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Summary

Fracture phenomena can have severe consequences, such as human casualties and financial
losses due to catastrophic failures in aerospace structures. High temperature gradients,
hostile environmental actions, excessive mechanical loading, or extreme events are only a
few of the possible causes of fracture. Experimental analysis of the fracture phenomenon
in materials is costly as it requires the destruction of specimens or components under test.
This is the reason why, in the last decades, many numerical tools have been developed to
virtually simulate crack initiation and propagation.

Since cracks are, in mathematical terms, discontinuities in the displacement field, classi-
cal continuum mechanics is not suitable for modeling cracks due to the presence of spatial
derivatives in the governing equations. Numerical methods, such as interface elements with
cohesive zone modeling, extended finite element method, and phase field method, have been
devised to equip the classical formulation with the capability of simulating fracture. How-
ever, each of these numerical methods exhibits some drawbacks. Peridynamics is a nonlocal
continuum theory that reformulates the governing equations by replacing the spatial deriva-
tives with integrals, so that cracks can be defined without mathematical inconsistencies.
In peridynamic models, fracture is an intrinsic material response, and cracks can initiate,
propagate, branch, or coalesce in the most energetically favorable paths, in agreement with
experimental observations.

Peridynamics has some drawbacks that are typical of nonlocal models. The peridynamic
surface effect is an undesired variation in the stiffness properties of the material in the
region near the boundary of the body. This effect is due to the fact that the points close to
the boundary have an incomplete integration domain. Furthermore, peridynamic boundary
conditions should be imposed on a layer of finite thickness. However, since experiments
provide only local measurements at the boundary of the domain, it is often desirable to
impose local boundary conditions in a nonlocal model. Another shortcoming is that, since
peridynamics is based on an integral operator, numerical integration plays a fundamental
role in the discretization of these models. If the peridynamic integral operator is numerically
evaluated in an inaccurate way, the numerical results may not converge to the analytical
peridynamic solution. Finally, the computational cost of peridynamics models is higher
than that of local models, because nodes interact at a larger distance.

The main objective of this work is to mitigate all the above-mentioned issues:

• The peridynamic surface effect has been analytically and numerically analyzed in or-
dinary state-based peridynamics, highlighting the characteristic hardening/softening
behavior near the boundaries of a body (see Chapters 2 and 3).
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6 Summary

• An algorithm for the numerical calculation of the peridynamic stress tensor and the
force flux has been developed in 1D, 2D, and 3D models (see Chapters 2, 3 and 4).

• The Taylor-based extrapolation method with the nearest-node strategy has been de-
veloped to mitigate the peridynamic surface effect in bodies with a possibly complex
geometry (see Chapters 2, 3 and 4). This method determines the displacements of the
fictitious nodes introduced around the body as functions of the displacements of the
nodes within the body.

• The surface node method has been devised to impose local boundary conditions in
peridynamics models (see Chapter 4). The surface nodes are used to discretize the
boundary of the body, and their motion is governed by the equation of the force flux.

• An efficient algorithm to accurately compute the quadrature weights in 2D and 3D
peridynamic models has been developed (see Chapter 5). Using this algorithm, the
numerical results show smaller errors and smoother convergence behavior.

• An improved coupling technique between peridynamics and Carrera unified formula-
tion, a very efficient classical model based on the finite element method, has been
devised to reduce the computational cost of the simulations (see Chapter 6).

All algorithms and numerical methods mentioned above were validated by many numerical
examples.

Using this improved peridynamic framework, a specific fracture mechanism has been
analyzed, namely the crack propagation due to oxidation of zirconium carbide and its sub-
sequent volumetric expansion. Zirconium carbide is a very promising candidate for consid-
erably improving the performance of nuclear reactors used in space missions or for green
energy production. However, poor knowledge of the behavior of this material under oxida-
tion hinders its use in nuclear applications. The volumetric expansion of zirconium oxide is
in fact the cause of fragmentation and repeated delamination, a phenomenon that increases
the oxidation rate.

This complex multi-physics problem has been solved by means of a peridynamic model,
and the main results are the following:

• A new stability criterion of an explicit time integration method for the peridynamic
diffusion equation has been derived with the eigenvalue technique (see Chapter 7).
Unlike previous stability criteria, the new criterion takes into account the influence of
the boundary conditions (applied with the surface node method) on numerical stability.

• Various convergence analyses have been conducted to study the impact of a discon-
tinuity at the boundary in the initial conditions of a peridynamic diffusion problem,
which describes the sudden exposure to oxygen of a zirconium carbide sample (see
Chapter 7). If the very early times of the simulation are neglected, the convergence
rate is the same as that of a peridynamic diffusion problem without discontinuities in
the initial conditions.
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• In a peridynamic diffusion model with a phase change (from carbide to oxide), the
interface is autonomously moving depending only on the material properties, whereas
a special condition at the interface, such as the Stefan condition, is required in classical
models. The accuracy of the autonomous motion of the interface has been verified with
a numerical example (see Chapter 7).

• The importance of two layers across the oxidation front, i.e., the intermediate layer
and the transition layer, in the reaction mechanisms of zirconium carbide oxidation
has been highlighted by the careful observation of experimental measurements (see
Chapter 8).

• A peridynamic model of zirconium carbide oxidation has been developed and through
a calibration process the diffusivity of zirconium oxide in the intermediate layer and
the oxidation rate in the transition layer have been quantified (see Chapter 8).

• The novel peridynamic model of zirconium carbide oxidation is also able to predict
the growth of the oxide and determine the shape and dimensions of the remaining
unoxidized carbide (see Chapter 8).

The same modeling approach can also be used, after the appropriate recalibration of material
properties, to simulate phenomena similar to zirconium carbide oxidation, such as oxidation
of transition metal carbides of group IV and lithiation in solid-state batteries.
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Sommario

I fenomeni di frattura nei materiali possono causare delle gravi conseguenze, come morti
umane e perdite finanziarie dovute a fallimenti catastrofici nelle strutture aerospaziali. Al-
cuni esempi delle possibili cause che provocano cricche sono gli alti gradienti di temperatura,
i carichi meccanici eccessivi o gli eventi estremi. Tuttavia, l’analisi sperimentale di questi
fenomeni di frattura è costosa visto che richiede la distruzione dei provini o dei componenti
testati. Per questo motivo, molti metodi numerici sono stati sviluppati negli ultimi decenni
per simulare in modo virtuale la propagazione delle cricche.

La meccanica classica del continuo non è adatta a modellare le cricche, ovvero discon-
tinuità nel campo degli spostamenti, perché nelle equazioni che governano la deformazione
del corpo sono presenti delle derivate rispetto alle coordinate spaziali. Per fornire alla for-
mulazione classica la capacità di simulare fenomeni di frattura, sono stati sviluppati alcuni
metodi numerici, come per esempio gli elementi di interfaccia modellati con una legge co-
esiva (cohesive zone modeling), il metodo generalizzato degli elementi finiti (extended finite

element method) e il metodo del campo di fase (phase field method), ma ognuno di questi
metodi manifesta degli svantaggi. Invece, la peridinamica è una teoria non locale del continuo
che riformula le equazioni del moto sostituendo le derivate rispetto alle coordinate spaziali
con degli integrali in modo tale che le cricche possano essere definite metamaticamente senza
incongruenze. Infatti, la frattura nei modelli peridinamici è data da una risposta intrinseca
del materiale, e le cricche possono avere origine, propagarsi, dividersi o unirsi nei percorsi più
favorevoli a livello energetico. Per questa ragione, i risultati delle simulazioni peridinamiche
riproducono in maniera eccellente le osservazioni sperimentali.

Tuttavia, la peridinamica ha degli svantaggi che sono tipici dei modelli non locali. Il
primo è l’effetto peridinamico di superficie, una variazione indesiderata delle proprietà di
rigidezza del materiale nella regione vicina al contorno del corpo. Questo effetto è dovuto
al fatto che i punti del corpo vicino al contorno hanno un dominio di integrazione incom-
pleto. Inoltre, le condizioni al contorno in peridinamica dovrebbero essere imposte su uno
strato di materiale con uno spessore finito, contrariamente a quanto solitamente avviene
negli esperimenti in cui si misurano le quantità di interesse solo sul contorno del dominio.
Quindi, spesso c’è bisogno di imporre condizioni al contorno locali in un modello non lo-
cale. Un altro inconveniente è che l’integrazione numerica ha un ruolo fondamentale nella
discretizzazione dei modelli peridinamici, dato che questa teoria è basata su un operatore in-
tegrale. Infatti, se l’operatore peridinamico è valutato in una maniera inaccurata, i risultati
numerici potrebbero non convergere alla soluzione analitica peridinamica. Infine, il costo
computazionale dei modelli peridinamici è più elevato rispetto a quello dei modelli locali
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perché i nodi interagiscono ad una distanza maggiore.
L’obiettivo principale di questo lavoro è di mitigare tutti i problemi appena menzionati:

• L’effetto peridinamico di superficie è stato analizzato in modo analitico e numerico per
la peridinamica ordinaria basata sugli stati (ordinary state-based peridynamics), evi-
denziando il comportamento caratteristico di aumento/riduzione della rigidezza vicino
al contorno di un corpo (vedi Capitoli 2 e 3).

• È stato sviluppato un algoritmo per la valutazione numerica del tensore peridinamico
delle tensioni e del flusso di forza per modelli 1D, 2D e 3D (vedi Capitoli 2, 3 e 4).

• Per mitigare l’effetto peridinamico di superficie in corpi con qualsiasi geometria (anche
complessa), è stato sviluppato il metodo dell’estrapolazione basato sulla serie di Taylor
con la strategia di usare i nodi più vicini (vedi Capitoli 2, 3 e 4). Questo metodo
determina gli spostamenti dei nodi fittizi aggiunti intorno al corpo come funzioni degli
spostamenti dei nodi interni al corpo.

• Il metodo dei nodi di superficie è stato ideato per imporre condizioni al contorno
locali in modelli peridinamici (vedi Capitolo 4). I nodi di superficie sono usati per
discretizzare il contorno del corpo e il loro moto è governato dall’equazione del flusso
di forza.

• È stato sviluppato un algoritmo efficiente per il calcolo accurato dei pesi di quadratura
per modelli peridinamici 2D e 3D (vedi Capitolo 5). Usando questo algoritmo, i risultati
numerici mostrano errori minori e un miglior comportamento a convergenza.

• Per ridurre il tempo computazionale delle simulazioni, è stata sviluppata una tecnica
migliorata di accoppiamento tra la peridinamica e la formulazione unificata di Carrera
(Carrera unified formulation), un modello classico molto efficiente basato sul metodo
degli elementi finiti (vedi Capitolo 6).

Tutti i metodi e gli algoritmi menzionati sono stati validati con molti esempi numerici.
Usando questi nuovi strumenti numerici nel contesto della peridinamica, è stata analiz-

zata la propagazione di cricche causata dall’ossidazione del carburo di zirconio e dalla sua
conseguente espansione volumetrica. Il carburo di zirconio è un materiale molto promettente,
candidato per migliorare considerevolmente le prestazioni dei reattori nucleari usati per mis-
sioni spaziali o per la produzione di energia pulita. Tuttavia, la limitata conoscenza del
comportamento di questo materiale durante l’ossidazione ne ostacola l’uso in applicazioni
nucleari. Infatti l’espansione volumetrica dell’ossido di zirconio ne provoca la frammen-
tazione, che a sua volta aumenta la velocità di ossidazione.

Questo complesso problema multifisico è stato risolto attraverso un modello peridinamico,
e i principali risultati sono i seguenti:

• È stato derivato un nuovo criterio per la stabilità di un metodo esplicito per l’integrazione
temporale dell’equazione peridinamica di diffusione grazie ad una tecnica basata sugli
autovalori (vedi Capitolo 7). A differenza dei metodi usati in precedenza, il nuovo
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criterio tiene conto dell’influenza delle condizioni al contorno (applicate con il metodo
dei nodi di superficie) sulla stabilità numerica.

• Sono state condotte diverse analisi di convergenza per studiare l’impatto di una discon-
tinuità, posizionata sul contorno, nelle condizioni iniziali di un problema peridinamico
di diffusione che descrive un’esposizione improvvisa all’ossigeno di un provino di car-
buro di zirconio (vedi Capitolo 7). Se si trascurano i momenti iniziali della simulazione,
la velocità di convergenza è la stessa di quella di un problema peridinamico di diffusione
senza discontinuità nelle condizioni iniziali.

• In un modello peridinamico di diffusione con cambio di fase (da carburo ad ossido),
l’interfaccia può muoversi autonomamente a seconda solamente delle proprietà dei
materiali, mentre nei modelli classici c’è la necessità di avere una condizione particolare
all’interfaccia, come la condizione di Stefan. Attraverso un esempio numerico è stata
verificata l’accuratezza con cui il moto autonomo dell’interfaccia viene riprodotto dal
modello peridinamico (vedi Capitolo 7).

• Grazie all’osservazione delle misurazione sperimentali, è stata evidenziata l’importanza
dello strato intermedio e dello strato di transizione nel meccanismo di reazione dell’ossi-
dazione del carburo di zirconio (vedi Capitolo 8).

• Attraverso lo sviluppo di un modello peridinamico per l’ossidazione del carburo di
zirconio, la diffusività dell’ossido di zirconio nello strato intermedio e la velocità di
ossidazione nello strato di transizione sono state calibrate per riprodurre i dati speri-
mentali (vedi Capitolo 8).

• Il nuovo modello peridinamico per l’ossidazione del carburo di zirconio è anche in grado
di predire la crescita volumetrica dell’ossido e di determinare la forma e le dimensioni
del carburo rimasto non ossidato (vedi Capitolo 8).

Lo stesso approccio di modellazione può essere usato anche, dopo un’appropriata ricali-
brazione delle proprietà dei materiali, per simulare fenomeni simili all’ossidazione del car-
buro di zirconio, come l’ossidazione dei carburi di metalli di transizione del gruppo IV e la
litiazione in batterie allo stato solido.
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Chapter 1

Introduction

1.1 Motivation

Fracture phenomena can have severe consequences, such as human casualties and financial
losses. For example, large structures in civil engineering may collapse due to a variety of
concurrent causes, such as fatigue, corrosion, lack of maintenance, and design deficiencies.
Unfortunately, there are many tragic examples of structural failure throughout history. The
Tacoma Narrows Bridge collapsed in 1940 after four months from its completion due to
excessive oscillations caused by dynamic wind loading [1]. In 1967, the collapse of the Silver
Bridge due to the cleavage failure of an eyebar resulted in the deaths of 46 people [2]. More
recently, in August 2018, a section of the Morandi Bridge in Italy broke down, killing 43
people [3].

In aerospace engineering, the integrity of aircrafts must be assessed in scheduled inspec-
tions to ensure passenger safety. However, no information about the status of the aircraft is
available in-between the inspections, which can result in an unexpected catastrophic failure.
In this regard, several flight accidents occurred due to structural failures, such as Aloha Air-
lines Flight 243 in 1988 [4], American Airlines Flight 587 in 2001 [5], and Southwest Airlines
Flight 1380 in 2018 [6]. Furthermore, each aircraft has to be grounded for several hours/days
during inspections, with a consequent significant financial loss.

In certain specific applications, fracture can even be caused intentionally to obtain ben-
eficial results. For example, hydraulic fracturing, also called “fracking”, consists of drilling
a well and injecting a high-pressure fluid to promote fracture in the underground rocks [7,
8]. This controlled fracture process allows one to increase the flow of natural gas or oil from
the reservoirs. To improve the durability of large concrete structures, artificial punchouts
can be intentionally introduced in order to control crack propagation and accommodate
thermal expansion and contraction and drying shrinkage, such as in concrete pavements [9,
10]. Another example in which fracture is induced by strategically placing explosives is the
controlled demolition of buildings [11]. Furthermore, fracture plays a fundamental role in
many industry processes, such as in cutting and machining [12].

In this thesis, a specific fracture mechanism will be analyzed, namely the crack prop-
agation due to volumetric expansion. For example, in the oxidation of zirconium carbide,
the change of phase leads to a considerable volume dilatation that generates stresses and
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fractures in the material. Zirconium oxide is indeed subjected to fragmentation and re-
peated delamination, a phenomenon that increases the oxidation rate [13, 14]. When this
phenomenon is better understood and appropriate countermeasures for safety are taken, the
zirconium carbide will allow considerably improved performance of nuclear reactors used in
space missions or for green energy production. A similar mechanism is responsible for the
relatively low number of life cycles of solid-state batteries: lithium intercalation induces an
extreme volume expansion that may end in the fracture of the battery electrodes [15, 16].

As the above-mentioned examples may suggest, fracture phenomena can be very hard to
fully understand because of many factors that can be their cause, such as high temperature
gradients, hostile environmental actions, excessive mechanical loading, or extreme events.
Experimental analysis of the fracture phenomenon in materials is costly as it requires the
destruction of specimens or components under test. Furthermore, fracture experiments are
often affected by poor repeatability. Some analytical solutions to fracture problems are avail-
able, but they are limited to particular geometries and loadings of the samples. Therefore,
the preferred way to analyze fracture phenomena is by using numerical methods to model
crack initiation and propagation. If possible, the numerical results of the virtual simulation
should be validated by a few specific experiments, decreasing the number of broken samples
and, therefore, the overall cost.

The numerical methods most commonly used to simulate fracture are briefly reviewed in
the following section.

1.1.1 Numerical modeling of fracture: from classical mechanics to

peridynamics

Classical Continuum Mechanics (CCM) relies on partial differential equations to model
the structural behavior of a body. The most popular method to solve complex structural
problems is to adopt a weak formulation of the equilibrium equations discretized with the
Finite Element Method (FEM) [17, 18]. However, all methods based on CCM use spatial
derivatives of the displacement field in their formulation of the governing equations of mo-
tion. These spatial derivatives are difficult to defined where discontinuities, such as cracks,
appear in the displacement field. For this underlying reason, classical continuum mechanics
is not suitable for modeling fracture and some ad-hoc strategies must be adopted to handle
discontinuities in those methods. Hereinafter, the most used extensions of CCM to model
fracture are presented:

• Element deletion (or erosion) [19–21]: the stiffness of elements with sufficiently large
strains is considerbly reduced, so that those elements no longer contribute to the stiff-
ness of the body. In other words, elements subjected to strains larger than a critical
predefined value are “deleted” as if a crack passed through those elements. However,
their mass and inertia are retained in the model. Although element erosion is the
simplest method to simulate fracture in FEM models, the crack path is affected by
extreme mesh sensitivity [22].

• Interface elements with cohesive zone modeling [23–25]: interface elements governed
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by a traction-separation law are introduced at the boundaries of finite elements. These
interface elements can be thought of as a (deformable and, eventually, breakable) “glue”
in-between the finite elements. However, since cracks are forced to propagate along
finite element boundaries, this method exhibits a strong mesh dependency [26, 27].
This is the reason why interface elements are often used when the crack path is known
a-priori.

• Extended Finite Element Method (XFEM) [28–31]: this method uses additional dis-
continuous enrichment functions in the finite elements along the crack surfaces and
near the crack tip to model such singularities in the displacement field. XFEM allows
the crack to pass through the elements by tracking its path with a level set function,
preventing in this way the high mesh sensivity for the crack path typical of the element
deletion method and the use of interface elements. Nevertheless, the implementation
of XFEM can lead to arbitrarily ill-conditioned stiffness matrices [32–35] and a deteri-
oration of the convergence rate due to the loss of the partition of unity property in the
so-called blending elements, i.e., the elements adjacent to enriched elements [36–38].
More importantly, cracks of length approaching the element size cannot be accurately
represented [39], such as in the case of crack nucleation. In addition to that, multiple
crack coalescing or branching (splitting of the crack into two separate cracks) require
special treatments in the XFEM formulation [40–45], and no reliable crack branching
criteria are available. Furthermore, the material fracture energy has to be modified to
properly reproduce the crack propagation speed obtained in the experimental observa-
tions [22].

• Phase field method [46–52]: to avoid the problem of tracking the path of the crack,
fracture is modeled as a diffuse crack by means of a damage variable, called the “phase
field”, that has a gradual transition from intact material to fractured regions. This
unknown damage variable is introduced as an extra degree of freedom for each node and
is determined by solving partial differential equations based on the variational principle
that crack propagation should follow the path of least energy. The introduction of a
regularization parameter, i.e., a length scale, in the fracture model allows to avoid the
lack of convergence under grid refinement of other classical methods [48]. The phase
field method is characterized by high computational costs, since, in the vicinity of
cracks, the mesh size should be less than half of the regularization parameter [53, 54].
Crack nucleation, branching, and coalescing are modeled with some success by this
method, even though branching phenomena are obtained when they are not observed
in the experiments, such as in the Kalthoff-Winkler test in [55]. Moreover, the angle of
crack propagation does not accurately match that observed in the experiments, such as
in the Kalthoff-Winkler test [56] and in a branching test [57]. The most likely reason
for these inconsistencies is that, in phase field models, damage keeps growing in time
perpendicularly to the crack direction, even where stresses have already been released
because of the crack propagation itself. The “thickening” of the cracks can be seen, for
example, in the numerical results of [57–59].

An extensive review of these and other possible methods that can be used to model fracture
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can be found in [60].
To overcome the limitations of classical continuum mechanics, the peridynamic theory

was devised in 2000 by Silling [61]. Peridynamics (PD) is a nonlocal continuum theory
that reformulates the governing equations by replacing the spatial derivatives with integrals
over a finite-radius spherical region [61–64]. Peridynamic models consider long-range inter-
actions, called “bonds”, between material points. Bonds are allowed to break when their
deformation exceeds a predefined limit based on the material fracture energy [65]. With this
simple fracture criterion, any complex crack pattern, such as crack initiation, coalescence,
branching, and kinking, can be modeled with ease. For example, crack branching, including
crack propagation speed, has been successfully reproduced in [66–68]. The angle of crack
propagation observed experimentally in the Kalthoff-Winkler test has been obtained with
the PD numerical model in [69]. The improved ability of the PD models to reproduce re-
alistic crack paths is shown compared to those of the interface elements with cohesive zone
modeling and XFEM in [70] and compared to that of the phase field method in [57].

Peridynamics has been successfully applied to a wide range of fracture problems under
quasi-static [71–73] and dynamic [66–68, 74] conditions. PD numerical results of impact
problems exhibit complex fragmentation patterns similar to those observed in the experi-
ments [75–83]. Fatigue phenomena can be modeled with peridynamics as well [84–86]. It is
worth noting that both brittle [87–90] and ductile [91–94] fractures have been simulated in
the peridynamic framework.

Anisotropic materials have also been modeled with peridynamics [95–99]. Furthermore, a
stochastic homogenization technique has been developed to model fracture in heterogeneous
media [100–103]. Notable results have been obtained for specific materials, such as con-
crete [104–108], composites [109–115], geomaterials [116–119], and biomaterials [120–123].

Peridynamics has been used to reformulate partial differential equations governing var-
ious phenomena, including transient heat conduction (or diffusion) [124–126], viscous fluid
flow [127], corrosion [128–131], and fluid flow in a porous medium [132, 133]. In these
peridynamic reformulations, discontinuities can be included without any mathematical in-
consistency. Peridynamics has demonstrated its capabilities in handling multi-physics prob-
lems involving fracture, such as thermo-mechanical [134, 135], mechano-chemical [136–138],
electro-mechanical [139–143], and poro-elastic [144] problems.

A broad review of possible applications of peridynamic theory is given in [145], which also
highlights the exponential growth in time of citations of the first article about peridynamics,
testifying the increasing interest of the academic community in this field.

1.1.2 Scope of the work

The nonlocal nature of the peridynamic theory allows one to model with ease crack
initiation and propagation. However, peridynamics suffers from some drawbacks that are
typical of nonlocal models:

• the so-called PD surface effect, an undesired stiffness variation near the boundary of
the body;
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• the problems of imposing local boundary conditions in a nonlocal model;

• the need for an accurate numerical integration of the peridynamic equations;

• the high computational cost due to the large number of interactions between material
points.

These issues are explained in detail in Section 1.2.5.
This work aims to mitigate all these issues. The Surface Node Method (SNM) has

been devised to reduce (and, under some conditions, completely eliminate) the PD sur-
face effect and to accurately impose local boundary conditions in peridynamic models (see
Section 1.3.1). A novel algorithm to compute PD quadrature coefficients and improve the
accuracy of numerical results has been developed (see Section 1.3.2). The coupling of peridy-
namics with an advanced FEM formulation, namely the Carrera Unified Formulation (CUF),
has been realized, so that regions in which cracks are not likely to propagate can be modeled
with CUF, resulting in an enhanced computational efficiency (see Section 1.3.3).

This improved peridynamic framework has been then used to model the complex multi-
physics phenomenon of the oxidation of zirconium carbide (ZrC), a very promising candidate
for being used as a coating in the next-generation of nuclear reactors. The zirconium oxide
undergoes a large volumetric expansion compared to ZrC, which results in the propagation
of cracks and repeated delaminations of the oxide from the bulk of the material. Therefore,
cracks become preferential paths for the oxygen to diffuse within the ZrC, increasing in this
way the oxidation rate. Since cracks play a fundamental role in ZrC oxidation, a reliable
numerical tool, such as peridynamics, is required to faithfully reproduce the experimental
observations of this phenomenon (see Section 1.3.4).

The structure of the thesis is as follows. Section 1.2 presents an overview of the peri-
dynamic theory, its numerical discretization, and the description of the main drawbacks.
Section 1.3 describes the original contributions to the peridynamic framework. Chapters 2,
3, and 4 are the three papers that explain the surface node method, a new method to miti-
gate the surface effect and impose boundary conditions in peridynamic models. Chapter 5 is
the paper that describes the algorithm for the accurate numerical integration of peridynamic
equations. Chapter 6 is the paper that presents the coupling between peridynamics and the
FEM-based Carrera unified formulation. Chapters 7 and 8 are the papers that, respectively,
delve into the numerical aspects and the phenomenological modeling of ZrC oxidation within
the improved peridynamic framework. Chapter 9 concludes the work with the final remarks
and proposes precise future research activities.

1.2 Overview of the peridynamic theory

On the one hand, the equation of motion in classical continuum mechanics for a point x
at time t ≥ 0 is given as

ρ(x) ü(x, t) = ∇ · σ(x, t) + b(x, t) (1.1)
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where ρ is the density of the material, ü is the acceleration field, ∇ · σ is the divergence of
the Cauchy stress tensor, and b is the external force density. The constitutive law relates
the Cauchy stress tensor σ to the strain tensor ε, that contains the derivatives of the dis-
placement field. Hence, Equation 1.1 is a partial differential equation that, together with
appropriate boundary conditions, governs the mechanical behavior of continuous materials.

On the other hand, the equation of motion at a point x at time t ≥ 0 in a body B
modeled with peridynamics is given by [61, 62]

ρ(x) ü(x, t) =

∫

Hx

f(x,x′, t) dVx′ + b(x, t) , (1.2)

where f is the force state (force per unit volume squared), Hx is the finite-size integration
region around point x, and Vx′ is the volume of a point x′ within Hx. It is worth noting
that the force state f depends on the displacement field but not on its derivatives.

Comparing Equations 1.1 and 1.2, it is evident that the divergence of the stress tensor
in classical continuum mechanics was replaced by the integral over a region of finite size.
In other words, the classical formulation involving the derivatives of the displacement field
was replaced by an integral formulation that depends solely on the displacement field. This
fact is of paramount importance because the peridynamic formulation of the equation of
motion (Equation 1.2) is valid regardless the presence of discontinuities in the displacement
field. Peridynamics is therefore suitable to model crack initiation and propagion without any
mathematical inconsistencies, which is not true for methods based on classical continuum
mechanics.

The peridynamic theory (from the Greek word peri, which means “nearby”) was devised
by Silling in 2000. The first version of peridynamics, called bond-based peridynamics, relies
on pairwise interaction forces between material points [61]. However, bond-based models
have the limitation that Poisson ratio has a fixed value (1/4 in 3D and 2D plane strain
models, 1/3 in 2D plane stress models [146]). To overcome this issue, the second version of
peridynamics, called state-based peridynamics, was developed [62]. The interaction forces
in state-based peridynamics depend on the collective deformation of the bonds within the
neighborhood. The details of the two versions of the peridynamic theory are explained in
the following sections.

Figure 1.1 shows a body modeled with peridynamics that is subjected to a displacement
field u. The interaction between x and x′ is named bond and is identified by the relative
position vector between the two points in the reference (or initial) configuration:

ξ = x′ − x . (1.3)

The integration region Hx in Equation 1.2, called the neighborhood, is chosen to be a segment,
a circle, and a sphere in 1D, 2D, and 3D models, respectively. The neighborhood is the set
of all points that interact with the source point x and is defined as

Hx =
{
x′ ∈ B(t = 0) : ‖x′ − x‖ ≤ δ

}
, (1.4)
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where δ > 0, named horizon size, is the radius that represents the largest distance at which
two points can interact. The points within the neighborhood are often called family points.

x

y

B(t = 0)

x

δ

H
x

x
′

ξ

B(t > 0)

u(x, t)

u(x′, t)

ξ + η

f(x,x′, t)

f(x′,x, t)

Figure 1.1: Body modeled with peridynamics in the reference configuration B(t = 0) and deformed
configuration B(t > 0).

In the deformed configuration of the body (see Figure 1.1), the points x and x′ are, in
general, displaced differently. The relative displacement vector of the bond ξ is denoted by

η = u(x′, t)− u(x, t) . (1.5)

Note that ξ + η represents the bond in the deformed configuration, as shown in Figure 1.2.
When the body is deformed, internal forces, called force states, arise in the bonds to restore
the overall equilibrium with the inertial and external forces, as dictated in Equation 1.2.

x

x
′

ξ

u(x, t)

u(x′, t)
η

ξ + η

Figure 1.2: Representation of the bond ξ and its deformed state ξ + η.

For simplicity’s sake, we consider from now on the peridynamic equilibrium equation
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under quasi-static conditions:

−
∫

Hx

f(x,x′) dVx′ = b(x) . (1.6)

The dependence on time can be reintegrated with straightforward considerations. It is
worth noting that the difference between bond-based and state-based peridynamics lies in
the different formulations of the force states of the bonds.

1.2.1 Bond-based peridynamics

The bond-based peridynamic theory was presented by Silling in 2000 [61]. Bond-based
peridynamics is a special case of state-based peridynamics when the value of the Poisson
ratio is 1/4 in 3D and 2D plane strain models or 1/3 in 2D plane stress models [147]. This
reveals the intrinsic limitation of the bond-based formulation: the Poisson ratio cannot be
arbitrarily chosen in the model but it is limited to the previously mentioned values. However,
bond-based peridynamics is much simpler and computationally efficient than state-based
peridynamics. Therefore, the use of bond-based peridynamics is recommended when the
Poisson ratio has little or no influence on the final results.

Pairwise force

In bond-based peridynamics, the force state f is formulated as a pairwise force between
the points of the bond [61]. A first restriction on the pairwise force is given by Newton’s
third law:

f(x,x′) = −f(x′,x) . (1.7)

In words, the interaction force that point x exerts on x′ has the same magnitude and op-
posite direction of the force that x′ exerts on x. Furthermore, the conservation of angular
momentum yields

(ξ + η)× f(x,x′) = 0 . (1.8)

Hence, the second restriction is that the pairwise force is aligned with the deformed bond at
any time. The unit vector in the direction of the deformed bond is defined as

m =
ξ + η

‖ξ + η‖ . (1.9)

In bond-based peridynamics, a material is defined as microelastic if it satisfies the fol-
lowing condition [61]: ∮

Γ

f(x,x′) dx′ = 0 , (1.10)

where Γ is any closed curve and dx′ represents the differential vector path length along Γ.
Similarly to the definition of elasticity in classical continuum mechanics, the condition in
Equation 1.10 means that no net work, due to the interaction with a fixed point x, is done
on any material point x′ moving along any closed path.
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Since in this work we consider only homogeneous isotropic materials, the pairwise force
can be also expressed as a function of the relative position and relative displacement vectors:
f(ξ,η). As a consequence of the microelasticity condition in Equation 1.10, there exists a
differentiable scalar-valued function w, named micropotential, such that

f(ξ,η) =
∂w(ξ,η)

∂η
. (1.11)

In bond-based peridynamics, the linearized pairwise force for a microelastic material
subjected to a displacement field such that ‖η‖ ≪ ‖ξ‖ is given, omitting errors of order
O(‖η‖2), as [61]

f(ξ,η) =
∂f(ξ,0)

∂η
η = C(ξ)η , (1.12)

where micromodulus function C(ξ) is a second-order tensor. From the condition on the
pairwise force in Equation 1.7, the micromodulus function complies with the following re-
striction:

C(ξ) = C(−ξ) . (1.13)

Furthermore, the micromodulus function is symmetric in a linear microelastic material:

C(ξ) = C⊤(ξ) . (1.14)

The prototype microelastic brittle material model [65] is a simple and effective constitutive
model to naturally incorporate fracture in the formulation. Bonds can be thought of as linear
springs that can break if they exceed their maximum strain. The bond stretch, equivalent to
the strain of the bond, is defined as [65]

s(ξ,η) =
‖ξ + η‖ − ‖ξ‖

‖ξ‖ . (1.15)

Note that the definition of bond stretch is different from the definition of strain given in
classical continuum mechanics in the fact that it does not involve spatial derivatives of the
displacement field. In a prototype microelastic brittle material, the pairwise force depends
on the bond stretch such that [65]

f(ξ,η) = c(ξ)µ(ξ,η) s(ξ,η)m , (1.16)

where c is the micromodulus, that is the stiffness of the bond, m is the unit vector in
the direction of the deformed bond, and µ is a history-dependent scalar-valued function to
introduce the concept of broken bonds:

µ(ξ,η) =

{
1 if s(ξ,η) < s0 for any previous or current η ,

0 otherwise,
(1.17)

where s0 is the critical bond stretch. This means that, as soon as the stretch in a bond
exceeds the critical stretch, that bond is considered irreversibly broken and the pairwise
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force between the interacting points is no longer present. The magnitude of the pairwise
force in a prototype microelastic brittle material as a function of the bond stretch is shown
in Figure 1.3.

s

‖f‖

s0

1

c

µ = 1

µ = 0

Figure 1.3: Magnitude of the pairwise force as a function of the bond stretch in a prototype microe-
lastic brittle material [65].

Under the assumption of a displacement field such that ‖η‖ ≪ ‖ξ‖, the bond stretch and
the bond direction vector can be simplified respectively as s = (η ·m)/‖ξ‖ and m = ξ/‖ξ‖.
Therefore, the pairwise force can be expressed as

f(ξ,η) = c(ξ)µ(ξ,η)
η ·m
‖ξ‖ m =

c(ξ)

‖ξ‖ µ(ξ,η) (m⊗m)η = µ(ξ,η)C(ξ)η , (1.18)

where “⊗” stands for the dyadic product between two vectors. For simplicity’s sake, the
micromodulus is often chosen as a constant: c(ξ) = c.

Calibration of micromodulus

The micromodulus in bond-based peridynamic models is often calibrated in such a way
as to obtain, under homogeneous isotropic deformation, the same strain energy density as
in classical continuum mechanics. The strain energy density at a point x of a homogeneous
isotropic linear elastic solid under homogeneous isotropic deformation ε, for a Poisson ratio
equal to 1/4 in 3D and 2D plane strain models and 1/3 in 2D plane stress models (due to
the limitations of bond-based peridynamics [146]), is given as

Wcl(x) =





3E ε2 in 3D,

8E

5
ε2 in 2D plane strain,

3E

2
ε2 in 2D plane stress,

E

2
ε2 in 1D,

(1.19)

where E is the Young modulus of the material.
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The peridynamic strain energy density at a material point x can be computed from the
micropotential as [61]

W (x) =
1

2

∫

Hx

w(ξ,η) dVx′ , (1.20)

where the factor 1/2 appears because the energy density of a bond is shared equally between
the two interacting points. For a body under homogeneous isotropic deformation ε, the
bond stretch s is a constant for any bond and η = εξ = ε‖ξ‖m. Therefore, by combining
Equations 1.11 and 1.18 for an unbroken bond (µ = 1), the micropotential can be computed
as

w(ξ,η) =

∫
f(ξ,η) · dη =

∫ [
c

ξ
(m⊗m) εξm

]
· ξm dε =

c ε2 ξ

2
, (1.21)

where ξ = ‖ξ‖ and η = ‖η‖. Hence, by using spherical and polar coordinates, respectively,
in 3D and 2D, the peridynamic strain energy density is given as

W (x) =





1

2

∫ δ

0

c ε2 ξ

2
4πξ2 dξ =

π c ε2 δ4

4
in 3D,

1

2

∫ δ

0

c ε2 ξ

2
2πtξ dξ =

π t c ε2 δ3

6
in 2D,

1

2

∫ δ

0

c ε2 ξ

2
2A dξ =

Ac ε2 δ2

4
in 1D,

(1.22)

where t is the thickness of the plate and A is the cross-sectional area of the bar. Note that
the peridynamic strain energy density is computed in a point with a complete neighborhood,
i.e., assuming that the body is infinite.

Thus, equating the strain energy densities of bond-based peridynamics and classical con-
tinuum mechanics (Equations 1.19 and 1.22), the micromodulus is obtained as [65, 148,
149]

c =





12E

π δ4
in 3D,

48E

5π t δ3
in 2D plane strain,

9E

π t δ3
in 2D plane stress,

2E

Aδ2
in 1D.

(1.23)

This results are valid for a constant micromodulus, i.e., c(ξ) = c. However, other types of
functions can be chosen, such as the “triangular” function, which have different convergence
behaviors when the horizon size tends to 0, i.e., when the peridynamic solution converges to
that of classical continuum mechanics [149–151].

Failure criterion

The peridynamic theory allows one to introduce the concept of damage and failure in a
relatively straightforward way. As shown in Equation 1.16, bonds irreversibly break when
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they reach their maximum stretch. Broken bonds can no longer “carry” pairwise forces and,
therefore, it is as if they are deleted from the model. This method is capable of handling
crack nucleation, propagation, branching, and kinking without any ad hoc criterion. A
possible explanation on why peridynamics can predict crack branching with ease is the fact
that bonds in arbitrary directions can break, allowing cracks to have the necessary freedom
to follow the most energetically favorable path [68].

The critical bond stretch s0 can be determined by considering an infinite homogeneous
isotropic body with a planar fracture surface that completely separates two parts of it. Apart
from the fracture process, any dissipative phenomena near the crack tip are neglected. The
critical energy release rate G0 is a measurable macroscopic quantity that represents the
energy dissipated per unit of fracture surface area during crack growth. The critical bond
stretch can be related to the critical energy release rate by computing the energy required for
the crack to grow in the body modeled by peridynamics, i.e., the integral of the energy within
the broken bonds. In a prototype microelastic brittle material under isotropic homogeneous
deformation, the micropotential of a bond at its breaking point is given as [65]

w0(ξ) =

∫ s0

0

f(ξ,η) · dη =

∫ s0

0

c s ξ ds =
c s 2

0 ξ

2
. (1.24)

w0 can be interpreted as the work done to break a single bond. The critical energy release
rate is equal to the work per unit area required to break bonds connecting points on opposite
sides of the fracture surface [65, 66, 152]:

G0 =





∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1(z/ξ)

0

c s 2
0 ξ

2
ξ2 sinφ dφ dξ dθ dz =

π c s 2
0 δ

5

10
in 3D,

2t

∫ δ

0

∫ δ

z

∫ cos−1(z/ξ)

0

c s 2
0 ξ

2
ξ dφ dξ dz =

π t c s 2
0 δ

4

4
in 2D,

A

∫ δ

0

∫ δ

z

c s 2
0 ξ

2
dξ dz =

Ac s 2
0 δ

3

6
in 1D.

(1.25)

The integration limits are shown in Figure 1.4. Therefore, the critical bond stretch can be
obtained as

s0 =





√
10G0

π c δ5
=

√
5G0

6Eδ
in 3D,

√
4G0

π t c δ4
=

√
5G0

12Eδ
in 2D plane strain,

√
4G0

π t c δ4
=

√
4G0

9Eδ
in 2D plane stress,

√
6G0

Ac δ3
=

√
3G0

Eδ
in 1D.

(1.26)

These values of critical bond stretch are used in Equation 1.17 to determine the history-
dependent variable µ whose effect is to remove the contribution to stiffness of broken bonds.
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θ
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′

cos −
1
(z/ξ)

φ

Figure 1.4: Representation of the integration limits to compute the energy release rate in peridynamic
models [65].

Finally, the damage index at a point x is defined as [65]

ϕ(x) = 1−
∫
Hx

µ(ξ,η) dVx′

∫
Hx

dVx′

. (1.27)

In words, the damage index is the ratio between the number of broken bonds and the total
number of bonds initially connected to point x. By its definition, the damage index has
values between 0 and 1, where ϕ = 0 indicates the situation in which the source point
still has all interactions with its family points and ϕ = 1 means that the source point is
completely disconnected from other points. If a straight crack passes close to a point, that
point has a damage index close to ϕ = 0.5 because almost half of its interactions were lost.
Note that the damage index does not appear in the constitutive modeling of the pairwise
force. In fact, material failure is fully characterized by the critical bond stretch criterion,
whereas the damage index is used only to visualize the crack path in the post-processing of
the results.

1.2.2 State-based peridynamics

Bond-based peridynamics assumes that points interact through a pairwise force indipen-
dent of the deformation conditions of other points. This formulation has several limitations
in material modeling, among which there are the restriction on the choice of the Poisson ratio
(for instance, ν = 1/4 in 3D models) and the difficulty in modelling the ductile behavior in
metals. Experiments indeed showed that the plastic response in metals is induced by shear
deformation, whereas, by allowing bonds to have permanent deformation, only the plastic
behavior due to volumetric strains can be modeled in bond-based peridynamics. The re-
striction on the Poisson ratio can be addressed by introducing rotational degrees of freedom
in the model [96, 97, 104].

State-based peridynamics was introduced in [62] as a generalization of the bond-based
version to address all the aforementioned limitations. This is possible since the force that
arises within the bonds, i.e., the force state f , is a function of the collective deformation of
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the whole neighborhood. In contrast to bond-based peridynamics, the force that a point x

exerts on another point x′ can be different from the force that x′ exerts on x, as shown in
Figure 1.5. Moreover, the new version of the peridynamic theory can be subdivided into
ordinary and non-ordinary state-based peridynamics in which, respectively, the force state
is aligned and unaligned to the current bond direction (see Figure 1.5).

ξ + η

x

x
′

T[x, t]〈ξ〉

−T[x, t]〈ξ〉

(a) Bond-based PD.

ξ + η

x

x
′

T[x, t]〈ξ〉

T[x′, t]〈−ξ〉

(b) Ordinary state-based PD.

ξ + η

x

x
′

T[x, t]〈ξ〉

T[x′, t]〈−ξ〉

(c) Non-ordinary state-based PD.

Figure 1.5: Comparison of the force density vector states T for different versions of the peridynamic
theory [62]. The relation between the force state and the force density vector states is defined in
Equation 1.34.

Non-ordinary state-based peridynamics allows one to incorporate constitutive models
directly from classical continuum mechanics, i.e., without the calibration of peridynamic
properties to the classical ones [62]. These types of models are often called peridynamic

correspondence models. However, the computational efficiency of non-ordinary state-based
models is lower than that of ordinary state-based models. Furthermore, due to the unalign-
ment of the force state with the direction of the bond, materials modeled with non-ordinary
state-based peridynamics suffer from instability issues, such as zero-energy modes. Hence,
these models require additional stabilization techniques to obtain reasonable numerical re-
sults [153–155].

More details on non-ordinary state-based peridynamics can be found in [62, 156]. In
this work, only ordinary state-based peridynamics is reviewed, beginning with the concept
of state.

Definition of peridynamic states

Peridynamic states can be subdivided into scalar and vector states that, respectively, map
a quantity into a scalar value or a vector. The quantity to which the states are applied is
denoted in angle brackets 〈·〉, whereas the variables on which the states depend are denoted in
square brackets [·]. Peridynamic states are often applied to the bond vector ξ and depend on
the positions of a point, e.g., x, and the time t. Scalar states are denoted by underlined non-
bold lowercase letters, e.g., a[x, t]〈ξ〉, whereas vector states are denoted by underlined bold
uppercase letters, e.g., A[x, t]〈ξ〉. The main mathematical properties of the peridynamic
states are defined in [62].

The concept of vector state might seem similar to that of second-order tensor since they
both map vectors into vectors, but a state in general can be non-linear and discontinuous.
Therefore, one may argue that a symmetric second-order tensor is a special case of vector
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state. Figure 1.6 schematically shows the different mappings of a second-order tensor and a
vector state.

ξ
Aξ

(a) Symmetric second-order tensor A.

ξ
Aξ

(b) Vector state A.

Figure 1.6: A symmetric second order tensor A maps a sphere into an ellipsoid, whereas a vector
state maps it into a more complex and possibly discontinuous shape [62].

An important concept is differentiability of a function of a state, e.g., Ψ(A). Suppose
that there exists a state-valued function denoted ∇Ψ such that for any state A and any
increment dA

Ψ(A+ dA) = Ψ(A) +

∫

Hx

∇Ψ(A) dA dVx′ +O(‖dA‖2) , (1.28)

then Ψ is said to be differentiable and ∇Ψ is the Fréchet derivative Ψ [62]. When Ψ is a
scalar-valued function of a vector state, ∇Ψ, if it exists, is a vector state. Fréchet derivatives
have many of the familiar properties of common derivatives [62].

Some commonly used states to compute the force state are defined hereinafter. Consider
a bond ξ = x′ − x connecting two points x and x′. The relative displacement vector of
the bond ξ in the deformed configuration is denoted by η = u(x′, t) − u(x, t). According
to these notations, the reference position vector state and the deformation vector state are
respectively defined as

X〈ξ〉 = ξ , (1.29)

Y〈ξ〉 = ξ + η , (1.30)

where ξ+η is the relative position of the points in the deformed configuration (see Figure 1.2).
The norms of reference vector state and deformation vector state, respectively, represent the
bond length in initial and deformed configuration. These quantities are named the reference

position scalar state and deformation scalar state:

x〈ξ〉 = ‖ξ‖ , (1.31)

y〈ξ〉 = ‖ξ + η‖ . (1.32)
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In order to describe the axial elongation of the bond, the extension scalar state is defined as

e〈ξ〉 = ‖ξ + η‖ − ‖ξ‖ . (1.33)

Furthermore, a scalar state ω, named influence function, can be arbitrarily chosen to “weight”
quantities integrated over the neighborhood. The influence function is prescribed to be spher-
ical, i.e., dependent on the bond length but not its direction. In order to obtain numerical
stability, it is recommended to choose a constant or monotonically descending influence
function with increasing distance from the source point [149]. Different shapes of ω do not
substantially change the solution, but they may confer different numerical properties for the
peridynamic solution converging to that obtained with classical continuum mechanics [150,
151]. Some examples of commonly used influence functions are ω = 1 [157], ω = 1/‖ξ‖n
where n is a positive integer number [158], and ω = exp(−‖ξ‖2/δ2) [159].

The force state used to evaluate the internal forces in the equation of motion (Equa-
tion 1.2) is defined in state-based peridynamics as [62]

f(x,x′, t) = T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉 , (1.34)

where T is called force density vector state. In ordinary state-based peridynamics, the force
density vector state is aligned with the corresponding bond for any deformation [62], as
shown in Figure 1.5b. Therefore, the force density vector state in this case can be rewritten
as

T[x, t]〈ξ〉 = t[x, t]〈ξ〉 ξ + η

‖ξ + η‖ = t[x, t]〈ξ〉M〈ξ〉 , (1.35)

where t is called force density scalar state and M is the deformed direction vector state,
which is the unit vector state in the direction of the deformed bond.

Ordinary state-based peridynamics is a generalization of the bond-based version of the
theory. Bond-based peridynamics restricts the force density vector state that the material
point x exerts on another point x′ to be equal to the one that x′ exerts x, i.e., T[x′, t]〈−ξ〉 =
−T[x, t]〈ξ〉 as shown in Figure 1.5a. Thus, the force density vector state is related to the
pairwise force f(ξ,η) in bond-based peridynamics as follows [62]:

T[x, t]〈ξ〉 = 1

2
f(ξ,η) . (1.36)

This restriction is removed in ordinary state-based peridynamics, in which T[x, t]〈ξ〉 and
T[x′, t]〈−ξ〉 can have different magnitudes, as shown in Figure 1.5b. However, from the
definition of the force density vector state in ordinary state-based peridynamics it follows that
Newton’s third law, i.e., f(x,x′, t) = −f(x′,x, t), and the conservation of angular momentum,
i.e., Y〈ξ〉 × f(x,x′, t) = 0, still hold (see Figure 1.7).

Calibration of peridynamic mechanical properties

In order to calibrate the force density scalar state, the strain energy density computed
with classical continuum mechanics and ordinary state-based peridynamics is equalized when
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Y〈ξ〉

x

x
′

T[x, t]〈ξ〉

T[x′, t]〈−ξ〉

−T[x′, t]〈−ξ〉

−T[x, t]〈ξ〉

f(x,x′, t)

f(x′,x, t)

Figure 1.7: Schematic representation of the force states f acting on points x and x′ of a generic
bond in ordinary state-based peridynamic.

the body is under the same homogeneous deformation conditions in both approaches [62,
160]. This calibration procedure is similar to the calibration of the micromodulus in bond-
based peridynamics. For simplicity’s sake, quasi-static conditions are considered hereinafter.

In classical continuum mechanics, homogeneous deformation for sufficiently small dis-
placements is described by the strain tensor ε(x) in a generic point x. The strain tensor
can be subdivided into the volumetric strain tensor εv(x) and the deviatoric strain tensor
εd(x), such that ε = εv + εd. On the one hand, the volumetric strain tensor that describes
the change of volume due to deformation, is defined as [161]

εv =
1

3
θcl1 , (1.37)

where 1 is the identity matrix and θcl, called dilatation, is the trace of the strain energy
tensor:

θcl =
3∑

i=1

εii , (1.38)

where εii are the diagonal components of the strain tensor. Note that the subscript cl
indicates that the dilatation is computed in the framework of classical continuum mechanics.
On the other hand, the deviatoric strain tensor that describes the change of shape caused
by deformation, is defined as

εd = ε− 1

3
θcl1 . (1.39)

Thus, the strain energy density in classical continuum mechanics for a homogeneous
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isotropic linear elastic solid is given using Einstein notation as

Wcl(x) =





K

2
θ 2
cl +Gεdijε

d
ij in 3D,

[
K

2
+
G

9

]
θ 2
cl +Gεdijε

d
ij in 2D plane strain,

[
K

2
+

(
ν + 1

3(2ν − 1)

)2

G

]
θ 2
cl +Gεdijε

d
ij in 2D plane stress,

[
K

2
+ 2

(
ν + 1

3(2ν − 1)

)2

G

]
θ 2
cl +G

(
εd11
)2

in 1D,

(1.40)

where K is the bulk modulus, G is the shear modulus, and εdij are the components of the
deviatoric strain tensor. Note that i, j = 1, 2, 3 in 3D and i, j = 1, 2 in 2D. The bulk
and shear moduli can be calculated in terms of the Young modulus and Poisson ratio as
K = E/(3(1− 2ν)) and G = E/(2(1 + ν)), respectively.

Two quantities similar to the dilatation and the deviatoric strain in classical continuum
mechanics should be formulated in the peridynamic framework in order to define the peridy-
namic strain energy density. Therefore, in state-based peridynamics, the dilation at a point
x is defined as [62]

θ(x) =
cθ
m

∫

Hx

ω x e dVx′ , (1.41)

where cθ is the dilatation coefficient and m the weighted volume. The weighted volume,
used to normalize the dilatation for different values of the horizon size δ and the influence
function ω, is defined as

m(x) =

∫

Hx

ω x2 dVx′ . (1.42)

The value of the dilatation coefficient is determined by equalizing the dilatations in an infinite
body, under the homogeneous isotropic deformation ε, modeled with classical continuum
mechanics and peridynamics. The infinite body assumption derives from the need to have
a completely full neighborhood for each point in the peridynamic model. On the one hand,
recalling Equation 1.38, the dilatation computed with classical continuum mechanics is given
as

θcl =





3 ε in 3D,

2 ε in 2D plane strain,

2(1− 2ν)

1− ν
ε in 2D plane stress,

(1− 2ν) ε in 1D.

(1.43)

On the other hand, in the peridynamic model, the homogeneous isotropic deformation can
be expressed as Y = (1+ ε)X. This yields an extension scalar state equal to e = y− x = εx
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and a peridynamic dilatation equal to

θ(x) =
cθ
m

∫

Hx

ω x2 ε dVx′ = cθ ε . (1.44)

Hence, by equalizing the dilatations obtained with the two approaches (θ = θcl), the dilata-
tion coefficient is given as

cθ =





3 in 3D,

2 in 2D plane strain,

2(1− 2ν)

1− ν
in 2D plane stress,

1− 2ν in 1D.

(1.45)

The deviatoric extension scalar state of a bond is defined in a way similar to the deviatoric
strain tensor in classical continuum mechanics (see Equation 1.39) [62]:

ed = e− θx

3
. (1.46)

At this point, suppose that the peridynamic strain energy density at a point x of a linear
elastic material is given as [62]

W (x) =
k

2
θ2 +

α

2m

∫

Hx

ω
(
ed
)2

dVx′ , (1.47)

where k and α are the peridynamic constants which must be determined by comparison with
the classical strain energy density.

To do so, an infinite body under homogeneous deformation is considered. Note that these
assumptions entail that θ = θcl and that the deviatoric strain tensor εd is constant in the
whole body. Using Einstein notation, the deviatoric extension scalar state ed in this case
can be determined as though the bond vector ξ would have been elongated by the effect of
the deviatoric strain tensor [62, 160]:

ed = ξ · εd ξ

‖ξ‖ =
1

‖ξ‖ ξi ε
d
ij ξj (1.48)

where εdij are the components of the deviatoric strain tensor, and ξi or ξj are the components
of the bond vector ξ. Note that the indices of the components vary from 1 to N , where N
is the number of dimensions of the model. Using this relation, the deviatoric strain energy
density in the peridynamic framework can be rewritten as

W d(x) =
α

2m

∫

Hx

ω
(
ed
)2

dVx′

=
α

2m

∫

Hx

ω

‖ξ‖2
(
ξi ε

d
ij ξj
) (
ξp ε

d
pq ξq

)
dVx′
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=
α

2m
εdijε

d
pq

∫

Hx

ω

‖ξ‖2 ξiξjξpξq dVx′ . (1.49)

Note that, due to the symmetry of the integration domain, the integral of terms with at
least one odd power of any component of the direction of the bond is zero.

The integration of the peridynamic deviatoric strain energy density is carried out here
only for the 1D case:

W d(x) =
α

2m

(
εd11
)2
∫

Hx

ω

ξ21
ξ41 dVx′ =

α

2m

(
εd11
)2
∫

Hx

ωξ21 dVx′ =
α

2

(
εd11
)2
. (1.50)

In the 2D and 3D cases, polar and spherical coordinates are, respectively, employed for the
integration (for more details, see [62, 160]). Therefore, the strain energy density in an infinite
body modeled with ordinary state-based peridynamics under homogeneous deformation is
given as

W (x) =





k

2
θ2 +

α

15
εdijε

d
ij in 3D,

(
k

2
+

α

144

)
θ2 +

α

8
εdijε

d
ij in 2D plane strain,

(
k

2
+

α (1 + ν)2

144 (1− 2ν)2

)
θ2 +

α

8
εdijε

d
ij in 2D plane stress,

k

2
θ2 +

α

2

(
εd11
)2

in 1D,

(1.51)

where i, j = 1, 2, 3 in 3D and i, j = 1, 2 in 2D.
Hence, the peridynamic constants k and α can be simply derived by comparing Equa-

tions 1.40 and 1.51:

α =





15G in 3D,

8G in 2D,

2G in 1D.

(1.52)

k =





K in 3D,

K +
1

9
G in 2D plane strain,

K +
(ν + 1)2

9(2ν − 1)2
G in 2D plane stress,

K +
2(ν + 1)2

9(2ν − 1)2
G in 1D.

(1.53)

As a final remark, it is worth noting that the two theories of peridynamics and classical
continuum mechanics have the same solution only if the horizon size δ goes to 0 [162] or
in the case of a homogeneous deformation, i.e., a linear displacement field. In numerical
models, it is impossible to have a peridynamic model with δ = 0. Thus, when the con-
dition of homogeneous deformation is not satisfied, peridynamics and classical continuum
mechanics have different solutions, as highlighted in [163, 164]. This is why spurious effects
are present at the interfaces of the coupling between peridynamics and methods based on
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classical continuum mechanics, such as FEM [165].

Force density scalar state

To determine the magnitude of the force states in ordinary state-based peridynamics,
the force density scalar state t is defined as the Fréchet derivative of the peridynamic strain
energy density with respect to the extension scalar state [62]:

t = ∇W (e) . (1.54)

The definition of Fréchet derivative (see Equation 1.28) applied to W as a function of the
extension scalar state e is given as

W (e+ de) = W (e) +

∫

Hx

∇W (e) de dV
x
′ +O(‖de‖2) , (1.55)

where de is an increment of the extension scalar state. From the definition of dilatation
(Equation 1.41), it follows that

θ(e+de) =
cθ
m

∫

Hx

ω x (e+de) dV
x
′ =

cθ
m

∫

Hx

ω x e dV
x
′+

cθ
m

∫

Hx

ω x de dV
x
′ = θ+dθ , (1.56)

where dθ is the increment of dilatation. Similarly, the definition of the deviatoric extension
scalar state (Equation 1.46) yields

ed(e+ de) = (e+ de)− (θ + dθ)x

3
=

(
e− θ x

3

)
+

(
de− dθ x

3

)
= ed + ded , (1.57)

where ded is the increment of the deviatoric extension scalar state.
Therefore, the strain energy density W (e + de) due to the increment de is computed

(dropping the second order terms of the increments) as

W (e+ de) =
k

2
(θ + dθ)2 +

α

2m

∫

Hx

ω
(
ed + ded

)2
dV

x
′

=
k

2

(
θ2 + 2 θ dθ

)
+

α

2m

∫

Hx

ω
[(
ed
)2

+ 2 ed ded
]
dV

x
′

= W (e) + k θ dθ +
α

m

∫

Hx

ω ed ded dV
x
′

= W (e) +
k θ cθ
m

∫

Hx

ω x de dV
x
′ +

α

m

∫

Hx

ω ed
(
de− x cθ

3m

∫

Hx

ω x de dV
x
′

)
dV

x
′

= W (e) +

∫

Hx

[
k θ cθ
m

ω x+
α

m
ω ed − cθ α

3m2

(∫

Hx

ω x ed dV
x
′

)
ω x

]
de dV

x
′ .

(1.58)

When this formula is compared with Equation 1.55, the force density scalar state for a linear
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peridynamic material is given as:

t =
cθ
m

[
kθ − α

3m

∫

Hx

ω x ed dV
x
′

]
ω x+

α

m
ω ed . (1.59)

Finally, the force density scalar state can be simplified as

t =
cθ
m

[
kθ − α

3m

∫

Hx

ω x

(
e− θx

3

)
dV

x
′

]
ω x+

α

m
ω

(
e− θx

3

)

=
cθ
m

[
kθ − αθ

3cθ
+
αθ

9

]
ω x+

α

m
ω e− α

3m
ω x θ

=

(
cθk +

cθ − 6

9
α

)
ω x

m
θ + α

ω

m
e , (1.60)

where the values of the constants cθ, k, and α are given in Equations 1.45, 1.53, and 1.52,
respectively. For conciseness of notation, the coefficient kθ is defined as

kθ = cθk +
cθ − 6

9
α , (1.61)

Therefore, the force state in ordinary state-based peridynamics is given as [62]

f(x,x′, t) = t[x, t]〈ξ〉M〈ξ〉 − t[x′, t]〈−ξ〉M〈−ξ〉

= ω〈ξ〉
[
kθ x〈ξ〉

(
θ(x)

m(x)
+
θ(x′)

m(x′)

)
+ α

(
1

m(x)
+

1

m(x′)

)
e〈ξ〉

]
M〈ξ〉, (1.62)

where the following equalities have been used: e〈ξ〉 = e〈−ξ〉, ω〈ξ〉 = ω〈−ξ〉, x〈ξ〉 = x〈−ξ〉,
and M〈ξ〉 = −M〈−ξ〉. In state-based peridynamics, a point x interacts with all the points
within its neighborhood Hx. Note that the interaction force, i.e., the force state in Equa-
tion 1.62, depends also on the dilatation θ(x′) of the neighboring point x′. This means that
a point interacts directly with all points up to a distance equal to δ and indirectly with all
points up to a distance equal to 2δ.

x

δ

H
x

x
′

δ

H
x
′

ξ

Figure 1.8: In state-based peridynamics, a point x interacts directly with any point x′ within the
neighborhood Hx and indirectly with all the points within the neighborhood Hx

′ .
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Linearized peridynamic model

The linearization of the state-based version of peridynamics is presented in [166] and is
hereinafter briefly summarized. To perform the linearization, the notion of double state must
be introduced. As suggested by the name, double states operate on two bonds. Therefore,
for example, the notation D[x]〈ξ, ζ〉 means that the double state D depends on the position
x and is applied to the bonds ξ = x′ − x and ζ = x′′ − x. The value of a double state is a
second-order tensor and its components are denoted as Dij〈ξ, ζ〉. The adjoint of D, denoted
by D

†, is defined as
D†

ij〈ξ, ζ〉 = Dji〈ζ, ξ〉 ∀ ξ, ζ ∈ Hx . (1.63)

Note that the order of both the indices and the bonds is changed when taking the adjoint.
D is self-adjoint if D = D

†.
Let u be a displacement field applied to a body B modeled with state-based peridynamics

with an horizon size δ. The displacement vector state associated with u is defined as [166]

U[x, t]〈ξ〉 = u(x′, t)− u(x, t) = η . (1.64)

A displacement field u on B is small if ‖η‖ ≪ δ for any time t. This definition is analogous
to ‖∇u‖ ≪ 1 in classical continuum mechanics, but it allows for discontinuities in the
displacement field u. If the displacement field u is small, the force density vector state can
be linearized as follows:

T[x, t]〈ξ〉 =
∫

Hx

K[x]〈ξ, ζ〉U[x, t]〈ζ〉 dVx′′ , (1.65)

where K is a double state called the modulus state and defined as the Fréchet derivative of
the force density vector state:

K = ∇T(U) . (1.66)

If the material is elastic, the linearized force density vector state given in Equation 1.65
can be obtained as T = ∇W , where W is the linearized strain energy density for small
displacements:

W (U) =
1

2

∫

Hx

U[x, t]〈ξ〉 ·T[x, t]〈ξ〉 dVx′

=
1

2

∫

Hx

U[x, t]〈ξ〉 ·
(∫

Hx

K[x]〈ξ, ζ〉U[x, t]〈ζ〉 dVx′′

)
dVx′

=
1

2

∫

Hx

U i[x, t]〈ξ〉 ·
(∫

Hx

Kij[x]〈ξ, ζ〉U j[x, t]〈ζ〉 dVx′′

)
dVx′ , (1.67)

where “·” stands for scalar product operation between vectors. In the last line of Equa-
tion 1.67, Einstein notation was used. This yields

K = ∇∇W (U) . (1.68)

Due to the property of self-adjointness of second Fréchet derivatives (see [166] for details),
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the modulus state is self-adjoint:
K = K

† . (1.69)

This condition is analogous to the major symmetry of the fourth-order elasticity tensor C

in classical continuum mechanics for elastic materials, i.e., Cijkl = Cklij. Furthermore, the
balance of angular momentum for a linearized force density vector state can be expressed as

∫

Hx

Y[x, t]〈ξ〉 ×
(∫

Hx

K[x]〈ξ, ζ〉U[x, t]〈ζ〉 dVx′′

)
dVx′ = 0 . (1.70)

This condition is analogous to the minor simmetry of the fourth-order elasticity tensor C in
classical continuum mechanics, i.e., Cijkl = Cjikl, which ensures the symmetry of the stress
tensor.

The force density vector state is obtained by combing Equations 1.35 and 1.60 as

T〈ξ〉 =
[
kθ
ω(‖ξ‖) ‖ξ‖

m
θ + α

ω(‖ξ‖)
m

e〈ξ〉
]
M〈ξ〉 , (1.71)

where M〈ξ〉 = ξ/‖ξ‖ is the unit vector of the bond direction when small displacements are
assumed. Under this assumption, the extension scalar state can be rewritten as

e〈ξ〉 = η ·M〈ξ〉 = U〈ξ〉 ·M〈ξ〉 . (1.72)

Thus, the peridynamic dilatation for small displacements becomes

θ(x) =
cθ
m

∫

Hx

ω xU〈ξ〉 ·M〈ξ〉 dVx′ =
cθ
m

∫

Hx

ω(‖ξ‖) ξ ·U〈ξ〉 dVx′ . (1.73)

Consider an increment dU of the displacement vector state, resulting in an increment de of
the extension scalar state and dθ of the dilatation. For later use, the Dirac delta function is
defined as

∆(ζ − ξ) =

{
1 if ζ − ξ = 0 ,

0 otherwise.
(1.74)

The force density vector state due to the increment dU is given as

T(U+ dU) =

[
kθ
ω(‖ξ‖) ‖ξ‖

m
(θ + dθ) + α

ω(‖ξ‖)
m

(e+ de)

]
M〈ξ〉

= T(U) +

[
kθ
ω(‖ξ‖) ‖ξ‖

m
dθ + α

ω(‖ξ‖)
m

(dU〈ξ〉 ·M〈ξ〉)
]
M〈ξ〉

= T(U) + kθ
ω(‖ξ‖) ξ

m
dθ + α

ω(‖ξ‖)
m

(M〈ξ〉 ⊗M〈ξ〉) dU〈ξ〉

= T(U) + kθ
ω(‖ξ‖) ξ

m

cθ
m

∫

Hx

ω(‖ζ‖) ζ · dU〈ζ〉 dVx′′

+ α
ω(‖ξ‖)
m

(M〈ξ〉 ⊗M〈ξ〉)
∫

Hx

∆(ζ − ξ) dU〈ζ〉 dVx′′
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= T(U) +

∫

Hx

ω(‖ξ‖)
[
cθ kθ
m2

ω(‖ζ‖) (ξ ⊗ ζ)

+
α

m
(M〈ξ〉 ⊗M〈ξ〉)∆(ζ − ξ)

]
dU〈ζ〉 dVx′′

= T(U) +

∫

Hx

ω(‖ξ‖)
[
cθ kθ
m2

ω(‖ζ‖) + α

m

∆(ζ − ξ)

‖ξ‖ ‖ζ‖

]
(ξ ⊗ ζ) dU〈ζ〉 dVx′′ ,

(1.75)

where “⊗” stands for the dyadic product between two vectors. Note that the Dirac delta
function is introduced because the last term on the right-hand side of Equation 1.75 is
non-null only when ξ = ζ. In fact, this term is analogous to the pairwise force in bond-
based peridynamics (see Equation 1.18), in which each bond responds indipendently from
the other bonds in the neighborhood. Hence, from the definition of the Fréchet derivative
(see Equation 1.28), the modulus state is given as [166]

K〈ξ, ζ〉 = ω(‖ξ‖)
[
cθ kθ
m2

ω(‖ζ‖) + α

m

∆(ζ − ξ)

‖ξ‖ ‖ζ‖

]
(ξ ⊗ ζ) . (1.76)

The peridynamic equation of motion expressed in terms of displacement can be derived
by using the linearized constitutive models with no additional approximations [166]:

ρ(x) ü(x, t) =

∫

Hx

(
T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉

)
dVx′ + b(x, t)

=

∫

Hx

(∫

Hx

K[x]〈ξ, ζ〉U[x, t]〈ζ〉 dVx′′

−
∫

H
x
′

K[x′]〈−ξ,γ〉U[x′, t]〈γ〉 dVx′′′

)
dVx′ + b(x, t) , (1.77)

where ρ is the material density, ü is the acceleration field, and b is the external force density.
The notation of the bonds involved in this computation, i.e., ξ = x′ − x, ζ = x′′ − x, and
γ = x′′′ − x′, are shown in Figure 1.9. Recalling the definition of displacement vector state,
i.e., U[x, t]〈ζ〉 = u(x′′, t) − u(x, t) and U[x′, t]〈γ〉 = u(x′′′, t) − u(x′, t), the equation of
motion is rearranged as

ρ(x) ü(x, t) =

∫

Hx

∫

Hx

K[x]〈ξ, ζ〉u(x′′, t) dVx′′ dVx′

−
(∫

Hx

∫

Hx

K[x]〈ξ, ζ〉 dVx′′ dVx′

)
u(x, t)

−
∫

Hx

∫

H
x
′

K[x′]〈−ξ,γ〉u(x′′′, t) dVx′′′ dVx′

+

∫

Hx

(∫

H
x
′

K[x′]〈−ξ,γ〉 dVx′′′

)
u(x′, t) dVx′ + b(x, t) . (1.78)

Note that, as stated previously, in state-based peridynamics, a point interacts with all points
up to a distance of 2δ, in contrast to a maximum distance of interaction equal to δ in
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bond-based peridynamics. This is the reason why state-based peridynamic models are less
computationally efficient than bond-based ones.

x

H
x

x
′

H
x
′

x
′′

x
′′′

ξ
ζ

γ

Figure 1.9: Notation for the bonds used to compute the force state in linearized state-based peridy-
namics. Points x′ and x′′ lie within the neighborhood Hx of point x and point x′′′ lies within the
neighborhood Hx

′ of point x′.

Failure criterion

Damage in bond-based peridynamics is evaluated with the bond stretch criterion [65]:
whenever a bond elongation exceeds a prescribed limit, the bond is broken and its contribu-
tion to stiffness vanishes. This failure criterion is based only on the bond elongation, thus
it neglects the deviatoric deformation energy stored in the bond and is suitable for loading
cases close to mode I and II failures [167]. However, it has been shown that this simple fail-
ure criterion can be used in ordinary state-based peridynamics as well [168]. Other failure
criteria, such as those based on critical bond energy [169], strain invariants [71] and stress
tensor [170], can be found in the literature.

In ordinary state-based peridynamics, the bond stretch is defined as [171]

s〈ξ〉 = e〈ξ〉
x〈ξ〉 . (1.79)

As in bond-based peridynamics, s assumes the meaning of strain of the bond. Even if it has
not been justified from a mathematical standpoint, the same critical bond stretch s0 as that
obtained in bond-based peridynamics (see Equation 1.26) is often used to determine whether
a bond is broken. Following an approach similar to that adopted in bond-based peridynamics,
the values of critical bond stretch for mode I in ordinary state-based peridynamics were
computed in [63, Chapter 6]. In order to assess the bond status (broken or unbroken), a
history-dependent scalar state (to be multiplied to the force state in the equation of motion)
is introduced:

µ〈ξ〉 =




1 if s〈ξ〉 < s0 for any previous or current e〈ξ〉 ,
0 otherwise

(1.80)

Once the bond is broken, its stiffness irreversibly vanishes.
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The damage index of a peridynamic point x is evaluated as

ϕ(x) = 1−
∫
Hx

ω µ dV
x
′

∫
Hx

ω dV
x
′

. (1.81)

The damage index ranges between 0 and 1 when the point x has repectively all intact or
all broken bonds. A damage index close to ϕ = 0.5 indicates that there is a straight crack
passing nearby the point. It is worth noting that the damage index is not involved in the
breakage of bonds, but it is only used to visualize crack propagation in the post-processing
stage.

1.2.3 Peridynamic stress tensor and force flux

Stress is a fundamental concept in classical continuum mechanics. Analogously, the
notion of peridynamic stress is of paramount importance in modeling a body with the peri-
dynamic theory. Hereinafter, the definition of the peridynamic stress tensor and the force
flux introduced in [172] are reviewed.

Peridynamic stress tensor

The peridynamic stress tensor is defined at a point x with a complete neighborhood
as [172]

ν(x) =
1

2

∫

Ω

∫ δ

0

∫ δ

s

f(x′,x′′)⊗m r2 dr ds dΩm , (1.82)

where x′ = x − sm is a point lying on the opposite direction of the bond direction m at a
distance s from x, x′′ = x+ (r− s)m is a point lying on the bond direction m at a distance
r form x′, Ω is a sphere with a unit radius centered in x, and dΩm is the differential solid
angle on Ω in any bond direction m. For conciseness of notation, the dependence on time
of ν(x, t) was dropped. Note that the points x′ and x′′ are connected by a bond passing
through point x, as shown in Figure 1.10. Moreover, s = ‖x′ − x‖ is the distance between
points x and x′, whereas r = ‖x′′ − x′‖ is the length of the bond between x′ and x′′.

The definition of the integration domains allows to take into account all the bonds passing
through point x. The position of point x′ = x − sm is integrated over the dashed line
depicted in Figure 1.10. Since the maximum interaction distance is the horizon size δ, the
above mentioned dashed line extends in the opposite direction of the bond direction m from
0 to δ, limits that correspond to the limits of the integration domain of the second integral
on the right-hand side of Equation 1.82. Since the computation of the peridynamic stress
tensor involves only the bonds intersecting x, point x′′ = x + (r − s)m must be on the
opposite side of x′ with respect to x. This means that the bond length r must be greater
than s (and again smaller than δ due to the limit of the interaction distance). Therefore, the
integration domain of the innermost integral of Equation 1.82 is the dashdotted line along the
bond direction m extending form s to δ, as shown in Figure 1.10. The bond direction m is
integrated over all possible directions, i.e., over the unit sphere Ω centered in x (see outermost
integral in Equation 1.82). However, the same force state of each bond is integrated twice
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x
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x
′′
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δ

Figure 1.10: Integration domains of the variables involved in the computation of the peridynamic
stress tensor at point x: the bond direction m is integrated over the unit sphere Ω (dotted line), the
distance s of point x′ from x (in the opposite direction of m) is integrated between 0 and δ (dashed
line), and the bond length r is integrated between s and δ (dashdotted line).

because any bond passing through x (between x′ and x′′) has a corresponding bond in the
opposite direction (between x′′ and x′). This is the reason why the factor 1/2 appears at
the beginning of Equation 1.82.

It is worth noting that the integral over the unit sphere Ω does not depend on the variables
s and r and, analogously, the integrals related to the distances between points, i.e., s and
r, do not depend on the bond direction m. Conversely, the integrals related to s and r are
interdependent. This is due to the fact that the points x′ and x′′ have to lie on opposite
sides with respect to x in order to pass through it. Considering the order of the integrals
given in the definition of the peridynamic stress tensor (Equation 1.82), the “starting point”
x′ of the bond is fixed when the bond length is integrated. In other words, for any distance
s of x′ from x, all the possible bond lengths r are taken into account in the integration by
“stretching” the bond itself. This concept is illustrated in Figure 1.11a.

It is possible to interchange the order of the integrals related to s and r. This implies
that the bond length r is considered fixed when the distance s of x′ from x is integrated.
In other words, for any bond length r, all the possible bonds passing through point x are
taken into account in the integration by “sliding” the bond so that it has different starting
points x′. In this case, the distance s of the starting point x′ from point x must be smaller
than the bond length r in order that points x′ and x′′ lie on opposite sides with respect to
point x, as shown in Figure 1.11b. Hence, the peridynamic stress tensor at a point x with
a complete neighborhood can be rewritten as

ν(x) =
1

2

∫

Ω

∫ δ

0

∫ r

0

f(x′,x′′)⊗m r2 ds dr dΩm

=
1

2

∫

Hx

∫ r

0

f(x′,x′′)⊗m ds dVx′′ , (1.83)
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s

r

0 δ

δ

s = r

(a) For any value of s between 0 and δ, r lies be-
tween s and δ (see the integration limits in Equa-
tion 1.82).

r

s

0 δ

δ

r = s

(b) For any value of r between 0 and δ, s lies be-
tween 0 and r (see the integration limits in Equa-
tion 1.83).

Figure 1.11: Integration domain for the computation of the peridynamic stress tensor for a fixed
bond direction.

where dVx′′ = r2 dr dΩm.
The computation of the peridynamic stress tensor can be simplified when assuming homo-

geneous deformation. Under this assumption, bonds with the same length r and direction m

have the same force state in any position of the body, i.e., f does not depend on s. Therefore,
Equation 1.83 yields

ν(x) =
1

2

∫

Hx

(∫ r

0

ds

)
f(x,x′′)⊗m dVx′′

=
1

2

∫

Hx

r f(x,x′′)⊗m dVx′′ . (1.84)

Note that the force state for s = 0, namely f(x,x′′), was conveniently chosen in this formula.
It is worth recalling that the peridynamic stress tensor is equal to that of classical continuum
mechanics under the assumption of homogeneous deformation [165].

In state-based peridynamics, the force state is expressed from Equation 1.34 in terms of
the force density vector state as f(x′,x′′) = T[x′]〈ζ〉 −T[x′′]〈−ζ〉, where ζ = x′′ − x′. Since
the same force state is summed twice within the integral (once for ζ and another one for
−ζ), both T[x′]〈ζ〉 and T[x′′]〈−ζ〉 appear twice in the sum of force density vector states. If
each force state is considered applied twice to the corresponding bond, one can rewrite the
peridynamic stress tensor from Equation 1.82 as [162]

ν(x) =

∫

Ω

∫ δ

0

∫ δ

s

T[x′]〈ζ〉 ⊗m r2 dr ds dΩm , (1.85)

where the factor 1/2 was simplified for the reason explained above. Interchanging the order



54 Chapter 1

of the integrals, Equation 1.85 yields

ν(x) =

∫

Ω

∫ δ

0

∫ r

0

T[x′]〈ζ〉 ⊗m r2 ds dr dΩm

=

∫

Hx

∫ r

0

T[x′]〈ζ〉 ⊗m ds dVx′′ , (1.86)

where dVx′′ = r2 dr dΩm. Under the assumption of homogeneous deformation, the peridy-
namic stress tensor can be rewritten as

ν(x) =

∫

Hx

T[x]〈ξ〉 ⊗ ξ dVx′ , (1.87)

where ξ = x′ − x.

Peridynamic force flux

The peridynamic force flux corresponds to the concept of stress in classical continuum
mechanics. It is indeed obtained in the classical way: τ (x,n) = ν(x)n, where n is a unit
vector in the direction in which the force flux is intended to be computed. Thus, the force
flux τ (x,n) at point x in the direction of the unit vector n (see Figure 1.12) is derived from
Equation 1.82 as [172]

τ (x,n) =
1

2

∫

Ω

∫ δ

0

∫ δ

s

f(x′,x′′) (m · n) r2 dr ds dΩm , (1.88)

where x′ = x − sm and x′′ = x + (r − s)m. As in the definition of the peridynamic
stress tensor, a factor 1/2 is required, since the integration domain takes into account the
magnitude of the force state of each bond twice (for both direction m and −m). In state-
based peridynamics, this factor can be simplified if the force density vector state is used in
the formula of the force flux:

τ (x,n) =

∫

Ω

∫ δ

0

∫ δ

s

T[x′]〈ζ〉 (m · n) r2 dr ds dΩm , (1.89)

where ζ = x′′ − x′.
Similarly to what is presented for the peridynamic stress tensor, the order of the integrals

related to s and r can be interchanged, yielding

τ (x,n) =
1

2

∫

Ω

∫ δ

0

∫ r

0

f(x′,x′′) (m · n) r2 ds dr dΩm

=
1

2

∫

Hx

∫ r

0

f(x′,x′′) (m · n) ds dVx′′ , (1.90)

where dVx′′ = r2 dr dΩm. Under the assumption of homogeneous deformation, the peridy-
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Figure 1.12: Integration domains of the variables involved in the computation of the peridynamic
force flux τ at point x in direction n: the bond direction m is integrated over the unit sphere Ω
(dotted line), the distance s of point x′ from x (in the opposite direction of m) is integrated between
0 and δ (dashed line), and the bond length r is integrated between s and δ (dashdotted line). Points
x′ and x′′ lie in the different half-spaces generated by the plane P passing through point x with
normal n.

namic force flux can be simplified as

τ (x,n) =
1

2

∫

Hx

(∫ r

0

ds

)
f(x,x′′) (m · n) dVx′′

=
1

2

∫

Hx

r f(x,x′′) (m · n) dVx′′ , (1.91)

where the force state for s = 0, namely f(x,x′′), was conveniently chosen since f does not
depend on s when assuming a homogeneous deformation. It is worth recalling that the
peridynamic force flux is equal to the stress in classical continuum mechanics under this
assumption [165].

As a mechanical interpretation, the force flux is the resultant of the forces per unit area
of all bonds intersecting P in x [172]. In order to understand this, consider a plane P with
normal n passing through point x, as shown in Figure 1.13. Points x′ and x′′ respectively lie
in the different half-spaces generated by plane P . The differential volumes of those points
are dVx′ = r2 ds dΩm and dVx′′ = r2 dr dΩm. The differential area of point x′, which is
perpendicular to the bond direction m, is the portion of a sphere centered in x′′ with a
radius r that subtends the differential solid angle dΩm, namely dAx

′ = r2 dΩm. Similarly,
the differential area dAx

′′ on a sphere centered in x′ with a radius r is equal to dAx
′ . As

shown in Figure 1.13, the differential area of point x with normal n is the projection in
direction m of dAx

′ = dAx
′′ on plane P :

dAx =
r2 dΩm

m · n . (1.92)
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The total force that point x′′ exerts on x′ is given as f(x′,x′′) dVx′ dVx′′ . Therefore, the bond
force per unit area on plane P is given by

f(x′,x′′) dVx′ dVx′′

dAx

= f(x′,x′′) (m · n) r2 dr ds dΩm , (1.93)

which is the integrand for the computation of the peridynamic force flux (see Equation 1.88).
Hence, the force flux is the sum of the forces, per unit area, of all bonds passing through the
point x.

x

m

x
′ dAx

′ ds

x
′′ dAx

′′ dr

s

r

dΩm

dΩm

n

dAx

P

Figure 1.13: Variables involved in the computation of the force flux τ (x,n): the differential volumes
of points x′ and x′′ are respectively dVx

′ = ds dAx
′ and dVx

′′ = dr dAx
′′ , where dAx

′ = dAx
′′ =

r2 dΩm, and the differential area dAx = r2 dΩm/(m · n) is the projection of dAx
′ and dAx

′′ on the
plane P [172].

Convergence of the peridynamic stress tensor to the classical one

It was shown in [162] that, if the deformation of a body is sufficiently smooth, the
peridynamic theory converges to the classical theory in the limit δ→0. The main findings of
that work are reported in the following. Note that the mechanical properties of the material
should remain unchanged when the horizon size is reduced to zero. Therefore, the strain
energy density of the peridynamic elastic material should be defined in such a way that it is
the same under homogeneous deformation for any value of δ.

For later use, the shrikage parameter is defined as

̺ =
δ

δ0
, (1.94)

where δ0 is called the reference horizon size, the value of which remains fixed throughout
the following discussion. It is worth noting that the shrinkage of the horizon size δ to zero
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is obtained for ̺→0. The enlarged deformation vector state is defined as [162]

E〈ξ〉 = ̺−1 Y〈̺ξ〉 . (1.95)

The enlarged deformation vector state can be interpreted as a “magnification” of the defor-
mation vector state in the region near the source point, as shown in Figure 1.14.

ξ

ξ

δ0−δ0 ̺δ0−̺δ0

Y〈ξ〉

E〈ξ〉

Figure 1.14: Enlarged deformation vector state E that maps the part of the deformation state Y

within the horizon size δ = ̺δ0 to the original horizon δ0 [162].

In a peridynamic elastic material, let the strain energy density be a function of the
enlarged deformation vector state:

W = W (Y) = W (E) . (1.96)

If the deformation happens to be homogeneous (i.e., the classical deformation gradient tensor
F(x) = ∇y is homogeneous, where “∇” is the gradient operator and y is the position of
point x in the deformed configuration), the enlarged deformation vector state is equal to the
deformation vector state for any value of ̺:

E〈ξ〉 = ̺−1 Y〈̺ξ〉 = ̺−1 F(x) ̺ξ = F(x) ξ = Y〈ξ〉 . (1.97)

Therefore, the strain energy density of the peridynamic elastic material under homogeneous
deformation is constant for any value of δ.

Since the force density vector state is the Fréchet derivative of the strain energy density,
an increment of the strain energy density due to an increment dY in the deformation vector
state (and, consequently, an increment dE in the enlarged deformation vector state) is given
as [162]

dW =

∫

Hx(δ)

T(Y)〈ξ〉 · dY〈ξ〉 dVx′ =

∫

Hx(δ0)

T(E)〈ξ0〉 · dE〈ξ0〉 dVx′
0
, (1.98)



58 Chapter 1

where ξ0 = ξ/̺ is the “magnified” bond of ξ = x′ − x, Hx(δ) and Hx(δ0) are the neighbor-
hoods of point x with radiuses equal to the horizon size δ and the reference horizon size δ0,
respectively. Note that in Equation 1.98 point x′ lies within Hx(δ) and point x′

0 = x + ξ0

within Hx(δ0). Changing the integration variable from ξ to ̺ξ0 in the integral of the left-
hand side, one obtains

∫

Hx(δ0)

T(Y)〈̺ξ0〉 · dY〈̺ξ0〉 ̺3 dVx′
0
=

∫

Hx(δ0)

T(E)〈ξ0〉 · ̺−1dY〈̺ξ0〉 dVx′
0
. (1.99)

Since this holds for any dY, it follows that

T(Y)〈̺ξ〉 = ̺−4 T(E)〈ξ〉 . (1.100)

Let y, representing the position of any point in the body in the deformed configuration,
be a twice continuously differentiable function of x. This is not a necessary condition for
the peridynamic theory, but it is necessary for the comparison of peridynamics with classical
continuum mechanics due to the limitations of the latter theory. Under this assumption, an
increment dY in the deformation vector state in the vicinity of some point x is given by
expanding with a Taylor series as

dY〈̺ξ〉 = Y[x+ dx]〈̺ξ〉 −Y[x]〈̺ξ〉
= y(x+ dx+ ̺ξ)− y(x+ dx)− y(x+ ̺ξ) + y(x)

= y(x) + F(x) (dx+ ̺ξ)− y(x)− F(x) dx− y(x)− F(x) ̺ξ + y(x) +O(̺2)

= O(̺2) , (1.101)

where dx = O(̺), and F = ∂y/∂y = ∇y is the deformation gradient tensor.
Consider now the behavior of the peridynamic stress tensor in the limit δ→ 0. Denote

by ζ = x′′ − x′ any bond passing through x, with x′ = x− sm, and x′′ = x+ (r − s)m (see
Figure 1.10). As δ→ 0, both r = ‖ζ‖ and s = ‖x′ − x‖ tend to zero. Let the bond ζ0 be
the “magnification” of ζ (see Figure 1.14) such that ζ = ̺ζ0. Corrispondingly, the following
relations hold: r = ̺r0 and s = ̺s0. Substituting Equation 1.100 into Equation 1.86, one
obtains the peridynamic stress tensor in the limit δ→0 (or ̺→0) [162]:

ν0(x) =

∫

Ω

∫ δ

0

∫ r

0

T(Y[x− sm])〈ζ〉 ⊗m r2 ds dr dΩm

=

∫

Ω

∫ ̺δ0

0

∫ ̺r0

0

̺−4T(E[x− sm])〈ζ〉 ⊗m r2 ds dr dΩm

=

∫

Ω

∫ δ0

0

∫ r0

0

̺−4T(E[x− ̺s0m])〈ζ0〉 ⊗m (̺r0)
2 ̺ ds0 ̺ dr0 dΩm

=

∫

Hx(δ0)

∫ r0

0

T(E[x− ̺s0m])〈ζ0〉 ⊗m ds0 dVx′′
0
, (1.102)

where the change of integration variables r ↔ ̺r0 and s ↔ ̺s0 was used, and dV
x
′′
0
=

r 2
0 dr0 dΩm.

Considering Equation 1.101 with dx = −̺s0m, the enlarged deformation vector state is
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given as

E[x− ̺s0m]〈ζ0〉 = ̺−1 Y[x− ̺s0m]〈̺ζ0〉
= ̺−1 (Y[x]〈̺ζ0〉+ dY[x]〈̺ζ0〉)
= ̺−1

(
F(x) ̺ζ0 +O(̺2)

)

= F(x) ζ0 +O(̺) . (1.103)

To compare the constitutive modeling of peridynamics with that of classical continuum
mechanics, it is assumed that T is a continuously differentiable function of Y so that

T(Y)〈ζ〉 = T(E)〈ζ0〉
= T(F(x) ζ0 +O(̺))〈ζ0〉
= T(F(x) ζ0)〈ζ0〉+O(̺) . (1.104)

Since the force density vector state in the limit ̺→ 0 is evaluated for a homogeneous
deformation of the body (see Equation 1.87), the peridynamic stress tensor for a horizon size
that goes to zero is given as

ν0(x) =

∫

Hx(δ0)

T(F(x) ξ0)〈ξ0〉 ⊗ ξ0 dVx′
0
. (1.105)

This peridynamic stress tensor is equal to the Piola-Kirchhoff stress tensor defined in clas-
sical continuum mechanics due to the fact that the stiffness coefficients of the force density
vector state were determined by assuming a homogeneous deformation (see Equations 1.52
and 1.53). For simplicity of notation, the subscript 0 associated with the bonds will be
dropped hereinafter.

If the assumption of small deformation is added to the discussion, the linearized force
density vector state in the limit δ→0 can be derived from Equation 1.65 as [166]

T(F(x) ξ)〈ξ〉 =
∫

Hx(δ0)

K[x]〈ξ, ζ〉U[x, t]〈ζ〉 dVx′′

=

∫

Hx(δ0)

K[x]〈ξ, ζ〉 (Hζ) dVx′′ , (1.106)

where ξ = x′−x, ζ = x′′−x, and H = ∇u is the displacement gradient tensor. This tensor
is related to the deformation gradient tensor as follows: F = ∂y/∂x = ∂(u+x)/∂x = H+1,
where 1 is the identity matrix. Substituting Equation 1.106 into Equation 1.105 yields

ν0(x) =

∫

Hx(δ0)

∫

Hx(δ0)

(K[x]〈ξ, ζ〉 (Hζ))⊗ ξ dVx′′ dVx′

=

∫

Hx(δ0)

∫

Hx(δ0)

Kik[x]〈ξ, ζ〉Hkl ζl ξj dVx′′ dVx′ , (1.107)

where Einstein notation is used. In classical continuum mechanics, the stress tensor under
the assumption of small deformations can be written as σij = CijklHkl, where Cijkl are
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the components of the fourth-order elasticity tensor C. Therefore, the components of the
fourth-order elasticity tensor are computed in peridynamics as [166]

Cijkl(x) =

∫

Hx(δ0)

∫

Hx(δ0)

Kik[x]〈ξ, ζ〉 ζl ξj dVx′′ dVx′ . (1.108)

Using Equation 1.76, this expression can be simplified as

Cijkl =

∫

Hx(δ0)

ω(‖ξ‖)
∫

Hx(δ0)

(
cθ kθ
m2

ω(‖ζ‖) + α

m

∆(ζ − ξ)

‖ξ‖ ‖ζ‖

)
ξi ξj ζk ζl dVx′′ dVx′

=
cθ kθ
m2

∫

Hx(δ0)

ω(‖ξ‖) ξiξj dVx′

∫

Hx(δ0)

ω(‖ζ‖) ζkζl dVx′′ +
α

m

∫

Hx(δ0)

ω(‖ξ‖)ξiξjξkξl‖ξ‖2 dVx′ .

(1.109)

1.2.4 Numerical discretization of peridynamics

Analytical solutions to peridynamic problems are difficult to find because of the integro-
differential nature of the equation of motion (integral in space to allow for discontinuities
to naturally arise and differential in time). For example, analytical solutions are provided
in [163, 164] by using the method of separation of variables, but this method is valid only for
simple geometries of the body and when there are no discontinuities in the problem. There-
fore, there is the need to discretize the peridynamic equations in order to obtain numerical
solutions to any possible problem.

Spatial integration

Many numerical methods can be used to discretize the peridynamic equations [173]. The
so-called meshfree method [65] is the most common one in the literature. A novel hybrid
method was developed to reduce the computational cost of the meshfree method in the re-
gions of the body away from boundaries, discontinuities, and interfaces [174, 175]. The finite
element method has also been used to numerically solve the peridynamic equation [176–178],
but remeshing would be required to model crack propagation. The fast convolution-based
method [179, 180] takes advantage of the convolutional form of the peridynamic integral
operator to improve computational efficiency by using the FFT (Fast Fourier Transform).
In the following, the meshfree method is adopted.

In the meshfree method, the body is often discretized with a grid of nodes in such a way
that a finite volume is associated with each node, and the union of the volumes of all nodes is
the whole body. An irregular distribution of nodes is possible (see, for instance, [181–183]),
but the complexity of the numerical model considerably increases. Therefore, a uniform grid
of nodes, with a grid spacing equal to h in all directions, is here considered [65], as shown in
Figure 1.15. Under this assumption, each node is associated with a cell with a finite volume
∆V = h3 in 3D models, to ∆V = t h2 in 2D models (where t is the thickness of the body),
and ∆V = Ah in 1D models (where A is the cross-sectional area of the body).

The spatial integration of the peridynamic integral operator is carried out as follows: the
integral over the neighborhood is transformed into a summation of integrals over nodal cells,
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Figure 1.15: Discretization of a body modeled with peridynamics using the meshfree method with
uniform grid spacing. The neighborhood of a node is highlighted in red.

and then the midpoint quadrature rule is applied to those integrals over the cells. Thus, the
peridynamic equation of motion, discretized from Equation 1.2, at time t ≥ 0 at a node xi

is given as [65]
ρ(xi) ü(xi, t) =

∑

j∈Hi

f(xi,xj, t) βij ∆V + b(xi, t) , (1.110)

where ρ is the density of the material, ü is the acceleration field, Hi is the neighborhood of
node xi, f is the force state (force per unit volume squared), βij is the quadrature coefficient
associated with the bond between nodes xi and xj, and b is the external force density field.
Nodes xi and xj are often referred to as the source node and the family node, respectively.
A node xj belongs to the neighborhood Hi if at least a portion of its cell lies within Hi, as
shown in Figure 1.16. In quasi-static conditions, the peridynamic equilibrium equation in
the discretized model yields

−
∑

j∈Hi

f(xi,xj) βij ∆V = b(xi) . (1.111)

The quadrature coefficient β is introduced to improve the accuracy of the numerical
integration of the peridynamic models. Observing Figure 1.16, one can notice that the cells
of the family nodes close to the source node lie completely within the neighborhood, whereas
those near the boundary of the neighborhood lie only partially within it. In the numerical
integration of the peridynamic operator, the contribution of each node should be proportional
to the fraction of its cell volume that actually lies within the neighborhood [158, 184]. In
some sense, the quadrature coefficient represents the “weight” that each family node has in
the integral over the neighborhood. Hence, βij = 1 for family nodes xj that have the whole
cell volume inside the neighborhood Hi and 0 < βij < 1 for those that have only a portion
of volume cell inside Hi (see Figure 1.16). In the latter case, the portion of cell volume (or
area in 2D, or length in 1D) that lies within the neighborhood is often referred to as partial

volume (or partial area in 2D, or partial length in 1D).
Now consider a node xj with a portion of its cell lying inside the neighborhood Hi of
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xi

βij = 1

βij < 1

Figure 1.16: Discretization of the neighborhood of a node xi using the meshfree method with uniform
grid spacing. The nodes colored in black belong to the neighborhood of node xi, whereas the nodes
colored in gray do not.

node xi. The bond connecting these nodes is described by

ξij = xj − xi . (1.112)

Analogously, the relative displacement vector after the deformation of the body is defined as

ηij = u(xj, t)− u(xi, t) , (1.113)

where u is the displacement field applied to a body modeled with peridynamics.
In bond-based peridynamics, the bond stretch (see Equation 1.15) in the discretized

model is given as

sij =
‖ξij + ηij‖ − ‖ξij‖

‖ξij‖
. (1.114)

The pairwise force of a bond in a prototype microelastic brittle material (see Equation 1.16)
is discretized as

f(xi,xj, t) = c(ξij)µij sij mij , (1.115)

where c is the micromodulus, mij = (ξij +ηij)/‖ξij +ηij‖ is the unit vector in the direction
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of the deformed bond, and µij is a history-dependent scalar-valued function given as

µij =

{
1 if sij < s0 for any previous or current ηij ,

0 otherwise,
(1.116)

where s0 is the critical bond stretch. The function µij introduces the concept of (irreversibly)
broken bonds in bond-based peridynamics. Under the assumption of small displacements
(‖ηij‖ ≪ ‖ξij‖), the pairwise force (see Equation 1.18) can be simplified as

f(xi,xj, t) =
c(ξij)

‖ξij‖
µij (mij ⊗mij)ηij = C(ξij)ηij , (1.117)

where “⊗” stands for the dyadic product between two vectors and mij = ξij/‖ξij‖.
In state-based peridynamics, the extension scalar state (see Equation 1.33) of bond ξij

is given as
eij = ‖ξij + ηij‖ − ‖ξij‖ . (1.118)

The deformed direction vector state in the discretized model is computed as

Mij =
ξij + ηij

‖ξij + ηij‖
. (1.119)

Under the assumption of small displacements, these variables can be simplified as eij =

ηij ·Mij and Mij = ξij/‖ξij‖. The weighted volumemi = m(xi) and the dilatation θi = θ(xi)

(see Equations 1.42 and 1.41, respectively) are numerically evaluated with the midpoint
quadrature rule applied to each cell of the family nodes:

mi =
∑

j∈Hi

ω(‖ξij‖) ‖ξij‖2 βij ∆V , (1.120)

θi =
cθ
mi

∑

j∈Hi

ω(‖ξij‖) ‖ξij‖ eij βij V . (1.121)

Therefore, the force state in a bond ξij for an ordinary state-based peridynamic material
(see Equation 1.62) is given as

f(xi,xj, t) = ω(‖ξij‖)
[
kθ ‖ξij‖

(
θi
mi

+
θj
mj

)
+ α

(
1

mi

+
1

mj

)
eij

]
Mij. (1.122)

The force state can be multiplied by µij as in bond-based peridynamics to introduce the
possibility of breaking bonds in the model.

Time integration

Peridynamics is a theory that has been developed to handle crack propagation problems
with ease. As a crack or multiple cracks propagate in a body modeled with peridynamics,
the bonds break accordingly, effectively resulting in a change of the stiffness properties of
the material. Therefore, explicit methods for time integration are highly recommended over
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implicit ones to reduce the computational cost of the simulation. Nevertheless, care should
be taken because explicit methods are conditionally stable. In other words, the time-step
size should be chosen below a certain limit to obtain stability for the numerical method.

In quasi-static conditions, the crack speed is assumed to be much slower than the speed
of mechanical waves. Therefore, the dependence on time can be dropped, as shown in
Equation 1.111. However, when a bond breaks, the internal force that that bond was carrying
has to be redistributed over the nearby bonds, which can lead to the breakage of another
bond. This means that the sequence with which bonds break (and, in some sense, the time
at which they do) still plays a role.

For quasi-static crack propagation, the adaptive dynamic relaxation method [185] can be
used. This method converts the static problem into a dynamic one by introducing fictitious
inertial and damping forces. The solution of the new dynamic problem is numerically inte-
grated via an explicit scheme, and, as the transient solution is damped out, converges to the
sought static solution. Similarly, a sequentially linear analysis [73] can be used.

In dynamic problems, a variety of different time integration schemes can be used, such
as the explicit central difference formula or the velocity-Verlet method. The explicit central
difference formula for the acceleration [65] is presented hereinafter:

ü(xi, tn) =
u(xi, tn+1)− 2u(xi, tn) + u(xi, tn−1)

(∆t)2
, (1.123)

where ∆t is the constant time-step size and n stands for the index of the current time step.
The iterative procedure to obtain the displacement of node xi at the time step tn+1 is given
by combining Equations 1.110 and 1.123 as

u(xi, tn+1) = 2u(xi, tn)−u(xi, tn−1)+
(∆t)2

ρ(xi)

(
∑

j∈Hi

f(xi,xj, tn) βij ∆V + b(xi, tn)

)
. (1.124)

However, to obtain the displacement at the first time step u(xi, t1), the knowledge of
u(xi, t−1) is required as well. This displacement can be computed as

u(xi, t−1) = u(xi, t0)−∆t u̇(xi, t0) +
(∆t)2

2
ü(xi, t0) , (1.125)

where the initial displacement u(xi, t0) and velocity u̇(xi, t0) are known from the initial
conditions at any node and the initial acceleration is given as

ü(xi, t0) =
1

ρ(xi)

(
∑

j∈Hi

f(xi,xj, t0) βij ∆V + b(xi, t0)

)
. (1.126)

In bond-based peridynamics under the assumption of small displacements (see Equa-
tion 1.117), the Von Neumann stability analysis yields the following maximum time-step
size [65]:

∆t <

√
2ρ∑

j∈Hi
C(ξij) βij ∆V

, (1.127)
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where ρ is the minimum density of any node of the body. Equation 1.127 represents the
criterion for the stability of the explicit numerical method corresponding to the well-known
Courant-Friedrichs-Lewy criterion in classical continuum mechanics, in which ∆t < O(h).
However, the maximum time-step size in peridynamics depends only weakly on the grid
spacing h but it is limited by the horizon size (∆t < O(δ)). Since δ > h in peridynamic
models, the stability of the numerical method is achieved with a larger time-step size, with
a gain in computational efficiency. It is worth noting that the criterion derived with the
Von Neumann stability analysis does not consider the influence of the boundary conditions.
Furthermore, no criteria for the maximum time-step size are available for state-based peri-
dynamic models. The stability of explicit time integration schemes in peridynamics is still
a largely unexplored field.

Numerical convergence analyses

The horizon size δ is the measure of nonlocality of the peridynamic model. It is sometimes
possible to choose the value δ as a specific physical length scale of the modeled phenomenon.
In this case, since the horizon size assumes a physical meaning, it can be calibrated to ex-
perimental measurements. For example, the horizon size at the nanoscale can be determined
by the maximum distance of interaction between atoms. However, most of the times δ is
chosen according to convenience, mainly to reduce computational time. The horizon size in
discretized peridynamic models is commonly expressed as

δ = mh , (1.128)

where m is called m-ratio and h is the uniform grid spacing. The m-ratio, the value of
which determines how many family nodes belong to the neighborhood of each node, is often
chosen as an integer value. In practice, m = 3 is a good compromise to avoid undesired grid
effects for lower m values (cracks may propagate along the rows or columns of the grid),
and excessive wave dispersion and computational cost for larger m values (at the same h
value) [65].

In peridynamics, three possible types of convergence analysis can be defined [149]:

• The δ-convergence consists of decreasing the horizon size δ while keeping the m-ratio
fixed. As shown in Figure 1.17a, the grid spacing h decreases but the number of nodes
within the neighborhood remains constant. In this case, the numerical peridynamic
solution converges to the solution obtained with classical continuum mechanics.

• The m-convergence consists of increasing m while keeping δ fixed. As shown in Fig-
ure 1.17b, the number of nodes within the neighborhood increases as the grid spacing
h decreases. In this case, the numerical solution converges to the exact peridynamic
solution for the given δ.

• The δm-convergence consists of decreasing δ while increasing m. To obtain a uniform
convergence, m needs to increase faster than δ decrases, as shown in Figure 1.17c. In
this case, the numerical solution converges to both the exact peridynamic solution and
the classical solution.
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The last convergence analysis is less often used because the effects due to the decrease of δ
and the increase of m are intertwined and difficult to distinguish from each other.

(a) δ-convergence (m fixed).

(b) m-convergence (δ fixed).

(c) δm-convergence (m increases more than δ decreases).

Figure 1.17: Possible types of convergence analysis in peridynamics.

1.2.5 Main drawbacks of peridynamics

In this section, the main disadvantages related the peridynamic theory are highlighted.
One of the objectives of this work is to mitigate all these issues.

Surface effect

The peridynamic surface effect is an undesired variation in the stiffness properties of
the material in the region near the boundary of the body [186]. This effect is due to the
fact that the points close to the boundary have an incomplete neighborhood, as shown in
Figure 1.18, because they lack the interactions with points outside the body. Recall that
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the bond properties are calibrated so that, for a body under a homogeneous deformation,
the peridynamic strain energy density at a point with a complete neighborhood equalizes
the strain energy density obtained with classical continuum mechanics. Therefore, if the
same mechanical properties for all the bonds in the body are used, the strain energy density
of points with an incomplete neighborhood near the boundary of the body is lower than
that of points with a full neighborhood in the bulk of the body. This is the reason why, in
bond-based peridynamics, the external layer of thickness δ of the body exhibits a softening
behavior. On the other hand, in state-based peridynamics, the surface effect influences the
external layer of thickness 2δ since the points interact up to that distance. Nonetheless, the
peridynamic surface effect has not been fully characterized in state-based peridynamics, yet.

δ

x

x
′

x
′′

B(t = 0)

Figure 1.18: The peridynamic surface effect is due to the fact that the points near the boundary of
the body, such as points x′ and x′′, have an incomplete neighborhood.

In the literature, two common approaches have been used to mitigate the peridynamic
surface effect:

• Instead of considering the same mechanical properties for all the bonds in the body, the
properties of the bonds close to the boundary can be modified according to different
methods [63, 64, 187–190]. The most general method of this type is the one that
develops, in a state-based peridynamic framework, the constitutive modeling called
the position-aware linear solid presented in [190]. In a position-aware linear solid, the
mechanical properties of the bonds near the boundary of the body are tuned in such
a way that the peridynamic strain energy density is equal to the classical one at any
point of a body under homogeneous deformation, even close to the boundary.

• In order to keep constant the mechanical properties of bonds throughout the whole
body, one can use the method of the fictitious layer : a layer of thickness δ in bond-
based peridynamics and 2δ in state-based peridynamics is introduced around the body
to complete the neighborhoods of the nodes close to the boundary [148, 188, 191].
The displacements of the points within the fictitious layer are extrapolated from the
displacements of the points of the body. This allows to mitigate the surface effect
without changing the constitutive modeling discussed in the previous sections.

As discussed in the following section, the second approach can also be used to impose the
peridynamic boundary conditions.
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Boundary conditions

Due to the nonlocal nature of peridynamics, the imposition of boundary conditions is
an issue in this kind of models. In fact, the variational formulation of the integral operator
in the peridynamic equations does not lead to natural boundary conditions as in the case
of classical continuum mechanics [61]. Therefore, peridynamic boundary conditions are
imposed on a layer of finite thickness (equal to δ in bond-based peridynamics and 2δ in
state-based peridynamics) under the surface of the body. However, since experiments provide
only local measurements at the boundary of the domain, it is often desirable to impose local
boundary conditions in a nonlocal model, i.e., boundary conditions that are applied only at
the boundary of the body and not in a finite-thickness region. When using the fictitious layer
method, it was suggested in [63] that this layer can be used to enforce boundary conditions.
To do so, some methods based on simple geometries and specific loadings/constraints have
been developed [92, 126, 150, 151, 186, 192–196]. In any case, no general method to impose
local boundary conditions in peridynamic models is currently available.

Numerical integration

The peridynamic theory is based on an integral operator. Therefore, the numerical
integration plays a fundamental role in the discretization of peridynamic models. If the
peridynamic integral operator is numerically evaluated in an inaccurate way, the numerical
results may not converge to the analytical peridynamic solution (in the case of am-covergence
analysis). As discussed in Section 1.2.4, a quadrature coefficient β is used in the numerical
integration to properly “weight” the contribution of the family nodes with the cell partially
within the neighborhood of the source node (see Figure 1.16). In order to improve the
accuracy of the numerical integration, β should be computed as the fraction of cell volume
that actually lies within the neighborhood, called the partial volume in 3D, the partial area
in 2D, or the partial length in 1D) [158, 184].

The computation of the quadrature coefficients can be approximated with some algo-
rithms based on the length of the bond [160, 197, 198]. These algorithms are simple and
computationally efficient, but the numerical convergence behavior to the peridynamic solu-
tion is not ensured. Keeping the horizon size fixed and reducing the nodal grid spacing, the
errors of the peridynamic models indeed exhibit seemingly random fluctuations. In [184],
an algorithm to analytically compute partial areas in 2D peridynamic models is presented,
resulting in an improved accuracy of numerical integration. Furthermore, an algorithm for
the numerical computation of the partial volumes in 3D peridynamic models was developed
in [158], but the associated computational cost increases significantly.

Computational cost

On the one hand, in classical continuum mechanics, points interact only with points with
which they are directly in contact (in peridynamic terms, δ = 0). This translates into a
great advantage in numerical models, since the computational cost is significantly reduced.
For example, in the Finite Element Method (FEM), a node interacts only with nodes with
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which it “shares” an element, i.e., only with the closest nodes. Hence, the bandwidth of the
stiffness matrix is rather narrow, resulting in a great computational efficiency in solving the
system of equations. This is arguably the benefit that makes FEM so famous and widely
used in the field of computational mechanics.

On the other hand, the interaction between nodes in peridynamics occurs over a finite
distance, which increases the computational cost to obtain the numerical solution, especially
in 3D. In particular, the number of family nodes interacting with a source node with a
complete horizon scales as O(m) in 1D, O(m2) in 2D, and O(m3) in 3D, as shown in Table 1.1.
Figure 1.19 shows an example in 2D of the number of interactions for a node with a complete
horizon as m increases. If the number of interactions for each node increases, then the
bandwidth of the stiffness matrix accordingly increases, and the computational efficiency to
solve the peridynamic system of equations decreases.

Table 1.1: Number of family nodes interacting with a source node with a complete neighborhood for
different values of m-ratio in 1D, 2D, and 3D.

m-ratio Family nodes (1D) Family nodes (2D) Family nodes (3D)

3 6 44 250

5 10 100 822

10 20 356 5232

20 40 1344 37464

100 200 31828 4283780

(a) m = 3. (b) m = 5. (c) m = 10.

Figure 1.19: Bonds in a 2D full neighborhood for different values of m-ratio.

In order to improve the computational efficiency of peridynamic models discretized with
the meshfree methods, a hybrid method that modifies the numerical integration in the regions
far from boundaries, interfaces, and crack surfaces was developed [174, 175]. Alternatively,
the fast convolution-based method [179, 180] exploits the convolutional form of the peridy-
namic integral operator and the fast Fourier transform algorithm to reduce the computational
cost of the peridynamic models. Although these methods speed up the computer run time
for peridynamic simulations, they are still less computationally efficient than models based
on classical continuum mechanics, such as FEM. This is the reason why in recent years
many methods to couple peridynamics with FEM has been proposed [199–207]. Thanks to
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the coupling, peridynamics is adopted only where cracks may initiate or propagate, whereas
FEM is used in the rest of the structure. The coupling method proposed in [115, 171, 205,
206, 208, 209] is capable of adaptively transform FEM nodes into peridynamic ones where
cracks are likely to propagate. This method has been successfully validated for quasi-static
or dynamic fracture problems.

1.3 Innovative contributions

In this section, my personal contributions to the field of peridynamics are presented. Sec-
tion 1.3.1 reviews a new method devised by myself, i.e., the surface node method, that solves
the problems of the surface effect and the imposition of the boundary conditions in peri-
dynamic models. Section 1.3.2 shows how I developed the innovative algorithm to improve
the numerical integration in 3D peridynamic models by accurately computing the partial
volumes. Section 1.3.3 presents my contributions to the coupling between peridynamics and
the Carrera unified formulation, a computationally efficient method based on FEM. Sec-
tion 1.3.4 introduces the peridynamic modeling of the complex phenomenon of zirconium
carbide oxidation.

1.3.1 Surface Node Method

All the novelties contained in the three papers in Chapters 2, 3, and 4 were personally
investigated by myself under the supervision of Prof. Galvanetto and Prof. Zaccariotto. The
innovative contributions include conceptualization, software development, and validation
of the Surface Node Method (SNM) that is capable of correcting the surface effect and
effectively imposing local boundary conditions in peridynamic models. Furthermore, I wrote
the original drafts for all three papers, which were then reviewed by Prof. Galvanetto and
Prof. Zaccariotto.

One of the main novelties of the papers is the development of algorithms to numerically
compute the peridynamic stress tensor or force flux. In the first paper (Chapter 2), the
discretized formula to compute the force flux in a 1D body was presented (see Section 2.4.3).
In the second paper (Chapter 3), an innovative algorithm to numerically compute the peri-
dynamic stress tensor and the force flux was developed (see Sections 3.4.3 and 3.4.4). Fur-
thermore, the peridynamic stress tensor was also analytically computed in the case of a 2D
body both under homogeneous isotropic and shear deformation, and was proven to be equal
to the classical stress tensor under the same conditions (see Section 3.2.2). In the third
paper (Chapter 4), the algorithm was extended to numerically evaluate the force flux in
3D peridynamic models (see Section 4.3.4). The algorithm presented in the second paper to
compute the numerical peridynamic stress tensor in 2D can be easily extended to 3D models.

In the first paper, the surface effect was analyzed in a 1D ordinary state-based peridy-
namic model by imposing a homogeneous deformation to the body and analytically comput-
ing the force flux. Thanks to this analysis, the characteristic hardening/softening behavior
near the boundaries of an ordinary state-based peridynamic body was discovered for the
first time (see Section 2.2.2). Furthermore, the nonlocal boundary conditions that should be
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imposed over the 2δ-thickness layer under the surface of the body to obtain homogeneous
deformation were analytically computed. The non-trivial distribution of external loads sug-
gests that nonlocal boundary conditions are very difficult to impose without any a-posteriori
knowledge (see Section 2.B). This is the reason why local boundary conditions need to be
imposed in nonlocal models. In the second paper, the same analysis of the surface effect in
a 2D ordinary state-based peridynamic body was carried out numerically, thanks to the new
algorithm to compute the peridynamic stress tensor. A similar hardening/softening behavior
was highlighted near the boundary of the body. However, a magnification of the amplitude
of the stiffness variation was discovered close to the corners of the body. Moreover, some
non-zero shear stresses were unexpectedly present near the corners of the body under ho-
mogeneous isotropic deformation and, viceversa, some non-zero tensile stresses were present
near the corners of the body under homogeneous shear deformation (see Section 3.2.4). These
undesirable characteristics due to the peridynamic surface effect underline how important it
is to correct this phenomenon.

To mitigate the surface effect and impose local boundary conditions in a peridynamic
model, a fictitious layer of nodes is added around the body. In order to determine the
displacements of these fictitious nodes, I developed the so-called Taylor-based extrapolation

that makes use of the nearest-node strategy (see Sections 2.4.1, 3.4.1 and 4.3.2). This
method, based on multiple Taylor series expansion with a general truncation order, allows
to express the displacements of the fictitious nodes as functions of the displacements of the
nodes within the body near the boundary. The Taylor-based extrapolation can be effectively
used for any geometry of the body, even a very complex one. Furthermore, this extrapolation
is also exploited to impose Dirichlet boundary conditions.

An important innovation of my work concerns the imposition of Neumann boundary
conditions through the concept of force flux. The numerical force flux computed at the
boundary of the body can be interpreted as a local value of the stress, even though its
computation involves all the forces of the bonds crossing the boundary. Therefore, imposing
the local Neumann boundary condition as the peridynamic force flux at the boundary entails
an automatic redistribution of forces through the bonds crossing the boundary. Although
only a local boundary condition is imposed, this results in a nonlocal effect on the body. This
imposition of Neumann boundary conditions is enforced by means of Lagrange multipliers
in the first two papers (see Sections 2.4.3 and 3.4.5). However, when using the Lagrange
multipliers, the system matrix is less computationally efficient to solve (it is not banded and
has some zeros on the diagonal). Thus, the final version of the method presented in the third
paper introduces the surface nodes that are used to discretize the surface of the body and
to impose the boundary conditions without Lagrange multipliers (see Section 4.3.4).

Several numerical examples were presented in 1D, 2D, and 3D models considering quasi-
static conditions to validate the surface node method. It was shown that, in general, increas-
ing the order of truncation of the Taylor-based extrapolation improves the numerical results.
In the second paper, two numerical examples involving quasi-static crack propagation were
presented, demonstrating that the crack paths were affected by how peridynamic boundary
conditions are imposed (see Section 3.6). In the third paper, the surface node method was
also compared with other well-known correction methods (see Section 4.5). Furthermore,
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the peridynamic analytical solution for a manufactured displacement field was obtained in
Section 4.A and the same procedure can be applied to different displacement fields in order
to attain other analytical solutions, which are rather rare in peridynamics. The validation
of the surface node method applied to peridynamic problems in dynamic conditions can be
found in my conference proceedings (see [210, 211]).

1.3.2 Accurate spatial integration in peridynamics

The main novelty of the paper in Chapter 5 is the algorithm to accurately compute
the partial volumes in 3D peridynamic models. The definition of the partial volumes in an
integral form, the analytical solution of those integrals, and the development and verification
of the algorithm were carried out by myself under the supervision of Prof. Galvanetto and
Prof. Zaccariotto. Furthermore, I wrote the original draft of the paper, which was then
reviewed by Prof. Galvanetto and Prof. Zaccariotto.

The quadrature coefficients in the numerical integration of peridynamic equations play
a fundamental role in the accuracy and convergence behavior of the final results. These
quadrature coefficients are related to the partial areas in 2D models, i.e., the intersections
between the circular neighborhood and the square nodal cells, and to the partial volumes
in 3D (intersections between the spherical neighborhood and the cubic nodal cells). I was
able to express the partial areas and volumes in a new integral form and solve analytically
the integral formula of the partial area (see Section 5.A) and quasi-analytically that of the
partial volumes (see Section 5.3.5). The word “quasi-analytical” is due to the fact that some
integrals in the partial volume formula are not explicitly solvable. Therefore, the integrands
of those integrals were expanded by means of a Taylor series, and the integration of the
corresponding truncated polynomial was performed.

The solutions to the formulas for the partial areas and volumes are then used to develop
a new algorithm for the computation of the quadrature coefficients. The computational time
required by the proposed algorithm is negligible compared to that required for the numerical
integration of the peridynamic equations. Several m-convergence analyses were carried out
to verify the algorithm (see Section 5.4). The proposed algorithm provides, on average,
smaller errors and a smoother convergence behavior for the main quantities of interest, such
as the volume of the neighborhood, the weighted volume, and the coefficients of the elasticity
tensor.

1.3.3 Coupling of peridynamics with CUF

The paper in Chapter 6 was the result of my collaboration with Marco Enea, a Ph.D.
student at Politecnico di Torino. My knowledge of the peridynamic theory and the coupling
strategy was complemented by Marco’s knowledge of the Carrera Unified Formulation (CUF).
We collaborated on every aspect of the work, from the coupling realization and software
development to the writing and reviewing of the draft. Therefore, we equally shared the
merits of the publication of the paper.

The Carrera unified formulation is a classical theory of mechanics that combines FEM
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and the theory of structure approximation. In this work, we are concerned only with 1D
finite elements with variable displacements over the cross-section, which are called high-

order 1D finite elements. CUF models based on high-order 1D finite elements enable one
to reproduce 3D-like solutions with both great accuracy and computational efficiency [212].
An example of a coupling method between high-order 1D FEM based on CUF and 3D bond-
based perydinamic via Lagrange multipliers, which are applied at the interface between the
two domains in order to ensure displacement continuity, can be found in [213, 214]. However,
spurious effects, in the form of distortions of the numerical solution, are inevitably present
at the interface when using this type of coupling technique.

Inspired by the coupling technique between peridynamics (PD) and FEM in [205, 206,
209], we developed an improved CUF/PD coupling strategy to reduce the above-mentioned
spurios effect at interfaces (see Section 6.4). Furthermore, the use of the ordinary state-based
peridynamics, instead of the bond-based version, allows one to remove the limitation on the
choice of the Poisson ratio. The coupling technique is based on the introduction of fictitious
PD nodes in the CUF domain and of fictitious CUF elements in the PD domain. Since
the coupling technique is based on the continuity of displacements, the displacements of the
fictitious nodes are interpolated with the shape functions (along the axis of the 1D finite
elements) and the expansion functions (throghout the cross-section) associated to the CUF
elements. The effectiveness and computational efficiency of the improved coupling technique
are shown by several examples on classical beams and thin-walled structures of aerospace
interest (see Section 6.5).

1.3.4 Zirconium carbide oxidation

The capabilities of the peridynamic theory in modeling crack propagation can be also
exploited in multi-physics problems involving fracture. One example is the complex phe-
nomenon of the oxidation of zirconium carbide (ZrC): the volumetric expansion of ZrC
during oxidation causes the formation of cracks, which, in turn, accelerate oxygen diffusion
within ZrC. The two papers regarding ZrC oxidation (Chapters 7 and 8) were the result of
my 6-month stay at the University of Nebraska-Lincoln under the supervision of one of the
main experts in peridynamics, Prof. Florin Bobaru. The phenomenological knowledge and
experimental measurements of ZrC oxidation were provided by Dr. Claudia Gasparrini. I
also acknowledge the profitable discussions on numerical stability and convergence behavior
with Prof. Adam Larios. The peridynamic modeling of ZrC oxidation, software development,
and writing of the drafts of the papers were done by myself under the direct supervision of
Prof. Bobaru. The drafts were then reviewed by Dr. Gasparrini, Prof. Zaccariotto, Prof.
Galvanetto, Prof. Larios, and Prof. Bobaru.

The first paper (Chapter 7) analyzes some unexplored numerical aspects of peridynamic
equations to model diffusion phenomena. Since the previous analysis on the peridynamic
stability criterion for explicit time integration methods was carried out with the Von Neu-
mann technique that does not take into account the influence of the boundary conditions,
I analyzed the stability criterion with the eigenvalue technique to evaluate the effect on the
stability of the boundary conditions imposed with the surface node method. This stability
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analysis (see Section 7.3) showed that the criterion previously obtained with the Von Neu-
mann technique does not guarantee the stability of the method, and a new (tighter) upper
bound for the maximum time-step size was derived. Furthermore, since the ZrC sample is
suddenly exposed to oxygen, the effect of a discontinuity in the concentration field at the
boundary of the body had to be assessed, particularly to verify the behavior of the extrapo-
lation over the fictitious layer. Various convergence studies proved that, when ignoring the
very early times of the simulation, the convergence behavior to the analytical peridynamic
solution is the same as that in a problem without discontinuities in the initial conditions (see
Section 7.4). In other words, the numerical errors are higher only when a discontinuity is
present at the boundary, i.e., at the beginning of the simulation, as one should expect since
the discontinuity vanishes due to the oxygen diffusion as the time progresses. Therefore, the
surface node method was successfully verified for a diffusion problem with both continuous
and discontinuous initial conditions.

In a peridynamic diffusion model in a bi-material, it suffices to know the threshold concen-
tration for phase change and the diffusion properties of the two phases in order to determine
the motion of the interface [128]. Hence, the motion of the interface is autonomous, i.e., de-
termined by the “constitutive model” itself. It is worth noting that the peridynamic diffusion
model does not require any special conditions at the interface, such as the Stefan condition,
which is instead required in classical models. To validate the autonomous motion of the
interface, the numerical results of this model are compared with a manufactured analytical
solution (see Section 7.5).

Thanks to these numerical analyses, it was possible to develop a reliable peridynamic
model able to predict the evolution of the interface during the ZrC oxidation. We observed
that two layers across the oxidation front, i.e., the intermediate layer and the transition
layer, play a fundamental role in the reaction process. Since the peridynamic model is
capable of reproducing the experimental measurements published in [14], it also allowed
the quantification of the diffusivity of the zirconium oxide in the intermediate layer and
the oxidation rate in the transition layer (see Section 8.5.1). However, the novel method
provided not only the new calibration of these properties but also a deeper understanding
of the mechanism of the ZrC oxidation. Nevertheless, the velocity of the oxidation front was
accurately reproduced by the numerical peridynamic model. Therefore, this model can be
used both to predict the growth of the oxide and to determine the shape and dimensions of
the remaining unoxidized carbide (see Section 8.5.2).
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2.1 Introduction

Peridynamics is a non-local continuum theory devised to effectively describe fracture phe-
nomena in solid bodies [61, 62]. The first formulation of the theory [61], named bond-based
Peridynamics, has been employed by many researchers for its simplicity of implementation.
However, state-based Peridynamics was introduced in [62] to overcome the limited capability
of prescribing the Poisson’s ratio in bond-based models.

Each material point of a body modelled with Peridynamics interacts with all the neigh-
boring points inside a sphere of radius δ. The sphere and the radius are respectively named
neighborhood and horizon. This non-local nature of Peridynamics is essential to embed dis-
continuities in the model without any ad hoc criteria, but also leads to some issues near the
boundary of the body:

• In the most external layer of the body the peridynamic points have an incomplete
neighborhood and “feel” the lack of the missing points beyond the boundary. This
phenomenon, known as surface effect or skin effect, causes an undesired variation in
stiffness near the boundary. In bond-based Peridynamics, the surface effect appears as
a softening in the body external layer of thickness δ [187, 198], whereas in state-based
Peridynamics the discrepancy due to the surface effect influences the points closer
than 2δ to the boundary, with a behavior which is difficult to predict a priori [186].
This behavior in a 1D state-based peridynamic model is analyzed analytically and
numerically in Section 2.2.2.

• The other issue related to non-locality near the external surface of the body oc-
curs when imposing the boundary conditions. In bond-based Peridynamics, Dirichlet
boundary conditions have been commonly imposed on the peridynamic nodes clos-
est to the boundary, named boundary nodes, whereas Neumann boundary conditions
have been applied in several ways. For instance, in [124] a heat flux is applied over
the layer of thickness δ near the boundary assuming a linear variation of temperature
there. However, this approach is theoretically inexact if the horizon δ does not tend
to 0 [124]. The “worst-case” scenario for the model accuracy near the boundary is
given by the imposition of the external load as a force applied solely to the boundary
nodes [186]. In state-based Peridynamics, a similar analysis can be applied, but the
effects of the approximated boundary conditions are exhibited in the body exterior
layer of thickness 2δ [186].

Many strategies have been proposed to mitigate the surface effect in bond-based Peridy-
namics by modifying the stiffness of the bonds near the boundary: the force normalization
method [187], the force density method [188], the energy method [63, 189] and the volume
method [64]. The approach of computing some bond correction factors to recover the proper
strain energy density of the points near the boundary under constant deformation, has been
employed for state-based peridynamic models in the energy method [63] and in the position-
aware linear solid constitutive model [190]. A thorough comparison of these methods has
been carried out in [186], highlighting that the boundary inaccuracy is only partially miti-
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gated because these model corrections do not deal with the approximated imposition of the
boundary conditions.

The surface effect and the problems of the boundary conditions can be confined in a
smaller region if the horizon δ approaches 0. Therefore, the variable horizon method [204,
215, 216] can be exploited to decrease the value of the horizon near the boundaries and
restrict the external layer of the body affected by the surface effect [149, 193, 195, 198].

Coupling of Peridynamics with classical continuum mechanics (for instance [171, 205,
206, 209]) provides an approach to completely eliminate the surface effect and the problems
of the imposition of the boundary conditions in a discretized model: the external layer is
modelled with a classical continuum mechanics method, for example FEM, so that there are
no peridynamic nodes with an incomplete neighborhood and the boundary conditions are
implemented in a local way on FEM nodes. However, this strategy is not suitable for all the
applications of interest, for instance in the case of a crack initiation at the boundary of the
body. Furthermore, a crack constitutes a boundary surface of the body which is inevitably
modelled with a region of peridynamic nodes.

The method of the fictitious or ghost nodes was introduced in bond-based Peridynamics
to overcome the issue of the surface effect by completing the neighborhoods of the nodes near
the boundaries with a layer of peridynamic material which actually does not exist [148, 188].
The strategy of the fictitious nodes has been later employed successfully also in state-based
Peridynamics [191]. This approach has been exploited to impose the boundary conditions
in bond-based peridynamic models: the fictitious nodes are forced to move according to
some predefined functions in order to obtain the desired boundary displacement or load.
In [158, 217] the displacement distribution of the fictitious nodes is chosen ad hoc for each
case. In [63] the constraints are imposed by displacing the fictitious nodes with the desired
constant value and the external loads are applied in the boundary layer within the body.
In [92, 126, 150, 151, 186, 192–194] the Dirichlet boundary conditions are implemented
by imposing an odd function over the fictitious layer. Moreover, in [92, 186, 192, 193]
the displacements of the fictitious nodes to enforce the desired load are derived from the
formulae of classical mechanics. In [195] the odd, polynomial and sinusoidal functions are
studied to properly impose the desired constraint by means of an iterative procedure. A
more theoretical approach for the fictitious layer method has been developed in [218–220].

The Taylor-based fictitious node method [194, 221], an approach similar to the polyno-
mial extrapolation function in [195], has been proposed for bond-based Peridynamics. This
approach finds, for every real node near the boundary, the corresponding fictitious node
along the normal to the local tangent to the boundary and then evaluates its displacement
with a linear extrapolation via the first-order truncated Taylor series. The desired boundary
conditions, written as equations adapted from the form of a classical continuum mechanics
model, are incorporated into the formulae of the Taylor series [194]. There are two main
drawbacks using this approach [194]: the procedure of finding the corresponding fictitious
node might be rather difficult in complex geometries and the displacement of each fictitious
node is not unique because it depends on the real node at which the computation is carried
out.

Inspired by the aforementioned works, we propose, for a state-based peridynamic model,
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a generalized method of the Taylor-based extrapolation over the fictitious nodes considering
the nearest-node strategy. This strategy allows to avoid the two described drawbacks of
the Taylor-based extrapolation method, since the displacements of the fictitious nodes are
determined with a Taylor series expansion centered at the closest boundary node. Therefore,
the uniqueness of the displacements of the fictitious nodes is guaranteed because they depend
solely on the displacement of the closest boundary node and its spatial derivatives. Moreover,
the nearest-node strategy is easy to implement and suitable for any kind of geometry, even
very complex. In addition to that, we show how to implement the fictitious node method in
state-based Peridynamics with a fictitious layer of thickness δ (instead of 2δ as in [191]) via
the truncated Taylor series up to a general order n. The surface effect is mitigated by the
presence of the fictitious nodes and Dirichlet boundary conditions are applied similarly to
what is done in [194, 221]. On the other hand, we propose an innovative method to impose
Neumann boundary conditions in a “peridynamic way”, namely by means of the peridynamic
concept of force flux.

The paper is organized as follows: Section 2.2 presents a review of 1D state-based Peridy-
namics and the analytical analysis of the surface effect in a finite body through the concept of
force flux, Section 2.3 exposes the proposed method and the imposition of the boundary con-
ditions, Section 2.4 illustrates the discrete model and its implementation, Section 2.5 shows
the comparison between the 1D numerical results obtained by using the proposed method
and those produced by the state-based peridynamic model without corrections, Section 2.6
introduces the extension of the Taylor-based extrapolation method to 2D problems, and
finally Section 2.7 draws the conclusions of the paper and addresses new possible research
developments.

2.2 1D state-based Peridynamics

The peridynamic theory is based on non-local interactions, the so-called bonds, acting
between material points. Let Ω∞ be an infinite 1D body modelled with Peridynamics, as
shown in Figure 2.1. The horizon δ is defined as the minimum length at which the force
interaction vanishes due to increasing distance. Therefore, a point at position x is affected
by the points in its neighborhood H(x) = H = {x′ ∈ Ω∞ : |x′ − x| ≤ δ}.

Ω∞(t = 0)

x x′

ξ

H(x)

x− δ x+ δ

Ω∞(t)ξ η

u(x, t) u(x′, t)

Figure 2.1: Reference configuration at time t = 0 and deformed configuration at time t.

A bond is the relative position vector in the reference configuration between the inter-
acting points:

ξ = x′ − x (2.1)
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In a deformed configuration, the relative displacement vector is defined as:

η = u(x′, t)− u(x, t) (2.2)

where u is the displacement along the x-axis. Note that ξ + η is the relative position of the
points in the deformed configuration.

The dynamics of point x in a homogeneous isotropic infinite body Ω∞ is governed by the
state-based peridynamic equation of motion [62]:

ρ
∂2u(x, t)

∂t2
=

∫

H

(
T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉

)
dVx′ + b(x, t) (2.3)

where ρ is the material density, T is the force density vector state, dVx′ is the infinitesimal
volume associated to the point at position x′ and b is the external force density vector.
The notation T[x, t]〈ξ〉 means that the force density scalar state T depends on point x and
time t and is applied to the bond vector ξ. The integrand on the right-hand side of the
equation represents the peridynamic internal force due to the bond ξ acting on the point x
(see Figure 2.2).

x x′
ξ

T[x, t]〈ξ〉 −T[x, t]〈ξ〉

−T[x′, t]〈-ξ〉 T[x′, t]〈-ξ〉

Figure 2.2: Force density vector states T[x, t]〈ξ〉 and T[x′, t]〈−ξ〉 of a deformed bond in a 1D state-
based peridynamic solid.

This paper is only concerned with the static solution of the peridynamic problems [72,
73, 222], hence, dropping the dependence upon time, the peridynamic equilibrium equation
becomes:

−
∫

H

(
T〈ξ〉 −T′〈−ξ〉

)
dV ′ = b (2.4)

where, for brevity, T[x]〈ξ〉 = T〈ξ〉, T[x′]〈ξ〉 = T′〈ξ〉, dVx′ = dV ′ and b(x) = b.
In the 1D model, the force density vector state can be defined as:

T〈ξ〉 = t[x]〈ξ〉 · ξ + η

|ξ + η| = t〈ξ〉 ·M〈ξ〉 (2.5)

where t〈ξ〉 is the force density scalar state (magnitude of T) and M〈ξ〉 is the deformed
direction vector state (unit vector in the direction of T).

For later use, the reference position scalar state, representing the bond length in the
reference configuration, is defined as:

x〈ξ〉 = x = |ξ| (2.6)

The notation 〈ξ〉 will be dropped whenever unambiguous. The elongation of the deformed
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bond is described by the extension scalar state given as:

e〈ξ〉 = e = |ξ + η| − |ξ| (2.7)

Based on the aforementioned notions, the weighted volume of a peridynamic point x is
given in the initial configuration as:

m(x) = m =

∫

H

ωx2 dV ′ (2.8)

where ω〈ξ〉 = ω is a prescribed spherical influence function.

2.2.1 Correspondence with classical mechanics theory

In order to ensure the correspondence between classical continuum theory and state-
based Peridynamics, the elastic deformation energy density computed by both approaches
should coincide under the same strain conditions [62, 160]. According to classical continuum
mechanics, the strain conditions for an isotropic 3D bar under axial loading in which the
cross-sections remain plane and perpendicular to the longitudinal axis are given as:

ε22 = ε33 = −νε11 ε12 = ε23 = ε13 = 0 (2.9)

where εij with i, j = 1, 2, 3 are the components of the strain tensor ε. The x-axis, denoted
with 1, is considered the longitudinal axis of the bar. The classical dilatation θcl is therefore
computed for small strains as:

θcl =
3∑

i=1

εii = (1− 2ν)ε11 (2.10)

The strain energy density for a linear elastic bar in classical continuum mechanics is computed
from the general 3D formula [160] by substituting in it the strains of Equation 2.9:

Wcl =
k

2
θ2cl +G

3∑

i=1

3∑

j=1

(
εdij
)2

=

[
k

2
+

2(1 + ν)2G

9(1− 2ν)2

]
θ2cl +G

(
εd11
)2

=
1

2
E(ε11)

2 =
1

2
σ11ε11 (2.11)

where k is the bulk modulus, ν the Poisson’s ratio, G the shear modulus, E the Young’s
modulus, εdij with i, j = 1, 2, 3 are the components of the deviatoric strain tensor εd =

ε − (θcl/3) · 1 where 1 is the identity matrix with a size 3 × 3, and σij with i, j = 1, 2, 3

are the components of the stress tensor σ. Note that in the second line of Equation 2.11
the strain energy density is not divided into volumetric and deviatoric parts as in the first
line. The second line of Equation 2.11 is useful to be compared with the peridynamic strain
energy density to derive the peridynamic constants, although it could be rewritten in a more
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common form (third line) after some omitted manipulations.
The peridynamic strain energy density of a linear material at point x is computed as [62]:

W =
k̂

2
θ2 +

Ĝ

2m

∫

H

ω
(
ed
)2

dV ′ (2.12)

where k̂ and Ĝ are the peridynamic constants which must be determined by the comparison
with the classical strain energy density. θ and ed are named respectively dilatation and devi-

atoric extension scalar state and their correspondence with the classical values are explained
in the next paragraphs.

The peridynamic dilatation θ of the point x is defined to match the classical dilatation
under constant deformations:

θ(x) = θ =
cθ
m

∫

H

ωxe dV ′ (2.13)

where the dilatation coefficient is cθ = 1 − 2ν. This coefficient is computed through the
correspondence of the peridynamic dilatation θ∞ of an infinite 1D body Ω∞ with the classical
dilatation θcl for an imposed small constant deformation ε11 = ε (the extension scalar state
is e = εx for every bond):

θ∞ =
cθ
m

∫

H

εωx2 dV ′ = cθε = θcl (2.14)

The deviatoric extension scalar state is defined as:

ed[x]〈ξ〉 = ed = e− θx

3
(2.15)

The deviatoric extension scalar state ed is the elongation of the bond, which can be viewed
as a material element in classical continuum mechanics, due to the deviatoric strain tensor
(constant in the whole body Ω∞) [160]:

ed =
1

|ξ|ξ · ε
dξ =

1

|ξ|

3∑

i=1

3∑

j=1

εdijξiξj (2.16)

where ξ1, ξ2 and ξ3 are the components of the bond vector ξ in x, y and z direction, respec-
tively. In a 1D case the bonds lie on the longitudinal axis of the bar (ξ2 = ξ3 = 0), thus
ed = εd11ξ1 = εd11x. The peridynamic deviatoric strain energy density W d of a point x in the
infinite body Ω∞ is then given as:

W d
∞ =

Ĝ

2m

∫

H

ω
(
ed
)2

dV ′ =
Ĝ

2m

∫

H

ω
(
εd11x

)2
dV ′ =

Ĝ

2

(
εd11
)2

(2.17)

The peridynamic elastic constants are derived by equating the classical and peridynamic
strain energy densities:

k̂ = k +
4(1 + ν)2G

9(1− 2ν)2
Ĝ = 2G (2.18)
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The force density scalar state t〈ξ〉 is found by taking the Fréchet derivative of the peri-
dynamic strain energy density [62] (see Appendix 2.A for details):

t = kθ
ωx

m
θ + ke

ω

m
e (2.19)

where kθ = (νE)/((1− 2ν)(1 + ν)) and ke = E/(1 + ν). We showed here how to determine
the force density scalar state t by means of the calibration against the classical strain energy
density by considering the two simple loading conditions of isotropic expansion and simple
shear. The reader can find in [223] an alternative approach.

Remark 2.1. In 1D Peridynamics there is only one independent constant since kθ is depen-
dent on ke: kθ = (ν/(1−2ν)) ·ke. The choice of keeping two different peridynamic constants
is justified by the decision of being consistent with previous formulations [62, 160].

The properties of the bonds ξ and −ξ are related for symmetry reasons by the following
formulae: M〈ξ〉 = −M′〈−ξ〉 = M, ω〈ξ〉 = ω〈−ξ〉 = ω, x〈ξ〉 = x〈−ξ〉 = x and e〈ξ〉 =

e〈−ξ〉 = e. The peridynamic equilibrium equation (Equation 2.4) is rewritten by exploiting
Equations 2.5 and 2.19:

−
∫

H

[
kθ

(
θ

m
+
θ′

m′

)
ωx+ ke

(
1

m
+

1

m′

)
ωe

]
M dV ′ = b (2.20)

where m′ = m(x′) and θ′ = θ(x′) are respectively the weighted volume and the dilatation
of the peridynamic point x′. Equation 2.20 provides a conventional form of the equilibrium
equation which equates the external force distribution, on the right-hand side, and the
internal peridynamic forces, on the left-hand side. The term in the square brackets in
Equation 2.20 represents the magnitude of the total force density in the bond ξ, namely
t〈ξ〉+ t′〈−ξ〉.

2.2.2 Surface effect

The formulation of the peridynamic theory for a 1D finite body Ω of length l implies
the existence of a boundary ∂Ω, as shown in Figure 2.3. We individuate two sets of points
near the boundary which will be useful to describe the surface effect: Ω = {x ∈ Ω : ∀x′ ∈
∂Ω, |x′ − x| < δ} and Ω̃ = {x ∈ (Ω \ Ω) : ∀x′ ∈ ∂Ω, |x′ − x| < 2δ}. These domains are
illustrated in Figure 2.3, where Ω = Ω0 ∪ Ωl and Ω̃ = Ω̃0 ∪ Ω̃l.

Ω

0 l

∂Ω0 ∂Ωl

Γ0

−δ

Γl

l + δ

Ω0

δ

Ωl

l − δ

Ω̃0

2δ

Ω̃l

l − 2δ

Figure 2.3: Domains near the boundary ∂Ω = ∂Ω0∪∂Ωl of a finite 1D body Ω of length l: Ω = Ω0∪Ωl

is the non-local boundary with a maximum distance δ from ∂Ω, Ω̃ = Ω̃0∪ Ω̃l is the set of points with
a distance between δ and 2δ from ∂Ω and Γ = Γ0 ∪ Γl is the fictitious layer of thickness δ.

The derivation of the peridynamic constants kθ and ke is strictly valid only for points
with a complete neighborhood. In a bond-based peridynamic model without any correction,
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the points in Ω with an incomplete neighborhood suffer a reduction in stiffness due to the
lack of bonds with points beyond the boundary [187]. In state-based Peridynamics, the
domain of the body which is affected by the surface effect is extended also to Ω̃ because the
peridynamic forces acting on point x depend not only on the properties of the bond (ω〈ξ〉,
x〈ξ〉, e〈ξ〉) and of the neighborhood of the point itself (θ, m), but also on the properties of
neighborhoods of the neighboring points (θ′, m′), as shown in Equation 2.20. Therefore, the
state-based peridynamic solution of a finite body under a small constant deformation would
differ from the infinite body solution in (Ω ∪ Ω̃) [186].

Let us define H+ and H− of a point x as the halves of the neighborhood of that point
respectively in the same and opposite direction of a unit vector n: H+(x) = H+ = {x′ ∈ Ω :

0 ≤ (x′ − x) · n ≤ δ} and H−(x) = H− = {x′ ∈ Ω : −δ ≤ (x′ − x) · n ≤ 0}. The force flux at
a point x′′ in the direction of n (see Figure 2.4) is defined in 1D state-based Peridynamics
as [61, 172]:

τ(x′′, n) =

∫

H′′−

∫

H′′+∩H+

(
T〈ξ〉 −T′〈−ξ〉

)
dV ′ dx (2.21)

where H′′ = H(x′′) is the neighborhood of the point x′′. The physical meaning of this
definition is that the force per unit area acting on the point x′′ belonging to a plane with
normal n is the resultant of the forces per unit area of the bonds which intersect that
plane [172]. The force flux is the peridynamic concept closest to the stress in classical
mechanics [61]. In order to quantify the discrepancy in stiffness due to the surface effect
near the boundaries in a 1D state-based peridynamic model, the force flux τ given by a small
constant deformation ε11 = ε of the finite body Ω is evaluated and then compared with the
force flux in the infinite body Ω∞ under the same deformation ε.

Ω

x′′x x′

ξ

H′′− H′′+

x′′
− δ x′′ + δ

n

H+

x+ δ

Figure 2.4: Integration domains for the force flux definition: x varies within H′′− and x′ within
H′′+ ∩H+.

The magnitude of the force density in a bond ξ of a body under a constant deformation
ε (e〈ξ〉 = εx〈ξ〉, θ(x) = cθε), is given from Equation 2.20 as:

t〈ξ〉+ t′〈−ξ〉 = (cθkθ + ke) ε

(
1

m
+

1

m′

)
ωx (2.22)

where cθkθ+ke = E. Since the influence function can be chosen arbitrarily [157], a hyperbolic
influence function is adopted:

ω〈ξ〉 = ω =
δ

|ξ| (2.23)

The choice of this influence function helps simplifying the analytical computation of the force
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flux, which is rearranged in the case of a uniformly deformed body via Equation 2.22 as:

τ(x′′,+1) = EεAδ

∫ x′′

x′′−δ

∫ x+δ

x′′

(
1

m
+

1

m′

)
dx′ dx (2.24)

where dV ′ = A dx′ with A indicating the cross-sectional area.
The computation of the weighted volume m∞ in an infinite body Ω∞ is carried out

according to Equation 2.8:

m∞(x) =

∫ x+δ

x−δ

ωx2A dx′ = Aδ

∫ δ

−δ

|ξ| dξ = Aδ3 (2.25)

The weighted volume is constant along the infinite body since all the points have a complete
neighborhood. With this result, Equation 2.24 yields:

τ(x′′ ∈ Ω∞,+1) = τ ′′∞ = EεAδ

∫ x′′

x′′−δ

∫ x+δ

x′′

(
2

m∞

)
dx′ dx

= Eε
2

δ2

∫ x′′

x′′−δ

(x+ δ − x′′) dx

= Eε (2.26)

Note that the force flux computed in each point of the infinite body Ω∞ under the small
uniform strain ε is equal to the stress σ11 = Eε in classical mechanics.

Dropping the assumption of infinite body, we compute the force flux in a finite bar Ω of
length l under a constant deformation ε. The weighted volume in (Ω\Ω) is computed exactly
as in Equation 2.25 because in the bulk of the bar the neighborhoods of the peridynamic
points are complete. On the other hand, the weighted volume of the points in Ω is smaller
due to the lack of some points in their neighborhoods. The computation of the weighted
volume in Ω0 yields:

m(x ∈ Ω0) = Aδ

∫ x+δ

0

|x′ − x| dx′ = Aδ3 · 1
2

((x
δ

)2
+ 1

)
(2.27)

The computation of m in Ωl is carried out analogously. The weighted volume distribution
in a finite body normalized with respect to the value of the weighted volume in the infinite
body, is reported in Table 2.1 and plotted in Figure 2.5 for different values of the horizon δ.
Note that the normalized weighted volume differs from 1 in a more confined domain as the
horizon δ decreases.

The computation of the force flux is carried out by substituting the functions of the
weighted volume, given in Table 2.1, in Equation 2.24. The force flux in (Ω \ (Ω ∪ Ω̃)) is
computed in an identical way in Equation 2.26 for the case of infinite body since every bond
in that domain connects solely points with a full neighborhood. On the other hand, the force



Chapter 2 85

Table 2.1: Normalized weighted volume distribution along the finite 1D body.

x ∈ m/m∞

Ω0
1

2

(x
δ

)2
+

1

2

(Ω \ Ω) 1

Ωl
1

2

(
l − x

δ

)2

+
1

2

0 0.2 0.4 0.6 0.8 1

0.5

0.75

1
0

x/l

m
/m

∞

δ/l = 0.2
δ/l = 0.1
δ/l = 0.05

Figure 2.5: Normalized weighted volume distribution along a finite 1D body of length l for different
values of the horizon δ.

flux in the domains near the boundary is computed as follows:

τ(x′′ ∈ Ω0,+1) = EεAδ

{∫ x′′
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(2.28)

τ(x′′ ∈ Ω̃0,+1) = EεAδ
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(2.29)

The force flux τ(x′′ ∈ (Ωl ∪ Ω̃l),+1) is computed similarly and the result is symmetric with
respect to the domain (Ω0 ∪ Ω̃0).

The force flux distribution normalized with respect to the infinite body solution, is re-
ported in Table 2.2 and plotted for different values of the horizon δ in Figure 2.6. As
expected, the material points in (Ω \ (Ω ∪ Ω̃)) behave as if the body were infinite, whereas
the points in (Ω∪ Ω̃) “feel” the missing material points beyond the boundaries. Furthermore,
it is observed that the variation of the horizon δ does not affect the values of the force flux,
but only the size of the domain over which the surface effect is extended. Intuitively, as
δ/l approaches to 0 (see the different curves in Figure 2.6), the domain which recovers the
infinite body stiffness properties is enlarged.

Table 2.2: Normalized force flux distribution along the finite 1D body.
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Figure 2.6: Normalized force flux distribution along a finite 1D body of length l undergoing a constant
deformation ε for different values of the horizon δ.

In Figure 2.7, the normalized force flux near the boundary ∂Ω is plotted with respect to
the normalized coordinate x/δ. The characteristic behavior is driven by two counteracting
phenomena:

• due to the lack of material points and consequent missing bonds, the force flux is
reduced because less bonds intersect the section;

• since the weighted volume decreases close to the boundary, the magnitude of the nearby
forces in the bonds is increased (see Equation 2.19).

In Ω̃ there are no bonds missing and the intensified magnitude of the peridynamic forces
increases the stiffness of the material (hardening). On the other hand, both the effects are
present in Ω: the intensification of the bond forces overcompensates the lack of bonds far from
the boundary, but the effect of the missing bonds prevails near the boundary (softening).

Analyzing Figure 2.7, there is a maximum τ ≈ 1.263τ∞ at (x/δ) ≈ 0.772. In addition, the
force flux density matches again the classical stress at (x/δ) ≈ 0.394. After some numerical
investigations (see Figure 2.8), one can assert that the shape of the force flux distribution
changes only slightly with a different, but reasonable choice of the influence function, but
the overall behavior near the boundaries is the same: the material exhibits a hardening and
then a softening from the bulk towards the boundary.

The imposition of the boundary conditions in Peridynamics is correlated to the problem
of the surface effect because of the non-local nature of the theory. The non-local boundary
conditions are often imposed in an approximated way at the boundary points, which causes
undesired displacement fluctuations near ∂Ω. In fact, according to [158] the non-local con-
straints in state-based Peridynamics should be imposed over a region of thickness 2δ outside
the body, whereas the external loads should be applied in the domain (Ω ∪ Ω̃) within the
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Figure 2.7: Analytical result for the normalized force flux distribution obtained with ω = δ/|ξ|.
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Figure 2.8: Numerical results for the normalized force flux obtained with different influence functions.

body, as shown in Appendix 2.B. However, the distribution of the variables which should be
imposed is not known a priori.

The method proposed in the next Section compensates the surface effect and imposes in a
proper way the non-local boundary conditions without any need to determine the appropriate
distribution of the external displacement or force density.

2.3 Taylor-based extrapolation over the fictitious layer

As shown in Figure 2.3, a fictitious layer Γ = Γ0 ∪ Γl of thickness δ is added at the ends
of the 1D body Ω. The Taylor-based extrapolation, used to determine the displacements of
the fictitious points, is shown hereinafter.

According to the nearest-point strategy, the Taylor series of the displacements of the
fictitious points should be centered at the closest real point, namely the boundary point.
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Therefore, given a maximum order n ≥ 1, the truncated Taylor series of the displacement in
x ∈ Γl about the boundary point x = l yields:

u(x ∈ Γl) = u(l) +
n∑

k=1

(x− l)k

k!
· d

ku(l)

dxk
(2.30)

With this Taylor-based extrapolation, the displacements of the fictitious points are deter-
mined as functions of the unknown displacement of the boundary point and its derivatives.

In state-based Peridynamics, the properties of the points in the fictitious layer should be
corrected as well. Therefore, the weighted volume m of the fictitious points in Γl is fixed
to be m∞, namely the weighted volume of a point with a complete neighborhood, and their
dilatation is extrapolated by means of the following truncated Taylor series expansion:

θ(x ∈ Γl) =





θ(l) if n = 1

θ(l) +
n−1∑

k=1

(x− l)k

k!
· d

kθ(l)

dxk
if n > 1

(2.31)

Note that the dilatation is a measure of the strain, thus the truncation of the relevant Taylor
expansion occurs with 1 order less than that of the displacement. Equations 2.30 and 2.31
are valid in Γl, but the same procedure is applied to the fictitious points in the domain Γ0.
An example of the extrapolation with the Taylor series expansion for n = 1, 2, 3 is shown in
Figure 2.9.

x

l + δl
ΓlΩ

n = 3

u(x)

n = 2

n = 1

n− 1 = 2

θ(x)

n− 1 = 1

n− 1 = 0

Figure 2.9: Example of the extrapolation of the displacement u (cubic function of x) and the dilation
θ (quadratic function of x) over the fictitious layer Γ with the Taylor series expansion truncated at
different terms (solid line: n = 3, dashed line: n = 2, dotted line: n = 1, where n is the order of
the Taylor series expansion for the displacement extrapolation).

In Equations 2.30 and 2.31 the unknowns are u(l), θ(l), along with their derivatives.
In the numerical applications presented later in Section 2.4.1, the derivatives are expressed
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as functions of the displacements or dilatations of the real nodes close to the boundary.
Therefore, the proposed method evaluates the displacement in the fictitious domain without
the introduction of new unknowns.

2.3.1 Mitigation of the surface effect

This Section shows that, by implementing the method of the Taylor-based extrapolation
over the fictitious points with a proper order n, the peridynamic solution of the force flux in
a finite body Ω under a predefined smooth deformation recovers that of the infinite body.

The force flux at a point x′′ in an infinite body Ω∞ under a constant deformation ε is
given from Equation 2.26 as τ ′′∞ = Eε. Consider a finite body Ω under the same constant
deformation ε. Assuming, without loss of generality, u(0) = 0, the displacement imposed to
the body is u(x ∈ Ω) = εx. Thus, the proposed Taylor-based extrapolation method is applied
to Ω with an order n = 1 (dotted line in the example of Figure 2.9). The displacement in
the fictitious layer Γl is determined from Equation 2.30 as:

u(x ∈ Γl) = u(l) + (x− l)
du(l)

dx
= εl + (x− l)ε = εx (2.32)

Since this Taylor-based extrapolation induces the fictitious layer to deform in the same way
as the real body, the extension scalar state of the fictitious bonds is equal to that of the real
bonds e = εx and the dilatation of the real points near the boundary is computed exactly
as Equation 2.14, yielding θ(x ∈ Ωl) = cθε = θ∞. Therefore, thanks to the extrapolation of
the displacement of the fictitious points (Equation 2.32), the force flux in Ω̃l is computed as
the force flux of an infinite body in Equation 2.26:

τ(x′′ ∈ Ω̃l,+1) = Eε = τ ′′∞ (2.33)

The dilatations of the fictitious points are determined by the Taylor-based extrapolation
in Equation 2.31 as:

θ(x ∈ Γl) = θ(l) = cθε = θ∞ (2.34)

Therefore, in this case the dilatation is constant in the fictitious layer and is equal to the
dilatation θ∞ of the infinite body under the deformation ε. Furthermore, the weighted
volume of the fictitious points is fixed to be equal to the weighted volume of a point with
a complete neighborhood: m(x ∈ Γl) = m∞ = Aδ3. Since the extension scalar state e

of the fictitious bonds is computed with the same formula as that of the real bonds (from
Equation 2.32) and the properties of the real and fictitious points are equal to those of the
points in an infinite body (m(x ∈ (Ωl ∪ Γl)) = m∞ and θ(x ∈ (Ωl ∪ Γl)) = θ∞), the force
flux near the boundary of the finite body is computed exactly as in Equation 2.26:

τ(x′′ ∈ Ωl,+1) = Eε = τ ′′∞ (2.35)

The same results as those of Equations 2.33 and 2.35 can be obtained at the other end of
the finite body through the extrapolation method applied to the fictitious layer Γ0.
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We have shown that, when the proposed Taylor-based extrapolation method is employed
with the order n = 1 (or higher), the force flux in the whole domain (even near the bound-
aries) of a finite body under a constant deformation is equal to the force flux in an infinite
body under the same deformation. Appendix 2.C presents the same procedure carried out
for a cubic distribution of displacement imposed to a finite body, to which the proposed
method is applied with n = 3. The force flux coincides with the one computed in the infinite
body under the same condition in that case as well. Hence, we conjecture that, whenever
the order n of the proposed Taylor-based extrapolation method is equal to (or higher than)
the order of the imposed distribution of displacement, the points near the boundary of the
finite body retrieve the stiffness properties of the points in the infinite body thanks to the
fictitious layer, and the surface effect is eliminated.

Since the displacement distribution is rarely known before solving the problems of interest
for real application, Section 2.5 presents some numerical examples in which the displacements
are initially unknown and n is chosen differently from the ideal order.

2.3.2 Dirichlet boundary conditions

This Section analyzes how to deal with the imposition of the non-local displacement
boundary conditions by means of the proposed method. The displacement constraints are
implemented as in a local model: the desired displacement is imposed at the boundary point
and the proposed method autonomously adjusts the displacement of the fictitious points
according to the displacement of the boundary point and its derivatives.

The equation to impose a Dirichlet boundary condition, for instance, at ∂Ω0 is given as:

u(x = 0) = u (2.36)

where u is the desired value of the constraint. The extrapolation method determines the
displacements and the dilatations of the fictitious points similarly to what was shown in
Equations 2.30 and 2.31:

u(x ∈ Γ0) = u+
n∑

k=1

(x)k

k!
· d

ku(0)

dxk
(2.37)

θ(x ∈ Γ0) =





θ(0) if n = 1

θ(0) +
n−1∑

k=1

(x)k

k!
· d

kθ(0)

dxk
if n > 1

(2.38)

Note that in this case u(0) in Equation 2.37 is constrained to be u. In this way, the Dirichlet
boundary condition is imposed only at the boundary ∂Ω, whereas the fictitious layer Γ

mitigates the surface effect, as illustrated in Section 2.3.1.
For a detailed description of the imposition of the Dirichlet boundary condition in a

discretized model, please refer to Section 2.4.3.
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2.3.3 Neumann boundary conditions

This Section addresses the problem of applying a load to the non-local boundary of the
finite 1D body. With the introduction of the fictitious layer, new interactions between real
and fictitious points, named fictitious bonds, are generated. These fictitious bonds deform
because of the displacement induced by the extrapolation on the fictitious points. Thereby,
each fictitious bond exerts a force on both the interacting points (see Figure 2.2). The forces
which the fictitious bonds exert on the fictitious points are “lost”, in the sense that they
do not contribute to the equilibrium of the real points of the body. Indeed, the fictitious
points do not constitute new degrees of freedom of the model since their displacement is
extrapolated via Equation 2.30. On the other hand, the forces of the fictitious bonds acting
on the real points contribute to their equilibrium equation and play a role very similar
to that of the external force density distribution computed in Appendix 2.B to obtain a
constant deformation of the bar: the global effect of all the fictitious bonds is a force density
distribution applied to the non-local boundary (Ω∪ Ω̃) capable of compensating the surface
effect and imposing the Neumann boundary condition. Therefore, we propose to apply
Neumann boundary conditions by means of the concept of force flux (Equation 2.21) at
the boundary points: the resultant of the forces of the fictitious bonds which intersect the
boundary is equal to the desired value of the external load (see Figure 2.13 for the discretized
representation of the load boundary condition).

In order to impose an outward external force f, for instance, at ∂Ωl, the boundary con-
dition is given as:

τ(l,+1) =

∫

H−
l

∫

H+
l ∩H+

(
T〈ξ〉 −T′〈−ξ〉

)
dV ′ dx =

f

A
(2.39)

where Hl is the neighborhood of the point x = l. The integral in Equation 2.39 depends
on the elongation (i.e., the extension scalar state) of the real bonds near the boundary and
of the fictitious bonds crossing the boundary. Therefore, the Neumann boundary condition
written as Equation 2.39 imposes the elongations of the bonds so that the sum of the forces
per unit area in those bonds is equal to the desired value of the force flux at the boundary.
The extension scalar state of the bonds involved in Equation 2.39 is determined by the
displacement in (Ωl ∪ Ω̃l ∪ Γl), namely the domain near the boundary of the real body
and the fictitious layer. However, the displacement distribution in the fictitious layer Γl is
defined by the Taylor-based extrapolation method. Therefore, the integral in Equation 2.39
is a function solely of the displacement distribution of the real points near the boundary.
The implementation of a Neumann boundary condition in a discretized model, described in
Section 2.4.3, is indeed carried out by adopting a linear combination of the displacements of
the real nodes near the boundary. The discretized representation of Equation 2.39 is shown
in Figure 2.13.

Remark 2.2. In [92], the zero-traction boundary condition is applied by removing the
fictitious layer. By doing so, however, the surface effect reappears near the free boundary.
In the case of zero-traction surface, we suggest to use the fictitious layer with an extrapolation
method, such as the one presented in this paper, and impose the condition τ(x ∈ ∂Ω, n) = 0.
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Some numerical examples of the implementation of a zero-traction boundary condition are
shown in Section 2.5.

Remark 2.3. The Dirichlet boundary condition described in Section 2.3.2 is imposed at the
boundary point ∂Ω0 of the body. Due to the non-local nature of the peridynamic theory, the
reaction to the constraint is not the force density applied to that point, but is computed as
the force flux at that point multiplied by the cross-sectional area: fu = A · τ(0,−1), where
fu is the reaction to the constraint imposed with Equation 2.36.

2.4 Numerical implementation

A mesh-free method is adopted to discretize the domain [65]. For simplicity sake, the
peridynamic grid consists of a finite number of equally-spaced nodes, each of which is rep-
resentative of a volume V = A∆, where A is the cross-sectional area of the 1D body and
∆ is the grid spacing (see Figure 2.10). Since the horizon δ is often chosen as a multiple
of the grid spacing ∆, the m-ratio m = δ/∆ is here considered as an integer number. The
parameter m is commonly denoted as m in Peridynamics, but the top bar avoids the confu-
sion that might arise with the weighted volume symbol. The position of the nodes, shown
in Figure 2.10, is given as xi = (i− 1/2)∆ with i = 1, . . . , N +m and xi = (i+ 1/2)∆ with
i = −m, . . . ,−1. The real nodes, denoted by i = 1, . . . , N , are represented by the solid dots,
whereas the fictitious nodes are represented by the empty dots. Note that the boundary
nodes (i = 1, N) do not lie exactly at the boundary ∂Ω of the body.

−m −1 1 2 N − 1 N N + 1 N +m

Ω

0 l

∂Ω0 ∂ΩlΓ0

−δ

Γl

l + δ
∆ ∆

Figure 2.10: Uniform peridynamic grid with node numeration: the solid dots represent the real
nodes, whereas the empty dots represent the fictitious nodes.

The unknowns of the problem are the displacements of the real nodes, called ui with
i = 1, . . . , N and gathered in the displacement vector u (size: N × 1). The next Section
shows how to determine the displacements of the fictitious nodes as functions of the unknowns
in u.

2.4.1 Numerical Taylor-based extrapolation

Applying the concepts for the continuum peridynamic formulation of Section 2.3, the
Taylor-based extrapolation is used in the discretized formulation to express the displacements
(or dilatations) of the fictitious nodes as functions of the displacements (or dilatations) of the
real nodes close to them. Initially, the procedure for the linear extrapolation (n = 1) of the
displacements in Γ is carried out and, thereafter, the procedure for a general extrapolation of
order n is presented. This procedure is similar to that exposed for the polynomial function
in [195].
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The displacement of a fictitious node f in Γ is evaluated by means of the Taylor series
expansion about its closest real node, according to the nearest-node strategy. If the node f ,
for instance, belongs to the domain Γ0, i.e., f = −m, . . . ,−1, the linear Taylor series about
node 1 yields:

uf = u1 + (xf − x1) ·
du1
dx

(2.40)

The derivative in Equation 2.40 can be determined by another linear Taylor series about the
boundary node 1 for the displacement of the real node closest to node 1:

du1
dx

=
u2 − u1
x2 − x1

(2.41)

Thus, the displacement uf can be expressed as a function of the displacements of the real
nodes close to the boundary by substituting Equation 2.41 in Equation 2.40.

Now, the procedure to define the displacements of the fictitious nodes in Γ0 with an
extrapolation based on the Taylor series expansion of order n is presented. The real node
closest to the domain Γ0 is node 1, thus the Taylor series expansion should be centered at
that node according to the nearest-node strategy. The displacements of the fictitious nodes
can be determined as functions of the displacement of node 1 and its n derivatives with the
following system of equations:





u−m

...
u−1





=



1 (x−m − x1) (x−m − x1)

2/2 · · · (x−m − x1)
n/n!

...
...

...
...

...
1 (x−1 − x1) (x−1 − x1)

2/2 · · · (x−1 − x1)
n/n!








u1
du1

dx

d2u1

dx2

...
dnu1

dxn





(2.42)

The vector of the displacements of the fictitious nodes in Γ0 is named uΓ0 (size: m× 1), the
vector of the displacement of node 1 and its n derivatives is named d1 (size: (n+1)×1) and
the matrix obtained with the factors of the Taylor series expansion of the displacements of
the fictitious nodes about node 1 is named TΓ0

1 (size: m× (n+1)). Therefore, Equation 2.42
can be compactly written as uΓ0 = TΓ0

1 d1.
The derivatives in vector d1 can be determined as functions of the displacements of the

real nodes closest to the boundary node 1, according to the nearest-node strategy. Hence,
one can write the Taylor series expansions of the displacements of the n+1 real nodes closest
to the boundary ∂Ω0 about the boundary node 1 as:





u1
u2
...

un+1





=




1 0 0 · · · 0

1 (x2 − x1) (x2 − x1)
2/2 · · · (x2 − x1)

n/n!
...

...
...

...
...

1 (xn+1 − x1) (xn+1 − x1)
2/2 · · · (xn+1 − x1)

n/n!








u1
du1

dx

d2u1

dx2

...
dnu1

dxn





(2.43)

which is compactly written as uΩ0 = TΩ0
1 d1, where the displacements of the real nodes closest
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to the boundary are gathered in vector uΩ0 (size: (n+1)× 1) and the factors derived by the
Taylor series expansions about node 1 are contained in TΩ0

1 (size: (n + 1) × (n + 1)). The
vector d1 is written as a function of the part uΩ0 of the displacement vector u by inverting
the Taylor matrix in Equation 2.43:

d1 =
[
TΩ0

1

]−1

uΩ0 (2.44)

Thus, the displacements of the fictitious nodes in Γ0 can be expressed as a function of some
of the unknowns of the problem:

uΓ0 = TΓ0
1

[
TΩ0

1

]−1

uΩ0 (2.45)

Note that the matrices in Equation 2.45 depend only on the coordinates of the fictitious and
real nodes. The same procedure can be exploited for the extrapolation of the displacements
in Γl. Moreover, the dilatations in Γ can be analogously extrapolated with the Taylor series
expansions of order n− 1.

The numerical procedure for the Taylor-based extrapolation over the fictitious layer Γ

can be summarized as follows:

• choose the order n of the truncated Taylor series;

• find the boundary nodes i = 1, N , which are the real nodes closest to the fictitious
layer (nearest-node strategy);

• assemble the Taylor matrix TΓ
i (size: m × (n + 1)) with the factors of the Taylor

series expansion of the displacements uΓ of the fictitious nodes about node i (see
Equation 2.42);

• find the n + 1 real nodes closest to the boundary ∂Ω (nearest-node strategy), whose
displacements uΩ can be extracted from the displacement vector u;

• assemble the Taylor matrix TΩ
i (size: (n+ 1)× (n+ 1)) with the factors of the Taylor

series expansion of the displacements uΩ about node i (see Equation 2.43);

• compute the matrix TΓ
i

[
TΩ

i

]−1

, which expresses the displacements uΓ of the fictitious
nodes as functions of the displacements uΩ of the real nodes close to the boundary:

uΓ = TΓ
i

[
TΩ

i

]−1

uΩ (2.46)

Analogously, the Taylor-based extrapolation of the dilatations θΓ (size: m×1) of the fictitious
nodes can be carried out from the dilatations θΩ (size: n× 1) of the n real nodes closest to
the boundary as:

θΓ = TΓ
i

[
TΩ

i

]−1

θΩ (2.47)

where TΓ
i (size: m× n) and TΩ

i (size: n× n) are the sub-matrices obtained by eliminating
the rows and the columns of TΓ

i and TΩ
i related to the node most distant from the boundary
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and the derivative with the highest order.

2.4.2 Discretized formulation

This Section derives the discretized form of the peridynamic equations and shows the
approach to combine them with the proposed method of the Taylor-based extrapolation
over the fictitious layer.

Consider a bond ij, either real or fictitious, connecting node i to node j, as shown in
Figure 2.11. From Equation 2.1, the relative position vector can be computed for each bond
ij of the peridynamic model as ξij = xj − xi. The reference vector state xij = |ξij| and
the hyperbolic influence function ωij = δ/|ξij| are computed for each bond respectively from
Equations 2.6 and 2.23. Furthermore, the contribution to the neighborhood of nodes with
their volume V only partially within it, is corrected by the volume reduction coefficient βij,
computed as the fraction of volume actually involved in the neighborhood [224]. If V is
completely inside the neighborhood, then βij = 1.

i j

ξij
x

ui uj

Figure 2.11: Bond ij between node i and node j in a 1D peridynamic model.

Firstly, the displacements of the fictitious nodes are approximated with the extrapolation
derived by the Taylor-based method previously described. Then, from Equations 2.2 and 2.7,
the extension scalar state of bond ij is given as:

eij =
ξij
|ξij|

(uj − ui) (2.48)

Whenever one of the nodes of the bond is fictitious, its displacement is expressed as a function
of some of the unknowns in the displacement vector u with the Taylor-based extrapolation
methods exposed in Section 2.4.1. For instance, following the example of the linear Taylor-
based extrapolation for a fictitious node f in Equations 2.40 and 2.41, the extension scalar
state of a fictitious bond fj, connecting the fictitious node f in Γ0 to the real node j, is
expressed as:

efj = uj − uf = uj −
(
u1 + (xf − x1)

u2 − u1
x2 − x1

)

= uj +
xf − x2
x2 − x1

u1 −
xf − x1
x2 − x1

u2 (2.49)

where the node indices possibly involved in this case are f = −m, . . . ,−1 and j = 1, . . . ,m

(see Figure 2.10). As just shown with this example, the extension scalar state of all the
bonds, both real and fictitious, can be computed as a linear combination of some of the
displacements of the real nodes, i.e., the unknowns of the problem. This statement is valid
also for a higher order of the truncated Taylor expansion (with n > 1, please refer to the
Taylor-based extrapolation procedure exposed in Section 2.4.1).
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The weighted volume of a node i is often evaluated in Peridynamics by performing a
mid-point Gauss quadrature from Equation 2.8:

mi =
∑

j∈Hi

(
ωijx

2
ijβij

)
V (2.50)

where Hi is the neighborhood of node i. However, given the choice of the hyperbolic influence
function, the weighted volume is here computed from Equation 2.25 as m = Aδ3. Note that,
when the proposed method is employed, the weighted volume evaluated at the real nodes
near the boundary and also at the fictitious nodes is equal to the one of a node with a
complete neighborhood.

The dilatation of a real node i is computed by means of the mid-point Gauss quadrature
from Equation 2.13 as:

θi =
cθ
mi

∑

j∈Hi

(
ωijxijeijβij

)
V (2.51)

Similarly to the procedure for the displacements, the dilatations of the fictitious nodes are
extrapolated via Equation 2.47 as a linear combination of some of the dilatations of the real
nodes. Thereby, the dilatations of all the nodes, both real and fictitious, are determined as
functions of previously computed parameters.

The force density scalar state is then computed from Equation 2.19 as:

tij = kθ
θi
mi

ωijxij + ke
1

mi

ωijeij (2.52)

In the case that the bond ij was fictitious, θi and eij have already been determined by means
of the extrapolation method.

From the integrand in Equation 2.20, the peridynamic force in bond ij is given as:

fij =

(
kθ

(
θi
mi

+
θj
mj

)
ωijxij + ke

(
1

mi

+
1

mj

)
ωijeij

)
βijV

2 (2.53)

where xij = xji, ωij = ωji, βij = βji and eij = eji for symmetry reasons. fijMij is the bond
force acting on the node i and fjiMji = −fijMij is the same force of opposite direction acting
on node j.

Finally, the peridynamic equilibrium equation (Equation 2.4) is rewritten, in a discretized
form, for every real node i as:

−
∑

j∈Hi

fijMij = biV (2.54)

where bi is the external force density applied on node i. Thus, Equation 2.54 is repeated N
times, one for each real node, forming the system of equations to be solved. The right-hand
side of the system equation is named body force vector f (size: N × 1). Since the internal
bond forces fij depend linearly on the displacements of the nodes (Equations 2.48–2.53), one
can decompose the left-hand side of the system as Ku, where K (size: N×N) is the stiffness
matrix and u (size: N × 1) is the displacement vector. Therefore, the system of equations
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can be written in the standard form:
K u = f (2.55)

Appendix 2.D shows the step-by-step assembly of K following the equations of this Sec-
tion. The stiffness matrix K embeds the stiffness correction obtained with the additional
internal forces due to the fictitious bonds, thus the surface effect is compensated.

2.4.3 Application of boundary conditions in discretized form

The concepts about the peridynamic boundary conditions presented in Sections 2.3.2
and 2.3.3 are here translated in discretized terms: the boundary conditions matrix B is
assembled to embed the system of equations derived from the boundary conditions. The
Neumann boundary condition can be transformed in a relation among nodal displacements,
achieving an equation similar to that of a constraint. Therefore, the boundary conditions
are written in the form B u = c, where B (size: 2 × N) is the boundary condition matrix
and c (size: 2× 1) is the vector containing the known values of the boundary conditions. B
and c have 2 rows in the 1D case because there is 1 condition for each boundary.

In order to show how to assemble B and c, suppose that the following boundary conditions
are imposed to a finite body of length l: a constraint u at x = 0 and a force f at x = l. As
shown in Figure 2.12, the desired constraint is not applied to any peridynamic node because
each peridynamic node is centered with respect to its representative volume. However, the
notions exposed in Section 2.4.1 can be exploited to extrapolate u(0) = u as a function of
the nodal displacements. For instance, if a linear extrapolation was chosen (order n = 1),
the displacement boundary condition would be written from Equations 2.40 and 2.41 as:

u = u1 − x1 ·
u2 − u1
x2 − x1

(2.56)

Equation 2.56 can be rearranged as a row of matrix B and vector c as follows:

[
1 + x1

x2−x1
− x1

x2−x1
0 · · · 0

]





u1
u2
u3
...
uN





=
{
u
}

(2.57)

In a similar way, the constraint for a Taylor series expansion of order n can be expressed
as:

[
T∂Ω0

1

[
TΩ0

1

]−1

0 · · · 0
]





uΩ0

un+2

...
uN





=
{
u
}

(2.58)

where T∂Ω0
1 (size: 1 × (n + 1)) is the matrix containing the factors of the Taylor series

expansion of the displacement of the constraint at x = 0 about node 1, whereas TΩ0
1 and uΩ0

were derived in Equation 2.43. A similar equation can be written for the other boundary
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(x = l) if a displacement constraint is present there.

−1 1 2 3

Ω∂Ω0Γ0

u

Figure 2.12: Constraint u applied at the boundary ∂Ω0.

The extrapolation carried out in Equation 2.58 involves only the real nodes near the
boundary and the coordinate of the boundary ∂Ω0. However, the fictitious nodes play a role
in the equilibrium equations of the real nodes near the boundary. The contribution of the
fictitious layer Γ0, which mitigates the surface effect, is already taken into account in the
stiffness matrix K (see Appendix 2.D).

Consider now the imposition of an external load f at the boundary ∂Ωl, as shown in
Figure 2.13a. The Neumann boundary condition is imposed through the concept of force
flux:

A · τ(l,+1) = f (2.59)

Therefore, the resultant of the forces of the fictitious bonds crossing the boundary is enforced
to match the external force f (see Figure 2.13b). The vector of the forces f b in the bonds,
either real or fictitious, is computed in Equation 2.101 as Kbu, where Kb is derived from
Equation 2.53 for each bond and u is the displacement vector. The load boundary condition
can take the form of a row of matrix B and vector c:

[
· · · sij · · ·

]
Kb u = Sl Kb u =

{
f
}

with sij =

{
1 if (i ≤ N ∧ j > N) ∨ (i > N ∧ j ≤ N)

0 otherwise

(2.60)

Note that the matrix Sl is defined in order to sum all the force of the fictitious bonds crossing
the boundary ∂Ωl. Equation 2.60 is a linear combination among the displacements of the
real nodes near the boundary.

Hence, the boundary conditions for the current example are implemented as:


T

∂Ω0
1

[
TΩ0

1

]−1

0

SlKb


u =

{
u

f

}
⇒ B u = c (2.61)

Since Equation 2.61 expresses the boundary conditions as a relation among the displacements
of the real points of the body, the technique of the Lagrange multipliers is very advantageous
to include those boundary conditions in the system of equations given by the peridynamic
equilibrium of the points (Equation 2.55). The Lagrangian function Π is introduced in the
system as follows [225]: 




Ku+
∂Π

∂u
= f

∂Π

∂λ
= c

(2.62)
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∂Ωl

f

(a) External load f acting at the boundary: f is applied along the line of the nodes, but for clarity reasons
it is shown above it.

∂Ωl

∑
fb = f

(b) The external load is equal to the resultant of the forces of the bonds crossing the boundary.

Figure 2.13: Imposition of the external load f through the concept of force flux. Empty and solid cir-
cles represent respectively fictitious and real nodes. Correspondingly, dashed and solid lines represent
respectively fictitious and real bonds (m = 3 in this example).

where Π = λ⊤ (Bu) and λ = {λ0, λl}⊤ (size: 2×1) is the vector of the Lagrange multipliers.
λ0 and λl are the Lagrange multipliers related to the boundary conditions at x = 0 and x = l,
respectively. Equation 2.62 is simplified and rewritten in a matrix form as:

[
K B⊤

B 0

]{
u

λ

}
=

{
f

c

}
(2.63)

Equation 2.63 is a system of N + 2 linear equations (N equations deriving from the peri-
dynamic equilibrium equation applied at each node and 2 from the boundary conditions)
with N + 2 unknowns (N nodal displacements in u and 2 Lagrange multipliers in λ). The
implementation of this technique in a code is really quick and effective.

2.5 1D numerical examples

Some benchmark problems are presented to verify the reliability and accuracy of the
proposed method of the Taylor-based extrapolation over the fictitious nodes. The numerical
peridynamic results are compared with the classical continuum mechanics solution, con-
sidered as the reference solution. The discrepancy between the numerical results and the
classical solution is evaluated at node i by the relative percentage “error” ǫ:

ǫi =
|ui − ucl(xi)|

|ucl(xi)|
· 100 (2.64)

where ucl stands for displacement solution derived with classical continuum mechanics.
As demonstrated in [165], the classical solution coincides with the peridynamic one when
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the third order and higher derivatives of the displacement are equal to 0 or when the horizon
δ approaches 0. Since the numerical simulations must necessarily consider a finite value of
δ, the classical solution can be considered the exact solution for the numerical peridynamic
case solely if the highest displacement derivative is, at most, a second order derivative.
When this is not respected, a part of the difference between classical solution and numerical
peridynamic solution is due to the different formulations of the two theories.

The data used in the benchmark problems is reported in Table 2.3. The value of the m-
ratio m is chosen to be 3, as a convenient compromise between accuracy and computational
cost. Firstly, each peridynamic model is solved without the use of any correction method
and, then, by means of the Taylor-based extrapolation method with different orders. In the
peridynamic model adopting no corrections, a Dirichlet boundary condition is imposed by
constraining the displacement of the closest node to its analytical value derived by classical
continuum mechanics, whereas a Neumann boundary condition is imposed by applying the
desired force to the node closest to the boundary. The imposition of the boundary condi-
tions in the models which employ the Taylor-based extrapolation method, is described in
Section 2.4.3.

Table 2.3: Parameters for the simulation of a bar.

Parameter Value

Length l = 1m
Area A = 0.01m2

Young’s modulus E = 1GPa
Poisson’s ratio ν = 0.3
Grid spacing ∆ = 0.05m

m-ratio m = 3

2.5.1 Clamped bar under traction

The method is tested on a clamped bar with a traction load f = 104 N imposed at the
end x = l of the bar, as shown in Figure 2.14. Solving the classical differential equation for
an axially loaded bar with those boundary conditions yields:

ucl(x) =
f

EA
· x (2.65)

Since dkucl

dxk = 0 with k ≥ 2, this solution coincides with the peridynamic solution [165].

x0 l

f

u = 0

Figure 2.14: Boundary conditions for the clamped bar under traction.

Figure 2.15 shows the numerical peridynamic results of the clamped bar under traction
loading, obtained without adopting any correction method and by implementing the pro-
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posed Taylor-based extrapolation method with the order n = 1. The hardening/softening
behavior due to the surface effect near the boundaries is evident in the peridynamic model
without corrections. On the other hand, when the method of the extrapolation over the
fictitious layer is adopted, the results match perfectly the reference solution and the relative
“error” ǫ, shown in Figure 2.16, is very close to the machine precision.
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n = 1

0 0.1 0.2
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8

9

10
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Figure 2.15: Numerical results obtained with the peridynamic models without any correction (in
blue) and with the Taylor-based extrapolation method with order n = 1 (in red) for the clamped bar
under traction. The dashed black line represents the reference solution derived analytically by the
classical continuum mechanics.
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Figure 2.16: Relative percentage “errors” for the peridynamic models without any correction (in blue)
and with the Taylor-based extrapolation method with order n = 1 (in red) for the clamped bar under
traction.
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2.5.2 Clamped bar under uniformly distributed load

Consider now a clamped bar, with a free end at x = l, subjected to a uniformly distributed
load b0 = 106 Nm−3, as shown in Figure 2.17. The solution derived by the classical continuum
mechanics in this case is given as:

ucl(x) =
b0
E

(
lx− x2

2

)
(2.66)

Since dkucl

dxk = 0 with k ≥ 3, the classical solution coincides with the peridynamic one [165].

x0 l

b0

f = 0

u = 0

Figure 2.17: Boundary conditions for the clamped bar under uniformly distributed load, which is
acting in the direction of the bar.

Figure 2.18 shows the numerical results for the peridynamic models with no correction
and with Taylor-based extrapolation of orders n = 1, 2. The results of the former model
exhibit a significant discrepancy with respect to the classical solution, whereas the results
obtained by employing the proposed method are considerably closer to the reference solution.

Since the reference solution is a quadratic function, the order n = 1 for the Taylor-based
extrapolation is not high enough to follow exactly that solution. However, the results are
still greatly improved with respect to the model without fictitious layer (see blue and red
lines in the relative “error” plot of Figure 2.19). This result is of paramount importance:
in most cases the order of the truncated Taylor series to properly describe the variation of
the displacement near the boundaries will be unknown, but a sufficiently high order will
nonetheless provide a good approximation. On the other hand, choosing the order n = 2 (or
higher) entails the numerical results to coincide with the analytical solution.

2.5.3 Clamped bar under linearly distributed load

The Taylor-based extrapolation method is tested in the case of a clamped-free bar under
a linearly distributed load b1x, where b1 = 106 Nm−4, as shown in Figure 2.20. The solution
of the non-homogeneous differential equation of the axially loaded bar in classical continuum
mechanics is given as:

ucl(x) =
b1
E

(
l2

2
x− x3

6

)
(2.67)

Since d3ucl

dx3 6= 0, the peridynamic solution is different from the classical one [165]. Therefore,
a part of the difference, which is computed with Equation 2.64 as relative “error” between
the numerical peridynamic results and the analytical classical solution, is due to the different
formulations of the theories.

Figure 2.21 shows the numerical results for the peridynamic models with and without
employing the proposed method. As observed also in the plot of the relative “errors” of
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Figure 2.18: Numerical results obtained with the peridynamic models without any correction (in
blue) and with the Taylor-based extrapolation method with orders n = 1, 2 (respectively in red and
orange) for the clamped bar under uniformly distributed load. The dashed black line represents the
reference solution derived analytically by the classical continuum mechanics.
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Figure 2.19: Relative percentage “errors” for the peridynamic models without any correction (in blue)
and with the Taylor-based extrapolation method with orders n = 1, 2 (respectively in red and orange)
for the clamped bar under uniformly distributed load.

x0 l

b1x

f = 0

u = 0

Figure 2.20: Boundary conditions for the clamped bar under linearly distributed load, which is acting
in the direction of the bar.

Figure 2.22, there is a great improvement in the accuracy of the results when adopting
the Taylor-based extrapolation method of any order n. However, even if the same order of
the expected solution is chosen (n = 3), the numerical results cannot match perfectly the
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classical solution because of the different formulation of the theories. Nonetheless, the choice
of n = 3 is arguably the best one since the results do not exhibit any undesired fluctuation
near the boundary due to the surface effect or the approximated imposition of the boundary
conditions, whereas the results of the peridynamic models with n ≤ 2 do (see the right-hand
side of Figure 2.22).
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Figure 2.21: Numerical results obtained with the peridynamic models without any correction (in blue)
and with the Taylor-based extrapolation method with orders n = 1, 2, 3 (respectively in red, orange
and green) for the clamped bar under linearly distributed load. The dashed black line represents the
reference solution derived analytically by the classical continuum mechanics.
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Figure 2.22: Relative percentage “errors” for the peridynamic models without any correction (in blue)
and with the Taylor-based extrapolation method with orders n = 1, 2, 3 (respectively in red, orange
and green) for the clamped bar under linearly distributed load.
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2.5.4 Clamped bar under sinusoidally distributed load

The proposed method has been proven to work really well with polynomially distributed
loads. In order to further investigate the performance of the method, consider a clamped-
free bar under a sinusoidally distributed load bs sin

(
π
l
x
)
, where bs = 106 Nm−3, as shown in

Figure 2.23. The classical analytical solution in this case is given as:

ucl(x) =
bs
E

(
l

π

)2 (π
l
x+ sin

(π
l
x
))

(2.68)

Since dkucl

dxk 6= 0 with k ≥ 3, the peridynamic solution does not coincide with the classical
one [165]. Therefore, a part of the difference is surely due to the different formulations of
the theories.

x0 l

bs sin
(

π

l
x
)

f = 0

u = 0

Figure 2.23: Boundary conditions for the clamped bar under sinusoidally distributed load, which is
acting in the direction of the bar.

Figure 2.24 shows the numerical results obtained for the peridynamic model without
adopting the proposed method and with the Taylor-based extrapolation of orders n = 1, 3, 5.
Again, the proposed method greatly improves the accuracy of the solution (see the left-hand
side of Figure 2.25). Furthermore, increasing the order n of the Taylor-based extrapolation
leads to a gradual reduction of the result fluctuations due to the boundary issues, as one can
observe in the right-hand side of Figure 2.25. Therefore, the order of the Taylor-based ex-
trapolation can be increased until the undesired fluctuations of the numerical results become
negligible for the application of interest.

2.6 Extension to 2D problems

In this Section we show how to straightforwardly apply the 1D concepts of the Taylor-
based extrapolation method to 2D peridynamic problems. In 2D the fictitious nodes surround
the real body as shown in Figure 2.26. In 2D models we can have corner nodes that do not
exist in 1D. The numerical results of a 2D example are also shown hereinafter. This Section
is not meant to provide a complete treatment of the Taylor-based extrapolation method in
2D peridynamic models (which will be discussed in future developments), but just to show
that the proposed method yields very accurate results also in 2D problems.

2.6.1 Taylor-based extrapolation method in 2D models

The proposed method is based on the nearest-node strategy, which entails the search
for the nearest real node for each fictitious node. Clearly, all the real nodes found by this
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Figure 2.24: Numerical results obtained with the peridynamic models without any correction (in
blue) and with the Taylor-based extrapolation method with orders n = 1, 3, 5 (respectively in red,
green and yellow) for the clamped bar under sinusoidally distributed load. The dashed black line
represents the reference solution derived analytically by the classical continuum mechanics.
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Figure 2.25: Relative percentage “errors” for the peridynamic models without any correction (in blue)
and with the Taylor-based extrapolation method with orders n = 1, 3, 9 (respectively in red, green and
yellow) for the clamped bar under sinusoidally distributed load.

procedure are boundary nodes (i.e., real nodes closest to the physical boundary). Moreover,
most of the fictitious nodes lies on the same line as their own closest boundary nodes, as
shown in Figure 2.26a. Therefore, the extrapolation for those fictitious nodes can be reduced
to a 1D Taylor series expansion, which employes the same formulae already described in
Section 2.4.1 (the same matrices can be used for displacements both in x and y direction).

However, there are still the fictitious nodes near the corner of the body that require a 2D
Taylor-based extrapolation procedure. We show here, briefly, the Taylor series expansion of a
fictitious node i near the corner of the body (see Figure 2.26b) with a maximum order n = 2.
This procedure can be easily generalized also for a higher order of the Taylor expansion. The
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displacements in x and y direction, named respectively u and v, of node i can be determined
by the Taylor series expansion about the corner node j as:




ui = uj + ℓx · ∂uj

∂x
+ ℓy · ∂uj

∂y
+ ℓ2x

2
· ∂2uj

∂x2 + ℓxℓy · ∂2uj

∂x ∂y
+

ℓ2y
2
· ∂2uj

∂y2

vi = vj + ℓx · ∂vj
∂x

+ ℓy · ∂vj
∂y

+ ℓ2x
2
· ∂2vj

∂x2 + ℓxℓy · ∂2vj
∂x ∂y

+
ℓ2y
2
· ∂2vj

∂y2

(2.69)

where ℓx = xi − xj and ℓy = yi − yj. The derivatives of the displacements of the corner node
j can be found with a classical finite difference method in 2 dimensions (correspondent to
the computation of the derivatives carried out in Section 2.4.1 for 1D models).

j

(a) The displacements of most of the fictitious
nodes can be extrapolated along lines perpendicular
to the boundary (dotted lines), as in the 1D Taylor-
based extrapolation method.

i

j

(b) The displacements of some of the fictitious
nodes (as, for instance, node i) near the corners
require a 2D Taylor-based extrapolation method.

Figure 2.26: Generalization of the Taylor-based extrapolation method for 2D peridynamic models.
Real and fictitious nodes are represented respectively with solid and empty dots.

Remark 2.4. The 1D Taylor-based extrapolation procedure can be also exploited to impose
Dirichlet boundary conditions by following the lines perpendicular to the boundary as shown
in Figure 2.26a (please refer to Section 2.4.3 to see how to impose constraints by means of
the 1D Taylor-based extrapolation). In particular, the matrices containing the factors of the
Taylor series expansion (see Equation 2.58) can be used for the displacements both in x and
y directions. Therefore, the procedure for imposing the constraints at the edges of the 2D
body is the same used in 1D models, but applied twice: once to u and once to v. However,
there is an ambiguity at the corner nodes since two lines perpendicular to the boundary can
be followed, as shown by node j in Figure 2.26a. In order to prevent the corner node from
being over-constrained, we suggest to impose the Dirichlet boundary conditions only for the
displacement perpendicular to the boundary (i.e., constrain the displacement in x direction
for a boundary parallel to y-axis and the displacement in y direction for a boundary parallel
to x-axis).

2.6.2 Clamped plate under uniformly distributed load

The advantages of using the proposed method in 2D models to reduce the surface effect
near the boundaries can be shown with the following numerical example of a clamped plate
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under uniformly distributed load in x direction. The boundary conditions are illustrated
in Figure 2.27 and the used data is reported in Table 2.4. As in the previous Section, we
solve the peridynamic problem firstly without adopting any corrections at the boundary
and secondly by employing the proposed method with an increasing order n of the Taylor-
based extrapolation. These numerical results are compared with the reference solution (see
Figure 2.28), obtained by means of the classical Finite Element Method with a uniform
grid spacing ∆xFEM = ∆yFEM = ∆x/2. The reference solution does not coincide with the
peridynamic solution (see [162, 165]) because numerical simulations must adopt a finite
value for δ, but this is the closest available solution. Therefore, the percentage “errors” of
the displacements are defined at each node i as




ǫu,i =

|uPD
i −uFEM

i |

max(|uFEM |)
· 100

ǫv,i =
|vPD

i −vFEM
i |

max(|uFEM |)
· 100

(2.70)

where uPD

i and vPD

i are the displacements of node i in x and y direction computed with Peri-
dynamics, uFEM

i and vFEM

i are the displacements of the same node obtained with the reference
solution and uFEM is the displacement vector obtained with the reference solution at all the
nodes.

x

y

b

Figure 2.27: Boundary conditions for the clamped plate under uniformly distributed load b in x
direction.

Table 2.4: Parameters for the simulation of a plate.

Parameter Value

Length lx = 3m
Width ly = 2m

Thickness h = 0.05m
Young’s modulus E = 1GPa
Poisson’s ratio ν = 0.2
Grid spacing ∆x = ∆y = 0.1m

m-ratio m = 3

The numerical results for the percentage “errors” computed with Equation 2.70 are shown
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(a) Displacement field in x direction for the clamped plate under uniformly distributed load in x direction.
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(b) Displacement field in y direction for the clamped plate under uniformly distributed load in x direction.

Figure 2.28: Reference solution, obtained with the classical Finite Element Method, for the clamped
plate under uniformly distributed load in x direction. Note that the colormaps refer to different
values in the plots.

in Figures 2.29 and 2.30. Note that the nodes near the corners are those with higher fluc-
tuations. This is reasonable because the neighborhoods of the nodes near the corners are
smaller than those of the nodes near the edges. Nonetheless, the numerical results are
evidently improved by employing the Taylor-based extrapolation with respect to the case
without corrections at the boundaries (except for ǫv of only one node near the corner, see
Figure 2.30b). Furthermore, the increasing of the order n for the Taylor-based extrapolation
allows to mitigate more effectively the fluctuations near the edges and even near the corners
of the body.

2.7 Conclusions

Two problems arising from dropping the infinite body assumption in Peridynamics have
been addressed: the surface effect and the imposition of the boundary conditions.

The surface effect in the 1D state-based peridynamic theory has been analyzed both
analytically and numerically: the peridynamic points distant at least 2δ from the boundary
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(b) Taylor-based extrapolation method with n = 1.
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(c) Taylor-based extrapolation method with n = 2.
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(d) Taylor-based extrapolation method with n = 3.

Figure 2.29: Percentage “errors” of the displacements in x direction for the clamped plate under
uniformly distributed load in x direction. Note that the colormaps refer to different values in the
plots.

retrieve the same mechanical properties of the points in an infinite body, whereas those near
the boundary experiences a stiffness fluctuation which generates a discrepancy with respect
to the infinite body solution. The characteristic hardening/softening behavior from the bulk
towards the boundary due to the surface effect is driven by two counteracting phenomena:
the lack of some bonds near the boundary reduces the material stiffness but the decrease of
the weighted volume of the points in the most external layer of the body partially compensate
the previous phenomenon.

The other issue is that there is no standard procedure to impose boundary conditions
in peridynamic models and the currently adopted strategies, derived often from classical
mechanics concepts, imply some kind of approximation. The authors proposed a new version
of the Taylor-based extrapolation method with the introduction of a fictitious layer in order to
mitigate the discrepancy due to the surface effect. The displacements of the fictitious points
are expressed as a function of the displacement of the boundary point and its derivatives via
the truncated Taylor series expansion. Therefore, the fictitious layer keeps deforming as the
real body near the boundary and completes in a rational way the partial neighborhoods near
the boundary. Furthermore, the boundary conditions are implemented in a “peridynamic
way”: a Dirichlet boundary condition is imposed by constraining the boundary point and
the fictitious layer corrects accordingly the stiffness of the real points near the boundary,
and a Neumann boundary condition is implemented via the peridynamic concept of force
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(b) Taylor-based extrapolation method with n = 1.
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(c) Taylor-based extrapolation method with n = 2.
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(d) Taylor-based extrapolation method with n = 3.

Figure 2.30: Percentage “errors” of the displacements in y direction for the clamped plate under
uniformly distributed load in x direction. Note that the colormaps refer to different values in the
plots.

flux, which involves the forces of all the fictitious bonds in the process.
The accuracy of the Taylor-based extrapolation method has been assessed by the sev-

eral numerical examples, dealing with both 1D and 2D problems. The proposed method
significantly improves the numerical results with respect to the peridynamic model with-
out adopting any correction, even if low values of the Taylor expansion order n are chosen.
Furthermore, it has been shown that the undesired fluctuation due to the aforementioned
boundary issues can be made to decrease to a negligible level by increasing the order n.

Since bond-based Peridynamics is a special case of the state-based one [62], the proposed
method can be successfully used also in bond-based models. The authors will conduct
further studies in order to complete the extension to the 2D case of the new Taylor-based
extrapolation method by including the algorithm to impose Neumann boundary conditions.
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Appendices

2.A Force density scalar state for a linear peridynamic

solid

The force density scalar state t〈ξ〉 is computed by taking the Fréchet derivative of the
peridynamic strain energy density [62]:

t〈ξ〉 = ∇W (e) (2.71)

The definition of Fréchet derivative [62] applied to the peridynamic strain energy density W
as a function of the extension scalar state e yields:

W (e+∆e) = W (e) +

∫

H

∇W (e) ·∆e dV ′ +O(|∆e|) (2.72)

where ∆e is an increment in the extension scalar state. The increment ∆e causes the following
increments in dilatation and deviatoric extension scalar state:

∆θ =
cθ
m

∫

H

ωx ·∆e dV ′ (2.73)

∆ed = ∆e− ∆θx

3
(2.74)

The strain energy densityW (e+∆e) due to the increment ∆e is computed via its peridynamic
definition (Equation 2.12) dropping the second order terms [62]:

W (e+∆e) =
k̂

2
(θ +∆θ)2 +

Ĝ

2m

∫

H

ω
(
ed +∆ed

)2
dV ′

= W (e) + k̂θ ·∆θ + Ĝ

m

∫

H

ωed ·
(
∆e− ∆θx

3

)
dV ′

= W (e) +

(
k̂θ − Ĝ

3m

∫

H

ωxed dV ′

)
∆θ +

Ĝ

m

∫

H

ωed ·∆e dV ′

= W (e) +

∫

H

[
cθ
m

(
k̂θ − Ĝ

3m

∫

H

ωxed dV ′

)
ωx+

Ĝ

m
ωed

]
·∆e dV ′ (2.75)

The term in square brackets is the desired force density scalar state, which can be rearranged
through Equation 2.15 in a form which allows an easier computational implementation:

t =
cθ
m

[
k̂θ − Ĝ

3m

∫

H

ωx

(
e− θx

3

)
dV ′

]
ωx+

Ĝ

m
ω

(
e− θx

3

)

=
cθ
m

[
k̂θ − Ĝθ

3cθ
+
Ĝθ

9

]
ωx+

Ĝ

m
ωe− Ĝ

3m
ωxθ
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=

(
cθk̂ +

(cθ − 6)Ĝ

9

)
ωx

m
θ + Ĝ

ω

m
e = kθ

ωx

m
θ + ke

ω

m
e (2.76)

where kθ = (νE)/((1−2ν)(1+ν)) and ke = E/(1+ν) are the newly defined constants, which
were derived from the other peridynamic constants cθ, k̂ and Ĝ. Note that the dilatational
term vanishes for ν = 0.

2.B Force density distribution for the non-local bound-

ary condition

The force density distribution b(x) needed to impose a constant deformation ε11 = ε on
a finite body of length l (see Figure 2.3) has been evaluated with Equations 2.4 and 2.22
solving the integrals in a way similar to that applied to the case of the force flux.

The analytical result is reported in Table 2.5 and plotted in Figure 2.31 for different
values of the horizon δ. This force density distribution also compensates the surface effect.
As reasonably expected, the resultant of force density distribution is equal to the force which
should be imposed at the boundary in classical mechanics. The obtained function changes
slightly if another influence function is chosen, as one can verify with further numerical
analyses.

Table 2.5: Normalized force density distribution to obtain a constant deformation ε along the finite
1D body.

x ∈ b/(τ∞/δ)

Ω0 4 arctan
(x
δ

)
+

2
(
x−δ
δ

)
(
x
δ

)2
+ 1

− x

δ
− π

2

Ω̃0 −2 arctan

(
x− δ

δ

)
+
x

δ
− 2 +

π

2

Ω \ (Ω ∪ Ω̃) 0

Ω̃l −2 arctan

(
x+ δ − l

δ

)
+
x− l

δ
+ 2− π

2

Ωl 4 arctan

(
x− l

δ

)
+

2
(
x+δ−l

δ

)
(
x−l
δ

)2
+ 1

− x− l

δ
+
π

2

2.C Elimination of the surface effect in a finite body un-

der cubic displacement

Here we aim to compute the force flux τ , defined in Equation 2.21, in an infinite body
Ω∞ under a smooth deformation, by following a procedure similar to that illustrated for the
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Figure 2.31: Normalized force density distribution to obtain a constant deformation ε on a body of
length l for different values of the horizon δ (with surface effect compensation).

bond-based Peridynamics in Appendix B.1 of [165]. Then, we compare the obtained solution
with the solution derived with the proposed Taylor-based extrapolation method in a finite
body Ω under a predefined displacement distribution.

In an infinite body Ω∞, the weighted volume m∞ is constant in the whole domain and
is equal to Aδ3 when the hyperbolic influence function ω = δ/|ξ| is chosen (Equation 2.25).
For later use, the dilatation θ∞ of a point x in an infinite body Ω∞ is computed by means
of a Taylor series expansion of u(x′) = u′ about x:

θ∞ =
cθ
m∞

∫

H

ωx · e dV ′ =
cθ
Aδ3

∫ x+δ

x−δ

δ · ξ|ξ| (u
′ − u)A dx′

=
cθ
δ2

∫ δ

−δ

ξ

|ξ|

(
u+ ξ

du

dx
+
ξ2

2

d2u

dx2
+
ξ3

6

d3u

dx3
+ . . .− u

)
dξ

= cθ

(
du

dx
+
δ2

12

d3u

dx3
+ . . .

)
(2.77)

The dilatation converges to the classical mechanics dilatation θcl if the third order and higher
derivatives of the displacement are negligible or if the horizon δ approaches 0.

Ω∞

x′′x x′

ζ ζ ′

ξ

H′′− H′′+

x′′
− δ x′′ + δ

n

H+

x+ δ

Figure 2.32: Domains involved in the definition of the force flux at point x′′, which is the integral
of all the forces per unit area in the bonds ξ crossing the section at x′′ (x varies within H′′− and
x′ within H′′+ ∩ H+). The vectors ζ and ζ ′ are usefully defined for the Taylor expansions of the
variables respectively at points x and x′ about the point x′′.
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Consider now the notation of Figure 2.32. The force flux τ(x′′ ∈ Ω∞,+1) = τ ′′∞ in the
infinite body is therefore computed as:

τ ′′∞ =

∫ x′′

x′′−δ

∫ x+δ

x′′

[
kθ

(
θ∞
m∞

+
θ′∞
m′

∞

)
ωx+ ke

(
1

m∞
+

1

m′
∞

)
ωe

]
M A dx′ dx

=
1

δ2

∫ x′′

x′′−δ

∫ x+δ

x′′

[
kθ (θ∞ + θ′∞) + 2ke

e

|ξ|

]
dx′ dx

=
1

δ2

(
kθ

∫ 0

−δ

∫ ζ+δ

0

(θ∞ + θ′∞) dζ ′ dζ + 2ke

∫ 0

−δ

∫ ζ+δ

0

e

|ξ| dζ
′ dζ

)
(2.78)

where the values of the influence function and the weighted volume have been substituted.
We proceed by solving the integrals separately.

The first integral in Equation 2.78 is computed with the formula obtained in Equation 2.77
by using another Taylor series expansion of the displacement derivatives about x′′:

∫ 0

−δ

∫ ζ+δ

0

(θ∞ + θ′∞) dζ ′ dζ = cθ

∫ 0

−δ

∫ ζ+δ

0

(
du

dx
+
δ2

12

d3u

dx3
+

du′

dx
+
δ2

12

d3u′

dx3
+ . . .

)
dζ ′ dζ

= cθ

∫ 0

−δ

∫ ζ+δ

0

(
2
du′′

dx
+ (ζ ′ + ζ)

d2u′′

dx2

+

(
ζ ′2

2
+
ζ2

2
+
δ2

6

)
d3u′′

dx3
+ . . .

)
dζ ′ dζ

= cθ

∫ 0

−δ

(
2 (ζ + δ)

du′′

dx
+

(
3

2
ζ2 + 2δζ +

1

2
δ2
)

d2u′′

dx2

+

(
2

3
ζ3 + δζ2 +

2

3
δ2ζ +

1

3
δ3
)

d3u′′

dx3
+ . . .

)
dζ

= cθ

(
δ2
du′′

dx
+
δ4

6

d3u′′

dx3
+ . . .

)
(2.79)

where dku′

dxk and dku′′

dxk are the derivatives of the displacement computed at points x′ and x′′,
respectively.

The second integral in Equation 2.78 is computed by means of a Taylor expansion of the
displacements u and u′ about x′′:

∫ 0

−δ

∫ ζ+δ

0

e

|ξ| dζ
′ dζ =

∫ 0

−δ

∫ ζ+δ

0

1

ζ ′ − ζ
(u′ − u) dζ ′ dζ

=

∫ 0

−δ

∫ ζ+δ

0

(
du′′

dx
+

(
ζ ′ + ζ

2

)
d2u′′

dx2

+

(
ζ ′2 + ζ ′ζ + ζ2

6

)
d3u′′

dx3
+ . . .

)
dζ ′ dζ

=

∫ 0

−δ

(
(ζ + δ)

du′′

dx
+

(
3

4
ζ2 + δζ +

1

4
δ2
)

d2u′′

dx2

+

(
11

36
ζ3 +

1

2
δζ2 +

1

4
δ2ζ +

1

18
δ3
)

d3u′′

dx3
+ . . .

)
dζ
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=
δ2

2

du′′

dx
+
δ4

48

d3u′′

dx3
+ . . . (2.80)

The force flux in an infinite body is obtained by substituting Equations 2.79 and 2.80
back in Equation 2.78:

τ ′′∞ = cθkθ

(
du′′

dx
+
δ2

6

d3u′′

dx3
+ . . .

)
+ ke

(
du′′

dx
+
δ2

24

d3u′′

dx3
+ . . .

)
(2.81)

Note that the force flux converges to the classical stress σ11 if the third order and higher
derivatives of the displacement are negligible or if the horizon δ approaches 0, as in [162,
165].

Now we show that, by implementing the method of the Taylor-based extrapolation over
the fictitious points, the peridynamic solution of the force flux in a finite body Ω under a
predefined smooth deformation matches that of the infinite body. We choose to show the
case in which the fourth order or higher derivatives of the imposed displacement are equal
to 0. The dilatation θ∞ and the force flux τ ′′∞ in the infinite body Ω∞ are therefore given as:

θ∞ = cθ

(
du

dx
+
δ2

12

d3u

dx3

)
(2.82)

τ ′′∞ = cθkθ

(
du′′

dx
+
δ2

6

d3u′′

dx3

)
+ ke

(
d3u′′

dx3
+
δ2

24

d3u′′

dx3

)
(2.83)

The order of the Taylor series expansion for the proposed extrapolation method is chosen
to be n = 3 (see the solid line in Figure 2.9), since in this case a lower order would give inexact
results and higher order derivatives would be useless. When the Taylor-based extrapolation
is used, the dilatation of a point x in Ωl is computed as:

θ(x ∈ Ωl) =
cθ
m∞

∫

H

ωxe dV ′

=
cθ
δ2

∫ δ

−δ

e dξ

=
cθ
δ2

(∫ l−x

−δ

er dξ +

∫ δ

l−x

ef dξ

)
(2.84)

Figure 2.33 shows the domains involved in the integrals of Equation 2.84. Note that the
weighted volume is computed in a complete neighborhood thanks to the presence of the
fictitious points in Γl. The integral in Equation 2.84 involves both real bonds (first integral
of the last line) and fictitious bonds (second integral of the last line). The extension scalar
state er of a real bond is computed through a Taylor series expansion of order n = 3 of u′

about x:

er =
ξ

|ξ| (u
′ − u) = |ξ|

(
du

dx
+
ξ

2

d2u

dx2
+
ξ2

6

d3u

dx3

)
(2.85)

On the other hand, refer to the notation of Figure 2.33 for the computation of the
extension scalar state of a fictitious bond. In particular, note that ζl = l − x, ζ ′l = x′ − l

and ξ = ζl + ζ ′l . Furthermore, since x and x′ belong respectively to Ωl and Γl, ξ is always
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Figure 2.33: Representation of a fictitious bond involved in the computation of the dilatation of a
point x in Ωl.

positive. The extension scalar state ef of a fictitious bond is computed by performing two
consecutive Taylor series expansions. The first one derives from the proposed extrapolation
method (Equation 2.30 with n = 3):

ef = u′ − u = ul + ζ ′l
dul
dx

+
ζ ′l

2

2

d2ul
dx2

+
ζ ′l

3

6

d3ul
dx3

− u (2.86)

where ul is the displacement of the boundary point x = l and dkul

dxk with k = 1, 2, 3 are the
derivatives computed at that point. The second Taylor series expansion is performed for the
displacement ul and its derivatives about the point x:

ef =

(
u+ ζl

du

dx
+
ζ2l
2

d2u

dx2
+
ζ3l
6

d3u

dx3

)
+ ζ ′l

(
du

dx
+ ζl

d2u

dx2
+
ζ2l
2

d3u

dx3

)

+
ζ ′l

2

2

(
d2u

dx2
+ ζl

d3u

dx3

)
+
ζ ′l

3

6

d3u

dx3
− u

=
(
ζl + ζ ′l

) du

dx
+

(
ζl + ζ ′l

)2

2

d2u

dx2
+

(
ζl + ζ ′l

)3

6

d3u

dx3

= ξ

(
du

dx
+
ξ

2

d2u

dx2
+
ξ2

6

d3u

dx3

)
(2.87)

Since here ξ > 0, the extension scalar state of the fictitious bonds can be computed with the
same formula as that of the real bonds (Equation 2.85).

Substituting Equations 2.85 and 2.87 in Equation 2.84 and solving the integrals, the
following result is obtained:

θ(x ∈ Ωl) =
cθ
δ2

(∫ l−x

−δ

|ξ|
(
du

dx
+
ξ

2

d2u

dx2
+
ξ2

6

d3u

dx3

)
dξ +

∫ δ

l−x

ξ

(
du

dx
+
ξ

2

d2u

dx2
+
ξ2

6

d3u

dx3

)
dξ

)

=
cθ
δ2

∫ δ

−δ

|ξ|
(
du

dx
+
ξ

2

d2u

dx2
+
ξ2

6

d3u

dx3

)
dξ

= cθ

(
du

dx
+
δ2

12

d3u

dx3

)
= θ∞ (2.88)

Thus, the real points near the boundary have the same peridynamic properties as the points
with a complete neighborhood, namely θ∞ and m∞, thanks to the proposed Taylor-based
extrapolation method. By executing the same operations to compute the force flux as in the
infinite body (Equations 2.78–2.81), we can show that τ(x′′ ∈ Ω̃l,+1) = τ ′′∞.
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Figure 2.34: Representation of a fictitious bond involved in the computation of the force flux of a
point x′′ in Ωl.

Refer now to the notation of Figure 2.34, which yields: ζ ′l = x′−l, ζ ′′l = l−x′′, ζ ′ = ζ ′l+ζ
′′
l ,

ζ = x−x′′ and ξ = ζ ′−ζ. The force flux τ of a point x′′ in Ωl is computed from Equation 2.21
as:

τ(x′′ ∈ Ωl,+1) =
kθ
δ2

∫ 0

−δ

∫ ζ+δ

0

(θ + θ′) dζ ′ dζ +
2ke
δ2

∫ 0

−δ

∫ ζ+δ

0

e

|ξ| dζ
′ dζ (2.89)

This Equation has considered m = m′ = m∞, as prescribed from the proposed method.
Consider the first integral in Equation 2.89. Due to the limits of integration, the point

x can belong to Ω̃l or to Ωl. In the former case, θ = θ(x) = θ∞ because the point x has a
complete neighborhood consisting of real points. In the latter case, again θ = θ∞ as shown
in Equation 2.88. Therefore, one can employ a Taylor series expansion of θ about x′′:

θ = cθ

(
du

dx
+
δ2

12

d3u

dx3

)

= cθ

(
du′′

dx
+ ζ

d2u′′

dx2
+
ζ2

2

d3u′′

dx3
+
δ2

12

d3u′′

dx3

)
(2.90)

By the same token, point x′ can lie in Ωl (again θ′ = θ(x′) = θ∞ from Equation 2.88) or be a
fictitious point in Γl. In the latter case, the Taylor-based extrapolation of order n− 1 about
the boundary point x = l is performed:

θ(x′ ∈ Γl) = θl + ζ ′l
dθl
dx

+
ζ ′l

2

2

d2θl
dx2

(2.91)

where θl is the dilatation at x = l and dkθl
dxk with k = 1, 2 are the derivatives computed at

that point. Another Taylor series expansion is employed for θl and its derivatives about x′′:

θ(x′ ∈ Γl) =

(
θ′′ + ζ ′′l

dθ′′

dx
+
ζ ′′l

2

2

d2θ′′

dx2

)
+ ζ ′l

(
dθ′′

dx
+ ζ ′′l

d2θ′′

dx2

)
+
ζ ′l

2

2

d2θ′′

dx2

= θ′′ + ζ ′
dθ′′

dx
+
ζ ′2

2

d2θ′′

dx2

= cθ

(
du′′

dx
+ ζ ′

d2u′′

dx2
+
ζ ′2

2

d3u′′

dx3
+
δ2

12

d3u′′

dx3

)
(2.92)

where Equation 2.82 has been substituted and the displacement derivatives of fourth and
fifth orders have been cancelled because the prescribed displacement on the body is a cubic
function.
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Substituting Equations 2.90 and 2.92 in the first integral in Equation 2.89, one obtains:

kθ
δ2

∫ 0

−δ

∫ ζ+δ

0

(θ + θ′) dζ ′ dζ = cθ
kθ
δ2

∫ 0

−δ

∫ ζ+δ

0

(
2
du′′

dx
+ (ζ ′ + ζ)

d2u′′

dx2

+

(
ζ ′2

2
+
ζ2

2
+
δ2

6

)
d3u′′

dx3

)
dζ ′ dζ

= cθ
kθ
δ2

∫ 0

−δ

(
2 (ζ + δ)

du′′

dx
+

(
3

2
ζ2 + 2δζ +

1

2
δ2
)

d2u′′

dx2

+

(
2

3
ζ3 + δζ2 +

2

3
δ2ζ +

1

3
δ3
)

d3u′′

dx3

)
dζ

= cθkθ

(
du′′

dx
+
δ2

6

d3u′′

dx3

)
(2.93)

which is equal to the first term of the force flux τ ′′∞ in an infinite body in Equation 2.83.
The extension scalar state in the second integral of Equation 2.89 can be related to a

real or a fictitious bond (note that for the limits of integration, ξ > 0). In the former case,
a Taylor series expansion of the displacements u and u′ about x′′ is performed:

er = u′ − u = (ζ ′ − ζ)
du′′

dx
+

(
ζ ′2 − ζ2

2

)
d2u′′

dx2
+

(
ζ ′3 − ζ3

6

)
d3u′′

dx3
(2.94)

The extension scalar state ef of a fictitious bond can be computed with a procedure
similar to that of Equations 2.86 and 2.87 with two Taylor expansions, first about the
boundary point x = l and then about x′′:

ef = u′ − u = ul + ζ ′l
dul
dx

+
ζ ′l

2

2

d2ul
dx2

+
ζ ′l

3

6

d3ul
dx3

− u

=

(
u′′ + ζ ′′l

du′′

dx
+
ζ ′′l

2

2

d2u′′

dx2
+
ζ ′′l

3

6

d3u′′

dx3

)
+ ζ ′l

(
du′′

dx
+ ζ ′′l

d2u′′

dx2
+
ζ ′′l

2

2

d3u′′

dx3

)

+
ζ ′l

2

2

(
d2u′′

dx2
+ ζ ′′l

d3u′′

dx3

)
+
ζ ′l

3

6

d3u′′

dx3
− u

=

(
u′′ + ζ ′

du′′

dx
+
ζ ′2

2

d2u′′

dx2
+
ζ ′3

6

d3u′′

dx3

)
−
(
u′′ + ζ

du′′

dx
+
ζ2

2

d2u′′

dx2
+
ζ3

6

d3u′′

dx3

)

= (ζ ′ − ζ)
du′′

dx
+

(
ζ ′2 − ζ2

2

)
d2u′′

dx2
+

(
ζ ′3 − ζ3

6

)
d3u′′

dx3
(2.95)

Note that er = ef , so that the second integral in Equation 2.89 is computed exactly as
Equation 2.80. Substituting the results back in Equation 2.89 yields τ(x′′ ∈ Ωl,+1) = τ ′′∞.
The same results can be obtained at the other end of the finite body by implementing the
proposed method into the fictitious layer Γ0.

Therefore, the force flux, corrected with the proposed Taylor-based extrapolation method
of order n = 3, in the whole domain of a finite body under a cubic distribution of displace-
ment is equal to the force flux computed in an infinite body under the same displacement
distribution.
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2.D Assembly of the stiffness matrix

Let Nb be the total number of fictitious and real bonds and Nn = N + 2 · m the total
number of real and fictitious nodes (see Figure 2.10). Suppose, without loss of generality,
that the order n of the Taylor series expansion and the number of real nodes N are chosen so
that: N > 2n. The assembling of the peridynamic stiffness matrix K is achieved by applying
the following procedure:

• in order to obtain the vector U (size: Nn × 1) which contains the displacements of the
real and fictitious nodes, assemble the matrix AU (size: Nn ×N) as follows:

UΓ0 =
[
TΓ0

1

[
TΩ0

1

]−1

0 · · · 0
]





uΩ0

un+2

...
uN





= AΓ0 u

UΩ = 1 u

UΓl
=
[
0 · · · 0 T

Γl
N

[
T

Ωl
N

]−1]





u1
...

uN -n-2

uΩl





= AΓl
u

⇒ U =



AΓ0

1

AΓl


u = AU u (2.96)

where UΓ0 and UΓl
are the parts of the vector U containing the displacements of the

fictitious nodes at the two boundaries, UΩ is the part of the vector U containing the
displacements of the real nodes, uΩ0 and uΩl

are the parts of the displacement vector
u containing the displacements of the n + 1 real nodes near the two boundaries, TΓ

i

and TΩ
i are the Taylor matrices of the displacements respectively of fictitious and real

nodes about the boundary nodes i = 1, N (see Equation 2.46);

• in order to obtain the extension vector e (size: Nb × 1) which contains the extension
scalar states of all bonds, real and fictitious, assemble matrix Ae (size: Nb × Nn) by
carrying out the following operation for each bond (see Equation 2.48):

{
eij

}
=

ξij
|ξij|

[
−1 1

]{Ui

Uj

}
⇒ e = Ae U (2.97)

• in order to obtain the dilatation vector θ (size: N × 1) which contains the dilatations
of the real nodes, assemble matrix Aθ (size: N × Nb) by carrying out the following
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operation for all bonds, real and fictitious (see Equation 2.51):

{
θi,hi

θj,hj

}
= cθωijxijβijV




1
mi

1
mj



{
eij

}

⇒ θ = Aθ e

(2.98)

where the subscripts hi and hj indicate the h-th contribution to the sum that composes
the complete values of the dilatations of the real nodes i and j, respectively;

• in order to obtain the vector Θ (size: Nn × 1) which contains the dilatations of the
real and fictitious nodes, assemble the matrix AΘ (size: Nn ×N) as follows:

ΘΓ0 =
[
TΓ0

1

[
TΩ0

1

]−1

0 · · · 0
]





θΩ0

θn+1

...
θN





= AΓ0 θ

ΘΩ = 1 θ

ΘΓl
=
[
0 · · · 0 T

Γl
N

[
T

Ωl
N

]−1]





θ1
...

θN -n-1

θΩl





= AΓl
θ

⇒ Θ =



AΓ0

1

AΓl


θ = AΘ θ (2.99)

where the notation is similar to that in Equation 2.96 (see Equation 2.47 for the
description of the Taylor matrices of the dilatations);

• in order to obtain the bond force vector f b (size: Nb × 1) which contains the forces
in the bonds, assemble matrix Ke (size: Nb × Nb) and matrix Kθ (size: Nb × Nn) by
carrying out the following operations for each bond (see Equation 2.53):

{
fij

}
= keωijβijV

2

(
1

mi

+
1

mj

){
eij

}
+ kθωijxijβijV

2
[

1
mi

1
mj

]{Θi

Θj

}

⇒ f b = Ke e+Kθ Θ

(2.100)

Thus, the bond force vector f b depends on the displacement vector u through the
matrix Kb (size: Nb ×N):

f b = (Ke +Kθ AΘ Aθ)Ae AU u = Kb u (2.101)
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• in order to obtain the internal force vector f̃ (size: N × 1) which contains the forces
applied by the bonds to the real nodes, assemble matrix S (size: N ×Nb) by carrying
out the following operation for each bond (see Equation 2.54):

{
f̃i,hi

f̃j,hj

}
=

[
Mij

Mji

]{
fij

}
⇒ f̃ = S f b (2.102)

where the subscripts hi and hj indicate the h-th contribution to the sum that composes
the complete values of the nodal internal forces of nodes i and j, respectively. Therefore,
the stiffness matrix K (size: N ×N), assembled with the method of the Taylor-based
extrapolation over the fictitious layer, is given as:

K = −S Kb (2.103)
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Abstract

Peridynamics is a non-local continuum theory which is able to model discontinuities in the
displacement field, such as crack initiation and propagation in solid bodies. However, the
non-local nature of the theory generates an undesired stiffness fluctuation near the boundary
of the bodies, phenomenon known as “surface effect”. Moreover, a standard method to impose
the boundary conditions in a non-local model is not currently available. We analyze the
entity of the surface effect in ordinary state-based peridynamics by employing an innovative
numerical algorithm to compute the peridynamic stress tensor. In order to mitigate the
surface effect and impose Dirichlet and Neumann boundary conditions in a peridynamic
way, we introduce a layer of fictitious nodes around the body, the displacements of which
are determined by multiple Taylor series expansions based on the nearest-node strategy.
Several numerical examples are presented to demonstrate the effectiveness and accuracy of
the proposed method.

Keywords: Ordinary state-based Peridynamics, surface effect, peridynamic boundary con-
ditions, peridynamic stress tensor, extrapolation over fictitious nodes.
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3.1 Introduction

The propagation of cracks in solids and structures is one of the most common problems
in structural engineering. In recent years, a new non-local continuum theory able to simulate
crack propagation, named peridynamic theory, attracted the attention of many researchers.
Each point in a body modelled with peridynamics interacts with all the neighboring points
within a distance δ. The non-locality of the peridynamic theory is essential to describe
fracture phenomena in solid bodies without ad hoc criteria. Firstly, the so-called “bond-based
peridynamics” was developed [61], which however has a limited capability of prescribing the
Poisson’s ratio. This shortcoming is avoided by the second formulation of the theory, named
“state-based peridynamics” [62].

The non-local nature of the theory leads to two interrelated problems near the boundary
of the body: the “surface effect” and the difficulty to impose the boundary conditions [74].
The surface effect, sometimes also called “skin effect”, is due to the fact that peridynamic
points near the boundary lack some neighboring points, leading to an undesired variation of
the stiffness properties in the most external layer of the body [186, 226]. Bond-based and
state-based peridynamic models exhibit respectively a softening and a hardening-softening
behavior near the boundary [187, 198, 227].

Imposing boundary conditions in a peridynamic model is not a trivial task to accomplish.
The application of the boundary conditions to the points on the boundary, as one would do in
a local model, leads to large fluctuations of the solution near the boundary [186]. In [63] it is
suggested that external loads and constraints should be imposed on a layer of finite thickness
respectively inside and outside the body. This strategy is surely closer to a non-local concept,
but it is not really clear the proper procedure to “distribute” the boundary conditions over
the finite layers. In the following, we present some of the most commonly used methods to
mitigate the surface effect and impose the boundary conditions in a peridynamic model.

A possible approach is to couple peridynamics with classical continuum mechanics: peri-
dynamics is employed only in the interior of the body and the layer of material near the
boundary is modelled, for instance, with the Finite Element Method [171, 205, 206, 208,
209, 228], with the Carrera Unified Formulation [213], with the Extended Finite Element
Method [229, 230] or with the Meshless Local Exponential Basis Functions method [231]. In
this way, the surface effect and the problem of the imposition of the boundary conditions
in peridynamics is avoided. However, if cracks initiate or propagate near the boundary,
those regions must inevitably be modelled with peridynamics and the coupling approach is
not suitable to avoid the boundary issues. Furthermore, there are some spurious effects at
the interface of the coupling region due to the different formulations of peridynamics and
classical continuum mechanics (see the computation of out-of-balance forces in [165]).

The maximum distance of interaction, namely δ, is a measure of the non-locality of the
theory. Therefore, the external layer of the body which is affected by the surface effect is
thinner as δ approaches 0. Similarly, the imposition of the boundary conditions in a local
way (constraints and loads applied only to the points closest to the boundary) becomes a
better approximation if δ tends to 0. Since the number of nodes is bound to increase as δ
decreases, the computational effort may become excessive. In this case, the variable horizon
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method can be employed to decrease the value of δ near the boundaries [149, 193, 195, 198,
204, 215, 216]. However, this approach of reducing the non-local nature of the peridynamic
theory is solely capable of confining the solution fluctuation in a smaller region, but never
of completely correcting it.

The approach of modifying the stiffness properties of the bonds near the boundary has
been proposed in many methods: the force normalization method [187], the force density
method [188], the energy method [63, 189], the volume method [64] and the position-aware
linear solid constitutive model [190]. The comparison of these methods, carried out in [186],
highlights that there are still some residual fluctuations of the solution near the boundary
because they do not cope with the problem of the imposition of the boundary conditions in
a non-local way. Another recently devised approach consists in modifying the peridynamic
formulation in points which are affected by the surface effect in order to recover the classical
mechanics solution for δ → 0 [232, 233]. Nevertheless, the treatment of the boundaries
becomes much more complex.

The method of the “fictitious nodes” consists in adding around the body some nodes
which provide the previously lacking interactions near the boundary, mitigating in this way
the surface effect [148, 188, 191]. The fictitious nodes have been employed also to impose the
boundary conditions: the displacements of the fictitious nodes are extrapolated by means of
various types of functions, such as constant, linear, polynomial, sinusoidal or odd functions,
in order to obtain the desired value of the constraint or load [63, 92, 126, 150, 151, 186,
192–195]. Moreover, the displacements of the fictitious nodes can be determined also by
means of the formulae of classical continuum mechanics to enforce the desired load at the
boundary [92, 186, 192–194]. However, these procedures to impose the boundary conditions
are case-dependent and are applicable only for simple geometries and boundary conditions.

We proposed a new version of the “Taylor-based extrapolation method” adopting the
nearest-node strategy [227]: the displacements of the fictitious nodes are determined as
functions of the displacements of their closest real nodes by means of multiple Taylor series
expansions truncated at a general order nmax. The surface effect is sensibly reduced by this
effective method. Moreover, the boundary of the body is discretized by a new type of nodes,
named “boundary nodes”. As the fictitious nodes, the boundary nodes do not constitute
new degrees of freedom in the model because their displacements are determined by means
of the Taylor-based extrapolation method. Dirichlet boundary conditions are included in
the Taylor series expansion of the displacements of the boundary nodes about their closest
real nodes, whereas Neumann boundary conditions are imposed through the peridynamic
concept of force flux.

The paper is organized as follows: Section 3.2 presents a brief review of the ordinary state-
based peridynamic theory, particularly focusing on the peridynamic stress tensor, the force
flux, the surface effect and the imposition of boundary conditions; Section 3.3 illustrates
the Taylor-based extrapolation method and the imposition of boundary conditions in a
peridynamic model; Section 3.4 shows the discretization of the peridynamic model, the
numerical evaluation of the peridynamic stress tensor and of the force flux, and the numerical
implementation of the proposed method; Section 3.5 compares the numerical results of several
meaningful 2-dimensional examples obtained without any corrections at the boundary and
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by using the proposed method; Section 3.6 shows the differences that may arise in crack
propagation near the boundaries between corrected and uncorrected models; Section 3.7
draws the conclusions.

3.2 Review of peridynamic theory

Peridynamic points interact with each other, even within finite distance, through enti-
ties named “bonds”. A bond is identified by the relative position vector in the reference
configuration as

ξ = x′ − x , (3.1)

where x and x′ are the position vectors of two points in a body B modelled with peridynamics.
The bond vanishes if the distance between the interacting points exceeds the value δ, called
“horizon”. A point x therefore interacts with all the points x′ inside its neighborhood, which
is defined as

Hx =
{
x′ ∈ Br : ‖ξ‖ ≤ δ

}
, (3.2)

where Br is the body in the reference configuration. Point x is named “source point” and
the points within Hx are named “family points”.

In the deformed body configuration Bd at time t, the relative displacement vector η is
defined as

η = u(x′, t)− u(x, t) , (3.3)

where u is the displacement field. Note that ξ+η is the relative position of points x and x′

in the deformed configuration.
The peridynamic equation of motion of a point x within the body B is given by [61, 62]:

ρ(x) ü(x, t) =

∫

Hx

f(x,x′, t) dVx′ + b(x, t) , (3.4)

where ρ is the material density, ü is the acceleration field, f is the pairwise force density, dVx′

is the differential volume of a point x′ within the neighborhood Hx and b is the external
force density field. The pairwise force density represents the force (per unit volume squared)
in a bond.

The peridynamic equilibrium equation is derived from Equation 3.4 by dropping the
dependence on time:

−
∫

Hx

f(x,x′) dVx′ = bx . (3.5)

where bx = b(x). f(x,x′) is the force density applied to point x due to the interaction with
a point x′ inside its neighborhood. Conversely, point x belongs to the neighborhood Hx

′ ,
thus a force density f(x′,x) = −f(x,x′) is applied to point x′ (see Figure 3.1). The formulae
to compute the pairwise force density depending on the deformation of the body are shown
in the following Section.
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x

y

Br(t = 0)

x
δ

H
x

x
′

δ

H
x
′

ξ

Bd(t)

u(x, t)

u(x′, t)

ξ + η

f(x,x′)

f(x′,x)

Figure 3.1: Body modelled with ordinary state-based peridynamics in the reference configuration Br

and deformed configuration Bd: a pairwise force density f arises in the bond ξ due to the deformation
of the body.

3.2.1 Ordinary state-based peridynamics

In state-based peridynamics, the pairwise force density is defined as [62]

f(x,x′) = T[x]〈ξ〉 −T[x′]〈−ξ〉 , (3.6)

where T is the force density vector state. T[x]〈ξ〉 and T[x′]〈−ξ〉 depend respectively on
points x and x′, and they respectively operate on bonds ξ and −ξ.

In an ordinary peridynamic material, the force density vector state is aligned with the
corresponding bond for any deformation, as depicted in Figure 3.1, and it can be written as

T[x]〈ξ〉 = t[x]〈ξ〉 M〈ξ〉 , (3.7)

where t is the force density scalar state (magnitude of T) and M is the deformed direction
vector state (unit vector in the direction of T), defined as

M〈ξ〉 = ξ + η

‖ξ + η‖ . (3.8)

Note that M〈ξ〉 = −M〈−ξ〉.
Furthermore, under the assumption of small deformation (η ≪ ξ), the deformed direc-

tion vector state can be approximated with the bond direction unit vector in the reference
configuration:

m =
ξ

‖ξ‖ . (3.9)
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Therefore, the pairwise force density can be rewritten as

f(x,x′) =
(
t[x]〈ξ〉+ t[x′]〈−ξ〉

)
m . (3.10)

The reference position scalar state x, representing the bond length in the reference con-
figuration, and the extension scalar state e, describing the elongation (or contraction) of the
bond in the deformed body configuration, are respectively defined as

x = ‖ξ‖ , (3.11)

e = ‖ξ + η‖ − ‖ξ‖ . (3.12)

The influence of the neighborhood Hx on a source point x is expressed by two non-local
properties of that point, the weighted volume m and the dilatation θ, which are defined as

mx =

∫

Hx

ω x2 dVx′ , (3.13)

θx =
cθ
mx

∫

Hx

ω x e dVx′ , (3.14)

where ω is a prescribed spherical influence function and cθ is a peridynamic constant. We
adopt the Gaussian influence function

ω = e−
‖ξ‖2

δ2 , (3.15)

since it assures a smooth convergence of the numerical integration [184].
The weighted volume describes the “fullness” of the neighborhood: a neighborhood com-

pletely full of peridynamic points results in the maximum value of m, whereas the weighted
volume of an incomplete neighborhood has a lower value. This lack of neighboring points is
the origin of stiffness fluctuations, the so-called “surface effect” [186], near the boundary of
the body. The surface effect is further analyzed in Section 3.2.4.

On the other hand, the dilatation represents the volumetric deformation of the neighbor-
hood. Consider a point x subjected to a homogeneous, isotropic and small deformation ε,
so that e = ε x for each bond. The peridynamic dilatation θ of point x corresponds to the
dilatation θcl in classical continuum mechanics under the same deformation if the constant
cθ is chosen as [62, 160, 227]

cθ =





3 in 3D,

2 in 2D plane strain,

2(1− 2ν)

1− ν
in 2D plane stress,

1− 2ν in 1D axial loading,

(3.16)

where ν is the Poisson’s ratio.
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The force density scalar state can be computed as [227]

t[x]〈ξ〉 = kθ
ω x

mx

θx + ke
ω e

mx

. (3.17)

where kθ and ke are the peridynamic stiffness constants. These constants are derived by
equalizing the peridynamic strain energy density in a point x with a complete neighborhood
under homogeneous deformation, with the classical continuum mechanics strain energy den-
sity in a point subjected to the same deformation [62, 160, 227]:

kθ =





−3(1− 4ν)

2(1 + ν)(1− 2ν)
E in 3D,

−(1− 4ν)

(1 + ν)(1− 2ν)
E in 2D plane strain,

−(1− 3ν)

(1 + ν)(1− 2ν)
E in 2D plane stress,

ν

(1 + ν)(1− 2ν)
E in 1D axial loading,

(3.18)

ke =





15

2(1 + ν)
E in 3D,

4

1 + ν
E in 2D plane strain or plane stress,

1

1 + ν
E in 1D axial loading,

(3.19)

where E is the Young’s modulus.
By substituting Equation 3.17 in Equation 3.10, the pairwise force density is computed

as

f(x,x′) =

[
kθ

(
θx
mx

+
θx′

mx
′

)
ω x+ ke

(
1

mx

+
1

mx
′

)
ω e

]
m . (3.20)

Note that the magnitude of the pairwise force density in ordinary state-based peridynamics
depends on the neighborhood properties (m and θ) of the two points x and x′ connected by
the bond. Hence, the resultant of all the bond forces in a point x, obtained with the integral
of the peridynamic equilibrium equation (Equation 3.5), depends on the deformation of the
points within a 2δ-distance from x.

3.2.2 Peridynamic stress tensor

The peridynamic stress tensor, introduced in [172], is defined in a point x with a complete
neighborhood as

τ x =
1

2

∫

Ω

∫ δ

0

∫ δ

s

f(x− sm,x+ (r − s)m)⊗m r2 dr ds dΩm , (3.21)

where Ω is a unit sphere centered in x and dΩm is the differential solid angle on Ω in any
bond direction m. The points x − sm and x + (r − s)m are connected by a bond passing
through point x, and we respectively name them x′ and x′′. Therefore, s = ‖x′ − x‖ and
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r = ‖x′′ − x′‖, as shown in Figure 3.2. s is the distance between points x and x′, whereas r
is the length of the bond between x′ and x′′. The definition of the integration domain allows
to take into account all the bonds passing through point x. Note that each bond passing
through x (between x′ and x′′) has a corresponding bond in the opposite direction (between
x′′ and x′), so that the same pairwise force density is integrated twice in Equation 3.21. This
is the reason why the factor 1/2 appears at the beginning of the formula.

x

H
x

m

Ω

x
′

x
′′

s

r δ

Figure 3.2: Main variables involved in the computation of the peridynamic stress tensor in point x:
- the bond direction m lie on the unit sphere Ω (dotted line);
- point x′ lies on the opposite direction of m at a distance s from x, with 0 < s < δ (dashed line);
- point x′′ lies on the direction m at a distance r from x′, with s < r < δ (dashdotted line).

The integral over the unit sphere Ω is not affected by the variables s and r, but it depends
only on the bond direction m. On the other hand, the integrals related to ds and dr are
interdependent, as shown by the integration domain depicted in Figure 3.3. For later use,
the peridynamic stress tensor in a point x with a complete neighborhood is rewritten by
changing the order of the integrals:

τ x =
1

2

∫

Ω

∫ δ

0

∫ r

0

f(x′,x′′)⊗m r2 ds dr dΩm

=
1

2

∫

Hx

∫ r

0

f(x′,x′′)⊗m ds dVx′′ , (3.22)

where dVx′′ = r2 dr dΩm.
Under the assumption of homogeneous deformation, the bonds with the same length and

direction have the same pairwise force density in any position of the body. This means that,
for each bond of length r and direction m, its pairwise force density does not depend on s

anymore. Therefore, τ x can be simplified from Equation 3.22 as follows:

τ x =
1

2

∫

Hx

(∫ r

0

ds

)
f(x,x′′)⊗m dVx′′
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s

r

0 δ

δ

r = s

Figure 3.3: Integration domain for the computation of the peridynamic stress tensor for a fixed bond
direction:
- for any value of s in the interval ]0, δ[, r lies in the interval ]s, δ[ (see limits of integration in
Equation 3.21);
- for any value of r in the interval ]0, δ[, s lies in the interval ]0, r[ (see limits of integration in
Equation 3.22).

=
1

2

∫

Hx

r f(x,x′′)⊗m dVx′′ . (3.23)

Note that, since the value of s does not affect f(x′,x′′) in a body under homogeneous defor-
mation, we conveniently choose the pairwise force density for s = 0, i.e., f(x,x′′).

We want to compare the peridynamic stress tensor with the stress tensor in classical
continuum mechanics for the same deformation conditions. For simplicity sake, we choose
the 2-dimensional plane stress peridynamic model for a body subjected to two different
conditions of homogeneous and small deformation: isotropic deformation, indicated by the
superscript iso, and simple shear deformation, indicated by the superscript sh. Under those
conditions, the strain and stress tensors in a point x are given in classical continuum me-
chanics as

ε iso
x

= ε iso

[
1 0

0 1

]

⇒ σ iso
x

=
E

1− ν
ε iso

[
1 0

0 1

]
= σ iso

[
1 0

0 1

]
, (3.24)

ε sh
x

= ε sh

[
0 1

1 0

]

⇒ σ sh
x

=
E

1 + ν
ε sh

[
0 1

1 0

]
= σ sh

[
0 1

1 0

]
, (3.25)

where ε iso and ε sh are the values of the imposed deformations and σ iso and σ sh are the
corresponding stresses.
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In the following analysis of the peridynamic stress tensor, only points with complete
neighborhoods are considered. The inclination of a bond with respect to the x-axis is
called φ. Therefore, the bond direction in a 2-dimensional model can be written as m =

{cosφ, sinφ}⊤. Furthermore, the weighted volume of a point x with a complete neighbor-
hood is given from Equation 3.13 by

mx =

∫ 2π

0

∫ δ

0

‖ξ‖3 e−
‖ξ‖2

δ2 h dξ dφ

=
π(e− 2)

e
hδ4 , (3.26)

where h is the thickness of the 2-dimensional body.
In the case of a body subjected to a small isotropic deformation, any extension scalar state

is e iso = ε isox and the corresponding dilatation in a point x with a complete neighborhood is
θ iso
x

= cθ ε
iso. The peridynamic stress tensor under this condition is given from Equation 3.23

as

τ iso
x

=
1

2

∫ 2π

0

∫ δ

0

(cθkθ + ke) ε
iso 2

mx

r2e−
r2

δ2

{
cosφ

sinφ

}
⊗
{
cosφ

sinφ

}
h r dr dφ

=
E

1− ν
ε iso 2e h

π(e− 2)hδ4

∫ δ

0

r3e−
r2

δ2 dr

∫ 2π

0

[
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

]
dφ

=
E

1− ν
ε iso 2e

π(e− 2)δ4
(e− 2)δ4

2e

[
π 0

0 π

]

=
E

1− ν
ε iso

[
1 0

0 1

]
. (3.27)

The obtained peridynamic stress tensor yields the same result of the stress tensor computed
with classical continuum mechanics in a point under isotropic deformation. Note that only
a tensile stress τ11 = τ22 = σ iso arises from the imposed deformation ε iso and there is no
shear stress (τ12 = 0).

In the case of a body subjected to a small shear deformation ε sh, the extension scalar
state can be computed by substituting ξ = {‖ξ‖ cosφ, ‖ξ‖ sinφ}⊤ and η = {ε sh‖ξ‖ sinφ,
ε sh‖ξ‖ cosφ}⊤ in Equation 3.12:

e sh =

√[
‖ξ‖(cosφ+ ε sh sinφ)

]2
+
[
‖ξ‖(sinφ+ ε sh cosφ)

]2 − ‖ξ‖

= ‖ξ‖
√

1 + 4 ε sh cosφ sinφ− ‖ξ‖
= 2 ε sh‖ξ‖ cosφ sinφ (3.28)

where the formula is simplified under the assumption of sufficiently small deformation by
dropping the second order terms and employing the Taylor series expansion for the square
root. The corresponding dilatation in a point x with a complete neighborhood is θ sh

x
= 0

given the anti-symmetry of the integrand and the symmetry of the integration domain. The
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peridynamic stress tensor under this condition is given from Equation 3.23 as

τ sh
x

=
1

2

∫ 2π

0

∫ δ

0

2 ke ε
sh 2

mx

r2e−
r2

δ2 cosφ sinφ

{
cosφ

sinφ

}
⊗
{
cosφ

sinφ

}
h r dr dφ

=
4E

1 + ν
ε sh 2e h

π(e− 2)hδ4

∫ δ

0

r3e−
r2

δ2 dr

∫ 2π

0

[
cos3 φ sinφ cos2 φ sin2 φ

cos2 φ sin2 φ cosφ sin3 φ

]
dφ

=
4E

1 + ν
ε sh 2e

π(e− 2)δ4
(e− 2)δ4

2e

[
0 π/4

π/4 0

]

=
E

1 + ν
ε sh

[
0 1

1 0

]
. (3.29)

The obtained peridynamic stress tensor yields the same result of the stress tensor computed
with classical continuum mechanics in a point under simple shear deformation. Note that
only a shear stress τ12 = σ sh arises from the imposed deformation ε sh and there is no tensile
stress (τ11 = τ22 = 0).

We showed that the peridynamic solution for the stress tensor corresponds to that of
the classical continuum mechanics for homogeneous and small deformations, as shown also
in [165] for bond-based peridynamic models. However, this statement is not valid near the
boundaries of the body due to the surface effect.

3.2.3 Force flux

The force flux τ (x,n) at point x in the direction of the unit vector n (see Figure 3.4) is
derived from Equation 3.21 as [172]:

τ (x,n) =
1

2

∫

Ω

∫ δ

0

∫ δ

s

f(x′,x′′) (m · n) r2 dr ds dΩm , (3.30)

where x′ = x − sm and x′′ = x + (r − s)m. As in the definition of the peridynamic stress
tensor, a factor 1/2 is required since the integration domain takes into account the magnitude
of the pairwise force density of each bond twice (for both direction m and −m).

We briefly recall the mechanical interpretation of the force flux [172]. Consider a plane P
with normal n passing through point x, as shown in Figure 3.5. Points x′ and x′′ respectively
lie in the different half-spaces generated by plane P . The differential volumes of those points
are dVx′ = r2 ds dΩm and dVx′′ = r2 dr dΩm. The differential area of point x′, which is
perpendicular to the bond direction m, is the portion of a sphere centered in x′′ with a
radius r which subtends the differential solid angle dΩm, namely dAx

′ = r2 dΩm. By the
same token, the differential area dAx

′′ on a sphere centered in x′ with a radius r is equal to
dAx

′ . As shown in Figure 3.5, the differential area of point x with normal n is the projection
in direction m of dAx

′ = dAx
′′ on plane P :

dAx =
r2 dΩm

m · n . (3.31)
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x

H
x

n

P

m

Ω

x
′

x
′′

τ (x,n)

Figure 3.4: Force flux τ (x,n) at point x in direction n, computed with any bond direction m on the
unit sphere Ω, any point x′ lying within Hx on the opposite direction of m (dashed line) and any
point x′′ lying within Hx

′ on the direction m (dashdotted line). Points x′ and x′′ lie in the different
half-spaces generated by the plane P passing through point x with normal n.

The differential pairwise force acting through the bond between points x′ and x′′ is f(x′,x′′) dVx′ dVx′′ .
Therefore, the differential pairwise force per unit area on plane P is given by

f(x′,x′′) dVx′ dVx′′

dAx

= f(x′,x′′) (m · n) r2 dr ds dΩm . (3.32)

Note that the integrand in Equation 3.30 is the pairwise force per unit area on plane P .
This provides the mechanical interpretation of the force flux as the resultant of the pairwise
forces per unit area of all the bonds intersecting P in x.

3.2.4 Surface effect

The non-local formulation of the peridynamic theory exhibits some issues near the bound-
aries due to the incomplete neighborhoods of points close to free surfaces. The peridynamic
constants kθ and ke in Equations 3.18 and 3.19 are derived for points with a complete
neighborhood. Therefore, the points near the boundaries, whose neighborhood is lacking
some bonds, have different stiffness properties with respect to the points in the bulk. This
phenomenon is called “surface effect” [186].

In ordinary state-based peridynamics, there are two non-local properties of a point which
may contribute to the surface effect: the weighted volume m and the dilatation θ. The latter
(Equation 3.14) is independent from the neighborhood “fullness” because it is normalized
by the value of the weighted volume. Therefore, we focus on the value of m. We define
the value db as the minimum distance of a peridynamic point from any boundary of the
body. The weighted volume has its maximum value when db ≥ δ, and it decreases gradually
from points with db = δ towards points with db = 0 on the boundary. Moreover, points
approaching corners, with respect to those approaching edges or surfaces, exhibit a steeper
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x

m

x
′ dAx

′ ds

x
′′ dAx

′′ dr

s

r

dΩm

dΩm

n

dAx

P

Figure 3.5: Differential variables involved in the computation of the force flux τ (x,n): the differential
volumes of points x′ and x′′ are respectively dVx

′ = ds dAx
′ and dVx

′′ = dr dAx
′′ , where dAx

′ =
dAx

′′ = r2 dΩm, and the differential area dAx = r2 dΩm/(m ·n) is the projection of dAx
′ and dAx

′′

on the plane P.

reduction in the weighted volume and a lower minimum value at the boundary.
The equilibrium of a peridynamic point x (Equation 3.5) is determined by the sum of

the pairwise forces of all its bonds. Therefore, x primarily interacts with the points inside
its neighborhood Hx. However, the magnitude of the pairwise force density (Equation 3.20)
depends on the weighted volumes and dilatations of both point x and point x′ within Hx.
This means that x secondarily interacts with points up to a distance of 2δ from itself. Thus,
as shown in Figure 3.6, we can discriminate 3 types of points depending on db:

• if db ≥ 2δ, the point is of type-I;

• if δ ≤ db < 2δ, the point is of type-II;

• if db < δ, the point is of type-III.

Type-I points are said to be in the “bulk” of the body and they are the only ones which are
not affected by the surface effect.

As the weighted volume of one or both the points of a bond decreases, the pairwise force
density of that bond increases according to Equation 3.20. As shown in Figure 3.6, type-II
points interact with at least one point with a partial neighborhood, so that the peridynamic
forces applied to those points increase. Therefore, in the layer of the body where δ ≤ db < 2δ

the peridynamic material is stiffer and exhibits a hardening behavior. The pairwise forces
applied to type-III points increase even more. However, a type-III point is affected by less
bonds than type-I or type-II points due to the lack of at least one family point. Therefore, the
most external layer of the body (db < δ) exhibits a hardening-softening behavior towards the
boundary. This hardening-softening behavior can also be observed in the analytical solution
of a 1-dimensional state-based body subjected to a homogeneous small deformation [227].
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However, we expect that the stiffness fluctuation would be amplified near the corners of the
body because the points in those regions have the smallest partial neighborhood.

B

x
I

δ

2δ

db

x
II

db

x
III

db

Figure 3.6: Types of state-based peridynamic points depending on the distance db from the closest
boundary: points are of type-I, also named points in the “bulk”, if db ≥ 2δ, type-II if δ ≤ db < 2δ
and type-III if db < δ. The source point x interacts primarily with the family points within the
neighborhood Hx (dashed line) and secondarily with all the points in the neighborhoods of the family
points (dotted line).

Figures 3.7 and 3.8 show the components of the peridynamic stress tensor τ x in a 2-
dimensional body subjected respectively to a isotropic deformation ε iso and to a simple
shear deformation ε sh. τ x is computed numerically with a relatively high density of nodes
within each neighborhood (m = 10) and normalized with the analytical solutions derived
in Section 3.2.2. Please refer to Section 3.4.3 for the numerical procedure to compute the
peridynamic stress tensor. The numerical result for the points in the bulk of the body is
really close to the analytical solution, whereas there are large differences for the points near
the boundary, especially near the corners. Moreover, the points near the corners, due to the
asymmetry of their neighborhood with respect to both x- and y-axis, have a non-zero value
of the peridynamic stress even without the corresponding deformation: τ12 6= 0 in the case
of isotropic deformation ε iso and τ11 = τ22 6= 0 in the case of simple shear deformation ε sh.

3.2.5 Imposition of the boundary conditions

Another issue in peridynamics, which is related to the surface effect, is the proper defini-
tion of the boundary conditions. The easiest method to impose the peridynamic boundary
conditions would be to assign the desired value to the boundary points, as in classical contin-
uum mechanics. However, this method does not consider the non-local nature of the theory
and results in additional fluctuations of the solution near the application of the boundary
conditions.

A widely used method suggests that external loads and constraints should be imposed on
a layer of finite thickness respectively inside and outside the body [63]. The finite thickness
is defined to be 2δ in state-based peridynamics [158]. Since this method involves type-
II and type-III points in the boundary conditions, it is undoubtedly more accurate than
the previous one. However, it is not really clear the exact procedure of “distributing” the
boundary conditions over the finite layer.
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Figure 3.7: Components of the peridynamic stress tensor τx for every point in a 2-dimensional body
subjected to a isotropic deformation ε iso. The plots are normalized with the analytical solution of
the tensile stress σ iso for a peridynamic point with a complete neighborhood.

We propose in the next Section a novel method capable of reducing considerably the
surface effect and of imposing the boundary conditions in a “peridynamic way”.
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Figure 3.8: Components of the peridynamic stress tensor τx for every point in a 2-dimensional body
subjected to a simple shear deformation ε sh. The plots are normalized with the analytical solution
of the shear stress σ sh for a peridynamic point with a complete neighborhood.

3.3 Taylor-based extrapolation method

A fictitious layer F of thickness δ is added around the body B [148], as shown in Fig-
ure 3.9. The neighborhoods of the family points of type-II points are completed thanks to
the additional fictitious points, so that type-II points can be considered as points in the
bulk (type-I points). Similarly, the neighborhoods of type-III points are completed by the
fictitious layer, but some of the neighborhoods of their family points are not. However, we
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assign to the fictitious points the value of the full weighted volume. In this way, all the
points inside the body B behave as points in the bulk. The next Section shows a procedure
to evaluate the displacement and dilatation fields over the fictitious layer.

B

F

δ

x
I

δ

2δ

db

x
II

db

x
III

db

Figure 3.9: Types of state-based peridynamic points depending on the distance from the closest
boundary db in a body with a fictitious layer of thickness δ: there is no difference between type-I and
type-II points anymore, whereas type-III points lack some secondary interactions in the neighborhoods
of the family points.

3.3.1 Extrapolation procedure to mitigate the surface effect

The displacements and the dilatations of the fictitious points are determined by means
of the Taylor-based extrapolation method [227]. Consider the displacement uf = u(xf )

of a fictitious point, where xf = {xf , yf , zf}⊤. We name ub = u(xb) the displacement of
the boundary point with the minimum distance from that fictitious point (nearest-point
strategy). The Taylor series expansion of uf about xb = {xb, yb, zb}⊤ truncated at the
maximum order nmax ≥ 1 is given by

uf = ub +
nmax∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xf − xb)
n1(yf − yb)

n2(zf − zb)
n3

n1!n2!n3!

∂n1+n2+n3ub

∂xn1 ∂yn2 ∂zn3

with n3 = n− n1 − n2,

(3.33)

where n is the global order (n = 1 is related to the gradient, n = 2 to the Hessian matrix,
etc.) and n1, n2 and n3 are the orders respectively in x, y and z directions.

Similarly, consider the dilatation θf = θ(xf ) of a fictitious point and the dilatation
θb = θ(xb) of the boundary point closest to xf . The Taylor series expansion of θf about xb

truncated at the maximum order nmax − 1 is given by

θf =





θb if nmax = 1,

θb +
nmax−1∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xf − xb)
n1(yf − yb)

n2(zf − zb)
n3

n1!n2!n3!

∂n1+n2+n3 θb
∂xn1 ∂yn2 ∂zn3

if nmax > 1,

(3.34)
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with n3 = n−n1−n2. Note that the dilatation is a measure of the strain, thus its truncation
of the Taylor expansion occurs with 1 order less than that of the displacement.

This method allows to determine the displacement field and the dilatation field in the
fictitious layer F as a function of the respective fields in the body B. Since the displacement
and dilatation fields in F are approximated by means of a Taylor series expansion, more
accurate results are obtained by increasing the truncation order nmax or by reducing the
thickness of the fictitious layer.

The new bonds between real and fictitious points, called “fictitious bonds”, are the inter-
actions that are lacking in the peridynamic models without fictitious layer. The Taylor-based
extrapolation method provides the displacement and dilatation values of the fictitious points,
which are required to compute the pairwise forces of the fictitious bonds. In this way, the
proposed method is able to mitigate the surface effect.

3.3.2 Peridynamic boundary conditions

We propose hereinafter a novel method to impose the boundary conditions in a peridy-
namic way when using the previously described fictitious layer method [227]. The desired
boundary conditions are applied solely on the boundary points, exactly as in classical contin-
uum mechanics. However, the influence of the boundary conditions on the body is non-local
thanks to the Taylor-based extrapolation method. This concept is explained for Dirichlet
and Neumann boundary conditions in the following.

A constraint u imposed in a boundary point xb is simply given as

u(xb) = u . (3.35)

This boundary condition determines the displacement field in the fictitious layer through
the Taylor-based extrapolation method (by substituting Equation 3.35 in Equation 3.33).
Therefore, the influence of the constraint can be seen as distributed in the whole thickness
of the fictitious layer, as suggested in [63, pp. 29–30].

An external load per unit area p applied to a boundary point xb is expressed by means
of the peridynamic concept of force flux (see Equation 3.30):

τ (xb,n) = p , (3.36)

where n is the unit vector perpendicular to the boundary in xb. By definition of force
flux, τ (xb,n) is the sum of the pairwise forces (per unit area) of all the bonds passing
through xb. Since point xb lies on the boundary, all the bonds involved in Equation 3.36 are
fictitious bonds. On the one hand, the pairwise forces of those bonds applied to the fictitious
points, which do not constitute new degrees of freedom, are ignored. On the other hand,
the corresponding pairwise forces applied to the real points are the only ones “perceived”
by the body. For how the magnitude of those forces is computed (see Equation 3.20), the
boundary condition in point xb affects the displacement in a sphere of radius 2δ centered
in xb. Therefore, the external load, expressed by means of the definition of the force flux,
is distributed on the points in a layer of thickness 2δ within the body, as suggested in [63,
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pp. 30–32].
The proposed method for imposing the boundary conditions, which makes use of the

Taylor-based extrapolation on the fictitious layer, defines a peridynamic way to distribute
the constrains or the loads in the non-local region near the boundary.

Remark 3.1. The reaction force acting on a boundary point xb, due to a constraint imposed
as in Equation 3.35, can be computed as the force flux in xb in the direction of the unit vector
n perpendicular to the boundary, i.e., τ (xb,n).

Remark 3.2. The zero-traction boundary condition is sometimes applied by removing the
fictitious layer in literature [92]. However, in order to maintain the correction of the surface
effect, we suggest to keep the fictitious layer and impose the condition τ (xb,n) = 0 to all
the points of that boundary.

3.4 Numerical implementation

In order to discretize the domain, a mesh-free method is adopted [65, 184]. For simplicity
sake, the peridynamic grid consists of a finite number of equally-spaced nodes, as shown in
Figure 3.10. Each peridynamic node is representative of a finite volume ∆V = h∆x2, where
∆x = ∆y is the grid spacing and h is the thickness of the body. Please note that the
most external real nodes do not lie exactly on the boundary of the body since the nodes
are positioned at the center of the volume ∆V . The ratio between the horizon and the grid
spacing is defined as m-ratio: m = δ/∆x. The value of this parameter determines the density
of peridynamic nodes within a neighborhood. Furthermore, the fictitious layer (empty dots
in Figure 3.10) is added to the real body to complete the neighborhoods of the nodes near
the boundary.

Figure 3.10: Uniform peridynamic grid of real nodes (solid dots) and fictitious nodes (empty dots).
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3.4.1 Numerical Taylor-based extrapolation method

The Taylor-based extrapolation procedure in the discretized model aims to determine
the values of the variables of the fictitious nodes (displacements u and v respectively in x

and y directions and dilatations θ in the case of a peridynamic 2-dimensional body). The
numerical procedure to determine, for instance, the displacement ui in a fictitious node i
with coordinates (xi, yi) is carried out as follows:

• find the real node of index j closest to node i;

• perform a Taylor series expansion of ui about node j with coordinates (xj, yj):

ui = uj +
nmax∑

n=1

n∑

n1=0

(xi − xj)
n1(yi − yj)

n2

n1!n2!
· ∂

n1+n2uj
∂xn1 ∂yn2

, (3.37)

where uj and ∂n1+n2uj

∂xn1 ∂yn2
are the displacement of node j and its derivatives, nmax is the

maximum order of the truncated Taylor series, n1 and n2 are the orders respectively
in x and y directions and n is the global order so that n2 = n− n1.

Since the coordinates of nodes i and j are known, the displacement ui in Equation 3.37 is
written as a function of the displacement uj and its derivatives. However, we aim to express
ui as a function solely of the displacement of the real nodes. The total number of derivatives
of uj, considered before truncating the Taylor series, is nd = (nmax(nmax + 1)/2)− 1. They
can be determined as functions of the displacements of the nd real nodes near node j by
following another Taylor-based extrapolation procedure:

• find the nd real nodes with indices jk closest to node j, where k = 1, . . . , nd (see Remark
below for the conditions on the node search);

• for each of those nodes with coordinates (xjk , yjk), perform a Taylor series expansion
of their displacements ujk about node j:

ujk = uj +
nmax∑

n=1

n∑

n1=0

(xjk − xj)
n1(yjk − yj)

n2

n1!n2!
· ∂

n1+n2uj
∂xn1 ∂yn2

with k = 1, . . . , nd;

(3.38)

• solve the system of equations in Equation 3.38 to obtain the derivatives of uj as a
function of the displacements uj and ujk :

∂n1+n2uj
∂xn1 ∂yn2

= f(uj, ujk) with k = 1, . . . , nd. (3.39)

Therefore, by combining Equations 3.37 and 3.39, the displacement of a fictitious node is
a function only of the displacements of some real nodes. Note that the adopted nearest-
node startegy is really simple to implement also for complex geometries. This procedure can
be applied to determine the displacements u and v and the dilatations θ of all the fictitious
nodes. In the case of the dilatations, the truncation order nmax must be replaced by nmax−1.
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Remark 3.3. There might be some cases in which the system of equations (Equation 3.38)
is not solvable for the nodes jk that are the closest to node j. For instance, if we want to
determine the second derivative in x direction, the nodes jk must include at least two xjk
coordinates different from each other and from xj (see example in Section 3.4.5). However,
given the adoption a uniform grid in which nodes on the same lines share the same coor-
dinates, this condition is not always met when searching for nodes jk via the closest-node
strategy without any additional condition. Therefore, in order for the system of equations
to be solvable, the nodes jk should comprise at least n1 different xjk coordinates and n2

different yjk coordinates (excluding xj and yj) for each derivative of order n1 in x direction
and n2 in y direction.

In the following we present an example for determining the displacement ui of a fictitious
node i near a corner of the body by means of the Taylor-based extrapolation method with
nmax = 2. As shown in Figure 3.11, the node j near the corner is the real node closest to
node i. Thus, the displacement ui can be given via a Taylor series expansion about node j
(see Equation 3.37) as

ui = uj + lx ·
∂uj
∂x

+ ly ·
∂uj
∂y

+
l2x
2
· ∂

2uj
∂x2

+ lxly ·
∂2uj
∂x ∂y

+
l2y
2
· ∂

2uj
∂y2

, (3.40)

where lx = xi−xj and ly = yi− yj. Note that the number of derivatives of the displacement
uj is nd = 5.

i

j5

j4 j2

j3 j1 j

Figure 3.11: Taylor-based extrapolation method for a fictitious node i near a corner of the body:
node j is the real node closest to node i and nodes jk with k = 1, . . . , 5 are the real nodes closest to
node j.

As shown in Figure 3.11, jk with k = 1, . . . , 5 are the 5 indices of the real nodes closest
to node j. Note that, in order to be compliant with the condition given in Remark 3.3, the
search for the closest nodes should be carried out in terms of Manhattan distance. A system
of 5 equations is written by performing a Taylor series expansion of ujk about node j (see
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Equation 3.39):





uj1 = uj −∆x · ∂uj
∂x

+
∆x2

2
· ∂

2uj
∂x2

uj2 = uj −∆y · ∂uj
∂y

+
∆y2

2
· ∂

2uj
∂y2

uj3 = uj − 2∆x · ∂uj
∂x

+ 2∆x2 · ∂
2uj
∂x2

uj4 = uj −∆x · ∂uj
∂x

−∆y · ∂uj
∂y

+
∆x2

2
· ∂

2uj
∂x2

+∆x∆y · ∂
2uj

∂x ∂y
+ 2∆y2 · ∂

2uj
∂y2

uj5 = uj − 2∆y · ∂uj
∂y

+ 2∆y2 · ∂
2uj
∂y2

(3.41)

The factors of the Taylor series expansions, which are multiplied by the derivatives of uj,
are easily derived from Figure 3.11. After some manipulations, the system in Equation 3.41
yields: 




∂uj
∂x

=
3uj − 4uj1 + uj3

2∆x
∂uj
∂y

=
3uj − 4uj2 + uj5

2∆y

∂2uj
∂x2

=
uj − 2uj1 + uj3

∆x2

∂2uj
∂x ∂y

=
uj − uj1 − uj2 + uj4

∆x∆y

∂2uj
∂y2

=
uj − 2uj2 + uj5

∆y2

(3.42)

Therefore, by substituting Equation 3.42 in Equation 3.40, the displacement ui of the fic-
titious node is expressed as a function solely of the displacements of the real nodes. This
procedure can be repeated for the required variables of all the fictitious nodes.

3.4.2 Numerical formulation of peridynamics

Consider a real node i, as shown in Figure 3.12. The neighborhood Hi of node i embeds
the complete volume of the nearest nodes and the partial volume of the nodes near the
horizon limit. Therefore, all the nodes with at least a portion of their own volume within
the horizon limit are considered part of the neighborhood Hi. For each family node j,
the volume correction coefficient βij ≤ 1 is computed as the fraction of volume actually
contained in the neighborhood [184]. If ∆V of node j is completely inside the neighborhood,
then βij = 1.

The bond ij, which connects node i to node j, could be either a real bond or a fictitious
bond. In both cases, its reference scalar state xij, Gaussian influence function ωij and
inclination φij with respect to the x-axis, can be computed from the coordinates of the two
nodes. Under the assumption of small displacements, the extension scalar state of bond ij
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i

βij = 1

βij < 1

Figure 3.12: The neighborhood Hi of a node i is constituted by the nodes (black dots) with at least
a part of their volume inside the horizon (gray line). The volume correction coefficient β is the
fraction of the volume of the family nodes j within the horizon limit.

is given as
eij = (uj − ui) cosφij + (vj − vi) sinφij , (3.43)

where ui and uj are the displacements in x direction respectively of nodes i and j and vi
and vj are the displacements in y direction respectively of nodes i and j. If the family
node j is fictitious, Equation 3.43 holds and uj and vj are determined as a function of
the displacements of the real nodes by the Taylor-based extrapolation method exposed in
Section 3.4.1.

The weighted volume of node i is evaluated by performing a mid-point Gauss quadrature
from Equation 3.13:

mi =
∑

j∈Hi

ωij x
2
ij βij ∆V . (3.44)

Since the neighborhoods of all the real nodes are complete thanks to the presence of the
fictitious nodes, the weighted volume is constant in the whole body. Furthermore, the value
of the weighted volume of the real nodes is assigned also to the fictitious nodes, as dictated
by the Taylor-based extrapolation method.

Similarly, the dilatation of a real node i is computed from Equation 3.14 as

θi =
cθ
mi

∑

j∈Hi

ωij xij eij βij ∆V . (3.45)
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On the other hand, the dilatations of the fictitious nodes are determined as a function of the
dilatations of the real nodes by means of another Taylor-based extrapolation, as illustrated
in Section 3.4.1.

The magnitude of the pairwise force density in bond ij is given from Equation 3.20 as

fij =

[
kθ

(
θi
mi

+
θj
mj

)
ωij xij + ke

(
1

mi

+
1

mj

)
ωij eij

]
βij . (3.46)

Note that the constants kθ and ke are determined by the constitutive modelling of the
peridynamic theory, the parameters mi, mj, ωij, xij and βij depend only on the geomet-
ric coordinates of the nodes in the reference configuration and the variables eij, θi and θj
can be written as functions of the displacements of the real nodes (by using the proposed
Taylor-based extrapolation method for the variables of the fictitious nodes). Therefore, by
combining Equations 3.43-3.46 together, one can write an equation for each bond ij, either
real or fictitious, to relate the magnitude fij of its pairwise force density to the displacements
of the real nodes.

Finally, under the assumption of small deformation, the peridynamic equilibrium equa-
tion (multiplied by the node volume ∆V ) is written for every real node i as

−
∑

j∈Hi

fij mij ∆V
2 = bi ∆V ∀i ∈ B (3.47)

where mij = {cosφij, sinφij}⊤ is the bond direction in the reference configuration and bi is
the external force density vector applied to node i. The system of equations in Equation 3.47
can be rewritten in the standard form

Kũ = f̃ , (3.48)

where K is the peridynamic stiffness matrix (size: 2N × 2N), ũ is the displacement vector
(size: 2N × 1) and f̃ is the force vector (size: 2N × 1). N is the number of real nodes.
The stiffness matrix K includes the contributions of the fictitious bonds, thus it embeds the
correction of the surface effect by means of the Taylor-based extrapolation method.

3.4.3 Numerical evaluation of the peridynamic stress tensor

This Section deals with the numerical procedure to compute the peridynamic stress
tensor. The theoretical background can be found in Section 3.2.2.

In the discretized peridynamic model, we name the nodes corresponding to the points
x, x′ and x′′ (see Figure 3.2) respectively as i, j and k. Under the assumption of point i
being in the bulk of a body subjected to a homogeneous deformation (see Equation 3.23),
the peridynamic stress tensor can be computed as

τ i =
1

2

∑

k∈Hi

rik fik mik ⊗mik ∆V , (3.49)

where rik is the length of the bond ik. Equation 3.49 provides a good approximation also
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in the case of non-homogeneous deformations if the horizon δ is sufficiently small, as shown
in [234] for bond-based peridynamics. However, Equation 3.49 is not valid for nodes near
the boundary which are affected by the surface effect (if no fictitious layer is employed).

In order to compute numerically the peridynamic stress tensor τ i in a general node i,
also not in the bulk of the body, the integrand of Equation 3.22 should be evaluated for each
bond jk between node j and node k. The differential volume dVx′′ corresponds simply to
the finite volume of node k, i.e., ∆V . On the other hand, we must distinguish two types
of bonds, which are shown in Figure 3.13, to determine ∆s as the corresponding of the
differential length ds of point x′ in the direction of the bond m:

∆s =





∆x

| cosφjk|
if | cosφjk| ≥

√
2

2
,

∆y

| sinφjk|
if | cosφjk| <

√
2

2
,

(3.50)

where the trigonometric functions are within the absolute value because ∆s > 0. In the
former case bond jk is a type-A bond and, in the latter, a type-B bond, which are respectively
shown in Figure 3.13a and 3.13b. A type-A bond contributes to τ i if it intersects the area
∆AA

i = h∆y passing through node i perpendicular to x direction, where h is the thickness
of the 2-dimensional body. Similarly, a type-B bond contributes to τ i if it intersects the
area ∆AB

i = h∆x passing through node i perpendicular to y direction. Therefore, the
peridynamic stress tensor in a node i is given as

τ i =
1

2

∑

ξjk ∩∆AA
i 6=∅

αjk fjk mjk ⊗mjk
∆x

| cosφjk|
∆V

+
1

2

∑

ξjk ∩∆AB
i 6=∅

αjk fjk mjk ⊗mjk
∆y

| sinφjk|
∆V , (3.51)

where fjk is the magnitude of the pairwise force density of bond jk obtained with Equa-
tion 3.46, mjk = {cosφjk, sinφjk}⊤ is the bond direction and αjk is a correction coefficient,
given as:

αjk =





1

2
if j = i or k = i ,

1

2
if ξjk ∩ ∂Ai 6= ∅ ,

1 if ξjk ∩ (∆Ai \ ∂Ai) 6= ∅ ,

(3.52)

where ∂Ai is the boundary of the area ∆Ai, which can be referred either to type-A bonds
(∆AA

i ) or to type-B bonds (∆AB
i ). The different cases in Equation 3.52 are illustrated in

Figure 3.14:

• in the case with j = i (see Figure 3.14a), since only half of the length ∆s related to
node j is on the opposite side of ∆Ai with respect to node k, then αjk = 1/2;

• similarly, in the case with k = i (see Figure 3.14b), since only half of the volume ∆V

of node k is on the opposite side of ∆Ai with respect to node j, then αjk = 1/2;
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• in the case that the bond intersects the boundary of ∆Ai, i.e., ξjk ∩ ∂Ai 6= ∅, since
∂Ai overlaps the boundary of the area of another node (node q in Figure 3.14c), the
magnitude of the pairwise force density of bond jk is equally shared between those
nodes and, therefore, αjk = 1/2;

• in the case that the bond intersects ∆Ai not on its boundary, i.e., ξjk∩(∆Ai \ ∂Ai) 6= ∅
(see Figure 3.14d), the magnitude of the pairwise force density of bond jk contributes
entirely to τ i and, therefore, αjk = 1;

Moreover, to improve the computational efficiency, one might remove the factors 1/2 in
Equation 3.51 and consider each bond just once (for example consider only bond jk and not
bond kj).

i

j

k

ξjk

φjk

∆V

∆x

∆
s

∆AA

i

(a) Type-A bond: | cosφjk| ≥
√
2/2.

i

j

k

ξjk

φjk

∆V
∆
y

∆
s

∆AB

i

(b) Type-B bond: | cosφjk| <
√
2/2.

Figure 3.13: Examples of type-A and type-B bonds for the computation of the peridynamic stress
tensor τ i in node i. The bonds contribute to τ i only if they intersect the corresponding area ∆Ai.

The proposed numerical procedure to compute the peridynamic stress tensor is used to
highlight the surface effect in a 2-dimensional body in Section 3.2.4. Figures 3.7 and 3.8
show that the numerical computation of the peridynamic stress tensor is very close to the
analytical solutions, obtained in Section 3.2.2, for nodes with a complete neighborhood.

3.4.4 Numerical evaluation of the force flux

Consider a finite area ∆A which constitutes one of the sides of the volume cell of a node,
as shown in Figure 3.15. The numerical procedure to compute the peridynamic force flux
through the finite area ∆A is exposed in this Section.

The force flux τ (x,n) of a point x in a direction n is interpreted in Section 3.2.3 as
the sum of the pairwise forces per unit area of all the bonds intersecting the differential
area dAx on the plane P in x, where P is the plane passing through x perpendicular to
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j = i

k

ξjk ∆V

1

2
∆
s

∆Ai

(a) Case j = i: αjk = 1/2.

j

ξjk

1

2
∆V

∆
s

∆Ai

k = i

(b) Case k = i: αjk = 1/2.

i

j

k

q

ξjk
∆V

∆
s

∆Ai

∆Aq

∂Ai = ∂Aq

(c) Case ξjk ∩ ∂Ai 6= ∅: αjk = 1/2.

i

j

k

ξjk

∆V

∆
s

∆Ai

(d) Case ξjk ∩ (∆Ai \ ∂Ai) 6= ∅: αjk = 1.

Figure 3.14: Values of the correction coefficient αjk for different types of intersection between bond
jk and area ∆Ai. These examples consider only type-A bonds, but the same concepts are valid also
for type-B bonds.

∆A

∂A
x

n

j

k

ξjk

(a) Case ξjk ∩ ∂A 6= ∅: αjk = 1/2.

∆A
x

n
j

k
ξjk

(b) Case ξjk ∩ (∆A \ ∂A) 6= ∅: αjk = 1.

Figure 3.15: Values of the correction coefficient αjk for different types of intersection between bond
jk and area ∆A.

n (see Figures 3.4 and 3.5). Therefore, the force flux through ∆A can be discretized from
Equations 3.30 and 3.32 as

τ (x,n) =
1

∆A

∑

ξjk ∩∆A 6=∅
mjk·n>0

αjk fjk mjk ∆V
2 , (3.53)

where x and n are respectively the centroid and the normal of ∆A, fjk mjk ∆V
2 is the

pairwise force of any bond jk intersecting ∆A and αjk is the correction coefficient given by
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Equation 3.52 (see also in Figure 3.15a and 3.15b the possible cases in the computation of
the force flux). Note that, in order to improve the computational efficiency, the factor 1/2

is removed because only bonds satisfying the condition mjk · n > 0 are considered. Since
we are mostly interested in the force flux computed at the boundary of the body to impose
Neumann boundary conditions, this concept is further analyzed in the next Section.

3.4.5 Numerical implementation of the peridynamic boundary con-

ditions

The real nodes closest to the boundary are not exactly on the boundary of the body (see
Figure 3.10). Therefore, by following the concepts exposed in Section 3.3.2, the boundary
conditions in the discretized model should be imposed on the sides of the volume cells which
overlap the boundary. We introduce a new cathegory of nodes, called “boundary nodes”, at
which the boundary conditions are imposed. Each boundary node is positioned at the cen-
troid of the side of the volume cell of the nodes closest to the boundary and is representative
of the finite area ∆Ab of that side, as shown in Figure 3.16. As the fictitious nodes, the
boundary nodes do not constitute new degrees of freedom because their displacements are
determined as a function of the displacements of the real nodes by means of the Taylor-based
extrapolation method.

∆Ab

b
nb

Figure 3.16: Boundary nodes at the boundary of the body: each node b is representative of a finite
area ∆Ab and is associated to the normal nb external to the body.

Suppose that the problem requires a constraint u for the displacement ub in x direction
of a boundary node b, condition given as ub = u. The Taylor-based extrapolation method
is applied to the boundary node exactly as done for the fictitious nodes in Section 3.4.1.
The following procedure is valid also for u = 0. The displacement ub of the boundary node
b with coordinates (xb, yb) is determined by a Taylor series expansion about node j with
coordinates (xj, yj) as

ub = uj +
nmax∑

n=1

n∑

n1=0

(xb − xj)
n1(yb − yj)

n2

n1!n2!

∂n1+n2uj
∂xn1 ∂yn2

, (3.54)
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where node j is the real node closest to node b. The nd derivatives of uj can be expressed as
functions of the displacements of the nd real nodes close to node j. Therefore, the Dirichlet
boundary condition can be written as a function of the displacements of some real nodes:

u = f(uj, ujk) with k = 1, . . . , nd. (3.55)

For example, we consider the case shown in Figure 3.17 with a truncation order nmax = 2.
The Taylor series expansion of the displacement ub about node j is given as

ub = uj +
∆x

2

∂uj
∂x

+
∆x2

8

∂2uj
∂x2

. (3.56)

In order to determine the two derivatives in x direction of Equation 3.56, we find nodes j1
and j2, shown in Figure 3.17, as the nodes closest to node j having x coordinates different
from each other and from xj (see Remark 3.3). We write the system of equations given by
the Taylor series expansions of uj1 and uj2 about node j, as in Equation 3.38, and solve it
to obtain the needed derivatives:





∂uj
∂x

=
3uj − 4uj1 + uj2

2∆x

∂2uj
∂x2

=
uj − 2uj1 + uj2

∆x2

(3.57)

By substituting Equation 3.57 in Equation 3.56, the constraint condition ub = u is given as
a function of the displacements of some real nodes:

u =
15

8
uj −

5

4
uj1 +

3

8
uj2 . (3.58)

More in general, the proposed method allows to write the Dirichlet boundary conditions as
functions of the displacement vector ũ:

u = f(ũ) . (3.59)

b

ub = ujj1j2

Figure 3.17: Example of the Taylor-based extrapolation method used on a boundary node b.

Suppose now that an external force per unit area p is applied to a boundary node b, as
shown in Figure 3.18. The Neumann boundary condition is written in terms of force flux
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through the area ∆Ab associated to node b:

τ (xb,nb) =
1

∆Ab

∑

ξjk ∩∆Ab 6=∅
mjk·nb>0

αjk fjk mjk ∆V
2 = p , (3.60)

where xb is the position of node b and nb is the unit vector perpendicular to ∆Ab external
to the body. Since the pairwise force density of any bond can be expressed as a function of
the displacements of the real nodes (see Section 3.4.2), also τ (xb,n) is a function of those
displacements. Thus, Neumann boundary conditions can be written as functions of the
displacement vector ũ:

p = f(ũ) . (3.61)

b

∆Ab

nb

τ (xb,nb) = p

Figure 3.18: Example of an external load p applied to a boundary node b.

Since both Dirichlet and Neumann boundary conditions are given by equations in which
the only unknowns are the displacements of the real nodes (see Equations 3.59 and 3.61),
we gather all the boundary conditions in a matrix form as

B ũ = c , (3.62)

where B is the matrix of the boundary conditions (size: 2Nb × 2N), ũ is the displacement
vector (size: 2N × 1) and c is the vector of the known terms (size: 2Nb × 1). Nb is the
number of boundary nodes.

In order to include the boundary conditions (B ũ = c) in the system of equations derived
from the equilibrium of the real nodes (Kũ = f̃), we conveniently use the technique of
the Lagrange multipliers [225]. The vector of the Lagrange multipliers λ (size: 2Nb × 1) is
introduced in the system as [

K B⊤

B 0

]{
ũ

λ

}
=

{
f̃

c

}
. (3.63)

The displacement vector ũ, extracted from the vector {ũ,λ}⊤, is the solution to the system
of equilibrium equations which satisfies the imposed boundary conditions.



Chapter 3 155

3.5 Numerical examples

Several examples are presented to verify the reliability and accuracy of the proposed
method. Whenever possible, the numerical peridynamic results are compared with the refer-
ence solutions derived from classical continuum mechanics. The reference solution coincides
with the peridynamic solution only in the limit of the horizon δ approaching 0 [162, 165].
Therefore, the “difference” between these solutions includes two components: a discrepancy
due to the different (local and non-local) formulations of the theories and the actual error
given by the discretization and the implementation of the peridynamic model (either with or
without the proposed method). The difference (in percentage) of the displacements between
the peridynamic numerical results and the reference solution is computed at each node i as

ǫi =

{
ǫu
ǫv

}

i

=





|ui − uref (xi)|
max(|ũref |)

· 100

|vi − vref (xi)|
max(|ũref |)

· 100




, (3.64)

where ui and vi are the displacements of node i, uref (xi) and vref (xi) are the displacements
obtained with the reference solution at the position xi of node i and ũref is the displacement
vector obtained with the reference solution at all the nodes. The reference solution is defined
for each example by providing either the analytical solution (if possible), or the results
obtained with the Finite Element Method.

For simplicity sake, we consider a plate under plane stress conditions with different bound-
ary conditions. The parameters adopted for the simulations of the plate are reported in
Table 3.1. Firstly, we solve each example without adding the fictitious nodes. In this case,
the boundary conditions are implemented by assigning the desired value of the constraints
or loads to the most external nodes of the plate. In particular, Dirichlet boundary conditions
are imposed by assigning to the nodes closest to the boundary the value of the displacement
computed with the reference solution. Then, the same examples are solved by adopting the
proposed Taylor-based extrapolation method and by implementing the boundary conditions
as described in Section 3.4.5.

Table 3.1: Parameters of the plate and of its discretization.

Parameter Value

Length ℓx = 0.3m
Width ℓy = 0.2m

Thickness h = 0.005m
Young’s modulus E = 1GPa
Poisson’s ratio ν = 0.2
Grid spacing ∆x = ∆y = 0.01m
m-ratio m = 3
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3.5.1 Plate under traction

The boundary conditions of the first example are shown in Figure 3.19. The analytical
solution is given by classical continuum mechanics as

u(x) =

{
u(x, y)

v(x, y)

}
=





p

E

(
x+

ℓx
2

)

−ν p
E

(
y +

ℓy
2

)




, (3.65)

where p is the traction load.

x

y

p

Figure 3.19: Boundary conditions for the plate under the traction p = 1MPa.

The plots in Figure 3.20 show the difference of the displacement field, computed without
adopting any correction to the peridynamic model, with respect to the reference solution.
The surface effect and the approximated way of imposing the boundary conditions lead
to large errors near the boundary of the plate, especially near the corners. On the other
hand, there are no fluctuations in the displacement field when the proposed Taylor-based
extrapolation method with nmax = 1 is employed. The differences of the displacement field
of the corrected model (see Figure 3.21) decrease sensibly with respect to those obtained
without corrections at the boundary. Similar results are obtained by choosing higher orders
for the Taylor-based extrapolation.

In the case adopting the proposed method, the error can be further reduced by increasing
the accuracy of the integration over the neighborhoods, i.e., by increasing m [184]. In order
to show this, we compute the relative difference (in percentage) at a node i as

ǫreli =

{
ǫrelu

ǫrelv

}

i

=





|ui − uref (xi)|
|uref (xi)|

· 100

|vi − vref (xi)|
|vref (xi)|

· 100




. (3.66)

In the case employing the Taylor-based extrapolation on the fictitious nodes, the relative
difference of every node inside the body is the same. Therefore, we gather in Table 3.2 the
relative errors for different values of m. We can observe that the relative differences decrease
significantly as the value of m increase.
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Figure 3.20: Displacement field differences between the peridynamic numerical results for m = 3 and
the reference solution (obtained with the analytical solution in Equation 3.65) in the plate under
traction obtained without corrections at the boundary. Note that the colormaps refer to different
values in the two plots.

Table 3.2: Relative differences between the peridynamic numerical results and the reference solution
in the plate under traction when improving the numerical integration by increasing m.

m ǫrelu ǫrelv

3 0.43% 2.15%
4 0.09% 0.45%
5 0.04% 0.18%
6 0.02% 0.09%

3.5.2 Plate under shear load

We present another example considering a plate under a shear load p. Figure 3.22 shows
the boundary conditions of this case. Classical continuum mechanics yield the following
analytical solution:

u(x) =

{
u(x, y)

v(x, y)

}
=





2 (1 + ν) p

E

(
y +

ℓy
2

)

0




. (3.67)

The differences of the displacement field, computed without corrections at the boundary,
with respect to the reference solution are shown in Figure 3.23. We observe that the differ-
ences are lower with respect to the case of the plate under traction in Section 3.5.1. However,
as highlighted in Equation 3.67, one would expect the displacements v in y direction to be
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Figure 3.21: Displacement field differences between the peridynamic numerical results for m = 3
and the reference solution (obtained with the analytical solution in Equation 3.65) in the plate
under traction obtained by means of the Taylor-based extrapolation method with nmax = 1. Note
that the colormaps refer to different values in the two plots.

x
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p

p

Figure 3.22: Boundary conditions for the plate under the shear load p = 1MPa.

0 in the whole body. This fact is not verified in the numerical simulation because of the
surface effect (see plot of the component τ22 of the peridynamic stress tensor in Figure 3.8).
This problem is completely solved by implementing the proposed Taylor-based extrapolation
method with nmax = 1, as shown in Figure 3.24. Also, the differences of the displacements u
in x direction decreases with respect to those obtained without corrections at the boundary.
Similar results are obtained by choosing higher orders for the Taylor-based extrapolation.

As in the case of the plate under traction, we compute the relative differences ǫrelu with
Equation 3.66 for different values of m when implementing the proposed method in the case
of the plate under shear load. For each m, the relative differences of the displacements
u are constant in the whole body also in this case and they are reported in Table 3.3.
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Figure 3.23: Displacement field differences between the peridynamic numerical results for m = 3 and
the reference solution (obtained with the analytical solution in Equation 3.67) in the plate under shear
load obtained without corrections at the boundary. Note that the colormaps refer to different values
in the two plots.

The numerical results show a significant reduction of the differences when the numerical
integration is improved.

Table 3.3: Relative differences between the peridynamic numerical results and the reference solution
in the plate under shear load when improving the numerical integration by increasing m.

m ǫrelu

3 0.73%
4 0.15%
5 0.06%
6 0.03%

3.5.3 Plate under sinusoidal load

In the previous examples, the linear variation of the displacement field was properly cap-
tured by the Taylor-based extrapolation with the order nmax = 1 (or higher). We investigate
now an example in which the order of the Taylor-based extrapolation does not match the
order of variation of the displacement field. The boundary conditions of this example are
shown in Figure 3.25. The force density applied thoughout the plate is given as

b(x, y) = b sin

(
πx

ℓx
− ℓx

2

)
sin

(
πy

ℓy
− ℓy

2

)
, (3.68)
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Figure 3.24: Displacement field differences between the peridynamic numerical results for m = 3
and the reference solution (obtained with the analytical solution in Equation 3.67) in the plate
under shear load obtained by means of the Taylor-based extrapolation method with nmax = 1. Note
that the colormaps refer to different values in the two plots.

where b = 106 N/m3.

x

y

b(x, y)

Figure 3.25: Boundary conditions for the plate under the sinusoidal load b(x, y), where the origin of
the reference system is at the center of the plate. Given the symmetry of the boundary conditions,
the displacements v in y direction on the x-axis are fixed to be 0.

The reference solution, shown in Figure 3.26, is obtained with the Finite Element Method
by means of a uniform grid with a spacing ∆xFEM = ∆x/2. The peridynamic nodes share
the coordinates with some of the FEM nodes, so that the peridynamic results can be com-
pared with the reference solution. We expect that, by increasing nmax, the Taylor-based
extrapolation would approximate better the displacements of the fictitious layer.

Figures 3.27 and 3.28 show the differences between the numerical results and the reference
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Figure 3.26: Displacement fields of the plate under the sinusoidal load obtained with the Finite
Element Method. Note that the colormaps refer to different values in the two plots.

solution for the numerical models either without employing any correction for the surface
effect or by adopting the Taylor-based extrapolation method. The differences are evidently
reduced when the peridynamic model includes the Taylor-based extrapolation method. The
aforementioned differences include two contributions: one due to the different (local and
non-local) formulations of the theories and the other which is the actual error associated to
the approximated numerical solution of the peridynamic equations. The two components of
the difference cannot be separated since the analytical peridynamic solution is not available.
However, the fluctuations of the differences near the boundaries due to the surface effect are
evident in Figures 3.27a and 3.28a, in which no corrections at the boundary are adopted. On
the other hand, by exploiting the Taylor-based extrapolation method, the magnitude of the
differences decrease considerably and, also, their distribution near the boundaries becomes
smoother with the increasing of the truncation order nmax, as shown in Figures 3.27b-d
and 3.28b-d. This is arguably because the numerical results are getting closer to the analyt-
ical peridynamic solution by correcting the surface effect and imposing in a proper way the
boundary conditions.
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(a) Model with no corrections at the boundaries.

−0.15 0 0.15
−0.1

0

0.1

x [m]

y
[m

]

0

0.1

0.2

0.3

ǫu [%]

(b) Model with corrections at the boundaries (nmax = 1).
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(c) Model with corrections at the boundaries (nmax = 2).
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(d) Model with corrections at the boundaries (nmax = 3).

Figure 3.27: Differences of the displacements in x direction between the peridynamic numerical
results for m = 3 and the reference solution (obtained with the Finite Element Method results, as
shown in Figure 3.26) in the plate under the sinusoidal load obtained either without corrections at
the boundary or by adopting the Taylor-based extrapolation method with different orders nmax. Note
that the colormaps refer to different values in the four plots.
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(a) Model with no corrections at the boundaries.
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(b) Model with corrections at the boundaries (nmax = 1).
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(c) Model with corrections at the boundaries (nmax = 2).
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Figure 3.28: Differences of the displacements in y direction between the peridynamic numerical
results for m = 3 and the reference solution (obtained with the Finite Element Method results, as
shown in Figure 3.26) in the plate under the sinusoidal load obtained either without corrections at
the boundary or by adopting the Taylor-based extrapolation method with different orders nmax. Note
that the colormaps refer to different values in the four plots.
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3.6 Crack propagation near the boundaries

A qualitative study is hereinafter conducted to investigate the behavior of crack growth
near the boundaries of the body. We compare the results provided by the proposed method
with the solution obtained with peridynamics when no corrections for the surface effect are
adopted and the boundary conditions are imposed in a local way, i.e., constraints and load
are applied only at the nodes closest to the boundary. The surface effect near the new
boundaries generated by the crack growth is not corrected in the present paper, but it will
be dealt with in future works.

In order to model fracture phenomena, we introduce the scalar µ which yields the status
of the bond (unbroken or broken) [65]:

µ =

{
1 if s < sc,

0 otherwise,
(3.69)

where s is the stretch of the bond and sc is the critical stretch for plane stress conditions.
These quantities are respectively computed as [171]

s =
‖ξ + η‖ − ‖ξ‖

‖ξ‖ , (3.70)

sc =

√
4G0

9Eδ
, (3.71)

where G0 is the energy release rate. The scalar µ is history-dependent since a broken bond
cannot be restored. The equilibrium equation is therefore modified as

−
∫

Hx

µ f(x,x′) dVx′ = bx , (3.72)

and the damage at each node can be evaluated as [65]

ϕx = 1−
∫
Hx

µ dVx′

∫
Hx

dVx′

. (3.73)

For the quasi-static crack propagation, the sequentially linear analysis used in [73] is
employed:

• find the equilibrium with the given loads (if possible);

• if there are bonds with s ≥ sc, remove the contributions to the stiffness matrix of the
4 most stretched bonds;

• repeat the first steps until the equilibrium is not possible or there are no bonds with
s ≥ sc.

Note that, when the Taylor-based extrapolation method is used, also the fictitious bonds can
be broken along with the other bonds. If one or more fictitious bonds fail near a boundary
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where a Neumann boundary condition is applied, then not only the stiffness matrix should be
modified accordingly by removing the contributions of the broken bonds, but also the same
external tension should be applied solely through the residual unbroken fictitious bonds.

3.6.1 Crack propagation due to Dirichlet boundary conditions

The geometry and the boundary conditions of a plate with a pre-existing crack are shown
in Figure 3.29. The properties of the plate under plane stress conditions are: thickness
h = 0.005m, Young’s modulus E = 1GPa, Poisson’s ratio ν = 0.2 and energy release rate
G0 = 196 J/m2. The constraint is given as u = 0.001m. A grid spacing ∆x = 0.0025m is
used and m = 3 is chosen.

0.2m

0.
2
m

0.05m

0.
05

m

x

y

u

Figure 3.29: Boundary conditions for a plate with a pre-existing crack (red line) for the case with
Dirichlet boundary conditions.

The results obtained by means of the peridynamic model with no corrections at the
boundary and with the proposed method are compared in Figure 3.30, in which the difference
of the displacements in a node i is computed as

ǫ
pd
i =

{
ǫpdu
ǫpdv

}

i

=





|uuncorri − ucorri |
max(|ucorr|) · 100

|vuncorri − vcorri |
max(|vcorr|) · 100




, (3.74)

where ucorr and vcorr are the displacement fields respectively in x and y directions. The
superscript uncorr stands for “uncorrected” (peridynamic model with no corrections at the
boundaries) and corr for “corrected” (peridynamic model with the Taylor-based extrapolation
method with nmax = 1). It can be noticed that there are non-negligible differences near the
crack tip that may lead to different crack paths.

As shown by the damage of the nodes in the final configuration of the model with no
corrections (see Figure 3.31), the crack branches and reaches the upper edge of the plate in
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Figure 3.30: Differences in the displacement fields (for m = 3) of the pre-cracked plate computed with
and without the Taylor-based extrapolation method for the case with Dirichlet boundary conditions.
Note that the colormaps refer to different values in the two plots.

two separated paths. On the other hand, when the Taylor-based extrapolation method is
adopted, the crack propagates to the upper edge in a unique path and there is no branching
phenomenon. Hence, the crack path may change near the boundaries if the surface effect is
mitigated and the boundary conditions are imposed in a “peridynamic way”.

−0.1 0 0.1
−0.1

0

0.1

x [m]

y
[m

]

0

0.2

0.4
ϕ

Figure 3.31: Crack propagation in the pre-cracked plate for the case with Dirichlet boundary condi-
tions when no correction at the boundaries are adopted.

3.6.2 Crack propagation due to Neumann boundary conditions

The geometry and the boundary conditions of a plate with a pre-existing crack are shown
in Figure 3.33. The properties of the plate under plane stress conditions are: thickness
h = 0.005m, Young’s modulus E = 1GPa, Poisson’s ratio ν = 0.2 and energy release rate
G0 = 196 J/m2. The plate is under a traction of p = 1MPa. A grid spacing ∆x = 0.0025m

is used and m = 3 is chosen.
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Figure 3.32: Crack propagation in the pre-cracked plate for the case with Dirichlet boundary condi-
tions when the Taylor-based extrapolation method is used.
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Figure 3.33: Boundary conditions for a plate with a pre-existing crack (red line) for the case with
Neumann boundary conditions.

As in Section 3.6.1, the differences between the displacements obtained with and without
the proposed method are computed as in Equation 3.74. The differences near the tip of the
pre-existing crack (see Figure 3.34) are non-negligible and they may lead to different crack
behaviors. The crack paths, shown in Figures 3.35 and 3.36 respectively for the case without
and with boundary corrections, are indeed different between each other. Therefore, the crack
behavior may be modified by the mitigation of the surface effect and the proper imposition
of the Neumann boundary conditions.

3.7 Conclusions

Two issues arising near the boundary of a body modelled with ordinary state-based
peridynamics are addressed:
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Figure 3.34: Differences in the displacement fields (for m = 3) of the pre-cracked plate computed with
and without the Taylor-based extrapolation method for the case with Neumann boundary conditions.
Note that the colormaps refer to different values in the two plots.
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Figure 3.35: Crack propagation in the pre-cracked plate for the case with Neumann boundary con-
ditions when no correction at the boundaries are adopted.

• the surface effect, i.e., the stiffness fluctuation near the boundary;

• the current lack of standard strategies to impose the boundary conditions.

The surface effect has been studied numerically by evaluating the peridynamic stress
tensor with a novel discretization method (see Section 3.4.3) and the characteristic harden-
ing/softening behavior towards the boundary has been highlighted (see Figures 3.7 and 3.8).
This issue has been addressed by introducing a fictitious layer that completes the partial
neighborhoods of the nodes near the boundary. We proposed a new version of the Taylor-
based extrapolation method adopting the nearest-node strategy: the displacements of the
fictitious nodes are expressed as functions of the displacements of the closest real nodes by
means of multiple Taylor series expansions. In this way, the surface effect is mitigated.

The fictitious layer is also exploited to impose the boundary conditions in a peridynamic
way. The boundary of the body is discretized by the so-called “boundary nodes”. As the
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Figure 3.36: Crack propagation in the pre-cracked plate for the case with Neumann boundary con-
ditions when the Taylor-based extrapolation method is used.

fictitious nodes, the boundary nodes do not constitute new degrees of freedom because their
displacements are obtained with the Taylor-based extrapolation method. On the one hand,
Dirichlet boundary conditions are implemented by constraining the boundary node and,
accordingly, the fictitious layer mitigates the surface effect. On the other hand, Neumann
boundary conditions are applied, via the numerical computation of the force flux at the
boundary, to the bonds involving the fictitious nodes. Therefore, the boundary conditions
are imposed in a “peridynamic way”.

Several numerical examples were presented to verify the accuracy of the proposed method.
The numerical results obtained with the Taylor-based extrapolation method show a great
improvement with respect to the peridynamic models without corrections at the boundary.
Furthermore, the order of the Taylor-based extrapolation can be increased until the undesired
fluctuations of the numerical results become negligible for the application of interest. It is
also shown that the numerical integration of the peridynamic equilibrium equation plays a
fundamental role, so that the numerical results are improved even further by increasing the
value of the m-ratio.

Moreover, we carried out a qualitative study on crack propagation near the boundaries
by comparing the results obtained by means of the proposed method with those of the
peridynamic model without boundary corrections. We presented two numerical examples
in which the crack paths are different because of the difference in the displacement fields.
This highlights the importance of mitigating the surface effect and of imposing properly the
peridynamic boundary conditions.
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Abstract

Peridynamics is a non-local continuum theory capable of modeling crack initiation and prop-
agation in solid bodies. However, the layer near the boundary of the body exhibits a stiffness
fluctuation due to the so-called surface effect and the inaccurate way of imposing the bound-
ary conditions. Moreover, in numerical models discretized using the meshfree method with
uniform grid spacing, there are no nodes on the external surface of the body where the
boundary conditions should be applied. Inspired by the method of the fictitious nodes with
the Taylor-based extrapolation, we propose an innovative method that introduces a new
type of nodes lying on the external surface of the body, i.e., the surface nodes. These nodes
represent the interactions between the nodes within the body and the fictitious nodes sur-
rounding the body, and they are used to mitigate the surface effect and properly impose
the boundary conditions via the concept of force flux. Moreover, a procedure to compute
the analytical solution of peridynamic problems is developed: a manufactured displacement
field is prescribed and the volume and surface forces, to obtain that displacement field, are
computed. The benefits of the surface node method are shown by means of several 2D and
3D quasi-static examples by comparing the numerical results with other methods with or
without boundary corrections.

Keywords: Surface node method, manufactured solution, 3D force flux, surface effect,
boundary conditions, numerical method.
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4.1 Introduction

Peridynamics is a non-local continuum theory of solid mechanics devised to intrinsically
model discontinuities in the displacement field, such as crack initiation and propagation [61,
62]. This is possible because peridynamic equations do not contain any spatial derivatives,
but only integrals. Peridynamic points interact with each other if their distance is smaller
than or equal to a prescribed value δ, called the horizon size. Therefore, the interactions of
a point are contained in a sphere, named neighborhood, centered in that point with a radius
δ.

The most commonly used method to solve numerically peridynamic integrals is a uni-
form meshfree discretization with a mid-point quadrature rule [65, 158, 184, 235]. In the
literature, there are many examples of the good agreement of peridynamic results compared
to mechanical experiments involving fracture [72, 74]. Nonetheless, the non-local nature of
Peridynamics leads to three main drawbacks:

• higher computational cost with respect to numerical models based on classical contin-
uum mechanics, such as the Finite Element Method (FEM);

• undesired stiffness fluctuations near the boundary of the body, known as surface effect

or skin effect ;

• difficulty in imposing properly the boundary conditions.

The coupling between Peridynamics and FEM can be exploited to reduce the computa-
tional cost: Peridynamics is used only where cracks are more likely to propagate, whereas
FEM-based approaches are used for the rest of the domain [115, 165, 171, 205, 206, 208,
209, 213, 214, 228–230]. The surface effect is due to the fact that the neighborhoods near
the boundary of the body are incomplete, so that the most external layer of the body has
different stiffness properties with respect to the bulk of the body [186, 187, 198, 226, 227,
236]. Another issue related to the boundary is that external loads and constraints should
be distributed over a layer of finite thickness near the boundary [63], but the definition of a
standard method for imposing non-local boundary conditions is problematic.

Both the surface effect and the problem of the imposition of the non-local boundary con-
ditions can be reduced by decreasing the horizon size δ near the boundary with the variable
horizon method [149, 193, 195, 198, 204, 215, 216]. However, this approach inevitably varies
the peridynamic solution where the value of δ is modified. The mechanical properties of the
interactions between nodes near the boundary can be tuned to correct the surface effect [63,
64, 187–190], but the peridynamic solution exhibits some undesired fluctuations near the
boundary because of the inaccurate imposition of the boundary conditions [186]. Another
approach implies the reformulation of the peridynamic equations via the peridynamic differ-
ential operator [237–241].

The method of the fictitious nodes is arguably the most commonly used to mitigate the
boundary issues: a layer of nodes is added all around the body to complete the neighbor-
hoods of the nodes close to the boundary, thus the surface effect vanishes [148, 188, 191].
However, the displacements of the fictitious nodes are unknown and may be extrapolated
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with the displacements of the nodes within the body. Many authors suggested that this ex-
trapolation can be used to enforce boundary conditions [63, 92, 126, 150, 151, 186, 192–196],
but the formulae they used are case-dependent and applicable only to simple geometries. On
the other hand, we proposed in [227, 236] that the non-local concept of force flux, i.e., the
peridynamic version of stress, should be exploited to coherently impose the boundary con-
ditions. Furthermore, we employed the extrapolation based on the Taylor series expansion,
with a general truncation order N , which adopts the nearest-node strategy, to manage more
complex body geometry. Nevertheless, the method we proposed is limited to 2-dimensional
cases and makes use of the Lagrange multipliers to impose the boundary conditions. The
main disadvantages in imposing the boundary conditions via Lagrange multipliers are related
to the structure of the matrix to solve [225, 242]:

• the dimensions of the matrix increase because of the higher number of unknowns;

• the matrix is not, in general, positive definite;

• the matrix is not banded;

• there are zeroes on the diagonal of the matrix.

Clearly, these characteristics make the matrix more computationally expensive to invert.
Inspired by [227, 236], this paper aims at developing a novel numerical method to impose

the boundary conditions in peridynamic models without the use of Lagrange multipliers.
We introduce a new type of nodes, the surface nodes, that represent the external surface
of the body. The surface nodes have their own degrees of freedom that can be used during
the Taylor-based extrapolation of the displacements. The equations of motion of the surface
nodes are based on the concept of force flux, thus they represent the interactions between the
fictitious nodes and the nodes within the body. Thanks to this fact, the boundary conditions
can be applied directly to the surface nodes, as one would do in a local model, without the
use of the Lagrange multipliers. The number of unknowns is still higher than that of a model
without corrections at the boundary, but the new unknowns have the physical meaning of
the displacements of the external surface of the body. The stiffness matrix is still not, in
general, positive definite, but its bandwidth remains the same as that of the peridynamic
system without corrections to the boundary issues and there are no zeroes on its diagonal.
Hence, the numerical solution to the system of equations can be found more efficiently by
a computational standpoint. Furthermore, with respect to the previous method of the fic-
titious nodes, the surface node method allows for a simpler implementation (the boundary
conditions are imposed as one would do in a local model). 3D static numerical examples are
presented to show the benefits achieved by the new method. In Appendix 4.A, we also devel-
oped a procedure to obtain the peridynamic analytical solutions, which are then employed
to compute the errors in the numerical models. The comparison with other methods recently
developed to correct the surface effect and impose the peridynamic boundary conditions is
provided as well.

The paper is organized as follows: Section 4.2 reviews briefly the main equations of ordi-
nary state-based Peridynamics and the method of the fictitious layer to correct the boundary
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issues; Section 4.3 presents the numerical implementation of the novel method of the surface
nodes; Section 4.4 shows the differences between the models with and without the use of the
method of the surface nodes; Section 4.5 compares the proposed method with three of the
most recent methods for boundary corrections; Section 4.6 draws the conclusions. Further-
more, Appendix 4.A shows a procedure to compute the analytical solutions for peridynamic
problems when prescribing an (even complex) displacement field.

4.2 Review of peridynamic theory

A peridynamic interaction between neighboring points x and x′ is called bond and is
identified by the relative position vector in the initial configuration as

ξ = x′ − x , (4.1)

where ‖ξ‖ ≤ δ. Therefore, point x interacts with all the points in the neighborhood Hx ={
x′ ∈ B(t0) : ‖ξ‖ ≤ δ

}
, where B(t0) is the body in the initial configuration and δ is the

horizon size, as shown in Figure 4.1. The relative displacement vector η is defined in the
deformed configuration B(t) at time t > t0 as

η = u(x′, t)− u(x, t) , (4.2)

where u is the displacement field. Note that ξ+η is the relative position of points x and x′

in the deformed configuration.

x

y

B(t0)

x
δ

H
x

x
′

δ

H
x
′

ξ

B(t)

u(x, t)

u(x′, t)

ξ + η

f(x,x′)

f(x′,x)

Figure 4.1: Body modelled with Peridynamics in the initial configuration B(t0) and deformed con-
figuration B(t > t0): the force state f arises due to the deformation of the body.
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The peridynamic equation of motion of a point x is given by [61, 62]:

ρ(x) ü(x, t) =

∫

Hx

f(x,x′, t) dVx′ + b(x, t) , (4.3)

where ρ is the material density, ü is the acceleration field, f is the force state (force per unit
volume squared), dVx′ is the differential volume of a point x′ within the neighborhood Hx

and b is the external force density field. In quasi-static conditions, Equation 4.3 becomes
the equilibrium equation of point x:

−
∫

Hx

f(x,x′) dVx′ = b(x) . (4.4)

The value of f(x,x′) is determined in the following.

4.2.1 Ordinary state-based Peridynamics

The reference position scalar state x represents the bond length in the initial configura-
tion:

x = ‖ξ‖ . (4.5)

On the other hand, the extension scalar state e represents the elongation (or contraction) of
the bond in the deformed configuration:

e = ‖ξ + η‖ − ‖ξ‖ . (4.6)

Hereinafter, the Gaussian influence function is adopted:

ω = exp

(
−‖ξ‖2

δ2

)
(4.7)

For later use, the weighted volumem and the dilatation θ of a point x are defined respectively
as

m(x) =

∫

Hx

ω x2 dVx′ , (4.8)

θ(x) =
cθ

m(x)

∫

Hx

ω x e dVx′ , (4.9)

where cθ=3 [62].
In ordinary state-based Peridynamics, the force state is aligned with the bond direction

for any deformation, as depicted in Figure 4.1. The bond direction is defined as

m =
ξ + η

‖ξ + η‖ . (4.10)

Hence, the force state can be computed as [62]

f(x,x′) =

[
kθ

(
θ(x)

m(x)
+
θ(x′)

m(x′)

)
ω x+ ke

(
1

m(x)
+

1

m(x′)

)
ω e

]
m , (4.11)



176 Chapter 4

with kθ = −3(1−4ν)E/(2(1+ ν)(1−2ν)) and ke = 15E/(2(1+ ν)), where ν is the Poisson’s
ratio and E is the Young’s modulus. The constants kθ and ke are derived by equalizing
the peridynamic strain energy density of a point with a complete neighborhood under ho-
mogeneous deformation, with the strain energy density in a point subjected to the same
deformation in classical continuum mechanics [62].

4.2.2 Force flux

Suppose that the force flux τ , i.e., the peridynamic concept of stress, should be computed
at a point x in the direction of the unit vector n. As shown in Figure 4.2, the plane with
normal n passing through point x is named P . The unit sphere Ω centered in x represents
all the directions that the bonds passing through x may have, and dΩm is the differential
solid angle on Ω in direction m of the considered bond. In order for the bond to pass
through the plane P , the points of that bond must lie in the different half-spaces generated
by P . Therefore, we define the points of a bond in the direction m as x′ = x − sm and
x′′ = x+ (r − s)m, where 0 ≤ s ≤ δ and s ≤ r ≤ δ (see Figure 4.2).

x

H
x

m

Ω

x
′

x
′′ τ (x,n)

s

r
δ

n

P

Figure 4.2: The force flux τ (x,n) computed at point x in direction n is the resultant of the forces
per unit area of all the bonds passing through plane P with normal n. The bonds may have any
direction m within the unit sphere Ω and the two points of the bond are defined by the values s and
r as x′ = x− sm and x′′ = x+ (r− s)m, where 0 ≤ s ≤ δ (dashed line) and s ≤ r ≤ δ (dashdotted
line).

The force flux is defined as the resultant of the forces per unit area of all the bonds
intersecting P in x [172]:

τ (x,n) =
1

2

∫

Ω

∫ δ

0

∫ δ

s

f(x′,x′′) (m · n) r2 dr ds dΩm . (4.12)

The factor (m · n) in the integrand is required to project the force state along the direction
n. Note that the integration limits in Equation 4.12 allow to consider every bond passing
through point x. However, each bond is repeated twice in the integration domain (for both
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directions m and −m), thus the integral is divided by 2.

4.2.3 Problems at the boundaries

The non-local formulation of the peridynamic theory exhibits two issues near the bound-
ary: the so-called surface effect and the difficulty of imposing properly the boundary condi-
tions. The former is due to the incomplete neighborhoods of points close to the boundary of
the body [186], as shown in Figure 4.3. The mechanical properties of peridynamic materials
are indeed computed for points with a complete neighborhood, i.e., in the bulk of the body.
Note that the lacking part of the neighborhood increases as the points are near the faces, the
edges, or the vertices of the body, hence the stiffness fluctuations due to the surface effect
are expected to increase accordingly [236].

B(t0)

δ

x

x
′

x
′′

Figure 4.3: Some points in the bulk, as x, have a complete neighborhood, whereas other points near
the boundary, as x′ and x′′, have an incomplete neighborhood.

In local models, boundary conditions are imposed on the points lying on the boundary.
This is possible because, for instance, a force applied to a point has a “local” influence only
on that point. On the other hand, in non-local models such as Peridynamics, a force applied
to a point influences a spherical region surrounding that point (see the concept of force
flux in Section 4.2.2). Therefore, peridynamic boundary conditions should be imposed in a
layer of finite thickness near the boundary of the body. Nonetheless, how to “distribute” the
boundary conditions over a finite layer of material is still an open issue in Peridynamics.

4.2.4 Method of the fictitious layer

The addition of a layer F of fictitious points of thickness δ around the body is a simple
way to complete the neighborhoods of the points near the boundary [148], as shown in Fig-
ure 4.4. The displacements of the fictitious points are evaluated by means of an extrapolation
procedure in order to ensure that the fictitious layer keeps deforming as the body.

We adopt the Taylor-based extrapolation method with the nearest-node strategy for its
simplicity [227, 236]. The displacement vector of a point xf = {xf , yf , zf}⊤ in the fictitious
layer F is determined as the Taylor series expansion truncated at a general order N ≥ 1



178 Chapter 4

B(t0)

F(t0)

δ

δ

x

x
′

x
′′

Figure 4.4: When a fictitious layer of thickness δ is added around the body, all the points of the body
have a complete neighborhood.

about the closest point xc = {xc, yc, zc}⊤ of the body:

u(xf ) = u(xc) +
N∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xf − xc)
n1(yf − yc)

n2(zf − zc)
n3

n1!n2!n3!

∂n1+n2+n3u(xc)

∂xn1 ∂yn2 ∂zn3
, (4.13)

where n3 = n−n1−n2. Note that the points of the body closest to the fictitious points are the
ones at the boundary of the body itself. To mitigate the surface effect, the weighted volume
of the fictitious points is computed as if their neighborhoods were complete, thus m(xf ) =

m(xc). Moreover, since the dilatation is a measure of strain, that of the fictitious points
is evaluated by means of a Taylor series expansion as in Equation 4.13 with a truncation
order N − 1. If the displacements are extrapolated with a truncation order N = 1, then
the dilatation of a fictitious point is equal to the dilatation of the closest point of the body:
θ(xf ) = θ(xc). Otherwise for N ≥ 2, the dilatation of a fictitious point is determined as

θ(xf ) = θ(xc) +
N−1∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xf − xc)
n1

n1!

(yf − yc)
n2

n2!

(zf − zc)
n3

n3!

∂n1+n2+n3 θ(xc)

∂xn1 ∂yn2 ∂zn3
, (4.14)

where n3 = n− n1 − n2.
The Taylor-based extrapolation method is able to correct the surface effect when the

truncation order N matches the order of the displacement field: for instance, if the dis-
placements vary linearly, a Taylor series expansion with N = 1 exactly extrapolates the
displacements in the fictitious layer. For a displacement field of general order, more accurate
results are obtained by increasing the truncation order.

In order to impose the boundary conditions in a non-local way, the equation which
governs the behavior of the points at the boundary of the body is based on the concept of
force flux [227, 236]:

τ (xc,n) = p(xc) , (4.15)
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where n is the outward unit vector normal to the boundary in xc and p is the force per unit
area applied to xc. Because of the definition of force flux (Equation 4.12), the external load
p is “spread”, in a non-local way, within the most external layer of the body via the bonds
that are passing through xc.

4.3 Method of the surface nodes

In this section, we show how to implement the method of the fictitious layer in a numerical
peridynamic model via the introduction of the surface nodes. The body domain and the
fictitious layer are discretized by adopting the meshfree method with a uniform grid spacing
h [65, 184], as shown in Figure 4.5. The nodes within the body and the fictitious layer are
respectively called interior nodes and fictitious nodes. Each node of the grid is representative
of a cell with cubic volume V = h3. Since the boundary conditions are imposed on the
external surface of the body, we add a new type of nodes, namely the surface nodes (marked
by solid squares in Figure 4.5), near the most external interior nodes. Each surface node
represents a cell face of one of the interior nodes closest to the boundary, i.e., a square
area A = h2 of the external surface of the body. Note that, since the surface nodes do not
represent a volume cell, they do not have the properties of weighted volume and dilatation.
Indeed, a surface node is not connected to any bond but is related to the bonds that intersect
its area, as explained in Section 4.3.4.

Figure 4.5: Uniform peridynamic grid of interior nodes (solid circles) and fictitious nodes (empty
circles), with the introduction of the surface nodes (solid squares) on the external surface of the
body.

4.3.1 Numerical force states

Consider two nodes i and j that are connected by the bond

ξij = xj − xi . (4.16)
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Surface nodes are not connected to any bond, therefore nodes i and j can be either interior
or fictitious nodes. The relative displacement vector of this bond after the deformation of
the body is computed as

ηij = uj − ui , (4.17)

where ui and uj are the displacement vectors of nodes i and j, respectively. If one of these
nodes is in the fictitious layer, then its displacements are determined by the Taylor-based
extrapolation method described in Subsection 4.3.2. The reference position scalar state and
the influence function of the bond are evaluated as follows:

xij = ‖ξij‖ , (4.18)

ωij = exp

(
−‖ξij‖2

δ2

)
. (4.19)

Under the assumption of small displacements, the bond direction vector is given as

mij =
ξij + ηij

‖ξij + ηij‖
‖ηij‖≪‖ξij‖≈ ξij

‖ξij‖
. (4.20)

Similarly, the extension scalar state of the bond is computed as

eij = ‖ξij + ηij‖ − ‖ξij‖
‖ηij‖≪‖ξij‖≈ ηij ·

ξij

‖ξij‖
≈ ηij ·mij . (4.21)

In the discretized model, the integrals over the neighborhood Hi of a node i are evaluated
numerically as the summation for each node j with a portion of the cell within Hi, as shown
in Figure 4.6. Therefore, the weighted volume mi and the dilatation θi of a node i are
determined from Equations 4.8 and 4.9 as

mi =
∑

j∈Hi

ωij x
2
ij βijVj , (4.22)

θi =
3

mi

∑

j∈Hi

ωij xij eij βijVj , (4.23)

where βijVj represents the quadrature weight, with Vj = V (xj). Note that, since surface
nodes are representative of the external surface of the body, they do not have weighted vol-
umes or dilatations which are volume properties. The quadrature coefficient βij is computed
as the volume fraction of the cell lying within the neighborhood [184, 235]. If the cell of
node j is completely within the neighborhood, then βij = 1, otherwise 0 < βij < 1, as
shown in Figure 4.6. The algorithm to compute accurately the quadrature coefficients in 3D
peridynamic problems can be found in [235].

Therefore, the force state of the bond is computed from Equation 4.11 as

f ij =

[
kθ

(
θi
mi

+
θj
mj

)
ωij xij + ke

(
1

mi

+
1

mj

)
ωij eij

]
mij . (4.24)
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i

βij = 1

βij < 1

Figure 4.6: The neighborhood Hi of a node i is constituted by the nodes (black dots) with a portion of
their cell within the neighborhood (blue area). The quadrature coefficient βij is the volume fraction
of cell of node j lying inside the neighborhood.

If either node i or node j is fictitious, then its weighted volume and dilatation are determined
by the Taylor-based extrapolation method described in Subsection 4.3.2.

4.3.2 Numerical Taylor-based extrapolation method

The Taylor-based extrapolation method with the nearest-node strategy is employed to
determine the values of the displacements, weighted volumes, and dilatations of the fictitious
nodes as a function of the corresponding values of the interior nodes. This method has been
described in [227, 236]. However, the use of the surface nodes introduces new degrees of
freedom in the numerical model, in addition to the degrees of freedom of the interior nodes,
and the Taylor-based extrapolation method should be adapted accordingly.

The weighted volumes and dilatations of interior nodes are numerically computed in
Equations 4.22 and 4.23, respectively. The fictitious nodes are used to complete the neigh-
borhoods of the interior nodes close to the boundary of the body, as shown in Figure 4.5.
Therefore, all the interior nodes have the same value of the weighted volume. This value is
assigned also to the weighted volumes of the fictitious nodes, as dictated by the Taylor-based
extrapolation method.

Suppose that N is the order of truncation of the Taylor series expansions to extrapolate
the displacements of the fictitious nodes. If N = 1, then the dilatation of a fictitious node
is equal to the dilatation of the closest interior node. Otherwise, the dilatations should be
extrapolated with Taylor expansions truncated at the order N−1. The numerical procedure
to determine the dilatation θf of a fictitious node xf is carried out as follows:

1. find the interior node xb which is the closest to node xf ;
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2. perform a Taylor series expansion of θf = θ(xf ) about node xb:

θf = θb +
N−1∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xf − xb)
n1

n1!

(yf − yb)
n2

n2!

(zf − zb)
n3

n3!

∂n1+n2+n3 θb
∂xn1 ∂yn2 ∂zn3

, (4.25)

where n3 = n− n1 − n2;

3. find the interior nodes xbk closest to xb so that the set of found nodes includes at least
n1 different xbk coordinates, n2 different ybk coordinates and n3 different zbk coordinates
for each derivative in Equation 4.25, where n1, n2 and n3 are the possible orders of the
derivative in the three directions;

4. for each of the found nodes k, perform a Taylor series expansion of their dilatations
θbk = θ(xbk) about node xb:

θbk = θb +
N−1∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xbk − xb)
n1

n1!

(ybk − yb)
n2

n2!

(zbk − zb)
n3

n3!

∂n1+n2+n3 θb
∂xn1 ∂yn2 ∂zn3

; (4.26)

5. solve the system of equations in Equation 4.26 to obtain the derivatives of θb as a
function of the dilatations θb and θbk :

∂n1+n2+n3 θb
∂xn1 ∂yn2 ∂zn3

= f(θb, θbk) ; (4.27)

6. substitute Equation 4.27 in Equation 4.25 to obtain the dilatation of the fictitious node
as a function of the dilatations of the interior nodes:

θf = f(θb, θbk) . (4.28)

On the other hand, the surface nodes can be included in the Taylor-based extrapolation
method for the displacements to improve the accuracy of the procedure. Thus, the numerical
procedure to determine the displacement vector uf of a fictitious node xf is carried out as
follows:

7. find the surface node xs which is the closest to node xf ;

8. perform a Taylor series expansion of uf = u(xf ) about node xs:

uf = us +
N∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xf − xs)
n1

n1!

(yf − ys)
n2

n2!

(zf − zs)
n3

n3!

∂n1+n2+n3us

∂xn1 ∂yn2 ∂zn3
, (4.29)

where n3 = n− n1 − n2;

9. add to the set of interior nodes xbk found in Step 3 the surface nodes closest to xs so that
the new set of found nodes xsq includes at least n1 different xsq coordinates, n2 different
ysq coordinates and n3 different zsq coordinates for each derivative in Equation 4.29;
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10. for each of the found nodes q, perform a Taylor series expansion of their displacement
vectors usq = u(xsq) about node xs:

usq = us +
N∑

n=1

n∑

n1=0

n−n1∑

n2=0

(xsq − xs)
n1

n1!

(ysq − ys)
n2

n2!

(zsq − zs)
n3

n3!

∂n1+n2+n3us

∂xn1 ∂yn2 ∂zn3
; (4.30)

11. solve the system of equations in Equation 4.30 to obtain the derivatives of us as a
function of the displacement vectors us and usq :

∂n1+n2+n3us

∂xn1 ∂yn2 ∂zn3
= f(us,usq) ; (4.31)

12. substitute Equation 4.31 in Equation 4.29 to obtain the displacement vector of the
fictitious node as a function of the displacement vectors of the interior and surface
nodes:

uf = f(us,usq) . (4.32)

Note that the procedure to determine the displacement vectors of the fictitious nodes is
same as that to determine their dilatations except for Step 9, in which the number of con-
sidered nodes is increased. This is due to the fact that the Taylor series expansion for the
displacement vector has a truncation order of N instead of N − 1.

4.3.3 Equilibrium equation for interior nodes

An interior node is representative of the volume within its own cells. The behavior of an
interior node i is described by the peridynamic equilibrium equation (Equation 4.4), which
can be written in the discretized form (multiplying both sides of the equation by the cell
volume Vi = V (xi)) as

−
∑

j∈Hi

f ij βijVj Vi = bi Vi , (4.33)

where bi is the external force density vector applied to node i.
If some of the nodes j within the neighborhood Hi of node i are fictitious nodes, then

the force states f ij are computed with the dilatations and the displacement vectors obtained
with the Taylor-based extrapolation method (see Section 4.3.2). Since the neighborhood Hi

is complete, the stiffness fluctuations near the boundary of the body due to the surface effect
are reduced (and, in some cases, eliminated).

4.3.4 Equation for surface nodes

A surface node represents a portion of the external surface of the body, namely one of
the cell faces lying on the external surface (see Figure 4.5). The equation of a surface node
i (Equation 4.15) is based on the concept of force flux:

τ (xi,ni) = pi , (4.34)
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where ni is the outward unit vector normal to the face of the cell and p is the force per unit
area applied to xi. Equation 4.34 equates the externally applied stress (pi) to the force flux,
i.e., the resultant of the forces of the bonds crossing the surface node.

Suppose that Ai = A(xi) is the area represented by the surface node. Since a regular grid
of peridynamic nodes is used, Ai = h2 where h is the grid spacing. The force flux τ (xi,ni)

is computed numerically as the sum of the force states (multiplied by the volumes Vj and
Vk of the interacting nodes j and k and divided by Ai) of all the bonds intersecting the area
Ai [236]:

τ (xi,ni) =
1

Ai

∑

ξjk ∩Ai 6=∅
mjk·ni>0

αjk f jk βjkVk Vj , (4.35)

where αjk is a coefficient equal to 1/4 if the bond intersects Ai at a vertex, 1/2 if the bond
intersects Ai at a point on the edges or 1 if the bond intersects Ai at any other point.
Figure 4.7a represents the latter case in which the contribution of the bond ξjk is completely
attributed to the force flux of node i (αjk = 1). If the bond ξjk intersects the area Ai at
a point on an edge as shown in Figure 4.7b, that edge is shared between node i and an
adjacent node. Therefore, only half of the force state f jk contributes to the force flux of
node i (αjk = 1/2) and the other half to the force flux of the adjacent node. Similarly, if the
bond ξjk intersects the area Ai at a vertex as shown in Figure 4.7c, the contribution of that
bond is shared equally by the 4 adjacent nodes (αjk = 1/4).

Thus, the governing equation for the surface nodes is obtained by substituting Equa-
tion 4.35 in Equation 4.34 and multiplying both sides by Ai:

∑

ξjk ∩Ai 6=∅
mjk·ni>0

αjk f jk βjkVk Vj = piAi . (4.36)

Since the bond ξjk intersects the area Ai lying on the external surface of the body, at least
one of the nodes in the bond is a fictitious node. Therefore Equation 4.36 involves many
fictitious nodes, the displacement vectors and dilatations of which are determined by means
of the Taylor-based extrapolation method illustrated in Section 4.3.2.

4.3.5 Peridynamic system of equations

On the one hand, Equation 4.33, which describes the equilibrium of a volume cell, can
be applied to every interior node. On the other hand, Equation 4.36 can be applied to every
surface node. The left-hand side of both Equation 4.33 and Equation 4.36 can be rewritten
as functions of the displacements of the interior and surface nodes, as shown in Sections 4.3.1
and 3.4.1. Therefore, the peridynamic system of equation is given in the standard form as

Kũ = f̃ , (4.37)

where K is the peridynamic stiffness matrix, ũ is the displacement vector containing the
displacements of interior and surface nodes and f̃ is the force vector.

Please note that the stiffness matrix K is different from the one described in [227, 236],
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(a) αjk = 1.
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Figure 4.7: Values of the coefficient αjk used in the computation of the force flux for different types
of intersection between the bond ξjk and the area Ai of the surface node i.

in which the introduction of the Lagrange multipliers is required to solve the system of
equations. In the new method, the displacements of the surface nodes are considered as
degrees of freedom of the system and the stiffness matrix embeds also the equations for
those nodes. This allows to solve directly the system of equations shown in Equation 4.37,
without the use of the Lagrange multipliers. The advantages of this method with respect to
the previous Taylor-based extrapolation method are the following:

• the new unknowns introduced in the system have the physical meaning of the dis-
placements of the external surface of the body, so there is a better description of the
mechanical behavior of the boundary of the body;

• the boundary conditions can be applied as one would do in a local model, namely by
constraining the displacements in the vector ũ of some nodes and by prescribing the
forces in the vector f̃ acting on the other nodes;

• if elimination techniques are employed to impose numerically the boundary conditions,
the dimensions of the stiffness matrix are reduced (this was not possible with the use
of the Lagrange multipliers);

• the structure of the stiffness matrix (banded and with no zeroes on the diagonal) allows
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for a more efficient inversion of the matrix itself;

• the reaction forces at constrained degrees of freedom can be simply obtained by mul-
tiplying the corresponding rows of the stiffness matrix K by the displacement vector
ũ.

4.4 Numerical examples

Consider a body, the properties of which are reported in Table 4.1. The body is discretized
with the meshfree method with a uniform grid spacing h. The ratio between the horizon
and the grid spacing is defined as m-ratio: m = δ/h. The m-ratio is chosen to be equal
to 3 as a compromise between the accuracy of the results and the computational cost. The
quadrature coefficients for m = 3 can be found in Table D1 of Appendix D in [235].

Table 4.1: Properties of the body and its discretization parameters.

Property Value

Length ℓx = 0.32m
Width ℓy = 0.13m
Depth ℓz = 0.13m

Young’s modulus E = 10GPa
Poisson’s ratio ν = 0.2
Grid spacing h = 0.01m
m-ratio m = 3

Two different sets of boundary conditions are imposed on the body in order to verify
the accuracy of the results: a simple traction and a manufactured loading. In the former
case, the analytical peridynamic solution is a displacement field varying linearly, the same
solution which is obtained with classical continuum mechanics [165]. In the latter case,
inspired by [158], we suppose that the peridynamic solution is a manufactured displacement
field varying more than linearly. By prescribing this displacement field to the body, we
are able to compute the force states of the bonds via Equation 4.11. Then, the volumetric
loading of the interior of the body and the peridynamic stress at the boundary can be
obtained by solving respectively Equations 4.4 and 4.15. Therefore, if these volumetric
loading and peridynamic stress at the boundary, i.e., the manufactured loads, are imposed
on the body, the analytical peridynamic solution is the displacement field prescribed at the
beginning. Note that, since the manufactured displacement field varies more than linearly,
the peridynamic solution is different from the analytical solution obtained with classical
mechanics. The procedure shown in Appendix 4.A can be repeated with different prescribed
displacement fields to obtain other analytical solutions with the peridynamic theory.

The two static examples are solved firstly without the fictitious and surface nodes. In
this case, the boundary conditions are applied to the interior nodes closest to the boundary,
as one would do in a local model. In particular, since the most external interior nodes are
not exactly lying on the boundary (see Figure 4.5), the constraints are imposed by assigning
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to those nodes the analytical value of the displacement field at their position. Subsequently,
the same examples are solved by adopting the method of the surface nodes. The numerical
results are compared with the analytical peridynamic solution and the magnitude of the
error in a node i is computed as

‖ǫi‖ =

√(
ui − ui
umax

)2

+

(
vi − vi
vmax

)2

+

(
wi − wi

wmax

)2

, (4.38)

where ui, vi and wi are the displacements in the three directions obtained with the numerical
model, ui, vi and wi are the displacements obtained with the analytical solution computed
at xi and umax, vmax and wmax are the maximum magnitude of the analytical displacements.
The analytical solution will be computed for each example in the following sections.

4.4.1 Body under traction

The boundary conditions of the body subjected to simple traction are shown in Figure 4.8.
The analytical solution in this case is given as

u(x) =





u(x, y, z)

v(x, y, z)

w(x, y, z)





=





p

E
x

−ν p
E

(
y +

ℓy
2

)

−ν p
E

(
z +

ℓz
2

)





, (4.39)

where p is the traction load. Thus, the body is elongated along the x-axis and contracted in
the other two directions.

x

y

z

p

Figure 4.8: Boundary conditions for the body under the traction p = 10MPa. The origin of the
reference system lies at the center of the constrained face of the body. The constraints are described
by the following equations: u(x = 0) = 0, v(x = 0, y = − ℓy

2 ) = 0 and w(x = 0, z = − ℓz
2 ) = 0.

Figure 4.9a shows the magnitude of the displacement error computed as in Equation 4.38
for the peridynamic model without any correction at the boundaries of the body. In this
case, there are evident displacement fluctuations near the external surface which are due
to the surface effect and the approximated way of imposing the boundary conditions. Note
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that the errors are much larger especially near the edges and the vertices of the body, as
commonly observed in surface effect phenomena [236], reaching a maximum magnitude of
more than 30%. On the other hand, when the method of the surface nodes is employed with
an order of truncation N = 1 for the Taylor-based extrapolation, the fluctuations due to the
surface effect are eliminated and the peridynamic boundary conditions are imposed properly
(see Figure 4.9b). Nonetheless, there are still small errors, with a maximum magnitude of
0.06%, due to the discretization of the peridynamic equations.

(a) No boundary corrections. (b) With surface nodes (N = 1).

Figure 4.9: Magnitude of the displacement errors when no corrections at the boundaries of the body
are adopted (a) and when the method of the surface nodes, with an order of truncation N = 1 for
the Taylor-based extrapolation, is used (b). Note that the colormaps refer to different values in the
two plots. The asymmetry of the errors is due to the asymmetric constraints in y and z directions.

4.4.2 Body under manufactured loading

When considering the same mechanical problem, Peridynamics and classical continuum
mechanics may provide different solutions [165]. Since Peridynamics has been developed rel-
atively recently, it is difficult to find analytical solutions to benchmark problems. Therefore,
inspired by [158], we computed in Appendix 4.A the forces that should be applied to the
body to obtain a prescribed displacement field. The boundary conditions of the body sub-
jected to the manufactured loading are shown in Figure 4.10. The manufactured volumetric
loading is given as

b(x) =





b1(x, y, z)

b2(x, y, z)

b3(x, y, z)





=





−cw
(
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3

+
2ke
15

)

−cu
(
kθ
3

+
2ke
15

)
− cv

2ke
5
x

0





, (4.40)
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where cu = 0.05m−1, cv = −0.06m−2 and cw = −0.02m−1 are randomly chosen constants.
The components of the manufactured peridynamic stress tensor τ (x) can be computed as




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y + cw

(
kθ
3

+
ke
15

)
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)
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)
x ,
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15
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15
z ,
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(4.41)

where ∆1 =
(
3
8

√
πerf(1)− 5

4
exp(−1)

)
δ5 and ∆2 =

(
15
32

√
πerf(1)− 29

16
exp(−1)

)
δ7. “erf” and

“exp” stand respectively for the Gaussian error function and the exponential function. The
surface force, used to impose the surface loading at the free faces of the body, at a point x

on the external surface of the body with an outward normal n can be computed as τ (x,n) =
τ (x) · n.

If the manufactured loading is applied to the body, then the analytical peridynamic
solution is given as

u(x) =





u(x, y, z)

v(x, y, z)

w(x, y, z)





=





cu x y

cv x
3

cw x z




. (4.42)

The deformation given by this displacement field is shown in Figure 4.11.

τ13 τ33

τ12

τ22

x

y

z

τ11

τ12

τ13

τ12

τ22

τ13τ33

Figure 4.10: Boundary conditions for the body under the manufactured loading. The face at x = 0
is constrained in all directions, whereas the loads are computed from Equations 4.40 and 4.41.

Figure 4.12 shows the magnitude of the displacement error computed as in Equation 4.38.
The errors obtained without corrections at the boundary (Figure 4.12a) are considerably
higher than those obtained with the method of the surface nodes (Figures 4.12b-d). Indeed,
the maximum magnitudes of the displacement errors are respectively over 130% and below
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Figure 4.11: Analytical solution of the displacement field for the body under manufactured loading.
The deformation of the body is magnified by 50 times for visualization reasons.

1%. This is due to the surface effect and, especially, to the approximated way of imposing
the boundary conditions. In the model without boundary corrections, the surface loads
are indeed applied to the nodes closest to the boundary of the body, which however are
distant h/2 from the external surface (where the loads should actually be applied). On the
other hand, the surface nodes lie exactly on the external surface of the body and allow to
enforce the boundary conditions exactly where they are supposed to be imposed, while also
mitigating the surface effect.

Since the analytical solution for the displacement field in Equation 4.42 is at most cu-
bic, we expect to capture the proper displacements in the fictitious layer with an order of
truncation N = 3 for the Taylor-based extrapolation. The numerical results indeed show
that the magnitude of the errors decreases as the order of truncation is increased from 1 to
3 (compare Figures 4.12b-d). However, even if N = 3 is chosen, there are still small errors,
with a maximum magnitude of 0.4%. These residual errors, due to the discretization of the
peridynamic equations [235], can be further reduced by increasing the value of the m-ratio,
i.e., decreasing the value of the grid spacing h when the horizon size δ is kept constant [236].

4.5 Comparison with other methods

The surface effect and the imposition of the boundary conditions are two well-known is-
sues in Peridynamics, which were thoroughly analyzed in the literature. Many methods have
been indeed devised to mitigate these problems at the boundary (see, for instance, [186]).
There are mainly three types of methods for boundary corrections:

• the modification of the stiffness of the bonds near the boundary [63, 64, 187–190],

• the introduction of the fictitious nodes surrounding the body and the extrapolation
of their displacements along with the implementation of the peridynamic boundary
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(a) No boundary corrections. (b) With surface nodes (N = 1).

(c) With surface nodes (N = 2). (d) With surface nodes (N = 3).

Figure 4.12: Magnitude of the displacement errors when no corrections at the boundaries of the body
are adopted (a) and when the method of the surface nodes, with different order of truncation for
the Taylor-based extrapolation, is used (b-d). Note that the colormaps refer to different values in
the plots. Also, note that the difference between N = 2 and N = 3 is very small because the errors
due to the truncation of the Taylor series expansions in the displacement extrapolation are negligible
compared to the errors due to the discretization of the peridynamic equations.

conditions [63, 92, 126, 150, 151, 186, 192–196, 227, 236],

• the modification of the equations governing the nodes near the boundary thanks to the
peridynamic differential operator [237–241].

Even though it employs the fictitious layer as in the second type of methods, the surface
node method differs from all the previously proposed methods. The main difference is the
introduction of new degrees of freedom at the boundary of the body, governed by new
equations based on the concept of force flux. In the following, the most recent versions of
the three types of methods are reviewed and compared with the surface node method.

For the comparison, we consider an example of a 2D body under plane strain conditions
subjected to simple traction p = 240MPa. Note that, under these conditions, the coefficients
for the computation of the dilatation (respectively Equations 4.9 and 4.11) should be modified
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to cθ = 2, kθ = −(1 − 4ν)E/((1 + ν)(1 − 2ν)) and ke = 4E/(1 + ν). The boundary
conditions and the properties of the plate, which are the same as those of a numerical
example in [241], are shown respectively in Figure 4.13 and Table 4.2. The quadrature
coefficients are computed with the algorithm proposed in Appendix A of [235].

x

y

p

Figure 4.13: Boundary conditions for the plate under traction p.

Table 4.2: Properties of the plate and its discretization parameters.

Property Value

Length ℓx = 5mm
Width ℓy = 25mm

Young’s modulus E = 148GPa
Poisson’s ratio ν = 0.3
Grid spacing h = 0.125mm
m-ratio m = 3

The peridynamic analytical solution of this problem, which is the same analytical solution
obtained with classical continuum mechanics [165], is given as

u(x) =

{
u(x, y)

v(x, y)

}
=





−ν(1 + ν)p

E
x

(1− ν2)p

E
y




, (4.43)
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Therefore, the error in a node i is computed as





ǫui
=

∥∥∥∥
ui − ui
umax

∥∥∥∥ ,

ǫvi =

∥∥∥∥
vi − vi
vmax

∥∥∥∥ ,
(4.44)

where ui and vi are the displacements in the two directions obtained with the numerical
model, ui and vi are the displacements obtained with the analytical solution computed at
xi, and umax and vmax are the maximum magnitude of the analytical displacements.

4.5.1 Position-Aware Linear Solid (PALS)

The Position-Aware Linear Solid (PALS) constitutive model proposes a kinematic correc-
tion that modifies the influence function differently for the dilatation and the deviatoric part
of the extension [186, 190]. This method introduces two sets of constraints, called matching

deformations, which prescribe homogeneous strain conditions in the whole body. The two
sets of matching deformations, representing the deformations either for uniaxial strains or
for simple shear, are used to define two linear systems of equations for each node via the
Lagrange multipliers. The solution of these two systems, corresponding to the matching de-
formations for uniaxial strains or simple shear, leads to the determination of the dilatation
and deviatoric influence functions, respectively. Since only the influence functions of the
nodes near the boundary are automatically modified, the method is called position-aware.

The modification of the bond properties through the dilatation and deviatoric influence
functions allows to restore the proper values of stiffness in the whole body, also near the
boundaries, under homogeneous deformations. However, the PALS approach does not deal
with the problem of the imposition of the peridynamic boundary conditions and exhibits
even larger errors when the deformation is non-homogeneous.

4.5.2 Mirror Node Method (MNM)

The Mirror Node Method (MNM), developed in [194], is based on introducing the ficti-
tious nodes surrounding the peridynamic body. In state-based Peridynamics, the thickness
of the fictitious layer for the MNM is equal to 2δ. Each fictitious node is associated with
the node within the body closest to the point at the same (symmetric) distance from the
boundary, the so-called mirror node. The direction for this search of the mirror node is given
by the peridynamic gradient, a vector defined in such a way as to point towards the region
of nodes with the more complete neighborhoods, i.e., the bulk of the body. The fictitious
nodes are employed to mitigate the surface effect and to impose the boundary condition
thanks to the mirror nodes. The displacements of the fictitious nodes are indeed determined
depending on the values of the Dirichlet or Neumann boundary conditions at the boundary
and on the displacements of the corresponding mirror nodes.

Even if he MNM is similar to the Surface Node Method (SNM) in exploiting the fictitious
nodes to deal with both the surface effect and the imposition of the boundary conditions, the
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two methods differ considerably in the way they do it. Indeed, the Taylor-based extrapolation
used in the SNM does not need the computation of the peridynamic gradient but only the
search for the nearest node of the body. Moreover, in the SNM, higher-order terms of the
Taylor expansion may increase the accuracy in the case of a superlinear displacement field,
and the external forces are consistently applied in the peridynamic framework.

4.5.3 Peridynamic Differential Operator (PDDO)

The Peridynamic Differential Operator (PDDO) was introduced in [237] and then was
used to recast the formulation of the bond associated non-ordinary state-based Peridynam-
ics [239]. In this model, the PDDO can be used to correct the surface effect and impose the
boundary conditions without the fictitious layer [241]. The domain of the body is partitioned
into three subdomains:

• the set of the most external layer of nodes, where the boundary conditions are enforced
via the PDDO equations;

• the set of the remaining nodes with a distance from the boundary smaller than 2δ,
where the peridynamic equations are modified to correct the surface effect;

• the set of the nodes with a distance from the boundary greater than 2δ, which are
governed by the standard peridynamic equations.

To some extent, the PDDO method and the Surface Node Method (SNM) are similar since
they use different equations than the standard ones to correct the surface effect and impose
the boundary conditions. However, the differences between the two methods to implement
the boundary corrections are evident: the PDDO method exploits a layer of nodes within the
body, whereas the SNM the fictitious nodes outside the body. This is the reason why, in the
SNM, all the nodes in the interior of the body are still governed by the standard peridynamic
equations, and crack propagation is naturally included in the peridynamic formulation near
the boundary of the body as well.

4.5.4 Comparison with Surface Node Method (SNM)

The SNM retains the unique quality of having some nodes positioned exactly at the
boundary of the body, i.e., the surface nodes, representing the non-local mechanical behavior
of the external surface of the body. Thanks to these new nodes, the boundary conditions are
not imposed at a distance of h/2 from the boundary as in the other methods, where h is the
uniform grid spacing, but can be imposed exactly where they are supposed to. Moreover,
the boundary conditions are imposed as one would do in a local model, namely by setting
the values of the corresponding degrees of freedom in either the displacement vector or the
force vector (in Equation 4.37). This is a very handy characteristic that is not exhibited in
most of the other methods in the literature.

Figures 4.14 and 4.15 show the errors, respectively for the displacements in x and y

directions, computed with Equation 4.44 for the example in Figure 4.13. Since the PALS
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approach is expected to correct the surface effects under homogeneous deformation, the
errors in Figures 4.14a and 4.15a are due to the approximated way boundary conditions
were imposed. Note that this method reduces the errors of the displacements in the direction
of the load (y direction) but still yields significant errors in the perpendicular direction (x
direction). The numerical results obtained with the MNM are really close to the analytical
solution for the displacements in x direction, except in one of the corners (see Figure 4.14b).
However, the errors for the displacements in y direction (Figure 4.15b) are the highest among
the four analyzed methods due to the approximated imposition of the Neumann boundary
conditions via the mirror nodes.

Both PALS and MNM are implemented in the same peridynamic framework of the SNM,
namely the ordinary state-based Peridynamics, but they provide, on average, larger errors
than SNM. The numerical errors obtained with the method involving the PDDO are similar
to those obtained with the SNM: both methods do not exhibit fluctuations of the displace-
ments near the boundary and yield, on average, smaller errors than PALS and MNM meth-
ods. However, the PDDO method is based on the non-ordinary state-based Peridynamics
framework, which is different from the model used for the SNM. Therefore, the comparison
between these two methods can be only qualitative. The advantages of using the SNM over
the PDDO method are mainly two:

• the complete knowledge of the mechanical behavior of the external surface of peridy-
namic bodies is achieved solely with the SNM thanks to the surface nodes lying exactly
at the boundary,

• the PDDO method is limited to cracks that propagate far from the nodes where bound-
ary conditions are imposed (this limitation is not present in the SNM).

4.6 Conclusions

Peridynamics, as typical of non-local theories, exhibits some issues near the boundaries
of the body: an undesired stiffness fluctuation due to incomplete neighborhoods close to
the external surface of the body, phenomenon known as surface effect, and a difficulty in
imposing properly the boundary conditions. In [227, 236], we proposed an innovative method,
i.e., the Taylor-based extrapolation method with the nearest-node strategy, to mitigate the
surface effect by means of the introduction of the fictitious nodes and to impose properly
the peridynamic boundary conditions via the concept of force flux. The main disadvantage
of this method is that the system of equations is solved through the use of the Lagrange
multipliers, that increases the number of unknowns and leads to an equation structure which
is not computationally efficient to solve.

Therefore, we developed the method of the surface nodes which exploits the same concepts
of the previous method, but also avoids the use of the Lagrange multipliers. Each surface
node represents a portion of the external surface of the body. The displacements of these
nodes are new degrees of freedom in the model and their corresponding equations are based on
the concept of force flux. In this regard, the surface nodes may be considered as representative
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(a) With PALS. (b) With MNM. (c) With PDDO.
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(d) With SNM.

Figure 4.14: Errors of the displacements in x direction for the following methods for boundary
corrections: (a) Position-Aware Linear Solid, (b) Mirror Node Method, (c) Peridynamic Differential
Operator, and (d) Surface Node Method.

(a) With PALS. (b) With MNM. (c) With PDDO.
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(d) With SNM.

Figure 4.15: Errors of the displacements in y direction for the following methods for boundary
corrections: (a) Position-Aware Linear Solid, (b) Mirror Node Method, (c) Peridynamic Differential
Operator, and (d) Surface Node Method.

of the interactions between the most external layer of the body and the fictitious layer
surrounding the body. The boundary conditions can be applied directly to these nodes,
exactly as one would do in a local model. Moreover, the Taylor-based extrapolation is
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adapted by including the contributions of the new degrees of freedom associated to the
surface nodes.

For the first time, the concepts of the Taylor-based extrapolation method are applied to
3D peridynamic models: 3D static numerical examples have been carried out to verify the
accuracy of the method of the surface nodes. The improvements of the proposed method are
evident when compared to a peridynamic model without corrections at the boundary: the
undesired stiffness fluctuations near the external surface of the body are sensibly reduced (or
even eliminated) and the errors of the numerical solution decrease by 2 orders of magnitude.

Moreover, the advantages of the proposed method are the following:

• it defines in a clear way how the boundary conditions in Peridynamics are imposed
and removes the arbitrariness of other methods in distributing the constraints or the
external loads over the layer of the body close to the boundary;

• the introduction of the new unknowns, namely the displacements of the surface nodes,
allows for a better description of the mechanical behavior of the external surface of the
body;

• the implementation of the boundary conditions in peridynamic models is straightfor-
ward since it is similar to what one would do in a local model (for instance, by using
elimination techniques);

• there is no need to use of the Lagrange multipliers, thus the stiffness matrix can be
numerically inverted in a more efficient way.

We compared the proposed method with three of the most recently developed methods
for boundary corrections. This comparison highlights that the surface node method yields
the most accurate numerical results with respect to the other methods applied in the frame-
work of ordinary state-based Peridynamics. The unique characteristics of the surface nodes,
namely the knowledge of the non-local mechanical behavior of the external surface of peridy-
namic bodies and the imposition of the boundary conditions exactly at the boundary, make
the proposed method one of the most attractive to use.

Moreover, we computed the peridynamic analytical solution for a relatively complex dis-
placement field. In the literature, only few analytical solutions are available for peridynamic
problems. Appendix 4.A shows a procedure to analytically obtain the volume and surface
forces when a displacement field is prescribed. The same procedure can be applied to dif-
ferent displacement fields in order to attain other analytical solutions with the peridynamic
theory.
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Appendix

4.A Analytical solution to the manufactured problem

A peridynamic problem is said to be manufactured when the forces applied to a body are
computed from a given displacement field, which can be arbitrarily chosen (provided that
the integrals in the peridynamic equations are explicitly solvable). Therefore, consider an
infinite body which is subjected to the following displacement field:

u(x) =





u(x, y, z)

v(x, y, z)

w(x, y, z)





=





cu x y

cv x
3

cw x z




, (4.45)

where cu, cv and cw are arbitrarily chosen constants. The volume forces that should be applied
to the infinite body to obtain this displacement field can be computed from Equation 4.4 as

b(x) = −
∫

Ω

∫ δ

0

f(x,x′) l2 dΩm dl , (4.46)

where the differential volume dVx′ has been rewritten as l2 dΩm dl, in which l = ‖x′ − x‖ is
the length of the bond and dΩm is the differential solid angle in direction m of the bond.
The direction m may vary on the unit sphere Ω centered in x and the length l of the bond is
comprised between 0 and δ, so that all the bonds within the neighborhood Hx of the point
x are considered within the limits of the integration domain.

However, we would like to consider a body with finite dimensions (imagine to cut out
a piece of the infinite body). This means that some forces arise at the external surfaces
of the finite body (where the infinite body is cut). Therefore, we need to to compute the
peridynamic stress tensor as

τ (x) =
1

2

∫

Ω

∫ δ

0

∫ δ

s

f(x′,x′′)⊗m r2 dr ds dΩm , (4.47)

where r = ‖x′′ − x′‖, s = ‖x′ − x‖ and “⊗” stands for the dyadic product. The limits of the
integration domain can be visualized in Figure 4.2. If the stress tensor is multiplied by the
outward unit vector n normal to the external surface, one can obtain the above-mentioned
forces, or force fluxes, arisen at the external surface of the finite body: τ (x,n) = τ (x) · n.

For later use, we solve hereinafter the integrals that will appear in the computation of
the forces. Since both Equations 4.46 and 4.47 contain an integral over a unit sphere Ω, that
integral is equal to 0 whenever the integrand involves an odd exponent for at least one of
the components mi, with i = 1, 2, 3, of the vector m of the bond direction (antisymmetric
function integrated over a symmetric domain). The analytical solutions of the integrals
which involve the bond direction vector are:

∫

Ω

dΩm = 4π , (4.48)
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∫
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m 2
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m 4
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2
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, (4.51)

∫

Ω

m 4
i m

2
j dΩm =

4π

35
, (4.52)

where i, j = 1, 2, 3 with i 6= j. On the other hand, the integrals involving the bond length l
(see Equation 4.46) are solved as follows:

∫ δ

0

exp

(−l2
δ2

)
l4 dl =

(
3

8

√
πerf(1)− 5

4
exp(−1)

)
δ5 = ∆1 . (4.53)

where “erf” is the Gaussian error function and “exp” is the exponential function. We name
∆1 the solution of Equation 4.53 to simplify and shorten the next formulae. The solutions
for the integrals required to compute the peridynamic stress tensor are:

∫ δ

0

∫ δ

s

exp

(
−r

2

δ2

)
r3 dr ds = ∆1 , (4.54)

∫ δ

0

∫ δ

s
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2

δ2

)
r3(r2−3sr+3s2) dr ds =

(
15

32

√
πerf(1)− 29

16
exp(−1)

)
δ7 = ∆2 . (4.55)

These analytical solutions are valid only for the Gaussian influence function in Equation 4.7,
but they can be computed also if other influence functions are adopted (the values of ∆1

and ∆2 would be different).
The analytical value of the weighted volume of a point x with complete neighborhood

(from Equation 4.8) is:

m(x) =

∫

Ω

∫ δ

0

exp

(
− l2

δ2

)
l4 dl dΩm = 4π∆1 . (4.56)

We show hereinafter how to compute the volume and surface forces applied to a peridy-
namic body to obtain the displacement field in Equation 4.45.

4.A.1 Computation of volume forces

Under the assumption of small displacements, the extension scalar state of the bond
between points x and x′ is computed as

e = [u(x′)− u(x)] ·m =





cu (x
′y′ − xy)

cv (x
′3 − x3)

cw (x′z′ − xz)





·





m1

m2

m3




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=





cu (l
2m1m2 + xlm2 + ylm1)

cv (l
3m 3

1 + 3xl2m 2
1 + 3x2lm1)

cw (l2m1m3 + xlm3 + zlm1)





·





m1

m2

m3





= cu
(
l2m 2

1m2 + xlm1m2 + ylm 2
1

)
+ cv

(
l3m 3

1m2 + 3xl2m 2
1m2 + 3x2lm1m2

)

+ cw
(
l2m1m

2
3 + xlm 2

3 + zlm1m3

)
, (4.57)

where the equations x′ = x+ lm1, y′ = y + lm2 and z′ = z + lm3 have been used.
By substituting Equation 4.57 in Equation 4.9 (and neglecting the terms of the extension

scalar state with an odd exponent for the components of the bond direction vector), the
dilatation in a point x is given as

θ(x) =
3

m(x)

∫

Ω

∫ δ

0

exp

(
− l2

δ2

)
l4
(
cuym

2
1 + cwxm

2
3

)
dl dΩm

=
3

4π∆1

∫ δ

0

exp

(
− l2

δ2

)
l4 dl

(
cuy

∫

Ω

m 2
1 dΩm + cwx

∫

Ω

m 2
3 dΩm

)

=
3

4π∆1

∆1

(
cuy

4π

3
+ cwx

4π

3

)

= cuy + cwx . (4.58)

The volume force applied to a point x is computed by substituting Equation 4.11 in
Equation 4.46 (where m(x) = m(x′)):

b(x) = − 1

m(x)

∫

Ω

∫ δ

0

exp

(
− l2

δ2

)
{kθl [θ(x) + θ(x′)] + 2kee}m l2 dΩm dl . (4.59)

We rewrite the two main terms of the integrand as follows:

[θ(x) + θ(x′)]m = [cu (y + y′) + cw (x+ x′)]





m1

m2

m3





= [cu (lm2 + 2y) + cw (lm1 + 2x)]





m1

m2

m3





=





culm1m2 + cwlm
2
1 + [cu (2y + 2x)]m1

culm
2
2 + cwlm1m2 + [cu (2y + 2x)]m2

culm2m3 + cwlm1m3 + [cu (2y + 2x)]m3




, (4.60)

em = cul





lm 3
1m2 + xm 2

1m2 + ym 3
1

lm 2
1m

2
2 + xm1m

2
2 + ym 2

1m2

lm 2
1m2m3 + xm1m2m3 + ym 2

1m3





+ cvl





l2m 4
1m2 + 3xlm 3

1m2 + 3x2m 2
1m2

l2m 3
1m

2
2 + 3xlm 2

1m
2
2 + 3x2m1m

2
2

l2m 3
1m2m3 + 3xlm 2

1m2m3 + 3x2m1m2m3




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+ cwl





lm 2
1m

2
3 + xm1m

2
3 + zm 2

1m3

lm1m2m
2
3 + xm2m

2
3 + zm1m2m3

lm1m
3
3 + xm 3

3 + zm1m
2
3




. (4.61)

Therefore, keeping only the terms with all even exponents of the components of the bond
direction vector, Equation 4.59 becomes

b(x) = − 1

m(x)

∫

Ω

∫ δ

0

exp

(
− l2

δ2

)

kθl

2





cwm
2
1

cum
2
2

0





+ 2kel
2





cwm
2
1m

2
3

(cu + 3cvx)m
2
1m

2
2

0






l

2 dΩm dl

= − 1

4π∆1

∫ δ

0

exp

(
− l2

δ2

)
l4 dl

∫

Ω


kθ





cwm
2
1

cum
2
2

0





+ 2ke





cwm
2
1m

2
3

(cu + 3cvx)m
2
1m

2
2

0






 dΩm

= − 1

4π∆1

∆1



4π

3
kθ





cw

cu

0





+
8π

15
ke





cw

cu + 3cvx

0








=





−cw
(
kθ
3

+
2ke
15

)

−cu
(
kθ
3

+
2ke
15

)
− cv

2ke
5
x

0





. (4.62)

This is the volume force that should be applied to the body to obtain the manufactured
displacement field and the same formula is reported in Equation 4.40.

4.A.2 Computation of surface forces

Under the assumption of small displacements, the extension scalar state of the bond
between points x′ = x− sm and x′′ = x+ (r − s)m is computed as

e = [u(x′′)− u(x′)] ·m =





cu (x
′′y′′ − x′y′)

cv (x
′′3 − x′3)

cw (x′′z′′ − x′z′)





·





m1

m2

m3





=





cu [(r
2 − 2sr)m1m2 + xrm2 + yrm1]

cv [(r
3 − 3sr2 + 3s2r)m 3

1 + 3x(r2 − 2sr)m 2
1 + 3x2rm1]

cw [(r2 − 2sr)m1m3 + xrm3 + zrm1]





·





m1

m2

m3




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= cu
[
(r2 − 2sr)m 2

1m2 + xrm1m2 + yrm 2
1

]

+ cv
[
(r3 − 3sr2 + 3s2r)m 3

1m2 + 3x(r2 − 2sr)m 2
1m2 + 3x2rm1m2

]

+ cw
[
(r2 − 2sr)m1m

2
3 + xrm 2

3 + zrm1m3

]
, (4.63)

where the equations x′ = x − sm1, y′ = y − sm2, z′ = z − sm3, x′′ = x + (r − s)m1,
y′ = y + (r − s)m2 and z′ = z + (r − s)m3 have been used.

The peridynamic stress tensor of a point x is computed by substituting Equation 4.11 in
Equation 4.47 (where m(x′) = m(x′′) = m(x)):

τ (x) =
1

2m(x)

∫

Ω

∫ δ

0

∫ δ

s

exp

(
−r

2

δ2

)
{kθr [θ(x′) + θ(x′′)] + 2kee}m⊗m r2 dr ds dΩm

(4.64)
We rewrite the sum of the dilatations as follows:

θ(x′) + θ(x′′) = cu (y
′ + y′′) + cw (x′ + x′′)

= cu [(r − 2s)m2 + 2y] + cw [(r − 2s)m1 + 2x] , (4.65)

Then, by omitting the terms with at least one odd exponent for the components of the bond
direction vector, the peridynamic stress tensor is given as

τ (x) =
1

2m(x)

∫

Ω

∫ δ

0

∫ δ

s

exp

(
−r

2

δ2

)

2kθr

3 (cuy + cwx)




m 2
1 0 0

0 m 2
2 0

0 0 m 2
3




+ 2ker
3




cuym
4
1 + cwxm

2
1m

2
3 (cux+ 3cvx

2)m 2
1m

2
2 cwzm

2
1m

2
3

(cux+ 3cvx
2)m 2

1m
2
2 cuym

2
1m

2
2 + cwxm

2
2m

2
3 0

cwzm
2
1m

2
3 0 cuym

2
1m

2
3 + cwxm

4
3




+2ker
3(r2 − 3sr + 3s2)




0 cvm
4
1m

2
2 0

cvm
4
1m

2
2 0 0

0 0 0





 dr ds dΩm

=
1

8π∆1


2kθ (cuy + cwx)∆1

4π

3




1 0 0

0 1 0

0 0 1




+2ke∆1
4π

15




3cuy + cwx cux+ 3cvx
2 cwz

cux+ 3cvx
2 cuy + cwx 0

cwz 0 cuy + 3cwx


+ 2kecv∆2

4π

35




0 1 0

1 0 0

0 0 0






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=




cu

(
kθ
3

+
ke
5

)
y + cw

(
kθ
3

+
ke
15

)
x cu

ke
15
x+ cv

(
ke
5
x2 +

ke
35

∆2

∆1

)
cw
ke
15
z

cu
ke
15
x+ cv

(
ke
5
x2 +

ke
35

∆2

∆1

)
cu

(
kθ
3

+
ke
15

)
y + cw

(
kθ
3

+
ke
15

)
x 0

cw
ke
15
z 0 cu

(
kθ
3

+
ke
15

)
y + cw

(
kθ
3

+
ke
5

)
x




.

(4.66)

The surface force at a point x on the external surface of the body with a normal n can
be computed as τ (x,n) = τ (x) · n. The components of the stress tensor are reported in
Equation 4.41.



204 Chapter 4



Chapter 5

Accurate computation of partial volumes

in 3D peridynamics
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Abstract

The peridynamic theory is a nonlocal formulation of continuum mechanics based on integro-
differential equations, devised to deal with fracture in solid bodies. In particular, the forces
acting on each material point are evaluated as the integral of the nonlocal interactions with
all the neighboring points within a spherical region, called “neighborhood”. Peridynamic
bodies are commonly discretized by means of a meshfree method into a uniform grid of
cubic cells. The numerical integration of the nonlocal interactions over the neighborhood
strongly affects the accuracy and the convergence behavior of the results. However, near the
boundary of the neighborhood some cells are only partially within the sphere. Therefore, the
quadrature weights related to those cells are computed as the fraction of cell volume which
actually lies inside the neighborhood. This leads to the complex computation of the volume
of several cube-sphere intersections for different positions of the cells. We developed an
innovative algorithm able to accurately compute the quadrature weights in 3D peridynamics
for any value of the grid spacing (when considering fixed the radius of the neighborhood).
Several examples have been presented to show the capabilities of the proposed algorithm.
With respect to the most common algorithm to date, the new algorithm provides an evident
improvement in the accuracy of the results and a smoother convergence behavior as the grid
spacing decreases.

Keywords: Quadrature weights, 3D peridynamics, cube-sphere intersection, meshless method,
convergence studies, improved numerical integration.
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5.1 Introduction

The peridynamic theory provides a nonlocal reformulation of classical continuum me-
chanics: the internal forces are evaluated with integral equations, which are valid regardless
of the presence of discontinuities in the displacement field. Hence, peridynamics can nat-
urally model crack initiation, propagation and branching in solids. The first formulation
of the peridynamic theory was the bond-based version [61], in which the Poisson’s ratio
is restricted to a fixed value. Subsequently, state-based peridynamics was developed [62],
introducing the possibility of varying the Poisson’s ratio. In the literature there are many
examples of applications [74, 145], ranging from complex crack patterns, such as spontaneous
branching [68], to multi-physics problems involving fracture [243, 244].

Peridynamic points interact with each other up to a finite distance δ, called “horizon”.
The “neighborhood” of a point is the set of all the points interacting with that point. There-
fore, the neighborhood has a circular shape in 2D problems and a spherical shape in 3D
problems. The peridynamic equation of motion is based on the spatial integration over the
neighborhood of the internal forces, which are generated by the interactions between neigh-
boring points. In practice, the integration of the peridynamic equation of motion is carried
out by means of numerical tools. The body can be discretized by a uniform or non-uniform
grid (see for instance [181–183]). Various methods have been utilized to integrate numeri-
cally peridynamic equations: meshfree method with composite midpoint quadrature [65, 158,
173, 184], Gauss-Hermite quadrature [173], finite element method [173, 176, 178], collocation
method [245, 246] and an adaptive integration method with error control [224]. Thanks to
its simplicity of implementation and relatively low computational cost compared to other
approaches, the meshfree method with a uniform grid is the most commonly used for peri-
dynamic simulations. In this method, the body is discretized in volume cells with a square
shape in 2D problems and cubic in 3D, and the nodes lie at the center of the corresponding
cells. The spatial integration over the neighborhood is transformed into a summation of
integrals over cells and the midpoint quadrature rule is then applied in each cell, in which
the nodes are employed as quadrature points.

However, near the boundary of the neighborhood some cells are only partially within the
neighborhood itself. Therefore, the quadrature weights related to those cells are computed
as the fraction of cell volume which actually lies inside the neighborhood. The intersection
area or volume of those cells with the neighborhood is also referred to as “partial area” in 2D
and “partial volume” in 3D. The accuracy and convergence of the peridynamic results depend
on the algorithm to compute the quadrature weights, i.e., the partial areas or volumes [158,
184, 247].

The first algorithm proposed in [65] considers the nodes within the neighborhood with
their entire cell (even if a part of the volume is partially outside the neighborhood) and
neglects the nodes outside the neighborhood (even if their cell is partially inside the neigh-
borhood). This approach, under grid refinement, leads to an oscillatory convergence behavior
in which the fluctuations seem rather random [184]. Many other algorithms to approximate
the partial volumes have been proposed since then. An approximation based on the distance
between neighboring nodes is proposed in [197], which improves the computation of the par-
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tial volumes of nodes within the neighborhood. A similar approximation is used in [160,
198] to include the previously neglected partial volumes of nodes outside the neighborhood
but with a part of the cell inside it. These algorithms reduce, but never eliminate, the
seemingly random fluctuations of the convergence behavior. Subsequently, the algorithm to
compute analytically the partial areas has been developed in [184]: the types of intersection
between the neighborhood and the cells are rigorously categorized and then subdivided into
domains of basic geometry (triangles, rectangles and circular segments), for which the ana-
lytical computation of the area is straightforward. By using this algorithm, the convergence
behavior is smoothly oscillatory and the simulations yield results affected by a smaller error,
on average, compared to the previously mentioned algorithms. In [184] it is also suggested
to use the centroids of the partial areas as quadrature points, but this significantly increases
the complexity of the computational model. The analytical computation of the partial vol-
umes in 3D problems is much more complex and no algorithm is currently available for such
purpose. The partial volumes can be computed numerically by two proposed algorithms,
one based on the trapezoidal rule [224] and one based on a process of recursive subdivisions
and sampling [158]. However, to reach the desired accuracy the computational cost may be
very high. Other algorithms, specialized for non-uniform grids, are presented in [182, 198,
216, 248].

The aim of this paper is to simplify the implementation of the algorithm to compute
analytically the partial areas presented in [184] by skipping the step of subdivision of the
intersection area in basic geometries, and to develop an algorithm for the analytical compu-
tation of the partial volumes. In order to achieve this, we solve directly the integrals which
describe all the possible intersection areas or volumes. Actually, some integrals involved in
the computation of the partial volumes are not explicitly solvable. Hence, we perform a
Taylor series expansion of those functions and integrate the polynomials. The computation
of the partial volumes converges to the analytical solution if the sum of infinite terms is not
truncated. This, clearly, is not possible in a numerical model, but we will show that the
algorithm is able to reach values of the error very close to machine precision with little com-
putational effort. The numerical results obtained with the new algorithm show an evident
improvement in the accuracy and in the convergence behavior when compared to the results
obtained by the algorithm based on the approximation proposed by [198], which is arguably
the most commonly used in engineering applications. We compared the numerical results by
using the ordinary state-based version of the peridynamic theory, but the algorithm can be
used with the bond-based version as well.

The paper is divided as follows. Section 5.2 reviews the basics of the state-based peridy-
namic theory and its discretized formulation. Section 5.3 presents the innovative algorithms
for the computation of the partial areas and partial volumes. Section 5.4 contains several
numerical examples that show the improvements provided by the proposed algorithm for
the computation of the partial volumes with respect to the most commonly used algorithm.
Section 5.5 draws the conclusions of the work.
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5.2 Peridynamic theory

The peridynamic theory is a continuum theory based on nonlocal interactions between
material points [61]. The derived numerical formulation is a very useful tool for simulating
crack propagation in solid bodies. In the following, we present the fundamentals of the
ordinary state-based peridynamics and the discretized formulae which could be implemented
in a computational code.

5.2.1 Continuum model

The nonlocal interaction between two points, x and x′, in a peridynamic body B is
described by a quantity named “bond”:

ξ := x′ − x , (5.1)

where the point x′ is contained in the neighborhood Hx :=
{
x′ ∈ B : ‖ξ‖ ≤ δ

}
. The relative

displacement vector η is defined as

η := u(x′, t)− u(x, t) , (5.2)

where u is the displacement field. Note that ξ+η is the relative position of points x and x′

after the deformation occurred.
The state-based peridynamic equation of motion of a point x within the body B is given

by [62]

ρ(x) ü(x, t) =

∫

Hx

(
T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉

)
dVx′ + b(x, t) , (5.3)

where ρ is the material density, ü is the acceleration field, T is the force state, dVx′ is
the differential volume of a point x′ within the neighborhood Hx and b is the external
force density field. The notation T[x, t]〈ξ〉 means that the state T depends on the position
of the point x and on the time t, and operates on the bond ξ. In an ordinary state-
based peridynamic model, the force state is aligned with the corresponding bond for any
deformation, as depicted in Figure 5.1. For the purposes of the paper, it suffices to limit the
study to quasi-static problems [72, 73, 222]. Hence, the peridynamic equilibrium equation
is derived from Equation 5.3 by dropping the dependence on time:

−
∫

Hx

(
T[x]〈ξ〉 −T[x′]〈−ξ〉

)
dVx′ = b(x) . (5.4)

The reference position scalar state x, representing the bond length, the extension scalar
state e, describing the elongation (or contraction) of the bond in the deformed body, and
the deformed direction vector state M, the unit vector in the direction of T, are respectively
defined as

x〈ξ〉 := ‖ξ‖ , (5.5)

e〈ξ〉 := ‖ξ + η‖ − ‖ξ‖ , (5.6)
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x

y

B

x
δ

H
x

x
′

δ

H
x
′

ξ

u(x, t)

u(x′, t)

ξ + η

T[x]〈ξ〉

T[x′]〈-ξ〉

Figure 5.1: Body B modelled with ordinary state-based peridynamics: the force states T[x]〈ξ〉 and
T[x′]〈−ξ〉 arise in the bond ξ due to the deformation of the body.

M〈ξ〉 := ξ + η

‖ξ + η‖ . (5.7)

The weighted volume m and the dilatation θ of a point x are defined as

mx :=

∫

Hx

ω〈ξ〉 (x〈ξ〉)2 dVx′ , (5.8)

θx :=
3

mx

∫

Hx

ω〈ξ〉 x〈ξ〉 e〈ξ〉 dVx′ , (5.9)

where ω is a prescribed spherical influence function [147]. We adopt the Gaussian influence
function

ω〈ξ〉 := exp

(
−‖ξ‖2

δ2

)
. (5.10)

Adopting the linear peridynamic solid model [62], the force state is computed as

T[x]〈ξ〉 =
[
(3K − 5µ)

ω〈ξ〉 x〈ξ〉
mx

θx + 15µ
ω〈ξ〉 e〈ξ〉

mx

]
M〈ξ〉 , (5.11)

where K is the bulk modulus and µ is the shear modulus. Since M〈ξ〉 = −M〈−ξ〉, the
ordinary state-based peridynamic equilibrium equation becomes [62, 227, 236]

−
∫

Hx

[
(3K − 5µ)

(
θx
mx

+
θx′

mx
′

)
ω〈ξ〉 x〈ξ〉

+15µ

(
1

mx

+
1

mx
′

)
ω〈ξ〉 e〈ξ〉

]
M〈ξ〉 dVx′ = b(x) . (5.12)

Equation 5.12 relates the external forces to the displacement field, which might be a discon-
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tinuous function with respect to the spatial coordinates.

5.2.2 Discretized model

We adopt a meshfree method with a uniform grid spacing h to discretize the body domain
(see, for instance, the discretization of a neighborhood in Figure 5.2). Therefore, the cells
surrounding each node are squares in 2D and cubes in 3D respectively with an area A = h2

and a volume V = h3.

x

δ

H
x

x
′

ξ

x
′′

(a) Neighborhood of point x (continuum model).

i

j

ξij

(b) Neighborhood of node i (discretized model).

Figure 5.2: In the continuum model of the neighborhood Hx of a given point x, some points (as point
x′) lie inside the neighborhood and some other (as point x′′) lie outside. Similarly, in the discretized
model of the neighborhood Hi of a given node i, there are some nodes (solid circles) whose cell
lies completely or partially inside the neighborhood and other nodes (empty circles) whose cell lies
completely outside the neighborhood.

Consider a node i as the node at which the peridynamic equilibrium equation should be
computed and a node j with a portion of its cell inside the neighborhood Hi of node i. The
bond connecting node i to node j is described by

ξij = xj − xi . (5.13)

Analogously, the relative displacement vector after the deformation of the body is defined as

ηij = uj − ui , (5.14)

where ui and uj are the displacement vectors of nodes i and j, respectively.
Hence, the reference position scalar state and the influence function of bond ij can be

computed as follows:
xij = ‖ξij‖ , (5.15)

ωij = exp

(
−‖ξij‖2

δ2

)
. (5.16)
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Under the assumption of small displacements, the extension scalar state of bond ij is given
as

eij = ‖ξij + ηij‖ − ‖ξij‖
‖ηij‖≪‖ξij‖≈ ηij ·

ξij

‖ξij‖
. (5.17)

The non-local properties of node i, i.e., the weighted volume mi and the dilatation θi,
are determined numerically by transforming the integrals in Equations 5.8 and 5.9 into a
summation of integrals over cells and applying a midpoint quadrature rule in each cell:

mi =
∑

j∈Hi

ωij x
2
ij βij V , (5.18)

θi =
cθ
mi

∑

j∈Hi

ωij xij eij βij V , (5.19)

where βijV represents the quadrature weight of the contribution of node j in the integral
over the neighborhood of node i. The accurate computation of coefficients βij is the main
result of the paper, which is presented in Section 5.3. In 2D problems under plane stress
conditions, the volume of the cell is given as V = A t, where t is the constant thickness of
the plate.

Under the assumption of small displacements (M〈ξij〉 ≈ ξij/‖ξij‖), the peridynamic
equilibrium equation in the discretized form is computed by using the quadrature scheme
previously described as

−
∑

j∈Hi

[
(3K − 5µ)

(
θi
mi

+
θj
mj

)
ωij xij + 15µ

(
1

mi

+
1

mj

)
ωij eij

]
ξij

‖ξij‖
βij V = bi , (5.20)

where mj and θj are respectively the weighted volume and the dilatation of node j computed
with Equations 5.18 and 5.19, and bi is the external force density vector applied to node i.

5.3 Algorithms for the computation of the quadrature

weights

The quadrature coefficient βij is the dimensionless factor defined as

βij :=





Ṽ

V
in 3D,

Ã

A
in 2D,

(5.21)

where Ṽ and Ã are respectively the partial volume and partial area of the cell, which should
be computed from the intersection between the neighborhood Hi and the cell itself. In
particular, βij = 1 if the cell is completely inside Hi, βij = 0 if the cell is completely outside
Hi and 0 < βij < 1 if the cell is partially inside Hi. The set of nodes which constitutes
Hi :=

{
j ∈ B : βij > 0

}
depends on the algorithm used to compute βij.

We present one of the algorithms based on the approximation of the partial volume [198],
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used as a reference to compare our results. In order to compute analitycally βij in a conve-
nient framework, we define a new reference system and exploit the cell-neighborhood sym-
metries. Then, we improve the algorithm for the analytical computation of partial areas by
employing a simpler scheme and we use the same scheme to compute quasi-analytically the
partial volumes. We utilize the expression “quasi-analytical” because the algorithm includes
the truncation of the Taylor series expansions, but it is able to attain accurate results with
a relatively small truncation order.

5.3.1 Approximated computation of partial areas or volumes

In the literature there are many algorithms that compute the partial areas or volumes
as an approximation based on the distance between neighboring nodes [184]. The algorithm
presented in [198] (see Algorithm 1) is arguably the most commonly used to date. This
algorithm is based on the analytical computation of partial lengths in 1D problems, as
shown in Figure 5.3. If the distance between node i and the farthest side of the cell of node
j is smaller than the horizon size, namely ‖ξij‖ + h

2
< δ where h is the grid spacing, then

βij = 1 (see Figure 5.3a). If the distance between node i and the closest side of the cell of
node j is greater than the horizon size, namely ‖ξij‖− h

2
> δ, then βij = 0 (see Figure 5.3c).

Otherwise, βij is computed as the difference between the horizon size and the distance of the
closest side of the cell of node j from node i, divided by the grid spacing h (see Figure 5.3b).

Algorithm 1. Approximation of quadrature coefficients ([198]).

Input: ξij, δ, h
Output: βij

1: if ‖ξij‖+ h
2
< δ then ⊲ case-1

2: βij = 1

3: else if ‖ξij‖ − h
2
< δ then ⊲ case-2

4: βij =
[
δ −

(
‖ξij‖ − h

2

)]
/h

5: else ⊲ case-3

6: βij = 0

7: end if

8: return βij

Algorithm 1 is applied without modifications to 2D and 3D problems. If the direction of
ξij lies along one of the axis, as for instance in Figure 5.3b, the approximation is quite accu-
rate. However, Figure 5.4 shows other examples in which the computation of the quadrature
weights with Algorithm 1 can be rather inaccurate. As a result, even if this algorithm is
very simple, it leads to convergence issues [158, 184]: for small variations of the grid spac-
ing (considering fixed the horizon size) there are considerable variations of the computed
mechanical properties, as the numerical results of Sections 5.4.2 and 5.4.3 show.
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i jξij

h

‖ξij‖+ h/2

δ

(a) Case-1.

i jξij

h

‖ξij‖ − h/2

δ

(b) Case-2.

i jξij

h

‖ξij‖ − h/2

δ

(c) Case-3.

Figure 5.3: Possible cases of intersections between neighborhood and cell considered by Algorithm 1:
the gray area represents the quadrature weight of the corresponding cell.

i

j

ξij

(a) Algorithm 1: βij = 1.
Analytical: βij = 0.9579.

i

j

ξij

(b) Algorithm 1: βij = 0.3.
Analytical: βij = 0.2489.

i

j

ξij

(c) Algorithm 1: βij = 0.
Analytical: βij = 0.0403.

Figure 5.4: Some examples in which the quadrature weights computed with Algorithm 1 are rather
different from their analytical values: the gray area represents the quadrature weight of the corre-
sponding cell computed with Algorithm 1.

5.3.2 Change of reference system

For simplicity sake, the concepts are hereinafter explained in the 2D case, but the gener-
alization to a 3D case is straightforward. Since the focus is on the neighborhood of a node i,
we adopt a new system of reference (x, y) with the origin at (xi, yi) and the distances scaled
by a factor 1/h, as shown in Figure 5.5. Note that, since the quadrature coefficient βij is
normalized with the area or volume of the cell (see Equation 5.21), its value is not affected
by the scaling of the distances. The coordinates of a node j in the new reference system are
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given as
(
xj, yj

)
=

(
xj − xi
h

,
yj − yi
h

)
. (5.22)

Since the grid is uniform, xj and yj are integer numbers.

i

(xi, yi)

Hi

δ

x

y

j

(xj, yj)

h

(a)

i

(0, 0)

Hi

m

x

y

j

(xj, yj)

1

(1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(b)

Figure 5.5: (a) Hi is the neighborhood of node i in a general reference system and (b) Hi in the
scaled reference system: the origin of the new reference system is centered at node i and the distances
are scaled by a uniform factor 1/h in all directions, where h is the grid spacing. The coordinates of
a node j in the new reference system are given as xj = (xj − xi)/h and yj = (yj − yi)/h, and the
horizon size of the neighborhood becomes m = δ/h.

As shown in Figure 5.5b, the grid spacing in the new reference system is equal to 1, so
that the area or the volume of each cell are A = 1 and V = 1, respectively. Therefore, βij
is simply computed as the area or volume of the intersection between the neighborhood of
node i and the cell of node j: βij = Ã/A = Ã or βij = Ṽ /V = Ṽ . Furthermore, the only
parameter which can change the values of the quadrature coefficients is the m-ratio, given
as

m :=
δ

h
. (5.23)

If m is unique for the whole peridynamic body (as it is often the case), then the values of
βij can be computed only once and used for the neighborhoods of all the nodes.

5.3.3 Cell-neighborhood symmetries

The symmetries of the neighborhood with respect to the nodal grid, named “cell-neighborhood
symmetries”, can be exploited to reduce the number of cases to be considered. In [184] the
symmetries with respect to the axes were used to compute the quadrature weights only in
the first quadrant. On the other hand, we use four lines of symmetry for a 2D neighborhood
(both the axes and the bisectors of the quadrants), as shown in Figure 5.6. Therefore, the
computation of the partial area can be carried out only for the nodes satisfying the following
conditions: M ≥ yj ≥ xj ≥ 0, where M := ⌊m + 0.5⌋ (⌊·⌋ stands for the floor function
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and finds the greatest integer smaller than or equal to the input), and yj 6= 0. The latter
condition is given by the fact that the central node does not interact with itself. On the
other hand, the value M is used to provide an upper limit to the search for possible nodes
inside the neighborhood. These nodes are enclosed by a red line in Figure 5.6. Thanks to
the cell-neighborhood symmetries, βij of the other nodes have the same values. For instance,
the computation of the partial area for the node (xj = 2, yj = 3) is the same for nodes (3, 2),
(3,−2), (2,−3), (−2,−3), (−3,−2), (−3, 2) and (−2, 3).

x

y

1

(2, 3)

(3, 2)

(-2, 3)

(-3, 2)

(2, -3)

(3, -2)

(-2, -3)

(-3, -2)

Figure 5.6: Dashed lines represent the lines of the cell-neighborhood symmetries and the nodes
enclosed by the red line are the only ones that are considered by the proposed algorithm.

Analogously, we exploit six planes of symmetry for a neighborhood in a 3D model (planes
containing two axes or one axis and one bisector of the octants). Therefore, in this case we
consider only nodes that satisfy the following conditions: M ≥ zj ≥ yj ≥ xj ≥ 0 and zj 6= 0.
The nodes considered in the proposed algorithm for the computation of the partial volumes
for m = 3.2 are represented in Figure 5.7.

Cell-neighborhood symmetries come into play also during the computation of some partial
areas and volumes, as shown in Figure 5.8. In 2D problems, the intersections between the
neighborhood and cells of nodes with xj = 0 (see Figure 5.8a) are symmetric with respect to
the y-axis. Similarly, in 3D problems, the intersections between the neighborhood and cells
of nodes with xj = 0 and yj 6= 0 or xj = yj = 0 (see Figures 5.8b and 5.8c) are symmetric
with respect to the planes perpendicular respectively to the x-axis or both the x- and y-axis.
These symmetries will be exploited in Appendix 5.A and Section 5.3.5.

5.3.4 Computation of partial areas

The first algorithm proposing the analytical computation of partial areas can be found
in [184]: the area of intersection between the neighborhood and the cells is subdivided
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x

y

z

0

1

2

3

1 2 3

1

2

3

Figure 5.7: Thanks to the cell-neighborhood symmetries, the nodes enclosed by the surfaces repre-
sented by red lines are the only ones that are considered by the proposed algorithm. The six planes
of symmetry are not represented for image clarity.

into domains of basic geometry (triangles, rectangles and circular segments), for which the
analytical computation of the area is straightforward. Reference [184] proposes 8 different
cases of cell-neighborhood intersection. In Appendix 5.A, we propose a novel approach to
compute analytically the partial areas, which is based on the definition of the quadrature
coefficient in an integral form. The integrals are then solved by distinguishing only 5 possible
cases of cell-neighborhood intersections, for each of which an explicit analytical expression
for the value of the quadrature coefficient is obtained.

Algorithm 2 shows how to compute analytically the quadrature coefficients in 2D with
the proposed approach. Function 1 is used to solve the only non-trivial integral derived from
the computation of the quadrature coefficient. Please refer to Appendix 5.A for the details
of the analytical derivation, which is also very useful to better understand the extension of
the formulae from 2D to 3D for the computation of the partial volumes shown in the next
section.
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x

y

(a) xj = 0.

x

yz

(b) xj = 0, yj 6= 0.

x

y

z

(c) xj = yj = 0.

Figure 5.8: Examples of nodes for which the cell-neighborhood symmetry can be exploited within the
cell in the computation of the partial areas or volumes.

Function 1. Integral of Equation 5.51 in the interval [a, b].

1: function Int2D(a,b,m)

2: I = 1
2
m2
[
arcsin

(
b
m

)
− arcsin

(
a
m

)]
+ 1

2
b
√
m2 − b2 − 1

2
a
√
m2 − a2

3: return I

Algorithm 2. Analytical computation of quadrature coefficients in 2D.

Input: xj, yj, m
Output: βij

1: xj = abs(xj) ⊲ absolute value of xj for symmetry (xj ≥ 0)

2: yj = abs(yj) ⊲ absolute value of yj for symmetry (yj ≥ 0)

3: xj, yj = sort(xj, yj) ⊲ sort in ascending order for symmetry (xj ≤ yj)

4: M = ⌊m+ 0.5⌋
5: if yj 6= 0 and yj > M then

6: return βij = 0 ⊲ for exceeding the lower and upper limits of yj
7: end if

8: x1 = xj − 0.5,
9: x2 = xj + 0.5

10: y1 = yj − 0.5

11: y2 = yj + 0.5

12: if xj = 0 then

13: s = 1

14: else

15: s = 0
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16: end if

17: ax = max (0, x1)

18: bx = min
(
x2,
√
m2 − y 2

1

)

19: if x 2
2 + y 2

2 ≤ m2 then ⊲ case-1

20: βij = 1

21: else if a 2
x + y 2

2 ≤ m2 then ⊲ case-2

22: xe =
√
m2 − y 2

2

23: βij = 2s[ y2 (xe − ax)+Int2D(xe, bx,m)− y1 (bx − ax) ]

24: else if a 2
x + y 2

1 ≤ m2 then ⊲ case-3 or case-4

25: βij = 2s[ Int2D(ax, bx,m)− y1 (bx − ax) ]

26: else ⊲ case-5

27: βij = 0

28: end if

29: return βij

5.3.5 Computation of partial volumes

We show hereinafter how to compute quasi-analytically the quadrature weights in 3D
problems. The partial volumes are computed with the same approach explained in Ap-
pendix 5.A for the partial areas. Therefore, the quadrature coefficients are computed as

βij = 2s
∫ bx

ax

∫ min
(

y2,
√

m2−x2−z 2
1

)

ay

∫ min
(

z2,
√

m2−x2−y2
)

z1

dz dy dx , (5.24)

where x1 = xj−0.5, x2 = xj+0.5, y1 = yj−0.5, y2 = yj+0.5, z1 = zj−0.5 and z2 = zj+0.5

are the coordinates of the faces of the cubic cell and s is the number of symmetries of the
cell with respect to the neighborhood (s = 2 if yj = xj = 0, s = 1 if xj = 0 and yj 6= 0 and
s = 0 if xj 6= 0 and yj 6= 0, see Figures 5.8b and 5.8c). The integration limits ax, bx and ay
are scalar values that can be computed at the beginning of the algorithm. Similarly to what
described in Appendix 5.A, the lower limits are defined to exploit the cell-neighborhood
symmetry, or symmetries, shown in Figure 5.8b or Figure 5.8c:

ax = max (0, x1) , ay = max (0, y1) . (5.25)

Figure 5.9 shows all the possible cases of intersection between the spherical neighborhood
and a cubic cell. Note that in Figure 5.9 only cells with no symmetries are illustrated, but the
portions of the symmetric cell-neighborhood intersections that are used in the computation
of the quadrature weights, i.e., the portions in the first octant of Figures 5.8b and 5.8c,
belong to one of those cases. The upper limit of the integral in x direction of Equation 5.24
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is the greatest x coordinate of the cell-neighborhood intersection, and it can be computed as

bx = min
(
x2,
√
m2 − a 2

y − z 2
1

)
. (5.26)

Therefore, bx is equal to x2 from case-2 to case-8, and to
√
m2 − a 2

y − z 2
1 in case-9. The

computation of Equation 5.26 at the beginning of the algorithm allows to compute case-8
and case-9 with the same formulae.

Similarly to Equation 5.48 in Appendix 5.A, Equation 5.24 can be solved for each case
by splitting the integrals in correspondence of the intersections between the boundary of the
neighborhood and the edges parallel to the x-axis and the faces parallel to the x-y plane (for
details refer to Appendix 5.B). There are 3 types of non-trivial integrals that derive from
the previous step:

∫ √
m2 − x2 − k 2

1 dx =
1

2

(
m2 − k 2

1

)
arcsin

(
x√

m2 − k 2
1

)
+

1

2
x
√
m2 − x2 − k 2

1 + const. ,

(5.27)∫ (
m2 − x2

)
arcsin

(
k2√

m2 − x2

)
dx , (5.28)

∫ (
m2 − x2

)
arcsin

(√
m2 − x2 − k 2

3√
m2 − x2

)
dx , (5.29)

where k1 can be equal to ay, y2, z1 or z2, k2 to ay or y2, and k3 to z1 or z2. The parameters
k1, k2 and k3 are defined in these ways to group the same types of integrals derived from
Equation 5.24. The explicit solution given in Equation 5.27 is used in Function 2 to compute
the integral in a general interval [a, b].

On the other hand, integrals in Equations 5.28 and 5.29 do not have an explicit solution.
Therefore, we perform a Taylor series expansion centered at x0 of the following functions:

arcsin

(
k2√

m2 − x2

)
= arcsin

(
k2√

m2 − x 2
0

)

+
N∑

n=1

⌊3n/2⌋∑
p=1

(
p∑

q=1

c(n, p, q)m2(p−q) k 2q−1
2

)
x 3n−2p
0

(m2 − x 2
0 )

n
(m2 − x 2

0 − k 2
2 )

n−1/2
· (x− x0)

n

n!
, (5.30)

arcsin

(√
m2 − x2 − k 2

3√
m2 − x2

)
= arcsin

(√
m2 − x 2

0 − k 2
3√

m2 − x 2
0

)

−
N∑

n=1

⌊3n/2⌋∑
p=1

(
p∑

q=1

c(n, p, q)m2(p−q) k 2q−1
3

)
x 3n−2p
0

(m2 − x 2
0 )

n
(m2 − x 2

0 − k 2
3 )

n−1/2
· (x− x0)

n

n!
, (5.31)

where c is a coefficient depending on the order n of the corresponding derivative and the
indices p and q. For more details about the computation of the derivatives of a general order
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Figure 5.9: Possible cases of intersections between neighborhood and cell in 3D. Symmetric cell-
neighborhood intersections are not shown here, but the unsymmetric portions of those intersections
belong to one of the shown cases. Since the true origin of the reference system lies outside the
images, it has been translated to one of the vertices of the cube for visualization clarity.
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n (and the corresponding coefficients c(n, p, q)), please refer to Appendix 5.C. The matrix c

containing all the coefficients c is obtained with Algorithm 3. If the order N of truncation
of the Taylor series expansion tends to infinity (N → ∞), then the solution of the integral is
exact. Clearly, in a numerical algorithm N must be a finite number, but we will show that
our approach is able to attain accurate results with little computational effort (i.e., with N
relatively low). Hence, we substitute Equations 5.30 and 5.31 respectively in Equations 5.28
and 5.29 and solve the indefinite integrals:

∫ (
m2 − x2

)
f(x) dx =

∫ (
m2 − x2

)
[
f(x0) +

N∑

n=1

f (n)(x0)

n!
(x− x0)

n

]
dx

= f(x0)

(
m2 x− x3

3

)
+

N∑

n=1

f (n)(x0)

n!

[
m2 − x 2

0

n+ 1
(x− x0)

n+1

− 2x0
n+ 2

(x− x0)
n+2 − 1

n+ 3
(x− x0)

n+3

]
+ const. ,

(5.32)

∫ (
m2 − x2

)
g(x) dx =

∫ (
m2 − x2

)
[
g(x0) +

N∑

n=1

g(n)(x0)

n!
(x− x0)

n

]
dx

= g(x0)

(
m2 x− x3

3

)
+

N∑

n=1

g(n)(x0)

n!

[
m2 − x 2

0

n+ 1
(x− x0)

n+1

− 2x0
n+ 2

(x− x0)
n+2 − 1

n+ 3
(x− x0)

n+3

]
+ const. , (5.33)

where f(x) and g(x) are the arcsin functions (see Equations 5.96 and 5.101) and f (n)(x) and
g(n)(x) are the corresponding n-th derivatives (see Equations 5.97 and 5.102). Functions 3
and 4 show the computation of the integrals in Equations 5.32 and 5.33 in a general interval
[a, b]. In order to improve the accuracy of the algorithm, we choose x0 to be the middle point
of the interval [a, b].

The integrals of Equation 5.24 can be solved for each case by following the procedure
described above (for details refer to Appendix 5.B). Algorithm 4 illustrates how to compute
the quadrature coefficients with this procedure. At the beginning of the algorithm, the
coordinates of node j are considered only in their absolute value and sorted in ascending
order to comply with the conditions imposed for symmetry: 0 ≤ xj ≤ yj ≤ zj. The
quadrature coefficients βij computed for m = 3, 4, 6 are reported in Appendix 5.D.

Function 2. Integral of Equation 5.27 in the interval [a, b].

1: function Int1(a,b,k1,m)

2: I = 1
2
(m2 − k 2

1 )

[
arcsin

(
b√

m2−k 2
1

)
− arcsin

(
a√

m2−k 2
1

)]

+1
2
b
√
m2 − b2 − k 2

1 − 1
2
a
√
m2 − a2 − k 2

1

3: return I
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Algorithm 3. Computation of the matrix c containing the coefficients for the Taylor
series expansion.

Input: N

Output: c

1: P = ⌊3(N − 1)/2⌋+ 2 ⊲ maximum value for indices p and q

2: c = zeros(N ,P ,P ) ⊲ initialization of cwith all zero elements

3: c(1, 1, 1) = 1 ⊲ from the first derivative

4: for n = 2 : N do

5: for p = 1 : ⌊3(n− 1)/2⌋+ 2 do

6: for q = 1 : p do

7: if 1 ≤ p ≤ ⌊3(n− 1)/2⌋ then

8: c(n, p, q) = c(n, p, q) + (−n− 2p+ 2) c(n− 1, p, q)

9: end if

10: if 2 ≤ p ≤ ⌊3(n− 1)/2⌋+ 1 and q ≤ p− 1 then

11: c(n, p, q) = c(n, p, q) + (−2n+ 4p− 3) c(n− 1, p− 1, q)

12: end if

13: if 2 ≤ p ≤ ⌊3(n− 1)/2⌋+ 1 and q ≥ 2 then

14: c(n, p, q) = c(n, p, q) + (n− 2p+ 1) c(n− 1, p− 1, q − 1)

15: end if

16: if 3 ≤ p ≤ ⌊3(n− 1)/2⌋+ 2 and q ≤ p− 2 then

17: c(n, p, q) = c(n, p, q) + (3n− 2p+ 1) c(n− 1, p− 2, q)

18: end if

19: if 3 ≤ p ≤ ⌊3(n− 1)/2⌋+ 2 and 2 ≤ q ≤ p− 1 then

20: c(n, p, q) = c(n, p, q) + (−3n+ 2p− 1) c(n− 1, p− 2, q − 1)

21: end if

22: end for

23: end for

24: end for

25: return c

Function 3. Integral of Equation 5.32 in the interval [a, b].

1: function Int2(a,b,k2,m,N ,c)

2: x0 = (a+ b)/2

3: I = arcsin

(
k2√

m2−x 2
0

)[
m2 (b− a)− 1

3
(b3 − a3)

]

4: for n = 1 : N do

5: f (n)(x0) =

⌊3n/2⌋
∑

p=1

(

p
∑

q=1
c(n,p,q)m2(p−q) k 2q−1

2

)

x 3n−2p
0

(m2−x 2
0 )

n
(m2−x 2

0 −k 2
2 )

n−1/2

6: In1 =
m2−x 2

0

n+1

(
(b− x0)

n+1 − (a− x0)
n+1)
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7: In2 =
2x0

n+2

(
(b− x0)

n+2 − (a− x0)
n+2)

8: In3 =
1

n+3

(
(b− x0)

n+3 − (a− x0)
n+3)

9: I = I + f (n)(x0)
n!

(In1 − In2 − In3)

10: end for

11: return I

Function 4. Integral of Equation 5.33 in the interval [a, b].

1: function Int3(a,b,k3,m,N ,c)

2: x0 = (a+ b)/2

3: I = arcsin

(√
m2−x2

0−k 2
3√

m2−x 2
0

)[
m2 (b− a)− 1

3
(b3 − a3)

]

4: for n = 1 : N do

5: g(n)(x0) =
−

⌊3n/2⌋
∑

p=1

(

p
∑

q=1
c(n,p,q)m2(p−q) k 2q−1

3

)

x 3n−2p
0

(m2−x 2
0 )

n
(m2−x 2

0 −k 2
3 )

n−1/2

6: In1 =
m2−x 2

0

n+1

(
(b− x0)

n+1 − (a− x0)
n+1)

7: In2 =
2x0

n+2

(
(b− x0)

n+2 − (a− x0)
n+2)

8: In3 =
1

n+3

(
(b− x0)

n+3 − (a− x0)
n+3)

9: I = I + g(n)(x0)
n!

(In1 − In2 − In3)

10: end for

11: return I

Algorithm 4. Quasi-analytical computation of quadrature coefficients in 3D.

Input: xj, yj, zj, m, N , c
Output: βij

1: xj = abs(xj) ⊲ absolute value of xj for symmetry (xj ≥ 0)

2: yj = abs(yj) ⊲ absolute value of yj for symmetry (yj ≥ 0)

3: zj = abs(zj) ⊲ absolute value of zj for symmetry (zj ≥ 0)

4: xj, yj, zj = sort(xj, yj, zj) ⊲ sort in ascending order for symmetry

5: M = ⌊m+ 0.5⌋
6: if zj 6= 0 and zj > M then

7: return βij = 0 ⊲ for exceeding the lower and upper limits of zj
8: end if

9: x1 = xj − 0.5

10: x2 = xj + 0.5

11: y1 = yj − 0.5

12: y2 = yj + 0.5

13: z1 = yj − 0.5

14: z2 = yj + 0.5
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15: if xj = 0 and yj = 0 then

16: s = 2

17: else if xj = 0 then

18: s = 1

19: else

20: s = 0

21: end if

22: ax = max (0, x1)

23: ay = max (0, y1)

24: bx = min
(
x2,
√
m2 − a 2

y − z 2
1

)

25: if x 2
2 + y 2

2 + z 2
2 ≤ m2 then ⊲ case-1

26: βij = 1

27: else if a 2
x + y 2

2 + z 2
2 ≤ m2 then ⊲ case-2

28: xe1 =
√
m2 − y 2

2 − z 2
2

29: βij = 2s[ 1
2
z2·Int1(xe1 , bx, z2,m) + 1

2
y2·Int1(xe1 , bx, y2,m)

+1
2
·Int2(xe1 , bx, y2,m,N, c)− 1

2
·Int3(xe1 , bx, z2,m,N, c)

+z2y2 (xe1 − ax)− z2ay (bx − ax)− z1 (y2 − ay) (bx − ax) ]

30: else if x 2
2 + a 2

y + z 2
2 ≤ m2 then ⊲ case-3

31: βij = 2s[ 1
2
z2·Int1(ax, bx, z2,m) + 1

2
y2·Int1(ax, bx, y2,m)

+1
2
·Int2(ax, bx, y2,m,N, c)− 1

2
·Int3(ax, bx, z2,m,N, c)

−z2ay (bx − ax)− z1 (y2 − ay) (bx − ax) ]

32: else if a 2
x + a 2

y + z 2
2 ≤ m2 and x 2

2 + y 2
2 + z 2

1 ≤ m2 then ⊲ case-4

33: xe2 =
√
m2 − a 2

y − z 2
2

34: βij = 2s[ 1
2
z2·Int1(ax, xe2 , z2,m) + 1

2
y2·Int1(ax, bx, y2,m)

−1
2
ay·Int1(xe2 , bx, ay,m) + 1

2
·Int2(ax, bx, y2,m,N, c)

−1
2
·Int2(xe2 , bx, ay,m,N, c)− 1

2
·Int3(ax, xe2 , z2,m,N, c)

−z2ay (xe2 − ax)− z1 (y2 − ay) (bx − ax) ]

35: else if a 2
x + a 2

y + z 2
2 ≤ m2 then ⊲ case-5

36: xe2 =
√
m2 − a 2

y − z 2
2

37: xe3 =
√
m2 − y 2

2 − z 2
1

38: βij = 2s[ 1
2
z2·Int1(ax, xe2 , z2,m) + 1

2
y2·Int1(ax, xe3 , y2,m)

−1
2
z1·Int1(xe3 , bx, z1,m)− 1

2
ay·Int1(xe2 , bx, ay,m)

+1
2
·Int2(ax, xe3 , y2,m,N, c)− 1

2
·Int2(xe2 , bx, ay,m,N, c)

−1
2
·Int3(ax, xe2 , z2,m,N, c) + 1

2
·Int3(xe3 , bx, z1,m,N, c)

−z2ay (xe2 − ax)− z1y2 (xe3 − ax) + z1ay (bx − ax) ]

39: else if x 2
2 + y 2

2 + z 2
1 ≤ m2 then ⊲ case-6
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40: βij = 2s[ 1
2
y2·Int1(ax, bx, y2,m)− 1

2
ay·Int1(ax, bx, ay,m)

+1
2
·Int2(ax, bx, y2,m,N, c)− 1

2
·Int2(ax, bx, ay,m,N, c)

−z1 (y2 − ay) (bx − ax) ]

41: else if a 2
x + y 2

2 + z 2
1 ≤ m2 then ⊲ case-7

42: xe3 =
√
m2 − y 2

2 − z 2
1

43: βij = 2s[ 1
2
y2·Int1(ax, xe3 , y2,m)− 1

2
z1·Int1(xe3 , bx, z1,m)

−1
2
ay·Int1(ax, bx, ay,m) + 1

2
·Int2(ax, xe3 , y2,m,N, c)

−1
2
·Int2(ax, bx, ay,m,N, c) + 1

2
·Int3(xe3 , bx, z1,m,N, c)

−z1y2 (xe3 − ax) + z1ay (bx − ax) ]

44: else if a 2
x + a 2

y + z 2
1 ≤ m2 then ⊲ case-8 or case-9

45: βij = 2s[−1
2
z1·Int1(ax, bx, z1,m)− 1

2
ay·Int1(ax, bx, ay,m)

−1
2
·Int2(ax, bx, ay,m,N, c) + 1

2
·Int3(ax, bx, z1,m,N, c)

+z1ay (bx − ax) ]

46: else ⊲ case-10

βij = 0

47: end if

48: return βij

5.4 Numerical results

In order to assess the accuracy of the computation of the partial volumes with respect
to the order N of truncation of the Taylor series expansions, we compute the relative error
on the total volume of the spherical neighborhood:

ǫV =

∥∥∥∥∥∥∥∥

∑
j∈Hi

βij + 1

4
3
πm3

− 1

∥∥∥∥∥∥∥∥
. (5.34)

The sum of all the quadrature coefficients βij and the volume Vi = 1 of node i is the
numerical value of the sphere volume, whereas (4/3)πm3 is its analytical value. As shown in
Figure 5.10, the accuracy in the computation of the partial volumes is improved by increasing
the value of N . Furthermore, the proposed algorithm reaches values of the errors very close
to machine precision with m ≥ 3 and N = 20.

We show hereinafter several numerical results that confirm the improvements in the peri-
dynamic integration in 3D problems. In particular, we compare the numerical results of
Algorithm 1, arguably the most commonly used, with those of the new algorithm (Algo-
rithm 4). We use N = 4 as the order of truncation for the Taylor series in Algorithm 4 since
this value assures accurate results with low computational cost.
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Figure 5.10: Relative errors on the computation of the total volume of the neighborhood obtained
with Algorithm 4 with different order N of truncation of the Taylor series expansions. The values
of m vary by ∆m = 0.5.

5.4.1 Geometrical quantities

In order to assess the performance of the proposed algorithm, we compute two geometrical
quantities that reflect the accuracy in the computation of the partial volumes. The first one
is the neighborhood volume, computed as:

VH = 1 +
∑

j∈Hi

βij . (5.35)

The analytical value of the neighborhood volume is equal to the volume of a sphere: Van =

(4/3)πm3. The relative error on the neighborhood volume can be computed as in Equa-
tion 5.34. The improvements obtained by the novel algorithm are evident in Figures 5.11a
and 5.11b.

The second geometrical quantity for the comparison of the algorithms is the weighted
volume m (Equation 5.18). The analytical computation of the weighted volume is carried
out by using spherical coordinated (φ is the azimuthal angle and ϕ is the polar angle):

man =

∫

Hx

exp

(
−‖ξ‖2

δ2

)
‖ξ‖2 dVx′

=

∫ δ

0

∫ 2π

0

∫ π

0

exp

(
−r

2

δ2

)
r2 · r2 sinϕ dϕ dφ dr

=

(
3

2

√
π erf(1)− 5 exp(−1)

)
πδ5 , (5.36)

where r = ‖ξ‖ and erf(·) is the Gaussian error function. The relative error on the weighted
volume can be computed as:

ǫm =

∥∥∥∥∥
m

man

− 1

∥∥∥∥∥ . (5.37)

Figures 5.11c and 5.11d show the comparison between Algorithm 1 and Algorithm 4, with a
significant improvement of the accuracy in the latter one.
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Figure 5.11: Geometrical quantities (neighborhood volume and weighted volume) and their relative
errors computed with Algorithm 1 and Algorithm 4. The plot is realized with values of m varying
by ∆m = 0.05.

5.4.2 Coefficients of the elasticity tensor

The mechanical properties of isotropic linearly elastic materials are described by the
4th-order elasticity tensor C. As in [184], we investigate the convergence behavior of the
coefficients of the elasticity tensor. In state-based peridynamics, the elasticity tensor of a
point in the bulk is given as [166]

Cpqrs(x) =

∫

Hx

∫

Hx

Kpr[x]〈ξ, ζ〉 ξq ζs dVx′′ dVx′ , (5.38)

where K is the modulus state which operates on two bonds, ξ = x′−x and ζ = x′′−x. The
modulus state in a linear peridynamic solid model [62, 166] is derived as

Kpr[x]〈ξ, ζ〉 =
ω〈ξ〉
mx

(
3 (3K − 5µ)

mx

ω〈ζ〉 x〈ξ〉 x〈ζ〉+ 15µ∆(ζ − ξ)

)
ξp
‖ξ‖

ζr
‖ζ‖ , (5.39)

where ∆ is the Dirac delta function defined as

∆(ζ − ξ) :=

{
1 if ζ = ξ ,

0 otherwise.
(5.40)

A component of the tensor C is therefore computed as [166]

Cpqrs =

∫

Hx

∫

Hx

ω〈ξ〉
mx

(
3 (3K − 5µ)

mx

ω〈ζ〉 x〈ξ〉 x〈ζ〉+ 15µ∆(ζ − ξ)

)
ξpξq
‖ξ‖

ζrζs
‖ζ‖ dVx′′ dVx′
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=

∫

Hx

ω〈ξ〉ξpξq
(
3 (3K − 5µ)

(mx)
2

∫

Hx

ω〈ζ〉 ζrζs dVx′′ +
15µ

mx

∫

Hx

∆(ζ − ξ)
ζrζs

‖ξ‖‖ζ‖ dVx′′

)
dVx′

=
3 (3K − 5µ)

(mx)
2

∫

Hx

ω〈ξ〉 ξpξq dVx′

∫

Hx

ω〈ζ〉 ζrζs dVx′′ +
15µ

mx

∫

Hx

ω〈ξ〉ξpξqξrξs‖ξ‖2 dVx′ .

(5.41)

For isotropic linearly elastic materials, there are only two coefficients of the tensor C

which are independent from the others. The analytical value of the coefficients, for instance,
C1111 and C1122 are

Can
1111 = K +

4

3
µ , Can

1122 = K − 2

3
µ . (5.42)

Any component of the tensor C in a node i can be computed numerically from Equa-
tion 5.41 as

Cpqrs =
3 (3K − 5µ)

(mi)
2

(
∑

j∈Hi

ωij ξp ξq βijV

)(
∑

k∈Hi

ωik ζr ζs βikV

)
+

15µ

mi

∑

j∈Hi

ωij

ξpξqξrξs
‖ξ‖2 βijV,

(5.43)
where ξ = xj − xi and ζ = xk − xi. The values of the Young’s modulus E = 1 GPa and
of the Poisson’s ratio ν = 0.2 are chosen, which yield the following bulk and shear moduli:
K = 555.56 MPa and µ = 416.67 MPa. Figures 5.12a and 5.12c show the results of these
computation respectively for the components C1111 and C1122. The relative errors on these
coefficients are computed as

ǫ1111 =

∥∥∥∥∥
C1111

Can
1111

− 1

∥∥∥∥∥ , ǫ1122 =

∥∥∥∥∥
C1122

Can
1122

− 1

∥∥∥∥∥ , (5.44)

and are shown in Figures 5.12b and 5.12d. It is evident that the proposed algorithm provides,
on average, smaller errors. Furthermore, the oscillatory behavior as m increases is much
smoother than that of Algorithm 1.

5.4.3 Manufactured problem

A “manufactured” problem, which consists in determining the force density distribution
in a body under a prescribed displacement field, is solved analytically and numerically.
Following what was shown in [158] for a 2D problem, a body is subjected to the displacements





u = cu1 x
2 + cu2 y

2 + cu3 z
2 + cu4 xy + cu5 yz + cu6 xz ,

v = cv1 x
2 + cv2 y

2 + cv3 z
2 + cv4 xy + cv5 yz + cv6 xz ,

w = cw1 x
2 + cw2 y

2 + cw3 z
2 + cw4 xy + cw5 yz + cw6 xz ,

(5.45)
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Figure 5.12: Coefficients of the 4th-order elasticity tensor and their relative errors computed with
Algorithm 1 and Algorithm 4. The values of m vary by ∆m = 0.05.

where there are 18 independent coefficients for the quadratic terms. The force density derived
from this displacement field is given as [158]





ban1 = −3K − 5µ

3
(2cu1 + cv4 + cw6)− 2µ (3cu1 + cu2 + cu3 + cv4 + cw6) ,

ban2 = −3K − 5µ

3
(cu4 + 2cv2 + cw5)− 2µ (cu4 + cv1 + 3cv2 + cv3 + cw5) ,

ban3 = −3K − 5µ

3
(cu6 + cv5 + 2cw3)− 2µ (cu6 + cv5 + cw1 + cw2 + 3cw3) ,

(5.46)

where K = 555.56 MPa and µ = 416.67 MPa. Note that the force density vector ban is
constant for all the points in the bulk of the material, i.e., in all points that have a distance
from the boundary of the body greater than or equal to 2δ. Since cu5, cv6 and cw4 do not
contribute to ban, these coefficients are considered to be equal to 0. The values of the other
coefficients are chosen randomly as follows: cu1 = 0.6, cu2 = 1.3, cu3 = 0.8, cu4 = 0.5, cu6 = 1.8,
cv1 = 1.1, cv2 = 1.6, cv3 = 0.7, cv4 = 1, cv5 = 1.2, cw1 = 0.3, cw2 = 1.2, cw3 = 0.1, cw5 = 1.7 and
cw6 = 0.6.

We consider only one node in the bulk of a body at which the force density vector b is
computed with Equation 5.20. The relative errors on the components of b are given as

ǫbp =

∥∥∥∥∥
bp
banp

− 1

∥∥∥∥∥ with p = 1, 2, 3 . (5.47)

Figure 5.13 shows the results of the numerical computation. Algorithm 4 allows to obtain,
on average, smaller relative errors and a smoother convergence behavior also in this case.
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Figure 5.13: Components of the force density vector and their relative errors computed with Algo-
rithm 1 and Algorithm 4. The values of m vary by ∆m = 0.1.

5.5 Conclusions

The peridynamic theory is a nonlocal reformulation of classical continuum mechanics
based on integrals over the neighborhoods of nodes. Therefore, the numerical integration of
peridynamic equations determines to a great extent the accuracy of the results. In particu-
lar, the quadrature weights, i.e., the partial areas in 2D (intersections between the circular
neighborhood and the square cells) and the partial volumes in 3D (intersections between the
spherical neighborhood and the cubic cells), should be computed accurately.

We developed an innovative algorithm able to compute quasi-analytically the partial vol-
umes. We use the expression “quasi-analytical” because a truncated Taylor series expansion
of some functions, whose integrals are not explicitly solvable, is performed to carry out the
integration. However, the new algorithm computes accurately the quadrature weights with
very little computational effort, i.e., with a relatively low order of truncation of the Taylor



Chapter 5 231

series. The computational time required by the proposed algorithm is negligible compared
to the time required to compute the bond forces and the peridynamic equilibrium equation.
In particular, if m is constant in the whole domain, the same quadrature weights can be
computed only once and used for every neighborhood in the body. A similar approach is
also used to simplify the algorithm for the analytical computation of the partial areas, which
was already developed in the literature.

Several examples have been presented to show the capabilities of the newly proposed algo-
rithm. The numerical values of the geometrical quantities (volume of the neighborhood and
weighted volume), of the coefficients of the elasticity tensor and of the manufactured problem
obtained with the new algorithm are compared with those obtained with the most commonly
used algorithm for the computation of the partial volumes. As the m-ratio increases, the
proposed algorithm provides, on average, smaller errors and a smoother convergence behav-
ior. For the sake of convenience, the quadrature coefficients for m = 3, 4, 6 are reported in
Appendix 5.D.
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Appendices

5.A Analytical computation of partial areas

We propose a new algorithm for the computation of the quadrature coefficients in 2D
(Algorithm 2) that solves the following integral:

βij = 2s
∫ bx

ax

∫ min
(

y2,
√

m2−x2
)

y1

dy dx , (5.48)

where x1 = xj − 0.5, x2 = xj + 0.5, y1 = yj − 0.5 and y2 = yj + 0.5 are the coordinates of
the sides of the square cell and s is the number of symmetries of the cell with respect to the
neighborhood (s = 1 if xj = 0 and s = 0 if xj 6= 0, see Figure 5.8a). The upper and lower
limits of the outer integral, respectively bx and ax, are scalar values that can be computed
at the beginning of the algorithm. The value of the lower limit ax depends on whether the
cell-neighborhood intersection is symmetric, as shown in Figure 5.8a, or not. In the former
case, the lower limit of the integration domain in x direction is set to ax = 0 and the value
of the integral is multiplied by 2 (given that s = 1). In the latter case, the lower limit is the
smallest x coordinate of the cell, i.e., ax = x1. These conditions can be written as

ax = max (0, x1) . (5.49)

Since only cells with yj ≥ xj ≥ 0 are considered for symmetry reasons (see Figure 5.14),
there are 5 possible cases of square-circle intersections depending on which corners of the
cell lie inside the neighborhood:

• case-1 if the corner (x2, y2), the farthest from node i, lies inside the neighborhood, i.e.,
x 2
2 + y 2

2 ≤ m2, as shown in Figure 5.15a;

• case-2 if only the corner (x2, y2) lies outside the neighborhood, i.e., a 2
x + y 2

2 ≤ m2 <

x 2
2 + y 2

2 , as shown in Figure 5.15b;

• case-3 if the corners (x2, y2) and (ax, y2) lie outside the neighborhood and the others
lie inside, i.e., x 2

2 + y 2
1 ≤ m2 < a 2

x + y 2
2 , as shown in Figure 5.15c;

• case-4 if only the corners (ax, y1) lies inside the neighborhood, i.e., a 2
x + y 2

1 ≤ m2 <

x 2
2 + y 2

1 , as shown in Figure 5.15d;

• case-5 if the corner (ax, y1), the closest to node i, lies outside the neighborhood, i.e.,
a 2
x + y 2

1 > m2, as shown in Figure 5.15e.

The comparison of these cases with the cases of the approach in [184] is summarized in
Table 5.1.

Case-1 and case-5 are trivial since βij = 1 and βij = 0, respectively. Furthermore, the
quadrature coefficient in case-3 and case-4 can be computed with the same formulae if the
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Table 5.1: Comparison of the cases in Figure 4 of [184] with the cases in Figure 5.15 derived from
the new approach for the computation of the partial areas. The abbreviation “symm.” means that
the cell-neighborhood symmetry should be used for the cases of the approach in [184] to obtain the
cases in the new approach.

Approach in [184] New approach

Case I Case 1

Case II Case 2

Case IIIa1 Case 3

Case IIIa2 Case 3 (symm.)

Case IIIb Case 2 (symm.)

Case IIIc Case 3

Case IV Case 4

Case V Case 4 (symm.)

upper limit of the integral in x direction is defined as

bx = min

(
x2,
√
m2 − y 2

1

)
. (5.50)

The value of bx is indeed equal to x2 in case-3, as shown in Figure 5.15c, and to the x

coordinate of the intersection between the boundary of the neighborhood and the lower side
of the cell, as shown in Figure 5.15d.

x

y
1

C-1

C-1

C-1

C-1 C-2

C-3 C-3 C-4 C-5

Figure 5.14: Cases of intersection for m = 3.25 in 2D depending on which corners of the cell lie
inside the neighborhood. Note that the cell-neighborhood intersection of node (0, 3) is symmetric
with respect to the y-axis, so actually only the half of it is considered, namely the half in the first
quadrant.

For later use, the following indefinite integral is analytically solved as

∫ √
m2 − x2 dx =

1

2
m2 arcsin

(
x

m

)
+

1

2
x
√
m2 − x2 + const. . (5.51)

This solution will be used to compute the definite integrals in different intervals. Now, we
show how to compute the quadrature coefficient if the considered cell belongs to case-2.
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y
2

x2

(a) Case-1.

y
2

y
1

ax bx = x2xe

√

m2
− x2

(b) Case-2.

y
2

y
1

ax bx = x2

√

m2
− x2

(c) Case-3.

y
1

ax bx =

√

m2
− y 2

1

x2

√

m2
− x2

(d) Case-4.

y
1

ax

(e) Case-5.

Figure 5.15: Possible cases of intersections between neighborhood and cell in 2D. The gray line is a
portion of the boundary of the neighborhood.

Equation 5.48 can be rewritten as

βij = 2s
∫ bx

ax

(
min

(
y2,
√
m2 − x2

)
− y1

)
dx . (5.52)

In case-2 (see Figure 5.15b), there is an intersection between the boundary of the neighbor-
hood and the upper side of the cell, which has an x coordinate equal to

xe =
√
m2 − y 2

2 . (5.53)

The integral in Equation 5.52 must be splitted because the integrand has different values
in the intervals [ax, xe] and [xe, bx]. Then the integral can be solved analytically by using
Equation 5.51:

Case-2 ⇒ βij = 2s
[∫ xe

ax

(y2 − y1) dx+

∫ bx

xe

(√
m2 − x2 − y1

)
dx

]

= 2s
[
y2 (xe − ax) +

1

2
m2 arcsin

(
bx
m

)
+

1

2
bx

√
m2 − b 2x

−1

2
m2 arcsin

(
xe
m

)
− 1

2
xe

√
m2 − x 2

e − y1 (bx − ax)

]
. (5.54)

Similarly, the quadrature coefficient for a cell belonging to case-3 or case-4 is analytically
computed from Equation 5.52 as follows:

Case-3 or case-4 ⇒ βij = 2s
∫ bx

ax

(√
m2 − x2 − y1

)
dx
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= 2s
[
1

2
m2 arcsin

(
bx
m

)
+

1

2
bx

√
m2 − b 2x

−1

2
m2 arcsin

(ax
m

)
− 1

2
ax

√
m2 − a 2

x − y1 (bx − ax)

]
. (5.55)

The computation of the partial area of a cell is summarized in Algorithm 2. Function 1
is used to compute the integral of Equation 5.51 in a general interval between a and b. The
proposed algorithm yields exactly the same results of the algorithm for the computation of
the partial areas presented in [184], but its implementation is simpler because it is based on
a smaller number of cases.

5.B Quasi-analytical computation of partial volumes

We can rewrite Equation 5.24 that describes the integral to compute the quadrature
coefficients as follows:

βij = 2s
∫ bx

ax

∫ min
(

y2,
√

m2−x2−z 2
1

)

ay

[
min

(
z2,
√
m2 − x2 − y2

)
− z1

]
dy dx , (5.56)

where x1 = xj−0.5, x2 = xj+0.5, y1 = yj−0.5, y2 = yj+0.5, z1 = zj−0.5 and z2 = zj+0.5

are the coordinates of the faces of the cubic cell and s is the number of symmetries of the
cell with respect to the neighborhood (see Figures 5.8b and 5.8c). ax, ay and bx are scalar
values computed as shown in Equations 5.25 and 5.26.

Since the integrand and the upper limit of the inner integral in Equation 5.56 are dis-
continuous functions, the integral domain should be split into subdomains in which only
continuous functions are integrated. The integral is split differently for each of the 10 cases
represented in Figure 5.9. The cases are differentiated depending on the intersections be-
tween the boundary of the neighborhood and the edges of the cell parallel to the x-axis and
the faces parallel to the x-y plane. These intersections are indeed used to split the integral
of Equation 5.56, as shown in next Subsections. To begin with, we consider a cell completely
within the neighborhood (case-1 in Figure 5.9a) and decrease gradually the m-ratio to find
other cases. We also need to check that, for the considered cells with zj ≥ yj ≥ xj ≥ 0,
other cases of intersections are not possible.

5.B.1 Case-1

In case-1, the cell is completely within the neighborhood, as shown in Figure 5.9a. The
condition for which this case is verified is that the farthest node with coordinates (x2, y2, z2)
is inside the neighborhood:

x 2
2 + y 2

2 + z 2
2 ≤ m2 . (5.57)

In this case, the solution of Equation 5.56 is trivial:

βij = 1 . (5.58)
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5.B.2 Case-2

In case-2, the boundary of the neighborhood intersects the edge of the cell between the
vertices (ax, y2, z2) and (x2, y2, z2), as shown in Figure 5.9b. Therefore, the condition in this
case is

a 2
x + y 2

2 + z 2
2 ≤ m2 < x 2

2 + y 2
2 + z 2

2 . (5.59)

In order to be sure that there are no other possible intersections with edges parallel to the
x-axis and faces parallel to the x-y plane, we need to check that the vertices (x2, ay, z2) and
(x2, y2, z1) lie within the neighborhood, so that the edge between (ax, ay, z2) and (x2, ay, z2)

and the face on the plane z = z1 are respectively within the neighborhood. The condition
for the vertex (x2, ay, z2) being within the neighborhood is given as

x 2
2 + a 2

y + z 2
2 ≤ m2 . (5.60)

We rewrite the condition in Equation 5.60 as

a 2
x − a 2

x + x 2
2 + a 2

y + y 2
2 − y 2

2 + z 2
2 ≤ m2 . (5.61)

By comparing this inequality with the condition on the left-hand side in Equation 5.59, we
obtain:

− a 2
x + x 2

2 + a 2
y − y 2

2 ≤ 0 ⇒ y 2
2 − a 2

y ≥ x 2
2 − a 2

x . (5.62)

If the cell has two symmetries as shown in Figure 5.8c (s = 2, ax = ay = 0), Equation 5.62
becomes y 2

2 ≥ x 2
2 which is always verified. If the cell has one symmetry as shown in Fig-

ure 5.8b (s = 1, ax = 0, x2 = 0.5, yj ≥ 1), Equation 5.62 becomes 2yj ≥ 0.52 which is
always verified. If the cell has no symmetries (s = 0), Equation 5.62 becomes 2yj ≥ 2xj
which is always verified. Similarly, one can show that also the vertex (x2, y2, z1) lies within
the neighborhood.

In this case (see Figure 5.9b), the outer integral of Equation 5.56 should be split at
the intersection of the boundary of the neighborhood with the edge between the vertices
(ax, y2, z2) and (x2, y2, z2), namely at

xe1 =
√
m2 − y 2

2 − z 2
2 . (5.63)

Furthermore, the inner integral should be split in correspondence of the arc of circle with
equation

yf1(x) =
√
m2 − x2 − z 2

2 , (5.64)

which is given by the intesection of the boundary of the neighborhood with the plane z = z2
(where the face of the cell lies). Therefore, Equation 5.56 becomes:

βij = 2s

[∫ xe1

ax

∫ y2

ay

z2 dy dx+

∫ bx

xe1

∫ y2

ay

min
(
z2,
√
m2 − x2 − y2

)
dy dx−

∫ bx

ax

∫ y2

ay

z1 dy dx

]
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= 2s

[∫ xe1

ax

∫ y2

ay

z2 dy dx+

∫ bx

xe1

∫ √
m2−x2−z 2

2

ay

z2 dy dx

+

∫ bx

xe1

∫ y2

√
m2−x2−z 2

2

√
m2 − x2 − y2 dy dx−

∫ bx

ax

∫ y2

ay

z1 dy dx

]
. (5.65)

Note that the upper limit of the inner integral is y2 because the face of the cell on the plane
z = z1 is completely within the neighborhood. Since the solution of the inner integral of the
last term in Equation 5.65 is similar to the integral solved in Equation 5.27, the quadrature
coefficients in case-2 can be computed as

βij = 2s

[
z2 (y2 − ay) (xe1 − ax) + z2

∫ bx

xe1

(√
m2 − x2 − z 2

2 − ay

)
dx

+

∫ bx

xe1

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)
+ y2

√
m2 − x2 − y 2

2

−
(
m2 − x2

)
arcsin

(√
m2 − x2 − z 2

2√
m2 − x2

)
− z2

√
m2 − x2 − z 2

2

)
dx

− z1 (y2 − ay) (bx − ax)

]
. (5.66)

The integrals in Equation 5.66 are of the types solved in Equations 5.27, 5.32 and 5.33.
To shorten the formulae, we define the following functions (similar to Functions 2, 3 and 4
used in Algorithm 4):

I1(a, b, k1) :=

∫ b

a

√
m2 − x2 − k 2

1 dx

=
1

2

(
m2 − k 2

1

)
[
arcsin

(
b√

m2 − k 2
1

)
− arcsin

(
a√

m2 − k 2
1

)]

+
1

2
b
√
m2 − b2 − k 2

1 − 1

2
a
√
m2 − a2 − k 2

1 , (5.67)

I2(a, b, k2) :=

∫ b

a

(
m2 − x2

)
arcsin

(
k2√

m2 − x2

)
dx

=

∫ b

a

(
m2 − x2

)
[
f(x0) +

N∑

n=1

f (n)(x0)

n!
(x− x0)

n

]
dx

= f(x0)

(
m2 (b− a)− 1

3

(
b3 − a3

))

+
N∑

n=1

f (n)(x0)

n!

[
m2 − x 2

0

n+ 1

(
(b− x0)

n+1 − (a− x0)
n+1)

− 2x0
n+ 2

(
(b− x0)

n+2 − (a− x0)
n+2)

− 1

n+ 3

(
(b− x0)

n+3 − (a− x0)
n+3)

]
, (5.68)
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I3(a, b, k3) :=

∫ b

a

(
m2 − x2

)
arcsin

(√
m2 − x2 − k 2

3√
m2 − x2

)
dx

=

∫ b

a

(
m2 − x2

)
[
g(x0) +

N∑

n=1

g(n)(x0)

n!
(x− x0)

n

]
dx

= g(x0)

(
m2 (b− a)− 1

3

(
b3 − a3

))

+
N∑

n=1

g(n)(x0)

n!

[
m2 − x 2

0

n+ 1

(
(b− x0)

n+1 − (a− x0)
n+1)

− 2x0
n+ 2

(
(b− x0)

n+2 − (a− x0)
n+2)

− 1

n+ 3

(
(b− x0)

n+3 − (a− x0)
n+3)

]
, (5.69)

where f(x) and g(x) are functions defined in Appendix 5.C and their corresponding n-th
derivatives f (n)(x) and g(n)(x) are computed as in Equations 5.97 and 5.102. The parameter
k1 can be equal to ay, y2, z1 or z2, k2 to ay or y2, and k3 to z1 or z2 depending on the cases.

By using the previous definitions, Equation 5.66 is solved as follows:

βij = 2s
[
z2 (y2 − ay) (xe1 − ax) + z2 I1(xe1 , bx, z2)− z2ay (bx − xe1) +

1

2
I2(xe1 , bx, y2)

+
1

2
y2 I1(xe1 , bx, y2)−

1

2
I3(xe1 , bx, z2)−

1

2
z2 I1(xe1 , bx, z2)− z1 (y2 − ay) (bx − ax)

]

= 2s
[
1

2
z2 I1(xe1 , bx, z2) +

1

2
y2 I1(xe1 , bx, y2) +

1

2
I2(xe1 , bx, y2)

−1

2
I3(xe1 , bx, z2) + z2y2 (xe1 − ax)− z2ay (bx − ax)− z1 (y2 − ay) (bx − ax)

]
. (5.70)

5.B.3 Case-3

In case-3, the boundary of the neighborhood intersects the face of the cell on the plane
z = z2, but does not intersect any edge parallel to the x-axis, as shown in Figure 5.9c.
Therefore, the condition in this case is

x 2
2 + a 2

y + z 2
2 ≤ m2 < a 2

x + y 2
2 + z 2

2 . (5.71)

The condition on the right-hand side implies that there are no intersections of the boundary
of the neighborhood with the edge of the cell between the vertices (ax, y2, z2) and (x2, y2, z2).
Similarly, the condition on the left-hand side implies that there are no intersections with the
edge between the vertices (ax, ay, z2) and (x2, ay, z2). With the same approach illustrated at
the beginning of Subsection 5.B.2, one can also show that the vertex (x2, y2, z1) lies within
the neighborhood for the considered cells (zj ≥ yj ≥ xj ≥ 0), so that the face of the cell on
the plane z = z1 is completely inside the neighborhood.
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The quadrature coefficient in case-3 is therefore computed as

βij = 2s

[∫ bx

ax

∫ √
m2−x2−z 2

2

ay

z2 dy dx+

∫ bx

ax

∫ y2

√
m2−x2−z 2

2

√
m2 − x2 − y2 dy dx

−
∫ bx

ax

∫ y2

ay

z1 dy dx

]

= 2s
[
z2

∫ bx

ax

(√
m2 − x2 − z 2

2 − ay

)
dx

+

∫ bx

ax

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)
+ y2

√
m2 − x2 − y 2

2

−
(
m2 − x2

)
arcsin

(√
m2 − x2 − z 2

2√
m2 − x2

)
− z2

√
m2 − x2 − z 2

2

)
dx

− z1 (y2 − ay) (bx − ax)

]
. (5.72)

By using Equations 5.67, 5.68 and 5.69, Equation 5.72 is solved as follows:

βij = 2s
[
z2 I1(ax, bx, z2)− z2ay (bx − ax) +

1

2
I2(ax, bx, y2) +

1

2
y2 I1(ax, bx, y2)

−1

2
I3(ax, bx, z2)−

1

2
z2 I1(ax, bx, z2)− z1 (y2 − ay) (bx − ax)

]

= 2s
[
1

2
z2 I1(ax, bx, z2) +

1

2
y2 I1(ax, bx, y2) +

1

2
I2(ax, bx, y2)

−1

2
I3(ax, bx, z2)− z2ay (bx − ax)− z1 (y2 − ay) (bx − ax)

]
. (5.73)

5.B.4 Case-4

In case-4, the boundary of the neighborhood intersects the edge of the cell between the
vertices (ax, ay, z2) and (x2, ay, z2) and the face on the plane z = z1 lies completely within
the neighborhood, as shown in Figure 5.9d. Therefore, the conditions in this case are

a 2
x + a 2

y + z 2
2 ≤ m2 < x 2

2 + a 2
y + z 2

2 and x 2
2 + y 2

2 + z 2
1 ≤ m2 . (5.74)

The intersection of the boundary of the neighborhood with the edge between the vertices
(ax, y2, z2) and (x2, y2, z2) is given as

xe2 =
√
m2 − a 2

y − z 2
2 . (5.75)

Given the conditions in previous case, there are no intersections of the boundary of the
neighborhood with the edge of the cell between the vertices (ax, y2, z2) and (x2, y2, z2).
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The quadrature coefficient in case-4 is therefore computed as

βij = 2s

[∫ xe2

ax

∫ √
m2−x2−z 2

2

ay

z2 dy dx+

∫ xe2

ax

∫ y2

√
m2−x2−z 2

2

√
m2 − x2 − y2 dy dx

+

∫ bx

xe2

∫ y2

ay

√
m2 − x2 − y2 dy dx−

∫ bx

ax

∫ y2

ay

z1 dy dx

]

= 2s
[
z2

∫ xe2

ax

(√
m2 − x2 − z 2

2 − ay

)
dx

+

∫ xe2

ax

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)
+ y2

√
m2 − x2 − y 2

2

−
(
m2 − x2

)
arcsin

(√
m2 − x2 − z 2

2√
m2 − x2

)
− z2

√
m2 − x2 − z 2

2

)
dx

+

∫ bx

xe2

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)
+ y2

√
m2 − x2 − y 2

2

−
(
m2 − x2

)
arcsin

(
ay√

m2 − x2

)
− ay

√
m2 − x2 − a 2

y

)
dx

− z1 (y2 − ay) (bx − ax)

]
. (5.76)

By using Equations 5.67, 5.68 and 5.69, Equation 5.76 is solved as follows:

βij = 2s
[
z2 I1(ax, xe2 , z2)− z2ay (xe2 − ax) +

1

2
I2(ax, xe2 , y2) +

1

2
y2 I1(ax, xe2 , y2)

− 1

2
I3(ax, xe2 , z2)−

1

2
z2 I1(ax, xe2 , z2) +

1

2
I2(xe2 , bx, y2) +

1

2
y2 I1(xe2 , bx, y2)

−1

2
I2(xe2 , bx, ay)−

1

2
ay I1(xe2 , bx, ay)− z1 (y2 − ay) (bx − ax)

]

= 2s
[
1

2
z2 I1(ax, xe2 , z2) +

1

2
y2 I1(ax, bx, y2)−

1

2
ay I1(xe2 , bx, ay) +

1

2
I2(ax, bx, y2)

−1

2
I2(xe2 , bx, ay)−

1

2
I3(ax, xe2 , z2)− z2ay (xe2 − ax)− z1 (y2 − ay) (bx − ax)

]
.

(5.77)

5.B.5 Case-5

In case-5, the boundary of the neighborhood intersects both the edge of the cell be-
tween the vertices (ax, ay, z2) and (x2, ay, z2) and the face on the plane z = z1, as shown in
Figure 5.9e. Therefore, the conditions in this case are

a 2
x + a 2

y + z 2
2 ≤ m2 < x 2

2 + a 2
y + z 2

2 and m2 < x 2
2 + y 2

2 + z 2
1 . (5.78)

With the same approach illustrated at the beginning of Subsection 5.B.2, one can also show
that the vertices (ax, y2, z1) and (x2, ay, z1) lie within the neighborhood for the considered
cells (zj ≥ yj ≥ xj ≥ 0), so that there is an intersection with the edge between (ax, y2, z1)
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and (x2, y2, z1) and the edge between (ax, ay, z1) and (x2, ay, z1) lies completely within the
neighborhood.

The intersection of the boundary of the neighborhood with the edge between the vertices
(ax, y2, z2) and (x2, y2, z2) is given in Equation 5.75, whereas the intersection with the edge
between (ax, y2, z1) and (x2, y2, z1) is given as

xe3 =
√
m2 − y 2

2 − z 2
1 . (5.79)

Note that xe2 ≤ xe3 since:

m2 − a 2
y − z 2

2 ≤ m2 − y 2
2 − z 2

1 ⇒ z 2
2 − z 2

1 ≥ y 2
2 − a 2

y . (5.80)

If the cell has two symmetries (s = 2, ay = 0), Equation 5.80 becomes 2zj ≥ 0.5 2 which
is always verified (zj ≥ 1). If the cell has one or no symmetries, Equation 5.80 becomes
2zj ≥ 2yj which is always verified.

In case-5, the boundary of the neighborhood intersects both faces on the planes z = z2
and z = z1. The equation of the former intersection is written in Equation 5.64, while the
latter is given as

yf2(x) =
√
m2 − x2 − z 2

1 . (5.81)

The quadrature coefficient in case-5 is computed as

βij = 2s

[∫ xe2

ax

∫ √
m2−x2−z 2

2

ay

z2 dy dx+

∫ xe2

ax

∫ y2

√
m2−x2−z 2

2

√
m2 − x2 − y2 dy dx

+

∫ xe3

xe2

∫ y2

ay

√
m2 − x2 − y2 dy dx+

∫ bx

xe3

∫ √
m2−x2−z 2

1

ay

√
m2 − x2 − y2 dy dx

−
∫ xe3

ax

∫ y2

ay

z1 dy dx−
∫ bx

xe3

∫ √
m2−x2−z 2

1

ay

z1 dy dx

]

= 2s
[
z2

∫ xe2

ax

(√
m2 − x2 − z 2

2 − ay

)
dx+

∫ xe2

ax

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)

+ y2

√
m2 − x2 − y 2

2 −
(
m2 − x2

)
arcsin

(√
m2 − x2 − z 2

2√
m2 − x2

)
− z2

√
m2 − x2 − z 2

2

)
dx

+

∫ xe3

xe2

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)
+ y2

√
m2 − x2 − y 2

2

−
(
m2 − x2

)
arcsin

(
ay√

m2 − x2

)
− ay

√
m2 − x2 − a 2

y

)
dx

+

∫ bx

xe3

1

2

(
(
m2 − x2

)
arcsin

(√
m2 − x2 − z 2

1√
m2 − x2

)
+ z1

√
m2 − x2 − z 2

1

−
(
m2 − x2

)
arcsin

(
ay√

m2 − x2

)
− ay

√
m2 − x2 − a 2

y

)
dx

−z1 (y2 − ay) (xe3 − ax)− z1

∫ bx

xe3

(√
m2 − x2 − z 2

1 − ay

)
dx

]
. (5.82)
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By using Equations 5.67, 5.68 and 5.69, Equation 5.82 is solved as follows:

βij = 2s
[
z2 I1(ax, xe2 , z2)− z2ay (xe2 − ax) +

1

2
I2(ax, xe2 , y2) +

1

2
y2 I1(ax, xe2 , y2)

− 1

2
I3(ax, xe2 , z2)−

1

2
z2 I1(ax, xe2 , z2) +

1

2
I2(xe2 , xe3 , y2) +

1

2
y2 I1(xe2 , xe3 , y2)

− 1

2
I2(xe2 , xe3 , ay)−

1

2
ay I1(xe2 , xe3 , ay) +

1

2
I3(xe3 , bx, z1) +

1

2
z1 I1(xe3 , bx, z1)

− 1

2
I2(xe3 , bx, ay)−

1

2
ay I1(xe3 , bx, ay)− z1 (y2 − ay) (xe3 − ax)

− z1 I1(xe3 , bx, z1) + z1ay (bx − xe3)

]

= 2s
[
1

2
z2 I1(ax, xe2 , z2) +

1

2
y2 I1(ax, xe3 , y2)−

1

2
z1 I1(xe3 , bx, z1)

− 1

2
ay I1(xe2 , bx, ay) +

1

2
I2(ax, xe3 , y2)−

1

2
I2(xe2 , bx, ay)−

1

2
I3(ax, xe2 , z2)

+
1

2
I3(xe3 , bx, z1)− z2ay (xe2 − ax)− z1y2 (xe3 − ax) + z1ay (bx − ax)

]
. (5.83)

5.B.6 Case-6

In case-6, the face of the cell on the plane z = z2 is completely outside the neighborhood
and the face on the plane z = z1 is completely inside, as shown in Figure 5.9f. Therefore,
the condition in this case is

x 2
2 + y 2

2 + z 2
1 ≤ m2 < a 2

x + a 2
y + z 2

2 . (5.84)

The quadrature coefficient in case-6 is computed as

βij = 2s

[∫ bx

ax

∫ y2

ay

√
m2 − x2 − y2 dy dx−

∫ bx

ax

∫ y2

ay

z1 dy dx

]

= 2s
[∫ bx

ax

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)
+ y2

√
m2 − x2 − y 2

2

−
(
m2 − x2

)
arcsin

(
ay√

m2 − x2

)
− ay

√
m2 − x2 − a 2

y

)
dx− z1 (y2 − ay) (bx − ax)

]
.

(5.85)

By using Equations 5.67, 5.68 and 5.69, Equation 5.85 is solved as follows:

βij = 2s
[
1

2
I2(ax, bx, y2) +

1

2
y2 I1(ax, bx, y2)−

1

2
I2(ax, bx, ay)−

1

2
ay I1(ax, bx, ay)

− z1 (y2 − ay) (bx − ax)

]

= 2s
[
1

2
y2 I1(ax, bx, y2)−

1

2
ay I1(ax, bx, ay) +

1

2
I2(ax, bx, y2)−

1

2
I2(ax, bx, ay)

− z1 (y2 − ay) (bx − ax)

]
. (5.86)
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5.B.7 Case-7

In case-7, the boundary of the neighborhood intersects the edge of the cell between the
vertices (ax, y2, z1) and (x2, y2, z1), as shown in Figure 5.9g. Therefore, the condition in this
case is

a 2
x + y 2

2 + z 2
1 ≤ m2 < x 2

2 + y 2
2 + z 2

1 . (5.87)

With the same approach illustrated at the beginning of Subsection 5.B.2, one can also show
that the vertex (x2, ay, z1) lies within the neighborhood for the considered cells (zj ≥ yj ≥
xj ≥ 0), so that the edge between (ax, ay, z1) and (x2, ay, z1) lies completely within the
neighborhood. The intersection of the boundary of the neighborhood with the edge between
the vertices (ax, y2, z1) and (x2, y2, z1) is given by xe3 in Equation 5.79.

Therefore, the quadrature coefficient in case-7 is computed as

βij = 2s

[∫ xe3

ax

∫ y2

ay

√
m2 − x2 − y2 dy dx+

∫ bx

xe3

∫ √
m2−x2−z 2

1

ay

√
m2 − x2 − y2 dy dx

−
∫ xe3

ax

∫ y2

ay

z1 dy dx−
∫ bx

xe3

∫ √
m2−x2−z 2

1

ay

z1 dy dx

]

= 2s
[∫ xe3

ax

1

2

((
m2 − x2

)
arcsin

(
y2√

m2 − x2

)
+ y2

√
m2 − x2 − y 2

2

−
(
m2 − x2

)
arcsin

(
ay√

m2 − x2

)
− ay

√
m2 − x2 − a 2

y

)
dx

+

∫ bx

xe3

1

2

(
(
m2 − x2

)
arcsin

(√
m2 − x2 − z 2

1√
m2 − x2

)
+ z1

√
m2 − x2 − z 2

1

−
(
m2 − x2

)
arcsin

(
ay√

m2 − x2

)
− ay

√
m2 − x2 − a 2

y

)
dx

−z1 (y2 − ay) (xe3 − ax)− z1

∫ bx

xe3

(√
m2 − x2 − z 2

1 − ay

)
dx

]
. (5.88)

By using Equations 5.67, 5.68 and 5.69, Equation 5.88 is solved as follows:

βij = 2s
[
1

2
I2(ax, xe3 , y2) +

1

2
y2 I1(ax, xe3 , y2)−

1

2
I2(ax, xe3 , ay)−

1

2
ay I1(ax, xe3 , ay)

+
1

2
I3(xe3 , bx, z1) +

1

2
z1 I1(xe3 , bx, z1)−

1

2
I2(xe3 , bx, ay)−

1

2
ay I1(xe3 , bx, ay)

− z1 (y2 − ay) (xe3 − ax)− z1 I1(xe3 , bx, z1) + z1ay (bx − xe3)

]

= 2s
[
1

2
y2 I1(ax, xe3 , y2)−

1

2
z1 I1(xe3 , bx, z1)−

1

2
ay I1(ax, bx, ay) +

1

2
I2(ax, xe3 , y2)

−1

2
I2(ax, bx, ay) +

1

2
I3(xe3 , bx, z1)− z1y2 (xe3 − ax) + z1ay (bx − ax)

]
.

(5.89)
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5.B.8 Case-8 or case-9

In case-8 or case-9, the edge of the cell between the vertices (ax, ay, z1) and (x2, ay, z1)

may be intersected by the boundary of the neighborhood or may be completely within
the neighborhood, but all the other edges parallel to the x-axis are completely outside the
neighborhood, as shown in Figures 5.9h andFigures 5.9i. Therefore, the condition in this
case is

a 2
x + a 2

y + z 2
1 ≤ m2 < a 2

x + y 2
2 + z 2

1 . (5.90)

The intersection of the boundary of the neighborhood with the edge between the vertices
(ax, ay, z1) and (x2, ay, z1) is given as

xe4 =
√
m2 − a 2

y − z 2
1 . (5.91)

Case-8 and case-9 can be treated as a single case because of the definition of the upper limit
of the outer integral as bx = min (x2, xe4) (see Equation 5.26).

Therefore, the quadrature coefficient in case-8 and case-9 is computed as

βij = 2s

[∫ bx

ax

∫ √
m2−x2−z 2

1

ay

√
m2 − x2 − y2 dy dx−

∫ bx

ax

∫ √
m2−x2−z 2

1

ay

z1 dy dx

]

= 2s

[∫ bx

ax

1

2

(
(
m2 − x2

)
arcsin

(√
m2 − x2 − z 2

1√
m2 − x2

)
+ z1

√
m2 − x2 − z 2

1

−
(
m2 − x2

)
arcsin

(
ay√

m2 − x2

)
− ay

√
m2 − x2 − a 2

y

)
dx

−z1
∫ bx

ax

(√
m2 − x2 − z 2

1 − ay

)
dx

]
. (5.92)

By using Equations 5.67, 5.68 and 5.69, Equation 5.92 is solved as follows:

βij = 2s
[
1

2
I3(ax, bx, z1) +

1

2
z1 I1(ax, bx, z1)−

1

2
I2(ax, bx, ay)−

1

2
ay I1(ax, bx, ay)

− z1 I1(ax, bx, z1) + z1ay (bx − ax)

]

= 2s
[
−1

2
z1 I1(ax, bx, z1)−

1

2
ay I1(ax, bx, ay)−

1

2
I2(ax, bx, ay) +

1

2
I3(ax, bx, z1)

+ z1ay (bx − ax)

]
. (5.93)

5.B.9 Case-10

In case-10, the cell is completely outside the neighborhood, as shown in Figure 5.9j. The
condition for which this case is verified is that the closest node with coordinates (ax, ay, z1)

lies outside the neighborhood:
m2 < a 2

x + a 2
y + z 2

1 . (5.94)
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In this case, the solution of Equation 5.56 is trivial:

βij = 0 . (5.95)

5.C Derivatives for the Taylor series expansion

We need to perform the Taylor series expansion of the function:

f(x) := arcsin

(
k2√

m2 − x2

)
. (5.96)

Therefore, we have to compute the derivatives of f(x), which will be denoted as f (n)(x) where
n > 1 is the order of the derivative. After taking the first derivatives, one can recognize the
following recursive pattern:

f (n)(x) =

⌊3n/2⌋∑
p=1

(
p∑

q=1

c(n, p, q)m2(p−q) k 2q−1
2

)
x3n−2p

(m2 − x2)
n
(m2 − x2 − k 2

2 )
n−1/2

, (5.97)

where c(n, p, q) are some coefficients depending on the order n of the corresponding derivative
and on the indices p and q. In order to compute these coefficients c, we take the derivative
of f (n−1)(x) and the final solution should be equal to f (n)(x):

d

dx
f (n−1)(x) =

d

dx




⌊3(n−1)/2⌋∑
p=1

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
x3(n−1)−2p

(m2 − x2)
n−1

(m2 − x2 − k 2
2 )

n−3/2




=








⌊3(n−1)/2⌋∑

p=1

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
(3n− 2p− 3) x3n−2p−4




·
(
m2 − x2

)n−1 (
m2 − x2 − k 2

2

)n−3/2

−



⌊3(n−1)/2⌋∑

p=1

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
x3n−2p−3




·
[
(n− 1)

(
m2 − x2

)n−2
(−2x)

(
m2 − x2 − k 2

2

)n−3/2

+
(
m2 − x2

)n−1
(
n− 3

2

)(
m2 − x2 − k 2

2

)n−5/2
(−2x)

]




· 1

(m2 − x2)
2(n−1)

(m2 − x2 − k 2
2 )

2n−3
.

(5.98)
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We multiply the numerator and denominator by (m2 − x2)
−n+2

(m2 − x2 − k 2
2 )

−n+5/2, so that
the denominator is equal to the denominator of f (n)(x). Therefore, the numerator becomes:







⌊3(n−1)/2⌋∑

p=1

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
(3n− 2p− 3) x3n−2p−4




·
(
m2 − x2

) (
m2 − x2 − k 2

2

)

−



⌊3(n−1)/2⌋∑

p=1

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
x3n−2p−3




·
[
−2x (n− 1)

(
m2 − x2 − k 2

2

)
− 2x

(
n− 3

2

)(
m2 − x2

)]




=







⌊3(n−1)/2⌋∑

p=1

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
(3n− 2p− 3) x3n−2p−4




·
(
m4 − 2m2x2 −m2k 2

2 + x4 + k 2
2 x

2
)

−




⌊3(n−1)/2⌋∑

p=1

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
x3n−2p−3




·
[
(−4n+ 5)m2x+ (4n− 5) x3 + 2 (n− 1) k 2

2 x
]




=





⌊3(n−1)/2⌋∑

p=1

(3n− 2p− 3)

(
p∑

q=1

c(n− 1, p, q)m2(p−q+2) k 2q−1
2

)
x3n−2p−4

+

⌊3(n−1)/2⌋∑

p=1

(−2n+ 4p+ 1)

(
p∑

q=1

c(n− 1, p, q)m2(p−q+1) k 2q−1
2

)
x3n−2p−2

+

⌊3(n−1)/2⌋∑

p=1

(−3n+ 2p+ 3)

(
p∑

q=1

c(n− 1, p, q)m2(p−q+1) k 2q+1
2

)
x3n−2p−4

+

⌊3(n−1)/2⌋∑

p=1

(−n− 2p+ 2)

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
x3n−2p

+

⌊3(n−1)/2⌋∑

p=1

(n− 2p− 1)

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q+1
2

)
x3n−2p−2




. (5.99)
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We can now change the lower and upper limits of the summations to equalize the exponents
of the numerator of f (n)(x) as follows:





⌊3(n−1)/2⌋+2∑

p=3

(3n− 2p+ 1)

(
p−2∑

q=1

c(n− 1, p− 2, q)m2(p−q) k 2q−1
2

)
x3n−2p

+

⌊3(n−1)/2⌋+1∑

p=2

(−2n+ 4p− 3)

(
p−1∑

q=1

c(n− 1, p− 1, q)m2(p−q) k 2q−1
2

)
x3n−2p

+

⌊3(n−1)/2⌋+2∑

p=3

(−3n+ 2p− 1)

(
p−1∑

q=2

c(n− 1, p− 2, q − 1)m2(p−q) k 2q−1
2

)
x3n−2p

+

⌊3(n−1)/2⌋∑

p=1

(−n− 2p+ 2)

(
p∑

q=1

c(n− 1, p, q)m2(p−q) k 2q−1
2

)
x3n−2p

+

⌊3(n−1)/2⌋+1∑

p=2

(n− 2p+ 1)

(
p∑

q=2

c(n− 1, p− 1, q − 1)m2(p−q) k 2q−1
2

)
x3n−2p




. (5.100)

Therefore, c(n, p, q) can be computed from Equation 5.100 (see Algorithm 3).
Also, we need the Taylor series expansion of a similar function:

g(x) := arcsin

(√
m2 − x2 − k 2

3√
m2 − x2

)
. (5.101)

By repeating the previous procedure for g(x), we obtain the same coefficients with a negative
sign:

g(n)(x) =

−
⌊3n/2⌋∑
p=1

(
p∑

q=1

c(n, p, q)m2(p−q) k 2q−1
3

)
x 3n−2p

(m2 − x 2)
n
(m2 − x 2 − k 2

3 )
n−1/2

. (5.102)

5.D Quadrature coefficients for m = 3, 4, 6

We report in Tables 5.2, 5.3 and 5.4 the values of the quadrature coefficients derived
from Algorithm 4 for m = 3, 4, 6 respectively. The Taylor series expansion is truncated at
an order N = 20 to maintain the errors of the computations close to machine precision (see
Figure 5.10). The bonds are identified by the coordinates (xj, yj, zj) of node j in the system
of reference specified in Section 5.3.2, as shown in Figure 5.16. The quadrature coefficients
which are not listed in the tables are equal to 0.
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Table 5.2: Quadrature coefficients for m = 3.

Coordinates (xj, yj, zj) of node j βij

(0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (1, 1, 1) 1

(1, 1, 2) 0.973726549278437

(0, 2, 2) 0.676019006545153

(0, 0, 3) 0.472039364938528

(1, 2, 2) 0.452222876981391

(0, 1, 3) 0.296813994273711

(1, 1, 3) 0.135469082591897

(2, 2, 2) 0.051318527160244

(0, 2, 3) 0.005723631798072

(1, 2, 3) 0.000153662617015

Table 5.3: Quadrature coefficients for m = 4.

Coordinates (xj, yj, zj) of node j βij

(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 1), (0, 1, 2),
(0, 1, 3), (0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2)

1

(1, 1, 3) 0.998768863060338

(2, 2, 2) 0.966687702325083

(0, 2, 3) 0.892821241940852

(1, 2, 3) 0.775199178007998

(0, 0, 4) 0.479090049888385

(0, 1, 4) 0.350647333158876

(2, 2, 3) 0.316083719616023

(1, 1, 4) 0.218887022520336

(0, 3, 3) 0.198987147856524

(1, 3, 3) 0.108751981636951

(0, 2, 4) 0.042953209732511

(1, 2, 4) 0.010206581019384

(2, 3, 3) 0.003887002534346
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Table 5.4: Quadrature coefficients for m = 6.

Coordinates (xj, yj, zj) of node j βij

(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5), (0, 1, 1),
(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5), (0, 2, 2), (0, 2, 3),
(0, 2, 4), (0, 3, 3), (0, 3, 4), (1, 1, 1), (1, 1, 2), (1, 1, 3),
(1, 1, 4), (1, 1, 5), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 3, 3),

(1, 3, 4), (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 3, 3)

1

(3, 3, 3) 0.999790182328854

(0, 2, 5) 0.996792906342336

(2, 3, 4) 0.987734967536850

(1, 2, 5) 0.972240389996081

(0, 4, 4) 0.859401538943377

(1, 4, 4) 0.784526552214560

(2, 2, 5) 0.770548513294528

(3, 3, 4) 0.690805241353979

(0, 3, 5) 0.677365640339469

(1, 3, 5) 0.579443674979575

(0, 0, 6) 0.486088519387858

(2, 4, 4) 0.476199633943112

(0, 1, 6) 0.401767018323396

(1, 1, 6) 0.316210827911515

(2, 3, 5) 0.285658718830588

(0, 2, 6) 0.144371394514214

(0, 4, 5) 0.086400028994142

(3, 4, 4) 0.081510711534106

(1, 2, 6) 0.079306290046733

(1, 4, 5) 0.046394967777568

(3, 3, 5) 0.022174412588457

(2, 2, 6) 0.002888370932027

(2, 4, 5) 0.001586472847643
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Figure 5.16: The quadrature coefficient βij (for m = 3) of the cell identified, for instance, by the
coordinates (1, 1, 2) of node j, is reported in the third row of Table 5.2.
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Abstract

Peridynamics (PD) is a nonlocal continuum theory capable of handling fracture mechanisms
with ease. However, its use involves high computational costs. On the other hand, Carrera
Unified Formulation (CUF) allows one to use one-dimensional high-order finite elements,
resulting in excellent accuracy while improving computational efficiency. To address the
high computational cost of solving fracture problems, a coupling technique between these
two theories is necessary. Various approaches have been proposed to couple peridynamic grids
with finite element meshes in the literature. However, most of these approaches are affected
by arbitrary choices of blending functions and tuning parameters or exhibit spurious effects
at the interfaces. To overcome these issues, we propose a simple coupling technique based
on overlapping PD/CUF regions and continuity of the displacement field at the interfaces.
This approach is verified through static analysis of classical beams and thin-walled structures
with applications in the aerospace industry.

Keywords: Peridynamics, finite element method, higher-order elements, coupling.
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6.1 Introduction

Peridynamic (PD) theory has been introduced for the first time by Silling in [61]. This
first formulation of the theory was named Bond-Based Peridynamics (BB-PD) and has the
limitation that the Poisson’s ratio value is fixed (for instance, ν = 0.25 in 3D models). A more
general formulation of the theory that overcomes this restriction, namely the State-Based
Peridynamics (SB-PD), has been proposed in [62]. The main idea of the peridynamic theory
relies on the fact that two PD points in a solid body interact with each other when their
distance is lower than the horizon radius, called δ. Thus, PD is a non-local theory, and it is
based on integro-differential equations. For this reason, PD has been widely used for dealing
with discontinuous displacement fields, such as those in fracture mechanic problems [67, 207],
due to the possibility of avoiding the shortcomings of classical continuum mechanics.

However, it should be highlighted that the non-local nature of PD theory leads to higher
computational analysis costs if compared with those from classical computational methods,
i.e., finite element method (FEM). Indeed, PD leads to solving systems with sparse, large,
and not banded matrices, making the solution of fully 3D problems of practical engineering
interest impossible. Furthermore, the handling of the non-local boundaries requires specific
methods, such as, for example, [186, 227, 236, 249], to reduce the PD surface effect, i.e.
an undesired stiffness fluctuation near the external surface of the body, and to impose the
boundary conditions. If FEM is used at the external boundary of the body, these problems
are avoided altogether.

On these bases, researches are now focused on providing coupling strategies between
FEM models and PD domains in order to exploit the advantages of both numerical methods
and adopt PD in relatively small regions of interest. Kilic and Madenci [199] propose a
coupled method where an overlap region is identified. In this region, both peridynamic and
finite element equations are used at the same time. In [200, 201], a progressive morphing
between local and non-local interactions is adopted. A transition affecting only the con-
stitutive parameters is employed to perform the coupling strategy. Seleson and co-workers
[202, 203] propose a strong coupling between local and non-local approaches for integrated
fracture modelling. In [204], the coupling is achieved by the introduction of the partial stress
concept for the connection of nonlocal models with differen horizon radius. Sun and Fish
[207] introduced a superposition-based coupling model between bond-based PD and FEM.
A partial superposition of nonlocal (PD) and local (FEM) solution is considered. The conti-
nuity of the solution is achieved by imposing appropriate homogeneous boundary conditions.
Galvanetto and his co-workers [205, 206] propose a coupling strategy based on the adaptive
transformation of FEM nodes into PD particles, which has shown to be effective for static,
dynamic, and fracture problems and from one-dimensional to three-dimensional models [115,
171, 205, 206, 208, 209].

It should be underlined that most of the aforementioned methods are able to couple FEM
and PD domains of consistent dimensions. However, some particular situations may need
the adoption of 3D peridynamics domains in local zones of the structure. In this case, the
coupling of 3D FEM with 3D PD models may be unfeasible, due to the consequent huge
computational cost. An example of a coupling method between refined 1D models and a
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3D bond-based perydinamic grid is provided in [213]. The 1D models are based on the
Carrera Unified Formulation (CUF), whose governing equations are formulated in terms of
fundamental nuclei, which are invariant with the theory approximation order. The coupling
is realized through the adoption of Lagrange multipliers [225, 250, 251], which are applied
at the interface between the two domains in order to assure continuity. This technique
demonstrates to be general and consistent, due to the fact that Lagrange multipliers have
a clear physical meaning. Results show that this method allows to obtain 3D-like accuracy
solutions by adopting a one-dimensional refined model and 3D Peridynamic, thus reducing
the computational cost. Moreover, the use of Lagrange multipliers allows the possibility of
introducing 3D PD regions only in zones of interest, which can also be embedded into the
FE domain. Nevertheless, some numerical distortions are detected at the FE-PD interface,
requiring some artificial expedient (i.e., overlapping region) to eliminate these errors.

In this work, the authors propose a different coupling method, which can fully exploit
the CUF formulation’s potentiality in combination with the 3D peridynamics domain and
greatly reduce numerical error at the interface between two different domains [165]. This
method is based on the continuity of the displacement field at the interface [205, 209].
The forces acting at the interface are provided by introducing fictitious nodes beyond the
interface itself: a fictitious FEM node is added in the PD region, and some fictitious PD
nodes are added in the FEM region. The coupling is then achieved by considering that
peridynamic forces are exerted only on PD nodes, while finite elements apply forces only on
FE nodes. The effectiveness of this strategy has already been proven when applied to couple
classical FE elements with PD domains [205, 206, 209]. Thanks to this improved coupling
approach, the spurious effects that were present at the interfaces in [213] can be considerably
reduced. Moreover, for the first time State-Based Peridynamics has been coupled with CUF
formulation, which allows the model to have no restrictions on the value of the Poisson’s
ratio. The paper is organized as follows: Section 6.2 explains the basis of the state-based
peridynamics formulation; high-order one-dimensional CUF-based elements are discussed in
Section 6.3; then, the proposed coupling approach is described in Section 6.4; some numerical
results, such as thin-walled beams and a reinforced aeronautical panel, are discussed in
Section 6.5; finally, the main conclusions are drawn in Section 6.6.

6.2 State-based Peridynamics

The first formulation of the peridynamic theory, named bond-based Peridynamics [61],
has been extensively exploited for its simplicity of implementation. However, due to the
assumptions of this formulation, the Poisson’s ratio is constrained to ν = 0.25 in 3D bodies.
To overcome this limitation, the state-based formulation of the theory was introduced in [62].
The state-based Peridynamics is used in this work.



254 Chapter 6

6.2.1 Continuum formulation

Two peridynamic points, for instance x and x′ shown in Fig. 6.1, interact through a bond

that is identified by their relative position vector

ξ = x′ − x . (6.1)

This interaction vanishes if the distance between the interacting points exceeds the value δ,
which is called horizon size. Therefore, a peridynamic point interacts with all the points
within a sphere centered in that point and with a radius equal to δ. The set of the points
within this sphere is named neighborhood and denoted by H. In the deformed configuration,
the relative displacement vector η is defined as

η = u(x′, t)− u(x, t) , (6.2)

where u is the displacement field. Note that the relative position vector at instant t between
points x and x′ is given by ξ + η.

x

y

B(t0)

x
δ

H
x

x
′

δ

H
x
′

ξ

B(t)

u(x, t)

u(x′, t)

ξ + η

T

T
′

Figure 6.1: Reference configuration of the body B at instant t0 (on the left) and deformed configu-
ration at instant t (on the right). When the bond ξ between points x and x′ is deformed, the force
density vector states T = T[x, t]〈ξ〉 and T′ = T[x′, t]〈−ξ〉 arise within the bond.

The peridynamic equation of motion of point x is given by [62]

ρ(x) ü(x, t) =

∫

Hx

(
T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉

)
dVx′ + b(x, t) , (6.3)

where ρ is the material density, ü is the acceleration field, T is the force density vector
state (force per unit volume squared), dVx′ is the differential volume of a point x′ within
the neighborhood Hx and b is the external body force density field. The notation T[x, t]〈ξ〉
means that the force density scalar state T depends on point x and instant t and is applied
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to the bond vector ξ. In quasi-static conditions, the equilibrium equation of point x is given
as

−
∫

Hx

(
T[x]〈ξ〉 −T[x′]〈−ξ〉

)
dVx′ = b(x) . (6.4)

Note that T[x]〈ξ〉 and T[x′]〈−ξ〉 must have the same magnitude in bond-based Peridynam-
ics, whereas may have different magnitudes in state-based Peridynamics (see Fig. 6.1).

In the following, we define some quantities that will be useful to compute the force density
vector state T[x]〈ξ〉. The reference position scalar state x, which represents the bond length
in the initial configuration, and the extension scalar state e, which represents the elongation
(or contraction) of the bond in the deformed configuration, are defined respectively as

x〈ξ〉 = ‖ξ‖ . (6.5)

e〈ξ〉 = ‖ξ + η‖ − ‖ξ‖ . (6.6)

On the other hand, the weighted volume m and the dilatation θ of a point x are defined
respectively as

m(x) =

∫

Hx

ω x2 dVx′ , (6.7)

θ(x) =
3

m(x)

∫

Hx

ω x e dVx′ , (6.8)

where ω is a prescribed spherical influence function. We adopt in this work the Gaussian
influence function:

ω = exp

(
−‖ξ‖2

δ2

)
. (6.9)

In ordinary state-based Peridynamics, the force density vector state is aligned with the
deformed direction vector state (unit vector in the direction of the corresponding bond):

M〈ξ〉 = ξ + η

‖ξ + η‖ . (6.10)

Therefore, adopting the linear peridynamic solid model [62], the force density vector state
is computed as

T[x]〈ξ〉 = ω〈ξ〉
m(x)

[
(3K − 5µ) θ(x) x〈ξ〉+ 15µ e〈ξ〉

]
M〈ξ〉 , (6.11)

where K is the bulk modulus and µ is the shear modulus.

6.2.2 Discretization

The peridynamic body is discretized by the meshfree method with a uniform grid spacing
h, which is arguably the most commonly used method [65, 184, 235]. Each node represents a
cell with a volume V = h3. Consider a node i and its neighborhood Hi, as shown in Fig. 6.2.
We define as β, called quadrature coefficient, the fraction of volume cell that lies within
Hi. The value of the quadrature coefficient β is comprised between the extreme values 0
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(if the cell is completely outside Hi) and 1 (if the cell is completely outside Hi). Clearly, a
node is considered part of the neighborhood only if the quadrature coefficient of its cell is
β > 0. The computation of the quadrature coefficients in 3D Peridynamics can be carried
out in several ways (see, for instance, [158, 198, 235]). For simplicity, we adopt the method
illustrated in [252] for this work.

i

β = 1

β < 1 β = 0

Figure 6.2: The neighborhood Hi of a node i consists of the nodes with β > 0, where β is the
quadrature coefficient computed as the fraction of the cell volume lying within the neighborhood.

The relative position vector of the bond ij that connects nodes i and j can be computed
as

ξij = xj − xi , (6.12)

where xi and xj are the position vectors of the two nodes. Similarly, the relative displacement
vector of the bond is evaluated as

ηij = uPD
j − uPD

i , (6.13)

where uPD
i and uPD

j are the displacement vectors of the peridynamic nodes. The reference
position scalar state and the influence function of the bond are computed as

xij = ‖ξij‖ , (6.14)

ωij = exp

(
−‖ξij‖2

δ2

)
. (6.15)

Under the assumption of small displacements (‖ηij‖ ≪ ‖ξij‖), the deformed direction vector
state and the extension scalar state are respectively given as

Mij =
ξij + ηij

‖ξij + ηij‖
≈ ξij

‖ξij‖
. (6.16)
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eij = ‖ξij + ηij‖ − ‖ξij‖ ≈ ηij ·Mij . (6.17)

In the discretized model, the integrals over a neighborhood are numerically computed as
the summation of the integrand evaluated for each node contained in that neighborhood.
Therefore, the weighted volume m and the dilatation θ of a node i are given as

mi =
∑

j∈Hi

ωij x
2
ij βijV , (6.18)

θi =
3

mi

∑

j∈Hi

ωij xij eij βijV , (6.19)

where βij is the quadrature coefficient of the bond ij and V is the volume of the cell of node
j. Therefore, the force density vector state is computed as

Tij =
ωij

mi

[
(3K − 5µ) θi xij + 15µ eij

]
Mij . (6.20)

Now, we can write the equilibrium equation of a node i in the discretized form (multi-
plying both sides of the equation by the cell volume Vi = V ) as follows:

−
∑

j∈Hi

(
Tij −Tji

)
βijV

2 = bi V , (6.21)

where bi is the external force density vector applied to node i. Equation 6.21 can be rewritten
in the standard form

KPDUPD = FPD , (6.22)

where KPD is the peridynamic stiffness matrix, UPD is the peridynamic displacement vector
and FPD is the peridynamic force vector.

6.3 High order 1D finite elements

The major shortcoming of the perdynamic theory is that the resulting stiffness matrix is
sparse and generally not banded. Furthermore, the non-local nature of this methos makes
the computational costs arise exponentially. Therefore, researchers are working on coupling
peridynamics with finite elements. In this work, 3D PD domains are coupled with 1D FEs,
based on the Carrera Unified Formulation (CUF). This formulation is known in the literature
as capable of generating high-order theories with great accuracy and considerably reducing
the overall computational weight [212].

6.3.1 The Carrera unified formulation

Let’s consider a generic beam structure aligned along the y-axis and measuring l in length
and Ω in cross-section. In this formulation, the cross-sectional shape of the beam has no
influence on its validity. In the CUF’s framework, the 3D displacement field of this beam
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can be formulated as follows:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (6.23)

where u(x, y, z) is the displacement vector; Fτ are the cross-section expansion functions; uτ

is the generalized displacement vector; M is the number of terms in the expansion. The
subscript τ indicates summation. In addition, Fτ and M may be freely chosen. Based on the
selected expansion functions, the class of the 1D CUF model is determined. A first example
is denoted by the Taylor expansion (TE) models, which have been widely employed in CUF’s
framework, as in [253, 254]. In the case of TE models, Mclaurin polynomials of truncated
order N are employed to expand the generalized displacements uτ around the beam axis. TE
models could be very efficient for different problems. However, some errors can be detected
if complex structures are investigated. In order to solve these kinds of problems, Lagrange
expansion (LE) models are employed. In this case, Lagrange-like polynomials are used to
expand the generalized displacements around the beam axis. The most important feature
of LE models is that they make use of local expansions of pure displacement variables. The
main advantage is that LE models allow a more refined discretization in specific regions of
interest, leading to a higher solution accuracy. Furthermore, LE models enables to reproduce
3D-like solutions at a global-local scale.

6.3.2 Finite element approximation

Using 1D finite elements, the generalized displacement uτ is approximated along the
beam axis:

uτ (y) = Ni(y) uτi, i = 1, 2, ..., p+ 1 (6.24)

where p is the number of nodes for each element. In Eq. (6.24), the index imeans summation.
The generalized displacements are expressed as a function of the unknown nodal vector, uτi,
and the 1D shape functions, Ni. Note that Eq. (6.24) does not depend on the adopted
refined 1D theory.
The governing equations are written using the principle of virtual work. For linear static
problems, it is formulated in the following way:

δLint = δLext (6.25)

where δ is the virtual variation, Lint the work of the internal strain energy, and Lext the work
of the external forces. The internal work expression reads as:

δLint =

∫

l

∫

Ω

δǫTσ dΩdy (6.26)

where σ and ǫ are the vectors of 3D stresses and strains. By replacing the constitutive
and geometric equations along with Eqs (6.23) and (6.24), the internal work formula can be
reformulated as follows:

δLint = δuT
sjK

τsijuτi (6.27)
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where Kτsij is the 3 × 3 fundamental nucleus of the element stiffness matrix of the refined
1D beam theory. Using the four indexes /tau, s, i, and j, the fundamental nucleus can be
expanded to form any refined beam model. Then, after expansion of the stiffness matrix and
after assembly over the whole domain, Eq. (6.25) is written as follows:

KFEUFE = FFE (6.28)

where KFE is the stiffness matrix, UFE is the vector of the FE nodal unknowns and FFE is
the vector of external forces.

6.4 Improved coupling

Given its high computational cost, Peridynamics is preferably used only in regions where
cracks are likely to propagate, whereas the rest of the body can be modelled by methods
derived from classical continuum mechanics, such as the Carrera Unified Formulation (CUF).
The coupling of high-order 1D FEs with a peridynamic grid of nodes has already been
achieved via the use of Lagrange multipliers [213, 214]. However, the numerical solution
obtained with this method exhibits undesired fluctuations of the solution near the interfaces.

An improved method to couple Finite Element Method (FEM) and Peridynamics (PD)
has been developed in [171, 205, 206, 208, 209]. This method, based on the continuity of
the displacement field at the interfaces, is reviewed in the following subsection. Inspired by
that, we develop a method to couple high-order 1D FEs and PD nodes.

6.4.1 1D coupling of FEs and PD nodes

Consider a 1D body, in which a region is discretized with 1D FEs and another region
with equispaced PD nodes, as shown in Fig. 6.3. Each PD node represents a portion of the
1D body of length ∆x and is positioned at the center of this portion. Therefore, the PD
node closest to the interface is distant ∆x/2 from the interface itself, as shown in Fig. 6.3a.
On the other hand, the closest FEM node lies exactly at the interface. For simplicity, the
length ∆ℓ of the FEs is considered to be constant. The length ∆ℓ of the FEs and the PD
spacing ∆x are not necessarily equal to each other.

The improved coupling method is based on the continuity of the displacement field at the
interface [205, 209]. The forces acting at the interface are provided by the introduction of
fictitious nodes beyond the interface itself: a fictitious FEM node is added in the PD region
and some fictitious PD nodes are added in the FEM region.

On the one hand, the new fictitious FEM node is positioned, for simplicity, at a distance
∆ℓ from the interface, as shown in Fig. 6.3b. Its displacement is determined by interpolation
of the displacements of the real PD nodes surrounding it. Since the fictitious FEM node
lies in the PD region and cannot “feel” FEM forces, it is not subjected to the force of the
fictitious FE. However, that force is applied to the real FEM node at the interface. Note
that, due to the displacement interpolation, the force of the fictitious FE depends on the
displacements of the real PD nodes.
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∆ℓ ∆x

2

∆x

(a) Initial geometry with real FEs (blue lines) of length ∆ℓ and real PD nodes (red squares) with a
uniform spacing ∆x The bonds are represented by the red line (δ = 2∆x) and the interface between FEM
and PD regions is represented by a yellow dashed line.

(b) Introduction of a fictitious FE in the PD region to provide the force acting on the real FEM node at
the interface. The displacement of the fictitious FEM node (empty circle) is determined by interpolation
of the displacements of the real PD nodes.

(c) Introduction of some fictitious PD nodes in the FEM region to provide through the fictitious bonds
(red dashed lines) the forces acting on the real PD nodes near the interface. The displacements of the
fictitious PD nodes (empty squares) are determined by interpolation of the displacements of the real FEM
nodes.

Figure 6.3: Coupling between 1D FEs and peridynamic nodes: the described interpolations ensure
the continuity of the displacement field at the interface.

On the other hand, some fictitious PD nodes are introduced in the FEM region to com-
plete the neighborhoods of the real PD nodes near the interface, as shown in Fig. 6.3c. The
displacements of the fictitious PD nodes can be determined by means of an interpolation of
the real FEM nodes. The forces of the fictitious bonds, i.e., the bonds crossing the interface,
are applied only to the real PD nodes because the fictitious PD nodes lie in the FEM region.
Note that, due to the displacement interpolation, the forces of the fictitious bonds depends
on the displacements of the real FEM nodes.

In the case of a linear displacement field, the force applied to the FEM node at the
interface through the fictitious FE (see Fig. 6.3b) is equal to the sum of the forces applied
to the real PD nodes through the fictitious bonds (see Fig. 6.3c) [165]. The concepts of this
improved coupling method are hereinafter extended to couple a 3D peridynamic grid with
high-order 1D elements (or CUF elements), as shown, for instance, in Fig. 6.4.

6.4.2 Interpolation of PD nodal displacements with FEM

In state-based Peridynamics, each node interact with all the nodes within a distance of
2δ [166]. Therefore, the fictitious PD nodes are added within the FEs up to a distance of
2δ from the interfaces [171], as shown in Fig. 6.5. The displacements of these nodes can be



Chapter 6 261

x

y

z

y

z

x

z

Figure 6.4: Coupling of high-order 1D FEs (blue region) with 3D peridynamic nodes (red squares).
The yellow surfaces are the interfaces between FEM and peridynamic regions.

evaluated by interpolating the displacements of the FE nodes.
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Figure 6.5: Coupling of FEs (blue region) with 3D peridynamic nodes (red solid squares): the
fictitious PD nodes (red empty squares) are added within the FEs up to a distance of 2δ from the
interfaces (yellow surfaces).

Let us consider, for instance, a fictitious PD node p with a position vector xp = {xp, yp, zp}⊤.
Since its position is known, it is straightforward to determine within which FE node p lies.
Hence, the FE shape functions Ni and the expansion functions Fτ of that element are used
to compute the displacement of node p:

uf -PD(xp, yp, zp) =
∑

i

∑

τ

Ni(yp)Fτ (xp, zp)u
FE
τi , (6.29)
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where f -PD stands for “fictitious peridynamic” nodes. By repeating Equation 6.29 for each
fictitious PD node, we obtain the following system of equations:

Uf -PD = If -PDUFE , (6.30)

where UPD
f is the peridynamic displacement vector of the fictitious peridynamic nodes, If -PD

is the fictitious PD interpolation matrix and UFE is the vector of the FE nodal unknowns.
Note that the dimensions of If -PD are 3N f -PD × 3NFE, where N f -PD is the number of
fictitious PD nodes and 3NFE is the number of the FE nodal unknowns.

6.4.3 Interpolation of FE nodal displacements with PD

To begin with, let us consider a simple case in which the FE sections are perpendicular
to the FEs. As shown in Fig. 6.6, the fictitious FE nodes are introduced so that the sections
associated to those nodes lie over the plane of the real nodes closest to the interface. We can
write the following equation for each real PD node q that lies on the section of a fictitious
FE node:

uPD(xq, yq, zq) =
∑

i

∑

τ

Ni(yq)Fτ (xq, zq)u
f -FE
τi , (6.31)

where uf -FE
τi contains the generalized degrees of freedom associated to the fictitious FE node.

Equation 6.31 can be written in a matrix form as:

UPD = Ifs-PDUfs-FE , (6.32)

where UPD is the peridynamic displacement vector, Ifs-PD is the interpolation matrix and
Ufs-FE is the vector of the degrees of freedom of the section associated to a fictitious FE
node.

However, we would like to express the latter degrees of freedom (Ufs-FE) as functions of
the displacements of the real PD nodes (UPD) by inverting the matrix Ifs-PD. Note that,
in general, Ifs-PD is not a square matrix and, hence, is not invertible. Therefore, we exploit
the relation of each degree of freedom of the fictitious FE node with the shape function Ni

and expansion function Fτ . These functions can be used as weights to compute, for each FE
degree of freedom, the weighted average of the displacements of all the real PD nodes lying
on the section of the fictitious FE node:

uAV
τi =

∑
q |Ni(yq)Fτ (xq, zq)|uPD(xq, yq, zq)∑

q |Ni(yq)Fτ (xq, zq)|
, (6.33)

or
UAV = AUPD , (6.34)

where uAV
τi is the generic averaged displacement of the fictitious section and UAV is the vector

containing them. Note that UAV has the same dimension of Ufs-FE, so that
[
AIfs-PD

]
is a

square matrix. This allow us to express the degrees of freedom of the fictitious FE node as
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Figure 6.6: Coupling of FEs (blue region) with 3D peridynamic nodes (red squares): the fictitious
FEs are added so that the sections of the fictitious FE nodes (empty circles) lie over the plane of
the real PD nodes closest to the interfaces (yellow surfaces).

functions of the displacements of the real PD nodes:

Ufs-FE =
[
AIfs-PD

]−1
UAV

=
[
AIfs-PD

]−1
AUPD . (6.35)

If this procedure is repeated for all the fictitious FE nodes, then the following matrix can
be assembled:

Uf -FE = If -FEUPD , (6.36)

where Uf -FE is the vector of the degrees of freedom of the fictitious FE nodes and If -FE is the
fictitious FE interpolation matrix. Note that the dimensions of If -FE are 3N f -FE × 3NPD,
where 3N f -FE is the number of the FE nodal unknowns and NPD is the number of real PD
nodes.

Remark 6.1. There might be the case in which a fictitious CUF node is associated to more-
than-one section, as for instance shown in Fig. 6.7. Let us call n the number of sections to
which the CUF node belongs. In this case, the procedure explained above should be repeated
n times, and the row of If -FE should be divided by n. In this way, the interpolation of the
FE node is the average of the contributions of the n sections.

Remark 6.2. There might be the case in which some real PD nodes lie in more-than-one
fictitious FE section, as for instance shown in Fig. 6.7. In this case, the PD nodes are
involved in the interpolation of each CUF section they lie on.
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Figure 6.7: Example of a FE node with multiple FE sections in which some fictitious FE nodes
belong to more-than-one section and some real PD nodes lie on more-than-one section.

6.4.4 Interfaces parallel to FEs

Let us consider another example in which there is an interface that is parallel to y axis,
i.e., the axis of the bar, as in Fig. 6.8. It is straightforward to generalize this example to more
complex cases in which there are interfaces perpendicular to both x and z axes. Similarly to
what exposed in Section 6.4.2, the fictitious PD nodes are introduced within the FEs in such
a way to surround the interfaces with a PD layer with thickness 2δ, as shown in Fig. 6.9.
Equation 6.29 is still valid and can be used to assemble the fictitious PD interpolation matrix
If -PD.

x
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y

z

x

z

Figure 6.8: Coupling of high-order 1D FEs (blue region) with 3D peridynamic nodes (red squares)
when one of the interfaces (yellow surfaces) is parallel to the axis of the bar.

On the other hand, the fictitious FE sections are added in the PD region so that they
lie on the closest plane of real PD nodes, as shown in Fig. 6.10. Note that a new kind of
fictitious FEs is generated by this geometry: close to the edge between the interfaces there
are some fictitious FEs with just one edge lying on a row of real PD nodes. The other
edges of that kind of elements lie on the external surface of real FEs. This means that, for
these new elements, there are no sections as the ones used in Section 6.4.3 to interpolate the
displacements of the fictitious FE nodes.

In this case, the displacements of the fictitious FE nodes lying on the row of PD nodes
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Figure 6.9: Coupling of FEs (blue region) with 3D peridynamic nodes (red solid squares): the
fictitious PD nodes (red empty squares) are added within the FEs up to a distance of 2δ from all the
interfaces (yellow surfaces), even the interfaces parallel to the axis of the bar.
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Figure 6.10: Coupling of FEs (blue region) with 3D peridynamic nodes (red squares): the fictitious
FEs are added so that the fictitious sections lie over the plane of the real PD nodes closest to the
interfaces (yellow surfaces). Note that a new type of elements appears near the edges between the
interfaces.

are interpolated thanks to the two fictitious FE sections as explained in Section 6.4.3. Note
that that the row of PD nodes is involved in both the interpolations of the two fictitious
FE sections (see Remark 6.2). Analogously, since the fictitious FE nodes lying on that edge
are “shared” between the two fictitious FE sections, the displacements of these nodes are the
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averages of the interpolations of the two sections (see Remark 6.1). The fictitious FE nodes
of the remaining edges, lying on the external surfaces of real FEs, are simply interpolated
via the FE shape functions Ni and the expansion functions Fτ of those elements:

ufe-FE(xp, yp, zp) =
∑

i

∑

τ

Ni(yp)Fτ (xp, zp)u
FE
τi , (6.37)

where ufe-FE is the vector of the degrees of freedom of the fictitious FE nodes on one of these
edges. Equation 6.37 is employed during the assembling of the fictitious FE interpolation
matrix If -FE.

6.4.5 3D coupling of FEs and PD nodes

In this section, we aim at assembling the stiffness matrix of the complete system of (both
FE and PD) equations. We assemble the global FE stiffness matrix Kgl−FE as explained in
Section 6.3 by considering both real and fictitious elements. The real FE stiffness matrix KFE

is retrieved by eliminating all the rows and columns of Kgl−FE corresponding to fictitious FE
degrees of freedom. On the other hand, the fictitious FE stiffness matrix Kf−FE is obtained
by eliminating the rows corresponding to fictitious FE degrees of freedom and the columns
corresponding to real FE degrees of freedom. Note that the rows of the fictitious degrees of
freedom are not utilized because they correspond to the fictitious FE forces. The fictitious
FE nodes indeed lie in the peridynamic region and do not “feel” any FE force, as explained
in Section 6.4.1.

Similarly, as explained in Section 6.2, we assemble the global PD stiffness matrix Kgl−PD

by considering both real and fictitious PD nodes. Since the fictitious PD nodes lie within
FEs, there are no fictitious PD forces applied to those nodes. Therefore, the rows of Kgl−PD

are eliminated. We obtain the real PD stiffness matrix KPD and the fictitious PD stiffness
matrix Kf−PD by eliminating the columns corresponding to the fictitious and real degrees
of freedom, respectively.

Thus, the system of equations can be written in the following matrix form:

[
KFE Kf−FE If−FE

Kf−PD If−PD KPD

][
UFE

UPD

]
=

[
FFE

FPD

]
, (6.38)

or
KU = F , (6.39)

where K is the stiffness matrix of the entire system, U is the displacement vector and F is
the force vector.

6.5 Numerical examples

In the following Section, we will analyze various numerical examples to verify the accuracy
of the proposed coupling method. We will compare these results with full FEM solutions,
even if the different formulations of Peridynamics and classical continuum mechanics lead
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to a discrepancy in the results between the two theories [165]. Moreover, no corrections to
the surface effect has been applied for the external surfaces of the PD regions (the surfaces
that do not correspond to interfaces with FEM regions) [186, 227, 236, 249]. As one will see
hereinafter, these sources of error affect only slightly the accuracy of the numerical results.

6.5.1 Isotropic bar

The first case study is a 3D isotropic bar subjected to uniaxial traction. Geometry,
boundary conditions, and mesh information are highlighted in Fig. 6.11. The bar has a
squared cross-section, and each side is 10 mm long, whereas the longitudinal length of the
beam is equal to 100 mm. The material is isotropic and homogeneous, with an elastic
modulus E = 10 GPa and Poisson’s ratio ν = 0.2. The central portion of the isotropic bar is
modelled with a 3D peridynamics grid. A grid spacing of ∆x = 1 mm and an m-ratio equal
to 3 is adopted, resulting in a horizon radius δ = 3 mm. The remaining portions of the bar
are described by linear two-nodes finite elements (B2), one for each region. Hence, by using
CUF, the kinematics associated with the finite elements goes from classical beam models to
high-order LE. More specifically, Taylor expansion of different orders N (TEN) are adopted.
Thus, for instance, the notation TE1 refers to the use of first-order polynomials as expansion
function. Nine-node quadratic Lagrange elements (LE9) are also used in the present case.
Three-dimensional peridynamics has already been coupled with CUF before [213]. The
same bar has been here investigated. However, a bond-based formulation has been adopted
in that case, leading to a constrained value of Poisson ratio ν = 0.25. The extension to a
state-based formulation eliminates this constraint. Moreover, in [213] the coupling method
is based on the application of Lagrange multipliers at the FEM-PD interface. The results
from this coupling approach showed to be in good accordance with the full FEM solution.
Nevertheless, some discrepancies at the interface have been detected. The present work’s
objective is to reduce these numerical errors at FEM - PD domain interfaces.

uy=10 mm

uy=0 mm

TEN LE9

40 m
m

40 m
m

20 m
m

10 mm

Figure 6.11: Geometrical and modelling features of the investigated beam.
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A first result is shown in Fig. 6.12. The deformed shape of the bar under uniaxial
displacement is represented. In this particular case, a single LE9 element has been adopted
for the cross-section discretization. Figure 6.13 shows the consistency of the solutions when
3D PD is coupled with different FE models. Indeed, the longitudinal displacement evaluated
in the central point of the section along the bar length is not affected by the cross-section
discretization. A comparison between the aforementioned method and the present one is
displayed in Fig. 6.14. This figure shows the presence of some distortions for displacements
at interface regions when the Lagrange multipliers method is adopted (see Fig. 6.14b).
Figure 6.14c shows that these discrepancies are nearly eliminated when the proposed model
is adopted, especially at the interfaces. In fact, a relative error with respect to the full
FEM solution greater than 5% is computed at the FEM - PD interfaces, when the Lagrange
multipliers method is adopted. On the other hand, the error is significantly reduced with
the present coupling technique, leading to a maximum relative error of 0.69%.

Figure 6.12: Deformed configuration under uniaxial traction. In this numerical case, the 1D finite
elements adopt a quadratic (L9) kinematics.

6.5.2 C-shaped section beam under bending and torsion

The second analysis case is a C-section beam subjected to bending and torsion. The
information about dimensions, boundary conditions, and modelling features are detailed in
Fig. 6.15. The entire beam is made of the same isotropic material, with elastic modulus
E = 200 GPa and Poisson ratio ν = 0.2. The main objective of this case study is to highlight
the 3D nature of the proposed coupling model. In fact, high-order LE elements are required
to accurately describe the beam behaviour under both bending and torsion. It has been
widely demonstrated that classical low-order beam theories have significant difficulties in
reproducing these 3D phenomena.

In this case study, the axial FEM discretization consists of 10 four-node cubic elements
(B4). The 3D PD region is not adopted for modelling the whole cross-section, as in the



Chapter 6 269

0

2

4

6

8

10

0 20 40 60 80 100

u
y

[m
m

]

y [mm]

Full FEM solution
TE1 - PD
TE3 - PD
LE9 - PD

Figure 6.13: Effect of different 1D-CUF models for FEM regions on the axial displacement of the
beam.

previous case. Instead, the PD region is here embedded into the finite element domain itself.
This solution is obtained by varying the cross-section of the 1D FEs along the axial direction;
it is represented by a disconnected region wherever PD is employed, i.e. 490 ≤ y ≤ 510 mm
(see Fig. 6.15). A grid spacing of ∆x = 1 mm and horizon radius δ = 3 mm is chosen.
In Fig. 6.16, the deformed shape of the C-section beam for both full FEM (Fig. 6.16 (a))
and coupled PD-FEM model (Fig. 6.16 (b)) are shown. Furthermore, a close detail of the
deformed state is displayed in Fig. 6.17. One can notice that the three-dimensional PD
domain is perfectly consistent with the FEM regions.

Table 6.1: Transverse displacements in middle point of the free-end section (Point A) and at the
loading point (Point B).

Model FE dof’s PD dof’s -uz [mm] Point A -uz [mm] Point B
TE1 333 - 0.1713 0.1732
TE4 1665 - 0.1959 0.2658
TE8 4995 - 0.2646 0.5252
L9 9657 - 0.2403 0.5436

L9-PD 9432 20040 0.2344 0.5337

These considerations support the choice of using high-order Lagrange elements capable
of reproducing 3D-like phenomena. Table 6.1 compares the vertical displacements at points
A and B (see Fig. 6.15) from the improved coupled FE-PD model with those from reference
solutions, obtained by using CUF-based TE and LE refined models. Displacements in two
different points are evaluated in order to highlight further the capability of the refined CUF
models to capture both bending and torsional behaviour of the investigated beam. A first
remark can be identified in the difficulty of low-order theories in computing the correct



270 Chapter 6

0

2

4

6

8

10

12

0 20 40 60 80 100

u
y

[m
m

]

y [mm]

Full FEM solution
Lagrange Multipliers method

New Coupling method

(a)

4

4.5

5

5.5

6

40 45 50 55 60

u
y

[m
m

]

y [mm]

Full FEM solution
Lagrange Multipliers method

New Coupling method

(b)

0

1

2

3

4

5

6

40 45 50 55 60

R
e
la

ti
v
e
 e

rr
o

r 
[%

]

y [mm]

Lagrange Multipliers method
Improved coupling method

(c)

Figure 6.14: Axial displacement of the bar subjected to traction along a) the entire lenght and b) the
perydinamic region. FE-PD interfaces are subjected to distortions when the Lagrange multipliers
coupling approach is adopted. These distortions are eliminated when the improved coupling method
is applied. A comparison of the errors retrieved with both methods with respect to the full FEM
solution is presented in (c).

displacements in both investigated points. The model adopting LE9 elements for cross-
section discretization reaches an optimal solution, as shown in recent works (i.e. [250]).
Moreover, the present improved coupling model leads to transverse displacements comparable
to those obtained with fully refined models, with an error of 1 % and 2 % detected in points
A and B, respectively.

Finally, the vertical displacement along the beam span is given in Fig. 6.18. The green
line in Fig. 6.15 indicates the followed path. Results from the present coupling model
are compared with a full FEM solution. The displacement evolution along the beam span
is correctly reproduced by the FEM-PD model. Furthermore, it should be underlined the
capability of the improving coupling solution in avoiding any distortions at domain interfaces.
In fact, a smooth transition between FEM (red dots) and PD (green dots) displacements is
retrieved. The residual errors that are still noticeable in Fig. 6.18 are due to the different
(local and nonlocal) solutions of Peridynamics and CUF when the displacement field is a
superlinear function [165]. Moreover, the lack of corrections for the peridynamic surface
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Figure 6.15: Geometrical and modelling features of C-shaped section beam subjected to bending and
torsion.

(a) Full FEM model (b) FE-PD coupled model

Figure 6.16: Deformed configuration of the C-section beam for FEM and FE-PD coupled model.

effect may further increase the differences between the results obtained with the full FEM
approach and the CUF-PD coupling. The simplest way to reduce these residual errors is
decreasing the horizon size.

6.5.3 Stiffened panel

A stiffened panel is investigated as final example to underline the ability of the proposed
method to introduce PD domains in complex structures. Figure 6.19 summarizes geometric
and modeling features. The material properties are the same adopted in the first numerical
case. The structure is composed of two stringers and one panel, which are independently
modelled with high-order four-node beam elements in a component-wise manner [255].

The main novelty introduced with this numerical case is the possibility of investigating a
structure with two distinct peridynamics domains. In fact, two different square regions, one
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Figure 6.17: Close view of the deformed PD zone for the investigated beam. A clear consistency
between the two formulation is shown.
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Figure 6.18: Vertical displacement of the C-section beam along the beam span (green line in Fig.
6.15). A full FEM solution (solid blue line) is used as reference, while red and green dots represent
the displacement in FEM and PD domains, respectively.

for each stringer, are modelled through 3D peridynamics. The PD domain is discretized in
a meshless manner with a grid spacing of ∆x = 1 mm and horizon radius δ = 3 mm.

Table 6.2 displays the vertical displacement and the value of longitudinal stress σyy in
some characteristic points (see Fig. 6.19) for the present coupled model and for reference so-
lutions obtained through full FEM analysis. These results underline once again the capability
of the proposed coupling model in accurately reproducing three-dimensional phenomena.

Furthermore, the accurate prediction of the axial stress in point C of the structure should
be highlighted. Figure 6.20 also shows the complete axial stress state in the structure for a
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Figure 6.19: Geometrical and modelling features of the investigated reinforced panel. Two distinct
peridynamic regions are introduced, one for each stringer.

Table 6.2: Vertical displacements and axial stress σyy are evaluated in some characteristic points of
the structure for reference solutions and present FE-PD coupled model.

Model FE dof’s PD dof’s -uz [mm] @Point A -uz [mm] @Point B σyy [MPa] @ Point C
TE1 225 - 29.532 29.368 71.274
TE4 1125 - 31.471 27.513 89.505
TE8 3378 - 40.765 18.396 114.42
L9 10659 - 44.942 14.153 126.916

L9-PD 10641 15480 45.346 14.719 126.847

FEM solution (Fig. 6.20a) and the coupled model (Fig. 6.20b). It is important to remark
here that the PD domain embedded into the structure does not affect the stress state, opening
the possibility of using FEM-PD coupled models for fracture mechanics problems (see [214]).

Vertical displacement along the green line in Fig. 6.19 is displayed in Fig. 6.21. The
solution from a full FEM analysis is depicted with a solid blue line, while red and green
dots represent displacements in FEM and PD domains, respectively. The coupled model
completely matches the FEM solution along the beam span and across the perydinamic
region without any sign of distortion in both FE-PD interfaces. Similarly to the previous
case presented in Section 5.2, the residual errors are due to the different formulations of
Peridynamics and CUF theories.

6.6 Conclusions

In this research, a method for the coupling of three-dimensional (3D) peridynamics grids
and one-dimensional (1D) refined finite elements (FEs) based on Carrera Unified Formula-
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(a) Full FEM model (b) Coupled FE-PD model

Figure 6.20: Distribution of longitudinal stress σyy in the reinforced panel for a full FEM analysis
and for a coupled FE-PD model.
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Figure 6.21: Vertical displacements along the structure span, following the green line in Fig. 6.19.
A full FEM solution (solid blue line) is used as reference, while red and green dots represent the
displacement in FEM and PD domains, respectively.

tion (CUF) is proposed. The advantages of CUF are exploited to obtain 3D solutions with
a significant reduction in computational demand. In fact, CUF allows coupling 3D peridy-
namics domains with 1D finite elements of any order. By adopting high-order 1D models,
full 3D solutions are retrieved, even when peridynamics is introduced in multiple regions of
the investigated structure. The proposed technique has proven to be general and capable
of greatly reducing any numerical inaccuracies at the interfaces between the two domains.
Furthermore, the use of the State-Based Peridynamics (instead of the Bond-Based Peridy-
namics) allows to remove the limitation of modeling only materials with a Poisson’s ratio
equal to 0.25. The present coupling method is based on the continuity of the displacement
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field in a non-local region near the interfaces. The employed coupled models show a very low
computational cost when compared with full 3D approaches while maintaining a great degree
of accuracy. The effectiveness and efficiency of the present coupling strategy are proven on
classical beams and thin-walled structures of aerospace interest.
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Abstract

We derive numerical stability conditions and analyze convergence to analytical nonlocal solu-
tions of 1D peridynamic models for transient diffusion with and without a moving interface.
In heat transfer or oxidation, for example, one often encounters initial conditions that are
discontinuous, as in thermal shock or sudden exposure to oxygen. We study the numerical
error in these models with continuous and discontinuous initial conditions and determine
that the initial discontinuities lead to lower convergence rates, but this issue is present at
early times only. Except for the early times, the convergence rates of models with continuous
and discontinuous initial conditions are the same. In problems with moving interfaces, we
show that the numerical solution captures the exact interface location well, in time. These
results can be used in simulating a variety of reaction-diffusion type problems, such as the
oxidation-induced damage in zirconium carbide at high temperatures.

Keywords: Peridynamics, diffusion-reaction problem, numerical stability, discontinuous
initial conditions, phase change, moving interface.
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7.1 Introduction

Discontinuities are difficult to handle in classical models involving partial differential
equations (PDEs). Nonetheless, discontinuities take place in many physical phenomena in
nature, such as fracture, thermal shock in heat transfer, or oxidation-induced damage. For
problems with moving interfaces, classical theories do require special treatment to govern the
motion of the interface, such as the Stefan condition [128, 256–258]. The peridynamic theory
has been proven to effectively solve these types of problems without any ad-hoc conditions at
the interface: the motion of the interface is implicitly determined by the diffusion and phase
properties of the involved materials, as shown in, for example, [128, 129]. Other important
problems in which moving interfaces are involved in conjunction with fracture is the problem
of oxidation-induced fracture in high temperature zirconium-carbide [13, 14]. To study these
types of problems, one needs numerical approximations of transient diffusion with moving
interfaces. In this work we analyze the stability of the so-called “meshfree method” for
discretizing peridynamic models, the influence of discontinuous initial conditions (due to, for
example, sudden exposure of the body to a non-zero temperature/concentration), and the
accuracy of the numerical solution for transient diffusion problems with a moving interface.

Peridynamics (PD) is a non-local continuum theory able to model discontinuities in a
mathematically consistent way [61, 62]. In the peridynamic formulation, the spatial deriva-
tives of the PDEs are replaced by integrals over a sphere of radius δ > 0. The so-called
horizon size δ is the measure of nonlocality of the theory, i.e., the maximum distance at
which two points interact with each other. This PD interaction is named bond.

It is well-known that in peridynamic models the behavior in that region is different from
the behavior in the bulk since points close to the boundary of the domain have an incomplete
horizon region. This phenomenon is known as the PD surface effect [186, 187, 198, 226, 227,
236]. The properties of the interactions of the points near the boundary can be modified to
mitigate the PD surface effect with several methods [63, 64, 186–190]. However, the results
obtained with these methods may still exhibit some residual fluctuations, depending on how
the PD boundary conditions are applied.

Boundary conditions in local models are applied at the domain boundary, whereas non-
local boundary conditions need to be specified over a boundary layer of finite thickness.
This is the reason why the nonlocal boundary conditions are sometimes called volume con-

straints [259]. However, since experiments provide only local measurements at the boundary
of the domain, it is often desirable to impose local boundary conditions in a nonlocal model.
To do so, several methods have been developed. For instance, the interior of the body could
be modeled with PD and the layer near the external surface of the body with a classical
model, but only if discontinuities do not arise in this layer of material. To do so, a coupling
method is required (see, e.g., [115, 171, 205, 206, 208, 209, 213, 214, 228]), which may lead
to spurious effects at the interface of the coupling region due to the different (local and
nonlocal) formulations [165]. Another approach is reducing the nonlocal radius δ with the
variable horizon method (see, e.g., [149, 193, 195, 198, 204, 215, 216]), so that δ → 0 at the
boundary. However, in this case, for transient problems, for example, material length-scales
may not be matched (e.g., wave dispersion will be different near the surface compared to
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in the bulk in elasto-dynamic problems). The fictitious node method is the most commonly
used to impose local boundary conditions in a nonlocal model (see, e.g., [63, 92, 126, 148,
150, 151, 186, 188, 191–196, 227, 236, 249]): a fictitious layer is added all around the body,
to complete the horizon region for nodes in the PD boundary layer, and is used to impose
the PD boundary conditions. Among all these methods, here we employ the “surface node”
method (SNM) [227, 236, 249] because it provides a problem-independent, accurate way
to impose local boundary conditions in a PD model for any loading conditions and (even
complex) geometry.

The peridynamic theory has been already successfully applied to simple diffusion prob-
lems [124, 125] and more complex phenomena (for instance, diffusion coupled with corrosion
mechanisms [128, 129]). However, some numerical aspects have not been studied yet:

• a stability criterion for time-integration of PD diffusion equations accounting for the
boundary conditions applied; existing stability results were limited to von Neumann
analysis which assumes infinite domain;

• the influence of discontinuities in initial conditions on the accuracy of the numerical
solution;

• the accuracy of numerical solutions for diffusion-type problems with moving interfaces.

To investigate these issues in a simple framework, we analyze several 1D examples, but
the obtained conclusions may be generalized to higher-dimension problems. Moreover, for
the first time, we apply the SNM to a time-dependent problem, and for discontinuous initial
conditions. The stability of numerical methods has been observed to be considerably affected
by the behavior of the system near the boundaries due to the high gradients imposed by
the boundary conditions (such as in the case of no-slip boundary conditions in Navier-Stokes
equations [260, 261], for example). Therefore, including the effect of the surface node method
near the boundaries of the body is critically important for deriving an accurate stability
criterion.

The paper is structured as follows. Section 7.2 gives a brief review of the peridynamic
theory applied to diffusion problems with or without moving interfaces, and their discretized
equations. In Section 7.3, we derive the stability criterion for peridynamic diffusion problems
by including the influence of boundary conditions. Section 7.4 presents the numerical results
of a 1D diffusion problem for a homogeneous material with no phase changes and, for the
first time, the surface node method for enforcing nonlocal boundary conditions is applied to a
transient problem. We then analyze the numerical convergence to an exact nonlocal solution
of a PD model for initial conditions with and without discontinuities. Section 7.5 shows an
example of a diffusion-type model with a moving interface problem in which the motion of
the interface is controlled by local concentration values, similar to diffusion in a bi-material
enhanced with a phase-change model in [128], as some PD models of corrosion have employed.
The results are compared with an analytical solution (obtained via the manufactured solution
method) for a moving interface problem. Section 7.6 discusses extensions of the obtained
results in 1D problems to the 2D and 3D cases. Section 7.7 draws some conclusions and
discusses future work.
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7.2 Brief review of PD model of diffusion

In peridynamics, points in a body Ω interact with each other up to a finite distance δ,
called the horizon size [61, 62]. The interaction between two points is called bond. This
means that a point x interacts with the set of points Hx =

{
x′ ∈ Ω : |x′ − x| < δ

}
, which is

called the neighborhood of point x. Therefore, the neighborhood is the set [x− δ, x + δ], as
shown in Figure 7.1. The peridynamic equation governing diffusion phenomena is given as
in [128, 129]:

∂C(x, t)

∂t
=

∫

Hx

d(x, x′)µ(|x′ − x|)
[
C(x′, t)− C(x, t)

]
dx′

=

∫

Hx

j(x, x′, t) dx′ ,
(7.1)

where C is the concentration of the species, µ is the kernel function, and d is the micro-
diffusivity (that can be calibrated to the classical diffusivity). The integrand in equation (7.1)
is called the micro-flux j(x, x′, t). We choose the kernel function µ(|x′ − x|) = |x′ − x|−2,
which ensures that the convergence to the classical theory does not depend on the refinement
of the nodal grid [150].

x x

Hx

x− δ x+ δ

Ω

x
′

Figure 7.1: Neighborhood Hx of a point in a peridynamic body Ω in 1D: red lines represent the PD
interactions (bonds) between points.

Each bond can be thought as a pipe into which the monitored species is allowed to flow.
The peridynamic flux at a point is defined as the sum of the micro-fluxes of the bonds
crossing the surface passing through that point [172]. Therefore, in 1D the PD flux at a
point x is computed as [227]:

J(x, t) = −
∫ x

x−δ

∫ x′+δ

x

j(x′, x′′, t) dx′′ dx′ . (7.2)

Figure 7.2 shows the limits of integration accounting for each bond intersecting the surface
passing through point x.

x

x− δ x
′ + δ

Ω

xx
′

x
′′

Figure 7.2: Example of a bond involved in the computation of the peridynamic flux in a point x: for
the limits of integration in equation (7.2), x′ and x′′ are points respectively in the intervals [x− δ, x]
and [x, x′+ δ], therefore each bond between x′ and x′′ intersects the surface passing through point x.

The micro-diffusivity function d is calibrated to the classical diffusivity D. To do so, for
example, one equates the classical flux with the peridynamic flux for a linear distribution
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of concentration C [124, 125, 128]. The peridynamic flux at a point x with a complete
neighborhood (away from the boundaries of the domain) for a homogeneous concentration
gradient is computed as [124, 236]:

J(x, t) = −
∫ x+δ

x

(x′ − x) j(x, x′, t) dx′ . (7.3)

Therefore, by choosing a constant micro-diffusivity function over the neighborhood [124, 125,
128], the micro-diffusivity of a PD bond is given as:

d(x, x′) =
D

δ
. (7.4)

Since equation (7.4) is computed for points with a complete neighborhood, the properties
of the points near the boundary of the body (with an incomplete neighborhood) turn out to
be different from those of the points in the bulk (see Figure 7.3a). This phenomenon is called
PD surface effect [186, 227, 236]. In order to mitigate this surface effect, a fictitious layer, of
thickness δ, surrounding the body is introduced as first suggested in [148] (see Figure 7.3b).
Furthermore, nonlocal models require the imposition of nonlocal boundary conditions, also
known as volume constraints. However, experiments provide only measurements at the
boundary of the domain, so the imposition of local boundary conditions is desirable. In order
to enforce a set of local boundary conditions into a nonlocal model, several methods have
been developed (see, e.g., [63, 64, 194, 195]). However, all these methods do not guarantee the
accuracy of the results near the boundaries for any loading condition or complex geometry.
On the other hand, the surface node method (see, e.g., [227, 236, 249]) provides an accurate
way to impose local boundary conditions in a nonlocal model for any loading condition and
geometry (for any domain with sufficiently smooth boundary). According to this method,
concentrations of the fictitious nodes are determined by a Taylor series expansion about the
closest point on the external surface of the body. Then, the flux at points on the external
surface of the body is imposed via the equation of the peridynamic flux:

J(x, n, t) = J(x, t) · n , (7.5)

where n = ±1 is the unit vector normal to the external surface. Thanks to this equation,
the points on the boundary represent the nonlocal behavior of the entire fictitious layer; this
aspect will be explained in detail in the discretized model in Section 7.2.2.

7.2.1 Modeling of diffusion with moving interface/phase-change

Diffusion-controlled or reaction-controlled problems are involved in many physical phe-
nomena. Oxidation of zirconium carbide at high temperatures is one such example [13, 14].
The diffusion of oxygen within the high-temperature zirconium carbide triggers oxidation,
the final products of which are carbon dioxide and zirconium oxide. The carbon dioxide
is dispersed in the external environment (through cracks or porosities). The interface be-
tween zirconium oxide and carbide moves according to the diffusivities of the two phases.
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0 ℓx

Hx

x
′

Hx′

Ω

(a)

0 ℓ−δ ℓ+ δx

Hx

x
′

Hx′

Ω ΓℓΓ0

(b)

Figure 7.3: In order to complete the neighborhoods of the points near the boundary (a), a fictitious
layer Γ = Γ0 + Γℓ surrounding the body Ω is introduced (b).

This phenomenon can be described as a diffusion problem in a bi-material enhanced with a
phase-change model, which was analyzed in [128].

The phase of each peridynamic point depends on its current concentration. Let us denote
the concentration of phase change by Ci, where i stands for “interface”. The micro-diffusivity
of a bond is determined as [128]:

d(x, x′, t) =





d1 if C(x, t) < Ci and C(x′, t) < Ci ,

d2 if C(x, t) > Ci and C(x′, t) > Ci ,

d3 if C(x, t) ≤ Ci ≤ C(x′, t) or C(x′, t) ≤ Ci ≤ C(x, t) .

(7.6)

Figure 7.4 shows the three possible types of bonds that may have different micro-diffusivities
properties. Therefore, in a peridynamic diffusion model, it suffices to know the threshold
concentration for phase change and the micro-diffusivities in equation (7.6) in order to de-
termine the motion of the interface. With this, the motion of the interface is autonomous,
and determined by the “constitutive model” itself. Note that this model does not require
any special conditions at the interface, such as Stefan condition (that is instead required in
classical models [256–258]). Moreover, a damage mechanism can be easily introduced in this
PD model (see for instance [128–130, 137, 262–265]). This will be investigated in a future
work [266].

0 ℓ

Ω

Phase 1 Phase 2
Interface

Figure 7.4: Three possible types of bonds for diffusion in a two-phase material separated by a material
interface: each type of bond may have different micro-diffusivity properties.

7.2.2 The “meshfree method” discretization of the PD diffusion

equations

Many different methods can be used to discretize peridynamic diffusion equations, such
as the “meshfree method” [65, 184, 235], the Finite Element Method (FEM) [177, 178], and
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the Fast Convolution-Based Method (FCBM) [179, 180]. When using the FEM, remeshing
would be required to model the moving interface. The FCBM allows to considerably reduce
the computational cost of finding PD solutions by utilizing the convolutional structure of
PD integral operators and the Fast Fourier Transform (FFT). However, since in this work
we consider stability and convergence of numerical algorithms in the 1D setting for which
the cost is less of an issue, for the sake of simplicity we here adopt the meshfree method
of discretization of the PD equations, and we use uniform grids. Therefore, the body is
discretized in cells (segments), at the center of each of which there is a node representing
that cell. To mitigate the PD surface effect, we add the fictitious nodes around the body
up to a distance δ from the boundary (see Figure 7.5). The concentrations of the fictitious
nodes can be determined via the Taylor-based extrapolation [227, 236, 249] or some other
type of extrapolation (see, e.g., [194, 195]). In this work, we use the Taylor-based method
with linear extrapolation for its simplicity.

0 ℓ−δ ℓ+ δ∆x

βpq = 1βpq = 0.5

xp

Hp

xj

Hj

Ω ΓℓΓ0

Self-transfer

Figure 7.5: Discretization of a 1D body by means of the meshfree method: the neighborhood Hp

of a node p (or Hj of a node j) is constituted by the nodes with a portion of their cell within the
neighborhood. The quadrature coefficient βpq is the volume fraction of the cell of node q lying inside
the neighborhood of node p [235]. The fictitious nodes (empty dots) are added near the boundary of
the body to complete the neighborhoods of all the nodes within the body (solid dots). Moreover, the
boundary of the body is represented by the surface nodes (solid squares).

The integrals in the peridynamic equations (equations (7.1) and (7.2)) can be numerically
approximated by splitting them into a summation of integrals over cells and applying a
midpoint quadrature rule in each cell [65, 184, 235]. Therefore, the micro-flux in a bond
between the nodes p and q can be computed as:

j(xp, xq, t) = d(xp, xq)µ(|xq − xp|)
[
C(xq, t)− C(xp, t)

]
, (7.7)

where xp and xq are the coordinates respectively of nodes p and q, and µ(|xq − xp|) =

|xq − xp|−2.
As shown in Figure 7.5, the cells of some nodes are contained only partially within the

neighborhood. In order to properly “weight” their contribution, the quadrature coefficients
β are computed as the fraction of the nodal cell lying inside the neighborhood using the
algorithms presented in [198]. Hence, a node p within the body is governed by the following
discretized equation [124, 125, 128]:

∂C(xp, t)

∂t
=
∑

q∈Hp

j(xp, xq, t) βpq∆x+ jst(xp, t)∆x , (7.8)

where ∆x is the grid spacing, the index q stands for any node within the neighborhood Hp
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of node p, and jst is the so-called self-transfer micro-flux. This self-transfer term appears in
equation (7.8) due to the discretization of the body. In fact, the “discretized” neighborhood
Hp lacks the central portion because the node xp does not interact with the two halves of its
own cell. As shown in Figure 7.5, the self-transfer is added to take into account these lacking
contributions. The self-transfer micro-flux of node p can be approximated as the average of
the micro-fluxes of the two adjacent nodes [150]:

jst(xp, t) =
1

2

[
d(xp, xp+1)µ(|xp+1 − xp|)

(
C(xp+1, t)− C(xp, t)

)

+ d(xp, xp−1)µ(|xp−1 − xp|)
(
C(xp−1, t)− C(xp, t)

)]
,

(7.9)

where the sequential numbering of the nodes is assumed, so that nodes p− 1 and p+ 1 are
the two nodes adjacent to node p.

Let us call interior nodes the nodes within the body (solid dots in Figure 7.5). To
apply the surface node method (with the linear Taylor-based extrapolation) for imposing the
boundary conditions, we introduce new nodes at the boundary of the body, called surface

nodes (solid squares in Figure 7.5). The surface nodes do not have cells as the interior nodes,
but they are used to discretize the external surface of the body. In 1D the surface nodes are
the points at the ends of the body, as shown in Figure 7.5, and lie at a distance of ∆x/2
from the closest interior node.

In order to complete the neighborhoods of the interior nodes near the boundaries, a δ-
thick layer of fictitious nodes is introduced, as shown in Figure 7.6. The concentration of
these nodes is determined by extrapolating the concentrations of the real nodes. Different
extrapolation methods may be employed, but the Taylor-based extrapolation method is
straightforward and applicable to any (even complex) geometry [227, 236, 249]. Therefore,
here we show how to extrapolate the concentrations of the fictitious nodes with a linear
Taylor series expansion. Consider a fictitious node f and its closest surface node s and
interior node b and respectively denote their coordinates by xf , xs and xb, as shown in
Figure 7.6. The concentration of the fictitious node f is computed as:

C(xf , t) ≈ C(xs, t) + (xf − xs)
∂C(xs, t)

∂x

≈ C(xs, t) + (xf − xs)
C(xs, t)− C(xb, t)

xs − xb

≈ xf − xb
xs − xb

C(xs, t)−
xf − xs
xs − xb

C(xb, t) ,

(7.10)

where the derivative ∂C(xs,t)
∂x

is approximated by the finite difference method. Note that the
concentrations of the fictitious nodes are determined as functions of the concentrations of
the real (both interior and surface) nodes of the body, which are often the unknowns of the
problem. Figure 7.6 shows an example of the linear Taylor-based extrapolation.

The surface nodes do not interact directly with other nodes. In other words, no PD bonds
are connected to surface nodes. The degrees of freedom of the surface nodes are governed
by new equations based on the concept of peridynamic flux. Therefore, the equation of a
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C

xs
xb xf

Figure 7.6: Example of the linear Taylor-based extrapolation applied to an arbitrary concentration
field.

surface node xs with normal ns is given as [249]:

J(xs, ns, t) = −
∑

Bs

j(xp, xq, t) · ns βpq∆x
2 , (7.11)

where Bs is the set of all the bonds such that xp < xs < xq, i.e., all the bonds crossing the
boundary. These bonds are depicted in Figure 7.7. Thus, the boundary conditions can be
imposed directly on the surface nodes as one would do in a local model [249]: a constrained
concentration C(t) at a surface node s is imposed as C(xs, t) = C(t) and a flux J(t) through
the cell of a surface node s is imposed as J(xs, ns, t) = J(t).

xs

Js

ns

(a)

xs

Jpq

Js =
∑

Jpq

(b)

Figure 7.7: Representation of the equation of a surface node s: (a) the flux Js = J(xs, ns, t) is
computed as (b) the sum of the fluxes Jpq = −j(xp, xq, t) · ns βpq ∆x2 of the bonds intersecting node
s.

Thanks to equation (7.11), the surface nodes are affected by all the bonds connected
to fictitious nodes (see Figure 7.7). In fact, the bond fluxes that should be applied to
the fictitious nodes, are instead applied to the surface node. Therefore, the surface nodes
represent the nonlocal behavior of the whole fictitious layer. This is why the local boundary
conditions imposed at the surface nodes can be seen as similar to volume constraints (nonlocal
boundary conditions).
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For the time integration, the forward Euler (first-order explicit) method is employed:

Cn+1
p = Cn

p +∆t
∂Cn

p

∂t
, (7.12)

where the subscript and superscript stand respectively for the corresponding position of the
node and time-step so that, for instance, Cn

p = C(xp, tn). Therefore, the time integration is
carried out by combining equations (7.7), (7.8) and (7.12) as:

Cn+1
p = Cn

p + d∆t
∑

q∈Hp

µpq

(
Cn

q − Cn
p

)
βpq∆x+

1

2
d µ(∆x)

(
Cn

p+1 − 2Cn
p + Cn

p−1

)
∆x (7.13)

where d is computed with equation (7.4) and µpq = µ(|xq − xp|). This system of equations
can also be written in the matrix form as:

Cn+1 = ACn , (7.14)

where Cn and Cn+1 are the concentration vectors at time-steps n and n+ 1, respectively.

7.3 Stability analysis

The stability analysis in peridynamic models has been carried out via the Von Neumann
stability analysis for hyperbolic equations discretized with the meshfree method in [65, 267]
and for parabolic equations considering the fast convolution-based method in [179, 180]. Note
that this type of analysis considers only pure initial value problems and completely neglects
the influence of the boundary conditions [268]. In [269, 270] the stability condition of the
forward Euler scheme applied to parabolic equations discretized in space with the finite
element method is discussed. Here we follow the general analysis (that also includes the
treatment of boundary conditions), known as the eigenvalue technique for stability analysis,
to find the restriction on the time-step ∆t for peridynamic parabolic equations discretized
with the meshfree method.

A numerical method is semi-stable if the numerical errors do not grow as the solution
progresses in time. According to the eigenvalue technique for stability analysis, the numerical
method in equation (7.14) is semi-stable if the largest eigenvalue λmax of the matrix A is
such that |λmax| ≤ 1. In this work we consider a body under Dirichlet boundary conditions
at both ends, i.e., at the surface nodes. Therefore, since the values of the concentrations
at those nodes are known, the surface nodes do not contribute to the numerical errors. In
order to bound the eigenvalues of matrix A with entries aij, we use the Gershgorin Theorem
which states that each eigenvalue of A lies within at least one of the circles centered in aii
with a radius

∑
j 6=i |aij| (the so-called Gershgorin discs in the complex plane):

|λ− aii| ≤
∑

j 6=i

|aij| , (7.15)

where aii and aij are the diagonal and off-diagonal entries of matrix A.
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The stability criterion without considering the influence of the boundary conditions and
the self-transfer term is given as:

∆t ≤ 1

d
∑

q∈Hp

µpq ∆x
. (7.16)

This inequality is obtained by applying the Gershgorin Theorem to the rows of matrix A

corresponding to a generic node p lying in the bulk of the body, i.e. a node without fictitious
nodes in its neighborhood (see the following proof). Note that, for simplicity’s sake, the
quadrature coefficient β is neglected in the determination of the upper bound for the time-
step size. However, the entries of the rows of A corresponding to the nodes near the boundary
of the body are different from those considered to obtain equation (7.16), due to the presence
of the fictitious nodes inside the neighborhood of those nodes. In fact, some of the entries
of A are modified according to the linear Taylor-based extrapolation (equation (7.10)). The
tighter upper bound for the time-step size is found by applying the Gershgorin Theorem to
the row of A corresponding to the interior node closest to the boundary, as shown in the
following.
Theorem. For the peridynamic equation of transient diffusion discretized in space with

the meshfree method and in time with the forward Euler scheme, in which the boundary

conditions are imposed via the surface node method with a linear Taylor-based extrapolation,

the stability condition is given as

∆t ≤ 1

d

(
∑

q∈Hb

µbq +
1

2

∑

f∈Hb

µbf

(
xf − xs
xs − xb

− 1

))
∆x

(7.17)

when the self-transfer term is not considered, and

∆t ≤ 1

d

(
∑

q∈Hb

µbq +
1

2

∑

f∈Hb

µbf

(
xf − xs
xs − xb

− 1

)
+

1

2
µ(∆x)

)
∆x

(7.18)

when the self-transfer term is considered.

Proof. For simplicity and conciseness, we prove the stability condition in equation (7.17)
without considering the self-transfer term. The upper bound for the time-step size, when
the self-transfer term is considered, can be found following the same steps. For simplicity’s
sake, we also neglect the quadrature coefficients β in all the following formulas. If β was
included in the analysis, the upper bound for the time-step size would slightly increase.

The concentration at a node p in the bulk of the body, i.e., a node without fictitious
nodes within its neighborhood, at the time-step n+ 1, is given as (see equation (7.13)):

Cn+1
p =


1− d∆t

∑

q∈Hp

µpq∆x


Cn

p + d∆t
∑

q∈Hp

µpqC
n
q ∆x . (7.19)
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where µpq = µ(|xq − xp|). The Gershgorin Theorem applied to the rows of A corresponding
to node p yields: ∣∣∣∣∣λ− 1 + d∆t

∑

q∈Hp

µpq∆x

∣∣∣∣∣ ≤
∑

q∈Hp

∣∣d∆tµpq∆x
∣∣ . (7.20)

Note that the terms within the summation on the right-hand side of this equation are always
positive. Therefore, equation (7.20) becomes:

− d∆t
∑

q∈Hp

µpq∆x ≤ λ− 1 + d∆t
∑

q∈Hp

µpq∆x ≤ d∆t
∑

q∈Hp

µpq∆x . (7.21)

According to the eigenvalue technique, the stability of the numerical method is achieved
when −1 ≤ λ ≤ 1. The right inequality yields λ ≤ 1, whereas the left inequality is:

λ ≥ 1− 2d∆t
∑

q∈Hp

µpq∆x . (7.22)

Thus, one obtains λ ≥ −1 if the following condition holds:

∆t ≤ 1

d
∑

q∈Hp

µpq∆x
. (7.23)

This is the stability criterion for the choice of a stable time-step when no correction methods
for the PD surface effect or the imposition of the nonlocal boundary conditions are used.

We consider now a node p having one or more fictitious nodes within its neighborhood.
In equation (7.19), we subdivide the last summation over the nodes within the neighborhood
of node p as the sum of the summations of the real (denoted with r) and fictitious (denoted
with f) nodes within the neighborhood of node p:

Cn+1
p =


1− d∆t

∑

q∈Hp

µpq∆x


Cn

p + d∆t
∑

r∈Hp

µprC
n
r ∆x+ d∆t

∑

f∈Hp

µpfC
n
f∆x . (7.24)

As shown in Figure 7.8, consider a surface node, named s, and the real node closest to it,
named b. As dictated by the surface node method with a linear Taylor-based extrapola-
tion [227, 236, 249], the concentration Cn

f of the fictitious nodes is computed with a linear
Taylor series expansion as in equation (7.10). However, since there are no numerical er-
rors at the surface nodes (where Dirichlet boundary conditions are imposed), we neglect the
contributions to matrix A of the concentrations Cn

s of the surface nodes. Hence, we obtain:

Cn+1
p =


1− d∆t

∑

q∈Hp

µpq∆x


Cn

p + d∆t
∑

r∈Hp

µpre
n
r∆x− d∆t

∑

f∈Hp

µpfcfC
n
b ∆x , (7.25)

where cf =
xf−xs

xs−xb
is a positive scalar value derived from equation (7.10).
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b

r f

s

Figure 7.8: Notation used for the indices of the nodes for the stability analysis: r are the real nodes,
f are the fictitious nodes, s is the surface node, and b is the real node closest to node s.

When p 6= b (i.e., node p is not the interior node closest to the boundary):

Cn+1
p =


1− d∆t

∑

q∈Hp

µpq∆x


Cn

p + d∆t
∑

r∈Hp−{b}

µprC
n
r ∆x+ d∆t


µpb∆x−

∑

f∈Hp

µpfcf∆x


Cn

b .

(7.26)
The Gershgorin Theorem applied to this case yields:

∣∣∣∣∣λ− 1 + d∆t
∑

q∈Hp

µpq∆x

∣∣∣∣∣ ≤ d∆t


 ∑

r∈Hp−{b}

µpr +

∣∣∣∣∣µpb −
∑

f∈Hp

µpfcf

∣∣∣∣∣


∆x . (7.27)

Following the same steps as before, the first inequality deriving from equation (7.27) is
given as:

λ ≤ 1 + d∆t


−

∑

q∈Hp

µpq +
∑

r∈Hp−{b}

µpr +

∣∣∣∣∣µpb −
∑

f∈Hp

µpfcf

∣∣∣∣∣


∆x . (7.28)

Since the set of nodes in the neighborhood Hp is the sum of the disjointed sets of real and
fictitious nodes, the inequality is rewritten as:

λ ≤ 1 + d∆t


−

∑

f∈Hp

µpf − µpb +

∣∣∣∣∣µpb −
∑

f∈Hp

µpfcf

∣∣∣∣∣


∆x . (7.29)

We have that λ ≤ 1 if the following condition holds:

−
∑

f∈Hp

µpf − µpb +

∣∣∣∣∣µpb −
∑

f∈Hp

µpfcf

∣∣∣∣∣ ≤ 0 , (7.30)

which leads to:

−
∑

f∈Hp

µpf − µpb ≤ µpb −
∑

f∈Hp

µpfcf ≤
∑

f∈Hp

µpf + µpb . (7.31)

The right inequality is always true, whereas the left inequality becomes:

µpb ≥
1

2

∑

f∈Hp

µpf (cf − 1) . (7.32)
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Note that here no term depends on the time-step size ∆t, but this inequality depends on
the kernel µ and on how many fictitious nodes are present in the neighborhood of node p.
Therefore, to satisfy the condition in equation (7.32), an appropriate kernel can be chosen
or one can make use of a preconditioner to modify accordingly the entries of matrix A. If
neither of the above options is adopted, the stability criterion still provides a good first guess
for the time-step size.

The second inequality deriving from equation (7.27) is given as:

λ ≥ 1− d∆t


∑

q∈Hp

µpq +
∑

r∈Hp−{b}

µpr +

∣∣∣∣∣µpb −
∑

f∈Hp

µpfcf

∣∣∣∣∣


∆x . (7.33)

Since λ ≥ −1, the following condition holds:

d∆t


∑

q∈Hp

µpq +
∑

r∈Hp−{b}

µpr +

∣∣∣∣∣µpb −
∑

f∈Hp

µpfcf

∣∣∣∣∣


∆x ≤ 2 . (7.34)

This inequality becomes:

−2

d∆t∆x
+
∑

q∈Hp

µpq +
∑

r∈Hp

µpr − µpb ≤ µpb −
∑

f∈Hp

µpfcf ≤ 2

d∆t∆x
−
∑

q∈Hp

µpq −
∑

r∈Hp

µpr + µpb .

(7.35)
The right inequality yields:

d∆t


2

∑

q∈Hp

µpq −
∑

f∈Hp

µpr (cf + 1)


∆x ≤ 2 , (7.36)

or, more simply:

∆t ≤ 1

d


∑

q∈Hp

µpq −
1

2

∑

f∈Hp

µpr (cf + 1)


∆x

. (7.37)

This restriction on the time-step size is always verified if equation (7.23) holds. On the other
hand, the left inequality yields:

d∆t


2

∑

q∈Hp

µpq +
∑

f∈Hp

µpf (cf − 1)− 2µpb


∆x ≤ 2 , (7.38)

which leads to:
∆t ≤ 1

d


∑

q∈Hp

µpq +
1

2

∑

f∈Hp

µpf (cf − 1)− µpb


∆x

. (7.39)

If the inequality in equation (7.32) holds, then the restriction on the time-step size given in
equation (7.23) is tighter than the one in equation (7.39).
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The last case to analyze is the row of matrix A corresponding to the interior node closest
to the boundary (p = b in equation (7.25)):

Cn+1
b =

[
1− d∆t

(
∑

q∈Hb

µbq∆x+
∑

f∈Hb

µbfcf∆x

)]
Cn

b + d∆t
∑

r∈Hb

µbrC
n
r ∆x . (7.40)

In this case the Gershgorin Theorem yields:

∣∣∣∣∣λ− 1 + d∆t

(
∑

q∈Hb

µbq +
∑

f∈Hb

µbfcf

)
∆x

∣∣∣∣∣ ≤ d∆t
∑

r∈Hb

µbr∆x , (7.41)

which leads to:

− d∆t
∑

r∈Hb

µbr∆x ≤ λ− 1 + d∆t

(
∑

q∈Hb

µbq +
∑

f∈Hb

µbfcf

)
∆x ≤ d∆t

∑

r∈Hb

µbr∆x . (7.42)

On the one hand, to ensure that λ ≤ 1, the right inequality becomes:

−
∑

f∈Hb

µbf (cf + 1) ≤ 0 , (7.43)

which is always true. On the other hand, to have λ ≥ −1, we obtain from the left inequality:

d∆t

(
2
∑

q∈Hb

µbq +
∑

f∈Hb

µbf (cf − 1)

)
∆x ≤ 2 , (7.44)

Note that this inequality is more restrictive than the one in equation (7.23). From here,
equation (7.17) is straightforwardly derived.

It is worth noting that the stability condition in equation (7.17) is more restrictive than
the one in equation (7.16). Hence, neglecting the boundary conditions (as in the Von Neu-
mann analysis) may lead to a poor guess of the time-step size to obtain the stability of
the method. Furthermore, when the self-transfer term is considered, the upper bound for
time-step size is even tighter than the one provided in equation (7.17).

To simplify the formula of the stability criterion for quicker implementation, the sym-
metry of the neighborhood is employed. We denote the bond length by m∆x with m =

1, 2, . . . ,m, where m = δ/∆x is assumed to be a positive integer for simplicity. If this is
not the case, m can be replaced with the integer number M such as M∆x is the maximum
distance from node p of a node with a portion of its cell within the neighborhood of node
p itself. In peridynamic models, the value of m is often referred to as m-ratio. Hence, the
stability criterion when the influence of the boundary conditions and the self-transfer term
are not considered is given as:

∆t ≤ 1

d

m∑

m=1

µ(m∆x)∆x

. (7.45)
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A tighter upper bound for the time-step size is found by considering the influence of the
boundary conditions (see equation (7.17)):

∆t ≤ 1

d

(
2

m∑

m=1

µ(m∆x) +
1

2

m∑

m=1

µ(m∆x) (2m− 2)

)
∆x

, (7.46)

where, given the symmetry of the neighborhood, here we considered only one half of it and
multiply the summations by 2. This stability criterion can be further simplified as:

∆t ≤ 1

d

m∑

m=1

µ(m∆x) (m+ 1)∆x

. (7.47)

The time-step size is bounded even more tightly when the self-transfer term is considered:

∆t ≤ 1

d

(
m∑

m=1

µ(m∆x) (m+ 1) +
1

2
µ(∆x)

)
∆x

. (7.48)

The derived stability condition is analogous to the Courant-Friedrichs-Lewy (CFL) con-
dition in classical convection equations, but it is intrinsically different: a stable ∆t is not
limited by O(∆x2) (as in models based on classical diffusion equations) but depends only
weakly on ∆x for a fixed value of δ. By analyzing the right-hand side of equation (7.47), one
can see that the upper bound for a stable time-step is given by O(δ2) instead. For instance,
choosing the kernel µ(|ξ|) = |ξ|−2 (for which d = D/δ) yields:

∆t ≤ δ

D

m∑

m=1

(m+ 1)

m2∆x
+

1

2∆x

=
δ

O(1/δ)
= O(δ2) . (7.49)

Remark 7.1. For the case of bi-material diffusion (as used in, for example, PD modeling of
corrosion damage [128–130, 137, 262–265], and ZrC oxidation [266]), the stability criterion
derived above can still be used to determine the time-step size by employing the highest
diffusivity/dissolvability between the two phases.

7.4 Convergence studies for diffusion problems with con-

tinuous and discontinuous initial conditions

To begin with, we consider the diffusion problem in a homogeneous bar without any
phase change. In this section, we will focus on the role of discontinuities in initial conditions
in peridynamic problems. Some phenomena require to be modeled with discontinuous initial
conditions, such as the oxidation of a zirconium carbide sample which is suddenly exposed
to an oxidizing environment [13, 14]. To simulate these experimental conditions, we assume
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that the two ends of the bar are maintained at the maximum concentration of oxygen C and
that the initial oxygen concentration is equal to 0 in the whole bar (except the two ends), as
depicted in Figure 7.9b. However, the surface node method has never been used in a problem
evolving in time, let alone with discontinuous initial conditions at the boundary. Therefore,
we also analyze the same problem with continuous (quadratic) initial conditions, as shown
in Figure 7.9a. The analytical solutions to the problem with the initial conditions with and
without discontinuities are determined via the method of separation of variables [163]. Thus,
we analyze the convergence behaviors in space (with δ fixed) and time to the exact nonlocal
solution of the problem with continuous and discontinuous initial conditions.

In what follows, we will use specific units because of the direct applicability of these
derivations and results to oxidation-induced damage in the ZrC problem [13, 14, 210]. The
results, however, are independent of these units and the conclusions remain valid for non-
dimensionalized form of the problem.

x

C

−ℓ/2 ℓ/2

C

(a) Continuous initial conditions.

x

C

−ℓ/2 ℓ/2

C

(b) Discontinuous initial conditions.

Figure 7.9: Different initial conditions for the 1D diffusion problem without phase change.

7.4.1 Analytical solutions

The 1D problem with continuous initial conditions, i.e., a quadratic function (Figure 7.9a),
is given as:





∂C(x, t)

∂t
=

∫

Hx

j(x, x′, t) dx′ for − ℓ/2 < x < ℓ/2 , 0 < t <∞ ,

C(−ℓ/2, t) = C(ℓ/2, t) = C for 0 < t <∞ ,

C(x, 0) =
4C

ℓ2
x2 for − ℓ/2 < x < ℓ/2 ,

(7.50)

where ℓ is the length of the rod. The peridynamic solution of this problem is obtained via
the method of separation of variables [163]:

Ĉ(x, t)

C
= 1−

∞∑

m=1

32 sin(kmℓ/2)

k3mℓ
3

cos(kmx) exp(−Dψt) , (7.51)
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where km = (2m− 1)π/ℓ and ψ = ψ(δ) is the nonlocal factor computed as:

ψ(δ) =

∫ δ

−δ

cos (kmξ)− 1

δξ2
dξ

=
2

δ

[
kmSi(kmδ) +

cos(kmδ)− 1

δ

]
,

(7.52)

where ξ = x′ − x and Si(y) =
∫ y

0
sin z
z

dz is the sine integral function. Note that in the
computation of the nonlocal factor the assumption of an infinite body is made, i.e., the
integral is computed assuming a complete horizon region. Therefore, the analytical solution
in equation (7.51) is valid outside of the body as well. This is equivalent to choosing an
extrapolation of the unknowns over the fictitious layer that is antisymmetric with respect to
the boundary, as shown in Figure 7.10a.

x

C

ℓ/2 ℓ/2 + δ

C

(a) Continuous initial conditions.

x

C

ℓ/2 ℓ/2 + δ

C

(b) Discontinuous initial conditions.

Figure 7.10: Antisymmetric extrapolation over the fictitious layer assumed to derive the nonlocal
analytical solution for different initial conditions.

Similarly, the 1D problem with discontinuous initial conditions, i.e., the constant zero-
valued function (Figure 7.9b), is given as:





∂C(x, t)

∂t
=

∫

Hx

j(x, x′, t) dx′ for − ℓ/2 < x < ℓ/2 , 0 < t <∞ ,

C(−ℓ/2, t) = C(ℓ/2, t) = C for 0 < t <∞ ,

C(x, 0) = 0 for − ℓ/2 < x < ℓ/2 .

(7.53)

The peridynamic solution of this problem can be computed as [163]:

Ĉ(x, t)

C
= 1−

∞∑

m=1

4 sin(kmℓ/2)

kmℓ
cos(kmx) exp(−Dψt) , (7.54)

where km = (2m − 1)π/ℓ and ψ = ψ(δ) is the same nonlocal factor of equation (7.52). As
shown in Figure 7.10b, the antisymmetric extrapolation over the fictitious layer is assumed
to compute the nonlocal factor ψ(δ).
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7.4.2 Numerical results

The values for the model parameters are shown in Table 7.1. The same parameters are
used for both the continuous and discontinuous initial conditions. These parameters are not
realistic, but are used to verify the numerical model. Since the problem is symmetric, we
consider only half of the domain and enforce a zero-flux at x = 0 by imposing symmetric
boundary conditions as described in [271].

Table 7.1: Properties of the rod.

Property Value

Length of the rod ℓ = 1 cm
Horizon size δ = 0.05 cm
Classical diffusivity D = 1 cm2/s
Maximum concentration C = 1mol/cm3

The numerical results, compared to the analytical solution, for the continuous and dis-
continuous initial conditions are shown in Figures 7.11 and 7.12, respectively. These plots
are obtained for a value of the m-ratio equal to 4 (∆x = 125µm) and the time-step size equal
to 0.1ms. This value of the time-step meets the requirement of equation (7.48) for numerical
stability. Moreover, no qualitative differences are visible in the plots if smaller time-steps are
chosen. The numerical results are in excellent agreement with their corresponding analytical
solutions. This is also observed in the case of discontinuous initial conditions.
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Figure 7.11: Numerical results (for ∆x = 125µm and ∆t = 0.1ms) and corresponding analytical
solution at different times t for the problem with continuous initial conditions.

Nonetheless, analyzing in more detail the early times of the simulation, we observed that
the errors for the discontinuous initial conditions are localized near the boundary and are
non-negligible only at the early times of the simulation, as shown for instance in Figure 7.13.
Furthermore, since the analytical solution is given in the form of an infinite summation of
Fourier terms, some inaccuracies arise due to the truncation of higher-order terms, espe-
cially when there is a discontinuity in the solution. Therefore, in the following convergence
analysis, we study the influence of ignoring the initial time interval of the simulation in the
computation of the error for the case with discontinuous initial conditions.

The errors can be computed by averaging the concentration errors in space and taking
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Figure 7.12: Numerical results (for a grid spacing ∆x = 125µm and a time-step size ∆t = 0.1ms)
and corresponding analytical solution at different times t for the problem with discontinuous initial
conditions.
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Figure 7.13: Example of the behavior of the analytical and numerical solutions near the boundary of
the body in the initial time-steps of a simulation with ∆x = 125µm and ∆t = 0.1ms.

the maximum error in time:

e = max
t0≤t≤tf




√√√√
∑N

p=1

[
C(xp, t)− Ĉ(xp, t)

]2

N C
2


 , (7.55)

where t0 and tf are respectively the initial and final considered instants of time, C is the
numerical result for the degree of freedom of node p, Ĉ is the analytical solution evaluated at
xp, and N is the number of degrees of freedom of the model. The error is computed in this
way to obtain a single value for each simulation and compare them when the grid spacing or
the time-step size are changed. The analytical solution (equation (7.51) for the continuous
initial conditions or equation (7.54) for the discontinuous ones) is truncated after 200 terms.
For what was discussed before, we choose t0 = 0 s for the problem with continuous initial
condition and t0 = 1ms for the one with discontinuous initial condition. On the other hand,
tf = 0.5 s for both cases.

The first convergence analysis was performed with the peridynamic model with the lin-
ear extrapolation over the fictitious layer, but the results were not good. For instance,
the m-convergence behavior of the model with continuous initial conditions shows a low
convergence rate, whereas the numerical solution of the problem with discontinuous initial
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conditions slightly diverges from the nonlocal analytical solution. These poor results are
due to the different assumptions that the analytical solution and the numerical model use
to extrapolate the concentrations over the fictitious layer: the former one employs an anti-
symmetric extrapolation, while the latter one a linear extrapolation. Therefore, to obtain
reasonable convergence behaviors for the peridynamic diffusion models, we need to use the
same type of extrapolation in both analytical and numerical solutions.

Thus, only in the following convergence analyses are the concentrations of the fictitious
nodes in the discretized model imposed to be antisymmetric with respect to the concentration
of the surface node:

C(xf , t) = 2C(xs, t) + C(xm, t) , (7.56)

where xf , xs, and xm are the coordinates of the fictitious node, the surface node, and the
node symmetric to node f with respect to the boundary, respectively. Note that the stability
criterion derived in Section 7.3 is not valid in this case due to the different extrapolations
that are assumed. However, following the same steps as shown for the linear extrapolation,
one could easily derive the stability criterion also in the case of antisymmetric extrapolation.

We perform a m-convergence analysis (grid refinement keeping the value of the horizon δ
fixed) for a time-step size ∆t = 5× 10−8 s. We chose a very small time-step size to reduce the
errors related to the time-integration compared to those related to the space discretization.
The values of the m-ratio are varied as m = 2k, with k = 1, 2, . . . , 6. Figure 7.14 shows the
results of the m-convergence studies, which highlight larger errors in the case discontinuous
initial conditions compared to the case with continuous initial conditions. Nevertheless, the
errors are considerably small also when a discontinuity is present in the initial conditions.
Furthermore, the rate of convergence is not affected by the presence of a discontinuity (when
the early times of the simulation are ignored).

Figure 7.15 shows the convergence behaviors for different time intervals skipped at the
beginning of the simulation. When early times are considered, the maximum errors in time
are found in the first time-steps. This is due to the fact that the representation of the
discontinuity in the initial conditions is only approximated in the numerical model. On
the other hand, when a sufficiently long time interval is ignored, the convergence rate is
approximately the same as for the numerical model with continuous initial conditions.
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Figure 7.14: m-convergence (for ∆t = 5× 10−8 s) for continuous and discontinuous initial condi-
tions (discontinuous case skips over the first 1ms).
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Figure 7.15: Influence of initial skipped time interval on the m-convergence properties to the ana-
lytical solution to the nonlocal problem (all results are for ∆t = 5× 10−8 s).

Similarly, we analyze the convergence behavior due to the refinement of the time-step
size ∆t for a fixed value of grid spacing ∆x = 50µm, shown in Figure 7.16. As in the case of
m-convergence, the numerical results for the problem with discontinuous initial conditions
exhibit the same rate of convergence as those for the problem with continuous initial condi-
tions. However, the numerical errors are higher when a discontinuity is present in the initial
conditions. As shown in Figure 7.17, the discontinuity in the initial conditions influences
only the early times of the simulation.
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Figure 7.16: Time-convergence (for ∆x = 50µm) for continuous and discontinuous initial conditions
(discontinuous case skips over the first 1ms).

Several parameters may affect the size of the initial time interval that has to be skipped in
the computation of the error to obtain the same convergence rate as the model with contin-
uous initial conditions. Among those parameters, the value of the diffusivity is arguably the
most influential. Increasing the diffusivity leads to a reduction of the time interval mentioned
above. More precisely, the size of the initial time interval ignored to obtain the “expected”
convergence behavior is inversely proportional to the diffusivity value.

7.5 Diffusion problem with moving interface

In this section, the peridynamic model for a bi-material body with a moving interface is
analyzed. As pointed out before, the motion of the interface is not related to a condition
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Figure 7.17: Influence of initial skipped time interval on the time-convergence properties to the
analytical solution to the nonlocal problem (all results are for ∆x = 50µm).

imposed at the interface itself, but it is part of the peridynamic solution of the problem.
Therefore, we are interested in monitoring the accuracy of the numerical results for the po-
sition of the interface at each instant of time. Since the analytical solution to this type of
nonlocal problem is difficult (if not impossible) to obtain, we use the solution of a manufac-
tured problem instead.

7.5.1 Manufactured solution

We assume that the manufactured solution is given as:

Ĉ(x, t)

C
= 1 +

(
4

ℓ2
x2 − 1

)(
1− t

tf

)
, (7.57)

where tf is the final instant of time in which the solution is equal to C(x, t) = C. The
manufactured solution is plotted in Figure 7.18 at different instants of time. Note that
equation (7.57) does not describe the “natural” evolution of the concentration, but the veri-
fication of a manufactured problem does not require physically realistic solutions [272]. The
manufactured solution is chosen to be symmetric with respect to the origin of the axis, thus
we consider only the positive part of the coordinate axis.

The motion of the interface can be described by equalizing equation (7.57) with the
concentration of phase change Ci:

Ci

C
= 1 +

(
4

ℓ2
x2i − 1

)(
1− t

tf

)
, (7.58)

where xi is the interface position. By solving the previous equation for xi, the position of
the interface in time is given as:

xi = ± ℓ
2

√
1 +

(
Ci

C
− 1

)(
tf

tf − t

)
, (7.59)

in which we consider only the positive solution for symmetry reasons.
Since the manufactured solution is not the “natural” evolution of the concentration, an
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external flux has to be “pushed into” the body. This flux can be computed as the remainder
of equation (7.1) as:

J(x, t) =
∂C(x, t)

∂t
−
∫

Hx

j(x, x′, t) dx′

= −C
tf

(
4

ℓ2
x2 − 1

)
−
∫

Hx

d(x, x′, t)
Ĉ(x′, t)− Ĉ(x, t)

(x′ − x)2
dx′ .

(7.60)

The integral on the right-hand side of the equation depends on the value of the micro-
diffusivities obtained with equation (7.6). Note that the concentration distribution (and,
therefore, the phase of each point) is known in each instant of time from the manufactured
solution. Hence, the integral can accordingly be split into a sum of integrals with a constant
micro-diffusivity d(x, x′, t) = dk, where k = 1, 2, 3 (see equation (7.6)). Here we solve the
indefinite integral that can be used to compute the external flux in equation (7.60):

∫
dk
Ĉ(x′, t)− Ĉ(x, t)

(x′ − x)2
dx′ = dk

∫ C
[ (

4
ℓ2
x′2 − 1

)
−
(

4
ℓ2
x2 − 1

) ] (
1− t

tf

)

(x′ − x)2
dx′

=
4 dk C

ℓ2

(
1− t

tf

)∫
x′2 − x2

(x′ − x)2
dx′

=
4 dk C

ℓ2

(
1− t

tf

)∫
ξ (ξ + 2x)

ξ2
dξ

=
4 dk C

ℓ2

(
1− t

tf

)[
ξ + 2x

ξ

|ξ| log(|ξ|) + const.

]
,

(7.61)

where ξ = x′ − x.

7.5.2 Numerical results

The data used is the same as in Table 7.1, except for the diffusivity that is chosen to
be different in each phase. The following data is thought to be applied in the case of the
zirconium carbide oxidation, but the model of the diffusion-reaction phenomenon in a bi-
material enhanced with a phase-change mechanism is also applicable to other phenomena
with similar characteristics. Since no diffusion occurs in the carbide region (in fact, no
concentration of oxygen is present in the carbide), the diffusivity of the carbide phase is
Dc = 0 cm2/s. On the other hand, the diffusivities of the oxide phase and at the interface are
arbitrarily chosen to be Do = 1 cm2/s and Di = 0.8 cm2/s, respectively. Therefore, the three
micro-diffusivities of equation (7.6) are respectively d1 = 0, d2 = Di/δ, and d3 = Do/δ. The
concentration of phase change is arbitrarily chosen to be Ci = 0.9C. The grid spacing and
the time-step size are respectively ∆x = 0.003 125 cm (m = 16) and ∆t = 1× 10−5 s. The
value for the time-step size is chosen on the basis of the stability criterion in equation (7.48)
by using the diffusivity of the oxide phase in the formula (see Remark 7.1).

The analytical solution of the manufactured problem is computed by using the interface
position determined in equation (7.59) to change the diffusivity of the points. In the dis-
cretized model, however, there is no clear way to know precisely the position of the interface
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when it lies between two adjacent nodes. Therefore, the position of the interface is chosen
to be in the middle point between the two adjacent carbide and oxide nodes. The obtained
interface position is used to compute the external flux at each node with equations (7.60)
and (7.61). The fluxes at the nodes can be gathered in the flux vector J and the system of
equations to solve becomes:

Cn+1 = ACn + J . (7.62)

The numerical results are shown at different instants of time in Figure 7.18, and they
are compared with the analytical (manufactured) solution. The numerical and analytical
solutions are in good agreement throughout the whole timespan. It is also interesting to
analyze the motion of the interface in the numerical model with respect to the analytical
solution in equation (7.59). Figure 7.19 shows that the position of the interface in the
numerical model and the manufactured solution are very close to one another at any instant
of time. Therefore, the peridynamic model has been shown to be effective in capturing the
motion of the interface as a result of the diffusivities of the different phases.
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Figure 7.18: Numerical results (for a grid spacing ∆x = 0.003 125 cm and a time-step size ∆t =
1× 10−5 s) and corresponding analytical solution at different times t for the manufactured problem
with phase change.

An interesting extension of the work shown here is to consider the moving interface
problem with discontinuities. Such an example is considered in [266], in which a peridynamic
model of zirconium carbide oxidation is used to simulate the effect of cracks induced by the
expansion of the oxide in the outer layer. Comparison of PD results with experimental
observations show an excellent agreement between the two.

7.6 Discussion on the extension to 2D and 3D problems

In this work, we considered only 1D transient diffusion problems for simplicity’s sake.
However, we believe that all the obtained results are also valid for 2D and 3D peridynamic
diffusion problems. The equations for a 2D or 3D peridynamic transient diffusion problem
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Figure 7.19: Numerical results and corresponding analytical solution of the position of the interface
for the manufactured problem with phase change.

are presented in Section 3 of [266], and are very similar to the equation governing diffusion in
a 1D peridynamic body. In fact, the only difference is that the position of the points/nodes
is determined by a vector instead of a scalar value.

It is common practice to derive the stability criterion for numerical methods in 1D prob-
lems and then extend it to higher-dimension problems (see, for instance, [65, 273]). We
therefore use equation (7.17) in Section 7.3 for the generalization. The linear Taylor-based
extrapolation method for the 3D case used to determine the concentration at a fictitious
node xf at time t yields [227, 236, 249]:

C(xf , t) ≈ C(xs, t) + (xf − xs)
∂C(xs, t)

∂x
+ (yf − ys)

∂C(xs, t)

∂y
+ (zf − zs)

∂C(xs, t)

∂z

≈
(
1+

xf − xb
xs − xb

+
yf − yb
ys − yb

+
zf − zb
zs − zb

)
C(xs, t)−

(
xf − xs
xs − xb

+
yf − ys
ys − yb

+
zf − zs
zs − zb

)
C(xb, t)

≈ (1 + cf )C(xs, t)− cf C(xb, t) ,

(7.63)

where node xs is the surface node closest to node xf , node xb is the real node closest to
node xs, and the derivatives are approximated by the finite difference method as shown in
equation (7.10). Note that equation (7.63) is also valid in 1D with cf =

xf−xs

xs−xb
and in 2D

with cf =
xf−xs

xs−xb
+

yf−ys
ys−yb

. Therefore, since the governing equations in 2D or 3D diffusion
problems have the same “structure” as those in 1D problems, we deduce that the stability
criterion generalized for a higher-dimension transient diffusion problem is as follows:

∆t ≤ 1

d

(
∑

q∈Hb

µbq +
1

2

∑

f∈Hb

µbf (cf − 1)

)
∆x

, (7.64)

where cf =
xf−xs

xs−xb
in 1D, cf =

xf−xs

xs−xb
+

yf−ys
ys−yb

in 2D, and cf =
xf−xs

xs−xb
+

yf−ys
ys−yb

+
zf−zb
zs−zb

in 3D. The
nodes near the corners of the body, i.e., the nodes with the highest number of fictitious nodes
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inside their neighborhood, are likely to provide the smallest upper bound for the time-step
size.

As shown in Section 7.4 for a 1D peridynamic transient diffusion problem, a discontinuity
at the boundary in the initial conditions affects the numerical convergence rate only at the
very early stages of the simulation. This is due to the fact that the discontinuity is quickly
“smoothed out” by the diffusion phenomenon that tends to reduce the high gradients of
concentration, as shown for example in the analytical solution depicted in Figure 7.13. This
effect of diffusion is obviously independent of the considered number of dimensions of the
model. Therefore, it is expected that the same conclusions that were obtained in the 1D
case are also valid in the 2D and 3D cases.

In this work, we quantitatively evaluated the accuracy of the position of the autonomously
moving interface in a 1D peridynamic diffusion problem when compared to a manufactured
solution. Except for the (possibly) slightly higher errors due to the numerical integration
of the peridynamic operator in 2D and 3D problems, we expect that the accuracy of the
position of the moving interface should be similar to that obtained in the proposed 1D
numerical example. Furthermore, the 2D and 3D peridynamic diffusion models for a bi-
material have already been used to successfully reproduce complex phenomena, such as
corrosion [128–130, 137, 262–265] and zirconium carbide oxidation [266]. These works show
that the peridynamic modeling in 1D, 2D, and 3D cases is capable of accurately predicting
the motion of interfaces in excellent agreement with experimental observations.

7.7 Conclusions

In this work, we analyzed several numerical aspects in the peridynamic model for a
diffusion problem with and without moving interface. To this end, we considered the example
of the zirconium carbide oxidation for the choice of initial/boundary conditions and material
properties, but the results may be easily generalized to other physical phenomena with
similar characteristics. Moreover, the boundary conditions are imposed, for the first time,
by means of the surface node method in a problem evolving over time.

It is well-known that explicit numerical methods for time integration of the diffusion
equation incurs in instability unless the time-step size is sufficiently small. The Von Neumann
method can provide a first guess for the time-step size allowed to obtain the stability of
the numerical method, but this method does not consider the influence of the boundary
conditions. Thanks to the eigenvalue technique for stability analysis and the Gershgorin
Theorem, we have determined a more general stability criterion for peridynamic diffusion
models that takes into account the numerical method as a whole, including the effect of the
boundary conditions. In fact, considering the boundary conditions provides a tighter upper
bound for the time-step size to obtain the stability of the numerical method.

Then, we showed the numerical results and the convergence to the exact peridynamic
solution of a diffusion problem with continuous and discontinuous initial conditions in a
homogeneous body without phase change. The presence of a discontinuity in the initial
conditions affects the numerical approximation only in the early stages of the simulation.
When a sufficiently long initial time interval is ignored, the convergence rate of the model
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with discontinuous initial conditions is the same as that of the model with continuous initial
conditions. This fact has been verified for both m-convergence (grid refinement while keeping
the horizon size δ constant) and time-convergence analysis.

Furthermore, we solved a diffusion problem in a bi-material enhanced with a phase-change
model. This model makes use of the diffusion equation to determine both the concentration
of the considered species within the body and the position of the interface between different
phases. In fact, the phase-change is driven by the concentration of the species itself. The
numerical results, in terms of concentration profile and position of the interface, are in good
agreement with the analytical (manufactured) solution. These analyses pave the way for the
modeling of more complex phenomena, including reaction-induced damage mechanisms that
can be easily introduced within the peridynamic framework.
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Abstract

Zirconium carbide (ZrC) has potential to be applied in next-generation nuclear reactors for
space missions and industrial applications. The mechanisms controlling ZrC oxidation de-
pendence on temperature, material composition, pressure, porosity are not fully understood.
In this work, we use a peridynamic modeling of diffusion/reaction across several regions
observed in previous experiments using 18O as a tracer to explain the oxygen diffusion mech-
anism and reaction kinetics. We emphasize the importance in the oxidation and damage
process of a transition layer of partially-oxidized ZrC. The PD model has an autonomously
moving oxidation interface, and the delamination/detachment of oxide (induced by large vol-
umetric expansion) is simulated here with an oxygen concentration-driven damage model.
The 1D numerical results show that the proposed model is capable of reliably reproducing
the experimental oxygen concentration profiles across the oxidation front and the oxide layer
thickness, in time, observed in the experiments. An extension to 2D finds the shape of
remaining unoxidized ZrC conforming to experimental observations.
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8.1 Introduction

Nowadays nuclear power plays a fundamental role in reducing the environmental impact
of energy and electricity production, thanks to its low CO2 emissions. Future applications
beyond electricity production are also regaining interest. Nuclear thermal propulsion (NTP)
reactor, for space applications, is being reconsidered because of the high energy density
and superior engine efficiency compared to conventional space propulsion systems. The use
of an NTP system enables to halve the duration of space missions, reducing the exposure
of astronauts to harmful radiations and other hazards found in space. At the same time,
the deployment of Very-High-Temperature Reactors (VHTR) [274] or High-Temperature Gas
Reactors (HTGR) [275] will offer increased outlet temperature fluids that can serve industrial
processes like high-temperature electrolysis and thermolysis. One of the major challenges
for these innovative and advanced nuclear applications rely on the development of materials
that can withstand the harsh conditions present during operation in these reactors.

To improve the knowledge about the performance of these advanced materials, the use
of both experimental and modelling efforts is essential. In this regard, this work focuses the
attention on the understanding and modelling of the oxidation behavior of zirconium carbide
(ZrC). ZrC has attractive properties such as high melting point (∼3500 K), high thermal
conductivity at very high temperatures and low neutron absorption cross section, and is a
candidate material for the development of NTP systems for space and a substitute material
for SiC in the tri-isotropic coated nuclear fuel (TRISO) particles thanks to its promising
fission products retention [276]. One of the drawbacks of ZrC is its affinity to oxygen, since
ZrC is often considered an oxygen getter, and poor oxidation resistance.

The oxidation of ZrC proceeds readily and with a considerable associated volume in-
crease which changes materials dimensions [14]. The oxidation mechanism is affected by
several parameters such as temperature, partial pressure of oxygen and materials chemi-
cal composition. The oxide layer can assume different crystal lattice structures depending
on the environmental temperature, oxygen partial pressure and oxygen content. Thermo-
mechanical properties and oxidation resistance properties for ZrC are heavily debated in the
literature due to its high degree of non-stoichiometric range [277, 278]. Moreover, the transi-
tion between unoxidized and oxidized material involves a volumetric expansion that induces
stresses in the oxide layer. Crack initiation and propagation within the oxide layer acceler-
ate the oxygen penetration because they generate preferential paths towards the bulk of the
body causing significant volume expansion and stresses which need to be better understood
and predicted, especially when ZrC is found in a sandwich structure in coatings.

Several experiments have been carried out on the oxidation of carbides or nitrides of this
class of materials often named Ultra-High Temperature Ceramics (UHTCs) [14, 279–281].
Furthermore, some numerical models have been developed based on classical continuum me-
chanics and making use of the Finite Element Method (FEM): in [282] the stress distribution
arising from the tetragonal-to-monoclinic phase transformation of a single grain of zirconium
oxide is computed and in [283] an oxidation model is proposed based on the assumption of
the a priori knowledge of the interface motion. Neither of these models was designed to or is
capable of predicting the autonomous motion of the carbide-oxide interface, like it has been
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developed in this work.
Peridynamics is a nonlocal continuum theory which allows for discontinuities in the dis-

placement field to initiate and evolve spontaneously [61, 62]. This theory has already been
extended to diffusion phenomena [124, 125] and multi-physics problems involving diffusion
with a moving interface [128, 129, 266]. Oxidation phenomena have been dealt with by
means of peridynamic modeling in [284, 285]. The peridynamic modeling of fracture in
a single grain of zirconia undergoing a transformation (involving volume expansion) from
tetragonal to monoclinic phase, can be found in [286]. In [287], a peridynamic thermo-
mechanical model to simulate crack propagation in a TRISO particle is presented. However,
to the best of our knowledge, no numerical model able to capture the motion of the oxidation
interface without a priori assumptions has been developed yet.

The aim of this work is to develop a numerical tool, based on the peridynamic framework,
able to predict the evolution, in time, of the carbide-oxide interface. To do so, we use the
experimental data described in [14] as reference to compare the numerical results of the pro-
posed model. This experiment consists in exposing a cubic sample of hot-pressed zirconium
carbide, maintained at a constant temperature (1073 K), to an oxidative environment. The
transition of the cubic sample to a Maltese-cross shape and the formation of cracks leading to
the repeated delamination/detachment of the oxide from the carbide bulk can be observed
in Figure 8.1 (experimental results published in [14]). These experiments in [14] enabled
to assess the oxygen concentration profile across different layers formed during oxidation of
ZrC. The different layers are comprised by the ZrC bulk, an intermediate dense layer made
primarily of carbon and tetragonal or cubic zirconium oxide (t/c-ZrO2) and an outer cracked
layer made of monoclinic zirconia (m-ZrO2). To the best of the author’s knowledge, this was
the first measurement of oxygen in ZrC. Moreover, the growth in volume of the oxide was
measured in [14]. These experimental results, obtained in [14], are used to calibrate the
parameters of the proposed peridynamic model.

A similar approach to the one introduced here may be used in modeling damage in
lithium-ion batteries, due to the similarities between the type of oxidation phenomenon dis-
cussed here and lithiation. Electrodes in solid-state batteries may experience fracture (with a
subsequent reduction of life cycles) due to lithium diffusion and intercalation that causes vol-
umetric expansion of the storage material [15, 16]. Many experiments and numerical models
on this phenomenon have been developed in the literature [288–297]. A peridynamic model
of lithiation based on the same principles used in this paper may enhance the understanding
of the phenomenon and, possibly, increase the life time of lithium-ion batteries.

The paper is structured as follows. Section 8.2 summarizes the experimental setup,
methodology and results described in [14] for the oxidation of the zirconium carbide. Sec-
tion 8.3 gives a brief review of the peridynamic theory applied to diffusion problems and its
discretized equations. Section 8.4 presents the numerical approach to model the zirconium
carbide oxidation. Section 8.5 shows the calibration process of the diffusivity values based on
the experimental observations and the qualitative validation of the model in a 2D scenario.
Section 8.6 presents conclusions and suggests potential areas for future investigation.
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Figure 8.1: Photograph of a cubic ZrC sample during the oxidation phenomenon with different
environmental temperatures [14]. The mechanical properties of the zirconium carbide are clearly
compromised.

8.2 Brief review of experimental results

In [14], a hot pressed sintered ZrC sample was oxidized inside a furnace and exposed to
16O oxygen atmosphere for 4 minutes and to 18O oxygen atmosphere for 4 more minutes,
approximately at a temperature of 1073K. A Secondary Ion Mass Spectroscopy (SIMS)
analysis has been carried out to obtain the oxygen concentration across the oxidation front.
The total oxygen concentration across the sample cross-section is monitored in the numerical
simulations, so the sum of the measured concentrations of the two isotopes is considered
here. Details of the experiments can be found in [14]. The oxygen concentration has been
normalized by dividing it by the highest concentration value of the experimental data and
replotted in Figure 8.2. Three different regions can be clearly distinguished across the cross-
section:

• the outer layer of zirconium oxide where the normalized oxygen concentration is close
to 1 (red region);

• the intermediate layer, which is a layer of thermodynamically unstable oxide, where
the concentration is close to 0.5 (light blue region);

• the zirconium carbide where the concentration is close to 0 (blue region at the bottom
of the image).

The other regions with a very low concentration within the oxide and the intermediate layer
are due to the presence of pores, since this experimental analysis is able to detect the oxygen
content only in the solid matter.

The zirconium oxide is known to exhibit polymorphs that are stable in different temper-
ature ranges. From the chemical analyses carried out in [14], the cracked zirconium oxide is
the monoclinic phase, which is stable at 1073 K. We will denote this phase by m-ZrO2. On
the other hand, the zirconium oxide in the intermediate layer exhibits the presence of carbon
and both the cubic and tetragonal phases, which are thermodynamically unstable at 1073
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Figure 8.2: Normalized oxygen concentration obtained with the Secondary Ion Mass Spectroscopy
(SIMS) analysis obtained in [14]. The vertical axis represents the depth inside the material, where
the external surface lies at 0 µm. For the original experimental data and details on the SIMS
analysis, please see [14].

K. These polymorphs will be denoted t/c-ZrO2. Furthermore, we will denote the zirconium
carbide by ZrC.

In [14], the oxygen diffusion coefficient was measured thanks to the use of a 18O tracer
by observing the diffusion profile across the intermediate layer. The value for the oxygen
diffusion coefficient (D = 0.09µm2/s) was determined by fitting the experimental results
with the analytical solution derived from Fick’s second law for a semi-infinite medium with
a constant source of oxygen. However, it is important to note that this approach relied on
certain preliminary assumptions that impact the calibration of the diffusivity (see Remark 8.1
below). In order to address these limitations, we present in Section 8.4 a peridynamic model
in which the parameters are calibrated directly from the experimental data.

Oxide growth is of paramount importance in many applications. The oxide thickness of a
cubic ZrC sample exposed to an oxidizing environment has been measured at different stages
of the oxidation [14]. Since the oxidized samples present a peculiar shape of a Maltese cross,
the oxide layer measurements were made through sample cross-section made at the center
of the faces to avoid the corners where the oxide thickness grows faster. These experiments
showed that the oxide grows linearly in time, as shown in Figure 8.3 (see Remark 8.2).

The linear growth is in agreement with the observations made on the oxide cross section
showing a porous, cracked, non-protective oxide layer: the stable phase of the oxide cracks
and tends to delaminate/detach allowing oxygen to access easier pathways of ingression. This
mechanism generates an intermediate layer with a constant thickness moving at a constant
rate. Furthermore, the growth rate of the oxide thickness depends on temperature. At the
temperature of 1073K, the rate constant, obtained by the slope of the linear fitting shown
in Figure 8.3, is equal to 6.5× 10−6 cm/s [14].

Remark 8.1. The approach used in [14] for diffusivity calibration considered solely the
concentration profile of the intermediate layer. As we shall see, a transition layer is also
present at the interface between the intermediate layer and the ZrC bulk. Furthermore, the
approach in [14] assumes that the boundary, i.e., the interface between the stable (m-ZrO2)
and unstable (t/c-ZrO2) phases of the oxide, remains stationary. However, it is important
to acknowledge that the reaction occurs during oxidation with the 18O isotope, leading to
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Figure 8.3: Oxide growth in time at 1073 K and its linear curve-fit [14]. The red dashed line
represents the linear curve-fit of the first three experimental measurements (in the initial transient).

movement of that interface within the considered time frame.

Remark 8.2. Note that, according to the linear curve-fit in Figure 8.3, the oxide thickness
is ∼ 100 µm at the beginning of the experiment at t = 0 s, whereas it is expected to be
equal to 0 µm. As pointed out in [14], this is due to the fact that there is a transient in
the initial stage of the oxidation (see the red dashed linear curve-fit in Figure 8.3). In the
peridynamic model presented in Section 8.4, we focus on the steady-state condition of the
reaction, neglecting the initial transient. However, when a visual comparison is required
between the numerical results and the experimental data, one of the two plots needs to be
translated due to this initial offset of the experimental results.

8.3 Peridynamic modeling of diffusion

Points within a body B modeled with peridynamics interact with each other through
bonds [61, 62]. The maximum length of a bond between any two points is limited to a
finite value denoted as δ and referred to as the horizon size, as shown in Figure 8.4. In
the peridynamic model of ZrC oxidation, the horizon size represents the thickness of the
transition layer between pure zirconium carbide and the unstable phase of the oxide. The
calibration of the horizon size to this physical parameter is presented in Section 8.4.4. Bond
properties are calibrated against classical (measured) properties and are named after them
by adding the prefix “micro-”.

We use an effective diffusion-controlled model to simulate the evolution of oxidation
because of the similarities of the phenomenon with the corrosion damage models [128, 129,
131, 137, 262–265, 298]. In those models, the micro-dissolvability of bonds with one end in
the metal and the other in the electrolyte are calibrated to the corrosion rate, whereas the
micro-diffusivity of bonds with both ends in the electrolyte are calibrated to the diffusivity
of dissolved metal ions in the electrolyte. Similarly, in the ZrC oxidation model, the micro-
oxidability of bonds with one end in the carbide phase and the other in the oxide phase are
calibrated to the oxidation rate, whereas the micro-diffusivity of bonds with both ends in
the oxide phase are calibrated to the diffusivity of oxygen in the oxide phase.
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Figure 8.4: Neighborhood Hx of a point in a peridynamic body B: red lines represent the interactions
(bonds) between points.

In a peridynamic body, a point x interacts with a set of points defined as Hx =
{
x′ ∈

B : |x′ − x| ≤ δ
}
, which is known as the neighborhood of point x. The neighborhood is

respectively a segment, a disk or a sphere in 1D, 2D or 3D bodies. The horizon size can be
thought of as a material length-scale, or as a surrogate for a combination of multiple length-
scales, if they are present. When comparing against classical models, which usually lack
length-scales, one, however, takes the horizon size to go to zero. This is called δ-convergence,
see [149].

The peridynamic equation governing diffusion phenomena is given as [128, 129]

∂C(x, t)

∂t
=

∫

Hx

k(x,x′, t)
C(x′, t)− C(x, t)

‖x′ − x‖2 dVx′

=

∫

Hx

j(x,x′, t) dVx′ ,

(8.1)

where C is the concentration of oxygen, k is the micro-diffusivity or micro-oxidability (see
Remark 8.3), Vx′ is the volume of point x′, d is the micro-diffusivity, and j(x,x′, t) is the
micro-flux. In this work we adopted the kernel function constructed in [150] with the bond
length in the denominator appearing with the n = 2 exponent. The 2D and 1D governing
equations can be obtained by considering respectively a unit thickness h, such that dVx′ =

h dAx
′ = dAx

′ , and a unit area A, such that dVx′ = A dx′ = dx′. The micro-diffusivity
(or micro-oxidability) k is calibrated to the measured diffusivity (or oxidation rate) K as
follows [124, 125, 128]:

k(x,x′, t) =





K

δ
in 1D,

4K

πδ2
in 2D,

9K

2πδ3
in 3D.

(8.2)

Therefore, the micro-diffusivity (or micro-oxidability) has different units for different number
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of dimensions of the model: [m/s] in 1D, [1/s] in 2D, and [1/(m s)] in 3D. As highlighted in
Remark 8.3, k assumes different physical meanings (of micro-diffusivity d or micro-oxidability
r) depending on the phases of the points connected by the bond. Analogously, K can assume
the physical meaning of either diffusivity D or oxidation rate R. Moreover, k may also vary
in time due to the possible change of phase of the points.

Remark 8.3. Similarly to the peridynamic corrosion model [131], the bond property k can
represent different physical mechanisms depending on the phase of the points that the bond
itself connects. In the ZrC oxidation, if a bond connects two points in the oxide phase, k
is called “micro-diffusivity” d and represents the diffusion of oxygen. If a bond connects a
point in the oxide phase and a point in the carbide phase, k is called “micro-oxidability” r
and represents the oxidation of the carbide modeled as a diffusion-controlled reaction. These
aspects are discussed in detail in Section 8.4.2.

8.3.1 Discretization of the peridynamic equations

The discretization of the peridynamic diffusion equation can be carried out by means of
several different methods, such as the meshfree method [65, 184, 235], the Finite Element
Method [177, 178] or the Fast Convolution-Based Method [179, 180]. In this work, we adopt
the meshfree method with a uniform grid, in which nodes are spaced by a constant distance
∆x. Each node represents a portion of the body, called cell.

The micro-flux in a bond between the nodes p and q can be computed as

j(xp,xq, t) = k(xp,xq, t)
C(xq, t)− C(xp, t)

‖xq − xp‖2
, (8.3)

where xp and xq is the position vector of nodes p and q, respectively. The bond property k
is either the micro-diffusivity d or the micro-oxidability r (see Remark 8.3). Therefore, the
peridynamic diffusion equation (Eq. (8.1)) is computed by means of the midpoint quadrature
rule in each cell [65, 124, 125, 128, 184]:

∂C(xp, t)

∂t
=
∑

q∈Hp

j(xp,xq, t) βpq ∆x
N , (8.4)

where N is the number of dimensions of the model, so that ∆xN is the length, area or volume
of the cell in 1D, 2D or 3D, respectively. As shown in Figure 8.5, the index q stands for any
node within the neighborhood Hp of node p and the quadrature coefficient βpq is the fraction
of cell of node q lying within Hp.

Due to the nonlocal nature of the theory, when using the same bond properties determined
for points in the bulk for points near the surface, the effective material response is different
from the one in the bulk because of incomplete families of points at locations within a horizon
size distance away from a material surface. This phenomenon is known as the “peridynamic
surface effect” [186]. Examples in which the peridynamics surface effect is desired/useful are
when modeling at the atomic scale, or in modeling discrete dislocation dynamics [196, 299].
Moreover, peridynamic boundary conditions should be imposed over a finite-thickness layer
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Figure 8.5: The neighborhood Hp (red area) of a node p is constituted by the nodes (black dots) with
a portion of their cell within the neighborhood. The quadrature coefficient βpq is the volume fraction
of cell of node q lying inside the neighborhood [235].

inside or outside the body [63, 64]. However, these issues have been addressed in elastic
problems, for example, by means of the surface node method [227, 236, 249].

By using this method, we add fictitious nodes around the body, up to a distance δ from
the boundary (see Figure 8.6). The oxygen concentrations of the fictitious nodes can be
determined via the Taylor-based extrapolation truncated at the linear term [227, 236, 249].
Moreover, new nodes, namely the surface nodes, are introduced at the boundary of the body,
as depicted in Figure 8.6, and are used to impose the boundary conditions as explained in
Appendix 8.A.

8.3.2 Time integration

For the time integration, the forward Euler method is employed:

C(xp, tn+1) = C(xp, tn) + ∆t
∂C(xp, tn)

∂t
, (8.5)

where ∆t is the time step size and n is the number of the time step. Therefore, by substituting
Eq. (8.4) into Eq. (8.5), we obtain:

C(xp, tn+1) = C(xp, tn) + ∆t
∑

q∈Hp

j(xp,xq, tn) βpq ∆x
N . (8.6)

For more details about the stability analisys and the convergence studies about the
forward Euler method applied to the meshfree method in Peridynamics, see [266].
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Boundary

Figure 8.6: Discretization of a 2D body by means of the meshfree method. The fictitious nodes
(empty dots) are added around the body to complete the neighborhoods (red circles) of all the nodes
within the body (solid dots). The external surface of the body is discretized using surface nodes (blue
solid squares).

8.4 Modeling approach

In this section, we present the methodology employed for modeling the oxidation of ZrC
using the PD model framework presented in the previous sections and the underlying ratio-
nale. Our approach relies on a thorough examination of the experimental data pertaining
to the distribution of oxygen concentration within the layer of material in which the reac-
tion occurs. Subsequently, the peridynamic model for ZrC oxidation is constructed with
the aim of faithfully reproducing the observed phenomenon, while employing fewer limiting
assumptions in contrast to previous analyses.

The peridynamic model offers several advantages over classical models, including the
following:

• Unlike classical models, the peridynamic model does not require the imposition of con-
ditions at the interface, such as the Stefan condition (see, for instance, [128, 256–258]).
Instead, the motion of the interface is implicitly determined through the “constitutive
model” of the material under investigation [128, 129, 266].

• Because of the absence of spatial derivatives from the peridynamic formulation, damage
is naturally represented, and crack formation can be spontaneous and does not lead
to mathematical inconsistencies like they do in PDE-based models. This allows for a
more accurate representation of fracture phenomena [68, 72, 78, 79, 90, 300, 301].

These advantages collectively contribute to the enhanced capabilities and versatility of the
peridynamic model, distinguishing it from classical approaches in the field.
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8.4.1 Analysis of the experimental measurements from [14]

We extract a concentration profile along the depth of the sample using the experimental
results obtained in [14] and replotted considering the normalized total oxygen concentration
depicted in Figure 8.2 (also reproduced in the upper portion of Figure 8.7). We chose to
consider the region enclosed within the black rectangle in Figure 8.2, characterized by the
absence of major pores and nearly parallel borders of the intermediate layer. We therefore
calculate the average concentrations in the width direction within that region by summing
up the oxygen concentrations of all sampled points in the black rectangle in Figure 8.7 at
the same depth and dividing by the number of those points.
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Figure 8.7: Normalized oxygen concentration profile (bottom plot) obtained with the average of
the experimental data from [14] (SIMS analysis already shown in Figure 8.2) along the width of
the sample. For the peridynamic model we only consider the portion of the concentration profile
contained inside the red dashed rectangle.

The normalized profile of oxygen concentration is depicted in the lower portion of Fig-
ure 8.7, revealing the presence of four distinct regions. These regions consist of m-ZrO2

(cracked, stable oxide) spanning from 0 to ∼ 9 µm, t/c-ZrO2 (unstable oxide) representing
the intermediate layer extending from ∼9 to ∼12 µm, partially-oxidized ZrC between ∼12

and ∼ 14 µm, and ZrC commencing from ∼ 14 µm. The m-ZrO2 region exhibits random
oscillations in oxygen concentration, attributable to the presence of cracks. In contrast, the
concentration profile within the intermediate layer shows a quasi-linear descent. Meanwhile,
the ZrC region is characterized by the complete absence of oxygen.

At the interface between m-ZrO2 and t/c-ZrO2, a sharp jump in concentration, due to
oxygen flow within cracks, is observed. However, the interface between t/c-ZrO2 and ZrC
exhibits a gradual transition over a region of thickness ∼ 2 µm. Thus, we call this region
(where the partially-oxidized phase lies) as “transition layer”, as shown in Figure 8.7. The
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transition layer was characterized by Transmission Electron Microscope (TEM) in [13] and
is made of amorphous carbon with nanoparticles of ZrC and t/c-ZrO2 embedded within
it (see Figure 8.8). It is worth noting that this transition layer, which acts as the main
diffusion barrier, assumes a fundamental role in the overall phenomenon, as will be further
discussed subsequently. The layer of cracked oxide is not relevant in the applications we
currently consider. Hence, our modeling approach concentrates on capturing solely the
effects oxidation has on the region marked by the red rectangle in Figure 8.7.

Figure 8.8: Amorphous carbon with nanoparticles of ZrC and t/c-ZrO2 within the transition layer
obtained with Bright-Field Transmission Electron Microscopy (BFTEM) in [302].

8.4.2 Modeling of the phase changes

As previously discussed, the region of interest where oxygen diffusion and the oxidation
reaction front evolve in time is within the red dashed rectangle in Figure 8.7. Therefore, in
this section, we describe the modeling approach employed to simulate the diffusion process
occurring in the intermediate and transition layers within a peridynamic framework. We
disregard, for now, the behavior of the cracked oxide, which can be modeled by the damage
mechanism explained in Section 8.4.3. The ZrC oxidation involves three distinct phases:
the oxygen-free zirconium carbide (ZrC), the partially-oxidized phase observed within the
transition layer, and the unstable phase of zirconium oxide (t/c-ZrO2) present within the
intermediate layer. Hence, we name any peridynamic point lying in the carbide phase as
“carbide point”, in the partially-oxidized phase as “partially-oxidized point”, and in the oxide
phase as “oxide point”.

Since the chemical reaction that transforms the ZrC into ZrO2 is much faster than dif-
fusion, we assume that the phase change between the two is instantaneous in the model.
This diffusion-controlled reaction can be simulated as in the corrosion damage modeling by
formulating the nonlocal (peridynamic) version of a simplified Nernst-Planck equation [128],
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in which the micro-diffusivity (see Eqs. (8.1) and (8.2), and Remark 8.3) becomes:

k(x,x′, t) =





d if (x,x′) is an oxide bond,

r if (x,x′) is an interface bond,

0 if (x,x′) is any other bond,

(8.7)

where:

• “Oxide bonds” are bonds connecting two (stable or unstable) oxide points. The micro-
diffusivity dmodels the diffusion within t/c-ZrO2 phase and is calibrated to the classical
diffusivity D.

• “Interface bonds” are bonds connecting a partially-oxidized point to an oxide point.
The micro-oxidability r models the diffusion-controlled reaction between ZrC and t/c-
ZrO2 taking place within the transition layer and is calibrated to the oxidation rate
R.

• All the other bonds connecting partially-oxidized or carbide points have zero micro-
diffusivity because oxygen diffusion does not occur in those phases.

Figure 8.9 illustrates the different types of bonds that are used in the peridynamic model.

Cracked oxide points

Unstable oxide points

Partially-oxidized points

Carbide points

Oxide bonds

Interface bonds

Other bonds

Figure 8.9: Example of possible types of points and bonds.

To distinguish between oxide and partially-oxidized points, a concentration threshold Ĉp

between the two phases is set. A partially-oxidized point transitions into an oxide node when
its oxygen concentration is higher than this threshold. The value of the concentration Ĉp can
be derived from the experimental data as shown in Section 8.4.4. This straightforward mech-
anism enables the modeling of the phase change from ZrC to t/c-ZrO2 and, simultaneously,
governs the motion of the unstable oxide/ZrC interface.

As the oxygen content of the points within the transition layer starts to rise, a fraction
of the zirconium carbide undergoes a transition to the oxidized phase. Since the zirconium
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oxide expands in volume compared to the carbide, additional space becomes available for
the oxygen to diffuse towards the carbide phase. With more oxygen available, the oxygen
diffusion and, subsequently, the reaction rate would increase. This leads us to consider micro-
oxidability not a constant, but a function of the oxygen concentration. Here, for simplicity,
we consider a linear dependence between these two quantities in regions of partially-oxidized
point:

r(x,x′, t) =

(
r − r̃

2

)
+

r̃

Ĉp

C(xp-o, t) , (8.8)

where C(xp-o, t) is the oxygen concentration of the partially-oxidized point, r is the average of
the micro-oxidability of the interface bond, and r̃ is the total variation of the micro-oxidability
of the interface bond. The micro-oxidability as a linear function of the concentration of the
partially-oxidized node of the interface bond is shown in Figure 8.10.

r̃

C(xp-o, t)

r

0 Ĉp

r

r −
r̃

2

Figure 8.10: Micro-oxidability r of an interface bond as a linear function of the concentration
C(xp-o, t) of the partially-oxidized point. r is the average micro-oxidability and r̃ is the total variation

of the micro-oxidability for C(xp-o, t) varying between 0 and the concentration Ĉp at which phase
change from partially-oxidized to oxide points happens.

The values of micro-diffusivity d and micro-oxidability r (i.e., both r and r̃) are calibrated
via the discretized model presented in Sections 8.3.1 and 8.3.2 by comparison with the
experimental observations (see Section 8.5.1). The effects these values have on the oxygen
concentration profile are shown in the parametric studies in Appendix 8.B. Note that a
constant value of micro-oxidability, i.e., r = r = const. with r̃ = 0, does not allow the
peridynamic model to accurately reproduce the experimental concentration profile within
the transition layer.

8.4.3 Concentration-driven model for damage evolution

In this work our focus lies on simulating only the effects of the cracked oxide on the inter-
mediate layer. Voids are formed as a result of crack propagation and volumetric expansion
within the stable phase of the oxide (m-ZrO2), generating paths for the oxygen to unob-
structedly flow towards the external boundary of the intermediate layer. This phenomenon
can be effectively represented by a model in which the interface between the stable and
unstable phases serves as a constant source of oxygen (at constant concentration).

Thus, to determine the extent of damaged oxide, we introduce an additional threshold
for oxygen concentration, denoted as Ĉd. When the concentration at a given node overcomes
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this threshold, the node is defined as damaged. Note that this simplified definition of damage
does not include the simulation of crack propagation within the oxide, but, instead, models
the effects cracks have on the evolution of the oxidation front. Once a node is classified as
damaged, its concentration is set equal to the concentration Ĉm, namely the concentration
that the oxide of the intermediate layer “feels” from the cracked oxide. The values of the
concentrations Ĉd and Ĉm can be obtained from the experimental data as shown in the next
section.

8.4.4 Data extracted from experiments

As shown in Figure 8.11, one can determine the appropriate concentration Ĉm of the
damaged oxide, the concentration Ĉd between the damaged oxide and the intermediate
layer, and the oxidation threshold Ĉp. The concentration Ĉm of the cracked oxide can be
established as the maximum concentration shown in Figure 8.11. To identify the damaged
nodes, the concentration threshold Ĉd corresponds to the highest concentration within the
intermediate layer, i.e., the second-highest concentration in Figure 8.11. Regarding the
concentration threshold Ĉp for phase change, it can be selected as an intermediate value
between the concentrations at the interface separating t/c-ZrO2 and ZrC. The values of these
concentration thresholds are reported in Figure 8.11 and in Table 8.1. It is worth noting
that the threshold values are not univocally determined due to measurement uncertainties.
However, we carried out several sensitivity studies showing that small deviations from the
chosen values change only slightly the results.
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Figure 8.11: Concentration thresholds derived by the normalized experimental data. The ∼ 2-µm
thick transition layer is shown.

Carbide points become partially-oxidized points when their oxygen concentration rises
above 0. Since all the bonds connecting carbide or partially oxidized points have zero dif-
fusivity, oxygen can diffuse into a carbide point only through the interface bonds. The
maximum length of the interface bonds, as for every bond in the PD model, is equal to the
horizon size δ. Therefore, since interface bonds have one end in the oxide phase, the farthest
point from the unstable oxide that can change phase from carbide to partially-oxidized is at
a distance equal to δ. This means that, in the PD model, the thickness of the transition layer
has to be equal to the horizon size δ. Hence, we select δ = 2 µm, that is the thickness of



320 Chapter 8

the transition layer in the experimental observations (see Figure 8.11), in the ZrC oxidation
problem.

8.5 Numerical results for the evolution of the oxidation

front in ZrC

In this section, we present the outcomes of the calibration process of the diffusivities,
that allows to have good agreement between the experimental data and the 1D peridy-
namic model. For the first time, the micro-diffusivity of the intermediate layer and the
micro-oxidability within the transition layer are accurately calibrated. Additionally, we
present results from the 2D model of the same problem and qualitatively compare them
with experimental data. For comparable 3D simulations, the present meshfree discretization
becomes expensive and either a parallel implementation is required, or the use of the Fast
Convolution-Based Method [179, 180].

8.5.1 Calibration of micro-diffusivity and micro-oxidability

The calibration of bond properties is carried out by using the discretization discussed
in Sections 8.3.1 and 8.3.2 and comparing the 1D numerical results with the experimental
observations. In the 1D peridynamic model, a time step size of ∆t = 0.01 s and a grid
spacing of ∆x = 0.2µm are used. As these values are reduced, the accuracy in time and
space integration of the peridynamic equations is higher and this may lead to slightly different
values of micro-diffusivity and micro-oxidability than those calibrated in this work.

Thanks to the discretized peridynamic model, we are able to calibrate the micro-diffusivity
and micro-oxidability based on experimental data. Parametric studies on these values are
shown in Appendix 8.B. In order to achieve a global concentration distribution similar to the
experimental observations, the micro-diffusivity of the oxide is set at d = 0.5µm/s, whereas
the average micro-oxidability is r = 0.1µm/s (the units of measurements are related to a 1D
model, see Eq. (8.2)). To accurately reproduce the oxygen concentration profile within the
transition layer, the variation of the micro-oxidability is chosen as r̃ = 0.1µm2/s. This means
that the micro-oxidability r varies linearly between 0.05µm/s and 0.15µm/s depending on
the concentration of the partially-oxidized node.

Table 8.1 reports the values of micro-diffusivity and micro-oxidability, along with the
corresponding values of classical diffusivity (D) and oxidation rate (R and R̃). The classical
properties are obtained by multiplying the bond properties by δ (see Eq. (8.2)). In [14], the
oxygen diffusivity was computed as D = 0.09µm2/s following some limiting assumptions
(see Remark 8.1). Dropping those assumptions and using the proposed peridynamic model,
the diffusivity is calibrated to be D = 1µm2/s. Furthermore, the oxidation rate of the
zirconium carbide has been determined for the first time: R = 0.1 + 0.41C(xp-o, t) µm

2/s,
where C(xp-o, t) is the oxygen concentration of the partially-oxidized point. Note that the
classical oxidation rate varies linearly as the micro-oxidability, where the average oxidation
rate is R = 0.2µm2/s and the total variation of the oxidation rate is R̃ = 0.2µm2/s (see
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Eq. (8.8)).

Table 8.1: Calibration of the concentration thresholds and diffusivities for the ZrC oxidation.

Property Value

Maximum concentration Ĉm = 0.556

Damage concentration Ĉd = 0.545

Phase change concentration Ĉp = 0.484
Oxide micro-diffusivity d = 0.5µm/s
Average micro-oxidability r = 0.1µm/s
Variation of micro-oxidability r̃ = 0.1µm/s
Oxide diffusivity D = 1µm2/s
Average oxidation rate R = 0.2µm2/s

Variation of oxidation rate R̃ = 0.2µm2/s
Horizon size δ = 2µm

Figure 8.12 depicts the concentration distribution across the interface, for both the re-
sults of the numerical model and the experimental data. The numerical results exhibit a
remarkable agreement with the experimental observations. Hence, we can conclude that the
chosen values of micro-diffusivity and micro-oxidability employed in the peridynamic model
are accurately calibrated.
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Figure 8.12: Experimental data and numerical results of the concentration profile at t = 480 s. The
numerical results are translated along the x-axis for visual reasons (see Remark 8.2).

Figure 8.13 shows the progressive evolution of the concentration profile at different stages.
The initial conditions are shown in Figure 8.13a, in which the node at the boundary has
a concentration set to the value of Ĉm and all the other nodes have no oxygen content.
A transient occurs at the beginning of the simulation (see Figure 8.13b), after which the
concentration pattern, in a steady-state condition, gradually advances within the material
(see Figures 8.13c and 8.13d).
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Since the oxide phase is subjected to volume expansion during the phase change, we need
to post-process the results in order to estimate the growth of the oxide thickness. Note that
the peridynamic approach presented in this paper does not model the volumetric expansion
of the oxide phase. This volumetric expansion and the subsequent induced stresses that
result in the fragmentation of the oxide will be modeled in future work. By considering a
perfect crystal structure, it has been determined that m-ZrO2 exhibits a volume increase of
36% compared to the carbide. Based on this calculations, we estimate in the post-processing
stage the thickness of the oxide in the numerical model by increasing the volume of the
region occupied by oxide nodes by 36%. Hence, Figure 8.14 illustrates that the oxidation
interface penetrates the material at a constant velocity, in agreement with the experimental
results. It is worth noting that the peridynamic model not only successfully reproduces the
linear growth of the oxide but also accurately matches the interface velocity observed in the
experiments.
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Figure 8.13: Normalized oxygen concentration profile at different time instants.

8.5.2 Results from a 2D model

After successfully calibrating the bond properties in the 1D model, we now extend its
application to a 2D scenario. The discretization presented in Sections 8.3.1 and 8.3.2 is valid
also in 2D. The quadrature coefficients are computed with the algorithm presented in [235].
The PD model of ZrC oxidation can be used both for predicting the growth of the oxide
(as in the previous section) and for determining the shape and dimensions of the remaining
unoxidized carbide. This section specifically focuses on the latter aspect.
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Figure 8.14: Oxide growth obtained with the proposed model compared to the experimental results.
The linear curve-fit of the experimental data has been translated along y-axis for visual reasons (see
Remark 8.2).

As illustrated in Figure 8.15 taken from [302], the cubic zirconium carbide sample under-
goes a transformation under an oxidizing environment, transitioning from its initial square
shape with sharp corners to a more rounded and eventually spherical shape. This change in
morphology occurs due to the accelerated oxidation process at the corners, leading to a faster
degradation of material in those regions. Therefore, we expect to obtain the transition from
a square to a circular shape of the ZrC in the numerical results of the 2D peridynamic model,
in a similar way in which the cube leads to a sphere in the actual experiments (see [302] and
Figure 8.15).

Figure 8.15: Shape of the carbide (black material in the bottom portion of the figure) as the oxidation
of the sample progresses [302].

Peridynamics, due to its nonlocal nature, is known for its high computational cost. Thus,
we chose to simulate the oxidation of ZrC in a smaller sample size. As a result, the transition
from a square to a circular shape occurs at a faster rate than in the experiment shown in
Figure 8.15. However, this also implies that a quantitative comparison between the numerical
and experimental results is not possible, and only a qualitative comparison can be made.

The 2D model utilized the same classical material parameters (refer to Table 8.1) obtained
through the calibration process in the 1D scenario. Therefore, using Eq. (8.2) in the 2D case,
the micro-diffusivity is d ≈ 0.32 s−1, the average micro-oxidability is r ≈ 0.06 s−1 and the
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Figure 8.16: Normalized oxygen concentration field at different time instants (displayed for one
fourth of the square sample thanks to the symmetries of the problem).

variation of micro-oxidability is r̃ ≈ 0.06 s−1 (the units of measurements are related to
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a 2D PD model). The computational domain chosen for the 2D simulation is a square
with dimensions of 100 × 100 µm2. A time step size of ∆t = 0.01 s and a grid spacing of
∆x = 0.667µm are used. Similarly to the 1D case, the initial conditions prescribe that the
concentrations of the nodes at the boundary are set equal to Ĉm, whereas all other nodes
have no oxygen content.

Figure 8.16 shows the evolution of the concentration field at various time steps during the
simulation. The dark blue region represents zirconium carbide with no oxygen concentration.
Initially (see Figure 8.16a), the carbide shape is square with sharp corners. As the oxidation
front progresses within the material, the square corners gradually become rounder, as evi-
denced in Figures 8.16b and 8.16c. In the final stage of the simulation (see Figure 8.16d), the
carbide shape approximates a quasi-circular form, which is consistent with the observations
from the experimental results in [302].

8.6 Conclusions

Zirconium carbide has recently gained major interest due to its promising properties
in nuclear applications for both energy production or space missions. However, its low
resistance to oxidation leads to volume expansion and associated stresses that crack/damage
the oxide layer. In this work, we shed light on the evolution of oxidation process by analyzing
the oxygen concentration profile obtained from experimental data using 18O as a tracer and
modeling oxygen diffusion and oxidation processes using a peridynamic (PD) model that
accounts for the volume expansion of the oxide and the effects of the cracked stable-oxide
layer on the ZrC oxidation process.

We have quantified, for the first time, the oxidation rate across the transition layer
between the zirconium carbide and the intermediate layer of thermodynamically unstable
oxide. Peridynamics has been used to model the diffusion-controlled oxidation with an au-
tonomously moving interface and simulate the bulk phase transformazion of sintered pellets
of ZrC. The phase changes are determined by oxygen concentration thresholds, which are
derived from experimental observations. The horizon size, i.e., the size of nonlocality in
the peridynamic model, is selected so that it matches the thickness of the transition layer
measured in experiments. Additionally, a simple yet effective damage mechanism has been
introduced to model the expected influence of crack growth on the oxygen diffusion in the
outer layer of oxide.

The peridynamic model allowed us to calibrate the properties of oxygen diffusion in
the intermediate layer and oxidation rate in the transition layer. Through this calibration
process, the concentration profile across the reaction layer and the velocity of the interface
were reproduced in excellent agreement with the experimental results. Furthermore, we
successfully carried out a qualitative simulation of the model in 2D.

The developed peridynamic model is not limited to the simulation of the oxidation of
zirconium carbide. Indeed, it can be used for any phenomenon with similar characteris-
tics, such as oxidation of transition metal carbides of group IV and lithiation in solid-state
batteries, by recalibrating to the diffusion properties of the specific material system. The
proposed model allows to estimate the growth of the oxide and determine the shape and di-
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mensions of the remaining carbide phase. The model will be further improved in future work
by introducing the coupling with the mechanical field to simulate the actual crack/damage
initiation and propagation within the oxide. This advancement is expected to enable the
model to reproduce the Maltese-cross shape of zirconia and provide a more general frame-
work for simulating the chemo-mechanical behavior of zirconium carbide and other carbides
of interest for energy applications, including nuclear ones.
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Appendices

8.A Imposition of peridynamic boundary conditions via

the surface node method

To impose the peridynamic boundary conditions, we adopt the surface node method [249].
A new type of nodes, i.e., the surface nodes, are introduced to discretize the boundary of the
body, as depicted in Figure 8.6: in 1D, 2D and 3D each surface node represents respectively
a boundary point, a segment of length ∆x and a square with area ∆x2. A surface node xs

with normal ns is governed by the following equation based on the concept of peridynamic
flux [249]:

J(xs,ns, t) = −
∑

pq∈I

αpq j(xp,xq, t) (mpq · ns) βpq ∆x
N+1 , (8.9)

where J is the external flux, I is the set of all the bonds, mpq is the bond direction unit
vector, and N is the number of dimensions of the model. αpq is a coefficient given as follows
(see [236, 249] for more details and figures):

• In 1D, 2D or 3D, αpq = 0 if the bond does not intersect the boundary region associated
to the surface node s.

• In 3D, αpq = 1/4 if the bond intersects the corner of the square associated to the
surface node s (the bond is “shared” among four surface nodes) or αpq = 1/2 if the
bond intersects the edge of the square (the bond is “shared” between two surface nodes).

• In 2D, αpq = 1/2 if the bond intersects the end of the segment associated to the surface
node s (the bond is “shared” between two surface nodes).

• αpq = 1 otherwise.

The boundary conditions can be imposed directly on the surface nodes as one would do
in a local model [249]: a concentration C(t) at a surface node s is imposed as C(xs, t) = C(t)

and a flux J(t) through the surface node s is imposed as J(xs,ns, t) = J(t).

8.B Parametric studies

The modeling approach using the peridynamic framework described in Section 8.4 is
based on the calibration of the values of micro-diffusivity d of the oxide phase and the
micro-oxidability r. The micro-oxidability is modeled as a linear function of the oxygen
concentration of the partially-oxidized node, and is univocally determined by the values of
the average micro-oxidability r and the micro-oxidability variation r̃ (see Eq. (8.8)). In this
section, we perform two parametric studies to show how the “shape” of the concentration
profile across the oxidation interface changes depending on the ratios d/r and r̃/r.

The numerical results of the normalized oxygen concentration for different values of the
ratio d/r are shown in Figure 8.17. It is evident that, by increasing d/r, the velocity of the
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oxidation front is higher and the thickness of the intermediate layer is reduced. Differences
in oxygen concentration profiles within the transition layer are negligible. These results are
used in Section 8.5.1 for the calibration of the ratio d/r in order to obtain in the numerical
model a thickness of the intermediate layer similar to the one observed in the experiments.
In the model of ZrC oxidation, the chosen value of d/r is 5.
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Figure 8.17: Normalized oxygen concentration across the oxidation interface at t = 100 s for different
ratios between the micro-diffusivity d of the oxide phase and the average micro-oxidability r. The
plots are obtained by using a value of average micro-oxidability equal to r = 0.1µm/s.

The value of the ratio r̃/r affects the normalized oxygen concentration profile only within
the transition layer, as shown in Figure 8.18. For higher values of the ratio r̃/r, the steepness
of the concentration distribution in the transition layer increases accordingly. Therefore, the
appropriate value of r̃/r is chosen in Section 8.5.1 to reproduce the experimental observations.
In the model of ZrC oxidation, the chosen value of r̃/r is 1.
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Figure 8.18: Normalized oxygen concentration within the transition layer at t = 100 s for different
ratios between the micro-oxidability variation r̃ and the average micro-oxidability r. The plots are
obtained by using a value of average micro-oxidability equal to r = 0.1µm/s.
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Conclusions and future developments

9.1 Final remarks

The main objective of this work was to improve the numerical applications of the peri-
dynamic theory by:

• correcting the surface effect,

• imposing local boundary conditions, and

• developing an algorithm for the accurate computation of the quadrature weights.

The improved numerical methods can then be applied in a small portion (where cracks are
more likely to propagate) of a possibly very large structure thanks to the coupling with nu-
merical methods based on classical continuum mechanics, such as the finite element method
or the Carrera unified formulation. Furthermore, a complex multi-physics phenomenon, i.e.,
the oxidation of zirconium carbide, was addressed with the above-mentioned numerical tools
based on peridynamics.

The main results of this work are presented in the papers in the list of page 15, and are
as follows:

• The development of algorithms to numerically compute the peridynamic stress tensor
and the force flux in 1D, 2D, and 3D models (Papers 1, 2 and 3).

• The analytical and numerical analysis of the peridynamic surface effect and of its
characteristic hardening/softening behavior near the boundaries of a body in ordinary
state-based peridynamics (Papers 1 and 2).

• The definition of the Taylor-based extrapolation method with the nearest-node strat-
egy to determine the displacements of the fictitious nodes for any (possibly complex)
geometry of the body (Papers 1, 2 and 3).

• The development of algorithms to numerically impose of local boundary conditions in
peridynamic models through the surface node method. That is achieved by discretizing
the boundary of the body with the surface nodes and by using the equation of the force
flux to govern their motion (Paper 3).

329
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• The development of an efficient algorithm to accurately compute the quadrature weights
in 2D and 3D peridynamic models. That produces a smoother convergence behavior
of the numerical peridynamic solution (Paper 4).

• The definition of a coupling technique between peridynamics and Carrera unified for-
mulation that reduces spurious effects at interfaces (Paper 5).

• The derivation of a stability criterion for an explicit time integration method applied
to the peridynamic diffusion equation. The new stability criterion takes into account
the effect of the boundary conditions imposed with the surface node method (Paper
6).

• The numerical analysis of the convergence behavior of a peridynamic diffusion problem
with discontinuity at the boundary in the initial conditions (Paper 6).

• The development of a peridynamic model able to predict the growth of the oxide and
determine the shape and dimensions of the remaining unoxidized carbide (Paper7).

All algorithms and numerical methods mentioned above were validated by multiple practical
examples by comparing the numerical results with either analytical solutions or experimental
observations.

9.2 Future research activities

The peridynamic model of zirconium carbide oxidation will be improved by introducing
the coupling with the mechanical field to simulate the actual crack initiation and propa-
gation within the oxide. This advancement is expected to enable the model to reproduce
the Maltese-cross shape of zirconia and to have an even better agreement with the experi-
mental observations. Furthermore, phenomena similar to zirconium carbide oxidation, such
as oxidation of transition metal carbides of group IV and lithiation in solid-state batter-
ies, can be simulated with the same model if a recalibration of the diffusion properties of
the specific material system is performed. Therefore, my future research goal is to develop
a more general framework for simulating the chemo-mechanical behavior of oxidation and
lithiation phenomena. The peridynamic theory is particularly suitable for modeling these
phenomena because the motion of interfaces and the propagation of cracks can be directly
embedded in a general constitutive model of the material. This is not possible in numerical
methods based on classical continuum mechanics, such as interface elements with cohesive
zone modeling, extended finite element method or phase field method, which require special
criteria at interfaces and crack surfaces.
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