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Abstract

In this thesis we discuss the graph p-Laplacian eigenvalue problem. In par-
ticular, after reviewing the state of the art, we present new results on the nodal
domain count of the p-Laplacian eigenpairs, on the graph ∞-Laplacian eigen-
problem, and on the computation of the p-Laplacian eigenpairs.

Concerning the nodal domain count, we prove that the number of nodal do-
mains induced by a p-Laplacian eigenfunction can be bounded, both from above
and below, in terms of the position of the corresponding eigenvalue in the vari-
ational spectrum. Moreover, we prove that on trees the variational spectrum
exhausts the entire spectrum, and the number of nodal domains induced by an
everywhere nonzero eigenfunction is equal to the variational index of the cor-
responding eigenvalue. These results allow us to derive, from the p-Laplacian
spectrum, topological information about the graph. Indeed, when p is equal to 1
and ∞, the p-Laplacian eigenvalues approximate the Cheeger constants and the
packing radii of the graph, respectively.

The study of the ∞-Laplacian eigenproblem is another major contribution of
this thesis. In particular, we compare different formulations of this degenerate
eigenproblem. In the first case we study the ∞-eigenpairs as solutions of the
limiting eigenvalue equation, in the second case we define the ∞-eigenpairs as
generalized critical points of the ∞-Rayleigh quotient R∞(f) = ‖∇f‖∞/‖f‖∞.

Then, we relate the ∞-variational eigenvalues to the packing radii of the
graph. Here, among other things, we prove that the first and the second ∞-
variational eigenvalues are exactly equal to the first and the second packing radii
of the graph.

Finally, we present a novel approach to compute the p-Laplacian eigenpairs
both in the smooth case 2 < p <∞, and in the degenerate case p =∞. To this
end, we observe that the p-Laplacian eigenvalue problem, both for 2 < p < ∞
and p =∞, can be reformulated as a constrained linear weighted-Laplacian eigen-
value problem. Based on this remark, we introduce a family of energy functions
whose domain is the space of positive measures on the edges and on the nodes of
the graph. Then, we first prove that the unique saddle point of the first energy
function corresponds to the unique first eigenpair of the p-Laplacian. Second,
we prove that smooth saddle points of the k-th energy function correpond to p-
Laplacian eigenpairs (f, λ), such that the Morse index of the p-Rayleigh quotient
Rp(f) = ‖∇f‖p/‖f‖p in f is equal to k. Based on such results, we introduce
gradient flows suited to compute saddle points of the proposed energy functions
and we discuss the results of their numerical integration. Practically, the integra-
tion of the gradient flows, at each step, requires only the computation of a linear
eigenpair. Hence we are able to use all the theoretical and numerical advantages
of the linear setting to overcome the difficulties of solving a nonlinear equation.
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However, the theoretical study of the gradient flows remains an open problem,
which deserves a future in-depth study.
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1 Introduction

In this thesis we review the graph p-Laplacian eigenvalue problem and present
our contributions to the theoretical and numerical investigation of this topic. The
p-Laplacian operator arises as a natural generalization of the Laplace-Beltrami
operator when one considers variational problems involving the p-norm of the gra-
dient of an objective function ‖∇f‖p. The linear Laplacian operator corresponds
to the case p = 2, while a nonlinear p-Laplacian operator is obtained when p 6= 2.
The numerous applications of these kind of problems make the p-Laplacian one of
the most studied nonlinear operators both in the continuous and in the discrete
setting. In particular, in many applications, it has been observed numerically or
theoretically that using a suitable p-norm in place of the 2-norm it is possible to
achieve better results and avoid pathological situations. We mention for example
the case p ∈ [1, 2], that is of particular interest in signal processing and variational
filtering strategies where given noisy data we want to denoise them by minimiz-
ing the distance from the observed signal plus a regularization term based on the
p-Laplacian operator [73, 81]. For example, given a partial sample of the data,
if we want to recover the entire signal promoting its smoothness as typical of
semi-supervised learning, the case p ∈ [2,∞] becomes fundamental [36, 82]. The
same case has significant applications in optimal transport problems [40, 42] and
image reconstruction [37, 38]. Moreover, p-Laplacian eigenpairs find application
in spectral representation and approximation theory [18] as well as unsupervised
learning and graph partitioning [13, 20, 50].

Since the p-Laplacian operator is a generalization of the Laplace-Beltrami
operator, its study often starts from the extension to the nonlinear case of classical
results about the Laplace operator. We cite for example the extension of the
maximum principle that allows one to prove the uniqueness of the solution to the
p-Poisson problem [69]. Within this framework, it is natural to investigate the
notion of spectrum and its applications in the non-linear case. Indeed, it is well
known that the spectrum of the Laplacian is a fundamental tool in the study of
solutions, exact or approximated, of many physical problems, such as the Poisson
equation, the heat equation or the wave equation, just to mention some. On
the other hand, it is also worth to recall the relevance of the Laplace-Beltrami
operator in relation to the study of the geometry of the domain. Think for
example to the Cheeger inequality [23], which bounds the smallest eigenvalue of
the Laplacian by the Cheeger constant, i.e., the minimal ratio between the area of
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6 CHAPTER 1. INTRODUCTION

the boundary and the volume of a subdomain, among all the possible subdomains.
Think also of the famous Can one hear the shape of a drum? problem [60],
which poses he question of whether or not the spectrum of the Laplace-Beltrami
operator fully characterizes the domain. This conjecture was then proved to
be false [48], but in the meantime many different geometrical properties of the
domain had been related to properties of the Laplacian spectrum [79].

Generalizing the notion of eigenpair to the p-Laplacian is not difficult. Recall
that the Laplacian eigenpairs correspond to the critical values of the 2-Rayleigh
quotientR2(f) = ‖∇f‖2/‖f‖2, and that the p-Laplacian operator arises naturally
when we consider the variation of the p-norm of the gradient. It is then natural
to define the p-Laplacian eigenpairs as the critical points of a Rayleigh quotient
of the form:

Rp,q = ‖∇f‖p/‖f‖q .

Here the norm in the denominator could, in principle, be chosen arbitrarily,
however the most studied case is surely q = p, which we denote as Rp(f). The
critical point condition ∂fRp(f) = 0 leads to the equation:

∆pf = λ|f |p−2f , (1.1)

where ∆p denotes the p-Laplacian operator. The choice p = q is particularly
interesting because on the one hand, the Laplacian eigenpairs are recovered as
a particular case and, on the other hand, the Poincaré inequality guarantees to
have a “positive definite” p-Laplacian operator for any p. However, we mention
that also the case q = 2 and p 6= 2, which allows us to work in the Hilbert space
L2 has received particular attention [14, 17], as well as all of the cases p ≥ q, in
which the Sobolev inequalities combined with the Poincaré inequalities allow to
have a positive definite p-Laplacian operator as well [45, 56, 74]. Singular cases
may arise for other choices of q, see for example [10].

Besides the intuitive definition, extending classical results from the linear case
to the nonlinear one is not an easy task and many problems are still open. First
of all, there is the problem of quantifying the number or eigenpairs. In the linear
case, the Laplacian operator is self adjoint and we know that the cardinality of
its spectrum is countable in the continuous setting, and equal to the dimension
of the space in the discrete one. For the p-Laplacian, instead, such information is
unknown and the countability or finiteness of its spectrum are open problems. It
is, however, quite easy to show that in the discrete setting the number of eigen-
values of the p-Laplacian can exceed the dimension of the space [2, 90], see also
Chapter 1. Another major problem concern the properties of the eigenfunctions.
In fact, in the linear case we know that it is always possible to extract a base
of orthogonal eigenfunctions and that, the multiplicity of an eigenvalue equals
the dimension of the corresponding eigenspace. This is fundamental information
when we are interested in decomposing or approximating a signal with some or all
of its frequencies. Unfortunately, these properties are again lost when we consider
the nonlinear p-Laplacian. Indeed, the fact that the cardinality of the spectrum
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is unknown rules out the possibility of defining an algebraic multiplicity, while,
the loss of linearity implies the existence of non orthogonal eigenfunctions and
multiple, but not necessarily infinite, eigenfunctions with the same eigenvalue [2],
implying that also a notion of geometrical multiplicity is not well defined.

These problems are partially overcome by the definition of the variational
eigenvalues, i.e., a family of eigenvalues whose cardinality, depending on the set-
ting, equals the dimension of the space (discrete setting) or is countable (continu-
ous setting). There are several ways to define such eigenvalues, the most classical
one is based on the Lusternik-Schnierelman theory and the notion of Krasnosel-
skii genus [46, 47, 85]. In this case, the strategy is to define a generalized notion
of dimension, the genus, for symmetric subsets and then, similarly to the linear
case, to prove that

λk(∆p) = min
genus(A)≥k

max
f∈A
Rp(f)

is a critical value of the p-Rayleigh quotient Rp, for any k. A relevant advantage
of these eigenvalues is the possibility to define a notion of algebraic multiplic-
ity, i.e., the number of times that an eigenvalue is repeated in the variational
sequence. If a variational eigenvalue, λ, has multiplicity k, then there exists a
subset of genus greater than k of eigenfunctions associated to λ, i.e. a kind of
eigenspace. Moreover, the existence of a subset with genus greater than k, im-
plies the existence of at least k linearly independent eigenfunctions associated to
λ [85].

Surprisingly, the introduction of the variational eigenvalues allows one, not
only to recover but also to improve the relationships between some geometrical
properties of the domain and the spectrum of the Laplacian. This is the case
for example for the Cheeger inequality, which becomes an equality when p goes
to one, i.e. the limit of the first non zero eigenvalue of the p-Laplacian operator
when p goes to 1 is equal to the Cheeger constant of the domain. This result holds
both in the continuous setting [62, 76] and in the graph one [13, 20]. Similarly, if
we consider the limit, for p that goes to one, of higher variational eigenvalues of
the graph p-Laplacian, it is possible to show that

lim
p→1

λk(∆p) ≤ hk(G),

where hk(G) is the higher order Cheeger constant of index k, [86].
Another example comes from the study of the ∞-limit of the variational p-

Laplacian eigenvalues. In this case it is possible to prove that the first and the
second eigenvalue of the p-Laplacian converge respectively toward the reciprocal
of the radius of the maximal ball which can be inscribed in domain and to the
reciprocal of the maximal radius which allows us to inscribe two disjoint balls in
the domain [57, 58], see also Chapter 5. Moreover, again considering the limit of
higher variational eigenvalues, it is possible to show that

lim
p→∞

λk(∆p) ≤ 1/Rk,
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where Rk is the packing radius of order k [49], i.e., the maximal radius that allows
to inscribe k disjoint balls in the domain, see [57, 58] for the details.

In the study of the above relations of the p-Laplacian eigenvalues with the
higher order Cheeger constants and the radii of the domain it is worth to mention
the relevance of the study of the nodal domains. A nodal domain induced by an
eigenfunction, f , is one of the maximal subdomains where f is strictly positive or
negative. The relevance of the nodal domains is twofold. First of all, observe that
if we have an eigenpair (f, λ) on a domain Ω with homogeneous Dirichlet bound-
ary conditions, and a nodal domain A induced by f , then it is easily observed
that (f |A, λ) is an eigenpair on the domain A still with homogeneous Dirichlet
boundary conditions. This means that the nodal domains induced by some eigen-
function f are subdomains of Ω that share the same eigenvalue λ induced by f
on Ω. Using this property, if we denote by N (f) the number of nodal domains
induced by a function f it is possible to provide a lower bound for the limit of
the ∆p-eigenvalues:

hN (f1)(G) ≤ lim
p→1

λk(∆p) ≤ hk(G) , 1/RN (f∞) ≤ lim
p→∞

λk(∆p) ≤ 1/Rk, (1.2)

where f1 and f∞ are proper limits of any eigenfunction of λk(∆p). On the other
hand, the number of nodal domains induced by an eigenfunction is somehow
capable to reproduce the frequency (index) of the corresponding eigenvalue.

This has been originally observed for the Laplacian operator in Sturm’s os-
cillation theorem that states that the zeros of the k-th mode of vibration of an
oscillating string induce k nodal domains. Later, Courant extended this result
to higher dimensions, proving that the k-th eigenfunction of an oscillating mem-
brane admits no more than k subdomains [26]. The count of the nodal domains
of the Laplacian operator in the discrete graph setting has then lead to observe
that trees behave like strings, i.e. an eigenvector fk for the k-th eigenvalue, if
everywhere non-zero, induces exactly k nodal domains [5, 7]. In addition, in the
general case of eigenvalues with any multiplicity and eigenvectors with possibly
some zero entry on general graphs, it was proved in [30, 34, 87] that the following
inequality holds for the number of nodal domains induced by any eigenfunction
of the k-th eigenvalue of the Laplacian operator:

k + r − 1− β − z ≤ N (fk) ≤ k + r − 1 ,

where β is the total number of independent loops of the graph, z is the number
of zeros of fk and r is the multiplicity of λk.

The main contribution of Chapter 3 of this thesis is to show that the above
result holds almost unchanged for the nodal domains of the eigenfunctions of the
p-Laplacian operator, for any p > 1. An upper bound was provided in [86], where
it is shown that, for any eigenfunction fk of the k-th variational eigenvalues of
the p-Laplacian, the number of nodal domains is bounded above as

N (fk) ≤ k + r − 1,
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where r is the variational multiplicity of the corresponding eigenvalue. In this
thesis, instead, we consider the case of trees, proving analogous results to the
linear case, and propose a lower bound for general graphs that states that if f is
a p-Laplacian eigenfunction with eigenvalue λ such that λ > λk(∆p), then

N (f) ≥ k − β − z + 1 ,

where β is the total number of independent loops of the graph and z is the
number of zeros of f . These bounds, combined with the inequalities (1.2), lead
to interesting inequalties between the p-Laplacian eigenvalues and the geometrical
quantities Rk and hk.

Considering the above discussion and in view of (1.2), it is natural to futher
focus the attention on the investigation of the 1-Laplacian and the ∞-Laplacian
eigenvalue problems. However the definition of eigenpairs as critical values/points
does not transfer directly to the 1- and∞-case, due to the lack of differentiability
of the corresponding Rayleigh quotients. The approaches used to overcome this
difficulty have been various. In [57, 58], the authors study the ∞-eigenpairs
defined as the solutions to an ∞-limit eigenvalue equation. In [50], studying
the 1-Laplacian eigenvalue problem, the authors propose the definition of a 1-
eigenfunction as a Clarke critical point of R1, i.e., an f such that

0 ∈ ∂ClR1(f), (1.3)

where ∂ClR1(f) is the Clarke subgradient of the locally Lipschitz fucntion R1

[25]. Finally, investigating the graph 1-eigenvalue problem, the author of [20]
proposes the definition of a 1-eigenfunction, f , as a function that satisfies:

0 ∈ ∂‖∇f‖1 ∩
⋃
λ≥0

λ∂‖f‖1, (1.4)

where ∂‖∇f‖1 and ∂‖f‖1 are the subgradients of the two convex functions f 7→
‖∇f‖1 and f 7→ ‖f‖1 [35, 80]. It is worth noting that the formulation (1.4) is a
generalization of the one in (1.3). In fact, it follows directly from the properties
of the Clarke subdifferential that any solution to (1.3) solves (1.4). However,
examples exist of functions that solve (1.4) but not (1.3), see [90] for an example.
This reformulation has then been generalized to general functions on convex
polytopes in [22]. Interestingly, the formulation (1.4) admits a useful geometrical
interpretation. Indeed, if f solves (1.4) with ‖f‖1 = 1, then ∂‖∇f‖1, which
generalizes the definition of ∆pf to the case p = 1, intersects the normal outward
cone to the piecewise-linear manifold S1 = {f | ‖f‖1 = 1}, i.e.

⋃
λ≥0 λ∂‖f‖1.

Observe that, when p > 1, the normal cone to Sp = {f | ‖f‖p = 1} reduces to⋃
λ≥0 λ|f |p−2f , that immediately shows that equation (1.4) actually generalizes

(1.1).
Based on the approaches above, in Chapter 5 we consider∞-Laplacian eigen-

pairs on graphs and show, among other things, that the inequalities in (1.2) hold
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true when limp→∞ λk(∆p) is replaced by the properly defined variational ∞-
eigenpairs. Analogous results were previously shown for the graph 1-Laplacian
[20, 50] and for the first∞-eignvalue, λ1(∆∞), in both the graph and the contin-
uous setting [16, 17].

Given the remarkable theoretical spectral properties of the p-Laplacian, a
critical issue that arises is the problem of how to compute p-Laplacian eigen-
pairs and where to locate a computed eigenvalue with respect to the variational
spectrum. Both are still partially open problems that have been faced by differ-
ent authors in recent years [14, 50, 88]. The majority of the existing methods,
such as the inverse nonlinear power method [50] or gradient flow methods for
the functional Rp [14], are mainly suited to compute extremal eigenvalues, i.e.
the maximal or the minimal eigenvalue. From a theoretical point of view, these
methods have the advantage that it is always possible to prove the convergence,
but the drawback that the convergence toward an extremal eigenpair depends on
the initial point and thus can be guaranteed only a-posteriori. Other methods,
like the local minmax method [88], are suited to compute families of nonlinear
eigenpairs, {(fi, λi)}ki=1, with increasing local minmax index, i.e. number of de-
creasing directions of the functional Rp in fi. However, to compute the k-th
eigenvalue, these methods need to know the first k − 1 eigenpairs and are suited
to compute an eigenpair, (f, λ), if and only if λ is a local maximum of Rp in
the space spanned by f and the previously computed f1, . . . , fk−1. Note that the
latter is a nontrivial condition in the case of the p-Laplacian and, in principle,
could never be satisfied. The theory about how to compute nonlinear eigenpairs
is thus still far from being complete. We face this and other problems in the
next chapters. In chapter 4 we contribute to this challenging line of work with a
novel approach based on a suitable linearization of the p-Laplacian eigenproblem
inspired by recent gradient flow formulations of the Monge-Kantorovich optimal
transport equation [41, 42, 43].

We divide the reminder of this thesis as follows:

� Chapter 2. In this chapter we fix the notation and review the state of the
art, settling in a rigorous mathematical framework the results discussed
in this introduction. At the end of this chapter we present also a brief
but precise description of our contributions and main results, which are
contained in the next three chapters.

� Chapter 3 is devoted to a discussion on the nodal domains of the p-Laplacian
eigenfunctions. Here we face the case of trees and provide novel lower
bounds for the number of nodal domains induced by the p-eigenfunctions
in terms of the position of the eigenvalue in the variational spectrum.

� Chapter 4 is devoted to a reformulation of the p-Laplacian eigenvalue prob-
lem in terms of a constrained linear weighted Laplacian eigenvalue problem.
On the one hand, this allows us to characterize a family of p-eigenparis in



11

terms of the critical points of a family of energy functions, and on the other
it allows to introduce new numerical methods for the computation of the
p-Laplacian eigenpairs.

� Chapter 5 is devoted to the study of the graph ∞-eigenvalue problem.
Here we compare different formulations of the ∞-eigenvalue problem, in
terms of subgradients and in terms of ∞-limit eigenvalue equation. We
recover results known in the continuous setting that relate the∞-variational
eigenvalues to the readii of the graph and finally we extend to the ∞-
Laplacian case results proved in Chapter 4 for the case p ∈ (2,∞).

We point out that every chapter can be of independent interest, even though
the various results are certainly interconnected. For this reason, we chose to write
the chapters as self-consistent as possible. In the introduction of every chapter, we
recall the basic notation and results (from the literature and the other chapters)
needed for the reading and comprehension of the chapter itself.
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2 Notation and Preliminaries

We devote this chapter to establish the notation and summarize the state of the
art in the study of the spectral properties the graph p-Laplacian. We conclude
with a short but complete summary of our main contributions.

2.1 The Graph Setting

An undirected graph, G, can be denoted by a triple G := (V,E, ω), where V
is the discrete set of nodes (or vertices) of the graph, E ⊂ V × V denotes the
set of edges and is such that if (u, v) ∈ E then also (v, u) ∈ E, and finally
ω : E → R is a function on the edges such that ω(u, v) = ω(v, u). The value of
ω(u, v) can be thought of as representing the reciprocal of the edge length. To
simplify the notation, in the following we will often write ωuv := ω(u, v) Using
these definitions, we can introduce a distance between two nodes u and v of the
graph defined as the length of the shortest path joining them:

d(u, v) = min
Γ∈pathu,v

length(Γ) ,

where pathu,v denotes the set of paths joining u to v:

pathu,v =
{

Γ = {ui}ni=1|u1 = u, un = v, (ui, ui+1) ∈ E, n arbitrary
}

and the length of a path Γ = {ui}ni=1 is defined as

n−1∑
i=1

1

ω(ui, ui+1)
.

Denote by H(V ) and H(E) the Hilbert spaces of the functions on the nodes and
on the edges of the graph, respectively, endowed with the scalar products:

〈f, g〉H(V ) =
∑
u∈V

f(u)g(u) 〈F,G〉H(E) =
1

2

∑
uv∈E

F (u, v)G(u, v) .

We can then introduce the graph equivalent of the differential operators used
in the continuous setting. Let us start with the gradient of a function in H(V )

13
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defined as the function that reproduces the slope of f on the edges:

∇ : H(V ) −→ H(E)

f −→ ∇f(u, v) = ωuv(f(v)− f(u)) ,

with u and v being vertices of the edge (u, v) and with the obvious property
that ∇f(u, v) = −∇f(v, u). Next we introduce the divergence operator. Not
considering a boundary on graphs is usually understood to be analogous to having
homogeneous Neumann boundary conditions. Thus, to preserve the classical
divergence theorem in the continuous setting, i.e.

−〈f,divG 〉H(V ) = 〈∇f,G〉H(E) ,

we may define the divergence as the half of minus the adjoint of the gradient,
that in matrix form reads div = −1

2∇
T , i.e.

div : H(E) −→ H(V )

G −→ divG(u) =
1

2

∑
v∼u

ωuv
(
G(u, v)−G(v, u)

)
,

where {v |v ∼ u} are the nodes connected to the node u by an edge, i.e. such that
(u, v) ∈ E. Given the definitions of gradient and divergence we can introduce
the graph Laplacian operator (p = 2) and the more general p-Laplacian operator(
p ∈ (1,∞)

)
, whose definitions are similar to the one used in the continuous

setting:

∆pf(u) = −div
(
|∇f |p−2 �∇f

)
(u) =

∑
v∼u

ωuv|∇f(v, u)|p−2∇f(v, u) ,

where |∇f |p−2 has to be understood entrywise and � denotes the entrywise prod-
uct (we will omit this symbol in the following). When p = 2, it is possible to
check that such definition matches the classical definition of ∆2 in terms of the
adjacency matrix. Consider A, the weighted adjacency matrix of the graph, i.e.
Auv = ωuv1E

(
(u, v)

)
, where 1 denotes the indicator function, then a direct com-

putation shows that

∆2 = diag(A ∗ 1)−A ,

where 1 denotes the vector entrywise equal to one.

Boundary case. Finally, observe that sometimes we are interested in studying
problems on graphs with some boundary conditions, in this case we define the
boundary of the graph, B ⊂ V , as a subset of the nodes. Then, if we impose
homogeneous boundary conditions, we set

H0(V ) := {f : V \B → R} ∼= {f : V → R | f(u) = 0 ∀u ∈ B} ,
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and we consider the gradient operator

∇ : H0(V ) −→ H(E)

f 7→ ∇f(u, v) =


ωuv
(
f(v)− f(u)

)
if u, v ∈ V \B

ωuvf(v) if u ∈ B, v ∈ V \B
−ωuvf(u) if u ∈ V \B, v ∈ B

.

As before, we introduce the divergence operator, div : H(E)→ H0(V ), in such a
way to preserve the divergence theorem, i.e., −div = 1

2∇
T .

2.2 p-Laplacian eigenvalue problem

Now we can introduce the p-Laplacian eigenvalue problem. Mimicking the con-
tinuous setting, we consider the Rayleigh quotient:

Rp(f) =
‖∇f‖p
‖f‖p

=

(
1
2

∑
(u,v)∈E |∇f(u, v)|p

) 1
p

(∑
u∈V |f(u)|p

) 1
p

,

whose critical point equation for p ∈ (1,∞), reads:

∆pf(u) =
(
Rp(f)

)p|f(u)|p−2f(u) ∀u ∈ V ,

up to rescaling. We thus define (f, λ) to be a p-Laplacian eigenapair iff

∆pf(u) = λ|f(u)|p−2f(u) ∀u ∈ V . (2.1)

Multiplying the above equation by f(u) and then summing over the vertices
shows that if λ is an eigenvalue corresponding to the eigenfunction f , necessarily
λ =

(
Rp(f)

)p
.

Remark 2.2.1. In more generality, we mention that the Hilbert spaces H(E)
and H(V ) can be provided each one of a measure, µ : E → R and ν : V → R,
that produce the norms

‖f‖pν,p =
∑
u∈V

νu|f(u)|p ‖G‖pµ,p =
1

2

∑
uv∈E

µuv|G(u, v)|p .

In this case, differentianting the Rayleigh quotient Rp,µ,ν(f) = ‖∇f‖p,µ/‖f‖p,ν
we derive the (weighted) p-Laplacian eigenvalue equation

∆p,µf(u) = −div
(
µ|∇f |p−2∇f

)
(u) = λνu|f(u)|p−2f(u) ∀u ∈ V .
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1

2

4

3

1. f1 = (1, 1, 1, 1), λ1 = 0

2. f2 = (1, 0,−1, 0), λ2 = 2

3. f3 = (0, 1, 0,−1), λ3 = 2 + 2p−1

4. f4 = (1, 0, 1,−2
1
p−1 ), (1,−2

1
p−1 , 1, 0)

λ4 = 1 +
(
1 + 2

1
p−1
)p−1

5. f5 = (1,−1, 1,−1), λ5 = 2p

Figure 2.1: Left: Example graph in which the corresponding p-Laplacian ∆p with
ωuv = 1 ∀(u, v) ∈ E, has more eigenvalues then the dimesion of the space. Right:
Set of five eigenvalues and corresponding eigenfunctions.

Next, we would like to highlight, that differently from the linear case p = 2
where ∆2 is a symmetric positve semidefinite matrix, for a generic p the number
of p-Laplacian eigenpairs can be greater than the dimension of the space, i.e
|V |, the eigenpairs are not in general orthogonal, and there is no clear notion
of eigenspace or multiplicity, see Figure 2.1. We will come back to this topic
in Chapter 3. Morover, we refer to [2, 90] for other examples and discussions
on the problem. In particular, we mention that in [2] the author computes all
the eigenvalues of ∆p on complete graphs, showing that their number is equal to
bN/2c(N − bN/2c) + 1 where N is the cardinality of the nodes. The finiteness
of the p-Laplacian spectrum on general graphs as well as the existence of upper
bounds for the cardinality of the spectrum remain open problems.

Despite all the difficulties highlighted so far, using some classical results from
calculus of variations it is always possible to characterize a set of “variational”
eigenvalues whose number, counted with their multiplicity, equal in number the
dimension of the space, |V |. To define such eigenpairs, we observe that, because
of the homogeneity of the Rayleigh quotient Rp, we can restrict the study of
its critical points to the p-sphere, Sp := {f ∈ H(V ) | ‖f‖p = 1}. Having Rcp :=
{f | Rp(f) < c}, we consider the following Deformation Lemma and its direct
consequence given in Theorem 2.2.3 (they are particular cases of more general
and classic results, see e.g. [46, 47, 75, 85]).

Lemma 2.2.2 (Deformation Lemma). Assume c to be a regular value of Rp, then
there exist ε > 0 and a continuous family of deformations φ ∈ C([0, 1] × Sp, Sp)
such that φ(t, f) = −φ(t,−f) ∀(t, f), φ(1,Rc+εp ) ⊂ Rc−εp , and φ(0, f) = f .

Proof. We give here a sketch of the proof that is quite intuitive. Consider a
neighborhood B of {f | Rp(f) = c} without critical points, a cutoff function ξ(f)
that is zero outside B, and the projection of the gradient of Rp(f) on the tangent
space of Sp, denoted, with a small abuse of notation, by ∂

∂fRp(·). Finally, define
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φ(t, f) as the solution to the gradient flow{
∂
∂tφ(t, f) = −ξ(φ(t, f)) ∂

∂fRp(φ(t, f))

φ(0, f) = f

which is a continuous mapping from [0, 1]× Sp to Sp.

Theorem 2.2.3. Assume F to be a family of subsets of Sp such that for any
regular value c ∈ R of Rp, there exist ε > 0 and a continuous deformation of the
domain φ : [0, 1]× Sp → Sp s.t.

φ : (0, ·) = idSp(·)
φ(1,Rc+εp ) ⊂ Rc−εp

φ(t, A) ∈ F , ∀A ∈ F , ∀t ∈ [0, 1]

Then

Λ := inf
A∈F

sup
f∈A
Rp(f) ,

is a critical value of Rp, i.e. the p-th root of an eigenvalue of ∆p.

Proof. The proof is a direct consequence of the Deformation Lemma 2.2.2.

Based on the above theorem, we can introduce the variational eigenapairs of
the p-Laplacian. Theorem 2.2.3 states that we have to find families, Fk, of subsets
stable with respect to deformations, i.e, if A ∈ Fk and φ is a deformation, also
φ(A) ∈ Fk. To understand how this works, recall the Fisher-Courant min max
characterization of the eigenvalues of a symmetric matrix (for example the graph
Laplacian) i.e.

λk(∆2) = min
dim(A)≥k

max
f∈A\{0}

〈∆2f, f〉
〈f, f〉

= min
dim(A)≥k

max
f∈A\{0}

(
R2(f)

)2
.

A possible strategy (not the unique one) to generalize this min max theorem to
the nonlinear case, using Theorem 2.2.3, is based on the idea of considering a
generalized notion of dimension, the Krasnoselskii genus, that is related to the
Lyusternik–Schnirelmann category of a space [46, 47, 85]. First of all, observe
that, as we are interested in studying critical points of Rp, which is an even func-
tional, it would be enough to generalize the notion of dimension to the symmetric
subsets. Thus we introduce the family A of subsets of Rn that are symmetric
and closed, i.e.:

A = {A ⊆ Rn| A closed , A = −A} .

Then, we observe that in the case A is a linear subspace of dimension k, A \ {0}
can be retracted with continuity on a sphere of dimension k − 1, Sk−1. This



18 CHAPTER 2. NOTATION AND PRELIMINARIES

notion can be generalized by defining, for any A ∈ A, the Krasnoselskii genus of
A:

γ(A) =


0 if A = ∅
inf{k ∈ N | ∃ψ ∈ C(A,Sk−1) s.t. ψ(x) = −ψ(−x)}
+∞ if @ k as above

Note that, if γ(A) ≥ k and φ ∈ C(Rn,Rn), then γ(φ(A)) ≥ γ(A). Hence, the
families Fk(Sp) = {A ⊆ A ∩ Sp |γ(A) ≥ k} satisfy the hypotheses of Theorem
2.2.3. Thus, we can define the Krasnoselskii variational eigenvalues of ∆p as

λk = inf
A∈Fk

sup
f∈A

(
Rp(f)

)p
. (2.2)

Since we are working in a finite dimensional space, it is also possible to prove
that the above inf sup is actually a min max (see also Chapter 4). The advantage
of defining these eigenvalues is twofold. On the one hand it allows us to select
a number of eigenvalues that equals the dimension of the space. On the other
hand, thanks to the properties of the Krasnoselskii genus, we can recover some
multiplicity results. In particular, we recall the following results from [85]:

Lemma 2.2.4. (See Lemma 5.6 Chapter II [85]). Suppose for some k,m there
holds

−∞ < λ = λk = · · · = λk+m−1 <∞ .

Then, γ(Kλ) ≥ m, where Kλ = {f |Rp(f) = λ , ∂fRp(f) = 0} is the set of
critical points associated to λ.

Proposition 2.2.5. (See Proposiiton 5.3 Chapter II [85]). Suppose A ⊂ V is
a compact symmetric subset of a Hilbert space V and suppose γ(A) = m < ∞ .
Then A contains at least m mutually orthogonal vectors {vi}mi=1.

The last two results show that if a variational eigenvalue, λ, has multiplicity
m, then there exists a sort of eigenspace associated to it, whose genus (intended
as its generalized dimension) is lower bounded by the multiplicity. In turn, this
implies that there exist at least m mutually orthogonal eigenvectors associated
to λ.

Boundary case. We conclude this paragraph by recalling that the p-Laplacian
eigenvalue problem can also be studied on a graph with a boundary, B, and
homogeneous Dirichlet boundary conditions (see section 2.1).

Then, the p-Rayleight quotient of a function in H0(V ), i.e. which is zero on
the boundary B, reads

Rpp(f) =

2−1
∑

(u,v)∈E
u,v∈V \B

ωpuv|f(u)− f(v)|p +
∑

(u,v)∈E
u∈V \B, v∈B

ωpuv|f(u)|p∑
u∈V \B |f(u)|p

, f ∈ H0(V )
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and its critical point equation, i.e., the p-Laplacian eigenvalue problem, can be
written as: {

∆pf(u) = λ|f(u)|p−2f(u) ∀u ∈ V \B
f(u) = 0 ∀u ∈ B

where given u ∈ V \B,

∆pf(u) =
∑
v∼u

v∈V \B

ωpuv|f(u)− f(v)|p +
∑
v∼u
v∈B

ωpuv|f(u)|p . (2.3)

Clearly, also in this case, considering the symmetric subsets of H0(V )∩Sp whose
genus is greater than k, we can introduce the k-th variational eigenvalue. In
particular, note that λ1(∆p) = 0 in the case we have no boundary conditions, as
λ1(∆p) = minf (Rp(f))p = 0 which is obtained on nodewise constants. Differ-
ently, if we consider a boundary, it can be proved that λ1(∆p) 6= 0 and also the
study of the first eigenfunction becomes of interest. In chapter 3, we will present
a complete study of the first eigenfunction of a class of generalized p-Laplacian
operators that include the homogeneous-Dirichlet p-Laplacian operator (2.3).

2.2.1 Cases p = 1,∞

A particular discussion is necessary for the two extreme cases p = 1 and p =∞.
Observe that in these cases the Rayleigh quotients R1(f) and R∞(f) are still well
defined but not differentiable anymore. This opens the problem of how to define
the one and the infinity eigenpairs. The answer to this problem is not unique, and
different approaches have been proposed in the literature. Here, we discuss an
approach that has been initially used for the case p = 1 [20, 50], but that has been
recently used also in the continuous setting for the infinity case [16, 17]. The idea
is to define a generalized notion of critical points for the Rayleigh quotients R1(f)
and R∞(f). To this aim, we first note that, given a p-Laplacian eigenfunction f ,
we can assume w.lo.g. ‖f‖p = 1, which is equivalent to saying that f is a point
of the unit sphere Sp. Then, observe that |f |p−2f is the outward normal to Sp
in f . As a consequence, from eq.(2.1), since f is a p-Laplacian eigenfunction,
∂f‖∇f‖p (= C∆p(f))1 is equal, up to rescaling, to the outward normal to the
manifold Sp in the point f . We immediately encounter two difficulties when
trying to generalize this idea. The first is the non differentiability of the one or
infinity norms of the gradient, and the second is the fact that the outward normal
to the spheres S1 and S∞ is not everywhere well defined. A solution to both of
these problems comes from the notion of subgradients of a convex function [80].
Let Ψ : Rn → R be a convex function, e.g a norm. Its subgradient at a point f0

is defined as:

∂Ψ(f0) =
{
ξ | Ψ(g)−Ψ(f0) ≥ 〈ξ, g − f0〉 ∀g ∈ Rn

}
.

1here ∂f‖∇f‖p denotes the usual gradient in Rn of the function f 7→ ‖∇f‖p. We prefer the
symbol ∂f to ∇ to avoid confusing the gradient on the graph with the gradient in Rn



20 CHAPTER 2. NOTATION AND PRELIMINARIES

This is a generalization of the notion of gradient: if the function Ψ is differentiable
at the point f0, then ∂Ψ(f0) =

(
∂fΨ

)
(f0), where ∂fΨ denotes the usual gradient

in Rn. Morover it is possible to characterize the composition of the subdifferential
of a convex function with a linear transformation (see Theorem 23.9 [80]):

Theorem 2.2.6. Let Φ(f) = Ψ(Af), where Ψ is a convex function on Rm,
|Ψ(f)| < +∞ ∀f ∈ Rm and A is a linear transformation from Rn to Rm, then

∂Φ(f) = AT∂(Ψ(Af))

These results allow us to define a generalized notion of ∂f‖∇f‖, meaningful
also in the case of the one and the infinity norms and that matches the classical
definition for 1 < p <∞.

Now, we need to generalize the notion of outward normal to the spheres of
p-norm with p equal to one or infinity. As the outward normal does not change,
instead of considering the sphere, we consider the corresponding closed ball, i.e.:

Dp = {f | ‖f‖p ≤ 1} .

It is easy to see that Dp is a convex set for any p and we can define the convex
external cone in the generic point, f0 s.t. ‖f0‖p = 1 as

CExt(f0) = {ξ | 〈ξ, g − f0〉 ≤ 0 ∀ g ∈ Dp} .

Then, we observe that the external cone can be related to the subgradient of
f → ‖f‖p (see Theorem 23.7 [80] and [22] for more general results):

Lemma 2.2.7. Let ‖·‖ be a norm and D := {f |‖f‖ ≤ 1}. Then, for any f0 ∈ Dp

with ‖f0‖ = 1, it holds the following equality:

CExt(f0) =
⋃
λ≥0

λ∂‖f0‖ .

Here Cext(f0) = {ξ|〈ξ, g − f0〉 ≤ 0 ∀g ∈ D} is the external cone to D in f0 and
∂‖f0‖ =

{
ξ | ‖g‖ − ‖f0‖ ≥ 〈ξ, g − f0〉 ∀g ∈ Rn

}
. is the subrgadient of the norm

in f0

Proof. The inclusion ⋃
λ≥0

λ∂‖f0‖p ⊂ CExt(f0)

is a direct consequence of the fact that ‖g‖p − ‖f0‖p ≤ 0 ∀g ∈ Dp. Indeed from
the last inequality, if ξ ∈ λ∂‖f0‖p with λ > 0, then

〈ξ, g − f0〉 ≤ λ
(
‖g‖ − ‖f0‖

)
≤ 0 .
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On the other hand, assume that CExt(f0) 6=
⋃
λ≥0 λ∂‖f0‖p, then there exists

ξ ∈ CExt(f0) such that, for any λ ≥ 0, ξ 6∈ λ∂‖f0‖p, where given λ ≥ 0:

λ∂‖f0‖p := {ξ|λ
(
‖g‖ − ‖f0‖

)
≥ 〈ξ, g − f0〉 ∀g ∈ Rn}

This implies that ξ 6= 0 and that, for any λ > 0, there exists some gλ ∈ Rn such
that

〈ξ, gλ − f0〉 > λ
(
‖gλ‖p − ‖f0‖p

)
. (2.4)

Note that, since ξ ∈ CExt(f0), for any g ∈ Rn it holds the following inequality:〈
ξ,

g

‖g‖p

〉
≤ 〈ξ, f0〉 , (2.5)

where we write g/‖g‖ = 0, if g = 0. Now if we use the above eq.(2.4) joint with
eq.(2.5) and the fact that ‖f0‖p = 1, we obtain the following set of inequalities
for any λ > 0.(
‖gλ‖p − 1

)
〈ξ, f0〉 =‖gλ‖p〈ξ, f0〉 − 〈ξ, f0〉 ≥

≥‖gλ‖p
〈
ξ,

gλ
‖gλ‖

〉
− 〈ξ, f0〉 = 〈ξ, gλ − f0〉 > λ

(
‖gλ‖p − 1

)
,

(2.6)
where as before we say gλ/‖gλ‖ = 0 if gλ = 0. From (2.6), we deduce that
necessarily 〈ξ, f0〉 ≤ 0, otherwise taking λ = 〈ξ, f0〉 in (2.6) would lead to a
contradiction. However, also 〈ξ, f0〉leq0 leads to a contradiction. Indeed, since
ξ ∈ CExt(f0) \ {0}, we note ξ/‖ξ‖ ∈ Dp and from the definition of external cone
we deduce the opposite inequality:〈

ξ,
ξ

‖ξ‖
− f0

〉
≤ 0 , i.e. 〈ξ, f0〉 ≥

‖ξ‖22
‖ξ‖

> 0 .

It follows that saying that f is an eigenfunction of the p-Laplacian is equivalent
to asking that there exist Λ > 0 such that

∅ 6= ∂‖∇f‖p ∩ Λ∂‖f‖p , (2.7)

and now this definition makes sense also when p = 1 and p =∞.

To complete the discussion about the two nonsmooth cases we need to char-
acterize the sets ∂‖f‖1 and ∂‖f‖∞. To this end we recall the following result
[18].

Lemma 2.2.8. Given a function f0 and a norm ‖ · ‖,

∂‖f0‖ = {ξ | ‖g‖ ≥ 〈ξ, g〉 ∀ g, ‖f0‖ = 〈ξ, f0〉}
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Proof. The inclusion {ξ | ‖g‖ ≥ 〈ξ, g〉 ∀ g, ‖f0‖ = 〈ξ, f0〉} ⊂ ∂‖f0‖ is trivially
proved. Indeed if ξ ∈ {ξ | ‖g‖ ≥ 〈ξ, g〉 ∀ g, ‖f0‖ = 〈ξ, f0〉}, then

〈ξ, g − f0〉 ≤ ‖g‖ − ‖f0‖ ,

which is the definition of subgradient. To prove the opposite inclusion, consider
ξ ∈ ∂‖f0‖, then the triangular inequality and the definition of ∂‖f0‖ yield:

〈ξ, h− f0〉 = 〈ξ, h〉 − 〈ξ, f0〉 ≤ ‖h‖ − ‖f0‖ ≤ ‖h− f0‖ ∀h

Then, as g := (h− f0) spans the whole Rn, the sup in the above inequality yields

sup
g

(
〈ξ, g〉 − ‖g‖

)
= sup

h

(
〈ξ, h− f0〉 − ‖h− f0‖

)
≤ 0 ,

which reads
‖g‖ ≥ 〈ξ, g〉 ∀g . (2.8)

Furthermore, taking g = 0 we obtain the opposite inequality

sup
g

(
〈ξ, g〉 − ‖g‖

)
≥ 0 ,

which yields supg

(
〈ξ, g〉 − ‖g‖

)
= 0 . Finally, from the subgradient definition,

we have:

0 =
(

sup
g
〈ξ, g〉 − ‖g‖

)
≥ 〈ξ, f0〉 − ‖f0‖ ≥

(
sup
g
〈ξ, g〉 − ‖g‖

)
= 0 ,

which reads:
〈ξ, f0〉 = ‖f0‖ . (2.9)

The last equality (2.9) joint with the inequality (2.8) proves the inclusion ∂‖f0‖ ⊂
{ξ | ‖g‖ ≥ 〈ξ, g〉 ∀ g, ‖f0‖ = 〈ξ, f0〉} and concludes the proof.

Observe that from this Lemma it follows that necessarily, if f is an eigen-
function as in eq.(2.7), then Λ = Rp(f) i.e., it is the p-th root of the eigenvalue
defined in (2.1). However, observe that, when p = ∞, R∞∞ is not defined, while
for p = 1 there is no difference between R1(f) and the 1-st root. Thus, for the
two extreme cases, p = 1 and p =∞, we will call, with a small abuse of notation,
Λ in eq.(2.7) the eigenvalue corresponding to f .

The subgradients of the one and infinity norms can be calculated from Lemma
2.2.8 and Theorem 2.2.6, yielding the following formulas, where ξ and Ξ denote
functions on H(V ) and H(E), respectively.

∂‖f‖1 =
{
ξ
∣∣∣ ξ(u) = sign

(
f(u)

)}
∂‖∇f‖1 =

{
− div Ξ

∣∣∣ Ξ(u, v) = sign
(
∇f(u, v)

)} (2.10)
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where sign(x) is the set valued function, sign(x) =

1 if x > 0
[−1, 1] if x = 0
−1 if x < 0

.

∂‖f‖∞ =

{
ξ

∣∣∣∣∣ ‖ξ‖1 = 1, ξ(u) = 0 if |f(u)| < ‖f‖∞
ξ(u)f(u) =

∣∣ξ(u)f(u)
∣∣

}

∂‖∇f‖∞ =

{
−div Ξ

∣∣∣∣∣ ‖Ξ‖1 = 1, Ξ(u, v) = 0 if |∇f(u, v)| < ‖∇f‖∞
Ξ(u, v)∇f(u, v) =

∣∣Ξ(u, v)∇f(u, v)
∣∣

}

We conclude this part recalling that, also in the degenerate cases, the min max
in eq.(2.2) characterizes eigenvalues as generalized critical values of eq.(2.7), al-
lowing to define the variational eigenvalues also for p = 1 and p = ∞. This fact
follows from Theorems 6.1, 6.4 and Theorems 5.1, 5.8 of [22] (see also Theorem
2.2.3 above) applied to the boundary of fine polytopes such as S1 and S∞. For
completeness, we recall the deformation Theorem 5.1 from [22]. Here, for sim-
plicity, it is stated only for the 1-norm and ∞-norm spheres, while in [22] it is
stated for more general polytopes (see Theorems 6.1, 6.4 [22]). The existence of
the one and infinity variational eigenvalues follow then from Theorem 2.2.3 and
Lemma 2.2.9.

Lemma 2.2.9. Let Φ be a Lipschitz convex function on RN . Define Φ̃ := Φ|X
as the restriction of f to the boundary, X of one of the convex polytopes P =
{f |‖f‖1 ≤ 1} or P = {f |‖f‖∞ ≤ 1}. Let c ∈ R, be an isolated critical value,
Kc = K ∩ Φ̃−1(c) and N ⊂ X be a neighborhood of Kc, where K is the set of
critical points of Φ on X. Then ∀ε0 > 0, there exist ε ∈ (0, ε0) and a deformation
η : X × [0, 1]→ X satisfying:

1. η(x, 0) = x , ∀x ∈ X;

2. η(x, t) = x , ∀x 6∈ Φ̃−1[c− ε0, c+ ε0],∀t ∈ [0, 1];

3. η(f̃c+ε \N, 1) ⊂ Φ̃c−ε, where Φ̃b is the level set of Φ̃ below or equal to b;

4. η(Φ̃c+ε, 1) ⊂ Φ̃c−ε if Kc = ∅.

2.3 Nodal Domains

The nodal domains induced by a function f are generally the maximal subdo-
mains where f has constant sign. Here we briefly discuss and recall a number of
results about the nodal domains induced by the p-Laplacian eigenfunctions. We
will return on this topic in Chapter 3, where we face the problem of bounding
the number of nodal domains induced by a p-Laplacian eigenfunction in terms of
the position of the eigenvalue with respect to the variational spectrum. We start
from the definition of nodal domain:
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Definition 2.3.1 (Nodal domains). Given a graph G and a function f : V → R,
a subset of the vertices, A ⊆ V , is a nodal domain induced by f if the subgraph
GA ⊂ G with vertices in A is a maximal connected subgraph of G where f is
nonzero and has constant sign. We denote by N (f) the number of nodal domains
induced by a function f .

A classical result relates the number of nodal domains induced by an eigen-
function of the linear Laplacian with the corresponding frequency [5, 6, 87]. The
same result can be transfered to the nonlinear p-Laplacian setting. In particular,
without entering in the details of the sharpeness of the bounds, that we will dis-
cuss in Chapter 3, from [86] and the results of this thesis as published in [31], it
can be shown that

Theorem 2.3.2. Suppose that G is a connected graph, 1 < p < ∞ and λ1 <
λ2 ≤ · · · ≤ λN are the variational eigenvalues of ∆p.

� If f is an eigenfunction of ∆p with eigenvalue λ such that λ < λk, then

N (f) ≤ k − 1 ;

� if f is an eigenfunction of ∆p with eigenvalue λ such that λ > λk, then

N (f) ≥ k − β − z(f) + 1 ,

where β is the number of independent loops of the graph, i.e. β = |E| −
|V |+ 1, and z(f) is the number of nodes where f is zero.

Given a nodal domain A, define by E(A,Ac) its boundary given by:

E(A,Ac) = {(u, v) ∈ E s.t. u ∈ A, v ∈ Ac or u ∈ Ac, v ∈ A} , (2.11)

where Ac = V \A. Then, given an eigenpair and its nodal domains it is possible
to establish the following equality. In the next Lemma, with a small abuse of nota-
tion, we write ‖f‖p−1

p−1 =
∑

u |f(u)|p−1 and ‖∇f‖p−1
ω,p−1 = (1/2)

∑
(u,v) ωuv|∇f(u, v)|p−1

also in the case p ∈ (1, 2) in which the above functionals are not norms.

Lemma 2.3.3. Let (λ, f) be a p-Laplacian eigenpair, p > 1, A a nodal domain
induced by f and E(A,Ac) the boundary of A. Then

λ =
‖∇f |E(A,Ac)‖

p−1
ω,p−1

‖f |A‖p−1
p−1

where ∇f |∂A(u, v) = 1E(A,Ac)(u, v)∇f(u, v) and f |A(u) = 1A(u)f(u).

Proof. The proof easily follows summing over all the nodes u that belong to A
the eigenvalue equation of f .
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These results about the nodal domains, jointly with the fact that the nodal
domains are related with a form of balanced partition of the graph, lead to the
idea of using the eigenvalues of the p-Laplacian to approximate some “optimal”
partitions of the graph. This idea, as we will see in the next paragraphs, allows
us to derive some geometrical information about the graph from the spectrum of
the one and infinity Laplacians.

2.3.1 p = 1 and Cheeger constants

We start this subsection by introducing a family of Cheeger constants of a graph.
These constants are typically used in data analysis applications and they are
useful to provide information about the number and the quality of the clusters
of a graph. Let A ⊂ V be a subset of the nodes and let E(A,Ac) be defined as
in eq.(2.11). Consider the quantity

c(A) =
‖ω
(
E(A,Ac)

)
‖1

|A|
=

1
2

∑
(u,v)∈E(A,Ac) ω(u, v)

|A|
,

and, given an integer k, all the possible families of k nonempty and disjoint
subsets of V

Dk(G) = {A1, . . . , Ak ⊂ V | Ai 6= ∅, Ai ∩Aj = ∅ ∀ i, j} .

Define the k-th Cheeger constant, see [28, 65, 66] as

hk(G) := min
{A1,...Ak}∈Dk(G)

max
i=1,...,k

c(Ai) ,

Observe that having a “small” value of hk(G) means that there exist k subsets
of nodes that are at the same time quite large (|Ai| is sufficiently big for any
i) and poorly connected to each other (

∑
(u,v)∈E(Ai,Aci )

ω(u, v) small for any i).

This is exactly what k clusters of nodes should be. The constant hk(G) can
thus be considered as an indicator of how well the graph can be clustered into
k subgraphs, with the corresponding family of subsets being the approximate
clusters.

Now observe that, given a subset A ⊂ V and considered its characteristic
function χA, we have that

R1(χA) =

1
2

∑
(u,v)∈E ωuv|χA(u)− χA(v)|∑

v∈V |χA(u)|
= c(A) .

Then, consider a maximizing family of nonempty disjoint subsets {A1, . . . , Ak ⊂
Dk(G) in the definition of hk(G), i.e.

hk(G) = max
i=1,...,k

c(Ai) .
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Named Λ1
k the k-th variational eigenvalue of the 1-Laplacian, i.e.,

Λ1
k = min

A∈Fk(S1)
max
f∈A
R1(f) ,

a simple argument shows that

Λ1
k ≤ max

f∈span{χAi | i=1,...,k}
R1(f) ≤ max

i
R1(χAi) = max

i=1,...,k
c(Ai) = hk(G) .

Moreover if f is a 1-Laplacian eigenfunction associated to the eigenvalue Λ, there
exist ξ ∈ ∂‖f‖1 and Ξ ∈ ∂‖∇f‖1 such that

−divΞ(u) =
1

2

∑
v∼u

ωuv

(
Ξ(v, u)− Ξ(u, v)

)
= Λξ(u) . (2.12)

Then, if we consider a nodal domain A induced by f , where we assume w.l.o.g.
f > 0 over A, and we sum the eigenvalue equation (2.12) over A we get

Λ =

∑
u∈A, v∈Ac, v∼u ωuv

|A|
= c(A) ,

where we have used the characterization of the subgradients (2.10), i.e. ξ(u) =
1 ∀u ∈ A and Ξ(v, u) = −Ξ(u, v) = 1 ∀u ∈ A, v ∈ Ac such that (u, v) ∈ E.

The remarks above show that the study of the Cheeger constants is tightly
related the the study of the eigenpairs of the 1-Laplacian. What is actually
possible to prove is the following theorem [13, 20, 29, 50, 86]

Theorem 2.3.4. Let (f,Λ1
k) be the k-th variational eigenpair of the 1-Laplacian,

then
Λ1

2 = h2(G) , hN (f)(G) ≤ Λ1
k ≤ hk(G) ∀k,

where N (f) is the number of nodal domains induced by f .

Moreover using the p-Laplacian eigenpairs, when p goes to 1, it is possibile
to prove the following theorem which relates the p-eigenpairs to the Cheeger
constants, [29, 86]:

Theorem 2.3.5. Let (fk, λ
(p)
k ) be the k-th variational eigenpair of the p-Laplacian,

p > 1, then

2p−1

τ(G)p−1

(
hN (f)(G)

)p
pp

≤ λ(p)
k ≤ 2p−1hk(G) ,

where τ(G) = maxu∈V
∑

v∼u ω(u, v)

Combining the last two theorems, we observe that whenever we have a vari-
ational eigenfunction whose nodal domain count reflects the corresponding fre-
quency, letting p go to one, the eigenvalue reproduces exactly an higher-order
Cheeger constant.
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2.3.2 p =∞ and packing radii of the graph

Similar results relate the∞-eigenpairs to the maximal distance between k nodes.
It is worth mentioning that these results are similar to those obtained in the
continuous setting by [39, 57, 58], using an approach different from the one that
employs the subgradients. We enter in the details of this topic in Chapter 5,
where we provide also a comparison between the formulation of ∞-eigenpairs
proposed by Lindqvist et al. [39, 57, 58] and the formulation in terms of subgra-
dients.

Let us start by introducing the k-th packing radius of the graph:

Rk = max
v1,...,vk∈V

min
i,j=1,...,k

d(vi, vj)

2
,

which can also be written as

Rk = max{r | ∃ v1, . . . , vk ∈ V s.t. d(vi, vj) ≥ 2r ∀ i, j = 1, . . . , k} .

Observe that 2R2 is obviously the diameter of the graph, while, for k > 2 we
are computing the maximal reciprocal distance among k nodes, following [49] we
name this quantity “packing radii of order k” . In terms of information about a
set of data represented by the graph, Rk measures a sort of distribution width of
the data.

Similarly to what shown before for the 1-eigenpairs, it is not difficult to show
that, if (f,Λ) is an ∞-eigenpair, then there exist two nodes u, v ∈ V such that
f(u) > 0, f(v) < 0 and

Λ =
‖∇f‖∞
‖f‖∞

=
2

d(u,w)
.

Since any ∞-eigenpair can be related to a distance between nodes in different
nodal domains, it makes again sense to relate the infinite variational eigenvalues
to the packing radii of the graph. The following results, very similar to the one
presented for the p = 1 case, are part of the contributions of this thesis, we refer
to Chapter 5 for the details.

Theorem 2.3.6. Let Λ
(∞)
k be the k-th ∞-variational eigenvalue, then

Λ
(∞)
2 =

1

R2
, Λ

(∞)
k ≤ 1

Rk
∀k

Moreover, in the case of eigenpairs obtained as limit for p→∞ of p-Laplacian
eigenapairs we have the following

Theorem 2.3.7. Let (f,Λ∞) be an ∞-eigenpair that is a limit of p-Laplacian
eigenpairs as p→∞, then

1

RN (f)
≤ Λ(∞)
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Thus, as in the case p = 1, whenever we have a variational eigenfunction
whose nodal domain count reflects the corresponding frequency, letting p go to
infinity, the eigenvalue reproduces exactly a packing radii.

We point out that the above results hold also in the more general setting of a
graph with a boundary, B ⊂ V . In this case we only have to change the definition
of the packing radius Rk, which becomes:

RBk := sup{r | ∃ v1, . . . , vk with d(vi, vj ≥ 2r d(vi, B) ≥ r ∀i, j = 1, . . . , k}.

Moreover, if the boundary is nonempty, from the above Theorems 2.3.6 and 2.3.7,
we can also derive the equality

Λ1 =
1

RB1
=

1

maxudB(u)
.

2.4 Computing the p-Laplacian eigenpairs

In the last paragraphs we have shown that the graph p-Laplacian eigenpairs,
with particular attention to the limit cases p = 1 and p = ∞, can be used
to deduce or approximate topological properties of the graph itself. Since the
computation of these topological invariants is usually difficult and expensive,
it is natural to wonder if it is possible to bypass this problem by computing
instead the p-Laplacian eigenpairs. Unfortunately this is a complicated task
itself, and, to the best of our knowledge, at the moment there is no method able
to compute all the p-Laplacian eigenpairs. Moreover there is no method able to
locate a given eigenvalue in the variational spectrum. Among the few methods
proposed in the literature, we can mention the inverse nonlinear power method
[50] and the gradient flows proposed in [14, 15]. Both these methods are aimed at
the computation of extremal (minimal or maximal) eigenpairs. The strenght of
these approaches is the possibility to prove the convergence toward an eigenpair.
However the limit eigenpair depends on the starting point and, from a theoretical
point of view, there is no a-priori information about the eigenpair that will be
computed. On the other hand, there are methods like the local minmax method
proposed in [88], that are able to compute sequences of |V | eigenpairs with an
increasing number of local decreasing directions of Rp. However these methods,
once the first k-eigenpairs {(fi, λi)}ki=1 have been computed, are able to compute
the k + 1-th, (fk+1, λk+1), if and only if

λk+1 = local max
f∈span{fi}k+1

i=1

Rp(f) ,

where local maxf∈span{fi}k+1
i=1
Rp(f) is the set of local maxima of the function

Rp on span{fi}k+1
i=1 . This property, however, is not trivially satisfied by the p-

Laplacian eigenpairs and in principle could be satisfied by none of the p-Laplacian
eigenpairs. In Chapters 4 and 5 we propose a novel method suited to work both
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in the p ∈ [2,∞) and p = ∞ case. For this method we provide theoretical
and a-priori guarantee of convergence towards the first p-Laplacian eigenpair.
Moreover, given an index k and without using any other nonlinear eigenpair,
our method is suited to compute non-extremal p-Laplacian eigepairs, (f, λ), such
that the Morse index of Rp in f is equal to k, where the Morse index denotes
the number of negative eigenvalues of the Hessian matrix of Rp i.e. decreasing
directions. In addition, we provide bounds for the Morse index of some properly
defined variational eigenfunction in terms of the variational index.

In more details, assuming p ∈ [2,∞], in Chapter 4 and 5 we consider a
reformulation of the p-Laplacian eigenavalue problem in terms of a weighted
linear Laplacian eigenvalue problem

if p ∈ (2,∞) ⇒


∆µ0f(u) = −div

(
µ0∇f

)
(u) = λν0uf(u) ∀u ∈ V

µ0uv = |∇f(u, v)|p−2 ∀(u, v) ∈ E
ν0u = |f(u)|p−2 ∀u ∈ V

if p =∞ ⇒



∆µ0f(U) = −div(µ0∇f)(u) = Λν0uf(u) ∀u ∈ V
|∇f(u, v)| = ‖∇f(u, v)‖∞ if µ0uv > 0

|f(u)| = ‖f(u)‖∞ if ν0u > 0

‖µ0∇f‖1,E = 1

‖ν0f‖1,V = 1

This reformulation allows us to introduce a class of energy functions in the vari-
ables (µ, ν) whose saddle points correspond to eigenpairs of the p-Laplacian.
Indeed, for any couple of positive measures µ : E → R+ ν : V → R+, we consider

the eigenpairs
(
f(µ, ν), λ(µ, ν)

)
of the generalized linear eigenvalue problem

∆µf(u) =
(
− div

(
diag(µ)

)
∇f
)

(u) = λνuf(u) . (2.13)

Observe that these are eigenpairs of a linear eigenvalue problem and thus can be
enumerated from 1 to |V |, the cardinality of the node space, and can be easily
computed. Then, for any 1 ≤ k ≤ |V |, we introduce the function

Epk (µ, ν) =
1

λk(µ, ν)
+
p− 2

p

∑
(u,v)∈E

(µ
p
p−2
uv )− p− 2

p

∑
v∈V

(ν
p
p−2
v ) , (2.14)

and the sets M+(V ) := {ν : V → R≥0}, M+(E) := {µ : E → R≥0}. With these
definitions we prove the following:

Theorem 2.4.1. Let p ∈ (2,∞], then Ep1 (µ, ν) admits a unique saddle point(
maxν minµ

)
and

(ν∗, µ∗) := arg max
ν∈M+(V )

arg min
µ∈M+(E)

Ep1 (µ, ν)
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is such that
(
λ
p
2
1 (µ∗, ν∗), f1(µ∗, ν∗)

)
=
(
λ1(∆p), f1(∆p)

)
is the unique, up to scal-

ing, 1-st p-Laplacian eigenpair.

Theorem 2.4.2. Let, p ∈ (2,∞) and

(ν∗, µ∗) := arg max
ν∈M+(V )

arg min
µ∈M+(E)

Epk (µ, ν)

be a smooth saddle point of the function Epk (µ, ν), then
(
λ
p
2
k (µ∗, ν∗), fk(µ

∗, ν∗)
)

is
a p-Laplacian eigenpair.

Moreover, given a p-Laplacian eigenpair, (f, λ), we can consider the index of
the eigenvalue thought as an eigenvalue of the corresponding linear eigenvalue
problem (2.13) and use it to derive information about the Morse index of the
p-Rayleigh quotient in f .

These results finally lead to the construction of numerical algorithms for the
computation of p-Laplacian eigenpairs based on gradient flows for the functionals
Epk . These algorithms, at each step, only require the computation of an eigenpair
of a weighted linear Laplacian, thus allowing us to use all the advantages of
linearity to numerically solve a nonlinear problem.

2.5 Our contributions

In this section we give a short but precise list of our main contributions joint
with an overview of the structure of the thesis. At the end of the section we will
add a diagramatic map summarizing our contributions.

� Chapter 3: Nodal Domains.
In this chapter we study the nodal domains of the eigenfunctions of a gener-
alized class of p-Laplacian operators. In particular, we prove the uniqueness
of the first eigenfunction of the generalized p-Laplacian and its characteri-
zation as the only eignfunction that induces only one nodal domain. Then,
we study how the spectrum of p-Laplacian operators changes after different
kinds of perturbation of the graph and we prove novel nonlinear Weyl-like
inequalities. After that, we study the spectrum of p-Laplacian operators
on trees. Here we prove, first, that the variational spectrum exhausts all
the spectrum, and, second, that for any simple variational eigenvalue, λ,
the number of nodal domains induced by the corresponding eigenfunction
equals the variational index of λ. Finally, using the previous results, we
prove old and new bounds for the number of nodal domains induced by an
eigenfunction. These bounds depend on the position of the corresponding
eigenvalue with respect to the variational spectrum.

� Chapter 4: A reformulation of the p-Laplacian eigenvalue prob-
lem.
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In this chapter we study the reformulation of the p-Laplacian eigenpairs as
constrained weighted Laplacian eigenpairs when p ∈ (2,∞). We prove that
given an eigenpair (f, λ), the Morse index of the p-Rayleigh quotient in f
matches the Morse index of the corresponding weighted 2-Rayleigh quotient
in f which, in turn, corresponds to the linear index of the eigenvalue λ. Us-
ing these comparisons, for any variational eigenvalue of the p-Laplacian, we
give bounds for its linear index in terms of the variational index. Then, we
introduce the energy functions Epk eq.(2.14) and we prove that Ep1 admits a
unique saddle point corresponding to the unique first eigenfunction of the
p-Laplacian. In addition, we prove that smooth saddle points of the higher
energy functions Epk for k > 1 correspond to higher p-Laplacian eigenpairs.
It is worth mentioning that, to prove the latter results, we need to study in
some depth the so-called (p, 2)-eigenpairs, i.e., the critical values and points
of the Rayleigh quotient Rp,2(f) = ‖∇f‖p/‖f‖2.

� Chapter 5: The Infinity eigenvalue problem.
In this chapter we study the ∞-Laplacian eigenvalue problem. In the
first part we consider the discrete analogue of the approach proposed by
Lindqvist and Juutinen [57, 58], i.e. we look at the solutions of the∞-limit
eigenvalue equation. Within this approach, we prove inequalities between
the ∞-limit variational eigenvalues and the packing radii of the graph that
are finite-dimensional counterparts of the continuous inequalities presented
in [57, 58].

In the second part of the chapter, we consider the ∞-Laplacian eigenvalue
problem expressed in terms of subgradients of the infinity norms. Within
this approach, we prove, first, inequalities between the variational eigen-
values and the packing radii of the graph and, second, a geometrical char-
acterization of the ∞-eigenpairs. Using the latter characterization, we are
able to compare the two formulations of the ∞-eigenvalue problem, in par-
ticular we prove that the ∞-limit eigevalue problem proposed in the first
part of the chapter is stronger than the subgradient∞-Laplacian eigenvalue
problem. We conclude the chapter proposing a reformulation of the subgra-
dient ∞-Laplacian eigenvalue problem in terms of a constrained weighted
linear Laplacian eigenvalue problem. This reformulation allows us to prove
that, also in the ∞-case, the function E∞1 (2.14) admits a unique saddle
point and that such saddle point corresponds to the first eigenvalue of the
∞-Laplacian.
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3 Nodal Domains

3.1 Introduction

We have seen in Chapter 2 that the p-Laplacian nodal domains play an important
role in the study of the k-th order isoperimetric constant hk(G) of the graph.
Indeed, as we have recalled in the introdution (see also [86]), this fundamental
graph invariants can be bounded from above and from below using the variational
spectrum λk of the p-Laplacian and its nodal domain count via the Cheeger-like
inequality

λN (fk) ≤ hN (fk) ≤ c(p)λ
1/p
k , (3.1)

where c(p) → 1 as p → 1 and fk is any eigenfunction of λk. This result clearly
highlights the importance of the nodal domain count in connection to, for exam-
ple, the quality of p-Laplacian graph embeddings for data clustering, for which
there is a wealth of empirical evidence [11, 12, 13, 38]. In Chapter 5, moreover, we
will see similar inequalities, involving the number of nodal domains, connecting
the p-Laplacian eigenpairs to the packing radii of the graph.

Because of these reasons, the estimation of the number of nodal domains of
the Laplacian and p-Laplacian eigenfunctions, both on continuous manifolds and
on discrete and metric graphs, has been an active field of research in the past
years.

In the discrete graph setting, it was proved in [5, 7] that trees behave like
strings and that the k-th eigenvector fk of the Laplacian (or more generally
Schrödinger) operator, if everywhere non-zero, induces exactly k nodal domains.
Moreover, again under the assumption that the k-th eigenvector fk of the graph
Laplacian operator is everywhere non-zero, it was proved in [6] that for general
graphs the following inequality holds for the number of nodal domains N (fk) of
fk, provided the corresponding eigenvalue is simple:

k − β + l(fk) ≤ N (fn) ≤ k .

Here β is the total number of independent loops of the graph and l(fk) is the
number of independent loops where fk has constant sign. In the general case of
eigenvalues with any multiplicity and eigenvectors with possibly some zero entry,
it was proved in [30, 34, 87] that the following inequality holds:

k + r − 1− β − z ≤ N (fk) ≤ k + r − 1 ,

33
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where fk is an eigenvector of the eigenvalue λk, z is the number of zeros of fk
and r is the multiplicity of λk.

A nodal domain theorem for the graph p-Laplacian is provided in [86], where
it is shown that, for any eigenfunction fk of the p-Laplacian, the number of nodal
domains is bounded above as N (fk) ≤ k + r − 1, where r is the multiplicity of
the corresponding variational eigenvalue. Analogous results are proved in [21] for
the case p = 1. However, no lower bounds for N (fk) were known in the general
case.

The final aim of this chapter is thus to provide lower bounds on the number of
nodal domains of the generic eigenfunction of the p-Laplacian. To this end, we will
introduce a class of generalized p-Laplacian operators, already addressed in [78].
Such operators, similar to the generalized linear Laplacian or Schrödinger oper-
ator [5, 87], are also largely related to p-Laplacian problems with zero Dirichlet
boundary conditions, see the Introduction and [54]. Thus, all our results apply to
both the classical p-Laplacian and the generalized p-Schrödinger operators. We
prove a classical characterization of the first and the second variational eigen-
pairs and nonlinear Weyl’s like inequalities. These are fundamental instruments
to study the nodal domains of the generic eigenfunction. Our general strategy,
inspired by the work of [5], consists of defining appropriate rules to remove nodes
or edges from the graph without changing an eigenpair. Repeated applications
of this procedure allows us to arrive to a structured graph (e.g. a tree or the
disjoint union of the nodal domains) for which nodal domain numbers can be
fully characterized. This characterization can be brought back to the original
graph by reversing the proposed procedure. This strategy allows us to find new
lower bounds as well as retrieve known upper bounds for the number of nodal
domains of any eigenfunction, as a function of the position of the corresponding
eigenvalue in the variational spectrum. In addition, our estimates, with p = 2,
provide an improvement on the known results for the linear case.

An important side result of our work is that we are able to prove that, if
the graph is a tree, the variational eigenvalues are all and only the eigenval-
ues of the p-Laplacian operator and that the k-th eigenfunction, if everywhere
nonzero, admits exactly k nodal domains. This result extends what is already
known in the particular cases of the path graph [86] and the star graph [3], and
is a generalization to the p-Laplacian of analogous findings known in the linear
case [5, 7]. This is of independent interest for its potential applications to non-
linear spectral graph sparsification, expander graphs, and graph clustering [84].
In particular, note that our findings, in combination with (3.1), show that the
k-th order isoperimetric constant of a tree coincides with the k-th variational
eigenvalue of the 1-Laplacian.

The results presented in this chapter has been collected in the paper: “Nodal
domain count for the generalized graph p-Laplacian”, published on the journal
“Applied and Computational Harmonic Analysis”, [31].
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3.2 Notation

Let G = (V,E) be a connected undirected graph, where V and E are the sets of
nodes and edges endowed with positive measures ν : V → R+ and µ : E → R+,
respectively. Given a function f : V → R, for any p > 1 consider the p-Laplacian
operator:

(∆pf)(u) :=
∑
v∼u

µuv|f(u)− f(v)|p−2(f(u)− f(v)) ∀u ∈ V ,

where v ∼ u denotes the presence of an edge between v and u. We highlight that
the above definition of the p-Laplacian operator differs from the one given in
the introduction (see Remark 2.2.1), here indeed we are neglecting the term ωp.
However, since in this chapter we are not interested in varying p, we observe that
this choice corresponds to redefining µ := µωp and thus does not affect the results.
On the other hand, this choice allows us to lighten the notation. Observe also
that, while the p-Laplacian can be studied also for p = 1 and p =∞, throughout
this chapter we will not consider this limit cases and we will always implicitly
assume that p ∈ (1,∞). Throughout the chapter, we will often use the function
φp(x) := |x|p−2x, so that ∆p can be compactly written as:

(∆pf)(u) :=
∑
v∼u

µuvφp (f(u)− f(v)) ∀u ∈ V .

In analogy to the linear case, where the generalized Laplacian is defined as
the Laplacian plus a diagonal matrix [87], we define the generalized p-Laplacian
(or p-Schrödinger) operator as

(Hpf)(u) := (∆pf)(u) + κu|f(u)|p−2f(u) ∀u ∈ V ,

where κu is a real coefficient. We say that f is an eigenfunction of Hp if there
exists λ ∈ R such that

(Hpf)(u) = λ νu|f(u)|p−2f(u) ∀u ∈ V . (3.2)

Similarly to the linear case, generalized p-Laplacians and their eigenfunctions are
directly connected with the solutions of Dirichlet problems on graphs for the p-
Laplacian operator. In fact, assuming to have a graph G = (V,E) with boundary
B, if f is a solution to the Dirichlet problem{

(∆pf)(u) = λ νu|f(u)|p−2f(u) ∀u ∈ V \B
f(u) = 0 ∀u ∈ B

,

we deduce that f is automatically also solution to the following eigenvalue equa-
tion for a generalized p-Laplacian, where the information about the boundary
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nodes has been condensed in the nodal weights (see (2.3)):∑
v∈VI

µuv|f(u)− f(v)|p−2(f(u)− f(v)) +
( ∑
v∈VB

µuv

)
|f(u)|p−2f(u)

= λ νu|f(u)|p−2f(u) .

In other words, the p-Laplacian Dirichlet problem with zero boundary conditions
is equivalent to the eigenvalue problem (3.2) for the generalized p-Laplacian Hp
with κu =

∑
v∈VB µuv.

Finally, the following definition introduces the concept of strong nodal do-
mains of G, corresponding to a given function f : V → R.

Definition 3.2.1 (Nodal domains). Consider a graph G = (V,E) and a function
f : V → R. A set of vertices A ⊆ V is a nodal domain induced by f if the
subgraph GA with vertices in A is a maximal connected subgraph of G where f is
nonzero and has constant sign. For convenience, in the following we will refer
interchangeably to both A and GA as the nodal domain induced by f .

Sometimes it is useful to distinguish between maximal subgraphs, where the
sign is strictly defined, and those where zero entries are allowed. In particular,
when zero entries of f are allowed in the definition above, the maximal subgraphs
are called weak nodal domains, whereas the maximal subgraphs with strictly
positive or strictly negative sign, as in Definition 3.2.1, are called strong nodal
domains. However, as in this work we are not interested in weak nodal domains,
throughout we shall simply use the term “nodal domain” to refer to the strong
nodal domains, as defined above.

3.3 Variational spectrum and main results

In this section we state our main results and will devote the remainder of the
chapter to their proof. We first recall the notion of variational spectrum. A set of
N variational eigenvalues of the generalized p-Laplacian on the graph G = (V,E)
can be defined via the Lusternik–Schnirelman theory and the min-max procedure
based on the Krasnoselskii genus, which we review below [63].

Definition 3.3.1 (Krasnoselksii genus). Let X be a Banach space and consider
the class A of closed symmetric subsets of X, A = {A ⊆ X| A closed , A =
−A} . For any A ∈ A consider the space of the Krasnoselskii test maps on A of
dimension k:

Λk(A) = {ϕ : A→ Rkcontinuous and such that ϕ(x) = −ϕ(−x)}.

The Krasnoselskii genus of A is the number γ(A) defined as

γ(A) =


inf{k ∈ N : ∃ϕ ∈ Λk(A) s.t. 0 6∈ ϕ(A)}
∞ if @ k as above

0 if A = ∅
.
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Our reference Banach space is the space of vertex states X = {f : V →
R} = RN and A denotes the family of all closed symmetric subsets of RN . Let
Sp = {f ∈ X : ‖f‖p = 1} be the p-unit sphere on X and for 1 ≤ k ≤ N consider
the family of closed symmetric subsets of Sp of genus greater than k

Fk(Sp) := {A ∈ A ∩ Sp | γ(A) ≥ k} .

In order to define the variational eigenvalues of Hp, we consider the Rayleigh
quotient functional

RHp(f) =

∑
uv∈E µuv|f(u)− f(v)|p +

∑
u∈V κu|f(u)|p∑

u∈V νu|f(u)|p
.

As RHp is positively scale invariant, i.e. RHp(αf) = RHp(f) for all α > 0, it is
not difficult to observe that the eigenvalues and eigenfunctions of the generalized
p-Laplacian operator are the critical values and the critical points of RHp on Sp.
The Lusternik-Schnirelman theory allows us to define a set of N variational such
critical values, via the following principle

λk = min
A∈Fk(Sp)

max
f∈A

RHp(f) . (3.3)

We emphasize that the Krasnoselskii genus is a homeomorphism-invariant
generalization to symmetric sets of the notion of dimension. In particular, if
A ∈ A is the intersection of any subspace of dimension k with Sp, then γ(A) = k.
Moreover, note that any A such that γ(A) ≥ k contains at least k mutually
orthogonal functions (see e.g. [83]). Therefore, the definition in (3.3) is a gener-
alization of the Courant-Fisher min-max characterization of the eigenvalues of a
symmetric matrix, as Fk(Sp) contains all subspaces of dimension greater than k.
However, while Courant-Fisher applies directly to the case p = 2, linear subspaces
alone are not sufficient to provide critical points in the general case p 6= 2.

3.3.1 Multiplicity and γ-multiplicity

Similarly to the case of symmetric matrices, we note that the variational eigen-
values {λk} are by definition an increasing sequence. This allows us to define a
notion of multiplicity for variational eigenvalues:

Definition 3.3.2. Let λk be a variational eigenvalue of Hp. If λk appears m
times in the sequence of the variational eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λk−1 < λk = · · · = λk+m−1 < λk+r ≤ · · · ≤ λN .

we say that λk has multiplicity m and we write multHp(λk) = m or simply
mult(λk) = m when no ambiguity may occur.

The notion of multiplicity defined above applies only to variational eigenval-
ues. In the case of a generic eigenvalue λ, we can use the Krasnoselskii genus to
extend the notion of geometric multiplicity to the nonlinear setting:
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Definition 3.3.3. Let λ be an eigenvalue of Hp. If

γ
(
{f ∈ Sp : Hp(f) = λν|f |p−2f}

)
= m

we say that λ has γ-multiplicity m and we write γ-multHp(λ) = m, or simply
γ-mult(λ) = m when no ambiguity may occur.

Finally, we define simple eigenvalues

Definition 3.3.4. We say that λ is a simple eigenvalue of Hp if λ has a unique
eigenfunction f ∈ Sp.

Notice that the notions of multiplicity and γ-multiplicity do not coincide and
an eigenvalue with γ-multiplicity equal to one is not necessarily simple. Viceversa,
if λ is a simple eigenvalue, then necessarily γ-mult(λ) = 1 and, if λ is variational
then also mult(λ) = 1. This result is a direct consequence of the next lemma,
whose proof follows directly from Lemma 5.6 and Proposition 5.3, Chapter II of
[85]:

Lemma 3.3.5. If λ is a variational eigenvalue, then

γ-mult(λ) ≥ mult(λ) .

Note that the inequality above implies, in particular, that, to any variational
eigenvalue λ, there correspond at least mult(λ) orthogonal eigenfunctions. Fi-
nally, we remark the following direct consequence of Lemma3.3.5

Corollary 3.3.6. Let Hp be the generalized p-Laplacian operator on a graph G
with N nodes. Let {λi}ni=1 be the variational eigenvalues of Hp counted without
multiplicity, i.e. λi 6= λj ∀i 6= j. Then

n∑
i=1

γ-mult(λi) ≥
n∑
i=1

mult(λi) = N ,

with the equality holding if and only if γ-mult(λi) = mult(λi), for all i = 1, . . . , n.

3.3.2 Main results

We present below our main results. Recalling the idea summarized in the intro-
duction, our strategy for counting nodal domains of generalized p-Laplacians is
to come up with algorithmic steps to remove vertices and edges from the original
graph in such a way that the original eigenpairs can be recovered from the eigen-
pairs of the new graph. Since the proofs of our main results require relatively
long arguments, we state the results here and devote the remainder of the chapter
to their proofs. In particular, after discussing in Sections 3.4 and 3.5 a number of
preliminary observations and results, which are of independent interest, Section
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3.6 will provide proofs for Theorems 3.3.7 and 3.3.8, which deal with the special
case of trees and forests, whereas Section 3.7 will present the proofs of Theorems
3.3.9 and 3.3.10, which address the case of general graphs.

Notice that, unlike linear operators, the variational spectrum does not cover
the entire spectrum of the generalized p-Laplacian and, in general, establishing
whether a certain eigenvalue is variational or not is still an open problem. For
example, Amghibech shows in [2] that the p-Laplacian on a complete graph ad-
mits more than just the variational eigenvalues. Another simple example for the
setting µ ≡ 1, ν ≡ 1 and κ ≡ 0 is provided by Figure 2.1 in the introduction,
while a more refined analysis of non-variational eigenvalues is recently provided
by Zhang in [90].

Our first main result shows that the situation is different for the special case
of trees and, more in general, forests. In fact, as for the standard linear case, we
prove that when G is a forest, the variational spectrum covers all the eigenvalues
of the generalized p-Laplacian. Here and in the following, we use the symbol t
to denote disjoint union.

Theorem 3.3.7. Let G = tki=1Ti be a forest, Hp a generalized p-Laplacian oper-
ator on G, p > 1, and Hp(Ti) the restriction of Hp to the i-th tree Ti. Then Hp
admits only variational eigenvalues and for any such eigenvalue λ it holds

multHp(λ) = γ-multHp(λ) =
k∑
i=1

multHp(Ti)(λ)

where multHp(Ti)(λ) = 0 if λ is not an eigenvalue of Hp(Ti).

In addition, we are able to prove the following theorem about the number of
nodal domains induced on a forest, which generalizes well-known results for the
case of the linear Laplacian [5, 7, 44].

Theorem 3.3.8. Let G = tmi=1Ti be a forest and consider the generalized p-
Laplacian operator Hp, p > 1, on G. If fk is an everywhere nonzero eigenfunction
associated to the eigenvalue λk = · · · = λk+m−1 of Hp, then fk changes sign on
exactly k− 1 edges. In other words, fk induces exactly k− 1 +m nodal domains.

Next, we address the case of general graphs. A tight upper bound for the
number of nodal domains of the eigenfunctions of the p-Laplacian on graphs is
provided in [86]. It is not difficult to observe that the same upper bound carries
over unchanged to the generalized p-Laplacian case. This is summarized in the
following result.

Theorem 3.3.9. Suppose that G is connected and λ1 < λ2 ≤ · · · ≤ λN are the
variational eigenvalues of Hp, p > 1. Let λ be an eigenvalue of Hp such that
λ < λk. Any eigenfunction associated to λ induces at most k− 1 nodal domains.
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Finally, the following theorem provides novel lower bounds for the number of
nodal domains of Hp in the case of general graphs. Morever, when tailored to the
case p = 2, it provides improved estimates of the nodal domain count that are
strictly tighter than the currently available results [6, 87]. We will discuss these
properties in more details below.

Theorem 3.3.10. Suppose that G is a connected graph with β = |E| − |V | + 1
independent loops, and let λ1 ≤ · · · ≤ λN be the variational eigenvalues of Hp,
p > 1. For a function f : V → R, let N (f) be the number of nodal domains
induced by f , l(f) the number of independent loops in G where f has constant

sign and {vi}z(f)
i=1 the nodes such that f(vi) = 0, with z(f) being the number of

such nodes. Let G′ = G \ {vi}z(f)
i=1 be the graph obtained by removing from G all

the nodes where f is zero as well as all the edges connected to those nodes. Let
c(f) be number of connected components of G′ and β′(f) = |E′| − |V ′|+ c(f) the
number of independent loops of the graph G′. Then:

P1. If f is an eigenfunction of Hp with eigenvalue λ such that λ > λk, then f
induces strictly more than k − β + l(f)− z(f) nodal domains. Precisely, it
holds N (f) ≥ k − β′(f) + l(f)− z(f) + c(f).

P2. If f is an eigenfunction of Hp corresponding to the variational eigenvalue
λk > λk−1 with multHp(λk) = m, then N (f) ≥ k+m−1−β′(f)+l(f)−z(f).

Before moving on, we would like to briefly comment on the above results and
provide a comparison with respect to lower bounds available for the linear case
p = 2. First, note that both P1 and P2 in Theorem 3.3.10 apply to variational
eigenvalues of Hp. However they are not corollaries of each other in the sense that
there are settings where P1 is more informative than P2 and vice-versa. Indeed,
if λk is a variational eigenvalue of multiplicity equal to one, then λk > λk−1 and
from P1 we obtain

N (f) ≥ k − β′(f) + l(f)− z(f) + (c(f)− 1) (3.4)

for any eigenfunction f of λk, which is strictly tighter than the lower bound in P2.
However, in P2, when λk has multiplicity m > 1, we have λk > λk−1 and the
two lower bounds in P1 and P2 cannot be compared a-priori. Instead, their
combination leads to

N (f) ≥ max
{(
k−β′(f)+l(f)−z(f)+(c(f)−1)

)
,
(
k−β′(f)+l(f)−z(f)+(m−1)

)}
(3.5)

for any eigenfunction f of λk. These observations allow us to draw new lower
bounds for the eigenvalues of H2, which are all variational. In fact, for a simple
eigenvalue λk of H2 with an everywhere nonzero eigenfunction f , it was proved
in [6] that N (f) ≥ k− β+ l(f). Point P1 of Theorem 3.3.10 improves this result
by allowing eigenfunctions with zero nodes via inequality (3.4). Note that this
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implies in particular N (f) ≥ k−β+l(f)−z(f), as c > 1 and β′(f) ≤ β. Similarly,
when λk is a multiple eigenvalue of multiplicity m and f is any corresponding
eigenfunction, it was proved in [87] for the linear case that N (f) ≥ k +m− 1−
β− z(f). Combining P1 and P2 allows us to improve this bound via the sharper
version given in (3.5), which further accounts for the number of independent loops
of f , the number of connected components of G′ and its number of independent
loops.

3.4 Properties of the p-Laplacian eigenfunctions

In this section we present a brief review of the main results about p-Laplacian
eigenpairs and discuss how to extend them to the generalized p-Laplacian case.
We start with the characterization of the first and the last variational eigenvalues.
Classical results available for the p-Laplacian equation in the continuous case
[67, 68], have been extended to the discrete case in [54, 86]. In the following we
present analogous results for the generalized p-Laplacian operator on graphs.

3.4.1 The smallest variational eigenvalue

We consider in this section the first (smallest) variational eigenvalue λ1 of Hp,
defined as:

λ1 = min
f∈Sp

RHp(f) . (3.6)

Since obviously RHp(f) ≥ RHp(|f |) for all f ∈ Sp, we can assume that the first
eigenfunction f1 is always greater than or equal to zero. On the other hand, if
f1(u) = 0 for some u ∈ V , then from the eigenvalue equation (3.2) we get

Hp(f1)(u) = −
∑
v∈V

(
µuv|f1(v)|p−2f1(v)

)
= 0 ,

which shows that f1 assumes both positive and negative values, contradicting
the previous assumption. We deduce that any eigenfunction corresponding to
λ1 must be everywhere strictly positive, i.e., f1(u) > 0 ∀u. This observation
generalizes a well-known result for the standard p-Laplacian (κu = 0) on a graph
with no boundary for which λ1 = 0 and any corresponding eigenfunction is pos-
itive and has constant values [2]. We formalize the characterization of the first
eigenfunction of the generalized p-Laplacian in the following theorem.

Theorem 3.4.1. Let λ1 be the first eigenvalue of Hp on a connected graph G as
in (3.6). Then

1. λ1 is simple and the corresponding eigenfunction f1 is strictly positive, i.e.,
f1(u) > 0 ∀u ∈ V ;

2. if g is an eigenfunction associated to an eigenvalue λ of Hp and g(u) >
0 ∀u ∈ V , then λ = λ1.
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Proof. We have already observed that any eigenfunction f of λ1 must be strictly
positive so it remains to prove that for any strictly positive eigefunction g as-
sociated to an eigenvalue λ, it holds g = f1 and λ = λ1. From the eigenvalue
equation, we have∑

v∼u
µuvφp(f1(u)− f1(v)) =

(
λ1νu − κu

)
f1(u)p−1 (3.7)∑

v∼u
µuvφp(g(u)− g(v)) =

(
λνu − κu

)
g(u)p−1 (3.8)

where φp is defined in Section 3.2. If we multiply both sides of (3.7) by the
function f1(u) − g(u)pf1(u)1−p and both sides of (3.8) by g(u) − f1(u)pg(u)1−p,
we obtain∑
v∼u

µuvφp
(
f1(u)−f1(v)

)(
f1(u)−g(u)pf1(u)1−p

)
=
(
λ1νu −κu

)(
f1(u)p −g(u)p

)
,∑

v∼u
µuvφp

(
g(u)− g(v)

)(
g(u)− f1(u)pg(u)1−p

)
=
(
λνu − κu

)(
g(u)p − f1(u)p

)
.

Summing the two equations first together and then over all the vertices, we obtain

S(f1, g) + S(g, f1) =
(
λ1 − λ

)∑
u∈V

νu

(
f1(u)p − g(u)p

)
(3.9)

with

S(f, g) =
∑
uv∈E

µuv

(
|g(u)− g(v)|p − φp(f(u)− f(v))

( g(u)p

f(u)p−1
− g(v)p

f(v)p−1

))
.

If we apply Lemma B.0.1 to the above sums first with α = f1(u)/f1(v) > 0 and
then with α = g(u)/g(v) > 0, we deduce that both S(f1, g) and S(g, f1) are
non-negative. Thus, if λ = λ1, in which case S(f1, g) = S(g, f1) = 0, again using
Lemma B.0.1, we obtain

g(u)

g(v)
=
f1(u)

f1(v)
,

which shows that, since the graph is connected, g is proportional to f1, implying
λ1 simple. This allows us to conclude that f1 and g are the same eigenfunction.
Assume now that there exists an eigenvalue λ > λ1 with the associated eigen-
function g being strictly positive. For any ε > 0, the function εg is also a strictly
positive eigenfunction associated with λ. Thus we can find a ε > 0 such that
f1(u) > εg(u) for all u ∈ V . This yields an absurd in (3.9) as the left hand side
term is strictly positive and the right hand side is strictly negative. Thus, every
eigenfunction that does not change sign has to be necessarily associated to the
first eigenvalue and this concludes the proof.
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The following corollary is a direct consequence of Theorem 3.4.1 which states
among other things that λ1 < λ2, and generalizes to Hp a well-known property
of the eigenfunctions of the standard p-Laplacian (see e.g. [86, Cor. 3.6])

Corollary 3.4.2. Any eigenvector associated to an eigenvalue different from λ1

has at least two nodal domains.

3.4.2 The largest variational eigenvalue

Opposite to the case of the first variational eigenvalue, the last variational eigen-
value realizes the maximum of the Rayleigh quotient:

λN = max
f∈Sp

RHp(f)

and, following [3], one can provide an upper bound to the magnitude of λN in
terms of µ, ν and the potential κ.

Proposition 3.4.3. The largest variational eigenvalue λN of the generalized p-
Laplacian operator Hp defined on a connected graph satisfies:

|λN | ≤ max
u∈V

(
2p−1

∑
v∼u

µuv
νu

+
|κu|
νu

)
.

Proof. Let fN be an eigenfunction associated to λN and let u0 be a node where
νfN assumes the maximal absolute value |νu0fN (u0)| = maxv∈V |νvfN (v)|. Then,
from the eigenvalue equation, we have

νu0 |λN ||fN (u0)|p−1 =
∣∣∣ ∑
v∼u0

µu0vφp
(
fN (u0)− fN (v)

)
+ κu0φp

(
fN (u0)

)∣∣∣
from which we obtain

|λN | ≤
∑
v∼u0

µu0v
νu0

2p−1 +
|κu0|
νu0

≤ max
u∈V

(
2p−1

∑
v∼u

µuv
νu

+
|κu|
νu

)
.

As done for the first eigenfunction, we provide here a characterization of the
sign pattern of the last (maximal) eigenfunction in the particular case of bipartite
graphs. Our result extends to the generalized p-Laplacian the analogous results
obtained in the linear case in [8, 72] and in the case of the p-Laplacian with
Dirichlet boundary conditions in [54].

Theorem 3.4.4. If G is a bipartite connected graph, then the largest eigenvalue
λN of Hp is simple and the corresponding unique eigenfunction fN is such that
fN (u)fN (v) < 0, for any u ∼ v.
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Proof. We start by proving that if f ∈ Sp is a maximizer of the Rayleigh quotient,
necessarily f(u)f(v) < 0, ∀u ∼ v. Indeed, since G is a bipartite graph we can
decompose V into two subsets V = V1 t V2, such that if u, v ∈ Vi, i = 1, 2, then
u 6∼ v. Thus, starting from f , we define f ′ such that f ′(u) = |f(u)|, ∀u ∈ V1 and
f ′(u) = −|f(u)|, ∀u ∈ V2. Now observe that

RHp(f) =
∑
uv∈E

µuv|f(u)− f(v)|p +
∑
u∈V

κu|f(u)|p

≤
∑
uv∈E

µuv
∣∣|f(u)|+ |f(v)|

∣∣p +
∑
u∈V

κu|f(u)|p = RHp(f ′)

where the equality holds if and only if f = ±f ′. Since f is a maximal eigenfunc-
tion, then f = f ′ up to a sign and thus f(u)f(v) ≤ 0, ∀u ∼ v. To conclude,
if f ′(u) = 0 then, for u ∈ V1 we have λnf

′(u) = Hp(f ′)(u) ≤ 0 and the equal-
ity holds only if f ′(v) = 0 for every v ∼ u. Since the graph is connected this
would lead to the absurd f ′ ≡ 0. Thus, we have that f ′(u) 6= 0, ∀u, implying
f(u)f(v) < 0, ∀u ∼ v.

We now prove uniqueness of the maximizer. Given two maximizers f, g ∈ Sp
such that

RHp(f) = λn = RHp(g) ,

up to a sign as above, f and g must be strictly greater than zero on V1 and strictly
smaller than zero on V2. Then, similarly to the proof of Theorem 3.4.1, we first
multiply the eigenvalue equations for f and g by f(u)− |g(u)|p/φp(f(u)) and
g(u)− |f(u)|p/φp(g(u)), respectively. Then, we sum the two equations together
and over all the nodes to obtain:∑

uv∈E
µuv

(
|g(u)− g(v)|p − φp

(
(f(u)− f(v)

)( |g(u)|p

φp
(
f(u)

) − |g(v)|p

φp
(
f(v)

)))+

∑
uv∈E

µuv

(
|f(u)− f(v)|p − φp

(
g(u)− g(v)

)( |f(u)|p

φp
(
g(u)

) − |f(v)|p

φp
(
g(v)

))) = 0

From Lemma B.0.1, both the sums above are smaller than zero unless f = g, thus
showing uniqueness of the maximizer and hence of the maximal eigenfunction
fN .

Corollary 3.4.5. Consider a graph G and the generalized p-Laplacian operator
Hp. Then, the graph G is bipartite and connected if and only if the maximal
eigenfunction fN of Hp induces exactly N nodal domains.

Proof. If the graph is bipartite, by Theorem 3.4.4 the N -th variational eigen-
function is unique and induces N nodal domains. Vice-versa, let fN be an
eigenfunction such that fN induces exactly N nodal domains. Then, consid-
ering V1 = {v|fN (v) > 0} and V2 = {v|fN (v) < 0}, we have V = V1 t V2 and
each node in V1 is connected only to nodes in V2, showing that the graph is
bipartite.
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3.4.3 Further properties of Hp and its eigenfunctions

Observe that, similarly to the linear Schrödinger operator and unlike the p-
Laplacian case, the eigenvalues of the generalized p-Laplacian depend on the
potential κu and may attain both positive and negative values. This follows
directly from the eigenvalue equation (3.2) for (λ1, f1):∑

v∼u

(
µuv|f1(u)− f1(v)|p−2(f1(u)− f1(v))

)
+ κuf1(u)p−1 = λ1 νuf1(u)p−1 .

In fact, summing over all the vertices u ∈ V yields

λ1 =

∑
u∈V κuf1(u)p−1∑
u∈V νuf1(u)p−1

=

∑
u∈V

κu
νu
νuf1(u)p−1∑

u∈V νuf1(u)p−1

which shows that λ1 is in the convex hull of the coefficients {κuνu } and, since κu
may be negative, Hp may not be positive definite.

The next lemmas extend to the generalized p-Laplacian the results proved
in [86] for the standard p-Laplacian, and provide partial orderings for the given
eigenpairs. In particular, Lemma 3.4.6 below follows directly by replacing the
standard p-Laplacian with the generalized operatorHp in the proof of [86, Lemma
3.8] and, for this reason, its proof is omitted.

Lemma 3.4.6. If f is an eigenfunction relative to an eigenvalue λ and A1, . . . , Am
are the nodal domains of f , consider f |Ai the function that is equal to f on Ai
and zero on V \Ai. Then

max
{
RHp(f) : f ∈ span{f |A1 , . . . , f |Am}

}
≤ λ .

Corollary 3.4.7. If f is an eigenfunction relative to an eigenvalue λ and f
induces k nodal domains, then λ ≥ λk.

Proof. If A1, . . . , Ak are the nodal domains of f , consider f |Ai the function that
is equal to f on Ai and zero on V \Ai. If π = span{f |A1 , . . . , f |Ak}, then notice
that the Krasnoselskii genus of A is k, i.e., γ(π) = k. Thus, from Lemma 3.4.6,
we have that λk = minA∈Fk maxf∈ARHp ≤ maxf∈πRHp(f) ≤ λ.

We conclude by noticing that, combining Corollaries 3.4.2 and 3.4.7, one
immediately obtains that, as for the standard p-Laplacian, the second variational
eigenvalue λ2 of the generalized p-Laplacian is the smallest eigenvalue larger than
λ1. Precisely, it holds:

Theorem 3.4.8.

λ2 = min{λ : λ > λ1 is an eigenvalue of Hp}
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3.5 Graph perturbations and Weyl’s-like inequalities

In this section we show how to modify the graph and, consequently, the associated
generalized p-Laplacian operator, maintaining eigenpairs. In particular, we will
show how to remove edges and nodes obtaining a new generalized p-Laplacian
operator on a simpler graph written as a “small” perturbation of the initial op-
erator Hp. For this perturbed operator, we will prove Weyl’s like inequalities
relating its variational eigenvalues to those of the starting operator.

3.5.1 Removing an edge

Consider a graph G and the generalized p-Laplacian operator Hp on G. Let λ and
f be an eigenvalue and a corresponding eigenfunction of Hp and let e0 = (u0, v0)
be an edge of the graph such that f(u0)f(v0) 6= 0. We want to define a new
generalized p-Laplacian operator H′p on the graph G′ := G \ e0, such that (f, λ)
is also an eigenpair of H′p.

Our strategy extends to the nonlinear case the work of [5], where the new
operator H′p is written as a rank-one variation of the starting Laplacian. To this
end, we write H′p = Hp + Ξp where

(Ξpg)(u) =


0 if u 6= u0, v0

µu0v0

(
φp(1− α)φp

(
g(u0)

)
− φp

(
g(u0)− g(v0)

))
if u = u0

µu0v0

(
φp(1− 1

α)φp
(
g(v0)

)
− φp

(
g(v0)− g(u0)

))
if u = v0

,

(3.10)
α := f(v0)/f(u0) and φp(x) := |x|p−2x as before. It can be easily proved that
H′p is obtained from Hp by considering the edge weights µ′ given by µ′uv = µuv if
(uv) 6= (u0v0) and µ′u0v0 = 0. Thus H′p can be seen as a generalized p-Laplacian
operator on a graph G′ that is obtained from G by deleting the edge e0 and that
acts on the nodes that are not adjacent to e0 exactly as Hp does. Observe that
H′p depends on the original eigenfunction f and a direct computation shows that
(λ, f) is still an eigenpair of the new operator.

Now we want to compare the variational eigenvalues ofH′p with the ones ofHp
with ordering purposes. We first write the Rayleigh quotient of the new operator
H′p as

RH′p(g) = RHp(g) +RΞp(g) ,

where, for g ∈ Sp:

RΞp(g)

µu0v0
=

(
|g(u0)|p

φp(f(u0))
− |g(v0)|p

φp(f(v0))

)
φp
(
f(u0)− f(v0)

)
−
(
g(u0)− g(v0)

)
φp

(
g(u0)− g(v0)

)
.
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A direct application of Lemma B.0.1, shows that RΞp is positive if f(v0)
f(u0) is negative

and negative if f(v0)
f(u0) is positive. Moreover, if we assume that g(v0) and g(u0) are

non zero, we can write Ξpg in the following equivalent way

(Ξpg)(u) =


0 if u 6= u0, v0

µu0v0φp
(
g(u0)

)(
φp(1− α)− φp(1− g(v0)

g(u0)

)
if u = u0

µu0v0φp
(
g(v0)

)(
φp(1− 1

α)− φp(1− g(u0)
g(v0) )

)
if u = v0

.

From this last equation we can easily see that, if g(v0) = αg(u0), then Ξpg =
RΞp(g) = 0.

To continue, we need the following lemma from [83], reported here without
proof, which provides a bound on the Krasnoselskii genus of the intersection of
different subsets.

Lemma 3.5.1. [83, Prop. 4.4] Let X be a Banach space and A the class of the
closed symmetric subsets of X. Given A ∈ A, consider a Karsnoselskii test map
ϕ ∈ Λk(A) with k < γ(A). Then, γ(ϕ−1(0)) ≥ γ(A)− k.

Using the fact that RΞp is zero on the hyperplane π = {g : g(u0)f(v0) −
g(v0)f(u0) = 0}, we obtain the following ordering of the k-th eigenvalue of Hp
within the spectrum of H′p.
Lemma 3.5.2. Assume that there exist an eigenfunction f of Hp and an edge
e0 = (u0, v0) such that f(u0), f(v0) 6= 0 and consider the operator H′p = Hp + Ξp,
where Ξp is defined as in (3.10). Let ηk be the variational eigenvalues of H′p and
λk those of Hp. The following inequalities hold:

� If f(v0)
f(u0) < 0, then ηk−1 ≤ λk ≤ ηk;

� If f(v0)
f(u0) > 0, then ηk ≤ λk ≤ ηk+1.

Proof. Let Fk be the Krasnoselskii family Fk = {A ⊆ A∩Sp|γ(A) ≥ k} as defined
in Section 3.3. Let Ak ∈ Fk be such that λk = maxf∈Ak RHp(f) , and let

π = {g : g(u0)f(v0)− g(v0)f(u0) = 0} .

Then Ak ∩ π = φ|−1
Ak

(0), and from Lemma 3.5.1, since φ|Ak ∈ Λ1(Ak), we have

γ(Ak ∩ π) ≥ γ(Ak)− 1 ≥ k − 1 .

Thus, Ak ∩ π ∈ Fk−1 and

ηk−1 = min
A∈Fk−1

max
f∈A
RH′p(f) ≤ max

f∈Ak∩π
RH′p(f) = max

f∈Ak∩π
RHp +RΞp ≤ λk .

This implies that ηk−1 ≤ λk. Moreover, since RΞp ≥ 0 we have that RH′p(f) ≥
RHp , which implies

λk = min
A∈Fk

max
f∈A
RHp(f) ≤ min

A∈Fk
max
f∈A
RH′p(f) = ηk ,

and this concludes the proof of the first inequality. The second inequality can be
proved analogously, by exchanging the roles of H′p and Hp.
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3.5.2 Removing a node

Consider a generalized p-Laplacian operator Hp defined on a graph G and let u0

be a node of G. We want to define a new operator H′p on the graph G′ := G \{u0}
that behaves on G′ like Hp behaves on the hyperplane {f : f(u0) = 0}. Note
that, in the linear case, this operation is equivalent to considering the principal
submatrix of the generalized Laplacian matrix obtained by removing the row and
the column relative to u0. If we remove a node u0, we have to remove also all
its incident edges from the graph G. Thus, on the graph G′ we can define the
generalized p-Laplacian:

H′p(f)(u) :=
∑
v∈V ′

µ′uvφp(f(u)− f(v)) + κ′uφp(f(u)) ,

where V ′ = V \ {u0}, µ′uv = µuv and κ′u = κu + µuu0 .

Remark 3.5.3. If f is an eigenfunction of the generalized p-Laplacian Hp on
G, with eigenvalue λ and such that f(u0) = 0, then the restriction f ′ of f on the
graph G′ = G \ {u0} is automatically an eigenfunction of H′p with eigenvalue λ.
Indeed, for each u 6= u0 we have

λνuφp(f(u)) =
∑
v 6=u0

µuvφp(f(u)−f(v))+µuu0φp(f(u))+κuφp(f(u)) = H′p(f)(u) .

Next, we provide an ordering for the variational eigenvalues of H′p, in com-
parison with those of Hp, as stated in the following lemma.

Lemma 3.5.4. Given a node u0 of G, let Hp and H′p be generalized p-Laplacian
operators defined on the graphs G and G′ = G \ {u0}, respectively, and let λk and
ηk be the corresponding variational eigenvalues. Then:

λk ≤ ηk ≤ λk+1 .

Proof. Let S ′p = {f : V ′ → R : ‖f‖p = 1} and consider A′k ∈ Fk(S ′p) such that

ηk = max
f∈A′k

RH′p(f) = max
f∈A′k

∑
(uv)∈E′

w′(uv)|f(u)− f(v)|p +
∑
u∈V ′

κ′u|f(u)|p ,

where E′ is the set of edges of G′. Consider now Ak, the immersion of A′k in
the N − 1 dimensional hyperplane π = {f : V → R : f(u0) = 0}, i.e. the set of
functions f that, when restricted to the nodes different from u0, belong to A′k
and are such that f(u0) = 0. Thus, Ak belongs to Fk(Sp) since Ak and A′k are
homeomorphic, and we obtain:

λk = min
A∈Fk

max
f∈A
RHp(f) ≤ max

f∈Ak
RHp(f) = max

f∈A′k
RH′p(f) = ηk .
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To prove the other inequality, consider Ak+1 ∈ Fk+1(Sp) such that

λk+1 = max
f∈Ak+1

RHp(f) .

Because of Lemma 3.5.1, we have that γ(Ak+1 ∩ {f : f(u0) = 0}) ≥ k, which
implies that Ak+1 ∩ {f : f(u0) = 0} ∈ Fk(Sp). Thus

ηk ≤ max
f∈A′k

RH′p(f) = max
f∈Ak+1∩π

RHp(f) ≤ max
f∈Ak+1

RHp(f) = λk+1 ,

where A′k is the set of functions f ′ : V ′ → R obtained as the restriction of
functions from Ak+1 ∩ π to G′, i.e., f ′ ∈ A′k if the lifting f : V → R defined as
f(u0) = 0 and f(u) = f ′(u), ∀u 6= u0, belongs to Ak+1 ∩ π.

This result can be generalized by induction to the case of n removed nodes,
obtaining the main theorem of this section.

Theorem 3.5.5. Let Hp be the generalized p-Laplacian operator defined on the
graph G and let G′ be the graph obtained from G by deleting the n nodes u1, u2, . . . , un.
Consider the generalized p-Laplacian operator on G′ defined as

H′p(u) :=
∑
v∈V ′

µ′uvφp(f(u)− f(v)) + κ′uφp(f(u)) ,

where V ′ = V \ {u1, . . . , un}, µ′uv = µuv and κ′u = κu +
∑n

i=1 µuui. Let {λk}
denote the variational eigenvalues of Hp and {ηk} those of H′p. Then

λk ≤ ηk ≤ λk+n ,

for any k ∈ {1, . . . , |V | − n}.

Proof. The proof follows directly from Lemma 3.5.4, removing recursively the
nodes u1, . . . , un.

3.6 Nodal domain count on trees

In this section we deal with the case in which T := G = (V,E) is a tree and we
provide proofs of the two Theorems 3.3.7 and 3.3.8. In particular, we will prove
that the eigenvalues of the generalized p-Laplacian on a tree are all and only
the variational ones. Moreover, again restricting ourselves to trees, we will show
that, if an eigenfunction of the k-th variational eigenvalue is everywhere non zero,
then it induces exactly k nodal domains. This generalizes to the nonlinear case
a well-known result for the linear Shrödinger operator.

In the following, given a tree T = (V,E), we assume a root r ∈ V is chosen
arbitrarily. This provides a partial ordering of the nodes so that a precise root is
automatically assigned to any subtree of T . In particular, we write v < u if v is



50 CHAPTER 3. NODAL DOMAINS

a descendant of u and v ≺ u if v is a direct child of u. Moreover, for each node
u ∈ V , we let Tu denote the subtree of T having u as root and formed by all the
descendants of u. On this subtree we can define a new operator Hup obtained as
follows: starting from T , we remove all the nodes that do not belong to Tu and,
for each deleted node, we modify the original operator Hp on T as in Section
3.5.2.

We also consider the operator Hũp , obtained by removing from Tu also the
root node u and by modifying Hup accordingly. This latter operator is defined on
a subforest, Tũ = tiTi, that has as many connected components as the number
of children of u. From the generalized Weyl’s inequalities of Section 3.5, we have
that

· · · ≤ λi(Hup) ≤ λi(Hũp) ≤ λi+1(Hup) ≤ · · ·

where λi(Hup) and λi(Hũp) denote the i-th variational eigenvalue of Hup and Hũp ,

respectively. Observe also that Hũp = ⊕
vi≺u
Hp(Ti), where Hp(Ti) is the generalized

p-Laplacian of Ti and vi ≺ u indicates that vi is a direct child of u.

3.6.1 Generating functions

Consider now an eigenfunction f of Hp with eigenvalue λ and assume that f 6= 0
everywhere. For each u different from the root r, we denote by uF the parent of
u in T . Then, the following quantity

g(u) :=
f(uF )

f(u)

is well defined for all u 6= r and we can rewrite the eigenvalue equationHp(f)(u) =
λνuφp(f(u)) as

µuuF φp(1− g(u)) = λνu − κu −
∑
v≺u

µuvφp

(
1− 1

g(v)

)
, (3.11)

for each u 6= r.

Now, if u is a leaf, Equation (3.11) allows us to write g(u) explicitly as a
function of λ:

gu(λ) = 1 + φ−1
p

(κu − νuλ
µuuF

)
. (3.12)

Similarly, for a generic node u different from the root, we can use (3.11) to
characterize g(u) implicitly as a function of the variable λ:

gu(λ) = 1 + φ−1
p

(
κu − νuλ+

∑
v≺u µuvφp

(
1− 1

gv(λ)

)
µuuF

)
. (3.13)

Finally, for the root u = r, we define
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gr(λ) := 1 + φ−1
p

(
κr − 1− λνr +

∑
v≺r

µrvφp

(
1− 1

gv(λ)

))
. (3.14)

Observe that, whenever gv(λ) = 0 with v ≺ u, the function gu is not well
defined in λ. In this case, we say that λ is a pole of gu. However, these disconti-
nuities do not affect the definitions of gw with u < w. Indeed, given a pole λ of
the function gv with v ≺ u, we can define, both in (3.13) and (3.14), 1/gv(λ) = 0.
The following Lemma 3.6.4 proves that such definition makes 1/gv continuous
in the poles of gv. We call the functions gu defined in (3.12), (3.13), (3.14) the
generating functions of the eigenfunction f . In fact, we will show in Section 3.6.2
that gu(λ) characterizes the ratio f(uF )/f(u) for any eigenfunction of λ such that
f(u) 6= 0. To this end, we need a number of preliminary results to unveil several
properties of the generating functions gu.

First, observe that when f 6= 0 everywhere, the claimed characterizing prop-
erty follows directly from the definition of gu. We highlight this statement in the
following remark.

Remark 3.6.1. If λ is an eigenvalue of Hu0p for some u0 ∈ V , and f is an
associated eigenfunction such that f(u) 6= 0, ∀u ∈ Tu0, then by the definition of
the functions gu(λ) one directly obtains that

f(uF )

f(u)
= gu(λ) 6= 0, ∀u ∈ T \ {u0} and gu0(λ) = 0 .

On the other hand, it is not difficult to observe that also the opposite property
holds, namely

Remark 3.6.2. Assume that λ is a zero of gu0(λ) and gu(λ) 6= 0, for all u < u0,
i.e., for all the descendents of u0 and not only the direct children. Then λ is
an eigenvalue of Hu0p and a corresponding eigenfunction f can be defined on the

subtree Tu0 by setting f(u0) = 1 and f(u) = f(uF )
gu(λ) , for all u < u0. Indeed, with

these definitions, (3.12) and (3.13) imply that λ and f are solutions of the system
of equations
∑
v≺u0

µu0vφp(f(u0)− f(v)) + µu0u0,fφp(f(u0)) + κuφp(f(u0)) = λνuφp(f(u0)) ,

∑
v∈G

µuvφp(f(u)− f(v)) + κuφp(f(u)) = λνuφp(f(u)) ∀u < u0 ,

which shows that λ and f are an eigenvalue and an eigenfunction of Hu0p .

We have observed already that it is possible to relate the eigenpairs of the
subtrees of T with the values of the functions gu(λ). Then, we show that it is
always possible to immerse the tree T in a larger tree for which the values of the
functions gu(λ) do not change.
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Remark 3.6.3. Let Hp be the generalized p-Laplacian operator defined on a tree

T = (V,E). We can always immerse T in a tree T̃ obtained adding a parent rF
to the root r. Next, we define the generalized p-Laplacian operator H̃p on T̃ by
setting µ̃uv = µuv, ∀(u, v) ∈ E, µ̃rrF = 1, κ̃u = κu, ∀u ∈ V \{r} and κ̃r = κr− 1.

Considering T̃rF and H̃rFp , the subtree and the operator obtained removing the

root rF from T̃ , it is straightforward to observe that T = T̃rF and Hp = H̃rFp .

Morover, working on T̃ and the associated operator H̃p, it is possible to introduce
the functions g̃u(λ) as in (3.12), (3.13), (3.14).

gu(λ) = g̃u(λ), ∀u ∈ T .

Thus, the generalized p-Laplacian eigenavalue problem on a tree can always be
studied as the generalized p-Laplacian eigenvalue problem on a subtree of a suit-
able larger tree.

Finally, the following lemma summarizes several relevant structural properties
of the functions gu(λ).

Lemma 3.6.4. For each u ∈ V , consider the function gu(λ) defined as in (3.12)–
(3.14). Then:

1. the poles of gu(λ) are the zeros of the functions {gv(λ)}v≺u;

2. gu is strictly decreasing between each two consecutive poles;

3. limλ→−∞ gu = +∞, limλ→+∞ gu = −∞, limλ→p− gu = −∞, limλ→p+ gu =
+∞ where p is any of the poles.

In particular, the number of zeros of the function gu is equal to the number of
distinct zeros of the functions {gv}v≺u plus one.

Proof. Let u ∈ V , if u is a leaf then the three properties follow immediately from
(3.12). Otherwise, assume by induction the thesis holds for each v ≺ u. From
(3.13), it immediately follows that the poles of gu are the zeros of {gv}v≺u. To

show that the function
∑

v≺u µuvφp

(
1− 1

gv(λ)

)
is strictly decreasing between any

couple of neighboring poles, observe that x 7→ φp(x) is strictly increasing and,
by induction, ∀v ≺ u, λ 7→ gv(λ) is strictly decreasing between any two of its
zeros (i.e. the poles of gu). Moreover, since λ 7→ −νuλ is decreasing and φ−1

p

increasing, we can conclude that the function λ 7→ gu(λ) is strictly decreasing
between any two of its poles. Finally, the limits of gu(λ) for λ→ p± in the third
statement follow as a consequence of the previous observations, while the limits
for λ→ ±∞ can be proved directly by the induction assumption.

3.6.2 Eigenfunction characterization via generating functions

The following result shows that the generating functions gu(λ) always characterize
the eigenfunctions of λ, generalizing what observed earlier in Remark 3.6.1.
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Theorem 3.6.5. Let (f, λ) be an eigenpair of a generalized p-Laplacian operator,
Hp, defined on a tree T = (V,E) with root r. For any node u ∈ V \ {r} such that
f(u) 6= 0, it holds

f(uF )

f(u)
= gu(λ) ,

where uF is the parent of u in T .

Proof. If f(v) 6= 0 ∀v ∈ T we have already observed in Remark 3.6.1 that the
thesis holds. Assume thus that there exist v1, . . . , vk ∈ V such that

f(vi) = 0, i = 1, . . . , k and f(u) 6= 0, ∀u 6∈ {vi}ki=1

and let T ′ = thi=1 Ti and H′p = ⊕hi=1Hp(Ti) be the forest and the corresponding
operator obtained from G removing the nodes v1, . . . , vk as in Section 3.5.2. From
Remark 3.5.3, ∀ i = 1, . . . , h, the pair (f |Ti , λ) is an eigenpair of Hp(Ti) such that
f |Ti(u) 6= 0, ∀u ∈ Ti. Denoting with ri the root of Ti and using (3.12),(3.13),
(3.14) and Remark 3.6.1, ∀ Ti, starting from the leaves, we can define functions
gTiu (λ) such that g

Ti
u (λ) =

f |Ti(uF )

f |Ti(u)
6= 0 ∀u ∈ Ti \ {ri}

gTiri (λ) = 0

We claim that ∀i = 1, . . . , h and ∀u ∈ Ti, then gu(λ) = gTiu (λ). The thesis follows
directly from this claim since

gu(λ) = gTiu (λ) =
f(uF )

f(u)
∀u ∈ Ti .

To prove the claim, first we introduce a partial ordering on {Ti}hi=1 and {vj}kj=1

so that Ti ≺ vj if vj is the parent of the root of Ti, while vj ≺ Ti if vj is
the child of some node of Ti. Then, if vj ≺ Ti there exists a subtree Tl ≺ vj .
In fact, considering the generalized p-Laplacian eigenvalue equation in vj with
ui = vjF ∈ Ti, we can write

µvjuiφp

(
f(ui)

)
+
∑
u≺ vj

µvjuφp

(
f(u)

)
= 0 .

Since f(ui) 6= 0, there exists a node ul ≺ vj such that f(ul) 6= 0 i.e. ul ∈ Tl ≺ vj .
Similarly, one observes that if f(vj) = 0, and vj is a leaf, then also f(vjF ) = 0.
Because of these two facts, there exists some Ti0 in the set {Ti}hi=1 such that a
node vj with vj ≺ Ti0 cannot exist. In addition, the leaves of Ti0 are all and only
the leaves of T that are connected to Ti0 . It is then easy to observe that, for
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any such Ti0 , by definition, g
Ti0
u (λ) = gu(λ) ∀u ∈ Ti0 , u 6= ri0 . Moreover, when

u = ri0 ≺ vj we have

g
Ti0
ri0

(λ) : = 1 + φ−1
p

(
κ′ri0
− 1− λνri0 +

∑
v≺r1

µri0vφp

(
1− 1

gv(λ)

))
= 0 , (3.15)

which implies

κri0 + µri0vj − λνri0 +
∑
v≺r1

µri0vφp

(
1− 1

gv(λ)

)
= 0 , (3.16)

where, since vj is one of the removed nodes, we have used the expression κ′ri0
=

κri0 + µri0vj that we obtain when moving from Hp to H′p as in Section 3.5.2.
Thus, (3.16) implies

gri0 (λ) = 1 + φ−1
p

(
κri0 − νri0λ0 +

∑
v≺ri0

µri0vφp

(
1− 1

gv(λ)

)
µri0vj

)

= 1 + φ−1
p

(
−µri0vj
µri0vj

)
= 0 ,

(3.17)

that is gri0 (λ) = g
Ti0
ri0

(λ) = 0 and λ is a pole of gvj , due to Lemma 3.6.4.
Now, given a general subtree Ti0 , w.l.o.g. we can assume that the claim is

true for any Ti ≺ vj ≺ Ti0 . Then if u is a leaf of Ti0 that is also a leaf of T , clearly

g
Ti0
u (λ) = gu(λ) .

Consider now the case of a leaf, u, of Ti0 that is not a leaf of T . Since u is not
a leaf of T , by construction, there exist some node vj ≺ u and some subtree
Ti ≺ v ≺ Ti0 . For any such vj , by the inductive assumption, λ has to be a pole
of the corresponding gvj , leading to the following equation:

gu(λ) = 1 + φ−1
p

(
κu − νuλ+

∑
vj≺u µuvjφp

(
1− 1

gvj (λ)

)
µuuF

)

= 1 + φ−1
p

(
κu − νuλ+

∑
vi≺u µuviφp(1)

µuuF

)

= 1 + φ−1
p

(
κ′u − νuλ
µuuF

)
= gTiu (λ) .

Here we have used as before the fact κ′u = κu +
∑

vj≺u µuvj , see Section 3.5.2.
The case of u a generic node of Ti0 can be proved analogously assuming,

w.l.o.g., the claim true for any w < u, w ∈ Ti0 . Indeed, recalling κ′u = κu +
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∑
vj≺u µuvj and that, by the inductive assumption, λ is a pole of gvj for any

vj ≺ u, we get

gu(λ) = 1 + φ−1
p

(
µ−1
uuF

(
κu − νuλ0 +

∑
vj≺u

µuvj +
∑
w≺u
w∈Ti0

µuwφp

(
1− 1

gw(λ)

)))

= 1 + φ−1
p

(
µ−1
uuF

(
κ′u − νuλ+

∑
w≺u
w∈Ti0

µuwφp

(
1− 1

gw(λ)

)))
= gTiu (λ)

The case of u = ri0 can be finally dealt with as done in (3.15)(3.17), concluding
the proof.

Corollary 3.6.6. Let (f, λ) be an eigenpair of Hp, then, if gu(λ) = 0, necessarily
f(uF ) = 0.

Proof. First, notice that Remark 3.6.3 allows us to assume that, given any u ∈
T \ r, also the node uF has a parent, since we can always think of T as immersed
in a larger tree with a suitably defined generalized p-Laplacian. Assume by
contradiction that f(uF ) 6= 0, then by Theorem 3.6.5 we would have that

f(uF F )

f(uF )
= guF (λ) .

At the same time, Lemma 3.6.4 implies that λ is a pole of the function guF ,
leading to a contradiction.

3.6.3 Multiplicity via generating functions

Theorem 3.6.5 shows that given any eigenpair (f, λ), the generating functions
{gu(λ)}u characterize the value of f up to a scaling factor. In this section we
observe that counting the number of generating functions that vanishes on the
eigenvalue λ provides several insights about its multiplicity.

First, we obtain the following sufficient result for simple eigenvalues, which
directly follows from Theorem 3.6.5.

Proposition 3.6.7. Let Hp be the generalized p-Laplacian operator defined on a
tree T = (V,E), and let u0 ∈ V . If gu(λ) 6= 0, ∀u < u0 and gu0(λ) = 0, then λ is
a simple eigenvalue of Hu0p associated to an everywhere nonzero eigenfunction.

Proof. We have alredy observed in Remark 3.6.2 that such a non zero eigenfunc-
tion f exists. Assume by absurd that there exist also an eigenfunction f∗ of Hu0p
associated to λ with f∗ 6= cf , ∀c ∈ R. Then, due to Theorem 3.6.5, there has to
exist a node v such that f∗(v) = 0. Since f∗(v) = 0 and for any node u such that
f∗(u) 6= 0 it holds that f∗(uF ) = f∗(u)gu(λ) 6= 0, then necessarily we get that
f∗(u) = 0, ∀u < v. On the other hand, by the generalized p-Laplacian eigenvalue
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equation, if f∗(v) = 0 and f∗(u) = 0 ∀u ≺ v, then we have in addition that
f∗(uF ) = 0. Thus, if f∗ is zero in some node then necessarily f∗ = 0 everywhere,
yielding a contradiction.

Next, in the following lemma, we establish a more general condition for λ to be
an eigenvalue, counted with its γ-multiplicity, in terms of zeros of the generating
functions gu(λ).

Lemma 3.6.8. Let Hp be a generalized p-Laplacian on a forest G and, for any u ∈
V and any tree of the forest, let gu(λ) be the function defined in (3.12)(3.13)(3.14).
Given λ, assume there exist v1, . . . , vk ∈ V such that

gvi(λ) = 0 ∀i = 1, . . . , k .

Let {uj}hj=1 be the set of the parents of the nodes {vi}ki=1, where roots do not have
parents. Then, λ is an eigenvalue of Hp if and only if k − h > 0, and

γ-mult(λ) = k − h .

Proof. From Theorem 3.6.5 and Corollary 3.6.6 we know that if λ is an eigenvalue,
any corresponding eigenfunction f is such that

f(uj) = 0 and
f(wF )

f(w)
= gw(λ) if f(w) 6= 0 .

Following the strategy of Section 3.5.2, remove the nodes {uj}hj=1 from the forest
G ending with a forest G′ and an associated operator H′p of the form

G′ =
n
t
l=1
Tl H′p =

n
⊕
l=1
Hp(Tl) .

for some n ≥ 1. Then, from Remark 3.5.3, any eigenfunction of Hp with eigen-
value λ corresponds to an eigenfunction of H′p. In particular, given any subtree
Tl and corresponding operator Hp(Tl) it is easy to observe that

gTlu (λ) = gu(λ) u ∈ Tl ,

where gTlu are the generating functions defined starting from Hp(Tl) via equations
(3.12),(3.13),(3.14) (see the proof of Theorem 3.6.5 for a similar construction).
Among the {Tl}nl=1, let {T ′i }ki=1 be the subtrees with root ri = vi. Due to Propo-
sition 3.6.7, for any such T ′i and corresponding Hp(T ′i ) there exists a unique
everywhere nonzero eigenfunction f ′i of Hp(T ′i ) with eigenvalue λ whose ratios
f ′i(wF )/f ′i(w) are induced by the functions gw(λ), ∀w ∈ T ′i . Moreover, notice
that for any f eigenfunction of Hp with eigenvalue λ, since f is also an eigen-
function of H′p, we have f |T ′i = αif

′
i , for some αi ∈ R.

On the other hand, on the subtrees {T ′′j }
n−k
j=1 whose root rj is such that rj 6= vi

∀i = 1, . . . , k, since gw(λ) 6= 0, ∀w ∈ T ′′j , any eigenfunction associated to λ of
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Hp has to be such that f |T ′′j (w) = 0 because of Theorem 3.6.5. Indeed, suppose

by contradiction that f is an eigenfunction associated to λ such that f |T ′′j 6= 0,

then f should be an eigenfunction of Hp(T ′′j ) with same eigenvalue λ. However,
gw(λ) 6= 0, ∀w ∈ T ′′j implies that f |T ′′j (w) 6= 0, ∀w ∈ T ′′j and thus, by Remark

3.6.1, we would have that grj (λ) = 0, which is absurd.
Now, let fi be the immersion of f ′i into RN such that fi|T ′i = f ′i and fi(w) = 0

for all w /∈ T ′i . Define Ω := span{fi}ki=1 the k-dimensional linear space spanned
by the fi. The observations above together with Corollary 3.6.6 imply that if f is
an eigenfunction of Hp with eigenvalue λ, then f ∈ Ω. Starting from Ω, we want
to recover all the possible eigenfunctions of Hp relative to λ. To this end, we
select among the functions f ∈ Ω all those functions that satisfy the eigenvalue
equation for Hp also in the removed points {uj}hj=1. For any node uj , let wi,j be
the node in the neighborhood of uj such that wi,j ∈ T ′i . Then, the Hp eigenvalue
equation on a node uj reads

Θj(f) :=
∑
i

µwi,jujφp(βwi,j )φp(fi(ri))

=
∑
i

µwi,jujφp(fi(wi,j)) =
(
λνuj − κuj

)
φp(f(uj) = 0 ∀j = 1, . . . , h

where we have used the fact that on any T ′i the ratios between the components
of fi are fixed by the functions gw(λ), w ∈ T ′i and thus, for every w ∈ T ′i there
exists βw 6= 0 such that fi(w) = βwfi(ri).

We continue by defining the set A = {f |Θj(f) = 0, ∀ j = 1, . . . , h}. It is
clear that f is an eigenfunction of Hp relative to λ if and only if f ∈ A ∩ Ω.
Thus, let us now study the genus of such a set. Observe that γ(A\{0}) = N −h,
since A is diffeomorphic to a linear subspace of dimension N − h through the
homeomorphism of RN given by xi 7→ φp(xi), i = 1, . . . , N (the set of equations
{Θj(f) = 0} is transformed into a set of h linearly independent equation by the
change of variable yi := φp(fi(ri))). Thus, if k > h then the intersection is always
nonempty because of Lemma 3.5.1 and in particular

γ(A ∩ Ω \ {0}) ≥ γ(A \ {0})− (N − k) = N − h−N + k = k − h .

Now we claim that it is possible to define a function ψ̃ in the set of Krasnosel-
skii test maps Λk−h(Ω ∩ A \ {0}) such that 0 6∈ ψ̃(Ω ∩ A \ {0}). This implies
γ(Ω ∩ A \ {0}) ≤ k− h, from which the statement follows. To construct such ψ̃,
consider the function ψ ∈ Λk(Ω) given by:

f =
k∑
i=1

αifi 7→ ψ(f) :=
(
f(r1) , . . . , f(rk)

)
=
(
α1f1(r1), . . . , αkfk(rk)

)
.

It is easy to verify that 0 6∈ ψ(Ω \ {0}), as fi(ri) 6= 0, ∀i. Since we want to define
the function ψ̃ on A ∩ Ω, we define ψ̃ as the restriction to Rk−h of ψ. To define
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such a restriction, note that among the {T ′i } it is possible to select h distinct
subtrees {T ′il}

h
l=1 such that any node uj is incident to some T ′il . As before, let

wil,j be the neighbor of uj in T ′il . Then consider the function ψ̃ : Ω ∩ A→ Rk−h,
entrywise defined as(

ψ̃(f)
)
i

=
(
ψ(f)

)
i

i 6= il, l = 1, . . . , h .

It is easily proved that ψ̃ ∈ Λk−h(Ω ∩ A). Finally, we show that if ψ̃(f) = 0, for
some f ∈ Ω ∩ A, then necessarily f = 0. To this end, write f =

∑k
i=1 αifi. If

ψ̃(f) = 0, then (up to a reordering of the indices of the chosen subtrees)

αifi(ri) = 0 ∀i 6= il, l = 1 . . . , h .

Thus, f =
∑h

l=1 αilfil . Then, observe that, since f ∈ A, we have

Θj(f) =
∑
l

µwil,jujφp(αil)φp(βwil,j )φp(fil(ril)) = 0 ∀j = 1, . . . , h . (3.18)

Consider a node uj0 that is incident only to one of the subtrees {T ′il}
h
l=1, say T ′ih ,

observe that such a node necessarily exists because there are no loops in a forest.
Then (3.18) for j = j0 reads (up to a reordering of the indices)

Θj0(f) = µuj0wih,j0φp(αih)φp(βwih )φp(fih(rih)) = 0 .

This means that αih = 0, i.e. f =
∑h−1

l=1 αilfil . Repeating this procedure for
all the h nodes uj , we obtain that all the αi have to be zero. In particular, this
implies that, if k = h, then all the αi are zero and thus A ∩Ω = {0} i.e. λ is not
an eigenvalue, thus concluding the proof.

To conclude this preparatory section needed to tackle the proofs of Theorems
3.3.7 and 3.3.8, we show in the next result how the eigenvalues and the corre-
sponding γ-multiplicities change when moving from Hup to Hũp (recall that Hup is
the operator obtained by removing all the nodes different from u and its descen-
dants while Hũp is the one obtained by removing also the node u). We state this
result as a corollary of the previous lemma, recalling that λ is not an eigenvalue
if and only if γ-mult(λ) = 0.

Corollary 3.6.9.

1. Let λ be such that gu(λ) = 0, then λ is an eigenvalue of Hup and γ-multHup (λ) =
γ-multHũp (λ) + 1.

2. Let λ be an eigenvalue of Hũp such that gw(λ) 6= 0 for all w ≺ u and gu(λ) 6=
0, then λ is an eigenvalue of Hup such that γ-multHup (λ) = γ-multHũp (λ).

3. Let λ be an eigenvalue of Hũp and assume there exist w1, . . . , wh ≺ u with
gwi(λ) = 0, then γ-multHup (λ) = γ-multHũp (λ)− 1.
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Proof. From Lemma 3.6.8 we know that λ is an eigenvalue if and only if k−h > 0,
where k is the number of nodes v such that gv(λ) = 0 and h is the number of
their parents. In particular, we have that γ-multHp(λ) = k−h. To prove point 1,
we observe that, since u is the root of the subtree Tu, u has no parents and thus
necessarily h < k. Moreover, by Lemma 3.6.4, gv(λ) 6= 0, for all v ≺ u implying
that h does not change when moving from Tũ to Tu, while k increases by one.
This implies the statement. To prove point 2, it is enough to observe that the
number k − h does not change going from Tũ to Tu. Finally, in order to prove
point 3 observe that in this case, when moving from Tũ to Tu, k does not change
while h increases by one.

3.6.4 Proofs of Theorems 3.3.7 and 3.3.8

We are finally ready to prove the main Theorems 3.3.7 and 3.3.8.

Proof of Theorem 3.3.7. We first observe that if the thesis holds for trees, then
it holds as well for forests. To prove this fact, we assume that all the eigenvalues
on trees are variational and the multiplicity matches the γ-multiplicity. Then,
we note that if G = tiTi, with Ti = (Vi, Ei) trees, then Hp = ⊕iHp(Ti), where
Hp(Ti) is a suitable generalized p-Laplacian operator defined on Ti, and hence
σ(Hp) = ∪iσ(Hp(Ti)). In other words, the spectrum of Hp is the union of the
spectra of the operators defined on the trees forming G. Next, we observe that,
by the same assumption on trees, σ(Hp(Ti)) is formed only by variational eigen-
values and thus it contains at most |Vi| distinct elements, implying that σ(Hp) is
formed by at most N different eigenvalues. Now, let λ ∈ σ(Hp). By the previous
assumption, λ is a variational eigenvalue of Hp(Ti), for some i ∈ {1, . . . , k} and
multHp(Ti)(λ) = γ-multHp(Ti)(λ) = mi(λ). Then, for any i ∈ {1, . . . , k} there

exists ϕi ∈ Λmi(λ)(A
i
λ) s.t. 0 6∈ ϕi(Aiλ ∩ Sp), where

Aiλ = {f : Vi → R |Hp(Ti)(f) = λ|f |p−2f} .

Let
Aλ = {f : V → R |Hp(f) = λ|f |p−2f} .

Then, we can consider the extensions of the functions ϕi to Aλ and, given m(λ) =∑
imi(λ), define the function ϕλ ∈ Λm(λ)(Aλ) as a linear combination of ϕi

such that 0 /∈ ϕλ(Aλ ∩ Sp). This implies that γ-multHp(λ) ≤ m(λ). Noting
that N =

∑
λ

∑
imi(λ), we have

∑
λ γ-multHp(λ) ≤ N . Thus, by Corollary

3.3.6 we conclude that all the eigenvalues of Hp are variational and multHp(λ) =

γ-multHp(λ) =
∑k

i=1 multHp(Ti)(λ).
Now, we address the proof of the assumption and consider the case in which

G = T is a tree. The proof proceeds by induction on the number of nodes N .
If N = 1, from (3.12) and Proposition 3.6.7, we can conclude that there exists
only one eigenvalue, λ1, with γ-multHp(λ1) = multHp(λ1) = 1. Assume now that
N > 1 and that the theorem holds up to N − 1. First note that the inductive



60 CHAPTER 3. NODAL DOMAINS

assumption and the result derived in the previous paragraph imply that the thesis
holds for any forest composed by trees, each one, with less than N nodes. Then,
fix a root r for T and consider Tr̃ = tni=1Ti and Hr̃p = ⊕iHp(Ti). Proceed by

dividing the eigenvalues of Hr̃p into two sets {ςj}kj=1 and {ξl}hl=1, where each ςj is
a zero of some gv for some v ≺ r, whereas ξl is not. By the inductive assumption,
we have that

k∑
j=1

γ-multHr̃p(ςj) +
h∑
l=1

γ-multHr̃p(ξl) = N − 1 .

Now, let us divide the eigenvalues of Hp in a similar way. Let {ηi}k+1
i=1 be the

eigenvalues that are zeros of gr. By Lemma 3.6.4 we know that they are exactly
k+ 1, where k is the number of eigenvalues of Hr̃p that are zeros of some function
gv with v ≺ r By Lemma 3.6.4 we know that they are exactly k+1. Lemma 3.6.8
ensures that all the other eigenvalues of Hp are also eigenvalues of Hr̃p and, in

particular, they must be either in the set {ςj}kj=1 or in the set {ξ}hl=1. Moreover,

from Lemma3.6.4 we deduce that {ςj}kj=1 ∩ {ηi}
k+1
i=1 = ∅ while {ξl}hl=1 ∩ {ηi}

k+1
i=1

could be non empty. In particular, let us set

{ξ}h1l=1 = {ξl}hl=1 \ {ξl}hl=1 ∩ {ηi}k+1
i=1 .

Then,

k+1∑
i=1

γ-multHp(ηi) +
k∑
j=1

γ-multHp(ςj) +

h1∑
l=1

γ-multHp(ξl)

=
k+1∑
i=1

(
γ-multHr̃p(ηi) + 1

)
+

k∑
j=1

(
γ-multHr̃p(ςj)− 1

)
+

h1∑
l=1

γ-multHr̃p(ξl)

=k + 1− k +
k∑
j=1

γ-multHr̃p(ςj) +
h∑
l=1

γ-multHr̃p(ξl) = N − 1 + 1 = N

where we have used Corollary 3.6.9 and the fact that {ξl}hl=1 ⊆ ({ξl}h1l=1∪{ηi}
k+1
i=1 ),

with γ-multHr̃p(ηi) = 0 if ηi 6∈ {ξl}hl=1. Together with Corollary3.3.6, the latter

equality concludes the proof.

Before moving on to the proof of Theorem 3.3.8, several observations are in
order.

Remark 3.6.10. Suppose G = tmi=1Ti is a forest and let Hp = ⊕mi=1Hp(Ti) as
before. If we consider an eigenfunction fk of Hp that is everywhere nonzero The-
orem 3.3.7 ensures that the corresponding eigenvalue λk has multiplicity exactly
equal to m. Indeed, necessarily fk|Ti is an eigenfunction of Hp(Ti) and, since it is
everywhere non-zero, its corresponding eigenvalue is simple because of Proposition
3.6.7.
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In addition, observe that e0 = (u0, v0) is an edge of some Ti such that
fk(u0)fk(v0) < 0 if and only if e0 separates two distinct nodal domains. This
means that the number of nodal domains induced by fk on Ti is equal to the
number of edges where fk|Ti changes sign, plus one. Thus the total number of
nodal domains induced by fk on G is equal to m plus the total number of edges
where fk changes sign. Combining all these observations, we eventually obtain
the following proof.

Proof of Theorem 3.3.8. First we note that, by the hypotheses and Remark 3.6.10,
the eigenvalue λk = λk+m−1, which corresponds to an everywhere nonzero eigen-
function, has multiplicity exactly equal to m, i.e.:

λk−1 < λk = · · · = λk+m−1 < λk+m .

Now we prove by induction on k that, if fk is an eigenfunction everywhere nonzero
associated to the multiple eigenvalue λk = · · · = λk+m−1, then fk changes sign on
exactly k − 1 edges, implying that fk induces exactly k − 1 +m nodal domains.
If k = 1, f1|Ti is an eigenfunction related to the first eigenvalue of each operator
Hp(Ti), i = 1, . . . ,m. Thus, as a consequence of Theorem 3.4.1, f1 is strictly pos-
itive or strictly negative on every tree Ti and overall it induces m nodal domains.
Moreover, it does not change sign on any edge. Now we assume the statement to
be true for every h < k and prove it for h = k. If k > 1, then fk cannot be a first
eigenfunction on every tree Ti. Then, by Theorem 3.4.1, there exists at least one
edge e0 = (u0, v0) in some Ti0 such that fk(u0)fk(v0) < 0. Thus, we operate as
in Section 3.5.1 and remove edge e0 to disconnect Ti0 into the two subtrees T ′i0
and T ′′i0 , so that the reduced graph G′ is the union of the m+ 1 subtrees:

G′ =
( m
t
i=1
i 6=i0

Ti
)
t T ′i0 t T

′′
i0 .

Similarly, the new operator H′p, obtained after removing e0, can be decomposed
as:

H′p =
( m
⊕
i=1
i 6=i0

Hp(Ti)
)
⊕H′p(T ′i0)⊕H′p(T ′′i0 ) .

Now we can compare the eigenvalues {ηk} of H′p with the ones {λk} of Hp. From
Lemma 3.5.2 we have:

ηk−1 ≤ λk ≤ ηk ≤ · · · ≤ λk+m−1 ≤ ηk+m−1 ≤ λk+m .

Due to Remark 3.6.10 and Theorem 3.3.7, the multiplicity of ηk has to be exactly
m+ 1 and, by assumption, λk−1 < λk = · · · = λk+m−1 < λk+m, i.e. ηk−1 = · · · =
ηk+m−1. Moreover, by the inductive assumption, fk changes sign on k − 1 edges
of the graph G′. Thus, on the original graph G, fk changes sign k − 1 + 1 = k
times, concluding the proof.
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3.7 Nodal domain count on generic graphs

In this final section we prove Theorems 3.3.9 and 3.3.10, providing upper and
lower bounds for the number of nodal domains of f and for the number of edges
where f changes sign. To this end, we need first a few preliminary results.

Consider an eigenpair (f, λ) of the generalized p-Laplacian operator Hp on a
generic graph G. Suppose we remove from G an edge e0 = (u0, v0), obtaining the
graph G′ = G \ {e0}. Modifying accordingly the generalized p-Laplacian Hp as in
Section 3.5.1, the new operator H′p on G′ is such that the pair (f, λ), restricted
to G′, remains an eigenpair of H′p.

Let us denote by ∆l(e0, f) the variation of the number of independent loops
of constant sign, namely the difference between the number of loops of constant
sign of f in G′ minus the number of those in G. Similarly, let ∆N (e0, f) be the
variation between the number of nodal domains induced by f on G′ and on G.
We can characterize the difference ∆N (e0, f)−∆l(e0, f) in terms of signe0(f) =
f(u0)f(v0), i.e. whether or not f changes sign over e0. In fact, note that, by
definition, if signe0(f) < 0, then neither the number of loops of constant sign nor
the number of nodal domains changes. If, instead, signe0(f) > 0, then either the
number of independent loops decreases by one (∆(e0, f) = −1) or the number of
nodal domains increases by one (∆(e0, f) = +1). Overall, we have

∆N (e0, f)−∆l(e0, f) =

{
0 signe0(f) < 0

1 signe0(f) > 0
. (3.19)

Based on the above formula, the following lemma provides a relation between the
number of nodal domains induced by an eigenfunction and the number of edges
where the sign changes. It is a generalization of a result from [4], which was
proved for linear Laplacians and for the case of everywhere nonzero functions.

Lemma 3.7.1. Consider f : V → R, a function on the graph G. Denote by ζ(f)
the number of edges where f changes sign, by z(f) he number of nodes where f
is zero, by l(f) the number of independent loops in G where f has constant sign,
and by |Ez| the number of edges incident to the zero nodes. Then

ζ(f) = |E| − |Ez|+ z(f)− |V |+N (f)− l(f) ≤ |E| − |V |+N (f)− l(f) .

Proof. Operating as in Section 3.5.2, we start by removing from G all the z(f)
nodes where f is zero, thus obtaining a new graph G′ with the corresponding new
generalized p-Laplacian H′p. Since |Ez| is the number of edges incident to the
zero nodes that have been removed, the number of edges in G′ can be estimated
as |E′| = |E| − |Ez| ≤ |E| − z(f). Moreover, the edges incident to the zero nodes
neither connect different nodal domains nor belong to constant sign loops. Hence,
the restriction of f to G′ remains an eigenfunction of H′p having the same number
of nodal domains and the same number of constant sign loops as f .
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Next, we proceed by removing from G′ all the edges e1, . . . , eτ(f) where f
does not change sign (i.e., such that signei(f) > 0) and modify consequently the
operator H′p as in Section 3.5.1. We obtain a new graph G′′ and the corresponding
new operatorH′′p in such a way that (λ, f) remains an eigenpair. Since the number
of edges where f does not change sign is τ(f) = |E′| − ζ(f), thanks to (3.19), we
have that

h∑
i=1

(
∆N (ei, f)−∆l(ei, f)

)
= |E′| − ζ(f) ≤ |E| − z(f)− ζ(f) . (3.20)

In the final graph G′′, only edges connecting nodes of different sign are present,
so that each node is a nodal domain of f . As a consequence, there are a total
|V | − z nodal domains of f and no loops with constant sign. Then:

h∑
i=1

∆N (ei, f) = |V | − z(f)−N (f) and
h∑
i=1

∆l(ei, f) = −l(f) ,

and, by (3.19), τ(f) =
∑h

i=1 ∆N (ei, f)−∆ l(ei, f) = |V | − z(f)−N (f) + l(f).
Hence, using (3.20) and the fact that τ(f) = |E| − |Ez| − ζ(f), we obtain

ζ(f) = |E| − |Ez|+ z(f)− |V |+N (f)− l(f) ≤ |E| − |V |+N (f)− l(f)

thus concluding the proof.

The above lemma allows us to prove our third and fourth main results given
in Theorems 3.3.9 and 3.3.10, which provide new upper and lower bounds for the
number of nodal domains of the eigenfunctions of the generalized p-Laplacian,
extending and generalizing previous results for the standard p-Laplacian and
the linear Schrödinger operators [5, 86, 87]. As the proof of the two claims in
Theorem 3.3.10 requires different arguments, we subdivide it into two parts, each
addressing one of the two points P1 and P2 in the statement.

Proof of Theorem 3.3.9. For a connected graph G, let f be an eigenfunction of
Hp relative to λ. Let N (f) denote the number of nodal domains of f and let
G1, . . . ,GN (f) be such domains. Furthermore, let e1, . . . , eζ be the edges where f
changes sign and v1, . . . , vz the nodes where f is zero, with z = z(f) the number
of such nodes. The proof proceeds as follows.

According to Section 3.5.2, we start by removing the nodes v1, . . . , vz from G
obtaining a new graph G′. Operator Hp is then modified to form the operator
H′p in such a way that the restriction of f to G′ is an eigenfunction of H′p with
the same eigenvalue λ. Moreover, as all the zero nodes that are not part of any
nodal domain are now removed, we observe that f restricted to G′ has no zeros
and induces the same nodal domains that f induces on G. From Lemma 3.5.4,
we conclude that λ < λk ≤ λ′k, where λ′k denotes the k-th variational eigenvalue
of H′p.
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Then, operating as in Section 3.5.1, we remove from G′ all the edges e1, . . . , eζ
obtaining a new graph G′′ and the new operator H′′p such that f restricted to G′′
is an eigenfunction of H′′p with the same eigenvalue λ. Notice that, since we
removed only nodes where f is zero and edges where f changes sign, then G′′ can

be written as the disjoint union of the nodal domains, namely G′′ = tN (f)
i=1 Gi and,

as a consequence, we have

H′′p =
N (f)
⊕
i=1
H′′p(Gi)

where H′′p(Gi) is the restriction of the generalized p-Laplacian operator onto Gi.
Hence, from Lemma 3.5.2 we have

λ < λ′k ≤ λ′′k . (3.21)

where λ′′k denotes the k-th variational eigenvalue of H′′p . Note that the restriction
f |Gi to each of the nodal domains Gi of f has constant sign and it is then neces-
sarily the first eigenpair of H′′p(Gi) corresponding to λ (see Theorem 3.4.1) and
Corollary 3.4.2). Hence, λ is also the first eigenvalue of H′′p and, as an eigenvalue
of H′′p , has multiplicity exactly equal to N (f). Indeed, defined π = span{f |Gi},
since γ(π ∩ Sp) = dim(π) = N (f), we observe

λ = λ′′1 ≤ λ′′N (f) = min
A∈FN (f)(Sp)

max
f∈A
RH′′p (f) ≤ max

f∈π∩Sp
RH′′p (f) = λ,

which yields λ′′N (f) = λ. Moreover since π corresponds to the set of eigenfunctions

of H′′p associated to λ and γ(π ∩ Sp) = dim(π) = N (f), from Lemma 3.3.5 we
conclude multH′′p (λ) ≤ N (f) . We deduce that λ = λ′′1 = · · · = λ′′N (f) which,

combined with (3.21), implies k > N (f), thus concluding the proof.

Proof of P1 in Theorem 3.3.10. Using the same notation of the proof of Theorem
3.3.9 above, suppose that λ > λk. Then Lemmas 3.5.2 and 3.5.4 imply that

λ > λk ≥ λ′k−z ≥ λ′′k−z−ζ

where we define λ′h = λ′′h = −∞ for h ≤ 0 and λ′h = λ′′h = +∞ for h ≥ N −
z(f) + 1. As observed above, λ is also the first eigenvalue of H′′p . Thus, the
above inequality can hold only if k− z(f)− ζ ≤ 0. Using Lemma 3.7.1 we obtain
k− z(f)− |E|+ |Ez| − z(f) + |V | −N (f) + l(f) ≤ 0, with l(f) being the number
of independent loops in G where f has constant sign. This implies

N (f) ≥ k−z(f)−(|E|−|Ez|)+(|V |−z(f))+l(f) = k+l(f)−β′(f)−z(f)+c(f)

where c(f) is the number of connected components of G′ and β′(f) := (|E| −
|Ez|)− (|V | − z(f)) + c(f) the number of independent loops in G′ .

Next, we provide a proof for P2, Theorem 3.3.10. The idea is similar to the
one used in the proof of P1. In the latter, we reduced the starting graph to the
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disjoint union of the nodal domains of an eigenfunction and doing so we knew
that the corresponding eigenvalue would become the first variational one on the
reduced graph. Now, instead, we reduce the graph to a forest where we know
from Theorem 3.3.7 that our eigenvalue becomes a variational one and we know
by Theorem 3.3.8 how to relate the nodal domains induced by the eigenfunction
to the index of the eigenvalue.

Proof of P2 in Theorem 3.3.10. Let Hp be a generalized p-Laplacian operator
defined on a connected graph, G and assume

λ1 ≤ λ2 ≤ · · · ≤ λk−1 < λk = · · · = λk+m−1 < λk+m ≤ · · · ≤ λN ,

to be the variational spectrum of Hp and f to be an eigenfunction relative to
λ = λk = · · · = λk+m−1. Additionally, denote by N (f) the number of nodal
domains of f , by l(f) the number of independent loops where f has constant
sign, and by v1, . . . , vz the nodes where f is zero, with z = z(f) the number of
such nodes.

Using the results of Section 3.5.2, we start by removing the nodes v1, . . . , vz
from G and accordingly modifying the operator Hp, obtaining a graph G′ and an
operator H′p, such that the restriction of f to G′ is an eigenfunction of H′p with
the same eigenvalue λ. Observe that, since we have removed all and only the
nodes of G where f is zero, f restricted to G′ has no zeros and induces the same
nodal domains and constant sign loops induced on G. From Lemma 3.5.4, we
have that

λ′k+m−1−z ≤ λ ≤ λ′k+m−1 , (3.22)

where {λ′k} denote the variational eigenvalues of H′p. In particular λ is an
eigenvalue of H′p i.e. λ ∈ [λ′1, λ

′
N−z(f)] (N − z(f) the number of nodes of G′).

Thus, since the variational eigenvalues of H′p split its spectrum in intervals, there
has to exist and index, h with λ′h < λ′h+1 such that λ ∈ [λ′h, λ

′
h+1) where λ′h =∞

if h > N − z(f). Morover from (3.22) we can state

h ≥ k +m− z(f)− 1 . (3.23)

Now observe that if c(f) is the number of connected componets of G′ and β′(f) =
|E′|−|V ′|+c(f) the number of independent loops of G′, we can remove β′(f) edges
from G′ to obtain a forest T with the same number of connected components of
G′. Every time we remove an edge, we modify the operator H′p as in Section
3.5.1 so that the pair (f, λ) remains an eigenpair of the resulting operator. At
each step, denote by e0 the edge we are removing, and by G̃′, H̃′p and G̃′′, H̃′′p
the graph and the corresponding generalized p-Laplace operator before and after
cutting e0. Denote by {λ̃′k} and {λ̃′′k} the variational spectra of H̃′p and H̃′′p .

Letting λ ∈ [λ̃′`, λ̃
′
`+1) (always with the assumption λ̃′` = ∞ if ` > |V (G̃′)|), due

to Lemma 3.5.2, we can bound λ in terms of the spectrum of the new operator
as:

λ̃′′`−1 ≤ λ < λ̃′′`+2 .
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Now, define the two counting functions ∆n(e0, f) and M(e0, f). The first one
counts how the variational interval in which λ is contained changes when moving
from G̃′ to G̃′′, namely:

∆n(e0, f) =


−1 λ < λ̃′′`
+1 λ ≥ λ̃′′`+1

0 otherwise.

Observe that ∆n(e0, f) = −1 implies that λ ∈ [λ̃′′`−1, λ̃
′′
` ), ∆n(e0, f) = 1 implies

that λ ∈ [λ̃′′`+1, λ̃
′′
`+2), and ∆n(e0, f) = 0 implies that λ ∈ [λ̃′′` , λ̃

′′
`+1).

The second counting function, M(e0, f), takes into account the sign of f on
the removed edge e0. Recall that, if signe0(f) < 0 then from Section 3.5.1 it

follows that λ ∈ [λ̃′′`−1, λ̃
′′
`+1), otherwise we have λ ∈ [λ̃′′` , λ̃

′′
`+2). Thus, we define

M(e0, f) :=



{
−1 λ < λ̃′′`
0 otherwise

if signe0(f) < 0 ,

{
0 λ ≥ λ̃′′`+1

−1 otherwise
if signe0(f) > 0 .

It follows by their definition and from Lemma 3.5.2 that

∆n(e0, f)−M(e0, f) =

{
0 signe0(f) < 0

1 signe0(f) > 0
.

Thus, thanks to (3.19), every time we cut an edge e0 and modify consequently
the operator H′p, we have the following identity

∆n(e0, f)−M(e0, f) = ∆N (e0, f)−∆l(e0, f) , (3.24)

where ∆N (e0, f) and ∆l(e0, f) are the difference between the number of nodal
domains and the number of constant sign loops induced by f in G̃′ and in G̃′′,
respectively.

After β′ steps, (f, λ) will be an eigenpair of a generalized p-Laplacian operator
H′′p defined on the forest T , such that f(u) 6= 0 ∀u ∈ G′′. We have proved
in Theorem 3.3.7 that H′′p has only variational eigenvalues, so, w.l.o.g., we can
assume that λ has became the s-th variational eigenvalue of H′′p . Note that,
thanks to Theorem 3.3.7 and Remark 3.6.10 we have that multH′′p (λ) = c(f),
that is

λ′′s−c(f) < λ = λ′′s−c(f)+1 = · · · = λ′′s < λ′′s+1.

Moreover, because of Theorem 3.3.8, we know that f induces s nodal domains on

the forest T . Thus, using (3.24) and the equality
∑β′

i=1 ∆N (ei, f) = s − N (f),
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the number of nodal domains, N (f), induced on the original graph G by f (which
is the same as the one induced on G′), can be written as

N (f) = s−
β′∑
i=1

∆N (ei, f) = s−
β′∑
i=1

∆n(ei, f)−
β′∑
i=1

∆l(ei, f) +

β′∑
i=1

M(ei, f) .

Finally, observe that, by definition of ∆n, it holds

β′∑
i=1

∆n(ei, f) = s− h, and

β′∑
i=1

∆l(ei, f) = −l(f)

because we have removed all the loops, while
∑β′

i=1M(ei, f) ≥ −β′(f) (note that
the equality holds if and only if M(ei, f) = −1, ∀i). Hence, using inequality
(3.23), we obtain

N (f) ≥ s−s+h+ l(f)−β′(f) = h+ l(f)−β′(f) ≥ k+m−1−z(f)+ l(f)−β′(f) ,

which concludes the proof.
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4 Reformulation of the p-Laplacian
eigenvalue problem

4.1 Introduction

In this chapter we address the problem of computing the p-Laplacian eigenpairs
when p is greater than 2, i.e. solutions of the nonlinear eigenequation:

∆pf = λ|f |p−2f .

Recall that, in the general case, the number of p-Laplacian eigenpairs is unknown,
but it is always possible to select an ordered set, {λk}Nk=1 whose cardinality is
equal to the dimension of the graph G. The remaining eigenvalues are usually
classified depending on their position in the variational spectrum, λk ≤ λ < λk+1.
The computation of the p-Laplacian eigenpairs can be addressed by tackling two
distinct problems:

� The development of effective numerical algorithms converging toward solu-
tions of the eigenequation.

� The classification of the numerically found eigenpairs in terms of the vari-
ational spectrum.

Despite different algorithms have been proposed in the last few years [15, 50, 88],
to the best of our knowledge, no methods exist that are capable of accomplishing
both of the above tasks. In [88], the authors propose a numerical method capable,
in principle, to compute a sequence of N eigenpairs, where given the space, L,
spanned by the first k − 1 computed eigenfunctions (L := span{f̃1, . . . , f̃k−1}),
the k-th eigenpair is found performing

λ̃k = min
g⊥L

local max
f̃∈span{g,L}

Rp(f̃) .

If the so computed f̃k 6∈ L, the authors show that (f̃k, λ̃k) is a p-Laplacian
eigenpair and that, assuming the local differentiability of g → local max

f̃∈span{g,L}
Rp(f̃),

f̃k has local minmax index of order k − 1, where the local minmax index is the

69
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number of local strict decreasing directions of the p-Rayleigh quotient, Rp(f) =

‖∇f‖pp/‖f‖PP , in f̃k. However note that there is no evidence that the eigenpair
sequence so computed exists. Indeed except for the smallest and the biggest
variational eigenvalues all the other ones could not be local maximal values of
the p-Rayleigh quotient on the linear subspaces spanned by the corresponding
eigenfunction and some other eigenfunctions with smaller eigenvalues

On the other hand for the nonlinear power method introduced in [50] and the
gradient flow method from [15], both thought to compute the extremal eigenval-
ues, it is always possible to prove the convergence toward some eigenpair but no
information about its position in the spectrum is available. Moreover we high-
light that both of these methods are not suited to compute a full sequence of
eigenpairs.

In the following, ispired by the Dynamical-Monge-Kantorovich method intro-
duced in [41, 43], we propose the reformulation of the p-Laplacian eigenproblem
in terms of a constrained linear eigenproblem. In particular we show that any
p-Laplacian eigenpair, (f, λ), can also be regarded as a weighted linear eigen-
pair and that the index of the variational eigenvalue can be bounded using the
index assigned to λ as a linear eigenvalue. Moreover, based on this analogy,
we introduce and discuss numerical algorithms to compute a class of p-Laplacian
eigenpairs. The strength of our method is the ability to calculate nonlinear eigen-
pairs by means of linear ones, but the proof of convergence of our method is not
complete and deserves a future in depth study.

4.2 Notation

To ensure self-consistency of the chapter, we begin by recalling the basic defi-
nitions and notation that will be used in this chapter. Let G = (E, V, ω) be a
graph, where E are the edges, V the nodes and ω is a weight on the edges such
that ωuv = ωvu. Given a function f : V → R and a function G : E → R define

∇ : H(V ) −→ H(E)

f 7→ ∇f(u, v) = ωuv
(
f(v)− f(u)

)
div = −1

2
∇T : H(E) −→ H(V )

G 7→ div G(u) =
1

2

∑
v∼u

ωuv
(
G(u, v)−G(v, u)

)
where v ∼ u means that (u, v) ∈ E. Throughout the whole chapter, if not
otherwise specified, we use capital letters to denote edge functions and lowercase
letters to denote node functions. Recall also the definition of the p-Laplacian
operator

(∆pf)(u) := −div(|∇f |p−2∇f) =
∑
v∼u

ωuv|∇f(v, u)|p−2
(
∇f(v, u)

)
.
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Finally, we say that (f, λ) is a p-Laplacian eigenpair with homogeneous Dirichlet
boundary conditions assigned on a subset of the nodes B ⊂ V , if it solves the
following equation{

∆pf(u) =
∑

v∼u ωuv|∇f(v, u)|p−2∇f(v, u) = λ|f(u)|p−2f(u) ∀u ∈ V \B
f(u) = 0 ∀u ∈ B

(4.1)
i.e., if and only if (f, λ) is a critical point/value of the p-Rayleigh quotient on
H0(V ):

Rp(f) =
‖∇f‖pp
‖f‖pp

=

1
2

∑
(u,v)∈E |∇f(u, v)|p∑

u∈V |f(u)|p

where H0(V ) = {f : V → R | f(u) = 0 ∀u ∈ B}.

4.3 An equivalent formulation of the p-Laplacian eigen-
value problem

In this section we consider a trivial reformulation of the p-Laplacian eigenvalue
problem in terms of a constrained weighted Laplacian eigenvalue problem. Using
such an equivalence, since the eigenvalues of the corresponding weighted Lapla-
cian are finite, it is possible to assign to every p-Laplacian eigenvalue, λ, an index
which is the index of λ regarded as a linear eigenavalue. We prove that this index,
which is theoretically computable, matches the Morse index of Rp in f , where
f is the eigenfunction corresponding to λ. We would like to stress the fact that
here we are assuming p > 2.

4.3.1 Weigthed Laplacian equivalence

Recalling the p-Laplacian eigenvalue problem (4.1), it is easy to observe that
(f, λ) is an eigenpair of the p-Laplacian if and only if (f, λ) is an eigenpair of the
following constrained weighted Laplacian Dirichlet problem:

∆µ0f(u) =
∑
v∼u

µ0uvωuv∇f(v, u) = λν0uf(u) ∀u ∈ V \B

f(u) = 0 ∀u ∈ B
µ0uv = |∇f(u, v)|p−2 ∀(u, v) ∈ E
ν0u = |f(u)|p−2 ∀u ∈ V \B

, (4.2)

moreover µ ∈ M+(E) and ν ∈ M+(V ) where M+(E) and M+(V ) denote the
positive measures space on the edges and on the nodes

Definition 4.3.1.

M+(E) = {µ | µuv ≥ 0 ∀(u, v) ∈ E} and M+(V ) = {ν | νu ≥ 0 ∀u ∈ V } .
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Let (f, λ) be an eigenpair of the p-Laplacian and let

νu := |f(u)|p−2 and µuv := |∇f(u, v)|p−2 .

Introducing the quantities

‖g‖22,ν =
∑
u

νu|g(u)|2 and ‖∇g‖22,µ =
1

2

∑
(u,v)∈E

µuv|∇g(u, v)|2 ,

the 2-Rayleigh quotient weighted in µ, ν is given by:

R2,µ,ν(g) = ‖∇g‖22,µ/‖g‖22,ν .

Clearly the critical points and values of Rµ,ν are the eigenpairs of the linear
generalized eigenvalue problem

∆µf = −div(µ∇f) = λνf .

Since the last is a linear eigenvalue problem its eigenpairs can be numbered and,
using an increasing ordering for the eigenvalues, we denote by

(
fk(µ, ν), λk(µ, ν)

)
the k-th eigenpair.

Observe that by definition of ν, if ‖f‖p = 1, then also ‖f‖2,ν = 1. We now
introduce the two spheres

Sp := {g | ‖g‖p = 1} and S2,ν := {g | ‖g‖2,ν = 1} ,

and denote their tangent spaces in the point f by Tf (Sp) and Tf (S2,ν). Then, it
is not difficult to observe that

{ξ | 〈ξ, |f |p−2f〉 = 0} = Tf (Sp) = Tf (S2,ν) = {ξ | 〈ξ, νf〉 = 0} .

Moreover, considered Rp and R2,µ,ν as functions defined on the manifolds Sp
and S2,ν respectively, in the next Lemma we show that it is possible to compare
the Morse indices of the functions Rp and R2,µ,ν in the point f , MIf (Rp) and
MIf (R2,µ,ν). In particular this allows to relate MIf (Rp) to the linear index
of λ, i.e., the position of λ in the spectrum of the associated linear eigenvalue
problem, ∆µf = λνf . We recall that the Morse index of a function φ at a point
x is essentially the number of local decreasing directions of φ in x, MIx(φ).
More precisely, it is the number of negative eigenvalues of the associated Hessian
matrix, ∂2φ/∂x2, see [71]. Before enunciating the Lemma observe that the µ-ν
weighted Laplacian eigenvalue problem can be degenerate in case Ker

(
diag(ν)

)
is non empty. In this case, indeed there would be only N − dim

(
Ker

(
diag(ν)

))
well defined eigenpairs, nevertheless with a small abuse of notation we can always
complete the set of eigenpairs to a base of the space. We have to differentiate
between two cases, first if f is in Ker

(
diag(ν)

)
but not in Ker

(
∆µ

)
, we can say
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that f is an eigenfunction of eigenvalue λ equal to infinity, f indeed would be a
eigenfunction of zero eigenvalue of the inverse eigenvalue problem

diag(ν)f = λ∆µf .

If instead we have a function f such that f ∈ Ker
(
diag(ν)

)⋂
Ker

(
∆µ

)
then f

satisfies the µ-ν Laplacian eigenvalue problem for any eigenvalue λ, in this case
we can thus say that f is an eigenfunction for an arbitrarily chosen eigenvalue λ.

Lemma 4.3.2. Let (f, λ) be an eigenpair of the p-Laplacian, and ν = |f |p−2, µ =
|∇f |p−2. Assume that h is the linear index of λ, i.e. (f, λ) =

(
fh(µ, ν), λh(µ, ν)

)
,

where fh(µ, ν) and λh(µ, ν) are the h-th eigenfunction and eignvalue of the µ-ν
weighted Laplacian problem given in (4.2) and are such that:

λh+m(µ, ν) > λh+m−1(µ, ν) = λh(µ, ν) > λh−1(µ, ν) .

Here in the multiplicity of λh we count also the dimension of Ker(∆µ)∩Ker
(
diag(ν)

)
,

i.e., whenever f is such that f ∈ Ker(∆µ) ∩ Ker
(
diag(ν)

)
, we artificially im-

pose that the corresponding eigenvalue λ satisfies λ = λh. Instead, for every
f ∈ Ker

(
diag(ν)

)
but f 6∈ Ker(∆µ), with a small abuse of notation, we write that

f is an eigenfunction associated to the eigenvalue λ =∞. Then

MIf (Rp) =MIf (R2,µ,ν) = h− 1 .

MIf (−Rp) =MIf (−R2,µ,ν) = N − h−m+ 1 .

Proof. To prove the lemma we first show that ∀ξ ∈ Tf (Sp) = Tf (Sν) we have:

∂2

∂ε2

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
p(p− 1)

2

∂2

∂ε2

(‖∇(f + εξ)‖22,µ
‖f + εξ‖22,ν

)∣∣∣∣
ε=0

.

The first derivative is zero as f is a critical point for both the Rayleigh quotients
because of the equivalence of the p-Laplacian and weighted Laplacian eigenvalue
problems in f .

∂

∂ε

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
p

‖f‖pp

(
〈|∇f |p−2∇f,∇ξ〉 − ‖∇f‖

p
p

‖f‖pp
〈|f |p−2f, ξ〉

)
∂

∂ε

(‖∇(f + εξ)‖22,µ
‖f + εξ‖22,ν

)∣∣∣∣
ε=0

=
2

‖f‖22,ν

(
〈µ∇f,∇ξ〉 −

‖∇f‖22,µ
‖f‖22,ν

〈νf, ξ〉
)

=
2

‖f‖pp

(
〈|∇f |p−2∇f,∇ξ〉 − ‖∇f‖

p
p

‖f‖pp
〈|f |p−2f, ξ〉

)
(4.3)

Then, recall first that ξ ∈ Tf (Sp) = Tf (Sν), which means

∂

∂ε
‖f + εξ‖pp =

∂

∂ε
‖f + εξ‖22,ν = C〈|f |p−2f, ξ〉 = C〈νf, ξ〉 = 0 ,
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second that

∂

∂ε

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
∂

∂ε

(‖∇(f + εξ)‖22,µ
‖f + εξ‖22,ν

)∣∣∣∣
ε=0

= 0,

and last that

∂|x+ εy|p−2(x+ εy)

∂ε
|ε=0 = (p− 2)|x|p−3 (x)2

|x|
y + |x|p−2y = (p− 1)|x|p−2y .

Then, using the last remarks, differentiate the first derivatives (4.3) , where we
recall the |∇(f+εξ)|p−2

(
∇(f+εξ)) and |f+εξ|p−2(f+εξ) are entrywise products:

∂2

∂ε2

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
p(p− 1)

‖f‖pp

(
〈|∇f |p−2∇ξ,∇ξ〉 − ‖∇f‖

p
p

‖f‖pp
〈|f |p−2ξ, ξ〉

)
∂2

∂ε2

(‖∇(f + εξ‖22,µ
‖f + εξ‖22,ν

)∣∣∣∣
ε=0

=
2

‖f‖22,ν

(
〈µ∇ξ,∇ξ〉 −

‖∇f‖22,µ
‖f‖22,ν

〈νξ, ξ〉
)

=
2

‖f‖pp

(
〈|∇f |p−2∇ξ,∇ξ〉 − ‖∇f‖

p
p

‖f‖pp
〈|f |p−2ξ, ξ〉

)
(4.4)

and this yelds to the desired equality.
Next observe that Tf (S2,ν) = span{fi(µ, ν)}i 6=h, indeed Tgf (S2,ν) = {ξ, |, 〈νf, ξ〉 =

0} , and {fi(µ, ν)}i is a ν-othogonal basis of the space. Hence, the following im-
plications hold:

∂2

∂ε2

(‖∇(f + εξ)‖22,µ
‖f + εξ‖22,ν

)∣∣∣∣
ε=0

< 0 ⇐⇒ ξ ∈ span{fi(µ, ν)|λi(µ, ν) < λh(µ, ν)} ,

∂2

∂ε2

(‖∇(f + εξ)‖22,µ
‖f + εξ‖22,ν

)∣∣∣∣
ε=0

> 0 ⇐⇒ ξ ∈ span{fi(µ, ν)|λi(µ, ν) > λh(µ, ν)} .

To prove the last statement, let ξ =
∑

i 6=h αifi(µ, ν) and recall that if i 6= j,
〈µ∇fi,∇fj〉 = 0 and 〈νfi, fj〉 = 0. Hence, using (4.4), we can provide the
following equality that allows easily to conclude the proof of the lemma:

∂2

∂ε2

(‖∇(f + εξ‖22,µ
‖f + εξ‖22,ν

)∣∣∣∣
ε=0

=
2

‖f‖22,ν

∑
i 6=h

∑
j 6=h

αiαj

(
〈µ∇fi,∇fj〉 − λh〈νfi, fj〉

)

=
2

‖f‖22,ν

∑
i 6=h

α2
i

(
〈µ∇fi,∇fi〉 − λh〈νfi, fi〉

)

In the last equality observe that if fi is an eigenfunction corresponding to an
eigenvalue λi with fi 6∈ Ker

(
diag(ν)

)
, then(

〈µ∇fi,∇fi〉 − λh〈νfi, fi〉
)

= ‖fi‖22,ν
(
λi − λh

)
,
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i.e., fi is an increasing or a decreasing direction of R2,µ,ν in f according to the
inequalities λi > λh or λi < λh. Moreover if fi ∈ Ker(∆µ) ∩ Ker

(
diag(ν)

)
by

definition we have λi = λh which corresponds to observing that fi is neither an
increasing nor a decreasing direction of R2,µ,ν in f(

〈µ∇fi,∇fi〉 − λh〈νfi, fi〉
)

= 0 .

Finally if fi ∈ Ker
(
diag(ν)

)
but fi 6∈ Ker(∆µ) , then by definition we have λi =∞

which corresponds to observing that fi is an increasing direction of R2,µ,ν in f ,
indeed: (

〈µ∇fi,∇fi〉 − λh〈νfi, fi〉
)

=

(
〈µ∇fi,∇fi〉

)
> 0 .

Observe that the last equalities proves that the tangent directions corresponding
to smaller(higher) eigenfunctions of the µ, ν weighted Laplacian problem corre-
spond to decreasing(increasing) directions of R2,µ,ν and thus of Rp.

4.4 Variational Eigenvalues

We devote this section to show that for certain families of variational eigenvalues
of the p-Laplacian we can compare their index with the corresponding index of
the same eigenvalues seen as eigenvalues of the corresponding linear weighted
Laplacian. We begin this section recalling that since the p-Laplacian operator is
nor linear we do not know a priori how many eigenvalues exist. Nevertheless it
is always possible to select N of them as representants of the whole spectrum.
Since the usual selection procedure is performed by means of variational methods
the selected eigenvalues are named variational eigenvalues. The most classical
variational eigenvalues are defined using the Lusternik-Schnirelman theory and a
min-max method based on the definition of Krasnoselskii genus of a set [46, 47,
63, 85]. Nevertheless this is not the only possibility and using the same tools it
is possible to select different families of variational eigenvalues more suitable to
our scope.

We start recalling the definition of the Krasnoselskii variational eigenvalues.
The domain of definition of the Krasnoselskii genus is the family of the closed
and symmetric subsets of Rn:

A = {A ⊆ RN | A closed , A = −A} .

For any A ∈ A, the Krasnoselskii genus of A is then defined as the number

γ(A) =


inf{k ∈ N : ∃ϕ ∈ C(A,Rk \ {0}) s.t. ϕ(x) = −ϕ(−x)}
∞ if @ k as above

0 if A = ∅
,



76 CHAPTER 4. REFORMULATION OF ∆P EIG. PROBLEM

where C(A,Rk \ {0} is the space of continuous functions on A with values in
Rk \ {0}. In other words, the genus of A can be seen as the smallest k such that
A can be continuously mapped on the sphere of dimension k − 1 preserving the
symmetry. Consider now the family Fk(Sp ∩ D0) = {A ⊆ A ∩ Sp ∩ D0 | γ(A) ≥
k}, the Krasnoselskii variational eigenvalues, {λKk }Nk=1, of ∆p are defined by the
following expression

λKk = inf
A∈Fk

sup
f∈A
Rp(f) . (4.5)

It is easy to prove that such values are actually eigenvalues (i.e. critical points
of the Rayleigh quotient) see [46, 47, 63, 85]. Moreover, since we are working in
a finite dimensional space, we can prove that the inf sup is actually a min max.

Lemma 4.4.1. Let λKk be the k-th variational eigenvalue

λKk = inf
A∈Fk

sup
f∈A
Rp(f) .

Then there exists A0 ∈ Fk s.t.

λKk = max
f∈A0

Rp(f)

Proof. Since any A ∈ Fk is compact it is clear that we can replace the sup by a
max. On the other hand, we need to do some more work to work out of the inf
condition. Assume An ∈ Fk to be a minimizing sequence, i.e.

λKk ≤ max
f∈An

Rp(f) ≤ λKk +
1

n
, (4.6)

and define
A0 = ∩

m∈N
( ∪
n>m

An) , (4.7)

A0 is a nonempty symmetric closed set as it is the limit of a sequence of symmetric
closed subsets of a compact set, Sp. Now we study the genus of A0, if γ(A0) =
h < k, then there exists an odd function f0 continuous in A0 and with values
in Rh \ {0}, f0 ∈ C(A0,Rh \ {0}). Thanks to the Tietze extension theorem it
is possible to find an odd function f̃0 ∈ C(RN ,Rh) such that f̃0|A0 = f0. The

preimage U0 = f̃−1
0 (Rh \ 0) is a neighborhood of A0, thus from (4.7), there exist

n0 such that
An ⊂ U0 , ∀n > n0 .

Observe that this leads to an absurd because, considering f̃0|An as a Krasnoselskii
test function for An, it implies that ∀n > n0 , γ(An) ≤ h < k . Thus, necessarily,
γ(A0) ≥ k and, since A0 ⊆ An ∀n ∈ N, thanks to (4.6) and the definition of λKk

λKk ≤ max
f∈A0

Rp(f) ≤ λKk ,

concluding the proof.
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We refer to the previous chapter 3.4 for an in depth study of such eigenvalues,
in particular we remind the following result from section3.4.

Theorem 4.4.2. Let λK1 and λK2 be the first two Krasnoselskii variational eigen-
values. Then first λK1 is simple, meaning that there exists a unique eigenfunction
f1 associated to λK1 . Second f1 is the only strictly positive eigenfunction, i.e. if
f is an eigenfunction of ∆p and f(v) > 0 for all v ∈ V \B, then

f = f1 .

Third, there are no eigenvalues between λK1 and λK2 , i.e.

λK2 = min{λ | λ eigenvalue of ∆pand λ > λK1 } .

The definition of the variational eigenvalues of the p-Laplacian using the Kras-
noselskii theory is widely used in literature, but not the only one. For example,
from [32, 33] a “Drabek” family of variational eigenvalues, say {λDk }k can be
defined as follows

λDk := inf
A∈ΛDk

sup
f∈A
R∆p(f) , (4.8)

where

FDk := {A ⊂ Sp ∩ D0 | ∃h ∈ C(Sk−1, A), h odd and surjective}, .

Observe that, since FDk ⊂ Fk, necessarily λk ≤ λDk . In [32, 33] it is also proved
that λ1 = λD1 and λ2 = λD2 whereas the equality of the upper variational eigen-
values so defined remains an open problem.

Inspired by these works, below we present a new class of variational eigen-
values whose definition allows a comparison between their variational index and
their index as eigenvalues of a weighted Laplacian. The families of subsets suit-
able to define a sequence of variational eigenvalues can be characterized as the
families of subsets stable with respect to appropriate deformations of the domain.

To describe our new definition, we first introduce some classical notation. We
say that c is a critical value of Rp if there exist f ∈ Sp∩R−1

p (c) s.t. ∂fRp(f) = 0
and in this case f is said a critical point. Any c ∈ R that is not a critical value
is said a regular value. We denote by C the closed, and hence compact, set of
critical points ofRp on Sp∩D0 and byRp(C) the compact set of the critical values.
Finally, for any x ∈ R, we denote by Rxp = R−1

p (−∞, x]. The following Lemma
is a classical results from critical point theory [75, 85] and it is here presented
in the version that better suits to our scope. Given a family of subsets F and
a functional identified with Rp, the Lemma describes some sufficient conditions
that guarantee that the min max, or the max min, over F of Rp is a critical
point.
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Lemma 4.4.3. Assume F to be a family of subsets of Sp ∩D0 such that for any
regular value c ∈ R of Rp, there exist ε > 0 and continuous deformations of the
domain φ : [0, 1]× Sp → Sp, ψ : [0, 1]× Sp → Sp such that:
φ(0, ·) = idSp(·)
φ(1,Rc+ε) ⊂ Rc−ε

φ(t, A) ∈ F , ∀A ∈ F , ∀t ∈ [0, 1]


ψ(0, ·) = idSp(·)
ψ(1, Sp \ Rc−ε) ⊂ Sp \ Rc+ε

ψ(t, A) ∈ F , ∀A ∈ F , ∀t ∈ [0, 1].

Then
λ := inf

A∈F
sup
f∈A
Rp(f) , η := sup

A∈F
inf
f∈A
Rp(f)

are critical values of Rp.

Proof. Assume by absurd that λ is a regular value and consider a deformation of
the domain φ0 as in the hypotheses such that φ(1,Rc+εp ) ⊂ Rc−εp . Then consider
a subset, Aε ∈ F , such that

sup
f∈Aε
Rp(f) < λ+ ε ,

by hypotheses φ(1, Aε) ∈ F and

sup
f∈φ(1,Aε)

Rp(f) < λ− ε

which is an absurd because of the definition of λ as an inf. The proof for η is
similar.

The next step is to show that for any regular value c there exists a deformation
of the domain which perturbs the set Rc+εp into the set Rc−εp for a suitable ε.
Then we will be able to choose a family F that is invariant with respect to such
deformations. The following lemma is a p-Laplacian adapted version of a family
of deformation lemmas suitable to work in more general settings, see [47, 75, 85].

Lemma 4.4.4 (Deformation Lemma). Let p > 2 and assume c to be a regular
value of Rp. Then there exists ε > 0 and a C1 family of φ ∈ C1([−1, 1]× Sp, Sp)
such that

1. φ(t, ·) is a C2 odd homeomorphism for any t ∈ [−1, 1],

2. φ(1,Rc+ε) ⊂ Rc−εp and φ(−1, Sp ∩ D0 \ Rc−ε) ⊂ Sp ∩ D0 \ Rc+ε,

where H0(V ) = {f : V → R | f(u) = 0 ∀u ∈ B}.

Proof. Let Bη(R−1
∆p

(c)) and B2η(R−1
∆p

(c)) be two symmetric open neighborhoods

of R−1
∆p

(c) in Sp ∩ D0 such that Bη(R−1
∆p

(c)) ⊂ B2η(R−1
∆p

(c)) ⊂ Sp \K. Consider

ξ ∈ C∞(Sp,R+) a symmetric cutoff function such that

ξ|Bη = 1 , ξ|Sp\B2η
= 0 .
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Now introduce the deformation function φ : R×Sp → Sp that solves the following
Cauchy problem {

∂tφ(t, f) = −ξ(φ(t, f))∂fRp(φ(t, f))

φ(0, f) = f

Since it is easy to observe that ∂f
(
Rp(f)

)
is an odd C1 function, ∂f

(
Rp(f)

)
∈

C1(Sp ∩ D0,RM ) and ∂f
(
Rp(f)

)
= −∂f

(
Rp(−f)

)
, for any t ∈ [−1, 1] and p ≥ 1

we have that φ(t, f) is a C2 odd function, φ(t, ·) ∈ C2(Sp ∩ D0, Sp ∩ D0) and
φ(t, f) = −φ(t,−f). Moreover φ(·, t + s) = φ(·, t) ◦ φ(·, s) and thus φ(·, t) =
φ−1(·,−t). Finally observe that

∂

∂t
(Rp(φ(f, t)) = −ξ(φ(f, t))

∥∥∥ ∂
∂f
Rp(φ(f, t)

∥∥∥2
≤ 0 .

Since c is a regular value and R−1
p (c) is a compact set, ‖∂/∂f

(
Rp(f)

)
‖ admits a

minimum greater than zero on R−1
p (c) and so, for any t > 0 there exists an ε > 0

such that
Rp(φ(f, t)) < c− ε ∀f ∈ R−1

p (c) .

To conclude, by the continuity of φ, there exists a neighborhood Uε (that we can
assume w.l.o.g to be Rc+εp ) of R−1

p (c) such that

Rp(φ(f, t)) < c− ε ∀f ∈ Uε .

Moreover, since φ(·,−1) = φ−1(·, 1), necessarily φ(−1, Sp\Rc−εp ) ⊂ Sp\Rc+εp .

It is now possible to introduce another choice of variational eigenvalues in
addition to the Krasnoselskii and Drabek definitions for which, given a variational
p-Laplacian eigenvalue λ, it is possible to compare the variational index of λ with
its linear index, i.e. the index of λ as eigenvalue of the linear problem (4.2). To
this aim, for any p ≥ 2, we introduce the family of embedded C2 k-spheres in Sp
given by:

F ′k = {A ⊂ Sp ∩ D0| ∃ϕ ∈ C2(Sk−1, A), ϕ−1 ∈ C2(A,Sk−1) }

, where Sk−1 is the k−1-dimensional sphere. Observe that, thanks to Lemma4.4.3,
the family F ′k, for any k, satisfies the hypotheses of Lemma4.4.3 and thus we can
define the following family of variational eigenvalues

λ′k = inf
A∈F ′k

max
f∈A
Rp(f) λ′′k = sup

B∈F ′N−k+1

min
f∈B
Rp(f) . (4.9)

Observe that since F ′k ⊂ FDk ⊂ Fk the eigenvalues λ′k satisfy the following in-
equalities with respect to the Krasnoselskii (4.5) and the Drabek (4.8) variational
eigenvalues:

λKk ≤ λDk ≤ λ′k . (4.10)
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Oserve also that for given two symmetric subsets, Ak ⊂ Sp and Bk ⊂ Sp, re-
spectively homeomorphic to a k-sphere and to a N − k + 1-sphere we have that
Ak ∩Bk 6= ∅ (see Lemma 3.5.1), thus ∀ε we have the following :

λ′′k−ε = min
f∈Bεk
R∆p(f) ≤ min

f∈Bεk∩A
ε
k

R∆p(f) ≤ max
f∈Aεk∩B

ε
k

R∆p(f) ≤ max
f∈Aεk
R∆p(f) ≤ λ′k+ε .

Hence we can establish the following inequality between the max min and min
max variational inequalities:

λ′′k ≤ λ′k . (4.11)

In addition we can prove the following equality about the first variational eigen-
values:

Lemma 4.4.5.

λK1 = λD1 = λ′1 = λ
′′
1 and λK2 = λD2 = λ′2 = λ

′′
2 .

Proof. The case k = 1 is trivially proved since all λK1 , λ
D
1 , λ

′
1 and λ

′′
1 are defined

as pointwise minimizers of Rp.
To prove the second sequence of equalities, let A2 ∈ F2 be such that

max
f∈A2

Rp(f) = λK2 .

From the definition of Krasnoselskii genus, A2 must be necessarily a closed, sym-
metric, and connected subset of Sp. This fact implies the existence of a continuous
closed curve δ : [0, 1] 7→ A2 such that

max
f∈δ(t)

Rp(f) = λK2 .

Now observe that the curve δ(t) can be approximated by C2 curves δε(t) ∈ Λ′2
with d

(
δ(t), δε(t)

)
< ε, thus using the continuity of Rp we easily get that

λ′2 ≤ λK2 , (4.12)

which, together with (4.10), implies that equality holds. Last observe that from
(4.11),

λ′′2 ≤ λ′2 . (4.13)

However we recall from 4.4.2 that there are no eigenvalues of the p-Laplacian
between λK1 and λK2 . Hence, from (4.10), (4.13) and (4.12) it follows

λK2 = λD2 = λ′2 = λ
′′
2 .

Now, thanks to Lemma 4.3.2, given a variational p-Laplacian eigenvalue, λ,
we are able to compare its position in the variational spectrum with its index as
an eigenvalue of the corresponding weighted Laplacian.
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Lemma 4.4.6. Let (λ, f) be a p-Laplacian eigenpair such that

λ = λ′k.

Define µ = |∇f |p−2 and ν = |f |p−2 and assume λ = λh−m+1(µ, ν) = · · · =
λh(µ, ν), where λj(µ, ν) are the eigenvalues of the weighted Laplacian as given in
Lemma (4.3.2) and m is their multiplicity. Then

k ≤ h.

Moreover, if λ′′k = λ, then
h−m+ 1 ≤ k .

Proof. We first assume k > h. Then by characterization (4.9), for any ε > 0
there exists fε ∈ Sp ∩ D0 and a subset Aεk−1 ∈ Sp ∩ D0, C2-diffeomorphic to a
(k − 1)-dimensional sphere such that

λ+ ε = Rp(fε) = max
f∈Aεk−1

Rp(f) .

Then for any ξ ∈ Tfε(Sp∩Aεk−1) and any curve, γ(t), in Aεk−1 such that γ(0) = fε
and γ′(0) = ξ, we have

d2

dt2
Rp
(
γ(t)

)∣∣∣
t=0

= 〈ξ,D2Rp(fε)ξ〉+ 〈∇Rp(fε), γ′′(t)〉 ≤ 0 . (4.14)

Then assuming, up to subsequences, that f = limε→0 fε and π := limε→0 Tgfε(Sp∩
Aεk−1) ∈ Tf (Sp ∩D0), recalling that ∂f

(
R∆p(f)

)
= 0, for any ξ ∈ π, from (4.14),

we have

∂2

∂ε2

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
p(p− 1)

2

∂2

∂ε2

(‖∇(f + εξ)‖2µ
‖f + εξ‖2ν

)∣∣∣∣
ε=0

≤ 0. (4.15)

Moreover, if λ = λh(µ, ν), thanks to lemma 4.3.2, we know that if ξ ∈ Tf (Sν) =
Tf (Sp) and ξ ∈ span{fj(µ, ν)}j>h then

∂2

∂ε2

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
p(p− 1)

2

∂2

∂ε2

(‖∇(f + εξ)‖2µ
‖f + εξ‖2ν

)∣∣∣∣
ε=0

> 0 (4.16)

Now observe that dim
(
π∩Tf (Sp)

)
= k−1 and dim

(
span{fj(µ, ν)}j>h

)
= N−h >

N − k. Thus
Tf (Sp ∩Ak) ∩ span{fj(µ, ν)}j>h 6= ∅

which is a contradiction by (4.16) and (4.15).
In the second case, if k < h −m + 1, by (4.9), we can state that there exists a
subset π of Tf (Sp ∩ D0), of dimension N − k such that for any ξ ∈ π

∂2

∂ε2

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
p(p− 1)

2

∂2

∂ε2

(‖∇(f + εξ)‖2µ
‖f + εξ‖2ν

)∣∣∣∣
ε=0

≥ 0.
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1

2

4

3

1. f = (1, 1, 1, 1), λ = 0

2. f = (1, 0,−1, 0), λ = 2

3. f = (0, 1, 0,−1), λ = 2 + 2p−1

4. f = (1, 0, 1,−2
1
p−1 ), (1,−2

1
p−1 , 1, 0)

λ = 1 +
(
1 + 2

1
p−1
)p−1

5. f = (1,−1, 1,−1), λ = 2p

Figure 4.1: Left: Example graph in which the corresponding p-Laplacian ∆p with
ωuv = 1 ∀(u, v) ∈ E, has more eigenvalues then the dimesion of the space. Right:
Set of five eigenvalues and corresponding eigenfunctions.

Moreover, again from 4.3.2, we know also that ∀ξ ∈ span{fj(µ, ν)}j<h−m+1

∂2

∂ε2

(
‖∇(f + εξ)‖pp
‖f + εξ‖pp

)∣∣∣∣
ε=0

=
p(p− 1)

2

∂2

∂ε2

(‖∇(f + εξ)‖2µ
‖f + εξ‖2ν

)∣∣∣∣
ε=0

< 0

leading to an absurd since

dim
(
Tgf (Sp ∩AN−k)

)
+ dim

(
span{fj(µ, ν)}j<h−m+1

)
= N − k+h−m > N − 1.

Observe that if λ′k = λ′′k, as in the case of k = 1, 2, Lemma 4.4.6 implies that
λ is the k-th eigenvalue of the corresponding weighted Laplacian.

Remark 4.4.7. Observe also that the last Lemma 4.4.6 provides a novel tool in
the study of the variational eigenvalues. Recall, for example, the graph presented
in the introduction with the corresponding eigenpairs of the p-Laplacian (see Fig-
ure 4.1) Then, since the number of eigenpairs is greater than the dimension of
the space, at least one of the eigenvalues is a non variational one. However,
the only definition of the variational eigenvalues does not help to identify which
eigenvalue is variational and which one is not. Differently the last lemma allows
us to conclude that the eigenvalue λ = 2 + 2p−1 is not a variational eigenvalue.
Indeed the gradient of f = (0, 1, 0,−1) is everywhere different from zero, which
implies that:

Ker(∆µ) ∩Ker(ν) = ∅ ,

where µ = |∇f |p−2 and ν = |f |p−2. Moreover, it is easy to prove that (f, λ) =((
0, 1, 0,−1

)
, 2 + 2p−1

)
is the second eigenpair of the eigenvalue problem

∆µf = λνf ,
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and that λ is a simple eigenvalue of the (µ, ν)-weighted linear eigenvalue problem,
i.e.:

λ1(µ, ν) < λ = λ2(µ, ν) < λ3(µ, ν) = λ4(µ, ν) =∞ .

Thus, if λ was a variational eigenvalue λ = λ′k(∆p), Lemma 4.4.6 would yield,
k ≤ 2. However from the characterization of the second eigenvalue in the previous
chapter (see Theorem 3.4.8) and Lemma 4.4.5 we know that λ can not be the
second variational eigenvalues. Otherwise λ should be the smallest eigenvalue
among the eigenvalues that are strictly bigger that the eigenvalue 0, nonetheless
the eigenvalue 2 is always between 0 and λ see Fig.4.1. Hence we can conlcude
that λ = 2 + 2p−1 is surely not a variational eigenvalue.

4.5 p-Laplacian eigenpairs as critical points of a class
of energy functions

In this section, using the equivalence of the p-Laplacian eigenvalue problem and
the constrained weighted Laplacian eigenvalue problem (4.2), we characterize
a set of p-Laplacian eigenpairs in terms of critical points of a family of energy
functions whose variables are densities on the edges and on the nodes of the graph.
To formalize some proofs, before considering the classical p-Laplacian eigenvalue
problem, we need to introduce the weighted (p, 2)-Laplacian eigenvalue problem
that can be of independent interest [15, 45, 74].

4.5.1 The (p, 2)-Laplacian eigenvalue problem

Let ν : V → R be a density on the node space of a graph G and consider the
(p, 2)-Rayleigh quotient,

Rp,2,ν(f) =
‖∇f‖pp
‖f‖p2,ν

=

1
2

∑
(u,v)∈E |∇f(uv)|p(∑
u∈V νu|f(u)|2

) p
2

,

AssumingRp,2,ν to be defined on the domain D0 we call its critical point equation,
the (p, 2)-Laplacian eigenvalue equation weighted in ν:{

(∆pf)(u) = λ νu ‖f‖p−2
2,ν f(u) ∀u ∈ V \B

f(u) = 0 ∀u ∈ B
, (4.17)

and we refer with λ(p, 2, ν) to indicate the (p, 2)-eigenvalues.
Observe that if f solves (4.17), we have the following equation ∀u ∈ V \B:∑

v∈V \B
v∼u

ωuv|∇f(v, u)|p−2(∇f(v, u)) +
(∑
v∈B
v∼u

ωpuv

)
|f(u)|p−2f(u) = λ νu ‖f‖p−2

2,ν f(u) .

(4.18)
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Moreover, as done for the p-Laplacian, we can define the (p, 2)-variational eigen-
values as follows. Let S2 = {f : ‖f‖2,ν = 1} and for any 1 ≤ k ≤ n consider the
Krasnoselskii family Fk(S2 ∩ D0) = {A ⊆ A ∩ S2 ∩ D0 | γ(A) ≥ k}, then

λk(p, ν) = min
A∈Fk

max
f∈A

Rp,2,ν(f)

defines the k-th variational eigenvalue of the (p, 2)-Laplacian. Next we provide
a quite classical charaterization of the first eigenpair

(
f1, λ1(p, ν)

)
of the (p, 2)-

Laplacian. The idea is very similar to the one used in [54] for the classical
p-Laplacian eigenvalue problem. We recall first the following maximum principle
from [77] that we use in the proof, whose proof is reported, for completeness, in
the appendix ThmA.0.2.

Theorem 4.5.1. Suppose that f and g satisfies

∆pf(u) + r(u)|f(u)|p−2f(u) ≥ ∆pg(u) + r(u)|g(u)|p−2g(u),

where r(u) ≥ 0 for any u in V . Then f(u) ≥ g(u) for any u ∈ V .

Then we can prove that the first eigenvalue is simple and positive and the
corresponding unique first eigenfunctions is the only eigenfunction that is strictly
greater than zero on all internal nodes. This is summerized in the following
theorem:

Theorem 4.5.2. Let G = (E, V, ω) be a connected graph with boundary, B. As-
sume (λ1, f1) to be a first eigenpair of the (p, 2)-Laplacian with Dirichlet boundary
conditions. Then λ1 ≥ 0 and f1(u) > 0 ∀u ∈ V . Moreover λ1 is simple and f1

is the unique eigenfunction strictly greater than zero on every internal node.

Proof. Let f1 be a minimizer of Rp,2,ν such that ‖f1‖2,ν = 1 . Observe that
Rp,2,ν(|f |) ≤ Rp,2,ν(f) with equality if and only if f = |f |, implies that f1

satisfies f1(u) ≥ 0 ∀u ∈ V \ B. Moreover if there exists u ∈ V \ B such that
f1(u) = 0 then, from (4.18), f1(v) = 0 for any v ∼ u and the connectedness of
the graph implies f1 = 0 which is a contradiction.

Now we can prove the second part of the theorem. Assume that there exists
a positive eigenfunction f2 > 0 such that Rp,2,ν(f2) = λ2 > λ1. Take t > 0 such
that

λ2f2(u) > tλ1f1(u) ∀u ∈ V \B and ∃u0 ∈ V \B s.t. tf1(u0) > f2(u0) .

Applying Theorem 4.5.1 to the functions tf1 and f2, we get a contradiction,
proving that positive eigenfunctions have to be associated to the first eigenvalue.
We are left to prove that λ1 is simple, i.e., the uniqueness of the corresponding
eigenfunction f1. Assume that there exist two positive eigenfunctions f1 and f2

relative to λ1 with ‖f1‖2,ν = ‖f2‖2,ν = 1. Then, the function

g(u) =
(
f2

1 (u) + f2
2 (u)

) 1
2 ,
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has 2-norm given by ‖g‖p2,ν = 2
p
2 , and its gradient satisfies:

‖∇g‖pp ≤ 2
p−2
2
(
‖∇f1‖pp + ‖∇f2‖pp

)
with equality holding if and only if ∇f1(u, v) = ∇f2(u, v) ∀(u, v) ∈ E. To prove
the last inequality, consider an edge (u, v) and use first the Cauchy Schwarz
inequality applied to the two vectors

(
f1(u), f2(u)

) (
f1(v), f2(v)

)
and then the

Jensen inequality applied to the function x 7→ |x|
p
2 :

|∇g(v, u)|p = ωpuv

∣∣∣(f1(u)2 + f2(u)2
) 1

2 −
(
f1(v)2 + f2(v)2

) 1
2

∣∣∣p
≤ ωpuv

∣∣∣(f1(u)− f1(v)
)2

+
(
f2(u)− f2(v)

)2∣∣∣ p2
≤ ωpuv2

p−2
2

(∣∣f1(u)− f1(v)
∣∣p +

∣∣f2(u)− f2(v)
∣∣p)

= 2
p−2
2
(
|∇f1(v, u)|p + |∇f2(v, u)|p

)
where, by convexity of the function |x|

p
2 , we have equality if and only if f1(u)−

f1(v) = f2(u)− f2(v). Then we have

λ12
p
2 = λ1‖g‖p2,ν ≤ ‖∇g‖

p
p ≤ 2

p−2
2
(
‖∇f1‖pp + ‖∇f2‖pp

)
= λ12

p
2

implying that for any edge f1(u)−f1(v) = f2(u)−f2(v) and thus, since ‖f1‖2,ν =
‖f2‖2,ν , f1 = f2.

4.5.2 Weigthed Laplacian equivalence

Similarly to the p-Laplacian eigenvalue problem discussed in Section 4.3.1, the
(p, 2)-Laplacian eigenvalue problem can be reformulated in terms of a constrained
weighted Laplacian eigenvalue problem. To this aim, we first look at the eigen-
value equation (4.18)∑
v∈V \B
v∼u

ωuv|∇f(v, u)|p−2(∇f(v, u)) +
(∑
v∈B

ωpuv

)
|f(u)|p−2f(u) = λ νu‖f‖p−2

2,ν f(u) .

Dividing both the terms by ‖f‖p−2
2,ν , it is straightforward to observe that (f, λ)

is an eigenpair of the (p, 2)-Laplacian if and only if (f, λ) is an eigenpair of the
constrained weighted Laplacian problem

∆µf(u) :=
∑

v∼u ωuvµuv∇f(v, u) = λνuf(u) ∀u ∈ V \B
f(u) = 0 ∀u ∈ B
µuv = |∇f(u,v)|p−2

‖f‖p−2
2,ν

≥ 0 ∀ (u, v) ∈ E
(4.19)
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4.5.3 Energy function of the first eigenpair of the (p, 2)-Laplacian

Given a density ν ∈M+(ν) on the node space, we introduce a convex energy func-
tion whose minimum can be proved to correspond to the unique first eigenapair of
the (p, 2) eigenvalue problem weighted in ν. The results and the techniques pre-
sented in this section are the starting point for the next paragraphs that address
the classical p-Laplacian eigenvalue problem.

Consider the energy function, written here for a fixed ν ∈M+(V ):

L1,E(µ, ν) =
1

λ1(µ, ν)
+ ME,p(µ) = sup

f

‖f‖22,ν
‖∇f‖22,µ

+
p− 2

2p

∑
(u,v)∈E

µ
p
p−2
uv

= sup
f

2
∑

u∈V νuf(u)2∑
(u,v)∈E µuv|∇f(uv)|2

+
p− 2

2p

∑
uv∈E

µ
p
p−2
uv

(4.20)

where ME,p(µ) := p−2
2p

∑
(u,v)∈E µ

p
p−2
uv . Since in this section we are assuming ν

to be fixed, to simplify the notation, we will write λ(µ) in place of λ(µ, ν) and
L1,E(µ) in place of L1,E(µ, ν) .

In what follows we will be using the following result about the differentiability
of the first eigenvalue of the Laplacian operator. This result is well-known [61]
and we report here only the special case of a generalized weighted Laplacian
matrix.

Lemma 4.5.3. Assume µ0 ∈ M+(E) and ν ∈ M+(V ) to be positive densities
on the edges and on the nodes (see Def4.3.1) and let ∆µ0 to be the weighted
generalized Laplacian matrix associated to the homogeneous Dirichlet boundary
problem on the graph G = (V,E, ω) with boundary B. Define λ1(µ0) to be the
1-st eigenvalue of the eigenvalue problem ∆µ0f = λνf , and assume ∆µ0 to be
not degenerate, then the subgradient of the function µ 7→ λ−1

1 (µ) in µ0 is given
by:

∂
(
λ−1

1 (µ0)
)

= Co

{
− |∇f |2

2λ1(µ0)2‖f‖22,ν
| ∆µ0f = λ1(µ0)νf

}
Where Co{·} denotes the convex hull.

Proof. The proof is a trivial consequence of the forumla for the subgradient of
the supremum of a family of convex functions (see Thm 4.4.2 [51]) which states
that, given φ(x) = supα∈A φα(x) with φα convex, A a compact and α → φα(x)
an upper semi continuous for any x in a neighborhood of x0, then

∂
(
φ(x0)

)
= Co{∂φα(x0) | α s.t. φα(x0) = φ(x0)} . (4.21)

In our case we have

λ−1
1 (µ) = sup

‖f‖2,=1

‖f‖22,ν
‖∇f‖22,µ
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Figure 4.2: A graph with non-simple first eigenvalue. Assume νu = 1 ∀u ∈
V \B, then the graph is symmetric and the first eigenfunction of ∆p, f1(∆p, ν),
is unique and necessarily agrees with the symmetry of the graph. This means
that ∇f1(3, 4) = 0 and thus the density µ0 = |∇f1|p−2 of eq.(4.19) is also zero on
the edge (3, 4) and splits G in two connected components. As a result λ1(µ0, ν)
is not simple.

with µ 7→ ‖f‖22,ν
‖∇f‖22,µ

differentiable in µ0 and

∂µ
‖f‖22,ν
‖∇f‖22,µ

(µ0) = −
|∇f |2‖f‖22,ν
2‖∇f‖42,µ0

.

Thus from (4.21), recalling that
‖f‖42

‖∇f‖42,µ0
= λ−2(µ0), we get the desired result:

∂
(
λ−1

1 (µ0)
)

= Co

{
− |∇f |2

2λ1(µ0)2‖f‖22,ν
| ∆µ0f = λ1(µ0)νf

}
.

We recall in particular that if the graph is connected and µ > 0 then λ1(µ) is
simple (see Theorem A.0.1). Otherwise the multiplicity of λ1(µ) can grow up to
the number of connected components of G = ∪Mi=1Gi and the eigenspace of λ1(µ)
is the span of the eigenvectors relative to every connected component. In other
words, if ∆µf = λ1(µ)νf ,

f ∈ span{f1,i i = 1, . . . ,M, s.t. ∆µf1,i|Gi = λ1(µ)νf1,i|Gi , f1,i(u) = 0 ∀u ∈ G\Gi}

We would like to remark that an edge with zero density can be removed from
the graph without changing the eigenfunction when we consider the constrained
weighted-Laplacian eigenvalue problem equivalent to the p-Laplacian eigenvalue
problem (4.19). Hence, the first eigenvalue may not be simple even for a connected
graph if µ ≥ 0. Figure 4.2 reports a simple example where this situation occurs.

The above result of Lemma 4.5.3 can be extended also to the higher eign-
values by means of the Clarke subdifferential of a locally Lipschitz function, see
[25, 27, 52]. Here, however, we limit our study of the higher eigenvalues to the
differentiable case. Assuming λk(µ) to be differentiable in a point µ0, in the next
Lemma we provide a trivial characterization of its derivative in the variable µ.
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Lemma 4.5.4. Let λk(µ) to be the k-th eigenvalue of ∆µ, the weighted generalized
Laplacian matrix associated to the homogeneous Dirichlet boundary problem on
the graph G = (V,E, ω) with boundary B. If λk(µ) is differentiable in µ0, then

∂µ

(
λ−1
k (µ)

)
(µ0) = − |∇fk|2

2λk(µ0)2‖fk‖22,ν
Proof. Observe first of all that if λk(µ) is differentiable in µ0 then λk(µ0) is simple
and thus fk is uniquely defined, see [61].By the chain rule it is enough to show
that

∂µuvλk(µ) =
∂µuv

(
fTk ∇Tdiag(µ)∇fk

)
2‖fk‖22,ν

=
|∇fk(u, v)|2

2‖fk‖22,ν
.

To prove the last equality, we differentiate both the terms of the eigenvalue equa-
tion with respect to µuv:

∂µuv

(
∆µfk

)
= ∂µuv

(
λkdiag(ν)fk

)
∂µuv

(
∆µ

)
fk + ∆µ∂µuv

(
fk
)

= ∂µuv
(
λk
)
diag(ν)fk + λkdiag(ν)∂µuv

(
fk
)
.

Then multiply both terms by fk and remember ∆µfk = ∆T
µfk = λkfk and ∆µ =

1
2∇

Tdiag(µ)∇

fTk ∂µuv
(
∆µ

)
fk + λkf

T
k ∂µuv

(
fk
)

= ∂µuv
(
λk
)
fTk diag(ν)fk + λkf

T
k diag(ν)∂µuv

(
fk
)

1

2
fTk ∇Tdiag(euv)∇fk = ∂µuv

(
λk
)
fTk diag(ν)fk

where euv is the characteristic function of the edge (u, v), this concludes the
proof.

Now we have all the instruments to study the critical points of the function
L1,E(µ) (4.20), we will show that it admits a unique minimum, µ∗, and that the
first eigenfunction of ∆µ∗ corrsponds to the unique first eigenpair of the (p, 2)-
Laplacian. Indeed, that the function L1,E(µ) (4.20) is a convex function on the
convex coneM+(E), hence it admits a unique minimum that can be characterized
by means of Lemma 4.5.3.

Theorem 4.5.5. Given νu ∈ M+(V ) such that νu > 0 ∀u ∈ V \ B, let µ∗ be a
minimizer of L1,E(µ) on M+(E). Then there exists f1(µ∗) such that

∆µ∗f1(µ∗) = λ1(µ∗)νf1(µ∗)

µ∗ =
|∇f1(µ∗)|p−2

λp−2
1 (µ∗)‖f1(µ∗)‖p−2

2,ν

.

In particular
(
f1(µ∗), λp−1

1 (µ∗)
)
, is the first (p, 2)-eigenpair,

(
f1(µ∗), λp−1

1 (µ∗)
)

=(
f1(p, ν), λ1(p, ν)

)
. Moreover

L1,E(µ∗) =
2p− 2

p
λ
− 1
p−1

1 (p, ν)
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Proof. We first observe that, necessarily, ∆µ∗ is a non singular matrix. Indeed,
if this was the case we would have λ1(µ∗) = 0 and thus Lµ∗ =∞, implying that
µ∗ is not a minimizer. Then, from [24], we know that the minimizer µ∗ of the
constrained problem has to satisfy the following KKT system of equations

0 ∈ ∂CL1,E(µ∗)−
∑

uv cuveuv

cuvµ
∗
uv = 0 ∀(u, v) ∈ E

cuv ≥ 0 ∀(u, v) ∈ E

where euv is the characteristic function of the edge (u, v) and {cuv} is a family of
edge-wise Lagrange multipliers. Using lemma 4.5.3 we get

0 ∈ Co
{
− |∇f(u, v)|2

2λ2
1(µ∗)‖f‖22,ν

}
+
µ∗uv

2
p−2

2
−
∑
uv

cuveuv

∆µ∗f = λ1(µ∗)νf

cuvµ
∗
uv = 0 ∀(u, v) ∈ E

cuv ≥ 0 ∀(u, v) ∈ E

(4.22)

In the case in which µ∗ does not disconnect the graph, λ1(µ) is differentiable in
µ∗, and thus the proof trivially follows from Lemma 4.5.3 since

Co
{
− |∇f(u, v)|2

2λ2
1(µ∗)‖f‖22,ν

∣∣∣ ∆µ∗f = λ1(µ∗)νf
}

= − |∇f∗1 (u, v)|2

2λ2
1(µ∗)‖f∗1 ‖22,ν

where f∗1 is the only eigenvector associated to λ1(µ∗) . Assume now that the graph
has been disconnected by the zeros of µ∗ and consider an edge, (u0, v0) ∈ E, such
that µ∗u0v0 = 0. Let G : E → R− and c : E → R+ be, respectively, the element
in the subgrandient of λ−1

1 (µ∗) and the Lagrange multiplier that satisfies (4.22).
Then we have G(u0, v0) = cu0v0 = 0. Now we claim that if G is zero on all
the edges where µ∗ is zero, necessarily G is an extremal point of the convex set
∂C(λ−1

1 (µ∗)), i.e., there exists an eigenfunction f1(µ∗) such that

G = − |∇f1(µ∗)|2

2λ1(µ∗)‖f1(µ∗)‖2,ν

The last claim follows by recalling that, if the graph has been disconnected by the
zeros of µ∗, G = ∪iGmi=1 and the multiplicity of λ1(µ∗) can increase up to the num-
ber, m, of connected components of G. Moreover, the corresponding eigenspace
is generated by the eigenvectors relative to every connected component. This
means that if ∆µg = λ1(µ)νg,

g ∈ span{f1,i i = 1, . . . ,m, s.t. ∆µf1,i|Gi = λ1(µ)νf1,i|Gi , f1,i(u) = 0 ∀u ∈ G\Gi}

Now, (4.22) ensures that for any µ∗uv 6= 0 |∇f(u, v)|2 6= 0, which implies that
f1,i 6= 0 ∀i = 1, . . . ,m, i.e., the multiplicity of λ1(µ∗) is exactly equal to m. Thus,
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up to rescaling, there can exist only one linear combination f1 ∈ span{f1,i} such
that ∇f1(u, v) = 0 for all edges (u, v) where µ∗uv = 0. This in particular means
that if

G(u, v) ∈ Co
{
− |∇f(u, v)|2

2λ2
1(µ∗)‖f‖22,ν

∣∣∣ ∆µ∗f = λ1(µ∗)νf
}

and G(u, v) = 0 ∀(u, v) s.t. µ∗uv = 0, necessarily

G = − |∇f1(u, v)|2

2λ2
1(µ∗)‖f1‖22,ν

,

concluding the proof of the claim. It follows that equation (4.22) can be written
as: 

µ∗ =
|∇f1|p−2

λp−2
1 (µ∗)‖f1‖p−2

2,ν

∆µ∗f1 = λ1(µ∗)νf1

that reads∑
v∈V
v∼u

ωuv|∇f1(v, u)|p−2
(
∇f(v, u)

)
= λ1(µ∗)p−1‖f1‖p−2

2,ν νf1(u) ∀u ∈ V (4.23)

From equation (4.23) it is straightforward to observe that the pair
(
f1(µ∗), λp−1

1 (µ∗)
)
,

associated to the critical weight µ∗, corresponds to an eigenpair of the (p, 2)-
Laplacian. Moreover

f1(µ∗) > 0 ∀u ∈ V \B

beacause it is the first eigenfunction of a Laplacian opertator. Thus, following
Theorem 4.5.2,

(
f1(µ∗), λp−1

1 (µ∗)
)

is necessarily the first eigenpair of the (p, 2)-

Laplacian, λp−1
1 (µ∗) = λ1(p, ν). To conclude, we observe that

L1,E(µ∗) = λ
− 1
p−1

1 (p, ν) +
p− 2

2p

∑
uv∈E

µ∗uv
p
p−2

=
1

λ
1
p−1

1 (p, ν)

+
p− 2

p

λ1(p, ν)

λ
p
p−1

1 (p, ν)
=

2p− 2

p
λ
− 1
p−1

1 (p, ν) .

4.5.4 The p-Laplacian eigenvalue problem

In this section we discuss the more classical (p, p)-Laplacian eigenvalue problem
as presented in section 4.2 (we will refer to it just as the p-Laplacian eigenvalue
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problem). We recall that it corresponds to the study of the critical points and
values of the p-Rayleight quotient:

Rp(f) =
‖∇f‖pp
‖f‖pp

=

1
2

∑
(u,v)∈ω |∇f(u, v)|p∑

v∈V |f(v)|p
,

or, in other terms, the p-Laplacian eigenvalue equation reads:{
∆pf(u) =

∑
v∼u ωuv|∇f(v, u)|p−2∇f(v, u) = λ|f(u)|p−2f(u) ∀u ∈ V \B

f(u) = 0 ∀u ∈ B
.

(4.24)
As in the case of the (p, 2)-Laplacian eigenvalue problem, the same characteriza-
tion of the first eigenpair, (f1(p), λ1(p)), carries over directly to the (p, p) case,
see Theorem 4.4.2. Thus λ1(p) is a simple eigenvalue and f1(p) is the only p-
Laplacian eigenfunction to be strictly positive on all the internal nodes of the
graph.

Analogously, the equivalence of the p-Laplacian eigenvalue problem with a
generalized linear eigenvalue problem carries over directly, see 4.3. Thus we say
that (f, λ) is an eigenpair of the p-Laplacian, i.e., satisfies eq.(4.24), if and only
if (f, λ) is an eigenpair of the constrained weighted Laplacian Dirichlet problem

∆µf(u) =
∑
v∼u

µuvωuv∇f(v, u) = λνuf(u) ∀u ∈ V \B

f(u) = 0 ∀u ∈ B
µuv = |∇f(u, v)|p−2 ∀(u, v) ∈ E
νu = |f(u)|p−2 ∀u ∈ V \B

Observe that, alternatively, we can write (4.24) as a constrained weighted (p, 2)-
Laplacian eigenvalue problem, halving the number of free variables:

∆pf(u) = λν0u‖f‖p−2
2,ν f(u) ∀u ∈ V \B

νu =
|f(u)|p−2

‖f‖p−2
2,ν0

∀u ∈ V \B

f(u) = 0 ∀u ∈ B

.

4.5.5 Energy function of the first eigenpair of the p-Laplacian

In section 4.5.3 we have proved that, given a weight function on the nodes ν,
it is possible to characterize the first eigenpair of the (p, 2)-Laplacian eigenvalue
problem weighted in ν by the minimizer µ∗ν of the function L1,E(µ) (see eq.
(4.20)). We can analogously introduce an energy function only of the variable ν
as follows:

L1,V (ν) =
2(p− 1)

p
λ
− 1
p−1

1 (p, ν)− p− 2

p

∑
u∈V \B

ν
p
p−2
u .
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Observe that for any non singular ν, from Theorem 4.5.5, we have the following
equality:

L1,V (ν) = L1,E(µ∗ν , ν)−MV,p(ν)

where MV,p(ν) := p−2
p

∑
u∈V \B ν

p
p−2
u . We want to show that the only critical point

of this function corresponds to the first eigenpair of the p-Laplacian. However,
before taking derivatives, we have to prove sufficient regularity of the function
ν 7→ λ1(p, ν). Similar results have been proved for the regularity of the first
p-Laplacian eigenfunction with respect to perturbations of the domain (see [64]).

Lemma 4.5.6. The function λ1 : ν 7→ λ1(p, ν) is continuous together with its
first derivativer, i.e., λ1(p, ·) ∈ C1(M+(V ),R), where M+(V ) = {ν : V \ B →
R|νu ≥ 0}. Moreover

∂λ1

∂ν
(p, ν0) = −p

2

λ1(p, ν0)|f0|2

‖f0‖22,ν

Proof. In the proof we write λ1(ν) to denote λ1(p, ν). Consider the function

R(f, ν) :=
‖∇f‖pp
‖f‖p2,ν

=
1
2

∑
uv∈E |∇f(uv)|p(∑

u∈V \B νu|f(u)|2
) p

2

Recall that, given ν, the fist eigenvalue is characterized by

λ1(ν) := min
f
R(f, ν) = R(fν , ν) .

The function that associates to a density ν the corresponding first eigenfunction,
, fν , of the (p, 2)-Laplacian weighted in ν, with ‖fν‖2,ν = 1 is well defined by
Theorem 4.5.2 and continuous by the continuity of the minimizers. Observe also
that given a density ν0 and considered the corresponding first eigenfunction fν0 ,
from Theorem 4.5.2 we know that fν0(u) > 0 ∀u ∈ V \ B. Now consider the
variation of λ1 near a point ν0, where we use the notation f0 := fν0

λ1(ν0)− λ1(ν) = R(f0, ν0)−R(fν , ν)

≤ R(fν , ν0)−R(fν , ν) = ∂νR(fν , ν0)(ν0 − ν) + o
(
‖ν0 − ν‖

)
which means

⇒ lim sup
ν→ν0

(
λ1(ν0)− λ1(ν)− ∂νR(f0, ν0)(ν0 − ν)

)
≤ lim sup

ν→ν0

(
∂νR(fν , ν0)− ∂νR(f0, ν0)

)
(ν0 − ν) = 0

Similarly observe that

λ1(ν0)− λ1(ν) = R(f0, ν0)−R(fν , ν)

≥ R(f0, ν0)−R(f0, ν) = ∂νR(f0, ν0)(ν0 − ν) + o
(
‖ν0 − ν‖

)
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i.e.
⇒ lim inf

ν→ν0
λ1(ν0)− λ1(ν)− ∂νR(f0, ν0)(ν0 − ν) ≥ 0 .

Thus we get

∂νλ1(ν0) = ∂νR(f0, ν0) = −p
2

λ1(ν0)|f0|2

‖f0‖22,ν

Because of lemma 4.5.6 we know that L1,V ∈ C1(M+(ν),R) and hence we
can study its critical points. It turns out that, if µ∗, maximizer of L1,V (ν), is
nonzero, then there is only one critical point, as the following theorem asserts

Theorem 4.5.7. Let ν∗ be a maximizer of the function L1,V (ν) and
(
λ1(p, ν∗), fν∗

)
be the first eigenpair of the correspondingg weighted (p, 2)-Laplacian. Then

(
λ

p
2(p−1)

1 (p, ν∗), fν∗
)

is the first eigenpair of the p-Laplacian. Moreover ν∗ belongs to the interior of
M+(V ), i.e.,

ν∗ ∈ {ν : V \B → R | νu > 0 ∀u ∈ V \B} ,

and not other internal critical points of the function L1,V (ν) exist.

Proof. Thanks to Lemma 4.5.6 we have

∂L1,V

∂ν
(ν) = λ

− 1
p−1 (p, ν)

|fν |2

‖fν‖22,ν
− ν

2
p−2

Then considering the KKT conditions for the maximum constrained problem we
get that, if ν∗ is a maximizer, there exist a family of Lagrange multiplier {cu}u∈V
such that 

λ
− 1
p−1

1 (p, ν∗)
|fν∗(u)|2

‖fν∗‖22,ν∗
− ν∗u

2
p−2 + cu = 0 ∀u ∈ V

cuν
∗
u = 0 ∀u ∈ V

cu ≥ 0 ∀u ∈ V
∆pfν∗ = λ1(p, ν∗)‖fν∗‖p−2

2,ν∗νfν∗

(4.25)

Observe that the first three equations necessarily imply

ν∗u = λ
− p−2

2(p−1)

1 (p, ν∗)
|fν∗(u)|p−2

‖fν∗‖p−2
2,ν∗

. (4.26)

Replacing (4.26) in the last of (4.25), we obtain

∆pfν∗ = λ1(p, ν∗)‖fν∗‖p−2
2,ν∗λ

− (p−2)
2(p−1)

1 (p, ν∗)
|fν∗ |p−2

‖fν∗‖p−2
2,ν∗

fν∗ = λ1(p, ν∗)
p

2(p−1) |fν∗ |p−2fν∗ .

(4.27)
Observe now that, since fν∗ is the first (p, 2)-Laplacian eigenfunction, Theorem
4.5.2 ensures that fν∗(u) > 0 for all u ∈ V \ B, and thus, by (4.26), ν∗ is an
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internal point of the domainM+(V ). Moreover, from Theorem 4.4.2 and (4.27),(
λ

1
2(p−1)

1 (p, ν∗), f∗ν
)

is necessarily the first p-Laplacian eigenpair. We conclude
by observing that, other internal critical points of the function L1,V (ν) would
correspond to other critical points of the p-Rayleigh quotient. This would corre-
spond to a first eigenvalue of the p-Laplacian with multiplicity greater than one,
contraddicting the result of Theorem 4.4.2.

We would like to remark that, by Theorems 4.5.7 and 4.5.5, the point (µ∗, ν∗)
satisfies:

(µ∗ν∗ , ν
∗) = arg max

ν∈Int(M+(ν))

arg min
µ∈M+(µ)

1

λ1(µ, ν)
+ Mp(µ)−Mp(ν)

Thus (µ∗ν∗ , ν
∗) is the only, possibly non-differentiable, saddle point of the function

E1 ∈ C(Int(M+(V ))×M+(E),R)

E1(µ, ν) :=
1

λ1(µ, ν)
+ ME,p(µ)−MV,p(ν) . (4.28)

In particular we can state the following

Theorem 4.5.8. Assume (µ∗, ν∗) to be a saddle point of the energy function
E1(µ, ν) and let

(
λ1(µ∗, ν∗), f1(µ∗, ν∗)

)
be the first eigenpair of the Laplacian

eigenvalue problem weighted in (µ∗, ν∗), then
(
λ
p
2
1 (µ∗, ν∗), f1(µ∗, ν∗)

)
is the first

p-Laplacian eigenpair.

Proof. The proof follows directly from Theorems 4.5.5 and 4.5.7.

4.5.6 The other eigenpairs

Recalling (4.5.4), it is clear that any eigenpair of the p-Laplacian can be seen as an
eigenpair of a constrained weighted linear Laplacian. Hence to any p-Laplacian
eigenvalue we can associate the index of the corresponding linear eigenvalue.
Then, it is natural to consider energy functions similar to (4.28) but with eigen-
values of higher order in place of λ1(µ, ν), i.e.:

Epk (µ, ν) :=
1

λk(µ, ν)
+ ME,p(µ)−MV,p(ν) , (4.29)

where λk(µ, ν) is the k-th eigenvalue of the weighted laplacian eigenvalue problem∆µ0fk(u) =
∑
v∼u

µ0uvωuv∇fk(v, u) = λk(µ, ν)ν0ufk(u) ∀u ∈ V \B

fk(u) = 0 ∀u ∈ B
,

and we recall the definitions

MV,p(ν) :=
p− 2

p

∑
u∈V \B

ν
p
p−2
u , and ME,p(µ) :=

p− 2

2p

∑
(u,v)∈E

µ
p
p−2
uv .
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In the following of the chapter, since we are not interested in varying p, we omit
the superscript p in the definition of Epk .

For the eigenpairs beyond the first one there are no results similar to the
one provided by Theorem 4.5.8. However, under the assumption of regularity
and differentiability we can prove that saddle points of the energy functions in
equation (4.29) correspond to eigenpairs beyond the first one. Indeed, observe
that the energy functoins in equation (4.29) for k > 1 are continuous in Ω =
Int(M+(E)) × M+(V ) ∪ M+(E) × Int(M+(V )) but may loose continuity in
both µ ∈ ∂M+(E) and ν ∈ ∂M+(V ) (where ∂M+(E) and ∂M+(V ) denote the
boundary ofM+(E) andM+(E)) as in this case the eigenvalues may no longer be
continuous [53]. Moreover the functions Ek(µ, ν) are not differentiable whenever
λk(µ, ν) is not simple. Avoiding these degenerate situations it is possible to prove
that any smooth saddle point of Ek(µ, ν) corresponds to a p-Laplacian eigenpair.
We collect this result in the form of a theorem as follows.

Theorem 4.5.9. Let (µ∗, ν∗) ∈ Ω be a smooth saddle point of the function

Ek(µ, ν). Then
(
λ
p
2
k (µ∗, ν∗), fk(µ

∗, ν∗)
)

is a p-Laplacian eigenpair.

Proof. To simplify the notation in this proof we denote
(
λk(µ

∗, ν∗), fk(µ
∗, ν∗)

)
by (λ, f). The saddle point equation of the energy function Ek(µ, ν), thanks to
Lemma 4.5.4, reads:



− |∇f(u, v)|2

2λ2(µ∗, ν∗)‖f‖22,ν∗
+
µ∗uv

2
p−2

2
− cuv = 0 ∀(u, v) ∈ E

|f(v)|2

‖∇f‖22,µ∗
− ν∗v

2
p−2 + sv = 0 ∀v ∈ V

cuvµ
∗
uv = 0 ∀(u, v) ∈ E

cuv ≥ 0 ∀(u, v) ∈ E
svν
∗
u = 0 ∀v ∈ V

sv ≥ 0 ∀v ∈ V
∆µ∗f = λν∗f

(4.30)

where {cuv}(u,v)∈E and {sv}v∈V are suitable families of Lagrange multipliers.
observe that if µ∗uv = 0, since cuv ≥ 0, the equation

− |∇f(u, v)|2

2λ2(µ∗, ν∗)‖f‖22,ν∗
− cuv = 0

admits only the solution ∇f(u, v) = 0, cuv = 0 . Analogously ν∗v = 0 implies
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f(v) = sv = 0. Hence equation (4.30) yields:

µ∗ =
|∇f |p−2

λp−2‖f‖p−2
2,ν∗

ν∗ =
|f |p−2

‖∇f‖p−2
2,µ∗

∆µ∗f = λν∗f

. (4.31)

Now we can write:

µ∗ = cµ|∇f1|p−2 ν∗ = cν |f1|p−2 , (4.32)

and, from (4.31) we immediately obtain{
cµ = λ2−p

1 ‖f‖2−p2,ν∗

cν = ‖∇f‖2−p2,µ∗
. (4.33)

Finally, divide the second equation in (4.33) by the first one to yield

cν
cµ

= λp−2
1

( ‖f1‖22,ν∗
‖∇f1‖22,µ∗

) p−2
2

= λ
p−2
2

1 . (4.34)

Replacing (4.32) in the last equation of (4.31), dividing by cµ, and using (4.34),
we obtain ∑

v∼u
ωuv|∇f(v, u)|p−2∇f(v, u) = λ

p
2 |f(u)|p−2f(u) .

That concludes the proof.

4.5.7 Numerical Aspects

In this final section of the chapter we discuss how the results of the above The-
orems 4.5.9 and 4.5.8 can be used to effective numerical algorithms to compute
p-Laplacian eigenpairs. The key idea is to define gradient flows for the functions
Ek(µ, ν). However, we face the problem of the lack of regularity of the functions
Ek(µ, ν) in case of eigenvalues with multiplicity greater than 1. Nevertheless, our
preliminary numerical results show that the developed schemes actually deliver
acceptable results in most situations. In the following we describe the methods
and discuss some benefits and drawbacks.

4.5.8 Gradient flows

We would like to start this section by noticing that computing the saddle points of
the functions Ek(µ, ν) is a constrained critical point problem. To avoid adding the
positivity constraints our numerical schemes we perform the change of variable
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µ = σ2
1 and ν = σ2

2. Using the new variables, the functions Ek(σ2
1, σ

2
2) become well

defined everywhere in R|E| × R|V |. We thus define a dynamics for the variables
(µ, ν) as the gradient flow in the variables σ1 and σ2 i.e.

µ̇ = 2σ1σ̇1 = −2σ1
∂EK(σ2

1, σ
2
2)

∂σ1
= −4σ2

1

∂EK(µ, ν)

∂µ
= −4µ

∂EK(µ, ν)

∂µ

and analogously

ν̇ = 4ν
∂EK(µ, ν)

∂ν
.

Writing explicitly the partial derivatives and neglecting constant multiplicative
factors we end up with the following gradient flow system:

µ̇ = µ
( |∇f |2
λk(µ,ν)‖f‖2ν

− µ
2
p−2
)

ν̇ = ν
(
|f |2
‖∇f‖2µ

− ν
2
p−2

)
∆µf = λk(µ, ν)f

.

The system of algebraic-differential equations is discretized by means of a
simple explicit Euler method with an empirically-determined constant time step
size, t. The third (purely algebraic) equation is solved by diagonalizing the µ-
weighted linear Laplacian by means of standard blas-like methods. Given the
value of k and the initial values µ0

k and ν0
k , for n = 0, 1, . . . the final scheme takes

on the form:

∆µnk
f = λnk(µnk , ν

n
k )f

µn+1
k = µnk + tµnk

(
|∇f |2

(λnk)2‖f‖2νnk
− (µnk)

2
p−2

)
νn+1
k = νnk + tνnk

(
|f |2

‖∇f‖2µnk
− (νnk )

2
p−2

)
.

Convergence towards equilibrium is considered achived when the error

err = ‖∆pfk(t)− λ
p
2
k (t)|fk(t)|p−2fk(t)‖∞ (4.35)

is below a given tolerance.
Figure 4.3 shows the experimental results obtained on a graph of 49 vertices

with weights randomly chosen between 0.1 and 1.1. The graph is plotted by
distributing the nodes randomly in space with edge lengths equal to the recip-
rocal of the weights. The results are relative to a value of p = 6. The first 6
eigenfunctions (left panels) and relative convergence behaviour are reported. We
note that convergence towards equilibrium for k = 1 and k = 2 is smooth and
fast. However, for k = 3 strong oscillations when the error reaches 10−4 appear
and convergence is completely absent. For k > 3 the initial oscillations disappear
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Figure 4.3: Left panel: first six eigenfunctions as calculated by the proposed
method for p = 6. The graph nodes are randomly distributed with edge lengths
equal to the reciprocal of the weights. The nodal values of the eigenfunctions are
plotted with the color-code shown on the right of the figure for k = 1, . . . , 6 (top
to bottom). For each k the right panel reports the behavior of the error defined
in eq.(4.35) as a function of time steps (iterations) n.
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quickly and convergence of the discrete gradient flow proceeds smoothly after
that.

We must recall here that for k = 1 Theorem 4.5.8 ensures that the energy
function E1 has only one saddle point and the proposed algorithm is expected to
converge. However, for k > 1 nothing is known. In particular, if the eigenvalues
are not simple, the energy function loses continuity, and the ODE trajectories
identified by the gradient flow intersect, potentially leading to an oscillatory be-
haviour of the discrete method.

For k = 3 the initial oscillations clearly noticeable in the convergence profile
are due to the jumping back and forth between energy levels relative to different
values of k of the numerically calculated trajectories. In this case the gradient
flow stagnates. In other cases we observe experimentally an oscillatory behaviour
which actually converges towards stationarity. This behaviour can be justified
empirically postulating that the time step becomes large enough to jump over
the discontinuity point and, by chance the numerical scheme picks an appropriate
trajectory and carries the calculations to convergence. However, unlike in the
linear (p = 2) case, we have no means at the moment to identify the position in
the spectrum towards which we converge.

4.5.9 Final Considerations

We have observed in section 4.3 that every p-Laplacian eigenpair can be consid-
ered as a linear eigenpair of a properly weighted Laplacian eigenproblem. Using
such a characterization in this section we have introduced a class of energy func-
tions whose “smooth” saddle points correspond to p-Laplacian eigenpairs. Nev-
ertheless, except for the first eigenpair of ∆p (Theorem 4.5.8), not all of the other
eigenpairs can be found as saddle points of one of these functions. Indeed, first
of all, there exist p-Laplacian eigenvalues that are not simple eigenvalues of the
corresponding weighted Laplacian eigenvalue problem, see Fig 4.2. In addition
there are also p-Laplacian eigenpairs that correspond to smooth critical points of
the relevant energy function without, however, being saddle points, i.e. minima
in µ and maxima in ν. Considering the proof of Theorem 4.5.9 it is indeed clear
that if (µ∗, ν∗) is a smooth critical point of Ek such that µ∗uv > 0 ∀(u, v) ∈ E and

ν∗u > 0 ∀u ∈ V , then
(
λ
p
2
k (µ∗, ν∗), fk(µ

∗, ν∗)
)

is a p-Laplacian eigenpair. On the
other hand, in the case of a partial degenerate µ∗, ν∗, the KKT conditions for
extremal values that are not min max do not necessarily imply that the optimizer
corresponds to a p-Laplacian eigenpair (but they do not exclude this possibility
either).

We devote the remaining part of this paragraph to show that such situations
can actually occur. To simplify the problem, let us fix the ν-variable and reduce
the problem to finding the minimum in µ i.e. consider the functions Lk,E(µ) =

1
λ3(µ,ν) +Mp(µ). Their smooth minimizers correspond to eigenvalues of the (p, 2)-

Laplacian weighted in ν. In particular, as for L1,E , it can be proved that, given µ∗
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1 2

3

� f∗ = (1, 1,−2
1
p−1 ), λ∗ = (1 +

2
1
p−1 )p−1

Figure 4.4: Simple example of a case where the p-Laplacian eigenpair does not
correspond to a saddle point of any of the energy functions Ek, k = 1, . . . , n. Here
the lengths are all unitary, i.e.: ωuv = 1 ∀(u, v) ∈ E

a smooth minimizer of Lk,E , the pair
(
λ

1
p−1

k (µ∗, ν), fK(µ∗, ν)
)

is a (p, 2)-eigenpair,
(simply repeat the proof of Theorem 4.5.9 letting ν to be fixed).

Consider now the graph and the eigenpair in Figure 4.4, and let

µ =

∣∣∣∇f∗∣∣∣p−2

‖f∗‖p−2
p λ∗

p−2
p−1

, and ν =
|f∗|p−2

‖f∗‖p−2
p

,

A simple calculation shows that (f∗, λ∗
1
p−1 ) satisfies the eigenvalue problem

∆µf = λνf .

Moreover from a numerical computation we obtain that (λ∗)
1
p−1 = λ3(µ, ν) is

a simple eigenvalue. Thus, we deduce that (f∗, λ∗
1
p−1 ) should correspond to a

critical point of the energy function L3,E .
However, we can prove that ir is not a minimizer of L2,E . To this aim, we

compute the Hessian matrix of L3,E . The gradient of L3,E (Lemma 4.5.4) is given
by

∂
(
L3,E(µ)

)
∂µuv

= − |∇f3(u, v)|2

2λk(µ, ν)2‖f3‖22,ν
+

1

2
µ

2
p−2
uv .

Now before going into the computation of the Hessian observe that we need the
derivative of fk with respect to µ. Start from the derivative of the eigenvalue
equation

∂(∆µ)

∂µ
f3 + ∆µ

∂(f3)

∂µ
=
∂(∆µf3)

∂µ
= ν

∂(λ3f3)

∂µ
=
∂λ3

∂µ
νf3 + λ3ν

∂f3

∂µ
,

then recall that the (µ, ν)-eigenfunctions are a basis of R|V | and thus we can
express ∂f3/∂µ =

∑3
i=1 αifi as a linear combination of the eigenfunctions. As-

suming ‖fi‖ν = 1 ∀i, multiply both the terms by a generic eigenfucntion fi to
yield: 〈

fi,
∂∆µ

∂µ
f3

〉
+
〈
fi,∆µ

∂f3

∂µ

〉
=
∂λ3

∂µ

〈
fi, νf3

〉
+ λ3

〈
fi, ν

∂f3

∂µ

〉
.
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Recalling that ∆µ is a symmetric matrix, 〈fi, νf3〉 = δi,3, we obtain

(
λi − λ3

)〈
fi, ν

∂f3

∂µ

〉
= −

〈
∇fi,

∂
(
diag(µ)

)
∂µ

∇f3

〉
i 6= 3.〈

f3, ν
∂f3

∂µ

〉
= 0

i.e.
∂f3

∂µuv
=

2∑
i=1

(
∇fi(u, v),∇f3(u, v)

)
(λ3 − λi)

fi .

Using the last expression for the derivative of the eigenvectors we can derive the
expression of the Hessian matrix of L3,E ,

∂2L3,E

∂µe1∂µe2
(µ) =

|∇f3(e1)|2|∇f3(e2)|2

λ3
3

− 1

λ2
3

2∑
i 6=1

(
∇fi(e1)∇f3(e1)

)(
∇fi(e2)∇f3(e2)

)
λ3 − λi

+
1

p− 2
µ

4−p
p−2
e1 δe1,e2

where e1 and e2 denote two edges (u1, u2) and (v1, v2) and we are assuming
‖fi‖ν = 1 ∀i = 1, . . . , 3.

Now, if we consider the case p = 4, a trivial numerical computation of the

eigenvalues of
∂2L3,E
∂µe1∂µe2

(µ) with f3 = f∗/‖f∗‖ν returns the values

λ1 = −0.5874, λ2 = 1, λ3 = 3

revealing the nature of saddle point and not minimizer of the point µ.
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5 The Graph Infinity Laplacian
Eigenvalue Problem

5.1 Introduction

In this chapter we discuss the infinity Laplacian eigenvalue problem. The topic
has been largely addressed in the continuous setting [9, 39, 57, 58, 68, 89]. How-
ever, to the best of our knowledge, the discrete case has never been discussed
before. The interest to the study of this problem is twofold, on one hand we
remind that solutions of p-Laplacian equations, for large or infinite values of p,
play a fundamental role in various applications like L1 optimal transport prob-
lems [40], semisupervised learning [36, 82] and image manipulation and [1, 38].
On the other hand the results proved in the continuous setting show that the
infinity eigenpairs encode topological information about the domain, it is thus
natural to investigate analogous results in the discrete setting where such results
could find applications in data analysis and machine learning. The main difficul-
ties in the study of the infinity Laplacian eigenvalue problem are due to the lack
of differentiability of the ∞-norm. This fact makes it necessary to generalize to
the nonsmooth case the approaches and methods used to study the p-Laplacian
eigenpairs. If we remind that the p-Laplacian eigenpairs are defined as the critical
points/values of the Rayleigh quotient Rp(f) = ‖∇f‖∞/‖f‖∞, it is clear that
also defining the∞-eigenpairs needs some work and open some problems. Indeed,
different generalizations of the notion of p-eigenpair lead to different notions of
∞-eigenpairs and this fact opens the problem of comparing these formulations
and discussing the pros and cons of each one of them. For example, in the contin-
uous setting, the study of the infinity eigenpairs, started from Lindqvist, Juutinen
et al. [57, 58], is based on the study of the solutions of the limiting p-Laplacian
eigenvalue equation when p goes to infinity. This, however, is completely differ-
ent from the approach used to study the 1-Laplacian eigenvalue problem [20, 50]
which is based on the idea of a generalized critical point theory for nonsmooth
functionals as R1. Considering this second approach with the functional R∞ we
get a completely different notion of infinity eigenpairs defined as the generalized
critical points and values of R∞. This second approach has been recently ad-
dressed in [16, 17] to study the minimizers of ‖f‖∞ in L∞ and in L2. In this
chapter we face both the approaches in the discrete setting. In particular in sec-
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tion 5.3, using the first approach we define the limiting eigenpairs and we extend
to the discrete case the results obtained by Lindqvist, Juutinen et al. Section
5.4, instead, is devoted to the discussion of the second approach, here we define
the subgradient infinity eigenpairs and the variational infinity eigenpairs which
are a subset of the subgradient infinity eigenvalues. Moreover in section 5.4 we
provide a comparison between the two different formulations of ∞-eigenapairs in
the graph setting. In particular we prove, first of all, that the variational infin-
ity eigenpairs satisfy the same approximation properties owned by the limiting
variational eigenpairs [57, 58] and secondly that the ∞-limit eigenvalue prob-
lem, section 5.3, is “stronger” than the generalized critical point theory for R∞,
section 5.4, in the sense that any limiting eigenpair is also subgradient infinity
eigenpair. Finally, we devote section 5.5 to the reformulation of the generalized
critical point problem of R∞ in terms of a constrained linear weighted Lapla-
cian eigenvalue problem and finally to the characterization of the first infinite
eigenpairs as saddle points of a smooth energy function. From this discussion we
observe that, on one hand the infinity limit eigenvalue problem seems more inter-
esting than the subgradient infinity eigenvalue problem, indeed it is “stronger”
and encodes the same geometrical informations about the graph. On the other
hand, the subgradient infinity eigenvalue problem allows a reformulation in terms
of a constrained linear eigenvalue problem which is more easily feasible to be faced
from a numerical point of view.

In more detail in section 5.3 we consider the limit of p-Laplacian eigenpairs
and we prove that any accumulation point (f,Λ) solves the system of equations

0 =


min{‖(∇ωf)(u)‖∞ − Λf(u) , ∆∞f(u)} if f(u) > 0

∆∞f(u) = 0 if f(u) = 0

max{−‖(∇ωf)(u)‖∞ − Λf(u) , ∆∞f(u)} if f(u) < 0

, (5.1)

while it is not in general true the inverse. Moreover we prove that if (fk,Λk) is an
accumulation point of the sequence of the sets of the k− th variational eigenpairs
of the p-Laplacian, we have that

Λk ≤
1

Rk
,

where Rk is the maximal radius that allows to inscribe k distinct balls in the
graph ( following [49], Rk can be named the k-th packing radii of the graph).
Moreover, denoting by N (fk) the number of nodal domains induced by fk, we
can prove that

1

RN (fk)
≤ Λk ,

leading to the identity:

Λk =
1

Rk
if k = 1, 2 .
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In section 5.4, we consider the subgradient eigenvalue problem

0 ∈ ∂‖∇f‖∞ ∩ Λ∂‖f‖∞

to define the ∞-variational eigenvalues Λk and we again prove that

Λk ≤
1

Rk
and Λk =

1

Rk
if k = 1, 2 .

Then, we compare the two formulations and, using a geometrical characteriza-
tion of the eigenvalues and eigenfunctions, we prove that the first formulation
is stronger than the second. In addition, we can prove that any solution of the
second formulation, up to considering a subgraph, solves the limit equation (5.1).
Finally in section 5.5 we propose a characterization of the∞-eigenpairs and their
subgradients in terms of constrained linear weighted Laplacian eigenpairs and we
propose a method to compute the first eigenpair.

5.2 Notation

5.2.1 Graph setting and p-Laplacian operators

We start by recalling our basic definitions in the discrete setting. Let G =
(V,E, ω), be our graph. The weight ω : E → R is such that ωuv = ωvu and
ωuv represents the inverse of the edge length. This implies that, given two nodes
u and v, we can define their distance as the length of the shortest path that
connects them, i.e.

d(u, v) = min
{ n∑
i=1

ω(vi−1, vi)
−1 : n ∈ N, u = v0 ∼ · · · ∼ vn = v

}
(5.2)

where v ∼ u means that (u, v) ∈ E and thus a sequence {u = v0 ∼ v1 ∼
· · · ∼ vn = v} represents a path connecting u and v. In particular given a path
Γ = {v0 ∼ v1 ∼ · · · ∼ vn} we define its length as:

length(Γ) =

n−1∑
i=0

1

ωvivi+1

.

Now, we remind the definition of the differential operators. Given a function on
the nodes, f : V → R, define its gradient on an edge (u, v) by

∇ωf(u, v) = ωuv
(
f(v)− f(u)

)
.

The local gradient of f at a node u is the set of the gradients defined on the edges
outgoing from u

∇ωf(u) = {∇ωf(u, v) | v ∼ u} .
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We define the p-Laplacian operator as

∆pf(u) := −div(|∇f |p−2∇f) =
∑
v∈V

ωpuv|f(u)− f(v)|p−2
(
f(u)− f(v)

)
,

where given an edge function G : E → R, its divergence is defined on the nodes
as follows:

divG(u) = −1

2

(
∇T
)
G(u) =

1

2

∑
v∼u

ωuvG(u, v)−G(v, u)

and satisfies the following “integration by parts” formula

〈G,∇f〉E =
1

2

∑
(u,v)∈E

G(u, v)∇f(u, v) = 〈−divG, f〉V =
∑
u∈V
−divG(u)f(u) .

Throughout the chapter, if not otherwise specified, we use capital letters (latin or
greek) to denote edge functions and lowercase letters to denote node functions.
Observe that from the definiton of the scalar products we can define the 2-norms
(and more generally the p norms) on the edge and node spaces as:

‖G‖pp,E =
1

2

∑
(u,v)∈E

|G(u, v)|p ‖f‖pp,V =
∑
u∈V
|f(u)|p .

Now, assign a subset of the nodes, B ⊂ V , that we call boundary, and consider the
set of the functions that are zero on it H0(V ) := {f | f(u) = 0 ∀u ∈ B}. Then,
from the study of the critical points of Rp(f) = ‖∇f‖p/‖f‖p in the domain Sp ∩
H0(V ) we derive the diiscrete equivalent of the p-Laplacian eigenvalue equation
with homogeneous Dirichlet boundary conditions, i.e.{

∆pf(u) = λ|f |p−2(u)f(u) u ∈ V \B
f(u) = 0 u ∈ B

(5.3)

If B 6= ∅ we also introduce the distance from the boundary defined as follows

dB(u) = min
v∈B

d(u, v) . (5.4)

Now we remind the definition of the p-Laplacian variational eigenvalues:

λk(∆p) = min
A∈Fk(Sp)∩H0(V )

max
f∈A
Rp(f) ,

where Fk(Sp ∩H0(V )) is the set of the closed and symmetric subsets of H0(V )∩
Sp := {f |‖f‖p,E = 1 & f(v) = 0 ∀v ∈ B} with Krasnoselskii genus greater
or equal than k. We remind the definition of Krasnoselskii grenus of a closed
symmetric set A:

γ(A) =


inf{h ∈ N : ∃ϕ ∈ C(A,Rh \ {0}) s.t. ϕ(x) = −ϕ(−x)}
∞ if @ h as above

0 if A = ∅
. (5.5)
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Finally given the infinity norm of a function f defined on the nodes,

‖f‖∞ = max
u∈V
{|f(u)|} ,

and of its gradient defined on the edges,

‖∇ωf‖∞ = max
(u,v)∈V

{|∇ωf(u, v)|},

we define the maximal sets

Definition 5.2.1.

Vmax(f) = {u ∈ V | |f(u)| = ‖f‖∞} Emax(f) = {(u, v) ∈ E | |∇ωf(uv)| = ‖∇ωf‖∞}

5.2.2 The ∞-Laplacian

In this paragraph, we introduce the ∞-Laplacian operator. We start from the
well-studied continuous case and use this as a guide to define analogous operators
in the discrete case, we refer to [37, 38, 70] for a detailed exposition.

Continuous setting: In the continuos setting the ∞-Laplacian operator is
defined as the second order partial differential operator:

∆∞f :=

n∑
i,j

∂f

∂xi

∂f

∂xj

∂2f

∂xi∂xj
= (∇f)TH(f)∇f ,

where H(f) denotes the Hessian matrix. It is worth mentioning, see [70], that
given a bounded domain, Ω ∈ Rn, and a Lipschitz continuous function, g ∈
W 1,∞(Ω̄), a viscosity solution, f , of the problem{

∆∞f = 0 in Ω

f = g on ∂Ω

can be built taking the limit, for p→ +∞ of a sequence of functions {fp}p such
that, for any p, {

∆pfp = 0 in Ω

fp = g on ∂Ω .

Discrete setting: Moving to the discrete setting, the discrete ∞-Laplacian
operator is defined in such a way to recover analogous results to the one that
hold in the continuous setting. First note that, contrary to the most classical
definition of continuous p-Laplacian operator (i.e. div(|∇f |p−2∇f ), our discrete



108 CHAPTER 5. ∞-LAPLACIAN EIGENVALUE PROBLEM

p-Laplacian, given 5.2.1, is positive definite. Moreover, as observed in [37], the
discrete p-Laplacian can be rewritten in the following way

(∆pf)(u) :=
∑
v∈V

ωpuv|f(u)− f(v)|p−2
(
f(u)− f(v)

)
=
(∑
v∈V

ωpuv
∣∣(f(u)− f(v)

)+∣∣p−1 −
∑
v∈V

ωpuv
∣∣(f(u)− f(v)

)−∣∣p−1
)

=
(
‖(∇ω′f)−(u)‖p−1

p−1 − ‖(∇ω′f)+(u)‖p−1
p−1

)
,

(5.6)

where x+ := max{x, 0}, x− := max{−x, 0} and ω′uv = ω
p
p−1
uv . Because of (5.6),

in [1, 37, 38] the discrete ∞-Laplacian is defined as

∆∞(f)(u) =
(
‖(∇ωf)−(u)‖∞ − ‖(∇ωf)+(u)‖∞

)
.

By consistency with the continuous case if f is the limit of solutions of ∆pfp = 0
with prescribed values on certain nodes, it must satisfy ∆∞f = 0.

5.3 The Infinity limit eigenvalue problem

Now we discuss the ∞-eigenvalue problem, again starting from the continuous
setting as introduced in [58], [57]. The idea is to build the ∞-eigenfunctions as
the limit of the eigenfunctions of the p-Laplacian operator. In particular, the
limit of appropriate subsequences of the k-th variational eigenfunctions of the
p-Laplacian leads to an ∞-eigenfunction whose corresponding eigenvalue can be
expressed formally as:

Λk = “ lim
p→∞

(
λk(∆p)

) 1
p ” . (5.7)

Observe that both in the continuous and in the discrete cases we know that the

set {λ
1
p

k (∆p)}p is bounded [31], thus we can extrapolate at least one convergent
subsequence. Nevertheless, for general k, there are no results about the conver-
gence of the whole sequence. Hence, Λk in (5.7) is not uniquely defined and can

be understood as any accumulation point of the sequence {λ
1
p

k (∆p)}p.

5.3.1 The infinity limit eigenvalue equation

Continuous setting: In the continuous setting, the∞-eigenvalue equation for
a general eigenvalue Λ, thought as the limit of p-Laplacian eigenvalue equations,
takes the form [57]

0 =


min{|∇f | − Λf,−∆∞f} if f > 0

−∆∞f if f = 0

max{−|∇f | − Λf,−∆∞f} if f < 0

, (5.8)
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where the above equation has to be understood in the sense of viscosity solutions
(see [58] for a short and clear discussion about viscosity solutions in this setting).
It is possible to show that if the pair (f,Λ) solves eq.(5.8), then

Λ =
‖∇f‖∞
‖f‖∞

.

Moreover, in [9], the authors prove that the above equation can be reformulatad
more compactly as

min{|∇f | − Λf,−∆∞f}+ max{−|∇f | − Λf,−∆∞f}+ ∆∞(f) = 0 .

Discrete setting In the discrete setting, we can formulate the discrete analogue
of the ∞-eigenvalue equation as follows. First, we write the eigenvalue equation
of the p-Laplacian given in (5.3) in full form∑
v∼u

ωpuv|f(u)− f(v)|p−2
(
f(u)− f(v)

)
= λ|f(u)|p−2f(u) ∀u ∈ V \B . (5.9)

Assume {(λp, fp)}p to be a sequence of p-Laplacian eigenpair and remember that

we want to compute an eigenvalue of the ∞-Laplacian as the limit of λ
1
p
p , i.e:

Λ = lim
p→∞

(
λp
) 1
p .

Hence, by means of the equality in (5.6), we rewrite (5.9) as below (as in (5.6),

ω′uv = ω
p
p−1
uv ).


(
‖(∇ω′f)−(u)‖p−1

p−1 − ‖(∇ω′f)+(u)‖p−1
p−1

) 1
p−1

= λ
1
p−1 f(u)

‖(∇f)−(u)‖p−1 − ‖(∇f)+(u)‖p−1 > 0
if f(u) > 0


(
‖(∇ω′f)+(u)‖p−1

p−1 − ‖(∇ω′f)−(u)‖p−1
p−1

) 1
p−1

= −λ
1
p−1 f(u)

‖(∇f)−(u)‖p−1 − ‖(∇f)+(u)‖p−1
p−1 < 0

if f(u) < 0

‖(∇ω′f)−(u)‖p−1 − ‖(∇ω′f)+(u)‖p−1 = 0 if f(u) = 0 .

(5.10)
Studying the limit for p→∞ we can explicitate the ∞-eigenvalue equation as in
the following theorem

Theorem 5.3.1. Let (fpj , λpj ) be a sequence of p-Laplacian eigenparis such that

limj→∞ λ
1
pj
pj = Λ and limj→∞ fpj = f . Then (f,Λ) satisfies the following set of
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equations

0 =


min{‖∇ωf(u)‖∞ − Λkf(u) , ∆∞f(u)} if u ∈ V \B and f(u) > 0

∆∞f(u) = 0 if u ∈ V \B and f(u) = 0

max{−‖∇ωf(u)‖∞ − Λkf(u) , ∆∞f(u)} if u ∈ V \B and f(u) > 0

f(u) if u ∈ B
(5.11)

Proof. To prove the thesis, consider the case f(u) > 0. Then for any j large
enough, by (5.10), we can assume‖(∇ω′fpj )

−(u)‖pj−1

(
1−

(
‖(∇ω′fpj )+(u)‖pj−1

‖(∇ω′fpj )−(u)‖pj−1

)pj−1) 1
pj−1

= λ
1

pj−1

pj fpj (u)

‖(∇fpj )−(u)‖pj−1 > ‖(∇fpj )+(u)‖pj−1 .

Taking the limit we have‖∇ωf(u)‖∞ limj→∞

(
1−

(
‖(∇ω′fpj )+(u)‖pj−1

‖(∇ω′fpj )−(u)‖pj−1

)pj−1) 1
pj−1

= Λf(u)

‖(∇f)−(u)‖∞ ≥ ‖(∇f)+(u)‖∞
.

Now observe that

lim
j→∞

(
1−

(‖(∇ω′fpj )+(u)‖pj−1

‖(∇ω′fpj )−(u)‖pj−1

)pj−1) 1
pj−1

≤ 1 ,

and, if ‖(∇f)−(u)‖∞ 	 ‖(∇f)+(u)‖∞ ,

lim
j→∞

(
1−

(‖(∇ω′fpj )+(u)‖pj−1

‖(∇ω′fpj )−(u)‖pj−1

)pj−1) 1
pj−1

= 1 .

This implies
‖∇ωf(u)‖∞ = Λf(u) .

Viceversa, if limj→∞

(
1−
(
‖(∇ω′fpj )+(u)‖pj−1

‖(∇ω′fpj )−(u)‖pj−1

)pj−1) 1
pj−1

< 1, necessarily we have

‖(∇f)−(u)‖∞ = ‖(∇f)+(u)‖∞ ,

showing that (5.11) is satisfied.

Observe that equation (5.11) is similar to eq.(5.8), where the absolute value
is replaced by the infinity norm of the local gradient.
Now we can enunciate the following proposition which tells us that if (f,Λ) sat-
isfies (5.11), Λ is exactly the value of R∞(f).
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Proposition 5.3.2. Assume that (Λ, f) satifies equation (5.11) and f is not a
constant function. Considered u ∈ Vmax(f), it holds ‖∇ωf‖∞ = ‖∇ωf(u)‖∞ =
Λ|f(u)| = Λ‖f‖∞, i.e.

Λ =
‖∇ωf‖∞
‖f‖∞

Proof. If u is such that |f(u)| = ‖f‖∞, then, assuming w.l.o.g f(u) > 0,

‖∇ωf(u)‖∞ ≥ Λf(u) > 0

Moreover since u is a maximizer, ‖(∇f)+
ω (u)‖∞ = 0 and we get

∆∞f(u) > 0

Thus, by eq (5.11), necessarily we have

‖∇ωf(u)‖∞ − Λf(u) = 0 .

The last equality allows us to observe that, if the thesis holds for some w ∈
Vmax(f), it holds as well for each u ∈ Vmax(f), since

‖∇ωf(u)‖∞
|f(u)|

=
‖∇ωf(u)‖∞
‖f‖∞

= Λ =
‖∇ωf‖∞
‖f‖∞

implies ‖∇ωf(u)‖∞ = ‖∇ωf‖∞ . To prove the existence of such a node w, let u0 be
such that there exists an edge (v, u0) with |∇ωf(vu0)| = ‖∇f‖∞. If ∆∞f(u) 6= 0
then

Λ =
‖∇ωf(u0)‖∞
|f(u0)|

=
‖∇ωf‖∞
|f(u0)|

≥ ‖∇ωf(u)‖∞
|f(u)|

=
‖∇ωf(u)‖∞
‖f‖∞

= Λ .

Thus necessairly |f(u0)| = ‖f‖∞. If instead ∆∞f(u0) = ∆∞f(v) = 0, assuming
without loss of generality f(u0) > f(v), there exist u1 ∼ u0 such that f(u1) >
f(u0) and

ω(u0u1)
(
f(u1)−f(u0)

)
= ‖(∇ωf)−(u0)‖∞ = ‖(∇ωf)+(u0)‖∞ = ω(u0v)

(
f(u0)−f(v)

)
= ‖∇ωf‖∞

Thus there exists another edge (u0, u1) such that |∇ωf(u0u1)| = ‖∇f‖∞ and
f(u1) > f(u0) > f(v). Iterating this procedure, by the finiteness of the graph
and the previous argument, there must exist a node uk such that

‖∇f(uk)‖∞ = ‖∇f‖∞ = Λ|f(uk)| = Λ‖f‖∞ .
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5.3.2 Geometrical Properties of the ∞-eigenpairs

In what follows, we use ∇f to denote ∇ωf , unless otherwise specified. As we see
in the next proposition the distance function introduced in (5.2) is a significant
tool in the study of the infinite eigenpairs interpreted as solutions of (5.11)

Proposition 5.3.3. Let (Λ, f) satisfy (5.11), f not a constant function. Then
for any u ∈ Vmax(f) there exist a path of edges Γ = {(ui, ui+1)}n−1

i=1 such that

1. u1 = u.

2. ∇f(ui, ui+1) = ‖∇f‖∞ and f is monotone along Γ.

3.

un ∈ BΛ =
1

length(Γ)

or

f(un) = −f(u)

Λ =
2

length(Γ)

4. Λ = min

{
1

dB(u)
, min
{v | f(v)=−f(u)}

2

d(u, v)

}
Proof. The first two points and the fact that un has to belong to one of the
two subsets in point 3 follow from Proposition 5.3.2 and equation (5.11). Indeed
given u0 = u, by Proposition 5.3.2, there exists u1 ∼ u0 such that |∇f(u0, u1)| =
‖∇f‖∞. Then from eq (5.11) we conclude that

f(u1) = −f(u0) or u1 ∈ B or |f(u1)| < |f(u0)| .

In the last case, since ‖∇f(u1)‖∞ = ‖∇f‖∞, necessarily ∆∞f(u1) = 0, i.e. there
exists u2 ∼ u1 such that |∇f(u0, u1)| = ‖∇f‖∞ and, assuming w.l.o.g. f(u0) >
f(u1), it follows f(u1) > f(u2). Iterating this procedure, by the finiteness of the
graph, there exists a path Γ such that un ∈ B or f(un) = −f(u0). Moreover,
from the equalities

f(ui)− f(ui+1)

‖∇f‖∞
=

1

ωui,ui+1

∀i, Λ =
‖∇f‖∞
|f(u)|

, length(Γ) =
∑
i

1

ωui,ui+1

we easily get to the expressions Λ = 1/length(Γ) if un ∈ B and Λ = 2/length(Γ)
if f(un) = −f(u) . To conclude observe that, if un ∈ B, necessarily

length(Γ) = dB(u) and length(Γ) ≤ 2d(u, v) ∀v s.t. f(v) = −f(u)

Indeed, assume by contradiction that there exists a path Γ′ = {(vi, vi+1)}m−1
i=0

with v0 = u, vm ∈ B, and
∑m−1

i=0 ω−1
vivi+1

<
∑n−1

i=0 ω
−1
uiui+1

. Then, by construction

|f(u)| = ‖∇f‖∞
n−1∑
i=0

ω−1
uiui+1

.
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Then, a contradiction arises, since ωvivi+1 |f(vi) − f(vi+1)| = |∇f(vi, vi+1)| <
‖∇f‖∞, by the triangular inequality

|f(u)| ≤ ‖∇f‖∞
m−1∑
i=0

ω−1
vivi+1

< ‖∇f‖∞
n−1∑
i=0

ω−1
uiui+1

= |f(u)| .

Observe that the inequality length(Γ) ≤ 2d(u, v) ∀v such that f(v) = −f(u),
can be proved with a similar argument, assuming the existence of a path Γ′, from
u to v, with f(v) = −f(u), such that length(Γ′) < 2 length(Γ). Finally the case
f(un) = −f(u) can be treated analogously, concluding the proof.

The study of the accumulation points of the sequences of the variational
eigenvalues of the p-Laplacian with homogeneous boundary conditions has re-
ceived particular attention in the continuous setting. In the remaining part of
this section we will recall the main results and extend them to graphs.

Continuous setting: Given a bounded domain Ω ∈ Rn, for any integer k
introduce the maximal radius which allows us to inscribe k distinct balls in Ω,
i.e.

Rk := sup{r s.t. ∃Br(x1), . . . , Bk(xk) ⊂ Ω, Br(xi)∩Br(xj) = ∅ ∀i, j = 1, . . . , k} .

Then, given Λk, an accumulation point of the sequence of the k-th variational
eigenvalues of the p-Laplacian, it is possible to relate such value toRk (see [57, 58])
getting the following inequality:

Λk ≤
1

Rk
.

The cases k = 1, 2 deserve a particular attention, indeed in these cases it holds also

the opposite inequality, leading to the convergence of the sequences {λ1,2(∆p)
1
p }∞p=2

and to the equalities

Λ1 =
1

‖dB‖∞
, Λ2 =

1

R2
.

In the end particular attention is also dedicated to the study of the∞-eigenfunctions
associated to Λ1 (see [55, 59, 70, 89]). Indeed, despite the node function dB is
always a minimizer of R∞, it is not always also a first eigenfunction, meaning
that (dB,Λ), depending on Ω, may not solve equation (5.8). Moreover the first
eigenfunction may not be unique and there may be first eigenfunctions that solve
the ∞-limit eigenvalue equation without beeing limits of eigenfunctions of the
p-Laplacian.
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Graph setting: In the following we investigate analogue problems on graphs.
First of all, observe that the minimum of the ∞-Rayleigh quotient

R∞(f) =
‖∇f‖∞
‖f‖∞

can be easily computed, as in the continuous case, considering the distance from
the boundary, dB (5.4), see [17]. To prove it, observe the following trivial in-
equality: Assume the distance between the nodes u and v is realized along the
path Γ = {(vi, vi+1)}n−1

i=1 , with v1 = u and vn = v, i.e., d(u, v) =
∑m

i=1 1/ωvivi+1 .
Then, we get the inequality:

|f(u)− f(v)| ≤ |f(v1)− f(v2)|+ |f(v2)− f(v3)|+ · · ·+ |f(vm)− f(vm+1)|

≤ ‖∇f‖∞
m∑
i=1

1

ωvivi+1

= ‖∇f‖∞d(u, v)

(5.12)

Proposition 5.3.4. The boundary distance function dB defined in (5.4) realizes
the minimunm of the ∞-Rayleigh quotient:

dB ∈ arg min
f∈H0(V )

‖∇f‖∞
‖f‖∞

,

Proof. It is easy to prove that

‖∇dB‖∞ ≤ 1

indeed, given an edge (u, v) and considered the gradient of the node function dB
on it, we have

(∇dB)(u, v) = ωuv
(
db(v)− db(u)

)
≤ ωuv(ωuv)−1 = 1

Thus, to conlude it is sufficient to show that the boundary distance function
satisfies

dB ∈ arg max
f∈F :‖∇f‖∞≤1

‖f‖∞

To this end, for any function f with f ∈ F and ‖∇f‖∞ ≤ 1 and for any node
u ∈ V , let v ∈ B be the boundary node such that d(u, v) = dB(u). Then, using
(5.12) we can write:

|f(u)| = |f(u)− f(v)| ≤ d(u, v) = dB(u)

The last equation clearly implies

dB ∈ arg max
f∈H0(V ):‖∇f ‖∞≤1

‖f‖∞.
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Corollary 5.3.5.

min
f∈H0(V )

‖∇f‖∞
‖f‖∞

=
1

R1
,

where R1 is defined as
R1 = sup

v∈V
{dB(v)} .

Proof. Because of Proposition 5.3.4, it is enough to compute ‖∇dB‖∞ and ‖dB‖∞.
Trivially ‖dB‖∞ = R1. From the proof of Proposition 5.3.4, we already know that∣∣∇dB(u, v)

∣∣ ≤ 1 ∀(u, v) ∈ E. Moreover, as it has been proved in [17],

|
(
∇dB

)
(u, v)| = 1 ⇐⇒ v ∈ Γ(u,B) or u ∈ Γ(v,B) ,

where Γ(u,B) is the shortest path from the node u to the boundary. Thus
necessarily ‖∇dB‖∞ = 1 and we can conclude.

Now, given (f,Λ), a solution to the∞-limit eigenvalue equation, consider the
nodal domains induced by f , i.e. the maximal connected subgraphs where f is
strictly positive or negative. In the next theorem we show that Λ can be regarded
as a radius that allows us to inscribe as many balls in the graph as the number
of nodal domains induced by f .

Theorem 5.3.6. Let (f,Λ) be an eignepair that satisfies equation (5.11), and
assume that f induces k nodal domains. Then there exist v1, . . . , vk ∈ V and
rk > 0 such that

d(vi, vj) ≥ 2rk ∀i 6= j dB(vi) ≥ rk ∀i = 1, . . . , k .

Moreover

Λ =
1

rk

Proof. Consider first the case of f strictly positive. Then given u1 ∈ Vmax(f),
from Proposition 5.3.3 there exist a path Γ = {(ui, ui+1)}n−1

i=1 such that u1 = v1,
vn−1 ∈ B and length(Γ) = dB(v1) = Λ−1. Thus the node v1 and the radius
r1 = Λ−1 satisfy the thesis. Consider now the case of a generic function f and
assume {Ai}, {Bj} to be the nodal domains induced by f such that

f(u) > 0 ∀u ∈ ∪iAi , f(u) < 0 ∀u ∈ ∪jBj .

Starting from the original graph G and the function f , we can define a new discon-
nected graph G′ = ∪hGh with as many connected components, Gh, as the nodal
domains of f and such that, for any h, (f |Gh ,Λ) satisfy the ∞-limit eigenvalue
equation (5.11) on Gh and f |Gh is strictly positive or strictly negative. Indeed, we
can consider all the nodes u such that f(u) = 0 as boundary nodes, u ∈ B(G′).
Furthermore, for any edge (u, v) such that f(u)f(v) < 0, we add a boundary
node w ∈ B(G′) and replace the edge (u, v) by the two edges (u,w) and (w, v)
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with weights ωuw = ωuv
(
1− f(v)/f(u)

)
and ωwv = ωuv

(
1− f(u)/f(v)

)
. Observe

that

∇f(u, v) = ωuv
(
f(v)− f(u)

)
= −ωuv

(
1− f(v)

f(u)

)
f(u) = ωuw

(
0− f(u)

)
= ∇f(u,w) ,

∇f(v, u) = ωuv
(
f(u)− f(v)

)
= −ωuv

(
1− f(u)

f(v)

)
f(v) = ωvw

(
0− f(v)

)
= ∇f(v, w) ,

(5.13)
and

1

ωuw
+

1

ωvw
=

1

ωuv
. (5.14)

Moreover, the internal nodes of the new graph G′ are the nodes of G where f
was non zero, G′ = ∪nh=1Gh where

(
Gh1 ∩ Gh2

)
\ B(G′) = ∅ ∀h1 6= h2 = 1, . . . , n

and every Gh matches one of the nodal domains induced by f . To conclude,
observe that for any internal node u, from (5.13), the local gradient, (∇f)(u)
is unchanged, implying that (f |Gh ,Λ) satisfies the ∞-limit equation (5.11) with
respect to the graph Gh. Thus, since f |Gh is strictly positive or negative, from
the first part of the proof we get that, for any h, there exists vh ∈ Gh such that

Λ =
1

dB(G′)(vh)
.

Conclude observing that, because of the above construction, it holds:

2

Λ
= dB(G′)(vh1) + dB(G′)(vh2) ≤ d(vh1 , vh2) .

To prove it, let Γ be the shortest path that joins vh1 and vh2 in G, i.e. d(vh1 , vh2) =
length(Γ). Then, recall that Gh1∩Gh2\B(G′) = ∅ and that, by construction (5.14),
we have not changed distances among internal nodes. Thus, in G′, the path Γ
has necessarily been replaced by some path Γ′ that crosses B(G′) and such that
length(Γ′) = length(Γ), which concludes the proof.

Next, we study the relationships between the limits of the p-Laplacian varia-
tional eigenvalues, {Λk}k, and the packing radii of G [49], {Rk}k, i.e. the maximal
radiuses that allow one to inscribe a prescribed number of disjoint balls in the
graph. We define the k-th packing radius of the graph G as

Definition 5.3.7.

Rk := max{r s.t. ∃v1, . . . , vk s.t. d(vi, vj) ≥ 2r, d(vi, B) ≥ r ∀i, j = 1, . . . , k} .

First of all, from the previous Theorem 5.3.6, we trivially get the following
corollary

Corollary 5.3.8. Let (f,Λ) be an eigenpair that satisfies equation (5.11) and
such that f induces k nodal domains, then

Λ ≥ 1

Rk
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Proof. The proof is a trivial consequence of Theorem 5.3.6. Indeed from this it
follows that Λ = 1/rk with rk ≤ Rk.

Next recalling that Λk can be used to denote any accumulation point of the

sequence λk(∆p)
1
p , we can prove the following upper bound for Λk.

Proposition 5.3.9. Let λk(∆p) be the k-th variational eigenvalue of the p-
Laplacian on a graph G and let Rk be the k-th packing radius of G. Then,

lim sup
p→∞

λk(∆p)
1
p ≤ 1

Rk

Proof. Let u1, . . . , uk be k nodes as in the definition 5.3.7 of Rk , i.e.

d(ui, uj) ≥ 2Rk , dB(ui) ≥ Rk ∀i, j = 1, . . . , k .

Then, define the k linearly independent functions

fj(u) = max{Rk − d(u, uj), 0} ,

and the set Ak = span{fj}kj=1, as dim(AK) = k, also its Krasnoselskii genus will
be equal to k,

γ(Ak) = k .

By definition,

λk(∆p) ≤ max
f∈Ak

R∆p(f) = max
f∈Ak

∑
(u,v)∈E ω

p
uv|f(u)− f(v)|p

2
∑

u∈V |f(u)|p
. (5.15)

Consider a function f in Ak, f =
∑k

i=1 αifi. Then we have∑
(u,v)∈E ω

p
uv|f(u)− f(v)|p

2
∑

u∈V |f(u)|p
=

∑
(u,v)∈E ω

p
uv

∣∣∑
i αifi(u)−

∑
i αifi(v)

∣∣p
2
∑k

i=1

(
|αi|p

∑
d(u,ui)<Rk

|fi(u)|p
) . (5.16)

Let us analyze first the numerator. If u and v are such that both d(u, ui), d(v, ui) <
Rk, then

ωuv|f(u)− f(v)| = ωuv|αi||fi(u)− fi(v)
∣∣ = ωuv|αi||d(u, ui)− d(v, ui)

∣∣
≤ ωuv|αi|d(u, v) ≤ ωuv|αi|

1

ωuv
≤ |αi| .

If instead d(u, ui) < Rk and d(v, uj) < Rk with i 6= j, then

ωuv|f(u)− f(v)| = ωuv|αi fi(u)− αj fj(v)|
≤ ωuv max{|αi|, |αj |}

(
Rk − d(u, ui) +Rk − d(v, uj)

)
≤ ωuv max{|αl|}kl=1

(
2Rk − d(ui, uj) + d(u, v)

)
≤ ωuv max{|αl|}kl=1

(
2Rk − 2Rk + d(u, v)

)
≤ ωuv max{|αl|}kl=1d(u, v)

≤ max{|αl|}kl=1 .
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Last, if d(u, ui) < Rk and d(v, uj) ≥ Rk ∀j, we have

ωuv|f(u)− f(v)| =ωuv|αi|
(
Rk − d(u, ui)

)
= ωuv|αi|

(
Rk − d(u, ui) + d(u, v)− d(u, v)

)
≤ ωuv|αi|

(
d(u, v) +Rk − d(ui, v)

)
≤ ωuv|αi|d(u, v)

≤ |αi| .

Inserting the above inequalities in (5.16), we can write∑
(u,v)∈E ω

p
uv

∣∣∑αifi(u)−
∑
αifi(v)

∣∣p
2
∑k

i=1

(
|αi|p

∑
d(u,ui)<Rk

|fi(u)|p
) ≤

∑
(u,v)∈E maxi |αi|p

2
∑k

i=1

(
|αi|p

∑
d(u,ui)<Rk

|fi(u)|p
) .

Now, using (5.15), we obtain

Λk ≤ lim sup
p→∞

λ
1
p

k ≤ lim sup
p→∞

( ∑
(u,v)∈E maxi |αi|p

2
∑k

i=1

(
|αi|p

∑
d(u,ui)<Rk

|fi(u)|p
)) 1

p

=
maxi |αi|

maxi |αifi(u)|
.

Finally, observe that since fi(ui) = Rk, maxi |αifi(u)| = Rk maxi |αi| , which
implies

Λk ≤
1

Rk
.

From Proposition 5.3.9 and Corollary 5.3.5, it is straightforward to deduce

that the sequence {λ1(∆p)
1
p }p converges to Λ1, with

Λ1 =
1

R1

Besides the characterization of the first eigenvalue, in the next theorem, we also
prove the convergence of the sequence of the second variational eiganvalues of the
p-Laplacian, providing, in addition, a geometrical characterization of Λ2.

Theorem 5.3.10. Assume G to be a connected graph and let Λ2 := limp→∞ λ2(∆p)
1
p .

Then

Λ2 =
1

R2
.

Proof. From Proposition 5.3.9, we know that

Λ2 ≤
1

R2
.

Now consider a sequence of convergent eigenpairs(
f2(∆ph), λ2(∆ph)

)
→ (f,Λ2) .
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ω1B =1 ω12 =2 ω23 =2 ω34 =2 ω45 =2 ω5B =1
ω3B =2

B u1 u2 u3 u4 u5 B

B

From [31, 86], we know that, for any ph, f2(∆ph) has at least two nodal domains,
Aph and Bph , such that f2(∆ph)(u) > 0 ∀u ∈ Aph and f2(∆ph)(u) < 0 ∀u ∈ Bph .
The sets

A = ∩n ∪ph>n Aph and B = ∩n ∪ph>n Bph
are both non empty and such that f(u) ≥ 0 for any u ∈ A and f(u) ≤ 0 for any
u ∈ B. If by contradiction {u | f(u) > 0} = ∅, since f 6= 0, there has to exist a
node u with f(u) = 0 that is connected to a node v ∼ u such that f(v) < 0 that
means

∆∞f(u) = ‖(∇f)−(u)‖∞ − ‖(∇f)+(u)‖∞ = ‖(∇f)−(u)‖∞ > 0 .

But this is an absurd because f has to satisfy eq (5.11), implying that f must
induce at least two nodal domains. Then, thanks to Corollary 5.3.8, we get

Λ2 =
1

r2
≥ 1

R2

which concludes the proof.

We conclude this section by producing some examples that show that the
solution of (5.11) is not always well defined and that not any solution of (5.11)
is also the limit of p-Laplacian eigenfunctions.

Example 5.3.11. Consider the following graph:

Some easy computations show that both

f =

(
1,

2

3
,
1

3
,
2

3
, 1

)
and

g =

(
1,

2

3
,
1

3
,
2

3
,
4

9

)
satisfy equation (5.11) with Λ = 1. Nevertheless, g cannot be the limit of first
eigenfunctions of the p-Laplacian. These indeed, because of their uniqueness,
have to be symmetric for any p on the above graph.

Example 5.3.12. Consider the following graph:
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ω1B =1 ω12 =2 ω23 =2 ω34 =6 ω45 =6 ω56 = 7
3

ω3B =2

ω6B = 7
4

B u1 u2 u3 u4 u5 u6 B

B

Similarly to the previous example, it is not difficult to see that

f =

(
1,

2

3
,
1

3
,
2

5
,

7

15
,

4

15

)
and

g =

(
1,

2

3
,
1

3
,
2

5
,
12

35
,

48

245

)
satisfy equation (5.11) with Λ = 1. Thus the solution of (5.11) is neither uniquely
defined on V \ Vmax(f)

Example 5.3.13. Consider now the distance function on th following graph:

ω1B =3 ω12 =2 ω2B =2
B u1 u2 B

dB(u1, u2) =

(
1

3
,
1

2

)
.

Then

∆∞dB(u1) = 1− 2(
1

2
− 1

3
) = 1− 1

3
 0

and

‖∇dB(u1)‖∞ − Λ1dB(u1) = 1− 2

3
 0 .

Thus dB does not satisfy the ∞-limit eigenvalue equation (5.11), meaning that it
can not be the limit of the first eigenfunctions of the p-Laplacian.

Remark 5.3.14. It is worthwhile to spend a short remark about the non-boundary
case, that is analogous to the homogeneous Neumann case in the continuum set-
ting [39]. In this case, we can think of a graph with the boundary set, B, formed
by nodes v at an infinite distance from any internal node so that the edge weights
ωuv = 0 ∀u ∈ V \ B , v ∈ B. Then it is clear that in the non-boundary case
Λ1 = 0 and

Λ2 =
1

R2
:= 1/ sup{r s.t. ∃v1, v2 s.t. d(v1, v2) ≥ 2r} ,

i.e. the half of the diameter of the graph. Moreover, for the higher eigenvalues,
we can similarly state from Proposition 5.3.9 that

Λ−1
k ≥ sup{r s.t. ∃v1, . . . , vk s.t. d(vi, vj) ≥ 2r ∀i, j = 1, . . . , k} .
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5.4 The subdifferential infinity eigenvalue equation

In this section we develop a different approach to the ∞-Laplacian eigenvalue
problem. Instead of thinking about the infinity eigenpairs as solutions of the limit
p-Laplacian eigenvalue equation, it is possibile to define the infinity eigenpairs as
the “critical points” of the Rayleigh quotient:

R∞(f) =
‖∇f‖∞
‖f‖∞

.

Recall that the p-Laplacian eigenpairs can be seen as critical points/values of
the functional ‖∇f‖p on the manifold ‖f‖p = 1, i.e. the points in which the
differential of ‖∇f‖p is normal to Sp. Obviously, ‖f‖∞ is not a differentiable
operator and S∞ is not a smooth manifold. Nevertheless, following [22], since
‖∇f‖∞ and ‖f‖∞ are convex functions, we can generalize the notion of critical
point

Definition 5.4.1. We say that (Λ, f) is a generalized ∞-eigenpair if and only if

0 ∈ ∂‖∇f‖∞ ∩ Λ∂‖f‖∞ .

where ∂‖∇f‖∞ and ∂‖f‖∞ are the subgradients of the functions (f 7→ ‖∇f‖∞)
and (f 7→ ‖f‖∞), respectively.

From [22], we observe that 5.4.1 can be considered as the generalized critical
point equation of the functional (f 7→ ‖∇f‖∞) on S∞ since ∂‖∇f‖∞ is a gener-
alization of the differential of ‖∇f‖p when p = ∞, while, from Lemma 4.2 and
4.3 of [22], (see also Lemma 2.2.7) the external cone to S∞ in a point f , i.e.,

CExt(f) = {ξ| 〈ξ, g − f〉 ∀g ∈ S∞}

can be characterized as
CExt(f) = ∪

λ≥0
λ∂‖f‖∞ .

Moreover we point out that, from Theorem 5.8 of [22] (see also Lemma 2.2.9 ),
it is possible to introduce the family of Krasnoselskii ∞-variational eigenvalues.

Definition 5.4.2.
ΛKk = min

A∈Fk(S∞)
max
f∈A
R∞(f)

Where, recall Fk(S∞) is the family of the closed symmetric subsets of S∞ with
Krasnoselskii genus greater or equal than k (see (5.5)).

Similar kinds of approaches have been used to study the 1-Laplacian eigen-
pairs [20, 50], and recently to study minimizers of ‖∇f‖∞ in L2 and L∞ spaces,
[16, 17].

In the next theorem we show that, as the limiting variational eigenvalues {Λk}
defined in Section 5.3, also the variational eigenvalues ΛGk , can be related to the
radii of inscribed balls, Rk, as defined in Definition 5.3.7.
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Theorem 5.4.3. Let ΛGk be defined as in Definition 5.4.2 and Rk as in Definition
5.3.7. Then,

ΛGk ≤
1

Rk
∀k = 1, . . . , |V |

and the equality holds for k = 1, 2.

Proof. For the first part we can follow the proof of Prop 5.3.9. Hence, consider
u1, . . . , uk such that d(ui, uj) ≥ 2r, d(ui, B) ≥ r ∀i, j = 1, . . . , k and define the k
linearly independent functions

fj(u) = max{Rk − d(u, uj), 0} , j = 1, . . . , k .

The set Ak = span{fj}kj=1 has Krasnoleskii genus equal to k, γ(Ak) = k, and
thus:

ΛGk ≤ max
f∈Ak

R∞(f) .

Repeating all the computations as in the proof of Proposition 5.3.9, it is easy to
prove that

max
f∈Ak

R∞(f) ≤ 1

Rk
.

Thus, because of Corollary 5.3.5, we are left to prove that ΛG2 ≥ R
−1
2 . To do this,

we first observe that any A ∈ F2(S∞) necessarily contains a symmetric closed
and connected subset of S∞. Consider the function

ψ :S∞ −→ R
f −→ ‖f+‖∞ − ‖f−‖∞ .

Then, we can state that for all A ∈ F2(S∞), there esists fA ∈ A such that
ψ(fA) = 0 or in other words, there exist u+, u− ∈ V such that

‖f‖∞ = fA(u+) = −fA(u−) .

To conclude, from (5.12), we observe that

d(u±, B) ≥ ‖fA‖∞
‖∇fA‖∞

, d(u+, u−) ≥ 2
‖fA‖∞
‖∇fA‖∞

,

i.e. :
‖fA‖∞
‖∇fA‖∞

≤ R2 ⇒ ΛG2 ≥ min
A∈F2

‖∇fA‖∞
‖fA‖∞

≥ 1

R2
.

In the following example we show that the result presented in the last Theorem
5.4.3 is a sharp result. In particular we show that there exist graphs where the
equality ΛGk = 1/Rk is not achieved for k > 2.



5.4. THE SUBDIFFERENTIAL INFINITY EIGENVALUE EQUATION 123

1

2 5

3 4

Figure 5.1: Cycle graph with 5 nodes

Example 5.4.4. Consider the cycle graph with five nodes C5, Fig 5.1, with all
edges of length 1, ωuv = 1 ∀(u, v) ∈ E. Then we easily observe that R2 = 1 and
R3 = 1/2, which means that

1 = Λ2 ≤ Λ3 ≤ 2

We aim to prove that the inequality Λ3 ≤ 1/R3 = 2 is strict. To this end, we
show the existence of a submanifold S, of S∞ = {f ∈ R5|‖f‖∞ = 1}, such that
S is homeomorphic to a 2-dimensional sphere and R∞(f) ≤ 1 for any f ∈ S.
Observe that the existence of such S implies

Λ3 = min
γ(A)≥3

max
f∈A
R∞(f) ≤ max

f∈S
R∞(f) ≤ 1 .

To build such S consider the decomposition as CW-simplex of S∞ induced by the
ordering of the pairs of disjoint subsets of V [90]:

P2(V ) = {(A,B) : A ∩B = ∅, A ∪B 6= ∅, A,B ⊂ V },

and (A,B) < (A′, B′) if A ⊂ A′ and B ⊂ B′. The maximal simplices of such
decomposition are given by {∆A,σ : A ⊂ V, σ permutation on V }, where given
A ⊂ V and σ : {1, . . . , n} → {1, . . . , n} permutation

∆A,σ = conv
(

1A−1V \A∪
{

1A\{σ(1),...,σ(i)}−1(V \A)\{σ(1),...,σ(i)}

∣∣∣ i = 1, . . . , n−1
})

.

Then, any maximal subcomplex correspond to the functions, f , with a prescribed
order of the values of f on the vertices of the graph, i.e.,

∆A,σ =

{
f

∣∣∣∣ f(v) ≥ 0 ∀v ∈ A, f(v) ≤ 0 ∀v ∈ V \A,∣∣f(σ(vi)
)∣∣ ≤ ∣∣f(σ(vi+1)

)∣∣ ∀i = 1, . . . n− 1

}
Thus, for any ∆A,σ there exist v1, v2 ∈ V and a sign ±1 such that for any

f ∈ ∆A,σ it holds ‖∇f‖∞ = ±
(
f(v1) − f(v2)

)
. This means that R∞ is linear

on the obtained subcomplexes of S∞. Then it is trivial to observe that a linear
function on a simplicial complex must assume its maximal value in one of the
vertices of the complex.
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ei−ej+ek

−ej+ek
ei+ek

ei−ej

ei

ek

−ej

Figure 5.2: Visualization of the subcomplex Sf , where f = ei − ej + ek

Now, given a node of the complex, f ∈ S∞, let Sf be the subcomplex of S∞
induced by f and the nodes g < f . Here “<” has to be understood with respect
to the ordering given to the pairs of disjoint subsets, taking into account the
equivalence between functions and pairs of disjoint subsets:

h ∼ (Ah, Bh) Ah = {v ∈ V |h(v) > 0}, Bh = {v ∈ V |h(v) < 0}

Let {ei}5i=1 be the canonical basis of R5 and consider some f = +ei−ej +ek with
i, j, k ∈ {1, . . . , 5} one different from each other, then we give a visualization of
Sf in figure 5.2.

Next, we consider the following 8 vertices:

f1 = (1, 0,−1,−1, 0); f2 = (1, 0,−1, 0, 1); f3 = (1, 1, 0,−1, 0);

f4 = (0, 1, 1, 1, 0); f5 = (0,−1,−1, 0, 1); f6 = (0,−1, 0, 1, 1);

f7 = (0, 1, 0, 1, 1); f8 = (1, 1, 0, 0, 1);

and their symmetric versions f−i := −fi for any i = 1, . . . , 8. Considered the
subcomplexes induced by such vertices, it is not difficult to observe that

max
f∈Sfi

R∞(f) ≤ 1 ∀i = −8, . . . ,−1, 1, . . . , 8 ,

indeed it is enough to prove that such inequality holds in the node fi and in any
node g < fi. Moreover, we say that Sfi and Sfj are adjacent, Sfj ↔ Sfi, if they
share at least one 1-dimensional simplex. Observe that if Sfi and Sfj are adjacent,
there exist two nodes of the CW-simplex, g1 and g2, such that both g1, g2 < fi, fj.
In particular, since fi 6= fj, g1 and g2 have the shape g1 = ±eh±ek and g2 = ±eh
for some h, k and sign, + or −, associated to h and k, look at figure 5.2 for an
easy visualization. In particular, observe that, necessarily, also the node g3 = ±ek
belongs to both Sf1 and Sf2. Thus, if Sf1 and Sf2 are adjacent, they share exactly
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two 1-dimensional simplices, whose union corresponds to the subcomplex Sg1 for
some g1 < f1, f2, with g1 = ±eh ± ek, h, k = 1, . . . , 5, h 6= k. We write

Sfi←→g Sfj ,

to say that Sf1 and Sf2 are adjacent along the subcomplex Sg. In particular we
observe the following all and only adjacency relations between the subcomplexes
{Sfi}

1,...,8
i=−8,...,−1 .

Sf1 ←→
(1,0,−1,0,0)

Sf2 , Sf1 ←→
(1,0,0,−1,0)

Sf3 , Sf1 ←→
(0,0,−1,−1,0)

Sf−4

Sf2 ←→
(1,0,−1,0,0)

Sf1 , Sf2 ←→
(0,0,−1,0,1)

Sf5 , Sf2 ←→
(1,0,0,0,1)

Sf8

Sf3 ←→
(1,0,0,−1,0)

Sf1 , Sf3 ←→
(0,1,0,−1,0)

Sf−6 , Sf3 ←→
(1,1,0,0,0)

Sf8

Sf4 ←→
(0,0,1,1,0)

Sf−1 , Sf4 ←→
(0,1,1,0,0)

Sf−5 , Sf4 ←→
(0,1,0,1,0)

Sf7

Sf5 ←→
(0,0,−1,0,1)

Sf2 , Sf5 ←→
(0,−1,−1,0,0)

Sf−4 , Sf5 ←→
(0,−1,0,0,1)

Sf6

Sf6 ←→
(0,−1,0,1,0)

Sf−3 , Sf6 ←→
(0,−1,0,0,1)

Sf5 , Sf6 ←→
(0,0,0,1,1)

Sf7

Sf7 ←→
(0,1,0,1,0)

Sf4 , Sf7 ←→
(0,0,0,1,1)

Sf6 , Sf7 ←→
(0,1,0,0,1)

Sf8

Sf8 ←→
(1,0,0,0,1)

Sf2 , Sf8 ←→
(1,1,0,0,0)

Sf3 , Sf8 ←→
(0,1,0,0,1)

Sf7

Now, for any i = −8, . . . ,−1, 1, . . . , 8, we note that Sfi is a surface with boundary
and that its boundary is composed by 6 1-simplices. Moreover from the above
adjacency relations we observe that any Sfi is adjacent along any pair of boundary
simplices to one and only one other Sfj . Thus, if we glue all these sublcomplexes
along the shared simplices we obtain a closed surface without boundary, S:

S =
(
on−1
i=−8 Sfi

)
on
(
on8
i=1 Sfi

)
.

Observe that, because of the above adjacencies, the following paths are contained
in S,

f1 → f2 → f8 → f7 → f4 → f−1 and f1 → f3 → f−6 → f−5 → f−2 → f−1

which means that S is a connected surface. Let us now compute the Poincarè-
Euler characteristic of S to show that it is homeomorphic to a 2-dimensional
sphere. The number of faces of S is given by 6×16, indeed every Sfi is composed
by 6 triangles, see Fig 5.2. The number of edges of S is given by 6×16+6×(16/2),
indeed every Sfi has 6 “internal” edges and 6 shared edges (each shared edge
belongs exactly to 2 different Sfi). Finally, concerning the number of nodes, note
that every Sfi has one internal node, 3 nodes shared with only one other Sfj
(the nodes with two non zero entries) and 3 nodes with only one non zero entry.
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The total number of nodes with only 1 nonzero entry, since we are in R5, is
equal to 10 and it is not difficult to verify that any such node belongs to some
Sfi with i = −8, . . . ,−1, 1, . . . , 8. Thus the number of nodes of S is given by
16 + 3× (16/2) + 10 and we obtain

χ(S) = 6× 16− 6× 16− 6× 8 + 16 + 3× 8 + 10 = 2 ,

which is the Euler-characteristic of the sphere. It follows that S has genus 3,
γ(S) = 3, and thus we can conclude with the desired inequality:

Λ3 = min
γ(A)≥3

min
f∈A
R∞(f) ≤ min

f∈S
R∞(f) ≤ 1 ,

where the last inequality is a consequence of the fact that maxf∈Sfi R∞(f) ≤
1 ∀ i = −8, . . . ,−1, 1, . . . , 8.

Next, we study the structure of the two sets ∂‖∇f‖∞, ∂‖f‖∞. As done in
[17], because of its homogeneity, it is easy to derive the following characterization,
(see also [18] or section 2.2.1):

∂
(
f 7→ ‖f‖∞

)
= {ξ | ‖g‖∞ ≥ 〈ξ, g〉 ∀g : V 7→ R, ‖f‖∞ = 〈ξ, f〉}

i.e.

∂‖f‖∞ :=

{
ξ

∣∣∣∣ ‖ξ‖1,V = 1, ξ(u) = 0 ∀u ∈ V \ Vmax(f) ,

| ξ(u)| |f(u)| = ξ(u)f(u) ∀u ∈ Vmax(f)

}
. (5.17)

Moreover, from [80] we can use the subdifferential chain rule for linear transforma-

tions
(
∂
(
x 7→ φ(Ax)

)
= AT∂

(
y 7→ φ(y)

)
|y=Ax

)
to characterize ∂(f 7→ ‖∇f‖∞)

i.e.

∂‖∇f‖∞ :=

{
−div Ξ

∣∣∣∣ ‖Ξ‖1,E = 1, Ξ(u, v) = 0 ∀(u, v) ∈ E \ Emax(f) ,

|Ξ(u, v) | |∇f(u, v)| = Ξ(u, v)∇f(u, v) ∀(u, v) ∈ Emax(f)

}
(5.18)

where we recall the definition of the divergence operator

−div Ξ(u) =
1

2

∑
v∼u

ωuv

(
Ξ(v, u)− Ξ(u, v)

)
=

1

2
∇TΞ(u) ,

of the norms

‖f‖1,V =
∑
u∈V
|f(u)| , ‖G‖1,E =

1

2

∑
(u,v)∈E

|G(u, v)|,

and of the maximal sets:

Emax(f) = {(u, v) ∈ E | |∇f(uv)| = ‖∇f‖∞}
Vmax(f) = {u ∈ V | |f(u)| = ‖f‖∞} .

Now we give the following definition of generalized ∞-eigenpair.
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Definition 5.4.5. (f,Λ) is a generalized ∞-eigenpair if and only if there exist
ξ ∈ ∂‖f‖∞ and Ξ with −div(Ξ) ∈ ∂‖∇f‖∞ such that

−div Ξ = Λξ .

Note that, putting together the above definition of generalized eigenpair
and the characterization of the subgradients ∂‖∇f‖∞ (eq. (5.17)) and ∂‖f‖∞
(eq.(5.18)), we have that

Proposition 5.4.6. (f,Λ) is an ∞-eigenpair if and only if there exist ξ : V → R
and Ξ : E → R such that

−div(Ξ) = Λξ,

‖Ξ‖1,E = 1

‖ξ‖1,V = 1

|f(u)| = ‖f‖∞ if ξ(u) 6= 0

|∇f(u, v)| = ‖∇f‖∞ if Ξ(u, v) 6= 0

sign
(
Ξ(u, v)

)
= sign

(
∇f(u, v)

)
if Ξ(u, v) 6= 0

sign
(
ξ(u)

)
= sign

(
f(u)

)
if ξ(u) 6= 0

(5.19)

Moreover, up to redefining Ξ(u, v) =
(

Ξ(u, v) − Ξ(v, u)
)
/2, we can assume

Ξ(u, v) = −Ξ(v, u).

Remark 5.4.7. We would like to observe that since R∞ is a locally Lipschitz
function of Rn\{0}, the notion of critical point can also be generalized considering
the Clarke subderivative ∂ClR∞, see [25], i.e. f is a Clarke ∞-eigenpairs iff

0 ∈ ∂ClR∞(f) (5.20)

Also in this case, by a classical argument, (see the Deformation Lemma in [19]),
considering R∞(f) on the sphere S2 = {f |‖f‖2 = 1}, we can introduce the
following family of generalized critical points of R∞:

ΛClk = min
A∈Fk(S2)

max
f∈A
R∞(f) ,

where, as usual, Fk(S2) := {A ⊆ S2 | A closed , A = −A , γ(A) ≥ k} and γ(A)
is the Krasnoselskii genus of A. By repeating the proof of Theorem 5.4.3, it is
possible to prove that also the Clarke eigenpairs can be estimated using inscribed
ball radii:

ΛClk ≤
1

Rk
∀k = 1, . . . , |V | , ΛClk =

1

Rk
k = 1, 2 .

We conclude this remak by recalling that we can write [25]

∂ClR∞(f) ⊆ ∂‖∇f‖∞‖f‖∞ − ∂‖f‖∞‖∇f‖∞
‖f‖2∞
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As a consequene, we can state that the notion of generalized ∞-eigenpair, see
Definition (5.4.5), generalizes the notion of Clarke-eigenapair. Nevertheless, the
definition in Definition (5.4.5) provides some practical advantages with respect to
the one in (5.20), since, differently from ∂ClR∞(f), both ∂‖f‖∞ and ∂‖∇f‖∞
can be explicitly identified.

5.4.1 Geometrical characterization

Next we deal with a geometrical characterization of the generalized∞-eigenfunctions
similar to the one proved in Proposition 5.3.3. In both the characterizations, given
an eigenpair, (f, λ), we prove the existence of ”good” paths that connect points in
Vmax(f)∪B and whose length matches the value of the eigenvalue. Nevertheless,
differently from Proposition 5.3.3, where we proved that for any extremal point
v ∈ Vmax(f) there exist a “good” path Γ, in the case of generalized critical points
there could exist extremal point that do not correspond to any “good” path.
Moreover, in the case of limiting eigenpairs the existence of such good paths was
only a necessary condition, instead, in the case of generalized eigenpairs, the
existence of “good” paths is also a sufficient condition.

Proposition 5.4.8. (f,Λ) is a generalized∞-eigenpair if and only if there exists
a path Γ = {(ui, ui+1)}n−1

i=0 such that

1. ui ∈ Vmax(f) ∪B i = 0, n .

2. (ui, ui+1) ∈ Emax(f) ∀i = 1, . . . , n

3. f(ui) > f(ui+1)

4. Assuming w.l.o.g. that f(u0) > 0 , if un ∈ B then Λ = 1
length(Γ) , while if

f(un) = −f(u0) then Λ = 2
length(Γ) . Moreover

1

Λ
= min

{
min

{v|f(v)=−‖f‖∞}

d(u0, v)

2
, dB(u0)

}
.

Proof. Assume that (f,Λ) is a generalized ∞-eigenpair and let (ξ,Ξ) be the two
subgradients as in Definition (5.19), i.e., such that

−div(Ξ) = Λξ , (5.21)

and Ξ(u, v) = −Ξ(v, u). Let ξ(u0) 6= 0 and w.l.o.g. assume f(u0) > 0. Then
from equation (5.19) there has to exist an edge (u0, u1) ∈ Emax(f) such that
Ξ(u0, u1) 6= 0, i.e. f(u1) = f(u0) − ‖∇f‖∞ < f(u0). Let us focus now on the
node u1. Since f(u1) < f(u0), if u1 6∈ B and f(u1) 6= −f(u0), we have that
ξ(u1) = 0. Moreover Ξ(u0, u1) < 0 and Ξ has to satisfy (5.21):

−div(Ξ)(u1) =
∑
v∼u1

ωvu1Ξ(v, u1) = Λξ(u1) = 0 ,
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hence, there must exist an edge (u2, u1) ∈ Emax(f) such that Ξ(u1, u2) > 0 , i.e.,
f(u2) = f(u1) − ‖∇f‖∞ < f(u1) . Thus we can define a path Γ = {ui, ui+1}n−1

i=0

such that un ∈ B ∪ Vmax(f), (ui, ui+1) ∈ Emax(f) and f(ui) > f(ui+1). Further-
more, as in the proof of Proposition 5.3.3, it is easy to see that, given a function
f and a path Γ that satisfy the first three items of the thesis, necessarily we have
that, if un ∈ B, Λ = 1

length(Γ) while, if f(un) = −f(u0), Λ = 2
length(Γ) and

1

Λ
= min

{
min

f(v)=−‖f‖∞

d(u0, v)

2
, dB(u0)

}
.

Proceeding by absurd, if one of the last equalities is not true then an edge (v1, v2)
with |∇f(v1, v2)| > ‖∇f‖∞ must exist.

To prove the opposite inclusion, we assume that, given (f,Λ), there exists
a path Γ that satisfies the thesis and concentrate on the case un ∈ {v | f(v) =
−f(u0)} with Λ = 2

d(u,un) = 2
length(Γ) < dB(u0) (the other case can be proved

analogously). Given the two functions

Ξ(u, v) :=
δΓ(u, v)

ωuv

sign
(
∇f(u, v)

)
length(Γ)

ξ(v) :=
δu0(v)sign

(
f(u0)

)
+ δun(v)sign

(
f(un)

)
2

,

where δΓ δui are the delta functions (δΓ(u, v) = 1 if (u, v) ∈ Γ, zero otherwise
and analogously for δui). Observe that ξ and −divΞ belong respectively to the
two subgradients ∂‖f‖∞ and ∂‖∇f‖∞. Moreover, for any node v 6∈ Γ as well as
for any node v ∈ Γ, v 6= u0, un

−divΞ(v) = 0 = Λ ξ(v) .

Finally, in the case v = u0 (or analogously v = un), we have

−divΞ(u0) =
ωu0u2

2

(
Ξ(u2, u0)− Ξ(u0, u2)

)
=

sign
(
(∇f(u2, u0)

)
length(Γ)

=
Λ

2
= Λξ(u0) ,

where we have used that by hypotheses sign
(
∇f(u2, u0)

)
> 0. This concludes

the proof.

As a corollary of Proposition 5.4.8 and Proposition 5.3.3 it is easy to prove
that any eigenpair that satisfies the limiting eigenvalue equation (5.11) is also a
generalized ∞-eigenpair.

Corollary 5.4.9. Let (f,Λ) satisfy the limiting eigenvalue equation (5.11), then
(f,Λ) is also a generalized ∞-eigenpair according to Definition 5.4.5.
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Proof. The proof is a consequence of the fact that, from Propositon 5.3.3, for
any eigenpair that satisfies the limiting eigenvalue equation (5.11), there exists a
path Γ that satisfies the hypotheses of Proposition 5.4.8.

Next we deal with the opposite problem and pose the question if any gener-
alized ∞-eigenvalue, see Definition 5.4.1, can be associated to an eigenfunction
that solves (5.11). As we prove in Example 5.4.12, the answer is negative in gen-
eral. Nevertheless as we see in Lemma 5.4.11 the statement can always be proved
to hold, up to considering a subgraph of G. Before this, let us observe that the
∞-eigenvalue problem can be reformualted in terms of a constrained weighted
Laplacian eigenvalue problem. Indeed, from the characterizations of the subgra-
dient equations (5.18) and (5.17), it is possible to reformulate the system (5.19)
as in the following proposition.

Proposition 5.4.10. The pair (f,Λ) is a generalized ∞-eigenpair if and only
if there exist two admissible densities ν : V → R+ , and µ : E → R+ , with
µuv = µvu such that:

−div(µ∇f)(u) = Λνuf(u) ∀u ∈ V
|∇f(u, v)| = ‖∇f(u, v)‖∞ if µuv > 0

|f(u)| = ‖f(u)‖∞ if νu > 0

‖µ∇f‖1,E = 1

‖νf‖1,V = 1

(5.22)

Proof. Straightforward substitution into equation (5.19) shows that the following
quantities:

νu :=
|ξ(u)|
2‖f‖∞

µ :=
|Ξ(u, v)|+ |Ξ(v, u)|

‖∇f‖∞
are the desired admissible densities. The inverse follows by inverting the above
definitions of ν and µ.

Now, let (f,Λ) denote an ∞-eigenpair and assume (µ, ν) to satisfy the condi-
tion of Proposition 5.4.10. We say that a node u ∈ V is supported by µ, (u ∈ Vµ),
if there exists an edge (u, v) ∈ E such that µuv > 0. Observe that if u 6∈ Vµ, then
necessarily νu = 0 (recall that if νu 6= 0, |f(u)| = ‖f‖∞). We write u ∈ supp(V ),
if there exist at least one (µ, ν) as in Proposition 5.4.10, such that u ∈ Vµ.
Now we can prove that any generalized∞-eigenpair can be regarded as a limiting
∞-eigenpair up to considering a proper subraph of G.

Lemma 5.4.11. Assume (f,Λ) to be an ∞-eigenpair as in Definition 5.4.1. If
u ∈ supp(V ) then f satisfies the limiting eigenvalue equation (5.11) in u.

Proof. Assume f(u) > 0 and let (µ, ν) be admissible densities such that u ∈ Vµ.
The weighted eigenvalue equation −div(µ∇f)(u) = Λνuf(u) reads

−‖∇f‖∞
∑
v∼u

µuv ωuvsign
(
∇f(u, v)

)
= Λνuf(u) =

‖∇f‖∞
‖f‖∞

νuf(u) . (5.23)
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We first consider the case f(u) < ‖f‖∞. Since necessarily νu = 0, we get that
‖∇f(u)−‖∞ = ‖∇f(u)+‖∞, implying ∆∞f(u) = 0. Moreover

‖∇f(u)‖∞ − Λf(u) = ‖∇f‖∞ −
‖∇f‖∞
‖f‖∞

f(u) > 0 .

If instead f(u) = ‖f‖∞, for any v ∼ u we get ∇f(u, v) ≤ 0 and thus νu 6= 0
(otherwise, by hypotheses, (5.23) could not be satisfied). Then (5.23) reads

‖∇f‖∞
(∑
v∼u

µuvωuv

)
=
‖∇f‖∞
‖f‖∞

νu‖f‖∞ ,

and we get
∑

v∼u µuvωuv = νu, Replacing this last equality again in (5.23) we
find

‖∇f(u)‖∞ = ‖∇f‖∞ = Λf(u)

∆∞f(u) = ‖∇f(u)−‖∞ = ‖∇f‖∞ > 0 .

The cases f(u) < 0 and f(u) = 0 can be proved analogously.

We conclude this section by proving that there exist ∞-eigenpairs that are
critical points of R∞ but that do not satisfy the ∞-eigenvalue equation (5.11).
By the same example we also prove that there exists ∞-eigenvalues between the
first and second variational one.

Example 5.4.12. Consider the following graph:

ω12 = 1 ω23 = 3 ω34 = 2
u1

B
u2 u3 u4

B

The node farther from the boundary is u2 and d(u2, B) = 1
2 + 1

3 = 5
5 . Then the

pair

f1(u2, u3) =

(
5

6
,

1

2

)
, Λ1 =

6

5

is an infinite eigenpair with

(ν2, ν3) =

(
6

5
, 0

)
, (µ12, µ23, µ34) =

(
0,

2

5
,

3

5

)
.

However, it is easy to verify that the following are also eignepair :

f2(u2, u3) =

(
1

6
, −1

6

)
, Λ2 = 6 (ν2, ν3) = (3, 3) , (µ12, µ23, µ34) = (0, 1, 0) .,

f(u2, u3) =

(
∗, 1

2

)
, Λ = 2 (ν2, ν3) = (0, 2) , (µ12, µ23, µ34) = (0, 0, 1) ∗ ∈

[
1

6
,
1

2

]
.
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Note that Λ2 = R2 = 6 is the second variational eigenvalue while Λ1 < Λ < Λ2 .
Moreover, it is worth noting that (f,Λ) does not satisfy (5.11). Indeed, to get a
solution of (5.11) f(u2) should be determined in such a way to get

∆∞f(u2) = 0, ‖∇f(u2)‖∞ − 2f(u2) ≥ 0

or
∆∞f(u2) ≥ 0, ‖∇f(u2)‖∞ − 2f(u2) = 0

But, in the first case, ∆∞f(u2) = 0 implies

f2(u2) =
3

8
⇒ ‖∇f2(u2)‖∞ − 2f(u2) =

3

8
− 2

3

8
< 0 .

In the second case, the equality ‖∇f(u2)‖∞ − 2f(u2) = 0 implies

f2(u2) =
3

10
⇒ ∆∞f2(u2) =

3

10
− 3

1

5
< 0 .

5.5 A variational characterization of the first Infinity
Eigenpair

In this section we discuss a characterization of the∞-eigenpairs based on Propo-
sition 5.4.10. Such characterization offers the possibility of computing families
of ∞-Laplacian eigenpairs as limiting points of sequences of linear Laplacian
eigenvalues. We will briefly investigate the numerical alorithms in the following
section.

Consider the following class of energy functions, where k varies from 1 to
N = |V |:

Ek(µ, ν) =
1

λk(µ, ν)
+ ME(µ)−MV (ν)

=
1

λk(µ, ν)
+

1

2

∑
(u,v)∈E

µuv −
∑
v∈V

νv , (µ, ν) ∈
(
M+(E),M+(V )

)
(5.24)

here λk(µ, ν) is the k-th eigenvalue of the weighted linear eigenvalue problem

−div(µ∇f) = λνf ,

and the following definitions hold

ME(µ) :=
1

2

∑
(u,v)∈E

µuv , MV (ν) := −
∑
v∈V

νv ,

M+(V ) := {ν : V → R≥0} , M+(E) := {µ : E → R≥0} .
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Assuming the differentiability in (µ, ν), the K-K-T conditions for the saddle
points (minimum in µ, maximum in ν), of the above functions read

−div(µ∇f) = λkνf

−|∇f(e)|2

λ2
k‖f‖22,ν

+ 1−m(e) = 0 ∀e ∈ E

− |f(v)|2

‖∇f‖22,µ
+ 1− n(u) = 0 ∀v ∈ V

m(e) ≥ 0 ∀e ∈ E
n(v) ≥ 0 ∀v ∈ V
m(e) = 0 ∀e s.t. µe > 0

n(v) = 0 ∀v s.t. νv > 0

(5.25)

where {m(e)}e∈E and {n(v)}v∈V are suitable families of Lagrange multipliers.
These equations, as we show in Lemma 5.5.1, imply that (f,Λ) := (f,

√
λ)

is an ∞-eigenpair as in Definition 5.4.1, with (f,
√
λ) the weighted 2-Laplacian

eigenpair that satisfies (5.25). The challenge of this approach is that the gener-
alized eigenvalues are in genereal not continuous with respect to perturbations
of the matrices in the case in which both matrices are singular (see for an ex-
ample [53]). Moreover, the differentiability of an eigenvalue is not realized for
multiplicities greater than 1 (see [61]). Observe also that from (5.18) and (5.17),
the two densities µ and ν in (5.25) are generally “almost everywhere zero” mak-
ing the two matrices ∆µ and diag(ν) singular. Studying saddle points of Ek is
thus generally impossible. However, this approach can be pursued for the first
eigenpair (k = 1). The rigorous proof for k > 1 and more in general that a class
of ∞-eigenpairs can be computed by means of generalized weighted Laplacian
eigenepairs remains an open problem.

Lemma 5.5.1. Let the pairs (µ, ν) and (f, λ) satisfy the system of equations
(5.25). Then (f,Λ) := (f,

√
λ) is a generalized ∞-eigenpair.

Proof. Observe first of all that (5.25) implies the following
−div(µ∇f) = λνf

‖∇f‖∞ = |∇f(e)| = λ‖f‖2,ν ∀e s.t. µe > 0

‖f‖∞ = |f(u)| = ‖∇f‖2,µ ∀v s.t. νv ≥ 0 .

(5.26)

Now define

µ̄ =
µ

‖f‖2,ν
and ν̄ =

√
λν

‖f‖2,ν
.

We show now that µ̄ and ν̄ satisfy equation (5.22). Indeed the first three equations
of (5.22) are trivially satisfied, thus we have only to show that

‖µ̄∇f‖1 = 1 , ‖ν̄f‖1 = 1 . (5.27)
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Before analyzing the 1-norms, recalling that |∇f | and |f | are constant on the
supports of µ and ν, we derive the following expression involving the total masses
of µ and ν:

λ =
1

2

∑
e∈E µe|∇f(e)|2∑
v∈V νv|f(v)|2

=
‖∇f‖22,µ

‖∇f‖22,µ
∑

v∈V νv
=
λ2‖f‖22,ν

∑
e∈E µe

2‖f‖22,ν
,

which implies ∑
v∈V

νv =
1

λ
=

1

2

∑
e∈E

µe .

Now, to prove the result in equation (5.27), we start from ‖µ̄∇f‖1. Using (5.26),
we can write

‖µ̄∇f‖1 =
1

2

∑
e∈E

µ̄e|∇f(e)| = ‖∇f‖∞
2

∑
e∈E

µ̄e =
2λ‖f‖2,ν
2λ‖f‖2,ν

= 1 .

For ‖ν̄f‖1, analogously we have:

‖ν̄f‖1 =
∑
v∈V

ν̄v|f(v)| = ‖f‖∞
∑
v∈V

ν̄v =

√
λ‖∇f‖2,µ
λ‖f‖2,ν

=
λ‖f‖2,ν
λ‖f‖2,ν

= 1 ,

which concludes the proof.

Remark 5.5.2. Before discussing the function E1, we recall that the (µ, ν)-
weighted linear Laplacian problem, with µ ∈M+(V ) and ν ∈M+(V ),

∆µ(f) = −div(µ∇f) = λνf

can be partially degenerate. Indeed, the number of well defined eignvalues is equal

to |V | −dim
(

Ker(diag(ν))
)

. Indeed any f ∈ Ker(diag(ν)) with f 6∈ Ker(∆µ) can

be regarded as an eigenfunction with eigenvalue “λ = ∞”. Otherwise, whenever
f ∈ Ker(diag(ν))∩Ker(∆µ), f satisfies the eigenavlue equation with an indefinite
eigenvalue. Considering only the well defined eigenvalues, we write

λ1(µ, ν) = inf
f∈S2,ν

‖∇f‖22,µ
‖f‖22,ν

, (5.28)

where S2,ν = {f ∈ H0(V ) | ‖f‖2,ν = 1} is the (2, ν)-sphere, and the two norms
are defined as:

‖f‖22,ν =
∑

u∈V \B

νu|f(u)|2 , ‖∇f‖22,µ =
1

2

∑
(u,v)∈E

µuv|∇f(u, v)|2 .

Note also that whenever both µ and ν are degenerate, then the eigenfunctions
are not uniquely defined. Indeed, let Gν be the subgraph induced by the nodes v
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such that νv 6= 0 and let Gµ be the subgraph induced by the edges (u, v), such that
µuv 6= 0. Then, given an eigenvalue λ, for any node u ∈ G \ {Gµ ∪ Gν} the (µ, ν)
eigenvalue equation reads

0 =
∑
v∼u

µuv∇f(v, u) = ∆µf(v) = λνvf(v) = 0 , (5.29)

where we have used that νu = 0 and µuv = 0 ∀ v ∼ u. In particular, (5.29)
shows that f is not well defined in the node u. Hence, whenever we have partially
degenerate densities µ and ν, we can consider the subgraph Gµ,ν induced by the
nonzero entries of µ and ν:

u ∈ Gµ,ν if and only if νu 6= 0 and/or µuv 6= 0 for some v ∈ V
(u, v) ∈ Gµ,ν if and only if µuv 6= 0 .

Then, we can identify the eigenpairs of the degenerate eigenvalue problem 5.5.2
on the graph G with the (µ, ν)-Laplacian eigenpairs of the subgraph Gµ,ν .

Now we discuss the particular case k = 1 of (5.24). In such a case, using the
definition (5.28), the function E1(µ, ν) can be written as

E1(µ, ν) = sup
f∈S2,ν

‖f‖22,ν
‖∇f‖22,µ

+
1

2

∑
e∈E

µe −
∑
v∈ν

νv .

Moreover, the results related to the study of minimizers of ‖∇f‖∞‖f‖2 reported in [17]
give us enough regularity to prove the following theorem.

Theorem 5.5.3. Let

E1(µ, ν) :=
1

λ1(µ, ν)
+

1

2

∑
e∈E

µe −
∑
v∈V

νv,

Then the functions

µ 7→ 1

λ1(µ, ν)
+

1

2

∑
e∈E

µe and ν 7→ min
µ

1

λ1(µ, ν)
+

1

2

∑
e∈E

µe −
∑
v∈V

νv ,

are respectively convex in µ and concave in ν and

max
ν

min
µ
E1(µ, ν) =

(
min
f
R∞(f)

)−2
= Λ−2

1 .

Moreover, if (ν∗, µ∗) := arg maxν arg minµ E1(ν, µ), then there exists (f, λ1) a
first eigenpair of the generalizzed eigenvalue problem ∆µ∗f = λν∗f , such that
(f,Λ) := (f,

√
λ1) is a first eigenpair of the generalized ∞-eigenvalue problem

(see Definition 5.4.1).
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Proof. Start by noting that, by means of the expression of λ1(µ, ν) as a minimum
(5.28) and the convexity of the function (x 7→ 1/x) on the positive semiaxis, it is
trivial to prove that

µ 7→ 1

λ1(µ, ν)
+

1

2

∑
e∈E

µe = sup
f∈S2,ν

‖f‖22,ν
‖∇f‖22,µ

+
1

2

∑
e∈E

µe

is a convex function. Next we study the minimizer of such function:

min
µ

sup
f∈S2,ν

‖f‖22,ν
‖∇f‖22,µ

+
1

2

∑
e∈E

µe .

Exchanging minµ supf with supf minµ, by the max-min inequality we have:

max
f∈S2,ν

min
µ

‖f‖22,ν
‖∇f‖22,µ

+
1

2

∑
e∈E

µe ≤ min
µ

max
f∈S2,ν

‖f‖22,ν
‖∇f‖22,µ

+
1

2

∑
e∈E

µe . (5.30)

Now observe that from Lemma B.0.2 we can state that, given any admissible f ,
there exists µf such that

µf ∈ arg min
µ

‖∇f‖22,ν
‖f‖22,µ

+
1

2

∑
e∈E

µe =
2‖f‖2,ν
‖∇f‖∞

and fµf ∈ ∂‖∇f‖∞ ,

which, together with (5.30) , yields:

min
µ

sup
f

‖f‖22,ν
‖∇f‖22,µ

+
∑
e∈E

µe ≥ sup
f

2
‖f‖2,ν
‖∇f‖∞

Next, we want to prove the opposite inequality. Given an admissible f , from
(5.12), we know |f(u)| ≤ dB(u)‖∇f‖∞. Hence, any minimizer f∗ of the above
(∞, ν)-Rayleigh quotient

f∗ ∈ arg min
f

‖∇f‖∞
‖f‖2,ν

:= Λ1(∞, 2, ν) , (5.31)

satisfies the following properties:

f∗(u) = ‖∇f‖∞dB(u) ∀u s.t. νu > 0 (5.32)

The last eq. (5.31), joint with the characterization of the subgradient of
‖∇f‖∞ (5.18), imply that for any minimizer f∗, there exists µf∗ such that

−div(µf∗∇f∗) ∈ ∂‖∇f∗‖∞ ∩ Λ1(∞, 2, ν)∂f‖f∗‖2,ν .
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In particular, from the characterization of the subgradient, the pair (f∗, µf∗)
satisfies 

∆µf∗f
∗ = −div(µf∗∇f∗) = Λ1(∞, 2, ν)νf∗

‖µf∗∇f∗‖1 = 1

|∇f∗| = ‖∇f∗‖∞ if µf∗ > 0

(5.33)

Note that as a consequence of (5.33) and (5.32), the support of the density ν
is necessarily contained in the subgraph induced by µf∗ , i.e. Vmax(ν) ⊆ Vµf∗ .
The last inclusion and remark 5.5.2, show that the eigenpairs of the (µf∗ , ν)
eigenvalue problem are not well defined outside the subgraph Gµf∗ induced by
the non zero entries of µf∗ . In particular, we can identify the eigenpairs of the
(µf∗ , ν)-Laplacian eigenvalue problem on G with the (µf∗ , ν)-Laplacian eigenpairs
on the graph Gµf∗ , see remark 5.5.2.

Moreover, we recall that the first eigenfunction of a weighted Laplacian on
a connected graph is characterized as the only everywhere-positive eigenfunction
Theorem A.0.1. Hence we have that f∗|Gµf∗ is necessarily a first eigenfunction of

the (µf∗ , ν)|Gµf∗ -Laplacian eigenvalue problem on the graph Gµf∗ , i.e.,

f∗ ∈ arg max
f

‖f‖2,ν
‖∇f‖2,µf∗

= arg max
f

‖f‖2,ν
‖∇f‖∞

. (5.34)

Finally, (5.34) yields the desired inequality:

min
µ

max
f

‖f‖22,ν
‖∇f‖22,µ

+
∑
e∈E

µe ≤ max
f

‖f‖22,ν
‖∇f‖22,µf∗

+
∑
e∈E

µe = max
f

2
‖f‖2,ν
‖∇f‖∞

=
‖f∗‖2,ν
‖∇f∗‖∞

.

We have thus proved that

min
µ

max
f

‖f‖22,ν
‖∇f‖22,µ

+
∑
e∈E

µe = max
f

2
‖f‖2,ν
‖∇f‖∞

.

The concavitiy of ν 7→ minµ
1

λ1(µ,ν) + 1
2

∑
e∈E µe−

∑
v∈V νv follows directly, since,

using (5.32), we can write:

ν 7→ min
µ

1

λ1(µ, ν)
+
∑
e∈E

µe−
∑
v∈V

νv = max
f

2
‖f‖2,ν
‖∇f‖∞

−
∑
v∈V

νv = 2‖dB‖2,ν−
∑
v∈V

νv .

Then, switch maxν with maxf and observe that, for any f , if νf is a maximizer of
2
(
‖f‖2,ν/‖f‖∞

)
−
∑

v∈V νv, there exist a family of Lagrange multipliers {n(v)}v∈V
such that 

|f(v)|2

‖f‖2,νf ‖∇f‖∞
− 1 + n(v) = 0 ∀v ∈ V

n(v) ≥ 0 ∀v ∈ V
n(v) = 0 ∀v s.t. νf v > 0 ,

(5.35)
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yielding:

|f(v)|2 = ‖f‖2∞ = ‖∇f‖∞‖f‖2,νf ∀v s.t. νf v > 0

In particular we obtain the following expression for the mass of the density νf ,

∑
v∈V

(νf )v =
‖f‖2∞
‖∇f‖2∞

,

that means

max
ν

min
µ

max
f

‖f‖22,ν
‖∇f‖22,µ

+
∑
e∈E

µe −
∑
v∈ν

νv = max
ν

max
f

min
µ

‖f‖22,ν
‖∇f‖22,µ

+
∑
e∈E

µe −
∑
v∈ν

νv =

max
ν

max
f

2
‖f‖22,ν
‖∇f‖2∞

−
∑
v∈ν

νv = max
f

max
ν

2
‖f‖22,ν
‖∇f‖2∞

−
∑
v∈ν

νv =

max
f

2
‖f‖2∞
‖∇f‖2∞

− ‖f‖2∞
‖∇f‖2∞

= max
f

‖f‖2∞
‖∇f‖2∞

(5.36)
concluding the first part of the proof. Moreover, assuming (ν∗, µ∗) to be a max-
min of E1, then, from (5.36) there exists f∗ such that

f∗ ∈ arg min
f

‖∇f‖22,µ∗/‖f‖22,ν∗ = min
f
R2
∞(f) .

Defined µ∗ = µf∗ ν
∗ = νf∗ , Lemma B.0.2 and (5.35) yields that (ν∗, µ∗, f∗) satisfy

the set of equations (5.25). Finally the second part of the Theorem follows directly
from Lemma 5.5.1.

5.5.1 Gradient flows

We have observed in the previous section that, by means of the unique saddle
point of the energy function E1 : M+(E) ×M+(V ) → R, it is possible to char-
acterize the first ∞-eigenpair and the corresponding admissible densities as in
Proposition 5.4.10, see Theorem 5.5.3. Such result extends to the infinty case a
result previously proved in Chapter 4 for the case p ∈ (2,∞), see Theorem 4.5.8.
In Chapter 4, besides the study of the first p-Laplacian eigenpair, it is also proved
that any smooth saddle point of a function Epk (4.29) corresponds to a p-Laplacian
eigenpair different from the first variational eigenpair, see Theorem 4.5.9. As a
consequence of the discussion in the beginning of section 5.5, the same result
could be proved for saddle points of the functions Ek = E∞k . However, as now
we show, the assumption of smoothness, in the case p = ∞, seems too restric-
tive. Indeed, from the characterization of the ∞-eigenpairs as linear eigenpairs,
see Proposition 5.4.10, and from the charaterization of the subgradients (5.18)
(5.17), we recall that any ∞-eigenpair (f,Λ) corresponds to a linear eigenpair
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of a singular generalized eigenvalue problem. In particular, we have that (f,Λ)
satisfies the eigenvalue equation

∆µf = Λνf, (5.37)

for some degenerate ν that is supported on the subgraph induced by µ. In
addition, from Remark 5.5.2, we recall that the number of well defined eigenvalues
of the generalized eigenvalue problem (5.37) is equal to the number of nonzero
entries of ν. Assume now that (f,Λ) corresponds to the k-th eigenpair of (5.37)
and consider the density ν ′ = ν + εev, where ev is the density equal to zero
everywhere except that on the node v, and v is some node not included in the
subgraph induced by µ. Then we easily observe that if ε is different from zero,
the set of the (µ, ν ′) eigenvalues is given by zero plus the (µ, ν)-eigenvalues. This
means that λk is not continuous in (µ, ν). Indeed we have

Λ = λk(µ, ν + 0 ev) Λ = λk+1(µ, ν ′) = λk+1(µ, ν + ε ev) ∀ε > 0 .

Despite such problems of continuity, in the following of this section we present
a preliminary discussion and the results of some numerical integrations of gradi-
ents flows for the functions Ek.

In particular, for any k we consider the gradient flow obtained as an extension
to the case p =∞ of the gradient flows presented in Chapter 4:

µ̇ = µ
(

|∇f |2
λk(µ,ν)‖f‖2ν

− 1
)

ν̇ = ν
(
|f |2
‖∇f‖2µ

− 1
)

∆µf = λk(µ, ν)f

. (5.38)

Note that, given two strictly positive initial densities µ0 and ν0, the gradient flow
(5.38) corresponds to the following dynamics extended to the space of signed
measures on edges and nodes:

µ̇ = µ
(

minΦ∈sign(µ)

( |∇f |2
λk(µ,ν)‖f‖2ν

− Φ
))

ν̇ = ν
(

minφ∈sign(ν)

( |f |2
‖∇f‖2µ

− φ
))

∆µf = λk(µ, ν)f

, (5.39)

where

sign(x) =


1 if x > 0

[−1, 1] if x = 0

−1 if x > 0

.

Observe that Φ and φ in (5.39) are chosen, respectively, in the subgradients of
‖µ‖1 =

∑
uv∈E |µuv| and ‖ν‖1 =

∑
u∈V \B |νu| .
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The correspondence between the gradient flows (5.39) and (5.38), when start-
ing from two strictly positive initial densities µ0 and ν0, can be proved observing
that as long as ν(t) and µ(t) are everywhere nonzero φ = 1 and Φ = 1. Moreover,
if at some time t0, νu(t0) or µuv(t0) become zero for some u ∈ V \B or (u, v) ∈ E,
then ν̇u(t) and µ̇uv(t) are zero for any t > t0 and the dynamics cannot exit any-
more from the subspaces {ν|νu = 0}, {µ|µuv = 0}. This means that the value
of φu and Φuv is irrelevant whenever νu(t0) or µuv(t0) is zero. Then, we note
that the dynamics (5.39) can be considered as a regularization of the following
dynamics, whose importance is pointed out in the next Lemma 5.5.4

µ̇ = minΦ∈sign(µ)

( |∇f |2
λk(µ,ν)‖f‖2ν

− Φ
)

ν̇ = minφ∈sign(ν)

( |f |2
‖∇f‖2µ

− φ
)

∆µf = λk(µ, ν)f

. (5.40)

The regularization is represented by the multiplicative factors ν and µ in (5.39).
Indeed, such factors slow down the velocities µ̇ and ν̇ when the densities µ and ν
approach zero on some edge or node. From the discussion at the beginning of this
section, we comprehend the importance of such regularization. Indeed, we have
observed that, when (µ, ν) become zero somewhere, it is possible to experience a
lack of continuity of the eigenvalue λk(µ, ν). Thus, differently from the dynamics
(5.40) which can pass through different discontinuities of the eigenvalue λk(µ, ν),
the dynamics (5.39) is expected to experience a lack of continuity of the eigenvalue
λk(µ, ν) only in the limiting point. Now we highlight the importance of the
dynamics (5.40) showing that its equilibrium points, if exist, correspond to ∞-
eigenpairs.

Lemma 5.5.4. Suppose (µ0, ν0) to be a equilibrium point of the dynamics (5.40).
Then (f,Λ) =

(
f,
√
λk(µ0, ν0)

)
is an ∞-eigenpair. Moreover the support of µ0

and ν0 matches respectively the support of some Ξ ∈ ∂‖∇f‖∞ and ξ ∈ ∂‖f‖∞
such that −div(Ξ) = Λξ.

Proof. Oberve that if (µ0, ν0) is an equilibrium point, then

0 = min
Φ∈sign(µ0)

( |∇f |2

λk(µ0, ν0)‖f‖2ν
− Φ

)
0 = min

φ∈sign(ν0)

( |f |2

‖∇f‖2µ0
− φ

) (5.41)

where (f, λk) is the k-th (µ0, ν0)-eigenpair. Thus, given Φ and φ minimizers in
(5.41), they necessarily satisfy

0 ≤ Φuv ≤ 1 ∀ (u, v) ∈ E Φuv = 1 ∀ (u, v) s.t. µ0uv 6= 0

0 ≤ φu ≤ 1 ∀ u ∈ V \B φu = 1 ∀ u s.t. ν0u 6= 0.
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If we set m = 1− φ and n = 1− φ, it is easy to observe that (µ0, ν0) and (f, λk)
satisfy the set of equations (5.25). The thesis follows applying Lemma 5.5.1 and
Proposition 5.4.10.

Now we discuss the results of the numerical integration of the dynamics (5.38).
The system of algebraic-differential equations is discretized by means of a simple
explicit Euler method with an empirically-determined constant time step size, t.
The third (purely algebraic) equation is solved by the QZ algorithm. Given the
value of k and the initial values µ0

k and ν0
k , for n = 0, 1, . . . the final scheme takes

on the form:

∆µnk
f = λnk(µnk , ν

n
k )f

µn+1
k = µnk + tµnk

(
|∇f |2

(λnk)2‖f‖2νnk
− 1

)
νn+1
k = νnk + tνnk

(
|f |2

‖∇f‖2µnk
− 1

)
.

Convergence towards equilibrium is considered achived when the error

err =
∣∣∣√λ− ‖∇f‖∞‖f‖∞

∣∣∣ (5.42)

is below a given tolerance.
Figure 5.3 shows the experimental results obtained on a graph of 49 vertices

obtained gridding uniformly the square. The nodes on the edges of the square
are considered as boundary nodes subject to Dirichlet boundary conditions. In
addition, we impose uniform weights on the edges. The first 4 eigenfunctions (left
panels), the relative convergence behaviour (central panel) and the plot of the
values of the corresponding µ and ν are reported. The value of µ on any edge is
represented using a proportional thickness of the edge. Similarly, the value of ν on
any internal node is represented by both plotting the node with a proportional
dimension and giving to the node the appropriate color in accordance to the
color-code on the right of the figure.

We must recall that, even if the eigenvalue λk(µ, ν) is expected to be contin-
uous along the trajectory of (µ, ν) in (5.38), the same is not in general true for
the eigenfunction f . Indeed whenever the eigenvalue λk(µ, ν) is not simple, the
eigenfunction f is not uniquely defined and hence also the system of algebraic
differential equations (5.38) is not well defined. From a numerical point of view
we can suppose that the discrete time step allows to jump over the discontinuity
points of the eigenfunction. Nevertheless, when we overcome a point in which
the k-th eigenvalue is not simple, the trajectory of the k-th eigenpair can be ex-
changed with the trajectory of the k− 1 or k+ 1 eigenpair, and the discontinuity
in the eigenfunction is reflected in a discontinuity in the error plot. Such behavior
is reflected in several tests, see for example k = 3, 4 Figure 5.3. We highlight that
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Figure 5.3: Left panel: four eigenfunctions as calculated by the proposed method
with k = 1, 2, 3, 4 and uniform initial densities ν0 and µ0. The edge length is
uniform on all the edges and equal to the reciprocal of the edge length. For
each k the central panel reports the behavior of the error defined in eq.(5.42) as
a function of time steps (iterations) n. The Right panel show the values of µ
and ν. The edge values of µ are plotted with the proportional thickness of the
edge. The nodal values of ν are plotted with the thickness of the node and the
color-code shown on the right of the figure for k = 1, . . . , 4 (top to bottom)
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in all the reported numerical tests, at convergence, the behaviour of the densities
µ and ν reflects the behavior proved in Proposition 5.4.10 and Proposition 5.4.8.
So, ν is supported on extremal points (maxima or minima) of the function f , and
µ is supported on the shortest paths that join extremal point of different sign or
extramal points to the boundary.

Now we discuss the results of the same numerical integration performed for
k = 5, 6 ( Fig 5.4 and Fig 5.5). In these cases, when the error of the eigenvalue
is approximately 10−6, we experience some convergence of the densities µ and ν.
However it is easy to observe that the graph induced by the limiting densities is
symmetric and disconnected. This fact implies that the limiting eigenvalues are
not simple, and the uncertainty in the choice of the correct eigenfunction leads
to escape from an equilibrium and to converge toward a different one, see Fig 5.4
and Fig 5.5.

Moreover, taking for example k = 6, we note that in the final equilibria of the
dynamics, the density ν is supported only on one node, meaning that there is a
unique well defined eigenpair. The index of the limiting eigenvalue is thus 1 and
not 6 as along the whole trajectory. This leads to a discontinuity of the eigenvalue
in the limiting point. Such discontinuity is not reflected in the numerical tests
because the numerical integration is stopped when the error is sufficiently small
and, at this point, the densities µ and ν are still not exactly equal to zero on the
nodes and edges that are not supported by the limiting densities.

We conclude observing that, interestingly, all the presented numerical tests
converge toward ∞-eigenpair. However, we are not able to provide any informa-
tion about the position of the computed eigenvalues in the variational spectrum.
Moreover, the above discussion and the problems of continuity of the eigenpairs,
make the theoretical study of convergence of the above algorithm particularly
complicated, especially when k > 1. The necessity to overcome the problems of
continuity of the eigenpairs suggests us future investigations of similar dynamics
in which the index of the eigenvalue is not fixed a priori. Indeed, the possibility
to have an eigenvalue index that change along the trajectory could allow us to
obtain a smoothly varying eigenfunction, which, in turn, would result in smooth
trajectories of λ, µ and ν.
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Figure 5.4: Proposed method performed for k = 5 and uniform initial densities
ν0 and µ0. The edge length is uniform on all the edges and equal to the reciprocal
of the edge length. The top panel reports from left to right the relative error of
µ, the relative error of ν and the error of the eigenvalue (5.42). The left panel
reports the plot of the eigenfunction f , on the top when the error of the eigenvalue
is smallear than 10−6, at the bottom when the error of the eiegnvalue is smaller
than 10−14. The right panel reports the corresponding densities µ and ν when
the error of the eiegnvalue is smaller than 10−6 (top) and 10−14 (bottom). The
edge values of µ are plotted with the proportional thickness of the edge. The
nodal values of ν are plotted with the thickness of the node and the color-code
shown on the right of the figure.
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Figure 5.5: Proposed method performed for k = 6 and uniform initial densities
ν0 and µ0. The edge length is uniform on all the edges and equal to the reciprocal
of the edge length. The top panel reports from left to right the relative error of
µ, the relative error of ν and the error of the eigenvalue (5.42). The left panel
reports the plot of the eigenfunction f , on the top when the error of the eigenvalue
is smallear than 10−5, at the bottom when the error of the eiegnvalue is smaller
than 10−12. The right panel reports the corresponding densities µ and ν when
the error of the eiegnvalue is smaller than 10−5 (top) and 10−12 (bottom). The
edge values of µ are plotted with the proportional thickness of the edge. The
nodal values of ν are plotted with the thickness of the node and the color-code
shown on the right of the figure.
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A

This appendix is devoted to recall some classical technical results of crucial im-
portance to prove some of our results. For the sake of completness we report
these results with their proof.

Theorem A.0.1. Let G = (V,E, ω) be a graph with boundary B, µ : E →
R>+ a strictly positive weight on the edges and ν : V \ B → R+ a positive
weight on the nodes such that is not everywhere zero ν 6= 0. Define ∆µf(u) =
∇Tdiag(µ)∇f(u) + ruf(u) to be the µ-weighted Laplacian matrix associated to
the homogeneous Dirichlet boundary conditions, i.e.

∆µf(u) =
∑
v∼u

v∈V \B

ωuvµuv

(
f(u)− f(v)

)
+
∑
v∈B

ωuvµuvf(u) .

Consider the generalized eigenvalue problem

∆µf = λνf . (A.1)

Then,

λ1(µ, ν) = min
f

‖∇f‖2µ
‖f‖2ν

= min
f

∑
(u,v)∈E µuv|∇f(u, v)|2∑

u∈V \B νu|f(u)|2

is a simple eigenvalue, meaning that there exists a unique eigenfunction f1 such
that ∆µf1 = λ1νf1. Moreover f1 is the only eigenfunction such that f1(u) > 0
for any internal node u ∈ V \B.

Proof. First observe that if the boundary is empty, the Laplacian matrix ∆µ has
non-empty kernel which given by the only constant vector. Moreover note that
the constant vector is supported everywhere and thus also on the support of ν.
Second consider the case of an non-empty boundary, then the Laplacian matrix
∆µ is not singular meaning the eigenvalue problem (A.1) admits a number of
eigenvalues equal to N − dim

(
Ker(diagν)

)
, where N = |V \ B|. Moreover each

eigenvalue is such that the corresponding eigenfunction is in RN \Ker(diagν).
Hence w.l.o.g. we can consider a minimizer ofRp,2,ν , f1, such that ‖f1‖2,ν = 1.

Note that by the triangular inequalty,

|f1(u)− f1(v)| ≥
∣∣ |f1(u)| − |f1(v)|

∣∣ ,
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where the equality holds if and only if f = ±|f | . Moreover since ‖f1‖ν = ‖ |f1| ‖ν ,
we derive the following inequality:

‖∇|f1| ‖2µ
‖|f1|‖2ν

≤
‖∇f1‖2µ
‖f1‖2ν

= min
f

‖∇f‖2µ
‖f‖2ν

.

The last inequlality proves that, since the the graph is connected, we can consider
f1 such that f1(u) ≥ 0 ∀u ∈ V \B.

Moreover if there exists u ∈ V \ B such that f1(u) = 0, using the fact that
f1(v) ≥ 0 for any v ∼ u we observe that the eigenvalue equation (A.1) reads:

0 ≥ ∆µf(u) = 0, ,

with equality if and only if f1(v) = 0 ∀ v ∼ u. Hence, by the connctedness of
the graph, if f1(u) = 0 for some u ∈ V \ B, then f1 = 0 everywhere, which
is a contradiction of the hypothesis ‖f1‖ν = 0 . We have proved that any first
eigenfunction, up to multiplicative factors, is strictly positive.

Now we can prove the second part of the theorem. Assume that there exists
a positive eigenfunction f2 > 0 such that

‖∇f2‖2µ
‖f2‖2ν

= λ2 > λ1 .

Then, there exists some t > 0 such that

λ2f2(u) > tλ1f1(u) ∀u ∈ V \B and ∃u0 ∈ V \B s.t. tf1(u0) > f2(u0) .

Applying Theorem A.0.2 to the functions tf1 and f2, we get a contradiction.
Hence we have proved that any positive eigenfunction is necessarily associated to
the first eigenvalue.

We are left to prove that λ1 is simple, i.e., the uniqueness of the corresponding
eigenfunction f1. Assume that there exist two positive eigenfunctions f1 and f2

relative to λ1 with ‖f1‖ν = ‖f2‖ν = 1. Then, the function

g(u) =
(
f2

1 (u) + f2
2 (u)

) 1
2 ,

has ν-norm given by ‖g‖2ν = 2, and its gradient satisfies:

‖∇g‖2µ ≤
(
‖∇f1‖2µ + ‖∇f2‖2µ

)
with equality holding if and only if ∇f1(u, v) = ∇f2(u, v) ∀(u, v) ∈ E. To prove
the last inequality, consider an edge (u, v) and use the Cauchy Schwarz inequality
applied to the two vectors

(
f1(u), f2(u)

) (
f1(v), f2(v)

)
:

|∇g(v, u)|2 = ω2
uv

∣∣∣(f1(u)2 + f2(u)2
) 1

2 −
(
f1(v)2 + f2(v)2

) 1
2

∣∣∣2
≤ ω2

uv

∣∣∣(f1(u)− f1(v)
)2

+
(
f2(u)− f2(v)

)2∣∣∣
=
(
|∇f1(v, u)|2 + |∇f2(v, u)|2

)
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Then we have

2λ1 = λ1‖g‖2ν ≤ ‖∇g‖2µ ≤
(
‖∇f1‖2µ + ‖∇f2‖2µ

)
= 2λ1

implying that for any edge f1(u)− f1(v) = f2(u)− f2(v) and thus, since ‖f1‖ν =
‖f2‖ν and both f1 and f2 are positive, necessarily f1 = f2. Hence, we have proved
that the first eigenfunction is simple, concluding the proof.

Theorem A.0.2. [77] Suppose that f and g satisfies

∆pf(u) + r(u)|f(u)|p−2f(u) ≥ ∆pg(u) + r(u)|g(u)|p−2g(u),

where r(u) ≥ 0 for any u in V . Then f(u) ≥ g(u) for any u ∈ V .

Proof. Let S = {u ∈ V |g(u) > f(u)} and x+ = max{x, 0}, then we have:∑
u∈V

(
∆pf(u)+r(u)|f(u)|p−2f(u)−∆pg(u)−r(u)|g(u)|p−2g(u)

)(
g(u)−f(u)

)+ ≥ 0 .

Exploiting the last equation and the expression of ∆pf(u) and ∆pg(u) we obtain:

0≤
∑
u∈S

r(u)
(
|f(u)|p−2f(u)− |g(u)|p−2g(u)

)(
g(u)− f(u)

)
+
∑
u∈S

∑
v∼u
v∈S

ωuv

(
|f(u)− f(v)|p−2

(
f(u)− f(v)

)
− |g(u)− g(v)|p−2

(
g(u)− g(v)

))(
g(u)− f(u)

)
+
∑
u∈S

∑
v∼u
v∈V \S

ωuv

(
|f(u)− f(v)|p−2

(
f(u)− f(v)

)
− |g(u)− g(v)|p−2

(
g(u)− g(v)

))(
g(u)− f(u)

)
(A.2)

However observe first that:

r(u)
(
|f(u)|p−2f(u)− |g(u)|p−2g(u)

)(
g(u)− f(u)

)
≤ 0 ∀u ∈ S .

Second observe that if u ∈ S and v ∈ V \S, f(u) < g(u) and f(v) ≥ g(v) meaning
that

|g(u)− g(v)|p−2
(
g(u)− g(v)

)
> |f(u)− f(v)|p−2

(
f(u)− f(v)

)
,

i.e. ∀u ∈ S v ∈ V \ S:

ωuv

(
|f(u)−f(v)|p−2

(
f(u)−f(v)

)
−|g(u)−g(v)|p−2

(
g(u)−g(v)

))(
g(u)−f(u)

)
< 0 .
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Third observe that, since |a|p + |b|p − ab(|a|p−2 + |b|p−2) ≥ 0∑
u∈S

∑
v∼u
v∈V \S

ωuv

(
|f(u)− f(v)|p−2

(
f(u)− f(v)

)
− |g(u)− g(v)|p−2

(
g(u)− g(v)

))(
g(u)− f(u)

)
=
∑
u,v∈S
u∼v

−
(
|f(u)− f(v)|p + |g(u)− g(v)|p

)
+
∑
u,v∈S
u∼v

(
|f(u)− f(v)|p−2 + |g(u)− g(v)|p−2

)(
f(u)− f(v)

)(
g(u)− g(v)

)
≤ 0

Hence, since all the terms in (A.2) are smaller than zero, with the second being
strictly smaller, we conclude that necessarily S = ∅.



B

We devote this appendix to present some novel technical results which are nec-
essary to prove some of our main results.

Lemma B.0.1. Consider the function

R(β1, β2) =
( |β1|p

φp
(
α1

) − |β2|p

φp
(
α2

))φp(α1 − α2

)
−
(
β1 − β2

)
φp

(
β1 − β2

)
, (B.1)

where φp(x) = |x|p−2x, α1, α2, β1, β2 are real numbers, and α = α2/α1. Then
R(β1, β2) is positive if α is negative and negative if α is positive. Moreover
R(β1, β2) = 0 if and only if β = β1/β2 = α1/α2.

Proof. We first consider the special cases where either β1 or β2 are zero or α = 1.
When β2 = 0 (B.1) becomes

R(β1, 0) = |β1|p
(
φp
(
1− α

)
− 1
)
,

and a simple computation shows that
(
φp(1−α)−1

)
≥ 0 if and only if α < 0. The

case with β1 = 0 is similar, since R(0, β2) = |β2|p
(
φp
(
1− 1

α

)
−1
)

. Next, consider

the case α = 1. In this case (B.1) simplifies to R(β1, β2) = −|β1 − β2|p ≤ 0 and
one easily sees that the equality holds if and only if β1 = β2.

Consider now the case where both β1 and β2 are different from zero and α 6= 1.
Equation (B.1) can be written as

R(β1, β2) = |β1|p
(
φp(1− α)− φp

(
1− β2

β1

))
+ |β2|p

(
φp

(
1− 1

α

)
− φp

(
1− β1

β2

))
.

(B.2)

Dividing (B.2) by |β2|p and letting β = β1/β2 we get the chain of inequalities

|β|pφp(1− α) + φp

(
1− 1

α

)
≥ |β|pφp

(
1− 1

β

)
+ φp

(
1− β

)
⇐⇒ |β(1− α)|p

(1− α)
+
|1− 1

α |
p

1− 1
α

≥ |β − 1|p−2(β2 − β) + |β − 1|p−2(1− β)

⇐⇒ |β(1− α)|p

(1− α)
+
|1− 1

α |
p

1− 1
α

≥ |β − 1|p . (B.3)
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Now, if 1 < α < 0, then 0< 1
(1−α) <1 and 1

(1−α) + 1
1− 1

α

= 1, so we can use the

convexity of x 7→ |x|p to obtain

|β(1− α)|p

(1− α)
+
|1− 1

α |
p

1− 1
α

≥ |β − 1|p .

Since x 7→ |x|p is strictly convex for p > 1, the equality in the expression above
holds if and only if β(1 − α) = 1

α − 1 showing that R(β1, β2) is positive if α is
negative.

To face the case α > 0, consider again equation (B.2). We can assume without
loss of generality that 0 < α < 1. Indeed, if α > 1, we can divide (B.2) by |β1|p
to obtain an equation like (B.3) where 1/α is used in place of α and the proof
would follow from the argument above. Returning to the case 0 < α < 1, from
(B.2) and the following sequence of inequalities can be obtained following the
same steps as above:

|β|pφp(1− α) + φp

(
1− 1

α

)
≤ |β − 1|p

⇐⇒ |β|p ≤ |β − 1|p

φp(1− α)
+
φp

(
1−α
α

)
φp(1− α)

⇐⇒ |β|p ≤
∣∣∣ β − 1

(1− α)

∣∣∣p(1− α) +
∣∣∣ 1
α

∣∣∣pα
Note that, as before, the last inequality holds due to the convexity of x 7→ |x|p
and thus equality holds if and only if β−1

(1−α) = 1
α which implies β = 1

α , concluding
the proof.

Lemma B.0.2. Let M(X) be the space of the finite signed measures on a mea-
surable space X with M+(X) being the cone of the positive measures. Given a
measurable function f : X → R

inf
η∈M+(X)

1

‖f‖22,η
+ |η| = 2

‖f‖∞

Where |η|(:= ‖η‖1) denotes the total variation of η and ‖f‖2,η denotes the 2-norm
of f with respect to η. Moreover, if |f | admits a maximum, there exists a η∗ that
realizes the minimum and fη∗ ∈ ∂‖f‖∞ .

Proof. Observe first of all that the function

Ξ :M+ −→ R+

η 7→ 1

‖f‖22,η
+ |η|
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is a convex function on the convex cone of the positive measures. Then, fixed a
measure η, the function

Ξη : R+ −→ R+

c 7→ Ξ(cη)

is clearly a convex function on R+, and differentiating in c, we can compute its
minimizer cη by solving:

0 =
dΞη
dc

(cη) = − 1

c2
η‖f‖22,η

+ |η| ,

yielding
c−2
η = |η|‖f‖22,η . (B.4)

Then, we can write

inf
η∈M+(X)

Ξ(η) = inf
η∈M+(X)
|η|=1

Ξ(cηη) = inf
η∈M+(X)
|η|=1

2

√
|η|
‖f‖22,η

= inf
η∈M+(X)
|η|=1

2

√
1

‖f‖22,η
=

2

‖f‖∞
,

where the last equality is easily obtained considering any probability measure
on the subsets {x||f(x)| > ‖f‖∞ − ε}, and letting ε go to zero. Moreover if |f |
admits maximum, the inf is easily proved to be a minimum. Denoting with η∗

the minimizer, from (B.4) we have:

‖f‖22,η∗ =
1

|η∗|
= ‖f‖∞

from which we can easily see that fη∗ ∈ ∂‖f‖∞ .



154 APPENDIX B.



Bibliography

[1] E. Abderrahim, D. Xavier, L. Zakaria, and L. Olivier. Nonlocal infinity lapla-
cian equation on graphs with applications in image processing and machine
learning. Mathematics and Computers in Simulation, 102:153–163, 2014. 4th
International Conference on Approximation Methods and Numerical Mod-
eling in Environment and Natural Resources.

[2] S. Amghibech. Eigenvalues of the Discrete p-Laplacian for Graphs. Ars
Combinatoria, 67:283–302, 04 2003.

[3] S. Amghibech. Bounds for the largest p-Laplacian eigenvalue for graphs.
Discr. Math., 306:2762–2771, 2006.

[4] R. Band, I. Oren, and U. Smilansky. Nodal domains on graphs - How to
count them and why? In Proc. Sympos. Pure Math., Providence, RI: Amer.
Math. Soc, volume 77, 11 2007.

[5] G. Berkolaiko. A lower bound for nodal count on discrete and metric graphs.
Communications in mathematical physics, 278(3):803–819, 2008.

[6] G. Berkolaiko, H. Raz, and U. Smilansky. Stability of nodal structures in
graph eigenfunctions and its relation to the nodal domain count. Journal of
Physics A: Mathematical and Theoretical, 45(16):165203, 2012.
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