2.2 Target model

The target platform is modeled as a massless point subject to an unknown

but bounded acceleration at = [at,x at,y 0]⊤ ∈ R3. Therefore, its dynamical

equations are
ṗt = vt,

v̇t = at,
(5.5)

where pt, vt ∈ R3 are the position and the velocity of the target platform

in the inertial frame Fo, respectively. The constraint imposing that the

target platform moves only on the plane e⊤
3 pt = 0 is enforced by the initial

conditions pt,z(0) = vt,z(0) = 0.

Observation. It is rather uncommon to have a target that can be modeled

as an omnidirectional ground vehicle. However, unconstraining the target

actuation properties stresses the UAV controller and allows to better evaluate

its robustness.

5.2.3 Agents’ interactions

In order to track and land over the target platform, the quadrotor needs to

sense it. In particular, the quadrotor is capable of measuring the bearing

vector b ∈ S2 between its CoM and the target expressed in its local frame,

namely

b = R(q)⊤ pt − p
∥pt − p∥

∈ S2, (5.6)

like the heterogeneous formations in chapter 2. Moreover, the UAV is capable

of measuring its altitude w.r.t. the ground, i.e. pz > 0. The former (bearing

measurement) can be acquired using an optical camera while the latter

(altitude measurement) can be taken by simple range sensors or barometers.

All these sensing devices are nowadays standard add-on for quadrotors,

with different realizations according to their indoor/outdoor use. The given

quantities, stating the relations between the UAV and target agent, are

schematically shown in figure 5.1.

It is important to notice that no data is exchanged between the UAV and

the target: in particular, the target motion is unknown and the drone has

5.2 Problem formulation and modeling 81



pzFo

FB

target

p

pt
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Figure 5.1: Quadrotor sensing: altitude pz and bearing vector b.

no direct information about the absolute target position or velocity. At the

same time, the drone is not supposed to receive data coming from off-board

sensing infrastructures (such as GNSS systems) about its own state.

Given the quadrotor and the target states, it is possible to introduce the

relative position and velocity vectors as

pr = p− pt (5.7a)

vr = v− vt (5.7b)

and then, it is possible to define the tracking and landing control problems.

Problem 5.1 (tracking problem). Given an unknown target dynamics as

in (5.5), the tracking problem consists on finding a control law for (5.3) that

ensures vr = 0 all the time.

Problem 5.2 (landing problem). Given an unknown target dynamics as

in (5.5), the landing problem consist on finding a control law for (5.3) that

ensures pr = 0 asymptotically.

5.3 System overview

The control architecture has been designed taking into account common

off-the-shelf quadrotor solutions in which a low level and high level microcon-

trollers (MCUs) are coupled together. Specifically, the former is responsible

to interact with most of the embedded hardware, i.e. IMU, radio receiver

and motor controllers, while the latter manages the low level information

and exploits estimation, planning, and decision making algorithms to provide
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high performance MCU
Raspberry Pi 4

low performance MCU
Pixhawk 4 mini + PX4 OS

NMPC body rate
controller

KF embedded
EKF

UAV HW

fz ωd

Ωi

raw IMU data

q̂

q̂

b pz

p̂r v̂r

Figure 5.2: Quadrotor control architecture; the first control stage (in light blue)
runs on the low level controller and interact with the drivers and sensors.
The second control stage (in magenta) runs on the high level controller,
provides setpoints and manages the inter-agent behavior.

the necessary setpoints to accomplish the desired tasks. In this perspective,

the overall control scheme is shown in figure 5.2. First of all a relative pose
estimator (Kalman Filter block, KF) uses the information coming from the

measurements q̂ ∈ S3, b ∈ S2 and pz ∈ R to get the estimate p̂r, v̂r ∈ R3 of

the relative state. Then, a Non Linear Model Predictive Control (NMPC block)

is adopted to drive the UAV dynamics such that these estimates converge

towards the task specific planned values. The NMPC outputs the common

thrust fz > 0 as in (5.3) and the desired body angular rates ωd ∈ R3, i.e.,

u = [fz ω⊤
d ]⊤. A low level controller generates the required torque setpoints

τ ∈ R3 in order to track ωd ∈ R3 while the embedded Extended Kalman Filter

(EKF) processes the data coming from the IMU and estimates the quadrotor

attitude q̂ ∈ S3.

5.3.1 Relative pose estimation

The relative pose estimator runs on the high performance microcontroller. It

is composed by two blocks, the relative positon decoder and a Kalman Filter.
By measuring the bearing vector b ∈ S2 and the altitude pz, with an estimate

of the quadrotor attitude q̂ ∈ S3 coming from the embedded EKF, it is possible

to get an estimate of the relative position p′
r ∈ R3 between the drone and the

target as

p′
r = pz

R(q̂)b
e⊤

3 R(q̂)b , (5.8)
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as long as pz is non-zero. This quantity is then provided to a discrete-time KF

in order to have a better estimate of the whole relative pose (p̂r, v̂r). The

adopted model in the filter has equations

p̂r((k + 1)Ts) = p̂r(k Ts) + Tsv̂r(k Ts) + wp(k Ts)

v̂r((k + 1)Ts) = vr(k Ts) + wv(k Ts)

p′
r(k Ts) = p̂r(k Ts) + r(k Ts)

(5.9)

which represents a standard discrete-time double integrator subject to pro-

cess wp(k Ts) ∼ N (0, Qp), wv(k Ts) ∼ N (0, Qv) and measurement r(k Ts) ∼
N (0, R) noises, where N (µ, Σ) denotes a Gaussian vector with mean µ ∈ Rn

and covariance matrix Σ ∈ Rn×n. This choice is motivated by the complete

lack of knowledge about the dynamics of the target (from the quadrotor

side), which is modeled as noise in the filter.

About the gaussianity of the measurement noise - the underlying assumption

that p′
r is normally distributed with zero mean and covariance matrix R does

not hold in general, but it is needed by the Kalman filter. Inspecting eq 5.8,

three noisy component, the measured altitude pz, the measured baring b and

estimated attitude q̂ are nonlinearly combined together. Figure 5.3 shows the

empirical distribution of p′
t = p−p′

r, where p′
r comes from eq (5.8) assuming

that the true landing platform is in p = [0 0 0]⊤. Nine different cases are

consider, each cases has the UAV placed at increasing distance to the target,

p = [px 0 pz]⊤, with vertical position fixes at pz = 5 m and px = k 2.5 m,

k ∈ {0, . . . 8}. In each case the UAV altitude and attitude are assumed to

be perfectly known so that the only source of noise is due to the bearing

measurements, which are perturbed with the same technique as in chapter 3

and standard deviation σb = 5◦. For each case, N = 1000 independent noise

realizations are collected. As it is expected from noise affecting bearing

measurements, the more the UAV moves away from the landing platform,

the more spread apart the estimated position are. On the other hand, the

more the bearing vector deviates from the vertical direction (case px = 0 m)

the less the distribution can be approximated with a Gaussian. In conclusion,

the best performances and statistical properties are to be expected when the

UAV is directly above the landing platform.
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Figure 5.3: Empirical distribution of p′
t = p− p′

r for different UAV positions. The
UAV altitude and attitude are noiseless while the bearing measurements
are affected by Gaussian noise. As the UAV moves away from the target
platform the distribution loses its Gaussian shape.
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5.3.2 Nonlinear model predictive control

The continuous time NMPC approach is based on solving iteratively, at each

time instant t, the same Nonlinear Programming problem as in eq (4.27) of

chapter 4, with, of course, different model function, cost, and constraints.

In particular, the MPC state is now composed by the relative state pr, vr

and by the quadrotor attitude, i.e., xmpc = [p⊤
r v⊤

r q⊤]⊤ while MPC input is

umpc = [fz ω⊤
d ]⊤, this leads to the differential equation (4.28)

ẋmpc =

⎡⎢⎢⎢⎢⎣
ṗr

v̇r

q̇

⎤⎥⎥⎥⎥⎦ = fmpc(xmpc, umpc) =

⎡⎢⎢⎢⎢⎣
vr

fz

m
R(q)e3 − g− at

1/2 M(q)ωd

⎤⎥⎥⎥⎥⎦ (5.10)

noting, however, that during the prediction horizon the target velocity is

assumed constant, hence at = 0.

The cost function, instead, is designed to address the tracking and landing

problems. The latter can be solved by making the controller command the

quadrotor to a desired relative position pd
r ∈ R3 in the target reference

frame. This task can be achieved by minimizing the relative position error

ep = pd
r−pr. In addition, the NMPC needs to accomplish the tracking task by

penalizing the relative velocity error ev = vd
r − vr. It is important to ensure

that the norm of the quaternion remains unitary, so that the physical sense

of representing a rotation is formally maintained. Indeed, the discretization

of the quaternion dynamics does not ensure that q(t) ∈ S3 ∀t. To tackle this

issue the soft constraint approach has been chosen, therefore adding to the

cost function a term proportional to eq = q−1q − 1. In this way, there is no

strict guarantee that the quadrotor attitude will remain consistently valid

but, expecting its norm to drift slowly and applying the receding horizon

paradigm, it is still safe to adopt a soft constraint strategy. Finally, a weight

on the input is added; the NMPC should try to not deviate too much from

a reference input uref = [mg 0 0 0]⊤ ∈ R4, where mg is the feedforward

(known) term compensating the gravity, and the reference angular velocity is

zero. This behavior is imposed by the cost components efz = fz −mg and
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ewd
= wd − 0. Combining together all the aforementioned terms, the output

and final stage output functions (4.27a) take expression

hk(xk, uk) =
[︃
e⊤

p,k e⊤
v,k eq,k efz ,k e⊤

wd,k

]︃⊤

hN(xN) =
[︃
e⊤

p,N e⊤
v,N eq,N

]︃⊤ (5.11)

where h = [e⊤
p e⊤

v eq efz e⊤
wd

]⊤ summarizes to all the discussed contribution

errors.

Lastly, the physical limits of the system can and must be taken into account.

For this application, only the output saturation is considered and therefore

the NMPC constraints results

0 ≤ fz ≤ fmax
z

wmin
x,y ≤ wx,y ≤ wmax

x,y

wmin
z ≤ wz ≤ wmax

z .

(5.12)

One can argue that also state constraints should be enforced, such as limited

roll and pitch angles. However, these limits are implicitly considered with

the minimization of the cost function.

5.4 Performance assessment

In this section the implementation of the proposed tracking and landing

controller is presented, together with the experimental setup and the obtained

results.

5.4.1 Experimental setup

The experiments have been carried out at the SPARCS laboratory of the

Department of Information Engineering of the University of Padova, Italy;

the target consists of a 52 cm×55 cm platform mounted on four caster wheels

and towed by a custom unicycle robot (turtlebot), as shown in figure 1.3 in

page 7 and figure 1.1 in page 5. As for the drone, a QAV250 by HOLYBRO

(hol) equipped with a Raspberry Pi 4 has been adopted. The low level
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microcontroller is represented by a Pixhawk 4 mini in which PX4 autopilot
(PX4) runs; the autopilot is responsible for the embedded EKF filtering the

IMU measurements, the body rates controller, and the safety-related controls,

such as failure detection and arming protection. On the other hand, the

NMPC and the relative state KF algorithm (section 5.3.1) are deployed on the

Raspberry Pi 4 and the Robotic Operative System (ROS) (ROS) is exploited to

connect the two components. In particular, using a serial link and the mavros
ROS package the internal states and variables of PX4 are made available to

the Raspberry Pi; among them, there are the estimated attitude q̂ ∈ S3 and

the thrust and body rates setpoints, respectively fz > 0 and ωd ∈ R3.

A Motion Capture System (MOCAP) composed by ten Vicon infrared cam-

eras provides ground-truth localization of target and UAV; furthermore, the

MOCAP is used to mimic the bearing and altitude measurements, being the

QAV250 not equipped with any camera or rangefinder.

5.4.2 Controller implementation

The controller is realized in SIMULINK inside a ROS node using the ROS

toolbox, while the NMPC is implemented using the ACADO toolbox (Houska

et al., 2011). The detailed node generation pipeline is the following:

1. By using the ACADO toolbox the MPC problem (4.27) is formulated

directly as a MATLAB script.

2. The toolbox generates a standalone C code solving the MPC problem.

3. The code is then compiled in a MEX function added to the SIMULINK

model that realizes the ROS node and the KF.

4. At this point it is possible to run the node inside SIMULINK, perform

debugging and parameter tuning.

5. Finally, using the SIMULINK Coder, the model can be converted into a

standalone ROS node and deployed inside the Raspberry Pi 4. Notice

that the code of the MPC solver is not re-generated: the one generated

by ACADO is directly added to the SIMULINK one.
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This approach brings the advantages of rapid prototyping, because the high-

level control design and tuning are performed in SIMULINK and, at the same

time, yields high-efficiency, because the low level MPC routines are directly

generated as C code by ACADO. Considering the MPC implementation, the

objective function is minimized using the multiple shooting discretization,

fixed step Runge-Kutta integrator and SQP (sequential quadratic program-

ming) solver. The qpOASES library, which deals with dense QP problems, is

used to solve the associated QP problem. These hyperparameters, together

with the model equations (5.10), the cost function (5.11), the constraints

structure (5.12) and the prediction horizon N and sampling time Ts are

specified in phase 1. At the same time both the (discretized) cost matrices

composing W in (5.11) (namely: Wpr
, Wvr , Weq, Wefz

, Wew) and the

constraint values in (5.12) can be changed online, meaning that not only

they can be tuned in SIMULINK without having to re-generate the NMPC

solver, but they can be potentially modified in real time. This greatly speeds

up the node deployment: if no model adjustment are needed, the NMPC

solver needs to be generated, compiled as MEX file and compiled for the

Raspberry Pi 4 only once.

For these experiment ACADO was preferred over MATMPC because it gener-

ates all MPC routines in pure C code that than be immediately compiled on

the Raspberry Pi. On the other hand, MATMPC adopts and hybrid approach:

it only generates C code for the low level routines, such as the model update

equations, their sensitivities and the cost function evaluations. The solvers

are also in pure C code, but those are interchangeable and independent

add-ons. The rest of the code is written as MATLAB scripts and functions

and this makes quite hard migrating it to a full standalone, C version.

5.4.3 Validation scenario definition

The experiments consist on the drone that, after a vertical takeoff at pz,ref =
2 m, moves over the target, which initially is static, and starts the tracking

procedure with pz,ref as target altitude. At this point, the target starts moving

following a rounded rectangular trajectory, which is visible in figure 5.4 for

the initial simulation and in figure 5.7 the the experimental validation. After

an initial tracking phase, in which the drone tries to stay over the landing

platform, it switches to landing mode towards the task completion. After an
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Table 5.1: Simulation and experiment common parameters

quantity value

N 50
Ts 30 ms
wmax

xy = wmax
z = −wmin

xy = −wmin
z 1.5 rads−1

KF process noise covariance: position term 0.01 m2 I3
KF process noise covariance: velocity term 1 m2 I3
KF measurement noise covariance 1× 10−6 m2 I3

Table 5.2: NMPC tuning parameters

simulation experiment
fmax

z [N m] 20 15
pr-term [m2] diag{1, 1, 2} diag{4, 4, 8}
vr-term [m2s−2] diag{0.1, 0.1, 0.1} diag{0.2, 0.2, 0.5}
eq-term [] 1 1
ew-term [rad2s−2] diag{1, 1, 1} diag{1, 1, 1}
efz -term [N2] 0.1 0.1

initial tuning procedure, first performed using the robotic simulator GAZEBO,

and then on the experimental hardware, the NMPC variable parameters have

been found as reported in table 5.2. For the landing phase, the relative

altitude reference pr,z is generated by a trajectory generator that applies a

trapezoidal velocity profile with estimated landing time of 5 s.

5.4.4 Gazebo realistic simulations

There was no GAZEBO model for the QAV250 available at the time of writing,

and it was not possible to create one performing an extensive parameters

estimation campaign (inertia matrix and thrust and torque coefficients).

Therefore, the model of the IRIS quadrotor has been adopted. The main

difference between the two is the size: the QAV250 weights approximately

0.86 kg while the other weights 1.5 kg, moreover the second is almost twice

as wide, going from 25 cm of diagonal to 50 cm. However, this is not a critical

issue: the differences in dynamics are compensated by the action of the

embedded low-level PIDs, which are tuned differently for the two drones.

Moreover, the NMPC cost weight matrices have been tuned differently and

their values are reported in table 5.2.
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Figure 5.4: GAZEBO simulation. UAV and target trajectories: the big black circles
represent the starting points, the two small circles along the drone
trajectory represent the start of the tracking and landing phases, respec-
tively; the stars represent the final positions.
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(a)

(b)

Figure 5.5: GAZEBO simulation. Absolute (a) and relative (b) position values: x-
coordinate (red), y-coordinate (green), and z-coordinate (blue).

Figure 5.4 shows the UAV and target trajectories in simulation, together with

the target velocity amplitude. The big black circles represent the starting

positions while the first small black circle notifies the end of takeoff and

the start of tracking, which takes place at ttrack = 17.46 s. Once the drone is

aligned, the target platform starts moving while the drone keeps tracking

it. At tlanding = 44.19 s the landing command is sent and the drone goes

in landing mode (second black circle), which concludes at tlanded = 49.68 s
(black stars). The absolute position of the drone p and the landing platform

pt and the relative position pr are shown in figure 5.5. It is possible to observe

that, once the target platform is tracked (approximately at ttracked = 20 s),
the relative position error never exceeds dmax = 0.4 m on the xy-plane,

with the maximum reached at 21.54 s when the target shows the maximum

acceleration. The segments with constant target velocity, even if above 1 m/s
have much lower tracking error.

It is interesting to notice how the perfect knowledge of the GAZEBO simulation

parameters leads to almost zero error in tracking the reference altitude and

reference thrust level, as shown in figure 5.6a. Finally, in the same figure, it
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(a)

(b)

Figure 5.6: GAZEBO simulation. NMPC output values: common thrust (a) and body
rate setpoint (b).

is possible to observe how the landing procedure is carried out; initially fz

is lowered to start the descent, then it is increased above the hovering level

(dashed black line) to land with almost zero vertical velocity. The desired

body rate setpoints ωr are instead reported in figure 5.6b. As the air friction

is not modeled, the drone does not need to tilt once it reaches the desired

horizontal velocity. This can be noticed form the segments in figure 5.6b

having reference body rate fixed to zero; the corresponds to the parts of the

trajectory where the velocity is constant.

5.4.5 Laboratory experiment

Figure 5.7 shows the trajectories of the QAV250 and the target; the maximum

tracking distance on the xy-plane is less then 0.15 m, as shown in figure 5.8

and the UAV safely lands on the target, with just 5 cm of misalignment.

Comparing the Gazebo and the experimental trajectories it is evident how in

the former situation all the unmodeled phenomena make the UAV slightly
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Figure 5.7: Laboratory experiment. UAV and target trajectories: the big black circles
represents the starting points, the two small circles on the drone trajec-
tory represents the start of the tracking and landing phases, respectively;
the stars represent the final positions.

more unstable; indeed, the drone position p is more smooth in simulation

which implies higher vibrations in the QAV250 attitude. Nevertheless, these

results must take into account that the QAV250 is lighter than the IRIS model

used in simulation and that, at the same time, a more aggressive NMPC

tuning has been adopted for the laboratory experiment.

The biggest difference between the Gazebo simulation and the laboratory

experiment is shown in figure 5.9a where one can observe that the NMPC

has to request a desired common thrust fz,des 10 % higher than the nominal

value. As the QAV250 mass was correctly measured, the issue arises from

a mismatch between the propeller constant km used by the NMPC and the

true one. Moreover, while the vehicle body rates ω is internally controlled

by the low level PIDs inside the Pixhawk, so that desired reference imposed

by the NMPC is to be expected to be tracked with at most a small delay, the

common thrust imposed in open loop and there is no feedback measuring it.

This makes the propeller constants km and kt critically important. However, a
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(a)

(b)

Figure 5.8: Laboratory experiment. Absolute (a) and relative (b) position values:
x-coordinate (red), y-coordinate (green), and z-coordinate (blue).
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(a)

(b)

Figure 5.9: Laboratory experiment. NMPC output values: common thrust (a) and
body rate setpoint (b).

proper estimation of those values is operatively quite challenging as common

ESCs applies open loop control even on the propeller spinning rates wi, which

is the affected by other parameters, first of all the battery level and even the

ground effect appearing when flying close to the ground.

All these phenomena show their effects on the actual requested thrust and

on the reached altitude. Indeed, inspecting figure 5.8b the quadrotor, even

though it was tasked to keep an altitude of 2 m above the target, stops close

to 1.9 m. This is also due to the NMPC, which does not implement an integral

action like the one used in chapter 4. In practice, this is not an issue during

the tracking phase, but it complicates the landing procedure, as it is no more

guaranteed the the drone will land with almost zero vertical velocity. One last

proof of the model mismatches and of the aggressiveness of the controller

is shown comparing figure 5.9b and 5.6b: on the laboratory experiment the

required body rate is noisier during all the trajectory.

To conclude, this chapter showed how practical implementation of multi-

agent control algorithms have do deal with,
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• Sensor noises and disturbances, which are often non additive and non

Gaussian, in particular when adopting bearing based approaches.

• Model uncertainties, which can never be fully eliminated and require

robustness analysis.

• Limited computational resources, as the finite payload of the UAVs does

not allow to put high performance computer onboard.

Nevertheless, all this issues can be tackled as long as the control law synthesis

acknowledge them.
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6Conclusion

In this thesis different aspects and challenges related to heterogeneous multi-

agent interaction have been addressed, starting from a control theoretical

point of view, and concluding with implementation difficulties involved with

practical applications. Inter-agent measurements, and in particular bearing-

based measurement played the lead role in this work. Indeed, multi-agent in-

teraction cannot safely rely on external, fragile groundtruth sensors but must

be able, for enchanted flexibility and robustness, to only use measurements

available between elements of the system. In addition, bearing-measurement

were preferred over to distance-based methods for their increased simplic-

ity.

Chapter 2 tackled the issue of heterogeneous formation control. In this

scenario, multiple agents, each of them with potentially different actuation

capabilities, had to be controlled such that the overall formation could reach

a certain shape defined in terms of the inter-agent bearing measurements.

The proposed solution was a revisited heterogeneous bearing rigidity formula-

tion that allowed to embed the notion of agent actuation inside the bearing

rigidity matrix. Consequently, it was possible to exploit a gradient descent

control law to stir the shape error to zero. Alongside a formal proof of the

local asymptotical stability of the proposed solution, Monte Carlo simulations

showed that using the heterogeneous controller outperformed homogeneous

based solutions coupled together with sub-formation shape matching algo-

rithms. In light of those results, the natural extensions of this activity follow

two parallel branches:

• Generalize toward generalized rigidity, where also the inter agent sens-

ing can be heterogeneous and bearing, angle, and distance measure-

ment could co-exist in the same framework.

• Further investigate the task of bearing based formation localization, in

order to obtain a fully autonomous bearing based regulator.

In chapter 3, another application for bearing measurement, namely the target

localization problem, was investigated. In this case, a group of agents or
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seekers had to localize an uncooperative target using only the their bearing

measurement with respect to it. Contrarily to the previous scenario, here

the seekers were allowed to know in advance their own location and the

attention was entirely reserved to the uncooperative target. The localization

task has been solved using an iterative weighted least square approach

combined with an efficient initialization scheme based on the line distance

minimization problem. The iterative least square also provided a way to

compute in close form an estimate of the localization error covariance whose

accuracy was experimentally validated. The second contribution of this

chapter was an active sense controller that moved the seekers in order

to minimize the estimated localization error covariance while maintaining

unchanged the estimated distance from the target. The result obtained in

this activity depended on quite strong assumption on the communication

and sensing capabilities of the seekers. Moreover, the developed active-sense

scheme and localization algorithm were intrinsically centralized. I would be

interesting to study how to relax these assumption, allowing partial sensing

and communication capabilities and how to make the algorithm properly

distributed.

Chaper 4 started recognizing the difficulties and challenges involved with

acquiring bearing measurement and applying bearing based control laws on

aerial vehicles and in particular multirotors. On one hand, coplanar quadro-

tors are quite simple to control but their highly coupled linear and rotational

dynamics makes them poorly suited for rigidity tasks where bearing must be

preserved. On the other hand, tilted multirotors are intrinsically decoupled

but are also generally highly energy inefficient platform. For this reason,

this chapter addressed the control of the tilting quadrotor, an interesting

aerial platform that can dynamically adjust the trade-off between agility and

efficiency. After a proper introduction and modeling of such platform, a

motor-level Nonlinear Model Predictive Control solution was proposed and

tested on an accurate simulation. Although accurate simulations were per-

formed to evaluate the proposed solution, a proper experimental validation is

still missing and it constitutes the direct extension of this research activity.

Lastly, chapter 5 investigates the problem of the autonomous landing of a

coplanar quadrotor on a moving platform under the constraints that the

quadrotor could only acquire the landing target bearing vector and it own
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altitude w.r.t. the ground. In particular, the final goal of this activity was

to deliver and experimental validation of the proposed solution. Therefore,

contrarily to the previous chapters, the computational complexity of the

algorithm, that eventually had to run on resource-constrained devices on

the quadrotor, resulted to be a major issue. The solution was to employ

a multi-stage controller, with the high level control that was provided by

an NMPC scheme running on a Raspberry Pi 4 and efficiently implemented

using the acado toolbox. The low level control was instead provided by the

real-time flight controller, a Pixhawk 4 Mini. Accurate simulations performed

in Gazebo initially verified the proposed solution before performing the final

experiments. During the simulation phase, model mismatched were intro-

duced and after having noticed that they did not affect the task performance,

it was possible to conclude that the proposed solution was robust. Further

development could involve outdoor tests, to evaluate the performance on

high speed landing targets and the migration toward new NMPC toolbox,

such as acados.
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