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Abstract. Self-driving vehicles and autonomous ground robots require
a reliable and accurate method to analyze the traversability of the sur-
rounding environment for safe navigation. This paper proposes and eval-
uates a real-time machine learning-based Traversability Analysis method
that combines geometric features with appearance-based features in a
hybrid approach based on a SVM classifier. In particular, we show that
integrating a new set of geometric and visual features and focusing on
important implementation details enables a noticeable boost in perfor-
mance and reliability. The proposed approach has been compared with
state-of-the-art Deep Learning approaches on a public dataset of outdoor
driving scenarios. It reaches an accuracy of 89.2% in scenarios of varying
complexity, demonstrating its effectiveness and robustness. The method
runs fully on CPU and reaches comparable results with respect to the
other methods, operates faster, and requires fewer hardware resources.

1 Introduction

Traversability Analysis is a fundamental task in the field of robotics and au-
tonomous driving, in particular, this is one of the key activities that an au-
tonomous vehicle has to perform to achieve an effective navigation in every type
of scenario.

The ability to correctly detect non-traversable regions of the terrain is closely
related to the type of vehicle on which the analysis is performed, and, according
to [1], its computational complexity increases with the diversity of the surround-
ing terrain. As in [2], a grid cell is said to be Non Traversable if its features exceed
certain thresholds for the vehicle specification: sizes, workloads, risk awareness
and so on1.

A binary terrain classification that discriminates between Traversable and
Non Traversable areas needs to be reliable and efficient. The reliability require-
ment is essential, it affects how much the vehicle is able to move in the environ-
ment, and it is strictly connected to the robot safety. Accordingly, the real-time

1 Note that this definition differs from the driveability stated in [3].
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Fig. 1: From left to right: the original SemanticKITTI Labeled cloud in a
frame from Scenario 00, and the corresponding Ground Truth and predicted
traversability grids respectively (white points are traversable, red ones are not)

requirement needs special attention as well, since this may affect the reaction
speed of the vehicle.

In this paper, we propose a real-time machine-learning-based grid segmen-
tation method, in which 3D LiDAR data and 2D camera images are used for
the traversability analysis. Our method is designed to work either with a single
point cloud or with sequences of registered point clouds. In the simplest version,
a point cloud is arranged in buckets of 2D points, thus creating a 2D grid such
that its reference frame coincides with the LiDAR center. This setting is suitable
for getting immediate traversability feedback, at the price of a low cloud density.
Considering a sequence of point clouds and estimating the relative motions be-
tween them by using point cloud registration algorithms such as ICP (Iterative
Closest Point) or a LiDAR odometry system such as [4], it is possible to obtain
a denser local map, thus a more informative 2D grid. If a calibrated camera is
available, it is possible to re-project the point cloud into the camera image plane,
so collecting also the intensity and/or color information of the points. Our goal
is to classify each cell of the collected grid: we compute a set of features repre-
senting the group of points in each cell, then by using such features we evaluate
the level of traversability of the cells using a binary classifier.

The challenge of this work is to use geometric and appearance-based features
in a mixed urban environment: roads, sidewalks, mixed vegetation (e.g., trees,
near-road vegetation, urban parks, forests), dynamic agents and many other
urban elements that make the classification of the 3D cloud more difficult and
ambiguous.

The contributions of this work can be summarized as follows: (i) the develop-
ment of a hybrid approach for a SVM-based traversability analysis that includes
four new geometric features along with a set of appearance-based features; (ii)
the comparison of the proposed approach with state-of-the-art semantic segmen-
tation based methods on a large public dataset; (iii) the implementation code is
being released for public usage2.

2 Code available at: https://bitbucket.org/flexsight/traversabilityanalysis
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2 Related Work

The concept of traversability has been proposed in the literature for measuring
the general characteristics of roads [5], but it has also been used for the analysis
of the human driving style [3]. In the context of autonomous driving, there is no
explicit formulation of traversability, some usage of this concept can be found
instead in the motion planning context where ”traversability maps” are used for
the classification of a cell-divided map into ”traversable” or ”non-traversable”
categories [6], [7], [8], [9].

Different grid-based approaches for 3D terrain traversability analysis have
been proposed in the literature. A complete and comprehensive review of those
methods is presented in [1]. This survey gives a detailed overview of traversability
analysis methods for autonomous vehicles within environments with highly vari-
able complexity. In particular, the survey puts emphasis on exteroceptive sensory
data processing methodologies that are presented in two main categories, namely
geometry- and appearance-based.

In [10], a method for traversability analysis in urban and extra-urban sce-
narios is proposed. In the paper, authors evaluate the performances of various
approaches based on point clouds and color data in various scenarios. They also
train a SVM classifier that uses both geometric- and appearance-based local
descriptors (features). Experimental results show that purely geometric-based
features already provide enough accuracy, but the integration of different types
of features, i.e., descriptors taken from 2D camera image processing, increases
the robustness of the classifier and improves its classification accuracy.

Another purely geometric-based approach is proposed in [11]. The LiDAR
point cloud is transformed into a new 2D representation called LiDAR His-
togram. In the new domain, a road line estimation can be applied to get the
actual road projected into the 3D data, and the same can be done for obstacles
and water hazard segmentation.

A semi-supervised learning approach is presented in [12]. This approach
uses a more compact feature vector and a grid representation to compute the
traversability score. The classifier is trained only on positive samples, assumed
to be truly traversable.

A traversability mapping method that uses Bayesian Generalized Kernel in-
ference is found within the LeGO-LOAM framework [13]. This work proposes an
approach for solving the traversability analysis problem producing 2.5D eleva-
tion grid maps. It exploits Bayesian Generalized Kernel (BGK) inference to solve
the sparse data problem encountered during terrain mapping (it uses only single
LiDAR scans). Then, the traversability analysis is performed on those locations
intersected by the current LiDAR scan points, and elsewhere it is estimated by
BGK traversability inference.
Deep learning frameworks are one of the most used instruments to solve problems
that we are not able to model. There are many Deep-Learning-based solutions
for traversability analysis.

In [14] images are used for Off-road traversability analysis. Authors used a
double segmentation using CNNs. The first one divides the pixels in the image
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between trasversable and non trasversable, and then the trasversable pixels are
re-segments into subclasses in order to asses the quality of the traversability
based on the type of the terrain.

In [15] RGB images are used for traversability map prediction. In particular
the input are the past frame, the current frame and the velocity inputs that pass
through 2 CNNs, one predicts how the static elements of the image will change
in the next frame (SNet), while the other predicts how the dynamic elements of
the scene will change (Dnet). The predicted image is fed then to a third net that
will produce the traversability map (GONet).

In[16] instead of determining the traversability for specific types of robot, it
labels which terrain is trasversable and also for which type of robot (e.g. legged,
wheeled, flying ). In [17], [18] both images and point clouds have been fed to
deep networks in order to extract as much as information from the environment
to obtain more robust traversability analysis. In fact, in [17] has been shown
that this approach is effective even in unstructured environments.

In [19] a different learning approach has been exploited. A behaviour-based
method to solve traversability analysis in an offroad scenario has been proposed.
This method falls in the category of Deep Inverse Reinforcement Learning be-
cause the cost function is extracted from experts demonstrations, and then that
cost function is used in order to learn a optimal policy. In [20], Deep Inverse
Reinforcement Learning has been used in order to predict the trajectories of the
other agents in the scene. Using this information to produce a traversability map
that also takes into account future events. The predicted map will allow safer
navigation.

When developing robust autonomous driving methods, two additional el-
ements need to be taken into account, in particular, the availability of large
datasets and the usage of good metrics for testing their performance. The for-
mer is essential especially if learning-based approaches are used. An exhaustive
survey of available datasets for autonomous driving benchmarking is given in
[21], including the SemanticKITTI dataset [22] that is used in this paper.

3 Method

The proposed approach leverages handcrafted geometrical and appearance-based
features and Support Vector Machine (SVM) models. In machine learning and
pattern recognition, a feature is an individual measurable property or character-
istic of a phenomenon [23]. A geometric feature is calculated based on geometric
properties, while an appearance feature is calculated starting from color or inten-
sity properties. Handcrafted features are not new in the literature, and they may
be overcome by self-learned features in the hidden layers of Deep Convolutional
Neural Networks. However, considering comparable hardware, approaches that
use these self-learned features are still slower than simple handcrafted features,
and certainly not so accessible to a deep understanding of the whole process.
Often the working mechanisms of the hidden layers’ kernels of a Deep Neural
Network are not so easily interpretable [24]. Since they need large amount of
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data to properly generalize the self-learned decision rule, another drawback is
made by the lack of rich and public labeled dataset.
In the following, a feature vector of a set of points S = {p1, p2, ..., pn} with
pi ∈ R3 is expressed in the form of a vector of features

F(S) = [f1, f2, ..., fm]T

where m is the number of features. This vector of fixed dimension is used to
train a SVM model. SVMs are popular decision models used in classification and
regression problems. As stated in [23], an important property of SVMs is that
the determination of the model parameters corresponds to a convex optimization
problem, and so any local solution is also a global optimum. For the sake of
brevity, the details on SVM models can be found in [25]. It is sufficient to say
that training a SVM model means to find an optimal decision rule to assess
the label of a feature vector. The so-called kernel trick helps in finding such
decision rule by transforming the original data into a higher dimensional space.
By experimental results, we have found that RBF kernel was the best performing
kernel with respect to Linear and Polynomial kernels. It performed good both
in training accuracy and testing accuracy. For this reason, we used that one in
the proposed approach.

3.1 Grid-Based Space Representation

The traversability of the environment is evaluated using Digital Elevation Maps
(DEMs), which are a set of uniformly discretized planar grid cells on the ground:
at each cell is assigned a height value, as described in [13]. Here, the grid is
squared and it maintains a fixed size during a simulation. Given a grid resolution
r and a sensor maximum range of assessment maxRange, the grid will have
l = maxRange

r cells in each side, leading to l2 cells in total as can be seen in Fig.
1b and Fig 1c.

3.2 Geometric-Based Feature Extraction

The geometric-based features Fg(S) = [f1, f2, ..., fr] are computed based on
the geometrical properties of a set of 3D points S. Most of these features are
calculated using the eigenvalues and the eigenvectors of the correlation matrix of
the points in S. This matrix is computed based on the relative space coordinates
of the points in S, and expresses the dependency between such points. It is
a 3x3 symmetric positive semi-definite matrix with all real elements, so all of
its eigenvalues are real and non-negative. Listing the eigenvalues in descending
order λ1 ≥ λ2 ≥ λ3, the corresponding eigenvectors v1, v2 and v3 assume a spatial
significance. As explained in [10], the eigenvector v1 represents the direction of
maximum variance of the points in S and v2 represents the direction of the
second maximum variance of the points. On the contrary, v3 represents the
smallest direction of variance but, at the same time, assuming that the points
are arranged in a smooth plane in the space, v3 is also normal to that plane. In
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the context of terrain traversability analysis, where roads are generally planar,
this assumes a certain relevance. Thus, assuming that λ1 6= 0, among others we
use all the features proposed in [10]:

linearity =
λ1 − λ2

λ1
sphericity =

λ3

λ1

planarity =
λ2 − λ3

λ1
omnivariance = 3

√
λ1λ2λ2

anisotropy =
λ1 − λ3

λ1
eigenentropy =

3∑
i=1

λi log λi

sum of eigenvalues =

3∑
i=1

λi curvature =
λ3∑
λ

angle = arccos(~n · ẑ) goodness of fit = min(σi(Cq))

roughness = σ2
z =

1

k

∑
i=1

k(zi − z̄q)2 normal vector = ~n

unevenness =
|rq|
k

surface density =
k

d2m

In our approach, four new features are introduced: Zeta difference, Internal
density, Curvity and Volume.
The Zeta Difference feature represents the maximum difference along the eleva-
tion direction, expressed by the normal to the plane fitted to the whole point
cloud. This is particularly relevant, because non traversable regions (e.g., obsta-
cles) tend to have a wide variance along the normal direction, while points in
traversable regions (e.g., roads) tend to have a very small height difference. In
order to obtain a consistent metric, each point inside a cell is projected to a line,
passing by the origin (the LiDAR frame origin) and having direction equal to
the normal vector v. The projection pp of a point p is obtained as follows:

pp =
vvT

vT v
p.

Let M and m be the points of a cell whose projections have higher and lower
values of z. Then

zdiff = |Mz −mz|.
The Internal density feature expresses the discretized distribution of points

internally to a cell. Let’s define ri as the internal resolution of a cell. Thus,
we can subdivide the cell internally in r

ri
cells. Then, the feature is obtained

by counting how many internal cells are occupied by at least one point and
dividing this by the total number of internal cells. This may be discriminant of
some partially filled grid cells, or some obstacles, in which the points are very
compacted.

The Curvity feature expresses how much the LiDAR scans are arranged as
smooth circular curves inside the cells. This is motivated by the observation that
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in traversable regions (e.g. roads) the LiDAR scan is circularly smooth, since
the road is a plain surface and there are no obstacles corrupting its smoothness.
In non traversable regions (e.g. grass), the scans are very chaotic, sparse, not
smoothly circular curved. To express this property quantitatively, we compute
a discrete histogram of the Euclidean distance of each point from the LiDAR
sensor. The number of bins of the histogram is a finite number nb. Then, the
curvity feature is the number of empty bars. The reason behind this is that
all the points in a smooth circular curve have pretty much the same Euclidean
distance, and when the distances are discretized, they get counted in a single bin,
leading to many empty bins. Generalizing to multiple smooth circular curves,
only some bins are occupied, while many are still empty. In a chaotic situation,
bins tend to be rarely left empty.

The Volume feature expresses the volume of the smallest prism which contain
all the points inside each cell. By definition, it’s height is equal to the Zdiff

feature. Empirically points inside obstacle regions tend to occupy more volume
than points in traversable ones.

3.3 Appearance-Based Feature Extraction

Purely geometric features are often not sufficient to accurately discriminate cell
classes. As shown in [10], on average hybrid features, based on both geometry
and appearance, perform better than geometric features. This fact is also con-
firmed by our ablation study (see Section 4.6).
We compute the appearance-based features Fa(S) = [f1, f2, ..., fr] based on the
color properties of a set of points S. Unfortunately, due to the temporal desyn-
chronization between the LiDAR and the camera and the small inaccuracies in
the calibration, the 3D points are not always projected in the correct image
position. To mitigate this inaccuracy, we obtain the appearance-based features
of each cell by projecting a 3D prism built over the cell into the RGB image
and retrieving the color information from the set of pixels within the polygonal
projection of such prism (see Figure 2).

Specifically, we detect for each cell the eight vertices of the prism which
encloses all the points belonging to such cell. The height of the prism is by
definition the value of the Zdiff feature, and the base is obtained by looking at
the distribution along x and y directions of the points. Then we project the eight
vertices and check that, for each prism, at least one fits inside the image (outliers
are corrected according to the image size). Finally we convert the color of each
pixel within the set S from the RGB color space to the Hue-Saturation-Value
(HSV) color space. The appearance-based feature used in our approach is a HSV
histogram of the pixels inside the polygonal projected prism. The histogram is
defined by a number of buckets for each color channel: let #H, #S, #V be
such quantities. The buckets [Hb, Sb, Vb] corresponding to a pixel [pH , pS , pV ]
are obtained by quantizing the HSV values according to the number of buckets:

[Hb, Sb, Vb] =

[⌊
pH
#H

⌋
,

⌊
pS
#S

⌋
,

⌊
pV
#V

⌋]
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Fig. 2: Color propagation at the beginning of Scenario 00. The top image is the
28th Left Camera image of the Scenario 00 with the 3D prisms projected (colors
were chosen randomly for visualization purposes only) and the three bottom
images are the colored grids at frames 03, 08 and 28, respectively (the color
of each cell is obtained setting for each H, S and V channel the value of the
fullest buckets). It can be seen that at the beginning few cells are colored by
the intersection of grid and camera image, but as the car proceeds new cells get
colored.

When all pixels have voted to the histogram, all the buckets are normalized
by the number of pixels that have voted, so values are in [0, 1] range.

Color Propagation A single image doesn’t provide enough color information:
the amount of grid cells that can be correctly projected to the image frame is
usually around 15% of the total cells. For this reason a color propagation method
which exploits the odometry of the vehicle helps in providing more information.
Once the appearance-based features of the cells of a scan have been computed,
in the following scan these features are translated to the cells which occupies
their position in the current situation, and those cells are updated using the new
color information (see Fig. 2).

3.4 Point Clouds Integration

To augment the prediction input information, n subsequent point clouds are
integrated forming a denser point cloud. The LiDAR reference frame, rigidly
linked to the vehicle, is in motion with respect to a fixed reference frame we
call world. By using point set registration or LiDAR odometry algorithms, it
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is possible to estimate the rigid body transformations that relate a sequence of
LiDAR readings. When a point cloud P is obtained from the sensors, expressed
in the LiDAR coordinate frame, it is transformed to the world frame, as it is
considered a fixed reference frame. The traversability grid is also expressed in
the frame world. In a stationary situation (once all n point clouds have been
integrated), the SVM model is able to assess the traversability of the environ-
ment. In our method we exploit the ground truth ego-motion estimation, but
other methods can be used, for example LeGO-LOAM framework [4] as a LiDAR
odometry front-end for point cloud integration.

3.5 Point Sorting into the Grid Cells

Each point of the integrated point cloud is assigned to the cell it belongs to by
looking at the point’s 2D coordinates. If it lies outside the grid, it is ignored.
The row and the column of the cell to which a point belongs are calculated as
follows: (

col
row

)
≈ 1

r

(
x− gridx
y − gridy

)
where r is the map resolution, gridx and gridy the coordinates of the bottom-

right cell of the grid expressed in the world frame. A cell is then considered
unpredictable if it contains fewer points than a threshold value, otherwise it is
considered predictable.

At this stage, a feature vector is computed for each predictable cell c, let’s
call it Fc. A trained SVM model can predict the traversability value of the cell
c using Fc as input.

3.6 Outliers Filter

Given the difficulty of the task, the SVM model can sometimes produce some
outliers. For example, in some isolated cells of a plain traversable road region, it
can predict a non traversable value. For this reason, a simple yet really effective
signaling-based post processing filter is applied. Here we make the assumption
of ignoring very small obstacles ( size ≤ resolution r ). Once all the cells have
been assigned a traversability value by the SVM model, let us call it t0ij with

i, j ∈ [0, ..., l], each cell is assigned a new value, let it be t1ij . This is computed

considering the predicted label of the cell t0ij weighted with a factor w and the

labels of the 8-neighbors of the cell cij weighted with a factor 1. t1ij is then the
most frequent label.

Consider a cell t0ij labeled as non traversable (T̄ ) surrounded by all traversable

(T ) cells. Then the label-distribution for such cell would be, using w = 3, {T̄ , T̄ ,
T̄ , T , T , T , T , T , T , T , T}. Then, having 3 T̄ and 8 T , we will assign t1ij = T ,
that is, the cell will be labeled as traversable, even if the SVM-model labeled it
as non traversable.
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4 Experiments

To evaluate the performance of the proposed approach, the SemanticKITTI
dataset is used [22]. All the experiments of this method are tested on an AMD
Ryzen ™ 7 5800H, 8 ∗ 3.2GHz, 16GB RAM platform. All the Deep Learning
based approaches are tested on an Intel® Core™) i9-10920X CPU (3.50GHz)
with Nvidia Titan RTX. All algorithms are implemented in ROS Noetic, in
C++, in a Linux environment, with no GPU support and no CPU paralleliza-
tion.

4.1 SemanticKITTI Dataset

The dataset used to evaluate the approach proposed is SemanticKITTI, a public
dataset for Semantic Scene Understanding using LiDAR Sequences. This dataset
is based on the KITTI Odometry Benchmark [26]. It comes up with 11 different
scenarios, named scenario00-scenario10, in which a vehicle with the sensor setup
installed on board is driven within an urban context, in low traffic conditions.
There are sometimes dynamic agents (other vehicles moving around, people,
etc.) and natural elements (grass, parks, trees, etc.). Among the info provided
by the dataset, the method makes use of:

– LiDAR clouds, where each point carries the 3D Euclidean coordinates ex-
pressed in the LiDAR frame along with the RGB value of the class it belongs
to;

– Left RGB Camera Images;
– Calibration Matrix, expressing the relative pose between the left RGB cam-

era frame and the LiDAR frame
– Ground Truth ego-motion estimation.

4.2 Traversability Ground Truth Extraction

The points in the SemanticKITTI dataset are not labeled with the traversa-
ble and not traversable labels. Indeed, the definition of traversability is in itself
quite ambiguous. In order to obtain a ground truth dataset to evaluate the
method, a pre-processing of the labels was needed. We considered as traversable
the points having the label corresponding to one of the following classes of the
SemanticKITTI dataset: road, sidewalk, parking, lane marking, other ground.
Since our method refers to grid-based traversability analysis, we need to gener-
alize the concept at a grid cell level.

The label of a cell is calculated by looking at the LiDAR points that fits
inside each squared cell. Let m be the minimum number of points for a cell to
be considered predictable. In our approach we set m = 2. If a cell contains less
than m points, it is labeled as unpredictable. Otherwise, if the cell contains at
least 2 non traversable points, the cell is labeled as non traversable. Otherwise,
the cell is labeled traversable. This is done because some outliers are collected
in the SemanticKitti Dataset: sometimes a fully traversable cell (e.g., road cells)
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contains an outlier marked as non traversable. By filtering out based on at least
2 non traversable points, we get rid of such outliers. The Ground Truth collected
in this way comes with drawbacks and benefits. Consequences include:

– There may be points labeled as traversable that are actually under a car.

– A number of m = 2 points is sometimes not sufficient for some geomet-
ric properties to completely discriminate cells. This can be solved by using
appearance-based features and a maxRange relatively close to the vehicle.
If the car proceeds at high speeds, the sparsity of the cloud may be insuffi-
cient. In our approach this is solved by clouds integration and training using
a bigger maxRange than the one used during test evaluation.

– Semantic-based methods produce a segmented cloud as output. Such meth-
ods produce a label for each point, so in order to compare our approach with
their results we need to transfer the labels in the same way as we did for the
SemanticKitti Ground Truth.

– Ground Truth for integrated clouds involve the formation of phantoms of
points (e.g., when a car moves fast, the resulting integrated cloud maintains
the points in all the subsequent frames). In order to be consistent with the
different configurations, we decided to build the Ground Truth upon inte-
grated or single cloud based on the need of each system. It is advisable that
in the future a phantom-recognizer system should get rid of such outliers.

At this stage, each feature vector used in the previous sections can now be
assigned a ground truth traversability label.

4.3 Training and Parameters

The experiments have been carried out using scripts that (a) automatically ex-
tract features for training, (b) train the model and (c) test the performances
on unknown data. Each scenario of the dataset is used in the first 5 seconds to
produce some amount of features, to obtain a dataset to train a SVM model.
The training is carried out in a grid search approach. The fixed parameters are
listed in Table 1.

grid length maxRange = 12m

map resolution r = 0.4m

internal cell resolution ri = 0.2m

min points in a predictable cell min = 2

point clouds integrated n = 3

curvity histogram bars nb = 160

HSV histogram buckets #H=32, #S=8, #V=48

Table 1: List of the used parameters
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Using a grid based approach in a 5-folds validation setup, the best parameters
for each model were selected. The best model was then retrained using the whole
training set. Since the first 5 seconds of each scenario are used for the training
phase, the performance evaluation is done using the following 50 seconds of the
sequences.

4.4 Metrics

To compute the metrics we used the number of True Positives (TP), True Neg-
atives (TN), False Positives (FP), False Negatives (FN) and Unknowns (UNK).
The latest are those having a label in the ground truth but unpredictable by
the method. Let TOT = TP + TN + FP + FN + UNK, the performance is
measured using the following metrics:

– Accuracy (Acc):

Acc =
TP + TN

TOT

– Intersection over Union (IoU):

IoU =
TP

FP + FN + TP

– F1 score: (harmonic mean of precision and recall)

F1 =
2TP

2TP + FP + FN

– Rates over the total number of samples:

(TPR, TNR,FPR,FNR) =
(TP, TN,FP, FN)

TOT

– Latency of the system inferencing the labels: it refers to the time taken to
process one unit of data provided that only one unit of data is processed at a
time. The metric is calculated by averaging the inference times of each label.
Recall that the LiDAR data rate is approximately 10Hz, thus the maximum
time allowed for inferencing a cloud is 100ms.

4.5 Comparison

The experiments carried out aim to emphasize the performances brought by the
contributions of this work, in particular the use of the 4 new geometric-based
features and the appearance-based features, the post-processing filter and the
low latency due to the SVM models.

We tested our framework against different recent methods: RangeNet++ [27]
(comparing many backbones) and PointNet [28].

RangeNet++ is a segmentation-based network: it outputs the label of each
point of the cloud that was given as input. Every RangeNet++ model was trained
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(a) (b)

(c) (d)

Fig. 3: Figure 3a depicts an example of Ground Truth Traversability (white
points are traversable, red ones are not), Figure 3b is the result of the
method proposed, Figure 3c the result of the PointNet, Figure 3d the result
of RangeNet++ (with DarkNet53-1024px backbone).

from scratch using as learning labels only two classes (traversable and not traver-
sable) by remapping the original labels as explained in section [27]. RangeNet++
has been trained using different backbones (DarkNet and Squeezeseg, in dif-
ferent versions). To compare them with the proposed approach we treat the
RangeNet++ predicted labels as if they were the ground truth, assigning labels
to cells as described in section 4.2. PointNet, instead, is a classification network.
When given the set of points belonging to each cell the network predicts the
corresponding label. In order to do so, we need to create a new dataset from
SemanticKitti where points were packed up to the cell they belong to, together
with their ground truth label. A fixed-length vector of points is fed to the net-
work (by trial and errors, we found that the best accuracy is reached with a
fixed length of 256) and the result of the network is the label of each cell.

Table 2 shows that the results of the proposed method is comparable with
the other methods results. Deep Learning based method have slightly better
accuracy, but it comes at the cost of a bigger latency and expensive required
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Experiment Acc mIoU F1 FPR TPR FNR TNR Latency

trav analysis 89,2 84,9 91,4 10,2 93,6 6,4 89,8 19 ms

Darknet21 92,7 86,0 92,2 3,1 88,3 11,7 96,9 40 ms

Darknet53 93,4 87,4 93,0 3,7 90,2 9,8 96,3 105 ms

Darknet53-512px 91,6 83,8 90,9 3,8 86,9 13,1 96,2 25 ms

Darknet53-1024px 93,1 86,9 92,7 3,4 89,3 10,7 96,6 55 ms

Squeezeseg 90,1 81,4 89,4 5,2 85,3 14,7 94,8 20 ms

SqueezesegV2 92,3 85,5 91,9 4,3 88,1 11,9 95,7 25 ms

PointNet 90,0 87,4 93,0 7,3 93,8 6,3 92,7 2000 ms

Table 2: Average results on SemanticKITTI among scenarios 00 - 10 (all values
are percentages)

hardware. SVM latency is around 19 ms, while the other methods’ latency vary
across 20-105 ms for RangeNet++ and 2000ms for PointNet.

The overhead of the system is very important in this context. If the LiDAR
and the camera provide new information with a rate of 10Hz, only 100ms are
available for the traversability computation. But 100ms is even too much time:
very often an Autonomous Driving system has to compute many other things,
and so the available time is a smaller portion of the total available. Not to
mention the time needed for the system to contextualize the results: for path
planning and other tasks occupancy grids like the one proposed are used, and so
the system needs also to compute such information from the pure segmentation
cloud.

It is clear how the best accuracy is reached by RangeNet++ using the
Darknet53-1024px backbone. It’s beaten only by the DarkNet53 in TNR and
FPR rates. Both are slower compared to our method. If the same duration
metric was meant to be obtained, the accuracy of RangeNet++ would be very
similar to our method, while the mIoU drops lower our mIoU. By comparing
[27]’s results and ours, we identify the same so-called label re-projection problem.
Thus the Ground Truth extraction may penalize this drawback of the method.
The same extraction affects out method: when planar non traversable regions
are met illumination drastically changes.

PointNet is rather slow and not easily exploitable in a real context, although
it performs very well from an accuracy point of view.

The proposed approach is feasible: the latency is very low and the accu-
racy is competitive. The whole process of clouds integration, feature extraction,
SVM prediction and grid development takes around 60ms, perfectly suitable for
real-time real-world application. The hardware needed is a CPU-only PC, a 3D
LiDAR scan and an RGB Camera.
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Experiment Acc mIoU F1 FPR TPR FNR TNR Latency

trav analysis 89,2 84,9 91,4 10,2 93,6 6,4 89,8 19 ms

only geom 85,8 79,5 87,9 11,8 89,4 10,6 88,2 13 ms

Table 3: Average results on SemanticKITTI among scenarios 00 - 10 (all val-
ues are percentages) - ablation study to demonstrate the effectiveness of the
appearance-based features

4.6 Ablation Study

In order to demonstrate the effectiveness of the appearance-based features in a
hybrid approach in contrast to a purely geometric-based method, we have con-
ducted an ablation study. As shown in Table 3, the purely geometric method
performs worse than the hybrid one. This happens because several Not Traversa-
ble flat, equally distributed cells, e.g. containing pretty flat grass points, cannot
be distinguished from Traversable road cells using only geometric information.

5 Conclusions

In this paper, a real-time Machine Learning Traversability Analysis method has
been proposed, which combines geometric and appearance based features. The
method has been evaluated on a public dataset and the performances have been
compared with state-of-the-art methods. The proposed method is comparable
with the others in terms of accuracy metrics, while it is faster and cheaper in
terms of hardware resources since it runs completely on CPU without the need for
high-end GPU like other methods. The tests have shown the effectiveness of the
newly introduced features, the exploited grid-based data integration method and
the simplified framework make the overall approach easy to integrate within real
autonomous driving pipelines with minimal effort but with competitive results
in terms of classification of traversable areas in the map. Possible improvements
can be obtained with the integration of self-learning subsystems, in particular for
image-based scene understanding, to better exploit the color information when
available.
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