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Abstract— This paper shows and evaluates a novel approach
to integrate a non-invasive Brain-Computer Interface (BCI)
with the Robot Operating System (ROS) to mentally drive
a telepresence robot. Controlling a mobile device by using
human brain signals might improve the quality of life of people
suffering from severe physical disabilities or elderly people who
cannot move anymore. Thus, the BCI user is able to actively
interact with relatives and friends located in different rooms
thanks to a video streaming connection to the robot. To facilitate
the control of the robot via BCI, we explore new ROS-based
algorithms for navigation and obstacle avoidance, making the
system safer and more reliable. In this regard, the robot can
exploit two maps of the environment, one for localization and
one for navigation, and both can be used also by the BCI
user to watch the position of the robot while it is moving. As
demonstrated by the experimental results, the user’s cognitive
workload is reduced, decreasing the number of commands
necessary to complete the task and helping him/her to keep
attention for longer periods of time.

I. INTRODUCTION

Brain-Computer Interface (BCI) technology relies on the

real-time detection of specific neural patterns in order to

circumvent the brain’s normal output channels of peripheral

nerves and muscles [1] and thus, to implement a direct

mind-control of external devices. In this framework, current

non-invasive BCI technology demonstrated the possibility

to enable people suffering from severe motor disabilities

to successfully control a new generation of neuroprostheses

such as telepresence robots, wheelchairs, robotic arms and

software applications [2], [3], [4]. Among the different BCI

systems developed in the last years, the most promising ones

for driving robotic devices are the so-called endogenous BCIs

(e.g., based on Sensorimotor Rhythm (SMR)), where the user

autonomously decides when starting the mental task without

any exogenous—visual or auditory—stimulation.

In these systems, neural signals are recorded by non-

invasive techniques (e.g., Electroencephalography (EEG))

and then, task-related brain-activity is translated into few

commands—usually, discrete—to make the robotic device

turn right or left. Despite the low number of commands pro-

vided by non-invasive BCIs, researchers have demonstrated
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the possibility to drive mobile devices even in complex

situation with the help of a shared control approach [4],

[5], [6]. The shared control approach [7] is based on a

seamless human-robot interaction in order to allow the user

to focus his/her attention on the final destination and to

ignore low level problems related to the navigation task (i.e.,

obstacle avoidance). The coupling between user’s intention

and robot’s intelligence allows to contextualize and fuse

the high-level commands coming from the BCI with the

environment information from the robot’s sensors and thus,

to provide a reliable and robust semi-autonomous mentally-

driven navigation system.

In the robotic community Robot Operating System

(ROS) [8] is becoming the standard de facto for controlling

different types of devices. ROS is a middleware framework

that provides a common infrastructure and several, plat-

form independent, packages (i.e., localization, mapping, au-

tonomous navigation). Indeed, the most important advantages

of ROS are its strong modularity and the large and growing

community behind: people can design and implement their

own ROS package with specific functionalities and thus,

distribute it through common repositories.

Although the clear benefits of using ROS, it is still

far to be a standard adopted in the BCI community. In

BCI literature, most of the studies are based on custom

and ad-hoc implementations of the robotic part and only

few of them clearly reported an integration with common

available tools in ROS [9], [10], [11]. The drawback of this

tendency is twofold: on one hand, the lack of standardization

makes almost impossible to check, replicate and validate

experimental results. As a matter of fact in BCI experiments

the technology needs to be tested over a large population

of end-users with severe disabilities and, usually, requires

to be validated by different groups before the acceptance as

an effective assistive tool [12]. On the other hand, home-

made control frameworks for robotic devices imply the

adoption of simplified and naive approaches to fundamental

robotic challenges—usually, already solved by the robotic

community—and thus, a limitation of possible applications

of the current BCI driven neuroprostheses.

This paper aims at showing the benefits of integrating

a state-of-the-art BCI system and ROS for controlling a

telepresence robot. In Section II, we describe the BCI and the

robot adopted as well as our novel navigation algorithm to

mentally drive telepresence robots. In contrast to previous

works, it exploits an optimal trajectory planner and the

availability of the environmental map. Furthermore, it is

designed to match the requirements of a semi-autonomous,
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BCI driven telepresence robot. In Section III, we evaluate

the presented methods and we showcase the integration with

the BCI system. Finally, in Section IV, we discuss the results

achieved with respect to similar BCI based experiments.

II. METHODS

A. Brain-Computer Interface system

In this work, we used a 2-class BCI based on SMRs to

control the telepresence robot. The user was asked to perform

two motor imagery tasks (imagination of the movement of

both hands vs. both feet) to make the robot turn left or right.

Contrariwise to other approaches (e.g., based on evoked

potentials), such a BCI is based on the decoding of the

voluntary modulation of brain patterns without the need of

any external stimulation repetitively presented to the user.

For this reason, SMR BCIs have been widely exploited to

successfully drive mobile devices [4], [5], [6], [13], [14].

The following paragraphs briefly describe the different

parts of the BCI system developed and used for the study.

1) EEG acquisition: A health 24-year-old female and

BCI beginner tried the experiment that was carried out in

accordance with the principles of the Declaration of Helsinki.

EEG signals were recorded with an active 16-channel

amplifier at 512 Hz sampling rate, filtered within 0.1 and

100 Hz and notch filtered at 50 Hz (g.USBamp, Guger

Technologies, Graz, Austria). Electrodes were placed over

the sensorimotor cortex (Fz, FC3, FC1, FCz, FC2, FC4, C3,

C1, Cz, C2, C4, CP3, CP1, CPz, CP2, CP4) according to the

international 10-20 system layout.

2) Feature extraction and classification: EEG was pre-

processed by applying a Laplacian spatial filter. The Power

Spectral Density (PSD) of the signal was continuously

computed via Welch’s algorithm (1 second sliding window,

62.5 ms shift) in the frequency range from 4 to 48 Hz

(2 Hz resolution). Thus, the most discriminative features

(channel-frequency pairs, subject-specific) were extracted

and classified online by means of a Gaussian classifier [15]

previously trained during the calibration phase (see Sec-

tion II-A.3). Finally, the raw posterior probabilities were

integrated over time to accumulate evidences of the user’s

intention according to:

p(yt) = α · p(yt−1) + (1− α) · p(yt|xt) (1)

where p(yt|xt) is the probability distribution at time

t, p(yt−1) the previous distribution and α the integration

parameter. The probabilities were showed to the user as a

visual feedback (Fig. 1B). As soon as one of the bar was

filled, the command was delivered to the robot to make it

turn right or left.

3) Calibration and online phases: As a common practice

in BCI experiments, a calibration phase is required in order to

select the features that each subject can voluntary modulate

during motor imagery tasks and to train the classifier. In

this work, the calibration phase consisted in three runs with

30 trials each where the user was instructed by symbolic cues

about the task to be performed (in total 21 minutes). Thus, we

analyzed the recorded data, we selected the subject-specific

features and we trained the Gaussian classifier. Fig. 1A

depicts the spatial and spectral distributions of the most

discriminative features (based on fisher score values) selected

to train the BCI. The distributions are perfectly coherent with

the brain patterns expected during motor imaginary tasks [1].

During the online phase, we evaluated the ability of the

BCI to correctly detect user’s intentions. The user performed

three online runs, where he was asked to control the online

BCI feedback on the screen (Fig. 1B).

B. Robot

Our telepresence platform is the Pepper robot1 by Alde-

baran Robotics and SoftBank (Fig. 1C). It is an humanoid

robot designed for human-robot interaction. It features a

1.9 GHz quad-core Atom processor and 4 GB of RAM.

It is 1.210 m high and equipped with an omnidirectional

base of size 0.480 × 0.425 m. For obstacle avoidance, it is

provided with two sonars, three bumpers, three laser sensors

and three laser actuators. For vision tasks, the robot has

two 2D cameras located in the forehead, in particular one

at the bottom and one at the top, both with a resolution of

640 × 480 px. For telepresence purposes, we exploited the

top camera to provide a first-person view to the BCI user

by means of the RViz graphical interface available in ROS.

The Pepper has also an ASUS Xtion 3D sensor in one of

its eyes with a resolution of 320 × 240 px. However, its

3D data are distorted due to a pair of lenses, positioned in

front of it. To overcome the limitations of the laser and the

RGBD-sensor, we built the environmental maps required for

a safe navigation by using data previously acquired [16] and

based on a more powerful Hokuyo URG-04LX-UG01 2D

laser rangefinder able to measure distances from 20 mm to

5.6 m and the more precise Microsoft Kinect v2. This way,

we can still exploit Pepper’s sensors for navigation.

C. ROS-based Mapping and Localization

Robot mapping and localization are core functionalities

necessary to correctly navigate in both an autonomous or

semi-autonomous way. In particular, we built the static

environmental maps, which are provided to the Pepper for lo-

calization and navigation, with previously acquired data. For

the building map process, we exploited two different methods

available in ROS: GMapping [17], [18], and OctoMap [19].

GMapping builds a 2D occupancy map of the environment,

while OctoMap creates a 3D scene representation, which

can be down-projected to the ground so as to enrich the 2D

occupancy map with higher obstacles visible by the RGBD-

sensor but not by the laser. In particular, the localization

module is based on the map built with GMapping, while

the navigation one is based on the 2D down-projected map

because of the richer representation of the environment.

This way, the trajectory planner can take into account high

obstacles and avoid collisions (Fig. 2A). As illustrated in

Fig. 2A, despite in both maps the planner trajectories seem

1https://www.ald.softbankrobotics.com/en/robots/pepper/find-out-more-
about-pepper



Fixation Continuous feedbackCue

Fig. 1: A) Topographic representation of the discriminant features in µ and β bands used to train the SMR classifier (fisher

score values, both hands vs. both feet). B) Schematic representation of the visual paradigm of the SMR BCI. Top row: the

protocol exploited during the calibration and online phases. User is instructed to perform the motor imagery task according

to a symbolic cue appearing on the screen. Thus, the BCI classification output is remapped into the movement of the bar.

When a bar is completely filled, the trial ends. Bottom row: same behavior as before but there is no cue and the user

decides autonomously which motor imagery task to perform to control the robot. When a bar is completely filled, the

related command is delivered to the ROS infrastructure. C) The telepresence robot platform (Pepper) and the experimental

environment with the three target locations.

similar, the path found in the Gmapping based map is less

reliable with high obstacles than the one from OctoMap. For

instance, in a map built with GMapping only legs of tables

are considered, while in the 2D down-projected map from

OctoMap they are featured by their flat surfaces.

For localization, the Adaptive Monte Carlo Localiza-

tion (AMCL) [20] was adopted, with an adaptive sampling

scheme, to make the computation efficient. The Humanoid

Robot Localization (HRL) technique [21], which is based on

the AMCL but uses the 3D OctoMap, is also evaluated.

D. ROS-based navigation

Our algorithm allows a semi-autonomous navigation based

on a shared control for BCIs. The main target is twofold: to

help the user to successfully drive the robot and, at the same

time, to make him/her feel to have the full control. Indeed,

since the control through an uncertain channel like BCI can

be complicated, our integration between user and robot is

designed so that it allows the former to only focus on the

final destinations; while the latter will deal with obstacle de-

tection and avoidance, deciding the best trajectory. For these

purposes, we exploited the ROS navigation stack2 to

localize and move the robot in the environment according to

its sensors, odometry and the static map provided.

In details, the default behaviour of the robot consists in

moving forward and avoiding obstacles when necessary. The

user can control it by his/her brain activities, delivering

voluntary commands (left and right) to turn it to the cor-

responding direction. The user’s intention is decoded by the

BCI system and the related command is sent to the ROS

node dealing with navigation through an UDP packet.

The logic of our algorithm is described in the following

pseudo-code. At every iteration, our algorithm sends new

navigation goals to the robot to ensure the robot capa-

bility of avoiding obstacles in the environment—especially

the dynamic obstacles not represented in the static map.

2http://wiki.ros.org/navigation

Algorithm 1 The shared control navigation algorithm

1: last time← current time

2: while ( ISROBOTACTIVE()) do

3: if current time − last time > CLEAR TIME

then

4: CLEARCOSTMAP()
5: last time← current time

6: end if

7: if (DEFAULTBEHAVIOUR()) then

8: Robot goes forward by a fixed step Sx

9: if (!Succeeded) then

10: Call RECOVERYBEHAVIOUR()
11: end if

12: else ⊲ BCI command arrival

13: Cancel the current goal

14: Robot turns to the right direction

15: if (!Succeeded) then

16: Call RECOVERYBEHAVIOUR()
17: end if

18: end if

19: end while

20: procedure RECOVERYBEHAVIOUR()

21: The robot goes back for a fixed time T

22: It turns counter-clockwise by a fixed angle A

23: end procedure

This way, the planner in the navigation stack, can

(re)compute the best trajectory to reach the target destination

even if dynamic obstacles are presented in the path. In

details, we used the Dynamic Window Approach [22] for

local planner and Dijkstra’s algorithm to compute the global

planner function. Furthermore, before sending a new goal to

the robot, the corresponding position in the map is checked:

the goal is sent to the robot only if it matches with a free

cell in the map, which means that that cell is not occupied

by an obstacle. Otherwise, the RECOVERYBEHAVIOUR()



procedure is called to avoid deadlocks by slightly moving

the robot. In detail, the RECOVERYBEHAVIOUR() makes the

robot go back (if it is possible) and keep turning counter-

clockwise until required. The recovery rotation takes place

always in the same direction (by fixed angle A) to make

the robot able to rotate around itself and, thus, to escape

from this undesirable situation. Furthermore, the rotation is

carried out incrementally by sending velocity commands to

the robot. If the robot cannot go back and/or turn due to

obstacles, the on-board short-range sonars will stop it.

Even if the target goal corresponds to a free cell in the

map, the robot may not be able to reach it for different

technical reasons (e.g., lost connection, temporary missing

frame transformations or unseen obstacles). In this kind of

situations, the procedure RECOVERYBEHAVIOUR() is called

to unstuck the robot and to ensure a continuous navigation.

Finally, the planner may not still find a valid path due

to dynamic obstacles previously stored in the cost maps but

not currently present in the environment. To avoid such a

situation, a clearing operation of the cost maps is done every

CLEAR TIME.

E. Experimental design

The experiment was carried out in a typical working space

with different obstacles like tables, chairs, sofa, cupboards,

people (Fig. 1C). The user was seated at position S and

the robot started from position R. We defined three target

positions T 1, T 2, T 3. The user was instructed to move the

robot from S, going through T 1, T 2, T 3, by only sending

mental commands through the BCI. The default behaviour

of the robot was to move forward and to avoid possible

obstacles in its path. The user perform two repetitions of

the task.

III. RESULTS

A. Navigation Performances

In this work, we considered different combinations of the

two kind of maps provided as input to the robot and the

method used for localization. More precisely, we examined

the performance in terms of number of delocalizations and

collisions against obstacles in the experimental environment

by simulating 150 random commands delivered by the BCI

system. Table I depicts the results achieved.

The combination between the 2D down-projected map

from Octomap and GMapping together with the AMCL lo-

calization method represents a good compromise (3 number

of delocalizations and 2 collisions) between providing a

more detailed map to the robot and using a 2D and fast

computation localization algorithm (Table I, second row).

Indeed, although the third approach (with HRL localization

method) allowed the lowest number of possible collisions, it

requires higher computational power. This is due not only to

the 3D OctoMap used for navigation, but also to the fact that

HRL does not exploit an adaptive sampling scheme adjusting

the number of samples.

Navigation
Map

Localization
Map

Localization
Method

Number of
delocalizations

Number of
collisions

GMapping GMapping AMCL 6 5

2D down-projected

map from OctoMap
GMapping AMCL 3 2

2D down-projected

map from OctoMap
3D Octomap HRL 10 1

TABLE I: Evaluation of different combinations of the two

kind of maps provided as input to the robot and the method

used for localization. Data were acquired by simulating 150

random commands delivered by the BCI system for each

approach.

B. BCI driven telepresence

For the integration of BCI and ROS, we analyzed the

number of BCI commands delivered by the user to reach the

targets T 1, T 2, T 3 and the corresponding times (Fig. 2B). In

average, the user delivered 3.0±1.3 commands and employed

34.5±32.2 s (median and standard error) to reach each target.

The number of commands and the time required were low

for all targets in each repetitions (except for T 1, second

repetition, where the user sent few wrong BCI commands

to the robot).

Furthermore, we evaluates the importance of shared con-

trol by comparing the BCI with a manual control. In this

case, we asked the user to repeat the experiment control-

ling the Pepper robot with discrete commands sent by the

keyboard but without the assistance of the shared control

for obstacle avoidance. The ratio between the number of

commands in the two modalities (BCI with shared control

and the manual without shared control) was 80.9% and the

ratio between times was 114.5%.

It is possible to notice that the number of commands

increased in the manual modality. This means that without

shared control, the BCI user has to send more commands

to the robot, increasing the necessary cognitive workload.

Especially, in that case in which the robot is blocked because

in its neighborhood there are some obstacles that make it

stuck. However, the time spent is less using the keyboard,

due to the time required by the BCI system before delivering

a commands to the robot.

IV. DISCUSSION

The main objective of this study was to demonstrate for

the first time the potentialities and the perspectives related to

the integration between ROS and a BCI system. Modularity

of ROS allows robotic community to exchange and distribute

repositories besides the platform adopted [8]. This particular

aspects is what makes ROS very appealing in assistive

robotics. ROS is able to provide a common infrastructure

where developers can either decide to share their novel

approaches or adopt external tools through use of common

repositories. In this context, this work aimed at promoting

collaboration of multiple disciplines in order to design a

semi-autonomous EEG driven navigation for telepresence

robots. Moreover, integration of the BCI with ROS allowed

testing the system on Pepper robotic platform, never expe-

rienced in BCI driven teleoperation. Second purpose of this
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work was the development of a novel approach for assistive

robotic navigation based on multiple-maps input under BCI

shared control. Our approach demonstrated the possibility to

make obstacle avoidance more reliable and, therefore, the

navigation safer.

Results comparison between other BCI studies may be

complicated and not always meaningful, due to different

testing conditions. However, it is worth to notice that with

respect to previous works, results are consistent in terms of

ratio between BCI and manual input both for time intervals

and number of commands. Our work reported a 114.5%

ratio for time intervals between the two modalities, in line

to [4] where it was estimated 109±11% for the end-users

and 115±10% for healthy ones. Similar trend results are

reported in [6] where both type of users in average achieved

118.5±19% ratio between the two modalities. Furthermore,

the 19.1% decreasing in number of commands recorded in

our experiment was in perfect agreement with [4] and [6]

where similar reduction was reported. These preliminary

results suggest the possibilities and the advantages of using

ROS in BCI driven telepresence applications.

The proposed BCI system is one of the few working on

the top of a ROS framework [9], [10], [11] and, among

them, the only one supporting an endogenous SMR based

BCI. As in the case of previous works [4], the designed

semi-autonomous control reduced the user’s fatigue (in terms

of number of commands required to reach the target).

Furthermore, ROS was fundamental in our approach to en-

able communication among different software and hardware

modules and it was essential to overcome BCI limitations

by exploiting well-established robotic solutions for obstacle

avoidance and navigation.

Modern BCI teleoperating systems are not mature enough

to be exploited in the daily life despite the promising results.

This divergence is due mainly to different complexities

between testing conditions and home-like environments.

High density of obstacles and non-uniform space distribution

make impracticable to use mentally driven systems in such

situations. In fact, platform control could result stressful and

exhausting for the end-user, even with obstacle avoidance

assistance. In order to provide relief to the user in such

conditions, our proposal was to include a localization al-

gorithm in navigation. Direct interaction with this module

output conveyed better understanding of robotic platform

state and allowed the user to plan in advance the navigation,

dealing with delays in command delivery. Maps localization,

moreover, was designed to admit path planning strategies in

the obstacle avoidance algorithm, promoting an evolution of

the shared control approach. Previous implementations of the

shared control were able to detect the obstacle and modify the

trajectory in order to avoid collisions [4], [5], [6]. However,

since algorithm was nor provided with an intermediate goal

nor with favorite direction, once the hurdle was evaded, it

was user’s burden to put the teleoperated device back on

track. Contrariwise, our novel implementation permits to

identify an obstacle and plan accordingly a new trajectory in

order to avoid collision but, at the same time, not deviating

from the direction imposed from the user. Fundamental for

navigation in hostile areas, involving for example moving

obstacle, was the recovery procedure (Section II-D). This

feature, combined with the path planner in partial target

computation, avoided algorithm to fail in case of conflicts

in the occupancy map.

Future directions of the proposed work will be to first

improve Pepper 3D vision, that have been the main limitation

of the platform. Extrinsic and intrinsic calibration of RGB-D

cameras and the related point cloud noise reduction could be

resolved using RGB-D Calibration packet proposed by [23].

This improvement will allow 3D point cloud localization

integration, augmenting its reliability in obstacle avoidance

and adaptability to complex environment. With regard to

navigation, it is intention of the authors testing as input a full

3D OctoMap, either for localization and trajectory estimation

toward partial target. This should generate a similar navi-

gation control to 3d navigation stack ROS package,

not available for recent versions of the robotic operating

system. Final improvements will be addressed to reduce

workload on the user. First approach to pursuit will be to



integrate classification in object recognition, correlating class

of obstacles to actions to take. People detection and tracking

could represent additional features to relieve users from

the burden of navigation and control attention. Additional

relaxation in user control can be provided using Intentional

Non-Control [24], which should detect when the user does

not want to perform any motor task. Algorithm therefore

should act in slowing or even stopping integration of the

command delivery output, when such condition is present.

The benefits of integrating ROS in BCI driven devices

are not limited to telepresence purposes. For instance, the

robustness and the reliability provided by ROS can be

exploited to encourage the use of the BCI in more sensitive

domains such as car applications [25], rehabilitation [26],

pediatric interventions [27] and pain mitigation [28].
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