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A B S T R A C T

The synthesis of optimal motion profiles has shown to be a successful and virtually inexpensive solution for
enhancing energy efficiency of mechatronic systems. A typical application is the design of point-to-point motion
profiles for one-degree-of-freedom mechatronic systems. This paper proposes a new method for designing
minimum energy trajectories for servo-actuated systems. The problem is solved by exploiting the knowledge
of the structure of the optimal solution. That allows to solve the motion design problem by solving a set
of nonlinear equations and, if needed, some basic optimization procedures, formulated after some suitable
continuity conditions.

The herein proposed method applies to systems with and without energy regeneration capability, for
maximum adaptability to most industrial applications. The method also handles jerk, acceleration, and velocity
constraints, which are typical requirements in many practical applications. The number of equations and
thereby the computational time depends on the number of active constraints and on whether negative power
is dissipated or regenerated. Overall, the method results to be suitable for Real-Time applications, also in the
most challenging case in which all the constraints are active and the system cannot regenerate negative electric
power. The accuracy and the effectiveness of the planning method is tested numerically, by comparing the
solution to the one obtained by a general purpose optimal control solver and then also experimentally using
a lab prototype.
1. Introduction

1.1. Motivation

CO2 emission reduction is crucial to limit global warming and its
consequences. According to Martins, Felgueiras, and Smitková (2018),
about 60% of electricity in Europe comes from fossil fuels, while
according to De Almeida, Fong, Brunner, Werle, and Van Werkhoven
(2019) 53% of the worldwide electricity consumption in 2015 was
due to electric motors, 60% of which in industry. Similar figures are
reported also in the work (Saidur, 2010), while in Engelmann (2009)
it is stated that as much as 8% of the energy required in production
processes is used by robotic systems. This motivates research efforts
aimed at reducing energy consumption in automatic machines and
robots.

1.2. Existing approaches

Considering electric motor-driven applications, various solution
have been proposed in the literature, which can be divided into two
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main groups: (a) hardware and (b) software solutions (Carabin, Wehrle,
& Vidoni, 2017). The hardware ones are more challenging to implement
since they require invasive, and sometimes costly, modifications to
the system. Interesting examples are Hagn et al. (2008), Kim (2015)
in which energy efficiency is ensured by using lighter parts. Another
possibility is to add elastic elements to exploit efficient conversion
between kinetic and potential energy (Bettega, Richiedei, Tamellin, &
Trevisani, 2023; Palomba, Wehrle, Carabin, & Vidoni, 2020; Richiedei
& Trevisani, 2020; Scalera, Carabin, Vidoni, & Wongratanaphisan,
2019). Efforts to minimize energy consumption were also directed
towards hydraulic-actuated systems (Du, Plummer, & Johnston, 2017).

Software solutions have the advantage of an easier implementation.
They can be applied to both single-axis systems and multi-axis manipu-
lators. Point-To-Point (PTP) motions are a typical application. Referring
to single-axis systems, several works have investigated the possibility
of reducing energy expenditure (EE) of PTP motions. One possibility
is to parameterize a motion profile using polynomials or piecewise
polynomials, which can be then optimized by tuning a reduced set of
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parameters. For example, in Assad et al. (2018) the parameters of an
S-curve are tuned to minimize energy consumption using the Particle
Swarm Optimization method. On the contrary in Tho, Kaneshige, and
Terashima (2020) the parameter of a S-curve were tuned using mixed
nonlinear-integer program for minimum time movement of a crane
avoiding oscillation of the load . A similar problem was addressed in Yu,
Han, and Haihua (2015) where the parameters of a trapezoidal law
were determined with an optimization problem that was made convex
through an appropriate parametrization. Polynomial functions were
used in Huang, Hsu, and Fung (2011) to reduce the energy consumption
of a motor-toggle servomechanism. Reinforcement Learning was used
in Lin et al. (2023) for solving the minimum-energy problem with com-
plex constraints. Even if these methods are simple to implement, they
do not ensure the actual minimum energy consumption is achieved, as
the solution is biased by the chosen basis function. In fact, the optimal
trajectory may not be a polynomial. Optimal control solution methods
are needed to find such a trajectory, such as Pontryagin’s maximum
principle (PMP).

The application of PMP can be found in several works, includ-
ing Park (1996), Wang, Ueda, and Bortoff (2012, 2013), Wang, Zhao,
Bortoff, and Ueda (2014). In Park (1996) trajectories that minimize
the copper losses were derived assuming that the minimization of
copper losses is equivalent to the minimization of the energy consump-
tion. This assumption is however valid only if no mechanical losses
are assumed, considering therefore the load as a purely conservative
mechanical system, and taking into account only the availability of
a motor drive that allows negative power regeneration. Both these
assumptions are not considered to be valid in this work.

An interesting and complete discussion on the application of PMP
for energy efficiency maximization for PTP motions has been con-
ducted in Wang et al. (2013). The existence of the optimal solution
is discussed for both the cases in which negative power is regenerated
and dissipated. Acceleration and velocity constraints were introduced
using the indirect adjoining approach, where state constraints are in-
troduced augmenting the Hamiltonian. The junction conditions among
sub-trajectories are derived using the Weierstrass–Erdmann conditions.
The solution is found numerically using a multiple shooting method.
However, the proposed solution is not suitable for on-line applications.

In Wang et al. (2014) an on-line solution is presented. Acceleration
and velocity constraints are introduced using an iterative algorithm to
find the junction points between consecutive arcs. However, only the
special (and less challenging) case with negative power regeneration
is addressed. In a more realistic scenario, negative power is dissipated
in a resistor brake due to the lack of accumulators connected to the
grid. As stated in Meike and Ribickis (2011), the use of accumula-
tors in automatic systems has a large break-even point, making this
solution seldom economically advantageous. The challenging aspect of
considering negative power dissipation is handling the ensuing switch
in the Hamiltonian (Ho et al., 2019), as will be explained in detail in
Section 4.

Similar approaches have been applied to mobile-robot systems,
where energy expenditure is of critical importance due to their re-
liance on battery power and the associated limited autonomy prob-
lem. When performing straight paths, the system dynamics is equiv-
alent to a 1 DOF (Degree-Of-Freedom) system. The solution of the
minimum-energy trajectories was studied in Kim and Kim (2007, 2013).
Those applications coped with on-line requirements but no constraints
on jerk/acceleration/velocity were considered. Moreover, the solution
does not handle negative power dissipation because, in the specific
application to mobile robots, negative power can be stored in the
battery.

1.3. Contribution of this work

In light of the above, to the best of the authors’ knowledge, there
2

is no method that meets all of the following requirements: (i) use
a variational solution for improved accuracy; (ii) can handle both
negative power regeneration and negative power dissipation; (iii) can
handle hard constraints on velocity, acceleration and jerk; (iv) is real-
time capable. The proposed work therefore aims at filling this literature
gap.

This paper presents a method to derive optimal (in terms of min-
imum energy consumption) trajectories for PTP motions. Jerk, accel-
eration, and velocity limits are considered. The method can deal with
negative power regeneration and the less straightforward case in which
negative power is dissipated. The method is Real-Time capable, as the
time needed to compute an optimal motion profile, usually in the order
of ms, is small compared to the time needed to actually perform the
motion task, allowing therefore to plan the motion just before executing
it without introducing a significant delay. Solving optimal control prob-
lems with hard constraints on controls and especially states is usually
not trivial and requires efficient algorithms (Bryson & Ho, 2018). This
is also true for switching optimal control problems (Xu & Antsaklis,
2003), such as the energy optimal problem when negative power is
dissipated, where the running cost function has different expression
when power is either positive or negative. This performance is reached
by finding each sub-piece of the optimal trajectory analytically and then
collected imposing boundary conditions (BCs). Lastly, experimental
tests have been performed to evaluate the energy-saving capabilities
of the proposed trajectories.

1.4. Paper organization

The remainder of this paper is organized as follows. The formulation
of the problem is provided in Section 2. Section 3 presents algorithms
for on-line computation of energy-optimal trajectories for the case
in which negative power is regenerated, for both unconstrained and
constrained cases. The solution of the more challenging problem with
negative power dissipation is presented in Section 4. Numerical results
in Section 5 demonstrate the benefits of the presented method. The
experimental setup is presented in Section 6 while its identification
is explained in Section 7. The experimental data are compared to the
predicted ones in Section 8; conclusions are in Section 9.

2. Problem statement

2.1. Electro-mechanical model

Considering a DC motor (extension to permanent magnet syn-
chronous motors is straightforward using the DC-equivalent model), its
instantaneous power consumption can be computed as:

 = 𝑣𝑎𝑖𝑎 (1)

where 𝑣𝑎 is the armature voltage drop and 𝑖𝑎 is the armature current.
Using the equivalent circuit model, the voltage drop is composed of
two terms, one related to the copper losses and one to the back
electromotive force:

𝑣𝑎 = 𝑅𝑎𝑖𝑎 + 𝐿𝑎
d𝑖𝑎
d𝑡

+ 𝑘𝑣�̇� (2)

where 𝑅𝑎 and 𝐿𝑎 are the resistance and inductance of the armature.
𝑘𝑣 is the back electromotive force (EMF) constant and �̇� is the motor
angular velocity. The inductive term will be, however, neglected for the
rest of this work, as it has been proved that it does not influence the
energy consumption during the execution of rest-to-rest tasks (Richiedei
& Trevisani, 2016), as is the case here.

The armature current and the torque 𝜏 delivered by the motor are
related by the torque constant 𝑖𝑎 = 𝜏∕𝑘𝑡. As known, numerically the
torque constant is equal to the back EMF constant 𝑘𝑡 = 𝑘𝑣. Considering
a 1 DOF mechatronic system with linear dynamics, such as the ones
shown in Fig. 1, the torque required by the motor is:

̈ ̇
𝜏 = 𝐼𝜗 + 𝐹𝜗 + 𝐶 (3)
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Fig. 1. Examples of mechatronic systems with linear dynamics: (a) belt-driven linear
uide; (b) Cartesian robot; (c) hoist mechanism.

here 𝐼 and 𝐹 are the total inertia and the viscous friction coefficient
f the system reduced to the motor axis, respectively. 𝐶 is the constant

torque required by the system to compensate the gravity and the
Coulomb friction force, all reduced to the motor axis.

Substituting Eqs. (2) and (3) into Eq. (1) gives the following expres-
sion for the electric power absorbed by the motor,  :

 = 𝑅�̈�2 +𝑄�̇�2 + 𝛼�̇��̈� + 𝛽�̇� + 𝛾�̈� + 𝛿 (4)

where the coefficients are defined as follows:

𝑅 =
𝐼2 𝑅𝑎

𝑘𝑡2
; 𝑄 =

(

𝐹 +
𝐹 2 𝑅𝑎

𝑘𝑡2

)

=

(

𝐼 +
2𝐹 𝐼 𝑅𝑎

𝑘𝑡2

)

; 𝛽 =

(

𝐶 +
2𝐶 𝐹 𝑅𝑎

𝑘𝑡2

)

𝛾 =
2𝐶 𝐼 𝑅𝑎

𝑘𝑡2
; 𝛿 =

𝐶2 𝑅𝑎

𝑘𝑡2

(5)

2.2. Trajectory requirements

The focus of this work is on PTP motion, with rest-to-rest condition
and with fixed motion time 𝑡𝑓 . This means that the motion profile must
satisfy the following BCs:
{

𝜗(0) = 𝜗in
𝜗(𝑡𝑓 ) = 𝜗f in

{

�̇�(0) = 0
�̇�(𝑡𝑓 ) = 0

{

�̈�(0) = 0
�̈�(𝑡𝑓 ) = 0

(6)

where 𝜗in and 𝜗f in are the initial and final values of the motor an-
gular position, respectively. The conditions on the initial and final
accelerations are introduced to avoid acceleration discontinuities at the
beginning and at the end of the motion profile, as they would excite
unwanted vibrations (Biagiotti & Melchiorri, 2008).

Further requirements are that the velocity, acceleration, and jerk
must be bounded:

|�̇�(𝑡)| ≤ 𝑣lim; |�̈�(𝑡)| ≤ 𝑎lim; |𝜗(𝑡)| ≤ 𝑗lim (7)

where 𝑗lim is the maximum allowed jerk, 𝑣lim and 𝑎lim are the limits of
velocity and acceleration. Those are typical requirements in industrial
practice, as the enforcement of speed limits is needed to comply with
the maximum speed ratings of actuators and of transmission devices.
Acceleration limits actually allow to confine the maximum value of
torque, given the direct proportionality between torque and accelera-
tion in constant inertia systems. Finally, jerk limits, acceleration limits
and acceleration continuity allow to confine the effects of motion-
induced oscillations and mechanical stresses (Biagiotti & Melchiorri,
2008).

2.3. Problem formulation

The goal of the motion design procedure is the minimization of the
energy consumption, which is defined as the time integral of the electric
energy delivered to the motor. The dynamic model of the system under
consideration must then be written as a first order dynamic systems, to
3



comply with the intended use of a variational formulation. To do so,
the problem is rewritten in state-space form. Let [𝜗, �̇�]⊤ = [𝑥1, 𝑥2]⊤ = 𝐱
be the state vector and �̈� = 𝑢 be the scalar control value. The dynamics
of the system is:
{

�̇�1 = 𝑥2
�̇�2 = 𝑢

(8)

by substituting the symbols of the state-space form, the power delivered
to the motor can be rewritten as:

 = 𝑅𝑢2 +𝑄𝑥22 + 𝛼𝑥2𝑢 + 𝛽𝑥2 + 𝛾𝑢 + 𝛿 (9)

hence, the optimal control problem at hand is:

minimize
𝑢∈

 = ∫

𝑡𝑓

0
(𝐱, 𝑢, 𝑡)d𝑡

subject to: (6) and (7)
�̇� = 𝐟 (𝐱, 𝑢, 𝑡)

(10)

where  is the total electric energy expenditure, 𝑡𝑓 is the prescribed
final time and  is the space of the possible controls according to the
constraints and BCs. Let 𝑡min be the minimum time, according to the
constraints, to perform the task. In this work, it is assumed that the
assigned final time 𝑡𝑓 is strictly greater than 𝑡min. If 𝑡𝑓 < 𝑡min, there
is clearly no solution. If 𝑡𝑓 = 𝑡min the solution is coincident to the
minimum time solution.

For a comprehensive explanation on how to calculate 𝑡min, the
reader might refer to Section 3.4.3 of the book (Biagiotti & Melchiorri,
2008).

It must be pointed out that the target of energy minimization is
explicitly represented by setting the cost function as equal to the
net energy consumption, as the minimization is of just the dissipated
energy is, as mentioned in Section 1.2, not equivalent to a true energy
cost minimization and is not compliant with the absence of a negative
power regeneration device.

Given that several possibility can arise according to the choice of
the motion execution times, several combinations of active constraints
must be taken into consideration. As each additional constraint alters
the shape of the optimal solution, all the possible cases are taken into
consideration in the next section, and then the analysis is repeated for
the case without regeneration.

3. Solution with negative power regeneration

This section consists of the following parts: in 3.1 the solution of
the unconstrained problem is addressed; in 3.2 acceleration and jerk
constraints are introduced; in 3.3 the velocity constraint is introduced.
Note that a proof of the existence of the optimal solutions in these cases
is provided in Wang et al. (2013).

3.1. Unconstrained solution

The problem stated in Eq. (10) can be solved using Pontryagin’s
maximum principle. The Hamiltonian of the system is:

 =  + 𝐩⊤𝐟 (11)

where  is given by Eq. (4), 𝐟 by Eq. (8), while 𝐩 = [𝑝1, 𝑝2]⊤ is
he vector of the co-states. The uniqueness of the solution of (10) is
nsured by the convexity of the Hamiltonian w.r.t. the control. For
implicity, the unconstrained problem with only position and velocity
Cs is examined at first. In fact, for a fixed final-time problem with
states, we must apply 2𝑛 BCs. The necessary conditions for strong

xtrema are provided by the Hamilton Canonical Equations:

𝑢 = 0 ⟶ 2𝑅𝑢 + 𝛼𝑥2 + 𝛾 + 𝑝2 = 0 (12)

𝑥1 = −�̇�1 = 0 ⟶ 𝑝1 = const (13)
𝑥2 = −�̇�2 = 2𝑄𝑥2 + 𝛼𝑢 + 𝛽 + 𝑝1 (14)
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Fig. 2. Structure of the solution when negative power is regenerated: with active jerk
and acceleration limits (a), with active jerk, acceleration and speed limits (b).

Eq. (12) can be the differentiated with respect to time, then �̇�2 can be
isolated and used into Eq. (14), leading to:

2𝑄𝑥2 +��𝛼𝑢 + 𝛽 + 𝑝1 = 2𝑅�̇� +��𝛼�̇�2 (15)

where the cancellation is made upon the observation that �̇�2 = 𝑢 from
q. (8). By observing that �̇� = �̈�2 and that 𝑝1 and 𝛽 are constants,
q. (15) leads to the following second order differential equation:

�̈�2 −
𝑄
𝑅
𝑥2 =

𝑝1 + 𝛽
2𝑅

(16)

solution to Eq. (16) can be obtained as the sum of the solution of the
ssociated homogeneous equation 𝑥2,ℎ and of the particular solution
2,𝑝. Defining 𝜆2 = 𝑄∕𝑅, such solution is:

2 = 𝑥2,ℎ + 𝑥2,𝑝 = 𝐴𝖾𝜆𝑡 + 𝐵𝖾−𝜆𝑡 −
𝑝1 + 𝛽
2𝑄

(17)

that, integrated with respect to time, gives 𝑥1:

𝑥1 =
𝐴
𝜆
𝖾𝜆𝑡 − 𝐵

𝜆
𝖾−𝜆𝑡 −

𝑝1 + 𝛽
2𝑄

𝑡 + 𝑐 (18)

here 𝑐 is a constant of integration. In addition, the expression of the
ptimal control is:

= 𝐴𝜆𝖾𝜆𝑡 − 𝐵𝜆𝖾−𝜆𝑡 (19)

ow, by using the BCs for the state vector 𝐱 as they are reported in
q. (6):

1(0) = 𝜗𝑖 →
𝐴
𝜆

− 𝐵
𝜆

+ 𝑐 = 𝜗𝑖

1(𝑡𝑓 ) = 𝜗𝑓 →
𝐴
𝜆
𝖾𝜆𝑡𝑓 − 𝐵

𝜆
𝖾−𝜆𝑡𝑓 −

𝑝1 + 𝛽
2𝑄

𝑡𝑓 + 𝑐 = 𝜗𝑓

2(0) = 0 → 𝐴 + 𝐵 −
𝑝1 + 𝛽
2𝑄

= 0

𝑥2(𝑡𝑓 ) = 0 → 𝐴𝖾𝜆𝑡𝑓 + 𝐵𝖾−𝜆𝑡𝑓 −
𝑝1 + 𝛽
2𝑄

= 0

(20)

he above equations can be condensed as the following linear system:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝜆

−1
𝜆

0 1

1
𝜆
𝖾𝜆𝑡𝑓 −1

𝜆
𝖾−𝜆𝑡𝑓 −

𝑡𝑓
2𝑄

1

1 1 − 1
2𝑄

0

𝖾𝜆𝑡𝑓 𝖾−𝜆𝑡𝑓 − 1
2𝑄

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴

𝐵

𝑝1

𝑐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜗in

𝜗f in +
𝛽
2𝑄

𝑡𝑓

𝛽
2𝑄
𝛽
2𝑄

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

nce 𝐴,𝐵, 𝑝1 and 𝑐 are obtained, the trajectory is completely deter-
ined. This solution is the one to be used for the simple case in which
one of the velocity, acceleration and jerk constraints are active, i.e. for

large’ values of 𝑡𝑓 . This solution will also be used as the basis for
he development of the analytical solutions to be used for the various
cenarios cited above.

.2. Finite jerk/acceleration limit solution

Infinite values of jerk should be avoided to reduce the frequency
4

ontent of the trajectory (Biagiotti & Melchiorri, 2008). To do so,
cceleration should be continuous for the whole trajectory, and null at
nitial an final times as well. Any violation to these condition introduce
jerk impulse. The design of the motion profile will therefore enforce

hese conditions as well.
The necessary conditions for optimal trajectory with control con-

traints can be formulated in different ways. For instance, the work
ryson and Ho (2018) suggests to embed the constraints in the Hamil-
onian by augmenting it, but this kind of method exposes some unnec-
ssary challenges to the formulation and to the solution of the problem,
hich are avoided by the method proposed here.

As shown in Wang et al. (2013, 2014), the solution with acceleration
imits exhibits a three-phase structure: an acceleration-constrained first
iece, an unconstrained central part, and an acceleration-constrained
inal piece. In this work, instead of solving the augmented Hamiltonian,
he BCs for each individual section of the trajectory are exploited to
valuate the duration of each phase of the trajectory. Those condi-
ions are sufficient to ensure optimality since no other law with the
rescribed structure satisfies the requirements for optimality.

Let us consider Fig. 2a, which shows the structure of the optimal
ontrol for only jerk and acceleration active constraints, and let 𝑡∗ be

the duration of the first segment. This piece is made up of a finite jerk
arc of equation 𝑢 = 𝑗lim𝑡; if this piece lasts longer than 𝑡1 = 𝑎lim∕𝑗lim
then the control assumes a constant value of 𝑢 = 𝑎lim. Since the control
solution is anti-symmetric with respect to half-time, the first and last
pieces have equal lengths. The central piece is the optimal law that
minimizes the energy expenditure using the BCs given by the first and
last constrained pieces. It is sufficient to update the BCs in Eq. (6) and
substituting 𝑡𝑓 with 𝑡𝑓 − 2𝑡∗ in Eq. (21). The linear system to be solved
is:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 −𝜆 0

1 1 − 1
2𝑄

𝖾
𝜆𝑡∗𝑓 𝖾

−𝜆𝑡∗𝑓 − 1
2𝑄

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴

𝐵

𝑝1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

min
[

𝑎lim, 𝑗lim 𝑡∗
]

𝛽
2𝑄

+ �̇�∗

𝛽
2𝑄

+ �̇�∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

here �̇�∗ is the velocity at the end of the constrained phase and
∗
𝑓 = 𝑡𝑓 − 2𝑡∗. The constant 𝑐 can be easily obtained by imposing the
osition BCs at the beginning. 𝑡∗, which appears in (22), is not known
priori: to find it, it is sufficient to solve a root-finding problem. If 𝜗∗

s the distance covered during each constrained part of the motion —
.e. between 𝑡 = 0 and 𝑡∗, and between 𝑡𝑓 − 𝑡∗ and 𝑡𝑓 , the remaining
istance to be traveled during the non-constrained part can be referred
o a 𝛥𝜗opt . Since these three pieces, as already discussed, compose the
hole trajectory, the following can be stated:

𝜗 = 𝜗f in − 𝜗in = 2𝛥𝜗∗ + 𝛥𝜗opt (23)

he analytic formulation of the distance 𝛥𝜗opt can be found by double
ntegration over time of the control for the central section of the motion
rofile as:

𝜗opt =
𝐴
𝜆
𝖾
𝜆𝑡∗𝑓 − 𝐵

𝜆
𝖾
−𝜆𝑡∗𝑓 −

𝑝1 + 𝛽
2𝑄

𝑡∗𝑓 − 𝐴
𝜆

+ 𝐵
𝜆

(24)

where 𝑡∗𝑓 = 𝑡𝑓 − 2𝑡∗. The angle spanned during the initial and final
onstrained phase 𝛥𝜗∗ is the same for symmetry. The expression for
𝜗∗ can take two different values, one for 𝑡∗ < 𝑡1 and the other for
∗ > 𝑡1. The formulas to be used are:

𝜗∗ = 1
2
𝑗𝑙𝑖𝑚𝑡1

(

𝑡∗2 − 𝑡1𝑡
∗ + 1

3
𝑡21
)

; for 𝑡∗ < 𝑡1 (25)

and

𝛥𝜗∗ = 1
6
𝑗𝑙𝑖𝑚𝑡

∗3; for 𝑡∗ > 𝑡1. (26)

Finally, 𝑡∗ can be found numerically, i.e. using Newton’s method, by
solving Eq. (23), in which Eq. (24) is used together with either Eq. (25)
or Eq. (26), as in:

𝛥𝜗 − 2𝛥𝜗∗ − 𝛥𝜗 = 𝑓 (𝑡∗) = 0 (27)
opt
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3.3. Velocity limit

The activation of the speed limit in addition to the jerk and ac-
celeration limit imposes a further constraints which alters the general
structure of the control action, which is shown in Fig. 2(b). The com-
parison with the left part of the same figure highlights the additional
of a further segment, shown in red, during which the speed is constant
and equal to 𝑣lim and the control action — i.e the acceleration, as well
as the jerk, are null.

Always referring to Fig. 2(b), 𝑡∗ is the time at which the uncon-
strained part of the optimal control starts (i.e. the start of the first blue
part): this section is however interrupted by the velocity limit section,
and the total duration of the two blue parts, is now measured as 𝑡. The
two values 𝑡∗ and 𝑡 define uniquely the optimal motion profile.

Two conditions can be enforced to find their values: (i) the overall
displacement must be equal to the desired one, as imposed in Sec-
tion 3.2; (ii) the maximum velocity of the optimal sub-piece must be
equal to the limit velocity 𝑣lim.

Given that optimality must be obtained along the whole motion, it
can be recognized that the analytic expression for the motion in each
section in which no constraint is active (i.e. during each of the two
‘blue’ sections) must be equal to the same one to be used without the
active velocity limits (i.e. when there is only one ‘blue’ section), with
the only difference being the BCs for each unconstrained part. Fig. 2(b)
highlights that the control action for the first unconstrained part is sub-
ject to two BCs, the first one being the position, speed and acceleration
continuity at 𝑡∗, and the other one is that, at 𝑡∗ + 𝑡∕2 speed must be
equal to 𝑣𝑙𝑖𝑚, and acceleration must be zero. The second unconstrained
part is then symmetrical, with the obvious considerations to such BCs.

Recalling some useful formulas, the acceleration at 𝑡∗ must be equal
to:

𝜆𝐴 − 𝜆𝐵 = 𝑎lim (28)

Another condition is that the initial and final velocities must to be
equal to the final and initial velocity of the first and last constrained
piece. Since those velocities are equal from symmetry considerations,
it is sufficient to impose that the initial and the final velocities of the
optimal piece must be the same. By using the temporal variable 𝑡 that
is zero at the beginning of the optimal sub-piece and considering the
first and the second sub-piece together, this condition can be written
as:

𝐴 + 𝐵 −
�
��

𝑝1 + 𝛽
2𝑄

= 𝐴𝖾𝜆𝑡 + 𝐵𝖾−𝜆𝑡 −
�

��
𝑝1 + 𝛽
2𝑄

(29)

Eqs. (28) and (29) form a linear system in the unknowns 𝐴 and 𝐵. To
define the velocity law, the co-state 𝑝1 can be found by imposing the
continuity of velocity at the beginning of the optimal sub-piece:

𝐴 + 𝐵 −
𝑝1 + 𝛽
2𝑄

= 𝑎lim𝑡∗ − 1
2
𝑗lim𝑡21 (30)

The condition on the maximum velocity of the optimal sub-piece can
be stated as follows:

𝐴𝖾𝜆𝑡∕2 + 𝐵𝖾−𝜆𝑡∕2 −
𝑝1 + 𝛽
2𝑄

− 𝑣lim = 𝑓 (𝑡∗, 𝑡) = 0 (31)

The second condition is that the trajectory must provide the requested
overall displacement 𝛥𝜗, which can be formalized in accordance to the
procedure already used in Eq. (23), as:

2𝛥𝜗∗ + 𝛥𝜗opt + 𝛥𝜗�̇�=𝑣lim − 𝛥𝜗 = 𝑔(𝑡∗, 𝑡) = 0 (32)

in which 𝛥𝜗∗ is the displacement associated with the first and last
part – i.e. when jerk and acceleration limits are active – which can be
evaluated as:

𝛥𝜗∗ = 1
2
𝑗lim𝑡1

(

𝑡∗2 − 𝑡1𝑡
∗ + 1

3
𝑡21
)

(33)

Then 𝛥𝜗opt can be evaluated as:

𝛥𝜗 = 𝐴
𝖾𝜆𝑡 − 𝐵

𝖾−𝜆𝑡 −
𝑝1 + 𝛽

𝑡 − 𝐴 + 𝐵 (34)
5

opt 𝜆 𝜆 2𝑄 𝜆 𝜆
Fig. 3. Explanation of the negative power regeneration algorithm.

During the constant velocity phase (i.e. the ‘red’ part), the displacement
is defined as:

𝛥𝜗�̇�=𝑣lim = 𝑣lim(𝑡𝑓 − 2𝑡∗ − 𝑡) (35)

Finally, 𝑡∗ and 𝑡 are found by numerically solving the nonlinear system
of Eqs. (31) and (32), again using e.g. the generalized Newton’s method
or any other suitable method. This formulas complete all the possible
cases when energy regeneration is assumed. A complete picture of the
algorithm, considering all the situations presented in this section, is
depicted in Fig. 3.

4. Solution with negative power dissipation

Now the case of negative power dissipation is analyzed: this refers
to the case in which no practical means are available to store or
to deliver to another device the regenerated power, which therefore
must be dissipated by a braking resistor. Given the definition of the
electric power of Eq. (1), electric power is positive when absorbed,
and negative when generated by the motor itself, which acts as a
regenerative brake. Regenerated energy is in this case dissipated, and
therefore negative values of  must be neglected when computing the
energy cost according to Eq. (10). As a consequence, the running cost
must be defined as a switching function, as follows:

(𝐱, 𝑢, 𝑡) =
{

(𝐱, 𝑢, 𝑡); if (𝐱, 𝑢, 𝑡) > 0
0; otherwise

(36)

since the negative values of the electric part must be discarded when
computing the energy cost according to Eq. (10). The switch in the
function  extends to the cost function  , and as a consequence, to
the Hamiltonian as well.

Two particular cases are studied in Sections 4.1 and 4.2, one in
which the finite jerk and acceleration limit constraints are active and
the other in which the velocity limit constraint is active as well. The
two particular cases are studied because the structure of the solution
is different to the one analyzed so far, because of the switches of
the Hamiltonian that happen whenever the absorbed electric power
changes sign, as a consequence of the change in the cost function,
according to Eq. (11).
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4

4.1. Finite jerk/acceleration limit solution

Let us consider the situation in which the total execution time 𝑡𝑓 is
small enough to ensure that jerk and acceleration constraints are active,
maximum speed is not reached, and negative power is being dissipated
rather then being regenerated. As shown in Fig. 4a, the solution is
composed by four main pieces. The first part is the constrained jerk
and acceleration section that is fully defined by knowing 𝑡∗, which
as been discussed in detail in the previous section. After that, there
s an optimal sub-piece with the same structure of Eq. (17), which
owever ends when the absorbed electric power gets null: this event
riggers the Hamiltonian switch and the power is equal to zero. Another
amiltonian switch is found when the electric power gets positive
gain, which ends the ’null power’ section, which is depicted in brown
olor in Fig. 4a. The last section consists of a jerk-acceleration-jerk
onstrained part.

The solution can be parameterized by 𝑡∗, 𝑡∗o and 𝑡so, as reported in
ig. 4a. The procedure used to find them employs the enforcement two
ontinuity conditions and the solution to a minimization problem in
ne variable.

Before imposing the conditions, the time 𝑡𝑚 at which the switch of
he Hamiltonian occurs should be evaluated. It is sufficient to impose
hat the power equals zero by using the equation of acceleration and
elocity given by (17) and solving it for the time. The resulting equation
ill be of the algebraic type and its solution is not trivial. However,

ince power is the product of the armature current and the armature
oltage, zero power means either zero current or zero voltage. If the
urrent is zero then the voltage cannot be zero and vice-versa, since
𝑎 = 𝑅𝑎𝑖𝑎+𝑘𝑣�̇�, unless current is negative, but actually before reaching
negative value, it reaches, as obvious, a null value. Initially, both

elocity and torque (hence current) are positive. To have zero voltage,
ither current or velocity has to be negative. Since velocity is never neg-
tive, current has to be negative. But if torque is initially positive and is
ontinuous (because derived by composition of continuous functions),
y Bolzano’s theorem it will be zero before being negative. Hence, the
ondition is that 𝜏 = 𝐼�̈� + 𝐹 �̇� + 𝐶 = 0. By substituting the expressions
or velocity and acceleration:
(

𝜆𝐴𝖾𝜆𝑡 − 𝜆𝐵𝖾−𝜆𝑡
)

+ 𝐹
(

𝐴𝖾𝜆𝑡 + 𝐵𝖾−𝜆𝑡 −
𝑝1 + 𝛽
2𝑄

)

+ 𝐶 = 0 (37)

he equation above is algebraic, but substituting 𝑧 = 𝖾𝜆𝑡 leads to :

𝛼1𝑧2 + 𝛼2𝑧 + 𝛼3
𝑧

= 0 (38)

here:

1 = 2𝐴𝑄(𝐹 + 𝐼𝜆); 𝛼2 = 2𝐶𝑄 − 𝐹 (𝑝1 + 𝛽); 𝛼3 = 2𝐵𝑄(𝐹 − 𝐼𝜆); (39)

y solving the second-order equation, one can find:

𝑚 = log(𝑧)∕𝜆 (40)

f 𝑡𝑚 > 𝑡so the solution does not exhibit the switch and therefore the
ethod developed for the regenerative case should be used. As already
iscussed, the null power condition is equivalent to the following:

= 𝐼�̈�(𝑡) + 𝐹 �̇�(𝑡) + 𝐶 = 0 (41)

hich, in terms of state space variables, is:

2 = �̇� = 𝑐1𝖾
−𝐹∕𝐼𝑡 − 𝐶

𝐹
(42)

he integration constant 𝑐1 can be found by imposing the continuity of
elocity. The continuity of acceleration is ensured by the fact that the
oint at which the switch occurs satisfies Eq. (37), which is a punctual
ase of Eq. (41). Since the analytic expression for all the trajectory
egments are found, it is now sufficient to find the time durations of
ach of them to define the whole solution. As done before, the time
urations are found by enforcing some conditions on the displacements
6

hich happen during the several phases of the motion. s
Fig. 4. Structure of the solution when negative power is dissipated. Left side (a) refers
to the case in which jerk and acceleration constraints are active while right side (b)
to when the velocity constraint is active as well.

The first condition is that the total displacement has to be equal
to the prescribed one, as done in Section 3.2 using Eq. (27). The
displacement of the first piece, i.e. the constrained piece from 0 to 𝑡∗,
is the same of 𝛥𝜗∗ in Eq. (27). The second displacement 𝛥𝜗opt,1 is the
first optimal piece. It can be found by integrating the velocity 𝑥2 from
0 to 𝑡𝑚:

𝛥𝜗opt,1 = ∫

𝑡𝑚

0

(

𝐴𝖾𝜆𝑡 + 𝐵𝖾−𝜆𝑡 −
𝑝1 + 𝛽
2𝑄

)

d𝑡 =

= 𝐴
𝜆
𝖾𝜆𝑡𝑚 − 𝐵

𝜆
𝖾−𝜆𝑡𝑚 −

𝑝1 + 𝛽
2𝑄

𝑡𝑚 − 𝐴
𝜆

+ 𝐵
𝜆

(43)

the third displacement 𝛥𝜗opt,2 is given by the optimal solution after the
Hamiltonian switch. To find it, it is sufficient to integrate Eq. (41) from
𝑡𝑚 to the end of the optimal sub-piece, 𝑡so:

𝛥𝜗opt,2 = ∫

𝑡so

𝑡𝑚

(

𝑐1𝖾
− 𝐹

𝐼 𝑡 − 𝐶
𝐹

)

d𝑡 =

= −
𝑐1

𝐹∕𝐼
𝖾−

𝐹
𝐼 𝑡so +

𝑐1
𝐹∕𝐼

𝖾−
𝐹
𝐼 𝑡𝑚 − 𝐶

𝐹
(𝑡so − 𝑡𝑚) (44)

he last piece 𝛥𝜗∗2 refers to the constrained part:

𝜗∗2 = 1
2
𝑗lim𝑡21 + 𝑎lim(𝑡∗ − 𝑡1) +

1
2
(𝑡∗2 − 𝑡∗)(𝑎lim − 𝑢(𝑡so)) (45)

nd, finally:

𝜗f in − 𝜗in) − 𝛥𝜗∗ − 𝛥𝜗opt,1 − 𝛥𝜗opt,2 − 𝛥𝜗∗2 = 𝑓 (𝑡∗, 𝑡∗o , 𝑡so) = 0 (46)

nother condition is the need to ensure zero velocity at end of the
rajectory. To do this, considering that initial speed is always zero, the
ime integral of the acceleration profile must be zero as well. Since the
elocity of the optimal piece is continuous and determined imposing
Cs in 𝑡 = 𝑡∗, the condition has to focus only on the velocities in
= 𝑡∗ + 𝑡so, as follows:

2,o(𝑡so + 𝑡∗) − 𝑥2,f (𝑡so + 𝑡∗) = 𝑔(𝑡∗, 𝑡∗o , 𝑡so) = 0 (47)

here 𝑥2,o(𝑡so + 𝑡∗) is the velocity at the end of the optimal arc and
2,f (𝑡so + 𝑡∗) is the velocity at the beginning of the last constrained
rc. When the conditions given by Eqs. (46) and (47) are imposed, the
esulting trajectory satisfies all the desired constraints and conditions.

As discussed so far, two conditions are imposed, but three parame-
ers are instead needed to completely define the trajectory. To find the
ast parameter, an optimization problem in one variable can be solved:

minimize
𝑡so

 = ∫

𝑡𝑓

0
(𝐱, 𝑢, 𝑡)d𝑡

ubject to (46) and (47)
(48)

his problem is solved using the fminbnd Matlab’s function, exploiting
he 𝑡so has to be in the (0, 𝑡𝑓 ) range. The solution of Eq. (48) completes
he solution of the optimal control problem, hence the design of the
ptimal motion profile in the absence of electric energy regeneration.

.2. Velocity limit

If the results of Section 4.1 does violate the velocity limit, the
tructure of the solution changes according to Fig. 4b, which requires
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v

Fig. 5. Solutions when only jerk and acceleration constraints are active: (left) negative power regeneration case; (right) negative power dissipation case.
Table 1
System and motor data.
Parameter Unit Value

𝐼 kg m2 7.2 ⋅ 10−5

𝐹 Nms/rad 1 ⋅ 10−3

𝐶 Nm 0.0
𝑅𝑎 Ω 5.0
𝑘𝑡 Nm/A 0.27

the additional parameter 𝑡𝑣, i.e. the time length during which the
elocity constraint is active. Since it is not known a priori whenever

the velocity limit is hit or not, the algorithm explained in this section
is intended to be performed after the one explained in Section 4.1
in the case in which max𝑡(𝑥2) > 𝑣lim. The condition on the overall
displacement given by Eq. (46) changes to:

(𝜗f in − 𝜗in) − 𝛥𝜗∗ − 𝛥𝜗opt,1 − 𝛥𝜗opt,2 − 𝛥𝜗∗2 − 𝛥𝜗𝑣

= 𝑓 (𝑡∗, 𝑡∗o , 𝑡so, 𝑡𝑣) = 0 (49)

where 𝛥𝜗𝑣 = 𝑣lim𝑡𝑣. In contrast, the condition on velocities is the same
as in Eq. (47). The additional equation is given by Eq. (31), where 𝑡
should be replaced by 𝑡∗o.

5. Numerical results

This section presents some numerical examples, obtained using
MATLAB, running on a Windows PC equipped with an AMD Ryzen
4500U processor and 8 GB of RAM. The motor and system parameters
used are listed in Table 1. The total displacement in all cases is 𝛥𝜗 =
44 rad. The trajectory limits are set to 𝑣lim = 100𝜋 rad/s, 𝑎lim =
104 rad/s2 and 𝑗lim = 1.5 ⋅ 106 rad/s3.

Fig. 5 shows the solutions for 𝑡𝑓 = 0.20 s, with active jerk and
acceleration constraints, for both the regenerative braking case and
the negative power dissipation case. In Fig. 6 the task time is then
reduced to 𝑡𝑓 = 0.185 s to trigger the velocity limit too. Both the cases
with and without power regeneration are taken into consideration. The
results are compared with the solution provided by an open source
optimal control toolbox, ICLOCS2 (Nie, Faqir, & Kerrigan, 2018), whose
7

Table 2
Comparison of computational times: mean values 𝜇 and standard variation 𝜎. Note that
the quantity for ICLOCS2 are expressed in seconds while milliseconds are used for the
proposed method.

reg 𝑣lim ICLOCS2 Proposed method

𝜇I (s) 𝜎I (s) 𝜇P (ms) 𝜎P (ms)

✓ ✗ 224.6 118.0 1.73 0.05
✓ ✓ 1786.6 1018.7 5.87 0.05
✗ ✗ 34.2 14.2 23.3 3.9
✗ ✓ 30.8 10.0 47.3 5.9

capabilities were tested in various domains. As depicted in Figs. 5 and
6, there is a clear overlap between the proposed solutions and the ones
obtained by solving the same optimization problems using ICLOCS2,
which supports the correctness of the proposed solution.

The proposed method’s main advantage over using ICLOCS2 is
highlighted in Table 2, which lists the computational times required
for planning optimal motion profiles. Six trials were conducted for each
method, totaling 6 × (4 + 4) = 24 + 24 trials.

Table 2 displays mean values and standard deviations. ICLOCS2
demands an higher significant computational effort with times ranging
from approximately 30 seconds to 30 minutes. In contrast, the pro-
posed method achieves a dramatic speedup, with computational times
averaging 1.73 ms in the best case and 47.3 ms in the worst case.

In all cases the solution times are sensibly smaller than the actual
motion execution time, which supports the definition of the proposed
method as Real-Time capable. It is indeed possible to plan each motion
just before its execution without affecting the overall time needed by
the sequential planning and execution phases.

6. Experimental setup

The effectiveness of the proposed trajectories are validated through
several experimental tests. The mechatronic system is composed by a
Escap 35NT2R82-426SP Brushed DC Motor that run a shaft and a PLA
3D printed flywheel. A picture of the physical system is reported in

Fig. 7 The system is controlled by a Teensy 4.1 microcontroller and
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Fig. 6. Solutions for the velocity constrained cases: (left) regenerative braking case; (right) negative power dissipation case.
Fig. 7. Experimental setup, composed by a shaft and a flywheel actuated by an Escap
35NT2R82-426SP brushed DC Motor.

a AMC 25A8 DC motor driver. The driver is used in voltage mode
and the operating frequency of the microcontroller is set to 1 kHz.
The current and the voltage fed to the motor are measured with the
National Instruments module NI cRIO-9215, with sampling frequency
set to 10 kHz. The control scheme consists of a PID feedback controller
augmented with a feed-forward controller, as shown in Fig. 8.

7. Identification procedure

A system identification procedure has been performed to obtain
accurate values for the physical parameters of the electro-mechanical
system. First the electrical data are identified collecting triplets of
armature current 𝑖𝑎, armature voltage 𝑣𝑎 and motor velocity �̇�. Using
Eq. (2) without considering the inductive term, it is possible to write
all the sampled triplets in matrix form, as follows:

⎡

⎢

⎢

⋮
𝑣𝑎(𝑡𝑖)

⎤

⎥

⎥

=
⎡

⎢

⎢

⋮ ⋮
𝑖𝑎(𝑡𝑖) �̇�(𝑡𝑖)

⎤

⎥

⎥

[

𝑅𝑎
𝑘𝑡

]

(50)
8

⎣ ⋮ ⎦ ⎣ ⋮ ⋮ ⎦
which can be condensed as is:

𝒗𝑎 = 𝜱e𝝅𝑒 (51)

where 𝐯𝑎 is the vector collecting all the sampled voltages, 𝜱e is the
regressor matrix, whose column are the sampled currents and velocities
and 𝝅e = [𝑅𝑎, 𝑘𝑡]⊤ collects the parameters to be estimated. The latter
can be estimated as:

𝝅e = 𝜱†
e𝐯𝑎 (52)

where with the † symbol represents the Moore–Penrose pseudoinverse.
With the same method is possible to identify the inertia 𝐼 , the viscous
friction 𝐹 and the constant friction torque 𝐶 as well, recalling that:

𝜏 = 𝐼�̈� + 𝐹 �̇� + 𝐶 (53)

which, in turn, is condensed as:

𝝉 = 𝜱m𝝅m (54)

where 𝝉 is the vector collecting the torques, 𝜱m = [�̈� �̇� 𝟏] is the
regressor matrix for the mechanical parameter and 𝝅m = [𝐼, 𝐹 , 𝐶]⊤ is
the vector of parameters to be estimated, using the expression:

𝝅m = 𝜱†
m𝝉 (55)

with the estimated parameter is possible to generate the optimal tra-
jectories and to improve the feed-forward action of the control.

8. Experimental results

The experimental parameters estimated using the methodology ex-
plained in Section 7 are listed in Table 3.

Five different trajectories were tested of which four were generated
with the proposed method and the last is a standard symmetrical
trapezoidal velocity law with acceleration ratio 𝜏𝑎 = 0.2,1 which is
the ratio between the acceleration time and the total time 𝑡𝑓 . The
final time 𝑡𝑓 is fixed for all the tests and is set to 2.3 s. Each type of

1 It is a typical choice in the default settings of commercial servo systems.
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Fig. 8. Control scheme. 𝐺𝑣 is the driver gain, 𝑥1,r is the measured position.
Table 3
Estimated parameter of the experimental setup.
Parameter Unit Value

𝐼 kg m2 2.08 ⋅ 10−6

𝐹 Nms/rad 3.37 ⋅ 10−7

𝐶 Nm 7.03 ⋅ 10−5

𝑅𝑎 Ω 53.9
𝑘𝑡 Nm/A 5.18 ⋅ 10−4

Table 4
Summary of the experimental trajectories tested. With optreg, optdis and trap
the optimal case with regeneration, dissipation and the trapezoidal law are intended.
The error is calculated for both the cases (err and err̂ ) with respect to the theoretical
expected value. 𝜎 and �̂� are the standard deviation for the energy, with and without
regeneration, respectively.

Test # 1 2 3 4 5

Type optreg optreg optdis optdis trap
𝑡𝑓 (s) 2.3 2.3 2.3 2.3 2.3
𝑗lim ✓ ✓ ✓ ✓ –
𝑎lim ✓ ✓ ✓ ✓ –
𝑣lim ✓ ✗ ✓ ✗ –
 (mJ) 29.03 29.49 30.02 29.65 34.18
𝜎 (mJ) 0.10 0.08 0.19 0.17 0.11
̂ (mJ) 38.52 38.62 34.58 34.68 46.93
�̂� (mJ) 0.10 0.08 0.19 0.19 0.11
err (%) 1.2 2.6 0.8 0.5 2.1
err̂ (%) 1.8 2.6 3.2 2.5 2.1

solution (the negative power (a) regeneration and (b) dissipation case)
has been performed with and without the velocity limit. A summary
of the tested trajectories is reported in Fig. 9 while the experimental
results are summarized in Table 4.

Each test has been performed 100 times, and the results were
averaged over time in order to reduce the effects of measurement noise.
The trajectory limits are reported below:

𝑣lim = 130 rad∕s; 𝑎lim = 350 rad∕s2; 𝑗lim = 8000 rad∕s3; (56)

 is the measured energy expenditure assuming regeneration, while
̂ is the one evaluated assuming that no regeneration is available,
i.e. neglecting the negative power values when evaluating the time
integral that defines the energy absorption.

The effectiveness of the control scheme is corroborated by the fact
that the mean position error that is equal to 7 ⋅ 10−3 rad, a value
which is comparable to the encoder resolution. err measures the
difference between the theoretical and the experimentally measured
energy consumption assuming regeneration, while err̂ is the same
but with the assumption of no regeneration. Such errors are rather
small in magnitude, being the worst estimation affected by just 3.2%
error, which is reputed to be more than adequate considering also
the simplicity of the setup. The slightly lesser accuracy found for
the non regenerative case is mainly due to the non trivial detection
of the negative power conditions due to the noise that affect the
electric measurements. The energy efficiency improvement shown by
comparison to the benchmark trapezoidal speed profile is also relevant,
9

Fig. 9. Trajectories tested.

as reported in Table 4: with regeneration the energy cost improvement
is at least equal to 12.17%, without regeneration the same figure
increases to at least 17.71%. This results supports the effectiveness
and the importance of the proposed investigation. The effectiveness
in achieving a consistent energy improvement is also supported by
the very limited standard deviations measured over 100 trials, as the
standard deviations on the energy cost is, in all cases, below 0.2 mJ.
The experimental results in terms of motion profiles and measured
electrical quantities are reported in Figs. 10–14: the five figures show
all the four optimized cases, plus the case concerning the non optimized
trapezoidal motion profile.

9. Conclusions

In this work a method to design energy-efficient motion profiles
for the rest-to-rest motion of servo-actuated systems with 1 DOF is
proposed. The method can handle both systems with and without
regenerative braking capability, and can take into account bounds on
speed, acceleration and jerk.

The solution is developed separately for both the cases in which
negative electric power is either regenerated or dissipated, given that
its analytic form is different due to the switching nature of the cost
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Fig. 10. Test # 1: regeneration without velocity limit.
Fig. 11. Test # 2: regeneration with velocity limit.
Fig. 12. Test # 3: dissipation without velocity limit.
function. The method is developed using variational calculus by ex-
ploiting the analytic representation of the optimal motion profile as a
10

set of sequential phases, allowing to translate the motion optimization
procedure into a problem formulated by a set of either linear or
nonlinear equations, which are, if needed, augmented with a basic

optimization problem. The solution is found by collecting pieces of
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Fig. 13. Test # 4: dissipation with velocity limit.
Fig. 14. Test # 5: reference symmetrical trapezoidal law.
B

B

B

C

D

D

E

the trajectory using BCs, instead of using direct or indirect methods.
Simulation results demonstrated that the algorithm takes from roughly
1.7 to 47 milliseconds to find the solution, making it suitable for
Real-Time applications. The accuracy of the solutions is shown by
the comparison with the solutions obtained using a general-purpose
optimal control solver, which however takes sensibly larger solution
times and is totally unfit to a Real-Time application. Experimental
results have been presented as well, to show that the method actu-
ally delivers the significant energy saving figures that are predicted
theoretically.
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