
Rendiconti Sem. Mat. Univ. Pol. Torino
Vol. 80, 2022 (2022), 55 – 71

Alessandro Languasco

ON COMPUTING L ′/L(1,χ)

Abstract. We describe how to efficiently compute L ′/L(1,χ) using the Fast
Fourier Transform algorithm. In particular, we will show how to combine the
decimation in frequency (DIF) strategy with the reflection formulae of the spe-
cial functions involved in the computations. We will also mention how to effi-
ciently compute such special functions.

1. Introduction and motivation

Let q be an odd prime. Our interest in computing the values of L ′/L(1,χ),
where L(s,χ) are the Dirichlet L-functions and χ runs over the non-
principal Dirichlet characters mod q, started because of Ihara’s conjecture
on the Euler-Kronecker constants for cyclotomic fields.

To be able to state the problem we need some definition first. Let K
be a number field and let ζK(s) be its Dedekind zeta-function. It is a well
known fact that ζK(s) has a simple pole at s = 1; writing the expansion of
ζK(s) near s = 1 as

ζK(s) =
c−1

s−1
+ c0 +O (s−1) ,

the Euler-Kronecker constant of K is defined as

lim
s→1

(ζK(s)
c−1

− 1
s−1

)
=

c0
c−1

.

In the special case in which K = Q(ζq) is a prime cyclotomic field, where
ζq is a primitive q-root of unity, we have that the Dedekind zeta-function
verifies ζQ(ζq)(s) = ζ (s)∏χ ̸=χ0

L(s,χ), where ζ (s) is the Riemann zeta-
function, χ runs over the non-principal Dirichlet characters mod q and χ0
is the principal Dirichlet character mod q. By logarithmic differentiation,
we immediately get that the Euler-Kronecker constant for the prime cyclo-
tomic field Q(ζq) is

(1) Gq := γ + ∑
χ ̸=χ0

L′

L
(1,χ),

where γ is the Euler-Mascheroni constant. An extensive study about the
properties of Gq was started by Ihara [13–15] and carried over from many
others; here we are mainly interested in computational problems on Gq
and hence we just recall the paper by Ford-Luca-Moree [9].

55

56 Alessandro Languasco

Another interesting quantity related to Gq is the Euler-Kronecker con-
stant G+

q of Q(ζq +ζ−1
q), the maximal real subfield of Q(ζq). According

to eq. (10) of Moree [23] it is defined as

G+
q := γ + ∑

χ ̸=χ0χ even

L′

L
(1,χ).

It is interesting to study the negativity of both Gq,G
+
q because Ihara

conjectured they should be both positive. For Gq this was disproved by
Ford-Luca-Moree [9] by showing G964477901 = −0.182374 For G+

q ,
Ihara’s conjecture is still an open problem.

After the publication of [9], we started to investigate the possibility to
obtain other counterexamples to Ihara’s conjecture on Gq and, at the same
time, to extend the statistics on the values of Gq and G+

q since Ford-Luca-
Moree computed them only for 3 ≤ q ≤ 50000. By distinguishing the
contribution of the odd and even Dirichlet characters in (1), we were able
to improve on the performances and on the accuracy of the calculations
in [9]. The goal of this paper is to give more details on the algorithms we
used to obtain our contributions on the topic.

The main tool we will use is the Fast Fourier Transform (FFT) which
is a quite fast, but memory demanding, algorithm. It computes a linear
combination of complex exponentials whose coefficients are the values
of a given finite sequence A having N elements. Instead of performing
such a summation term by term, which would lead to a computational
cost of O

(
N2
)

products, the FFT procedure implements a divide et im-
pera strategy that recursively uses the decimation in time or the decima-
tion in frequency ideas, see Section 4. This reduces the computational cost
to O (N logN) products but requires the storage of at least one copy of
the whole sequence A . Hence, roughly speaking, we can say that O (N)
memory positions are required to perform such a computation; in practice,
more memory space is in fact needed to keep track of the several steps an
implementation of the FFT requires. We also recall that it is not an easy
task to implement the FFT algorithm; we refer to the original paper of
Cooley-Tukey [5] and to Arndt’s book [1, Part III] for more details.

The idea of summing according to the parity of the Dirichlet characters,
see Section 3, reduced the runtime-memory needed by the FFT-algorithm
thus allowing us to obtain new results on the Euler-Kronecker constants
and on other related quantities. In fact, to be able to obtain such results
in a reasonable amount of time, we also had to efficiently compute the
special functions values needed as FTT-inputs, see Section 5. Combining
such ideas we recently obtained the following results:

1. we found three new examples of Gq < 0 and we extended the knowl-
edge of Gq,G

+
q by computing them for every 3 ≤ q ≤ 107; at the

same time we found no cases in which G+
q < 0 for 3 ≤ q ≤ 107,

On computing L ′/L(1,χ) 57

see [18] and a paper in collaboration with Righi [20]. The three new
primes q such that Gq < 0 are listed in Table 5.2;

2. in a collaboration con Lamzouri [17], we studied, both theoretically
and computationally, the size of minχ ̸=χ0

|L ′/L(1,χ)|; we were the
first to obtain an upper bound for this quantity. Moreover, exploiting
a series of computations for q ≤ 107, we obtained some data about
the size of its lower bound;

3. we studied Littlewood’s [22] estimates on |L(1,χ)|; both theoreti-
cally and computationally, see [19] and a paper in collaboration with
Trudgian [21].

For detailed descriptions and proofs of these results we refer to the
mentioned papers. Here we just focus on showing the main ideas used
in computing L ′/L(1,χ) and L(1,χ). We start by describing Ford-Luca-
Moree’s method.

2. How to compute L ′/L(1,χ) (Ford-Luca-Moree’s method)

If we do not distinguish between Dirichlet characters’ parities, we can use
eq. (6.1) and (7.4) of Dilcher [7], as in Ford-Luca-Moree, see eq. (3.2)
in [9]. In fact eq. (6.1) of [7] gives

L′(1,χ) =−
q−1

∑
a=1

χ(a)γ1(a,q),

where

γ1(a,q) =−1
q

(1
2
(logq)2 + logq ψ

(a
q

)
+ψ1

(a
q

))
,

for any q≥ 1 and 1≤ a≤ q, ψ(x) = Γ ′/Γ(x), Γ is Euler’s function,

ψ1(x) =−γ1−
logx

x
−

+∞

∑
m=1

(log(x+m)
x+m

− logm
m

)
,

and

γ1 = lim
N→+∞

(N

∑
j=1

log j
j
− (logN)2

2

)
=−0.0728158454835 . . .

We also remark here that the rate of convergence of the series of ψ1(x)
is, roughly speaking, about (logm)/m2. Recalling now

(2) L(1,χ) =−1
q

q−1

∑
a=1

χ(a) ψ
(a

q

)
,

58 Alessandro Languasco

by the orthogonality of Dirichlet characters and (2), we obtain eq. (3.2)
of [9], i.e.,

L′(1,χ) =−(logq)L(1,χ)+
1
q

q−1

∑
a=1

χ(a) T
(a

q

)
,

where T (x) = γ1 +ψ1(x) . Summarising, we finally get

(3) ∑
χ ̸=χ0

L′

L
(1,χ) =−(q−2) logq− ∑

χ ̸=χ0

∑q−1
a=1 χ(a) T (a/q)

∑q−1
a=1 χ(a) ψ(a/q)

.

In practical applications of the previous formula we encountered the
following computational problems:

1. two special functions (T and ψ) have to be computed at rational
points in (0,1);

2. T is just defined with a slowly convergent series and ψ is not avail-
able in the C-standard programming language;

3. for x→ 0+, T (x) ∼ log(1/x)/x and ψ(x) ∼ −1/x; so they both be-
come “large” for x close to 0;

4. q−1 values of T (x) and ψ(x) are needed;

5. performing the sum over a is computationally “slow”, but it can be
done efficiently with a Fast Fourier Transform, as we will see in Sec-
tion 4.

3. How to compute L ′/L(1,χ) in a different way

Our algorithm uses the following formulae that, according to Deninger [6]
and Kanemitsu [16], were first proved in 1883 by Berger [2] and in 1929
by Gut [12].

3.1. Primitive odd Dirichlet character case.

Let q be an odd prime, and let τ(χ) := ∑q
a=1 χ(a)e(a/q), e(x) :=

exp(2πix), be the Gauß sum associated with χ . The functional equation
for L(s,χ) gives

L(s,χ) =
1
πi

(2π
q

)s
Γ(1− s)

τ(χ)
√

q
cos
(πs

2

)
L(1− s,χ)

and hence

L′(s,χ)
L(s,χ)

= log
(2π

q

)
− γ ′(1− s)

Γ(1− s)
− π

2
tan
(πs

2

)
− L′(1− s,χ)

L(1− s,χ)
,

On computing L ′/L(1,χ) 59

which, evaluated at s = 0, gives

(4)
L′(0,χ)
L(0,χ)

= log
(2π

q

)
+ γ− L′(1,χ)

L(1,χ)
.

By the Lerch identity about values of the Hurwitz zeta-function defined as
ζ (s,x) = ∑+∞

n=0(n+x)−s for ℜ(s) > 1, x∈ (0,1), and analytically extended
to C\{1}, namely:

ζ (0,
a
q
) =

1
2
− a

q
, ζ ′(0,

a
q
) = logΓ(

a
q
)− 1

2
log(2π),

the relation

L(s,χ) = q−s
q−1

∑
a=1

χ(a)ζ (s,
a
q
),

and the orthogonality of Dirichlet characters, we get

L′(0,χ) =− logq
q−1

∑
a=1

χ(a)
(1

2
− a

q

)
+

q−1

∑
a=1

χ(a) log
(

Γ
(a

q

))
=

logq
q

q−1

∑
a=1

a χ(a)+
q−1

∑
a=1

χ(a) log
(

Γ
(a

q

))
=−(logq)L(0,χ)+

q−1

∑
a=1

χ(a) log
(

Γ
(a

q

))
.

In the previous formula we also used that

(5) L(0,χ) =−B1,χ :=−1
q

q−1

∑
a=1

a χ(a),

where B1,χ is the first χ-Bernoulli number. We recall that the χ-Bernoulli
numbers are defined as the values attained at x = 0 of the χ-Bernoulli
polynomials Bk,χ(x) given by the following series:

tetx

eqt −1

q−1

∑
r=0

χ(r)ert = ∑
k≥0

Bk,χ(x)
tk

k!
,

see Cohen [4, Section 9.4.1].
Summarising, by (4)-(5), we obtain

(6)

∑
χ odd

L′

L
(1,χ) =

q−1
2
(
γ + log(2π)

)
+ ∑

χ odd

1
B1,χ

q−1

∑
a=1

χ(a) log
(

Γ
(a

q

))
.

60 Alessandro Languasco

3.2. Primitive even Dirichlet character case.

Recall that q is an odd prime. Assume now that χ ̸= χ0 is a primitive
even Dirichlet character mod q. We follow Deninger’s notation in [6] by
calling R(x) = − ∂ 2

∂ s2 ζ (s,x)|s=0 = log(Γ1(x)), x > 0. We will call Γ1(x)
the Ramanujan-Deninger gamma function. R(x) is the unique solution in
(0,+∞) of the difference equation R(x +1) = R(x)+(logx)2, with initial
condition R(1) =−ζ ′′(0), which is convex in some interval (A,+∞), A >
0, see Theorem 2.3 of Deninger [6].

By eq. (3.5)-(3.6) of [6] we have

(7) L′(1,χ) =
(
γ + log(2π)

)
L(1,χ)+

τ(χ)
q

q−1

∑
a=1

χ(a) R
(a

q

)
,

where, see eq. (2.3.2) of [6], the R-function can be expressed for every
x > 0 by

R(x) :=−ζ ′′(0)−S(x),

S(x) := 2γ1x+(logx)2 +
+∞

∑
m=1

((
log(x+m)

)2− (logm)2−2x
logm

m

)
.

(8)

It is worth remarking that ψ1(x) = R′(x)/2. We have S(1) = 0 and R(1) =
−ζ ′′(0). We further remark that the rate of convergence of the series of
S(x) is, roughly speaking, about (logm)/m2. By the orthogonality of the
Dirichlet characters, we immediately get

(9)
q−1

∑
a=1

χ(a)R(
a
q
) =−

q−1

∑
a=1

χ(a)S(
a
q
).

For L(1,χ), we use formula (2) of Proposition 10.3.5 of [3]-[4], and the
parity of χ to get

(10) L(1,χ) = 2
τ(χ)

q

q−1

∑
a=1

χ(a) log
(

Γ
(a

q

))
,

since W (χ) = τ(χ)/q1/2 for even Dirichlet characters, see Definition
2.2.25 of [3]-[4].

Summarising, using (7) and (9)-(10), if χ is an even Dirichlet character
mod q, we finally get
(11)

∑
χ ̸=χ0χ even

L′

L
(1,χ) =

q−3
2
(
γ + log(2π)

)
− 1

2 ∑
χ ̸=χ0χ even

∑q−1
a=1 χ(a) S(a/q)

∑q−1
a=1 χ(a) log

(
Γ(a/q)

) .
Now, we compare the situation in using (6) and (11) instead of (3):

On computing L ′/L(1,χ) 61

1. two special functions (S and logΓ) have to be computed at rational
points in (0,1); but evaluating B1,χ doesn’t involve any special func-
tion;

2. S is just defined with a slowly convergent series; but logΓ is available
in the C-standard programming language;

3. for x→ 0+, S(x) ∼ (logx)2 and logΓ(x) ∼ log(1/x); they are much
smaller than T (x),ψ(x) as x→ 0+; this is important to have a better
control on the accuracy of the FFT, see Section 4.4;

4. (q−1)/2 values of S(x)+S(1−x) are needed, see Section 4; (q−1)
values of logΓ are needed;

5. performing the sum over a is computationally “slow” but it can be
done efficiently with a FFT, as we will see in Section 4.

In Table 5.1 (from [18]) we inserted the comparison between the two
methods; the differences in using the FFT-algorithm will be explained in
the next section.

Comparison Approach with T Approach with T Approach with S
(ψ comp. with GSL) (ψ precomp. with PARI/GP)

Magnitude of the functions for x→ 0+ : ψ(x)∼−1/x ψ(x)∼−1/x log
(
Γ(x)

)
∼ log(1/x)

T (x)∼ log(1/x)
x T (x)∼ log(1/x)

x S(x)∼ (logx)2

Precomputations (T and S with PARI/GP):

needed space for storing precomputed values q−1 values of 2(q−1) values of (q−1)/2 values of

(⟨g⟩= Z∗q , ak := gk mod q): T (ak/q) T (ak/q) and ψ(ak/q) S(ak/q)+S(1−ak/q)

number of write operations on hard disks: q−1 2(q−1) (q−1)/2

number of sumnum or intnum calls: q−1 q−1 (q−1)/2

FFT-step (with fftw):

number of read operations on hard disks: q−1 2(q−1) (q−1)/2

number of FFTs: 2 2 3

length of FFTs: both q−1 both q−1 one of length q−1;

the others of length (q−1)/2

total RAM occupation (in number of long

double positions; in-place FFTs): 2q+2 2q+2 2q

Table 5.1: Comparison table; GSL stands for the Gnu Scientific Library [11], for
PARI/GP, see [26].

From Table 5.1 it is clear that the approach that uses T (x) beats the one
which implements S(x) only in the total number of the needed Fast Fourier
Transforms∗, but in any other aspect the latter is better.

4. The Fast Fourier Transform settings

Focusing on (3), (6) and (11), we remark that, since q is an odd prime, it is
enough to get g, a primitive root of q, and χ1, the Dirichlet character mod q
given by χ1(g) = e2πi/(q−1), to see that the set of the non-principal charac-
ters mod q is {χ j

1
: j = 1, . . . ,q−2}. Hence, if, for every k∈ {0, . . . ,q−2},

∗In fact the FFTs can be independently performed and hence they can be executed in parallel; this
eliminates the unique disadvantage in using the S-function method.

62 Alessandro Languasco

we denote gk ≡ ak ∈ {1, . . . ,q−1}, every summation in (3)-(6) and (11) is
of the type

(12)
q−2

∑
k=0

e
(σ jk

q−1

)
f
(ak

q

)
,

where e(x) := exp(2πix), j ∈ {1, . . . ,q− 2} is fixed, σ = ±1, and f is
a suitable function which assumes real values. As a consequence, such
quantities are, depending on σ , the Discrete Fourier Transforms, or its
inverse transform, of the sequence { f (ak/q) : k = 0, . . . ,q− 2}. This ap-
proach was first remarked by Rader [24] and it was already used in Ford-
Luca-Moree [9] to speed-up the computation of these quantities via the
use of FFT-dedicated software libraries.

Now we recall the main idea used in the Cooley-Tukey [5] FFT algo-
rithm: the decimation in time strategy. We describe only the special case
in which the length of the transform is even and the input sequence is real;
in fact Cooley-Tukey analysis holds in the general case too; we refer to [5]
and to Arndt’s book [1, Part III] for more details.

4.1. FFT: decimation in time (DIT)

Let Ak := f (ak/q) ∈ R, k = 0, . . . ,q−2, and let j = 0, . . . ,q−2 be fixed;
remark that j = 0 corresponds to χ0 mod q. We can write (12) as

(F (Ak)) j :=
q−2

∑
k=0

e
(σ jk

q−1

)
Ak.

We see now that the first m = (q−1)/2 elements (also called “the left
part”) of the sequence F (Ak) can be written using the sequences A2k and
A2k+1; the same also hold for the second m elements (also called “the right
part”) of F (Ak).
Let j = t +δm, k = 0, . . . ,m−1, δ ∈ {0,1}. We have

(F (Ak)) j =
m−1

∑
k=0

e
(σ(t +δm)2k

q−1

)
A2k

+e
(σ(t +δm)

q−1

)m−1

∑
k=0

e
(σ(t +δm)2k

q−1

)
A2k+1.

If δ = 0 (j = t ∈ {0, . . . ,m−1}) [left part]:

(F (Ak)) j =
m−1

∑
k=0

e
(σ j2k

q−1

)
A2k + e

(σ j
q−1

)m−1

∑
k=0

e
(σ j2k

q−1

)
A2k+1

= (F (A2k)) j + e
(σ j

q−1

)
(F (A2k+1)) j.

On computing L ′/L(1,χ) 63

If δ = 1 (j = t +m ∈ {m, . . . ,q−2}) [right part]:

(F (Ak))t+m =
m−1

∑
k=0

e
(σ t2k

q−1

)
A2k− e

(σ t
q−1

)m−1

∑
k=0

e
(σt2k

q−1

)
A2k+1

= (F (A2k))t − e
(σ t

q−1

)
(F (A2k+1))t .

So both the left and the right parts of the output F (Ak) are suitable com-
binations of A2k and A2k+1; but such subsums have half a length of the
original one! This is the starting point of a recursion algorithm that leads
to compute F (Ak), a transform of length q− 1, in O (logq) steps and
O (q logq) products and sums.

We can use the decimation in time strategy, but in our setting we have
to distinguish between the even-index and the odd-index subsequences of
the output, not of the input. Luckily, there is another possible strategy we
can use; we will show it in the next section.

4.2. FFT: decimation in frequency (DIF)

A better fit with our problem is obtained using the decimation in frequency
strategy: assuming that in (12) one has to distinguish between the parity of
j (hence on the parity of the Dirichlet characters), letting m = (q− 1)/2,
for every j = 0,1, . . . ,q−2, Ak := f (ak/q), we have that

q−2

∑
k=0

e
(σ jk

q−1

)
Ak =

m−1

∑
k=0

e
(σ jk

q−1

)
Ak +

m−1

∑
k=0

e
(σ j(k +m)

q−1

)
Ak+m

=
m−1

∑
k=0

e
(σ jk

q−1

)(
Ak +(−1) jAk+m

)
.

Let now j = 2t + ℓ, where ℓ ∈ {0,1} and t ∈ Z. The previous equation
becomes

q−2

∑
k=0

e
(σ jk

q−1

)
Ak =

m−1

∑
k=0

e
(σtk

m

)
e
(σℓk

q−1

)(
Ak +(−1)ℓAk+m

)

=


m−1
∑

k=0
e
(σtk

m

)
bk if ℓ = 0

m−1
∑

k=0
e
(σtk

m

)
ck if ℓ = 1,

(13)

where t = 0, . . . ,m−1, σ =±1,

bk := Ak +Ak+m and ck := e
(σk

q−1

)(
Ak−Ak+m

)
.

Hence, if we just need the sum over the even, or odd, Dirichlet charac-
ters as for f (x) = S(x), f (x) = logΓ(x) or f (x) = x, instead of computing

64 Alessandro Languasco

a sum of length q− 1 we can evaluate a sum of half a length, applied on
a suitably modified sequence according to (13). In this case too this is
the starting point of a recursion algorithm that leads to compute F (Ak),
a transform of length q−1, in O (logq) steps and O (q logq) products and
sums. Clearly this represents a gain in both the speediness and the memory
occupation in running the actual computer program. Moreover, if the val-
ues of Ak = f (ak/q) have to be precomputed and stored, this also means
that the quantity of information we have to save during the precomputa-
tion (which might require a consistent amount of time), and to recall for
the FFT algorithm, is reduced by a factor of 2.

4.3. The use of the reflection formulae in the decimation in frequency
strategy

It is useful to remark that from ⟨g⟩ = Z∗q it trivially follows that gm ≡
q− 1 mod q, where m = (q− 1)/2. Hence, recalling ak ≡ gk mod q, we
obtain ak+m ≡ gk+m ≡ ak(q− 1) ≡ q− ak mod q and, as a consequence,
we get

(14) Ak+m = f
(ak+m

q

)
= f
(q−ak

q

)
= f
(

1−
ak
q

)
.

So, inserting the reflection formula for S(x), see eq. (3.3) of Dilcher [8],
into (13)-(14), for every k = 0, . . . ,m− 1 and for f (x) = S(x), using (8),
the sequence bk becomes

S
(ak

q

)
+S
(ak+m

q

)
= S
(ak

q

)
+S
(

1−
ak
q

)
= log2

(ak
q

)
+

+∞

∑
n=1

((
log
(
n+

ak
q

))2
+
(

log
(
n−

ak
q

))2
−2(logn)2

)
.(15)

Assuming f (x) = logΓ(x), using (14) and the well known reflection for-
mula for Euler’s Γ given by Γ(x)Γ(1− x) = π/sin(πx), we obtain

log
(

Γ
(ak

q

))
+ log

(
Γ
(ak+m

q

))
= log

(
Γ
(ak

q

))
+ log

(
Γ
(
1−

ak
q

))
= logπ− log

(
sin
(πak

q

))
,

thus further simplifying the final computation by replacing the Γ-function
with the sin-function. Analogously

log
(

Γ
(ak

q

))
−log

(
Γ
(
1−

ak
q

))
= 2log

(
Γ
(ak

q

))
+log

(
sin
(πak

q

))
−logπ.

The case in which f (x) = x is easier; using again ⟨g⟩= Z∗q, ak ≡ gk mod
q and gm ≡ q−1 mod q, we can write that ak+m ≡ q−ak mod q; hence

ak−ak+m = ak− (q−ak) = 2ak−q

On computing L ′/L(1,χ) 65

so that in this case we obtain

ck = e
(σk

q−1

)(2ak
q
−1
)

for every k = 0, . . .m−1, m = (q−1)/2, σ =±1.

4.4. FFT accuracy

We dedicate this paragraph to discuss about the accuracy of the Fast
Fourier Transform. According to Schatzman [25, § 3.4, pp. 1159–1160],
the root mean square relative error in the FFT is bounded by

(16) ∆ = ∆(N,ε) := 0.6ε(log2 N)1/2,

where ε is the machine epsilon, log2 x denotes the base 2 logarithm and N
is the length of the sum. According to the IEEE 754-2008 specification,
we can set ε = 2−64 for the long double precision of the C programming
language. So for the largest case we considered, q = 50040955631, see
Table 5.2, N = (q− 1)/2, we get that ∆ < 1.92 · 10−19. To evaluate the
euclidean norm of the error we have then to multiply ∆ and the euclidean
norms of the sequences listed before:

xk := 2
ak
q
−1, yk := logΓ

(ak
q

)
+ logΓ

(
1−

ak
q

)
− logπ,

zk := logΓ
(ak

q

)
− logΓ

(
1−

ak
q

)
, wk := S

(ak
q

)
−S
(

1−
ak
q

)
,

where ak = gk mod q, ⟨q⟩= Z∗q, k = 0, . . . ,N−1. A straightforward com-
putation gives

∥xk∥2 =
((q−1)(q−2)

6q

)1/2
= 91324.47246 . . .

Hence, recalling that ∥ · ∥∞ ≤ ∥ · ∥2, for this sequence we can estimate
that the maximal error in its FFT-computation is bounded by 1.75 ·10−14

(long double precision case). Unfortunately, no closed formulas for the
euclidean norms of the other involved sequences are known but, using
∥ · ∥∞ ≤ ∥ ·∥2 ≤

√
N∥ · ∥∞ and the formulae

∥yk∥∞ =− logsin(π/q) = 23.49137 . . . ,

∥zk∥∞ = 2logΓ
(1

q

)
− log

(π
sin(π/q)

)
= 24.63610 . . . ,

∥wk∥∞ = S
(1

q

)
+S
(

1− 1
q

)
= 606.93779 . . . ,

that can be obtained using straightforward computations, we have that the
errors in their FFT-computations are all < 1.85 ·10−11.

66 Alessandro Languasco

We also estimated in practice the accuracy in the actual computations
using the FFTW [10] software library by evaluating at run-time the quan-
tity E j(wk) := ∥F−1(F (wk))−wk∥ j, j ∈ {2,∞}, F (·) is the Fast Fourier
Transform and F−1(·) is its inverse transform. We focused our attention
on wk since, between the sequences mentioned before, it has the largest
norm and hence the worst error estimates. Theoretically we have that
E j(wk) = 0; moreover, assuming that the root mean square relative error
in the FFT is bounded by ∆ > 0, it is easy to obtain

(17) E2(wk) < ∆(2+∆)∥wk∥2 and E∞(wk) < ∆(2+∆)
√

N∥wk∥∞.

For q = 50040955631, N = (q−1)/2 and ε = 2−64 in (16), we get ∆(2+
∆) < 3.83 ·10−19 and from (17) we obtain

(18) E2(wk) < 3.70 ·10−11 and E∞(wk) < 3.70 ·10−11,

where the first estimate suffers from the lack of theoretical information
about ∥wk∥2. Moreover, the actual computations using FFTW for this case
gave that ∥wk∥2 = 1099611.166707 . . . ,

E2(wk)
∥wk∥2

< 6.01 ·10−19, E2(wk) < 4.21 ·10−13

and E∞(wk) < 2.23 ·10−16(19)

that are in agreement with (18). It is worth notice that the last two com-
puted estimates in (19) are much better than the corresponding theoreti-
cal ones in (18). We finally remark that the computed estimates for the
analogous quantities involving xk,yk,zk are smaller than the ones for wk
described before.

Summarising, we can conclude that about ten decimal digits of our final
results are correct. Clearly, for smaller values of q more correct decimal
digits are in fact available.

5. Improvements in computing the Ramanujan-Deninger gamma
function

In a joint work with Righi [20], we improved upon the efficiency in com-
puting the special function S which is strictly related to the Ramanujan-
Deninger gamma function since log(Γ1(x)) = −S(x)− ζ ′′(0) for x > 0,
see Section 3.2. In [20] we first gave an alternative proof of the following
theorem which was originally proved by Dilcher [8].

THEOREM 1. Let x ∈ (0,2). Then

S(x) =−2γ1(1− x)+2
+∞

∑
k=2

(1− x)k

k

[
ζ (k)Hk−1 +ζ ′(k)

]
,

On computing L ′/L(1,χ) 67

where Hk = ∑k
j=1 1/ j, ζ (·) is the Riemann zeta-function and ζ ′(·) is its

first derivative.

Moreover, we also proved the following

COROLLARY 1. Letting x ∈ (0,1)∪ (1,2), n ∈ N, n≥ 1 be fixed, and

(20) rS(x,n) =
⌈ (n+2) log2+ | log(1−|1− x|)|

| log |1− x||

⌉
−1,

we have that there exists θ = θ(x) ∈ (−1/2,1/2) such that

(21) S(x) =−2γ1(1−x)+2
rS(x,n)

∑
k=2

(1− x)k

k

[
ζ (k)Hk−1 +ζ ′(k)

]
+ |θ |2−n.

In the following analysis we will also need the difference formula for
S(x), namely

(22) S(x+1) = S(x)− (logx)2 for every x > 0.

Thanks to (22), the fact that Theorem 1 holds for every x ∈ (0,2) means
that every value of S(x), x ∈ (0,1), can be computed in two different ways.
Moreover it is clear that the best convergence interval for (20) is for x ∈
(1/2,3/2) because rS(x,n) becomes very large as x→ 0+ and as x→ 2−

while it is smaller for x close to 1. Hence from a computational point of
view the optimal solution is the following: if x ∈ (1/2,1) we will directly
compute S(x) using (21) while for x ∈ (0,1/2) we will shift the problem
using (22) and then use Theorem 1 in (1,3/2). Such an argument leads to
proving the following two corollaries.

COROLLARY 2. Let x ∈ (0,1/2). We have that

S(x) = (logx)2 +2γ1x+2
+∞

∑
k=2

(−x)k

k

[
ζ (k)Hk−1 +ζ ′(k)

]
.

COROLLARY 3. Let x ∈ (0,1/2). Letting further n ∈ N, n≥ 1 be fixed
and

r′S(x,n) := rS(1+ x,n) =
⌈ (n+2) log2+ | log(1− x)|

| logx|

⌉
−1,

where rS(u,n) is defined in Theorem 1, we have that there exists η =
η(x) ∈ (−1/2,1/2) such that

(23) S(x) = (logx)2 +2γ1x+2
r′S(x,n)

∑
k=2

(−x)k

k

[
ζ (k)Hk−1 +ζ ′(k)

]
+ |η |2−n.

68 Alessandro Languasco

Combining these results we also obtain the following

PROPOSITION 1 (Reflection formulae for S). Let x ∈ (0,1), x ̸= 1/2,
n ∈ N, n≥ 2,

r1(x,n) =
1
2

(⌈ (n+2) log2+ | log(1− x)|
| logx|

⌉
−1
)

and

r2(x,n) =
1
2

(⌈ (n+2) log2+ | logx|
| log(1− x)|

⌉
−1
)
.

There exists θ = θ(x) such that for 0 < x < 1/2 we have

S(x)+S(1− x) = (logx)2 +2
r1

∑
ℓ=1

x2ℓ

ℓ

[
ζ (2ℓ)H2ℓ−1 +ζ ′(2ℓ)

]
+|θ |2−n,

and, for 1/2 < x < 1, we obtain

S(x)+S(1− x) = (log(1− x))2

+2
r2

∑
ℓ=1

(1− x)2ℓ

ℓ

[
ζ (2ℓ)H2ℓ−1 +ζ ′(2ℓ)

]
+|θ |2−n.

Similar results can also be obtained for T (x), logΓ(x), and ψ(x).
It is important to remark that in Proposition 1 only the even-index coef-

ficients are present because the others annihilate in summing (21) and (23).
This cancellation phenomenon further improves upon the performances in
the FFT applications because, after having fixed an accuracy ∆, the num-
ber of operations needed to compute S(ak/q)+S(1−ak/q) is reduced by
a factor of 2 (see the definitions of r1 and r2) if compared with the one
needed to compute directly S(ak/q) with (21) or (23). Moreover, a further
gain of a factor 2 follows from having halved the length of the sequence to
be transformed, see Section 4.2.

Combining the results previously described in this section, we were
able to reduce the amount of time to obtain S(ak/q) + S(1− ak/q) by a
factor of 9000 (using 80 binary digits as data format, i.e., the long double
type of the C programming language) with respect to the S-series compu-
tation in (15). That allowed us to obtain the results summarized in Table
5.2; we remark that the largest case q = 50040955631 was extremely hard
to handle since its FFT required≈ 3.2TB of RAM to be performed. Hence,
to overcome this problem we used the hard disk instead, but, clearly, the
running time of such a case was heavily affected by this. The boldfaced
results are the known cases of negativity for Gq; the first is by Ford-Luca-
Moree [9], the second and the third are in [18] and the last one is in [20].

On computing L ′/L(1,χ) 69

q Gq G+
q FFT exec time

193894451 0.662110 . . . 9.607705 . . . 4m. 29s.
212634221 1.435141 . . . 11.883540 . . . 4m. 28s.
251160191 1.912681 . . . 11.785574 . . . 2m. 53s.
538906601 1.474911 . . . 12.957235 . . . 11m. 56s.
964477901964477901964477901 −0.182374 . . .−0.182374 . . .−0.182374 . . . 10.402224 . . . 23m. 13s.

1139803271 0.768538 . . . 8.313111 . . . 27m. 56s.
1217434451 0.877596 . . . 12.946690 . . . 29m. 16s.
1806830951 0.880396 . . . 11.973128 . . . 47m. 48s.
2488788101 0.424880 . . . 12.248837 . . . 103m. 08s.
2830676081 1.254528 . . . 12.438044 . . . 89m. 59s.
2918643191 0.302793 . . . 12.573983 . . . 87m. 49s.
7079770931 1.544698 . . . 14.301772 . . . 742m. 09s.
910933483191093348319109334831 −0.248739 . . .−0.248739 . . .−0.248739 . . . 12.128187 . . . 311m. 28s.
985496440198549644019854964401 −0.096465 . . .−0.096465 . . .−0.096465 . . . 12.807752 . . . 326m. 03s.

500409556315004095563150040955631 −0.165953 . . .−0.165953 . . .−0.165953 . . . 13.897647 . . . two weeks

Table 5.2: Some results obtained on Gq and G+
q .

6. Final words

The problem of computing L ′/L(1,χ) requires the use of the Fast Fourier
Transform which is a quite fast, but memory demanding, algorithm. We
have shown here how to reduce its memory requirements by exploiting the
reflection formulae for the special functions involved; moreover, we also
have shown how to reduce the computational cost of evaluating such spe-
cial functions. Combining these results, and using FFTW [10], a software
library that performs the Fast Fourier Transform, we were able to greatly
extend the available data on the values of Gq and G+

q and also to study
the size of the values of L ′/L(1,χ) and L(1,χ), where χ is a non principal
Dirichlet character modulo an odd prime q≤ 107.

Acknowledgements. Some of the calculations here described were
performed using the University of Padova Strategic Research Infrastruc-
ture Grant 2017: “CAPRI: Calcolo ad Alte Prestazioni per la Ricerca
e l’Innovazione”, capri.dei.unipd.it and on the cluster of the Uni-
versity of Padova, Dipartimento di Matematica “Tullio Levi-Civita”,
computing.math.unipd.it/highpc. The author is grateful for having
had such computing facilities at his disposal. I would also like to thank the
referee for his/her remarks and suggestions.

References

[1] ARNDT J., Matters computational. Ideas, algorithms, source code, Springer, 2011.

[2] BERGER A., Sur une sommation des quelques séries, Nova Acta Reg. Soc. Sci. Ups.
12 (1883), 29–31.

70 Alessandro Languasco

[3] COHEN H., Number Theory. Volume I: Tools and Diophantine Equations, Springer
GTM, vol. 239, 2007.

[4] COHEN H., Number Theory. Volume II: Analytic and Modern Tools, Springer GTM,
vol. 240, 2007.

[5] COOLEY J.W, TUKEY J.W., An algorithm for the machine calculation of complex
Fourier series, Math. Comp. 19 (1965), 297–301.

[6] DENINGER C., On the analogue of the formula of Chowla and Selberg for real
quadratic fields, J. Reine Angew. Math. 351 (1984), 171–191.

[7] DILCHER K., Generalized Euler constants for arithmetical progressions, Math. Comp.
59 (1992), 259–282.

[8] DILCHER K., On generalized gamma functions related to the Laurent coefficients of
the Riemann zeta function, Aequationes Math. 48 (1994), 55–85.

[9] FORD K., LUCA F., MOREE P., Values of the Euler ϕ -function not divisible by a given
odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields,
Math. Comp. 83 (2014), 1447–1476.

[10] FRIGO M., JOHNSON S.G., The Design and Implementation of FFTW3, Proc. IEEE
93 (2), 216–231 (2005). The C library is available at www.fftw.org.

[11] GNU SCIENTIFIC LIBRARY, version 2.7, 2021. Available from
www.gnu.org/software/gsl.

[12] GUT M., Die Zetafunktion, die Klassenzahl und die Kronecker’sche Grenzformel eines
beliebigen Kreiskorpers, Comment. Math. Helv. 1 (1929), 160–226.

[13] IHARA Y., The Euler-Kronecker invariants in various families of global fields, in “Al-
gebraic Geometry and Number Theory: In Honor of Vladimir Drinfeld’s 50th Birth-
day”, V. Ginzburg (ed.), Progress in Mathematics 850, Birkhäuser, 2006, pp. 407–451.

[14] IHARA Y., On “M-functions” closely related to the distribution of L ′/L-values, Publ.
Res. Inst. Math. Sci. 44 (2008), 893–954.

[15] IHARA Y., MURTY V.K., SHIMURA M., On the logarithmic derivatives of Dirichlet
L-functions at s = 1, Acta Arith. 137 (2009), 253–276.

[16] KANEMITSU S., On evaluation of certain limits in closed form, in “Théorie des nom-
bres, Proceedings of the International Number Theory Conference”, Université Laval,
July 5-18, 1987, J.M. de Koninck and C. Levesque (eds.), De Gruyter, 1989, pp. 459–
474.

[17] LAMZOURI Y., LANGUASCO A., Small values of |L ′/L(1,χ)|,
Experiment. Math., electronically publ. on September 3, 2021,
DOI:10.1080/10586458.2021.1927255, (to appear in print).

[18] LANGUASCO A., Efficient computation of the Euler-Kronecker constants for prime
cyclotomic fields, Res. Number Theory 7 (2021), Paper No. 2, 22 pp.

[19] LANGUASCO A., Numerical verification of Littlewood’s bounds for |L(1,χ)|, J. Num-
ber Theory 223 (2020), 12–34.

[20] LANGUASCO A., RIGHI L., A fast algorithm to compute the Ramanujan-Deninger
Gamma function and some number-theoretic applications, Math. Comp. 90 (2021),
2899–2921.

[21] LANGUASCO A., TRUDGIAN T.S., Uniform effective estimates for |L(1,χ)|, J. Num-
ber Theory 236 (2022), 245–260.

[22] LITTLEWOOD J.E., On the class number of the corpus P(
√
−k), Proc. London Math.

Soc. 27 (1928), 358–372.

[23] MOREE P., Irregular Behaviour of Class Numbers and Euler-Kronecker Constants of
Cyclotomic Fields: The Log Log Log Devil at Play, in “Irregularities in the Distribution
of Prime Numbers. From the Era of Helmut Maier’s Matrix Method and Beyond”,
J. Pintz and M.Th. Rassias (eds.), Springer, 2018, pp. 143–163.

On computing L ′/L(1,χ) 71

[24] RADER C.M., Discrete Fourier transforms when the number of data samples is prime,
Proc. IEEE 56 (1968), 1107–1108.

[25] SCHATZMAN J.C., Accuracy of the Discrete Fourier Transform and the Fast Fourier
Transform, SIAM J. Sci. Comput. 17 (1996), 1150–1166.

[26] THE PARI GROUP, PARI/GP version 2.13.3, Bordeaux, 2021,
pari.math.u-bordeaux.fr.

AMS Subject Classification: Primary 33-04, 11-04; secondary 33E20, 11Y16, 11Y60

Alessandro LANGUASCO,
Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova,
Via Trieste 63, 35121 Padova, ITALY.
e-mail: alessandro.languasco@unipd.it

Lavoro pervenuto in redazione il 14.03.2022.

