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DAS Over Multimode Fibers With Reduced Fading
by Coherent Averaging of Spatial Modes

Daniele Orsuti , Gianluca Marcon , Axel Turolla, Marco Santagiustina , Andrea Galtarossa ,
Massimo Zampato, and Luca Palmieri

Abstract— We investigate the performance of distributed
acoustic sensing over multi-mode fibers based on heterodyne
phase-sensitive optical time-domain reflectometry. We report
a mathematical model describing the relation between phase
variation and applied strain in the presence of multi-mode
propagation that supports the feasibility of distributed acoustic
measurements over multi-mode fibers. We also propose a novel
coherent averaging method that achieves up to a three-fold
reduction of the noise floor compared to state-of-the-art methods.

Index Terms— Phase sensitive OTDR, multimode fibers,
spatial-division multiplexing, coherent averaging.

I. INTRODUCTION

RAYLEIGH-BASED fiber-optic distributed acoustic sen-
sors (DAS) have attracted increasing attention in recent

years due to their unique features [1]. While most DAS
systems use single-mode fibers (SMFs), there is a growing
interest in extending DAS to multi-mode fibers (MMFs).
One of the main driving interests is to leverage the existing
MMF infrastructure in the oil and gas industries, which is
currently used for Raman-based temperature monitoring [2].
A few works started investigating DAS over MMFs, however,
primarily focusing on few-mode fibers and not analyzing how
the proposed method would scale to MMFs [3], [4], [5].
Regardless of whether the optical fiber is single- or multi-
mode, phase-sensitive optical time domain reflectometry
(φ-OTDR) is one of the most commonly used DAS config-
urations [1]. In recent years, a lot of effort has been put to
deal with the signal fading issue of φ-OTDR systems, which is
due to both intra-pulse coherent interference and polarization
variation along the fiber. Recent techniques have tackled the
coherent fading issue combining independent measurements
channels (e.g., extracted from different frequency bands) car-
rying the same disturbance information, which are coherently
averaged using techniques such as the so called rotated-
vector-sum (RVS) [6], [7]. When DAS is applied to MMFs,
mode coupling is an additional issue that needs to be faced;
nevertheless, the spatial modes can be used also to reduce
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signal fading, since they act as independent measurement
channels.

In this letter, expanding a preliminary analysis [8], we exper-
imentally and theoretically analyze the feasibility of DAS
measurements over MMFs. The proposed setup relies on a
three-mode photonic lantern (PhL) as a mode de/multiplexer
to exploit the spatial diversity to improve the measurement
reliability [9], [10]. Moreover, we also propose a novel coher-
ent averaging method that is optimal in terms of mean-squared
error (MSE) and outperforms the RVS method.

II. THEORETICAL MODEL

Fundamentally, DAS in SMFs is made possible by the fact
that the phase of the propagating light varies linearly with the
strain applied to the fiber. This holds true also for MMFs,
but only for each mode individually; differently, the relation
between the phase of the total light field and the applied strain
may be nonlinear in general. The phase variations measured
by a DAS reflect what happens in the perturbed fiber sections,
whose length, L , is typically shorter than the DAS gauge
length and hence in the order of meters. In a MMF, the electric
field transmitted across one of these sections can be written
as Eout =

∑
m am exp {− j (2π/λ)nm L} Em, where the sum

extends over the propagating modes, nm is the effective index
of mode m, Em its field distribution (we omitted the transverse
coordinates for brevity), and am its complex amplitude. The
perturbed fiber sections are typically no longer than a few
meters and in such a short distance the action of the strain
is not strong enough to induce a significant transfer of power
from one mode to another. In a SMF scenario, this power
transfer would correspond to a polarization change, which is
indeed largely and safely ignored in DAS systems. For these
reasons, the coefficients am can be assumed constant.

Consistently with the typical assumption made for SMF-
based DAS, we assume that the strain is constant over the
perturbed fiber section. Therefore, the phase term of Eout
varies from (2π/λ)nm L to (2π/λ)nm L + 1φm , with

1φm =
2π

λ
n0L

[(
1 +

1nm

n0
+

δnm

n0

)
ϵ +

δnm

n0

]
, (1)

where ϵ is the applied axial strain, which induces the elon-
gation L → L(1 + ϵ) and the refractive index change
nm → (nm + δnm); moreover, we set nm = n0 + 1nm ,
with n0 denoting the effective index of the fundamental mode
(used here as a reference) and 1nm is the modal birefringence
between the fundamental mode and the mode m [11]. For each
mode, the refractive index change is related to the applied
strain by the relation δnm ≈ −0.1 n3

mϵ [1]; therefore, δnm can
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Fig. 1. Experimental Setup. PG: Pulse generator; τn(n = 1, 2): fiber delay
line; rm (m = 1, 2, 3): spatial mode de-multiplexed by the PhL; FBG: fiber
Bragg grating filter; OF: Optical filter; RF: radio-frequency.

be approximated to the first order in the modal birefringence
as δnm ≈ −0.1 n3

0ϵ(1 + 31nm/n0). Inserting this expression
into (1), and considering only terms up to the first order in ϵ,
we find 1φm ≈

2π
λ

n0(1 − 0.1 n2
0)Lϵ +

2π
λ

1nm(1 − 0.3n2
0)Lϵ,

where the first term is the usual strain-induced phase shift
observed in SMFs [1], whereas the second term is an extra
phase shift characteristic of each higher-order mode. It is then
clear that the relation between the phase of the transmitted
field Eout and the applied strain is linear only as long as this
extra phase shift is much smaller than both the first term (but
this is always verified since 1nm ≪ n0) and 2π . Due to the
round-trip, the phase shift measured by the DAS is actually
twice the one calculated before. Therefore, the above condition
yields

ϵ ≪
λ

2
(
1 − 0.3n2

0
)
1nm L

. (2)

This theoretical result sets an upper bound to the strain applied
to the fiber, above which DAS in MMFs would lose linearity.
This bound is inversely proportional to the perturbed fiber
section. Moreover, it is also inversely proportional to the
modal birefringence, which means that MMFs with less modal
dispersion, such as graded-index ones, enable measurements
on a wider strain range. Considering as an example L =

2 m, n0 ≈ 1.47, and assuming max{1nm} ≈ 10−3, (2) yields
ϵ ≪ 1.1 mϵ, which is quite a loose constraint considering the
typical strain values of the perturbations encountered in DAS
measurements [12].

III. METHODS

A. Experimental Setup
To validate the feasibility of performing DAS measurements

over MMFs, we implemented the heterodyne φ-OTDR scheme
shown in Fig. 1. The output of a narrow-linewidth laser is
split by a 90:10 coupler into two branches. One branch acts
as the local-oscillator (LO); the other branch is modulated
by an acousto-optic modulator (AOM) into rectangular pulses
of 100 ns duration with a 110 MHz frequency shift. The pulses
are launched into a 3-km-long OM2 MMF fiber (50/125 µm)
through one of the ports of a three-mode PhL (Phoenix
Photonics 3-PL), which acts also as a spatial demultiplexer
for the Rayleigh backscattered light. The PhL is realized by a
few mode fiber supporting the LP01, LP11a, and LP11b modes;
the connection between the PhL and the OM2 fiber is realized
through a splice, which is adiabatically tapered to minimize its
insertion losses and maximize its return losses. In principle, the

three spatial modes demultiplexed by the PhL should be sent
to three different receivers. For simplicity, in this experiment
the three modes have been multiplexed in time by means of
fiber delay lines, so to use a single receiver; this comes at the
expense of a three-fold reduction of the achievable acoustic
bandwidth. The lengths of the fiber delay lines are about 7 km
and 14 km, respectively, so that the introduced delays avoid the
overlap of the backscattered traces from the 3-km-long MMF
link demultiplexed by the PhL. The probe pulse repetition rate
is consequently set to Trep = 110 µs. The beating between
the LO and the backscattered light is detected by a balanced-
photodiode (BPD) with a 400 MHz bandwidth and digitized
at 500 MS/s by a 12-bit data acquisition (DAQ) board. The in-
phase (I) and quadrature (Q) components of the backscattered
field are obtained with conventional digital I/Q demodulation.

B. LMS Coherent Averaging

The information obtained from independent measurements
of the same event needs to be optimally combined, or aver-
aged, into a single result. Let rm(tn, zk) denote the com-
plex value of the Rayleigh backscattered trace of the spatial
mode m, at an arbitrary position zk , and at time tn . We call
a “sequence” the set of values that rm(tn, zk) takes for spe-
cific mode and position over NT consecutive time samples.
Sequences from two different modes but at the same position
are affected by the same acoustic perturbation; nonetheless,
they have an arbitrary, unpredictable and mode-dependent
phase offset, θm , that prevent their direct averaging. There-
fore, before the average can be performed, the phases of
the sequences must be aligned. The RVS method achieves
this alignment by selecting a reference time instant t1, and
determining the phase offsets of each spatial mode as θm =

arg {rm(t1)} [6]. Nevertheless, no indication is given for the
selection of this reference time, and, indeed, a poor choice
compromises the phase alignment and subsequent averaging.
To deal with this issue, the recently proposed double-averaging
RVS (DA-RVS) method uses NT consecutive time samples
of a randomly preselected sequence, and use them to com-
pute a refined time-domain-averaged estimate of the phase
offsets [13]. The method proposed in this letter proceeds in two
steps. First, the sequence with the highest energy over the NT
time samples is selected as the reference sequence. Then, the
phase offsets are computed solving a least-mean-square (LMS)
problem that yields the optimum phase offsets values that align
each other sequence to the reference one. We refer to the
proposed method as the LMS method. In details, assume that
r̄(tn) = argmaxm

∑NT
n=1 |rm(tn)|2 is the reference sequence

according to the highest-energy criterion; we determine the
phase offset needed to align the generic sequence rm(tn)

to r̄(tn) by seeking the angle θm that minimizes the cost
function E =

∑
n w(tn)|r̄(tn) − rm(tn) exp( jθm)|2, where n =

1, . . . , NT , and w(tn) = |r̄(tn)||rm(tn)| is used to enhance the
weight of the higher amplitude samples. Solving the relative
LMS problem yields the optimal estimate of the phase θm

as θm = arg
{∑NT

n=1 w(tn)r̄∗(tn)rm(tn)
}

. We remark that this
choice is optimal in the MSE sense. After estimating the
phase offsets, θm , with either the RVS, DA-RVS, or the
LMS methods, we compute the coherent average as follows:
r(tn) = (1/M)

∑
m rm(tn) exp( jθm).
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Fig. 2. RMS value of local phase variation versus the temporal window
size NT over which the phase offsets are computed for (a) an increasing
number of spatial modes averaged with the LMS method: the single spatial
mode curve is the average performance over all 3 modes, whereas the two
spatial modes curve is the average performance over all the 3 possible
combinations of two modes; (b) three spatial modes averaged with differ-
ent methods. (c) PSD averaged over all fiber locations for the curves in
(b) at NT = 25 samples.

IV. EXPERIMENTAL RESULTS

A. Spatial Modes Averaging

To determine the advantages of using spatial diversity
and the performance of the LMS method, we evaluated the
root mean square (RMS) value of the local phase variation
without mechanical perturbations applied to the MMF. In these
settings, any deviation from zero can be attributed to noise.
The gauge length to compute the local phase variation is
set to 10 m. The RMS value is evaluated over all fiber
locations considering 1.1 s of data acquired by the DAQ,
which correspond to 1.1 s/Trep = 10, 000 time samples.
To investigate the impact of the temporal window size NT
on the quality of the estimated phase offsets, the 10, 000 time
samples were segmented into chunks of NT time samples,
with NT in the range 5 ÷ 100 samples. For each chunk, the
RVS, DA-RVS, and LMS methods estimate the phase offsets,
which are then used to compute the coherent average chunk-
wise. Consecutive chunks overlap by 1 time sample, so as to
retain the continuity of the phase signal.

Figure 2(a) shows the RMS value, estimated over the whole
fiber length, of the local phase variation versus the time win-
dow size NT . The dashed line refers to the single spatial mode
performance, which is independent of NT ; whereas, the cross
markers and the triangular markers refer to the LMS average
of two and three spatial modes, respectively. As expected, the
RMS decreases as the number of averaged modes increases,
with a significant drop compared to considering each spatial
mode separately. The RMS achieved by the LMS method
also decreases as NT increases because the detection of the
reference sequence with the highest energy becomes more
accurate for higher NT values. Figure 2(b) compares the
LMS method with the RVS and DA-RVS methods when all
three spatial modes are averaged. LMS outperforms the other
methods, due to the more accurate selection of the reference
sequence and the MSE-optimal estimate of the phase offsets.
The RMS reduction saturates as NT increases; therefore, in the

Fig. 3. RMS of the phase noise floor when exploiting both spatial
and longitudinal diversity, for NT = 25. (a) NZ = 3 and 1k varies;
(b) 1k = 15 and NZ varies.

following investigations we set NT = 25 samples. Figure 2(c)
shows the power spectral density (PSD) averaged over all fiber
locations. At low frequency values, the LMS method achieves
lower PSD values than the other methods; this is explained by
the lower amount of residual fading points achieved by LMS
after the averaging operation.

B. Longitudinal Averaging

So far we analyzed how to reduce signal fading by exploit-
ing the spatial mode diversity. In what follows, we generalize
this method by exploiting the information diversity carried by
the z-samples of the measured Rayleigh backscattered trace.
It is not uncommon that ϕ-OTDR systems oversample the
backscattered trace, so that the spacing between consecutive
z-samples is typically much smaller than the gauge length [12].
Therefore, including a few sampling points in the analysis
rather than just one, causes a marginal degradation of the
spatial resolution, while giving the opportunity to exploit also
a longitudinal diversity. Actually, a number NZ of sampling
points close to each other, can be treated as NZ independent
measurements of the same event, to which coherent averaging
can be applied to further reduce fading. The performance of
this average depends on the spectral content of the probe
pulse. In general, the closer to Fourier-limited the probe pulse,
the more correlated are the z-samples, and hence less infor-
mation can be obtained by exploiting longitudinal diversity.
In this perspective, the best performance is expected with
non-Fourier-limited probe pulses [12]. To some extent, this
approach is analogous to the frequency-diversity one proposed
in [7]; however, the present one is more general, since it
does not require any assumptions on the pulse spectral shape.
Previous works reported alternative methods for leveraging
longitudinal diversity, yet relying on specific fiber configu-
rations, such as wrapping the fiber around a cylindrical cavity
structure [14], or restricting the processing to seismic DAS
data [15]. In the experimental setting of Fig. 1, we use pulses
of 100 ns, which yield a spatial resolution SR of about 10 m,
and we sample the backscattered traces at 500 MS/s, which
corresponds to a sampling step δz of about 20 cm. Moreover,
the bandwidth of the digital band-pass filter employed for
I/Q demodulation is set to 30 MHz, so as to retain the
first two side lobes of the sinc-shaped backscattered field
spectrum. This parameter setting suggests that even samples
closer than SR could be sufficiently uncorrelated to make
longitudinal diversity effective. To test this claim, for each
spatial mode and for each sample at arbitrary position zk ,
we consider also the samples at zk ± 1k · δz. This gives a
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Fig. 4. Spatio-temporal maps (left column) and spectrograms (right column)
in presence of a 80 Hz sinusoidal vibration. (a) single spatial mode; LMS
average of (b) two spatial modes, (c) three spatial modes, and (d) three spatial
modes with longitudinal diversity using NZ = 3 and 1k = 15.

total of M · NZ = 9 sequences (M = 3 modes and NZ =

3 longitudinal samples) over which to compute the coherent
average with the above described methods. The parameter
1k controls the distance between the averaged samples; the
larger 1k, the lower their statistical correlation, yet the worst
the effective spatial resolution Seff

R = SR + 21k · δz. The
results are shown in Fig. 3(a), where the RMS of the phase
noise floor is plotted versus 1k (top x-axis) and Seff

R (bottom
x-axis) for each of the three averaging method considered
so far; 1k = 0 corresponds to the case when no longi-
tudinal diversity is considered. Clearly, all methods benefit
from longitudinal-diversity averaging for increasing distance
between samples, until the RMS almost saturates for 1k ≈ 15.
Note that this value corresponds to a distance of about 3 m,
consistently with the 30 MHz bandwidth of the I/Q band-
pass filter. Basically, beyond this distance samples are almost
completely uncorrelated and the RMS reduction achieved by
the averaging is maximum. We may also test if, for a fixed
maximum distance 1k, there is any benefit in considering
more than 3 samples in the range zk ± 1k · δz. The answer is
no, as shown in Fig. 3(b) where the RMS for 1k = 15 is
plotted as a function of NZ : the RMS shows negligible
variation as a function of NZ , meaning that the samples within
the range are too much statistically correlated to provide
any advantage in the averaging. To investigate the response
of the system to dynamic strain, we inserted a fiber shaker
at about 1.1 km from the input. The spatio-temporal maps
of the local phase variation in presence a 80-Hz sinusoidal
perturbation and the corresponding spectrograms (computed
over the whole acquisition time of 1.1 s) are shown in the left
and right columns of Fig. 4, respectively. Figure 4(a) shows
the results for a single spatial mode; it can be seen that the
local phase variation is strongly compromised by interference
fading and polarization fading. Figures 4(b) and 4(c) show the
results of the LMS average of two spatial modes and three
spatial modes, respectively; when all the three spatial modes
are averaged, fading errors are significantly reduced. On the

spectrogram maps, it can be observed the presence of a faint
third-order harmonic at about 240 Hz, which is attributed to
the non-ideal response of the fiber shaker. Figure 4(d) shows
the results for the coherent average carried out jointly across
the three spatial modes and across the z-axis with parameters
NZ = 3 and 1k = 15; remarkably, the phase variation
faithfully reconstructs the applied perturbation without fading
errors.

V. CONCLUSION

In this letter we investigated DAS over MMFs, which is
useful in scenarios like oil and gas plants where MMFs are
already installed for temperature monitoring. We reported a
mathematical model supporting the feasibility of DAS over
MMF. Moreover, we proposed a novel coherent averaging
method to reduce fading in backscattered traces; we also
extended the method to longitudinal diversity, trading spatial
resolution for phase accuracy. The proposed coherent averag-
ing method can reduce the noise floor by up to three times
compared to state-of-the-art methods.

REFERENCES

[1] L. Palmieri, L. Schenato, M. Santagiustina, and A. Galtarossa,
“Rayleigh-based distributed optical fiber sensing,” Sensors, vol. 22,
no. 18, p. 6811, Sep. 2022.

[2] I. Ashry et al., “A review of distributed fiber-optic sensing in the oil
and gas industry,” J. Lightw. Technol., vol. 40, no. 5, pp. 1407–1431,
Mar. 2022.

[3] M. Chen, A. Masoudi, F. Parmigiani, and G. Brambilla, “Distributed
acoustic sensor based on a two-mode fiber,” Opt. Exp., vol. 26, no. 19,
Sep. 2018, Art. no. 25399.

[4] Z. Zhao et al., “Interference fading suppression in ϕ-OTDR using space-
division multiplexed probes,” Opt. Exp., vol. 29, no. 10, p. 15452,
May 2021.

[5] B. Lu et al., “Ultra-low-noise MIMO distributed acoustic sensor
using few-mode optical fibers,” J. Lightw. Technol., vol. 40, no. 9,
pp. 3062–3071, May 1, 2022.

[6] D. Chen, Q. Liu, and Z. He, “Phase-detection distributed fiber-optic
vibration sensor without fading-noise based on time-gated digital
OFDR,” Opt. Exp., vol. 25, no. 7, p. 8315, Apr. 2017.

[7] Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference
fading elimination with single rectangular pulse in 8-OTDR,” J. Lightw.
Technol., vol. 37, no. 13, pp. 3381–3387, Jul. 1, 2019.

[8] D. Orsuti et al., “Coherent combination method applied to distributed
acoustic sensing over deployed multicore fiber,” Proc. 27th Opt. Fiber
Sensors Conf., 2022, Art. no. 1264323.

[9] A. Galtarossa, L. Palmieri, and M. Zampato, “Optical fiber vibration
measurement system in multiphase flows with related method to monitor
multiphase flows,” U.S. Patent 2 016 103 200, Jun. 25, 2019.

[10] A. Galtarossa, L. Palmieri, and M. Zampato, “Reflectometric vibration
measurement system and relative method for monitoring multiphase
flows,” U.S. Patent WO 2 016 103 201, Apr. 28, 2020.

[11] L. Palmieri and A. Galtarossa, “Coupling effects among degenerate
modes in multimode optical fibers,” IEEE Photon. J., vol. 6, no. 6,
pp. 1–8, Dec. 2014.

[12] J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and
M. Gonzalez-Herraez, “Single-shot distributed temperature and strain
tracking using direct detection phase-sensitive OTDR with chirped
pulses,” Opt. Exp., vol. 24, no. 12, Jun. 2016, Art. no. 13121.

[13] Y. Wakisaka, D. Iida, H. Oshida, and N. Honda, “Fading suppression
of ϕ-OTDR with the new signal processing methodology of complex
vectors across time and frequency domains,” J. Lightw. Technol., vol. 39,
no. 13, pp. 4279–4293, Jul. 2021.

[14] Z. Wang et al., “Practical performance enhancement of DAS by using
dense multichannel signal integration,” J. Lightw. Technol., vol. 39,
no. 19, pp. 6348–6354, Oct. 2021.

[15] J. B. Ajo-Franklin et al., “Distributed acoustic sensing using dark fiber
for near-surface characterization and broadband seismic event detection,”
Sci. Rep., vol. 9, no. 1, p. 1328, Feb. 2019.

Open Access funding provided by ‘Università degli Studi di Padova’ within the CRUI CARE Agreement


