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1 Introduction

The analytic evaluation of the two-loop corrections to the electron form factors in Quantum
Electrodynamics (QED) can be considered among the pioneering projects that triggered
the developments of mathematical techniques and concepts for the evaluation of multi-loop
Feynman integrals in Quantum Field Theory, which is still ongoing nowadays. Originally
addressed by means of dispersion relations and giving a finite mass to the photon, in order
to regulate the otherwise divergent integrals [1–3], the contributing vertex graphs were also
later evaluated [4, 5] within the dimensional regularization scheme, by using the differential
equations method [6–8]. The results of [3–5] were among the first studies showing that
classical polylogarithms could not represent an exhaustive set of functions for Feynman
integrals beyond one-loop, therefore, pointing to the need of introducing an extended set
of polylogarithms, such as the Harmonic Polylogarithms (HPLs) [9] — later embedded in
the wider class of Generalised Polylogarithms (GPLs) [10]. HPLs turned out to be useful
both for the direct integration of the dispersive integrals [3], and for solving the differential
equations of the master integrals (MIs) in terms of iterated integrals [4], in combination
with suitable change of variables, needed to rationalize the integration kernels−a procedure
that would have been later dubbed as alphabet rationalization.
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The feasibility of the analytic evaluation of the electron form factors at two-loop and
beyond in QED was the basis of successive studies involving the heavy-quark form factors
at two-loop in Quantum Chromodynamics (QCD), in the case of a vector interaction, and
later extended, to account for the scalar, pseudoscalar, and pseudo-vector interactions [11–
23]. From a more formal point of view, form factors turn out to be also important for
investigating the singular behavior of massive amplitudes in gauge theories, through their
relation to the corresponding massless approximation [24].

In the context of scattering processes, the same two-loop vertex diagrams considered in
the above studies appear, on the one side, among the (factorised) diagrams contributing
to processes with the same number of external particles, yet with a larger number of
loops [25–30], and, on the other side, to processes having the same number of loops, yet
with more legs. In this respect, the two-loop three-point integrals contributing to the vector
form factors also appear in the evaluation of the two-loop QED corrections to the amplitude
of the four-fermion scattering [31–33] and in the two-loop QCD corrections to heavy-quark
pair production in the light-quark fusion channel [34].

In this work, we present, for the first time, the contribution to the vertex form factors
of a heavy lepton with mass me, coupled to a generic external particle, i.e. through a vector,
axial-vector, scalar and axial couplings, coming from a two-loop graph with the insertion of
a (vector) gauge boson vacuum polarization, with a closed-loop of a different type of heavy
lepton, with mass mi ̸= me.

We hereby address the evaluation of the renormalised form factors by decomposing
them, via integration-by-parts identities (IBPs) [35, 36] and Laporta’s algorithm [37], to a
linear combination of seven master integrals, and by evaluating the latter using the Magnus
method for differential equations [38].

After UV-renormalization, the renormalized form factors are finite and carry the
complete dependence on the squared transferred-momentum q2 = s, as well as on both the
internal and the external lepton masses, respectively mi and me. They are expressed in
terms of GPLs up to weight three; equivalent expressions in terms of classical polylogarithms
are given as well.

In the case of vector coupling, the evaluation of the diagram considered in the current
work was previously discussed in [39, 40], where semi-analytic expressions of the form
factors were given as one-fold integrals of kernels that are computed analytically by means
of the hyper-spherical integration method. The numerical evaluation of our analytic results,
by means of [41], is in perfect agreement with the results of [39] implemented in [42].
An independent evaluation of the same diagram was also considered in [31], where the
MIs were also computed using the method of differential equations. Our calculation is
performed using a different change of variables, yielding a simple structure of the system of
differential equations. The set of MIs presented in this work have been successfully checked
against the numerical values provided by SecDec [43] and AMFLow [44] and are in full
agreement with those presented in [31]. We also verify that the vector form factor F2 at zero
momentum transfer agrees with the known expression of the anomalous magnetic moment
given in [45, 46].

The analytic expression of the vector form factors presented in this work can be
directly applied in updating the analyses of the next-to-next-to-leading order (NNLO) QED
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Figure 1. Two-loop vertex diagrams with vacuum polarization insertion. The left panel corresponds
to the (axial-)vector case. The right panel corresponds to the (pseudo-)scalar case. The internal
fermion with mass mi is represented with a thick line, while the external fermion with mass me is
represented with a thin line.

corrections to the four fermion scattering with two massive lepton species. Additionally,
they can be used also to complete the analytic evaluation of the QCD corrections to the
heavy-quark form factors [13–17], as well as the QCD corrections to the Higgs boson decay
in a pair of bb̄-quarks [22].

The paper is organized as follows. In section 2, the definition of the vertex function
is introduced, and the corresponding form factors for the vector, axial vector, scalar and
pseudoscalar are discussed in section 3. In section 4, we discuss the integral decomposition
and the evaluation of the master integrals. In section 5, we discuss the renormalization
procedure. Finally, the results and conclusions are presented in sections 6 and 7 respectively.
Appendix A contains further details on the structure of the matrices appearing in the system
of differential equations obeyed by the master integrals. In appendix B, we elaborate on
the renormalization and on the evaluation of the one- and two-loop counterterm diagrams
and of the relative renormalization constants.

2 Vertex diagrams with vacuum polarisation insertion

We consider the two-loop vertex diagrams V (k) (the index (k) refers to a labelling introduced
earlier in the literature [4, 5, 13–17]) pertaining to a generic (axial-)vector or (pseudo-)scalar
boson of momentum qµ with virtuality q2 = s that couples to an external on-shell fermion-
antifermion pair, respectively carrying momenta p1 and p2 with p2

1 = p2
2 = m2

e. The
diagrams are subject to correction through the insertion of a vacuum polarization involving
a massless vector boson coupled to a fermion-antifermion pair of mass mi ̸= me, as depicted
in figure 1.

The corresponding expressions are given by

V (k)(s, p1, p2) = u(p1) Γ(k) v(p2) (2.1)

with

Γ(k) =
(

α

π

)2
× (µ2)2ϵ

∫ ( 2∏
i=1

ddki

(2π)d−2

)
(−iγν)

× iS(k1, me)× J × iS(k1 − p1 − p2, me)
× (−iγρ) iP νη(k1 − p1)iP ρλ(k1 − p1)
× (−i)2 (−1)Tr(γηiS(k2, mi)γλiS(k1 + k2 − p1, mi)), (2.2)
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where α is the fine structure constant, µ2 is the mass-scale introduced to keep the fine
structure constant dimensionless in dimensional regularization, with d = 4 − 2ϵ, and
ki(i = 1, 2) are the loop momenta. The fermion and the gauge boson propagators (in
Feynman gauge) are respectively defined as

S(q, m) = /q + m

q2 − m2 + iε
and Pµν(q) = − gµν

q2 + iε
(2.3)

with the Minkowski metric gµν . The symbol J depends on the type of external boson, which
is given by

J =

−i (gV γµ + gAγ5γµ) , (axial-)vector coupling,

−i (gS + gP γ5) , (pseudo-)scalar coupling.
(2.4)

The quantities gV , gA, gS , gP represent the vector, axial vector, scalar and pseudo scalar
coupling constants respectively.

3 Form factors

Following [5, 13, 14], a vertex Γµ describing the (axial-)vector coupling of fermions to a
gauge boson admits a decomposition in terms of four scalar form factors F1,2 and G1,2 (valid
at any number of loop and any topology). Depending on whether we consider (axial-)vector
or (pseudo-)scalar coupling, the number of form factors changes. For the former case,
although the general decomposition involves six form factors, two do not survive due to
gauge invariance. Hence, the decomposition in terms of four form factors F1,2 and G1,2
reads [5, 13, 14],

Γµ = −i

(
gV F1(s, mi, me)γµ + i

gV

2me
F2(s, mi, me)σµαqα

+gAG1(s, mi, me)γ5γµ + gA

2me
G2(s, mi, me)γ5qµ

)
,

(3.1)

with σαβ = i
2 [γα, γβ ] and qβ = (p1 + p2)β .

The form factors Fi and Gi (with i = 1, 2) can be extracted from Γµ by means of
suitable projectors, P µ

F i and P µ
Gi as

Fi = Tr(P µ
F iΓµ) , and Gi = Tr(P µ

GiΓµ) . (3.2)

The explicit expressions for the projectors in d = 4− 2ϵ dimensions are given by

P µ
F i(s, p1, p2) =

/p2 − me

me
i

(
fi,1 γµ + 1

2me
fi,2 (p2 − p1)µ

)
/p1 + me

me
,

P µ
Gi(s, p1, p2) =

/p2 − me

me
i γ5

(
gi,1γµ − 1

me
gi,2 (p2 + p1)µ

)
/p1 + me

me
,

(3.3)

with

f1,1 = m2
e

2gV (d − 2)(4m2
e − s) , f1,2 = 2(d − 1)m4

e

gV (d − 2)(4m2
e − s)2 , (3.4)

f2,1 = − 2m4
e

gV (d − 2)s(4m2
e − s) , f2,2 = − 2m4

e(4m2
e + (d − 2)s)

gV (d − 2)s(4m2
e − s)2 , (3.5)
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and

g1,1 = m2
e

2gA(d − 2)(4m2
e − s) , g1,2 = m4

e

gA(d − 2)s(4m2
e − s) , (3.6)

g2,1 = 2m4
e

gA(d − 2)s(4m2
e − s) , g2,2 = 4(d − 1)m6

e − (d − 2) sm4
e

gA(d − 2)s2(4m2
e − s) . (3.7)

In the derivation of the aforementioned projectors P µ
Gi(s, p1, p2), we assume an anticom-

muting γ5 in d dimensions. However, we employ a non-anticommuting γ5, as introduced by
’t Hooft-Veltman [47] and Breitenlohner-Maison [48] for the computation of form factors in
eq. (3.2). The latter is defined as

γ5 = − i

4!ϵ
µνρσγµγνγργσ . (3.8)

We treat the Levi-Civita symbol following the prescription in [49, 50]. In particular, the
contraction of the ϵµνρσ with the one from the projector is done according to the usual
mathematical identity in four dimensions, but with the Lorentz indices of the resulting
spacetime metric tensors all taken as d-dimensional. This is often known as Larin’s prescrip-
tion. As the Feynman diagrams considered in this article do not exhibit any anomalous
behaviour−or, in other words, they fulfil non-anomalous Ward identities−the finite remain-
der is guaranteed to be independent of the prescription (commuting or anticommuting)
adopted for γ5 [51, 52].1

The vertex function for the (pseudo-)scalar admits a decomposition in terms of two
scalar form factors FS and FP [17] as

Γ = −i

(
gSFS(s, mi, me) + gP γ5FP (s, mi, me)

)
(3.9)

with gS , gP the scalar and pseudoscalar couplings, respectively. The form factors FS and
FP can be extracted from Γ by means of suitable projectors, PS and PP , as

FS = Tr(PSΓ) , FP = Tr(PPΓ) , (3.10)

where the expressions for the projectors are given by

PS(s, p1, p2) =
/p2 − me

me

(
i m2

e

2gS(s − 4m2
e)

)
/p1 + me

me
,

PP (s, p1, p2) =
/p2 − me

me

(
−i m2

e

2gP s
γ5

)
/p1 + me

me
,

(3.11)

1The form factors were also computed assuming a naive anticommuting γ5−as implemented, for example,
in Package-X− finding the same result regardless of the prescription employed.
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Figure 2. Integral family associated to eq. (4.1). The dashed lines denotes the external leg with
momentum qµ, and q2 = s. Straight thin lines (resp. straight thick lines) denote denominators with
mass me (resp. mi). Wavy lines denote massless denominators.

The form factors Fi and Gi can be computed perturbatively, as series expansions in
powers of (α/π), as

F1 =1+
(

α

π

)
F

(1)
1 +

(
α

π

)2
F

(2)
1 +O

(
α

π

)3
, F2 =

(
α

π

)
F

(1)
2 +

(
α

π

)2
F

(2)
2 +O

(
α

π

)3
,

G1 =1+
(

α

π

)
G

(1)
1 +

(
α

π

)2
G

(2)
1 +O

(
α

π

)3
, G2 =

(
α

π

)
G

(1)
2 +

(
α

π

)2
G

(2)
2 +O

(
α

π

)3
,

FS =1+
(

α

π

)
F

(1)
S +

(
α

π

)2
F

(2)
S +O

(
α

π

)3
,

FP =1+
(

α

π

)
F

(1)
P +

(
α

π

)2
F

(2)
P +O

(
α

π

)3
,

(3.12)

where the superscripts (1) and (2) indicate the number of loops of the contributing diagrams.
The analytic evaluation of the contributions of the two-loop diagrams in figure 1 to the
form factors F

(2)
i and G

(2)
i , keeping complete dependence on the masses of the internal and

of the external fermions is the main result of this work. We denote these contributions as
F

(k)
i and G

(k)
i .

4 Computation of form factors

The evaluation of the form factors F
(k)
i and G

(k)
i proceeds by applying the relevant projectors,

defined in eq. (2.2) to the vertices Γ(k)
µ and Γ(k). To evaluate the projectors, the Lorentz and

Dirac algebra is performed in d dimensions and implemented in the Mathematica packages
Package-X [53] and FeynCalc [54] independently. The result of this operation is a linear
combination of scalar Feynman integrals, all members of the same integral family given by

In1,...,n7 ≡
∫

d̃dk1 d̃dk2
1

Dn1
1 · · ·Dn7

7
, (4.1)

where

D1 = k2
1 − m2

e , D2 = (k1 − p1)2 , D3 = k2
2 − m2

i ,

D4 = (k1 + k2 − p1)2 − m2
i , D5 = (k1 − p1 − p2)2 − m2

e ,

D6 = k1 · k2 , D7 = p2 · k2 , (4.2)

with p1 · p2 = (s − 2m2
e)/2, p2

1 = p2
2 = m2

e, represented in figure 2. We observe that
D1, . . . , D5 carry the momentum flowing through the diagram propagators, while D6 and
D7 are auxiliary denominators related to irreducible scalar products.
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Figure 3. Master integrals. Dots denote squared propagators.

For computational convenience, we define the integration measure of the scalar integrals
in eq. (4.1) as,

d̃dkj ≡ ddkj

iπd/2

(
m2

e

)ϵ 1
Γ(1 + ϵ) , (4.3)

such that the two tadpole MIs read,∫
d̃dk1

1
D2

1
= = 1

ϵ
,

∫
d̃dk2

1
D2

3
= = 1

ϵ

(
m2

e

m2
i

)ϵ

. (4.4)

The relation between the loop integral measure and the scalar integral measure, therefore is,

(µ2)ϵ ddkj

(2π)(d−2) = Cϵ d̃dkj , (4.5)

where Cϵ is defined as

Cϵ =
(

µ2

m2
e

)ϵ (
i

4 (4π)ϵ Γ(1 + ϵ)
)

, (4.6)

with the limiting value limϵ→0 Cϵ = i/4 .

4.1 Master integrals

Owing to the integration-by-parts relations [35, 36] and Laporta’s algorithm [37], all the
integrals defined in eq. (4.1) admit a decomposition in terms of 7 master integrals, Ti with
i = 1, . . . , 7, shown in figure 3, obtained with the packages LiteRed [55, 56] and Fire [57]
independently.

4.1.1 System of differential equations

The basis Ti, up to ϵ rescalings, obeys a system of differential equations (sDEQ) whose
matrix differential has a linear dependence on ϵ. By using the method of the Magnus/Dyson
exponential matrix [38], this set is transformed into a canonical basis I with elements:

I1 = ϵ2T1, I2 = ϵ2T2,

I3 = ϵ2memi (T3 + 2T4) , I4 = ϵ2m2
eT4,

I5 = ϵ2√−s
√
4m2

e − sT5, I6 = ϵ3√−s
√
4m2

e − sT6,

I7 = −ϵ2

2
√
−s
√
4(m2

e − m2
i )− s

(
2(s − 4m2

e)T7 − 2T4 − T3
)

, (4.7)
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which obey a sDEQ having the following canonical structure [58]:

dI(ϵ, x, y) = ϵ dA(x, y) I(ϵ, x, y), d = dx
∂

∂x
+ dy

∂

∂y
. (4.8)

In this way, the dependence on the ϵ parameter is factorized, and the entries of the total
differential matrix dA are rational in the variables x and y. The latter depend on the
original variables s, m2

i and m2
e, through the relations

− s

m2
e

= 4x2

1− x2 ,
mi

me
= 1− y2

1− 2xy + y2 , (4.9)

with inverse

x =
√
−s√

4m2
e − s

, y =
mi

√
−s − me

√
4(m2

e − m2
i )− s

(me + mi)
√
4m2

e − s
, (4.10)

whose expressions are obtained with the help of the package RationalizeRoots [59]. The
special form of eq. (4.8) implies that the solution can be written as a Taylor series expansion
in power of ϵ, as

I(ϵ, x, y) =
∞∑

j=0
I(j)(x, y) ϵj , (4.11)

with

I(j) =
j∑

i=0

∫
γ

dA . . . dA︸ ︷︷ ︸
i times

I(j−i)(x0, y0) , (4.12)

where γ is some regular path in the (x, y)−plane, and I(j−i)(x0, y0) is a vector of boundary
constants. In terms of the original variables, the boundary vector corresponds to the
(canonical) MIs evaluated in the limit s → 0 and mi = me.

Explicitly, the matrix in eq. (4.8) is given by:

dA(x, y) =
9∑

i=1
Mi d log (ηi(x, y)) (4.13)

with
η1 = y, η2 = 1 + x, η3 = 1 + y,

η4 = x − y, η5 = 1− x, η6 = 1− y,

η7 = 1− xy, η8 = 1− 2xy + y2, η9 = x − 2y + xy2 ,

(4.14)

and where the coefficient matrices Mi, shown in appendix A, have rational numbers as
entries.

The solution to the differential equation is valid in the region

0 < x < 1
⋂

0 < y <
1−

√
1− x2

x
, (4.15)

where all the letters in eq. (4.14) are real and positive. In terms of the variables s, mi and
me, eq. (4.15) corresponds to the (unphysical) region

mi > me

⋂
s < 4(m2

e − m2
i ) (me > 0) . (4.16)
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Given eqs. (4.13), (4.14), the solution of eq. (4.12) can be written in terms of GPLs, defined
recursively as

G(a1, . . . , an; z) =
∫ z

0

dt

t − a1
G(a2, . . . , an; t), G(0, . . . , 0︸ ︷︷ ︸

n times

; z) = 1
n! log

n(z) . (4.17)

4.1.2 Boundary conditions

The determination of the boundary constants proceeds by combining both quantitative and
qualitative properties of the considered integrals:

• the boundary values of I1,2 are determined via direct integration, taking into account
eq. (4.4);

• the boundary constants of I3,4 are determined by considering the subsystem formed by
the first four MIs and using a different variable, z = me/mi. The boundary constants
for this subsystem are fixed at z = 0. The boundary constants for I3,4, expressed
in the original variables x and y, are determined by matching the general solution
against the abovementioned subsystem, in the equal mass limit.

• the boundary values of I5,6,7 are computed in the limit s → 0 with mi = me, where
they are expected to vanish, due to the prefactors appearing in the definition of the
canonical bases and the regularity of the MIs T5,6,7.

As a useful consistency check, the boundary constants were also evaluated numerically
with the package AMFlow [44] at the point s = 0, mi = me and reconstructed using the
PSLQ algorithm [60].

The boundary vector takes a simple form:

I(x0, y0) =



1
1

I3(x0, y0)
I4(x0, y0)

0
0
0


+O(ϵ5), (4.18)

with

I3(x0, y0) = −1
4π2ϵ2 + 1

4
(
6π2 log(2)− 21ζ(3)

)
ϵ3

+ 1
120

(
−4320Li4

(1
2

)
+ 31π4 − 180 log4(2)− 360π2 log2(2)

)
ϵ4 ,

I4(x0, y0) =
1
3 I3(x0, y0) .

(4.19)

We used PolyLogTools [61] for the algebraic manipulation of the GPLs, and GiNaC [41]
for their numerical evaluation. The MIs were successfully compared against the numerical
values provided by pySecDec [43] and AMFlow, as well as against the set of MIs presented
in [31]. The analytic expression of the MIs, written in terms of GPLs up to weight w = 4
are provided in the supplementary material <results.m> accompanying this article, as well
as the corresponding arXiv version.

– 9 –



J
H
E
P
0
1
(
2
0
2
4
)
0
1
0

5 Renormalization

The diagrams depicted in figure 1 constitute a gauge invariant subset of vertex diagrams that
depend on both mi and me, and thus the UV renormalization can be addressed independently
of other contributions. The renormalization of other divergent graphs depending solely
on a single mass scale me has been performed separately in [5]. The renormalized vertex
functions Γ(k)ren

µ and Γ(k)ren are defined by the following combination of diagrams,

Γ(k)ren
µ = + + ,

Γ(k)ren = + + ,

(5.1)

namely by adding two conuterterm diagrams to the unrenormalized vertices, and are
computed in a two steps procedure. The first type of counterterm diagrams represents
the subtraction of the one-loop sub-divergence, achieved by renormalizing the vacuum
polarisation insertion in the on-shell scheme, with

= Z
(1)
3 (−gληℓ2 + ℓλℓη) , (5.2)

where ℓµ = kµ
1 − pµ

1 is the momentum flowing through the insertion. The one-loop renor-
malization constant Z

(1)
3 is implicitly defined by requiring

lim
ℓ2→0

(
+

)
= 0 . (5.3)

The second type of counterterm diagrams, defined as,

= −i
(
Z

(2)
V gV γµ + Z

(2)
A gAγ5γµ

)
, = −i

(
Z

(2)
S gS1+ Z

(2)
P gP γ5

)
,

(5.4)
cancel the genuine two-loop residual divergences of the vertex. The two-loop renormalization
constants with Z

(2)
j , j ∈ {V, A, S, P}, are implicitly defined by

= − lim
s→0

 +

 ,

= − lim
s→0

 +

 .

(5.5)
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Using IBPs, the renormalization constants admit the following expressions in terms
of MIs,

Z
(1)
3 = −4

3

(
α

π
Cϵ

)
,

Z
(2)
j = aj,1 + aj,2 + aj,3 + aj,4 ,

(5.6)

where the coefficients aj,k are not shown explicitly. After inserting the expression of the
MIs, they can be expressed as Laurent series in ϵ as

Z
(1)
3 = −

(
α

π
Cϵ

) 4
3ϵ

v−2ϵ ,

Z
(2)
V =

(
α

π
Cϵ

)2 (
−1

ϵ
+O

(
ϵ0
))

,

Z
(2)
A =

(
α

π
Cϵ

)2 (
−1

ϵ
+O

(
ϵ0
))

,

Z
(2)
S =

(
α

π
Cϵ

)2 ( 2
ϵ2 − 8

3ϵ
(1 + 3 log(v)) +O

(
ϵ0
))

,

Z
(2)
P =

(
α

π
Cϵ

)2 ( 2
ϵ2 − 8

3ϵ
(1 + 3 log(v)) +O

(
ϵ0
))

,

(5.7)

where v = mi/me. We note that the difference between ZV and ZA, as well as between
ZS and ZP , begins from the finite term onwards. More details on the evaluation of the
renormalization constants can be found in appendix B, where in particular the coefficients
for j = V are derived as an illustrative example.

6 Results

6.1 Renormalized form factors

For computational convenience, we introduce the rescaled form factors F (k)ren
i and G(k)ren

i ,
defined as

F
(k)ren
i = C2

ϵ F
(k)ren
i , G

(k)ren
i = C2

ϵ G
(k)ren
i . (6.1)

The renormalized form factors F (k)ren
i , with i ∈ {1, 2, S, P}, and G(k)ren

i , with i ∈ {1, 2},
are expressed in terms of 74 GPLs up to weight w = 3, out of which 50 depending on x,
with weights in the set {

−1, 1, y,
1
y

,
y2 + 1
2y

}
, (6.2)

and 24, on y, with weights in the set

{−1, 0, 1,−i, i} . (6.3)

Alternatively, we also provide their expression in terms of logarithms and classical
polylogarithms, which turns out to be convenient for the numerical evaluation and for the
series expansion of the form factors. The conversion of the GPLs into classical polylogarithms
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can be handled with the algorithm developed in [62].2 The renormalized form factors
F (k)ren

1,2 are in addition verified to be in numerical agreement with [39]. Additionally, all the
renormalized form factors are independently re-calculated using the variable choices and
MIs presented in [31], and are found in complete agreement.

The expressions of the renormalized form factors F (k)ren
1,2,S,P and G(k)ren

1,2 in terms of GPLs,
and in terms of classical polylogarithms constitute the main results of this communication.
Their expressions, too long to be shown here, as well as an implementation for their numerical
evaluation, can be found in the supplementary material <results.m> , and <evaluator.m>,
respectively accompanying this article, as well as the corresponding arXiv version.

6.2 Anomalous magnetic moment

The limit s → 0 of F
(k)ren
2 corresponds to the two-loop, mass dependent contributions to

the leptonic g − 2. The limit can be considered at the diagrammatic level−following the
discussion in appendix B−and the form factor can be expressed in terms of T1,2,3,4.

For generic ϵ, its expression in terms of MIs reads

F
(k)ren
2 (0, mi, me) = a1 +a2 +a3 +a4 , (6.4)

with
ai = âiC

2
ϵ , (6.5)

and

â1 =
8ϵ
((

ϵ
(
ϵ
(
8ϵ3−4ϵ2+30ϵ+3

)
−41

)
+18

)
m2

i −2
(
ϵ
(
ϵ
(
8ϵ3−12ϵ−1

)
+4
)
+1
)
m2

e

)
(ϵ+1)(2ϵ−3)(2ϵ−1)(2ϵ+1)(3ϵ−2)(3ϵ−1)m2

e

,

â2 =
8ϵ
(
(ϵ+1)(ϵ(ϵ(12ϵ(3ϵ−2)−55)+31)+6)m2

e−3(ϵ(ϵ(4ϵ(5ϵ+6)−23)−29)+18)m2
i

)
3(ϵ+1)(2ϵ−3)(2ϵ−1)(3ϵ−2)(3ϵ−1)m2

e

,

â3 =
8m2

i

(
(ϵ(ϵ(4(ϵ−1)ϵ(4ϵ+3)−13)+5)+6)m2

e+
(
ϵ
(
ϵ
(
3−2ϵ

(
4ϵ2−6ϵ+27

))
+67

)
−30

)
m2

i

)
(ϵ+1)(2ϵ−3)(2ϵ−1)(3ϵ−2)(3ϵ−1)m2

e

,

â4 =
16
(
(ϵ+1)2(ϵ(4ϵ(5ϵ−6)−1)+6)m2

em2
i −4(ϵ−1)ϵ(ϵ+1)

(
4ϵ2−2ϵ−1

)
m4

e

)
(ϵ+1)(2ϵ−3)(2ϵ−1)(3ϵ−2)(3ϵ−1)m2

e

+ (ϵ(ϵ(23−4ϵ(5ϵ+6))+29)−18)m4
i

(ϵ+1)(2ϵ−3)(2ϵ−1)(3ϵ−2)(3ϵ−1)m2
e

. (6.6)

Inserting the explicit expressions for the MIs, and considering just the finite term in the
ϵ → 0 limit, eq. (6.6) yields,

F
(k)ren
2 (0, mi, me) =

4
z2 − 25

36 +
(1
3 − 3

z2

)
G(0; z) +

(
4 + 5z − z3)

2z4 G(−1, 0; z)

+
(
4− 5z + z3)

2z4 G(1, 0; z),
(6.7)

where z = me/mi.
2In particular, we observe that by exploiting the shuffle algebra of the GPLs and/or adding a small

positive imaginary parameter iδ to suitable weights, we were able to recast the results in terms of appropriate
combinations of GPLs with complex weights, whose conversion to classical polylogarithms involves neither
Heasviside θ-function nor sgn-function in the region of interest.
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Eq. (6.7) is an alternative, yet equivalent expression to the one presented in [45]3 and
revisited in [46]. It can be written in terms of logarithms and dilogarithms, upon the
substitutions

G(0; z) = log(z),

G(1, 0; z) = log(z) log(1− z) + Li2(z),

G(−1, 0; z) = log(z) log(1 + z) + Li2(−z). (6.8)

7 Conclusions

We presented the analytic evaluation of the second-order corrections to the massive form
factors, coming from two-loop vertex diagrams with a vacuum polarization insertion, with
exact dependence on the external and internal fermion masses, and on the squared mo-
mentum transfer. We considered vector, axial-vector, scalar, and pseudoscalar interactions
in the coupling between the external fermion and the external field. The calculation was
performed within the dimensional regularization scheme. Using integration-by-parts identi-
ties, the form factors were decomposed in terms of a basis of seven master integrals. The
latter were evaluated by means of the differential equation method, making use of Magnus
exponential matrix. The renormalized form factors were expressed in terms of generalised
polylogarithms up to weight three, and in addition converted to classical polylogarithms.

The presented results can be considered as the last, missing contributions to the problem
of the analytic evaluation of the second-order corrections to the massive form factors in
QED and QCD, within the dimensional regularisation scheme, a problem which began to
be addressed about two decades ago. The expressions of the form factors evaluated in this
work can be straightforwardly applied in the context of the evaluation of the next-to-next-
to-leading order virtual QED and QCD corrections to the decay of a massive neutral boson
into heavy particles, or to the four (massive) fermion scattering amplitudes.
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A Matrices for the canonical differential equation

In this appendix we list the matrices {Mi}9
i=1 appearing in eq. (4.13)

M1 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

− 1
2

1
2 1 −3 0 0 0

− 1
2

1
2 1 −3 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 −1 −2 6 0 0 0


, M2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 −1 0 0 1 0 0

0 0 0 2 0 −1 1

1 −1 0 6 1 −3 3


, M3 =



−4 0 0 0 0 0 0

0 −2 0 0 0 0 0

0 0 −4 0 0 0 0

1 −1 0 0 0 0 0

0 0 0 0 −2 0 0

0 0 0 0 0 −6 −2

0 0 0 0 −2 6 2


,

M4 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

− 1
2

1
2 1 −3 0 0 0

− 1
2

1
2 1 −3 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−1 1 2 −6 0 0 0


, M5 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 0 −2 0 −1 −1

1 −1 0 6 −1 3 3


, M6 =



−4 0 0 0 0 0 0

0 −2 0 0 0 0 0

0 0 −4 0 0 0 0

1 −1 0 0 0 0 0

0 0 0 0 −2 0 0

0 0 0 0 0 −6 2

0 0 0 0 2 −6 2


,

M7 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0
1
2 − 1

2 1 3 0 0 0

− 1
2

1
2 −1 −3 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−1 1 −2 −6 0 0 0


, M8 =



4 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 6 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 6 0

0 0 0 0 0 0 2


, M9 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −4


.

B Evaluating the renormalization constants

In this appendix, we describe in detail the evaluation of the renormalization constants for
the vector form factors. A similar procedure has been followed in the other cases.

B.1 Z
(1)
3 renormalization constant

The renormalization constant Z
(1)
3 is defined implicitly by the following equation

lim
ℓ2→0

(
+

)
= 0. (B.1)

In order to derive its explicit expression, we expand the one-loop two point function in
terms of scalar master integrals

=
(
4
(
−2m2

i + ℓ2(ϵ − 1)
)

ℓ2(2ϵ − 3) + 8m2
i

ℓ2(2ϵ − 3)

)

×
(

α

π
Cϵ

)
(−gµνℓ2 + ℓµℓν) .

(B.2)
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To evaluate the limit ℓ2 → 0 it is necessary to expand the two point function, as a power
series in ℓ2, up to the first order as:

=
(
j0 + j1ℓ2 +O(ℓ4)

)
, (B.3)

so that, by using Taylor series expansion, we can identify

j0 =
∣∣∣∣
ℓ2=0

, j1 = d

dℓ2

( )∣∣∣∣
ℓ2=0

. (B.4)

By direct inspection, the ℓ2 → 0 limit can be taken diagrammatically, (as in this
example the integral is finite), ∣∣∣∣

ℓ2=0
= , (B.5)

which implies the value j0 = 1.
Using IBPs, we can also evaluate the first derivative of the 2-point integral,

d

dℓ2

( )
= 2m2

i

ℓ2(4m2
i − ℓ2) − ℓ2ϵ − 2m2

i

ℓ2(ℓ2 − 4m2
i )

, (B.6)

(which corresponds to the differential equation), and take the ℓ2 → 0 limit as follows,

j1 =
(

2m2
i

ℓ2(4m2
i − ℓ2) − ℓ2ϵ − 2m2

i

ℓ2(ℓ2 − 4m2
i )

)∣∣∣∣∣
ℓ2=0

,

=
(

2m2
i

ℓ2(4m2
i − ℓ2)

(
1 + j1ℓ2 +O(ℓ4)

)
− ℓ2ϵ − 2m2

i

ℓ2(ℓ2 − 4m2
i )

)∣∣∣∣∣
ℓ2=0

,

(B.7)

which simplifies to

j1 = 1
4

(
ϵ

m2
i

− 2j1 +O(ℓ2)
)∣∣∣∣∣

ℓ2=0
= 1

4

(
ϵ

m2
i

− 2j1

)
. (B.8)

The latter can be read as an equation in j1, whose solution gives j1 = ϵ/6m2
i , hence fixing

our Taylor series to be

=
(
1 + ϵ

6m2
i

ℓ2
)
+O(ℓ4) . (B.9)

Finally, this result can be inserted into eq. (B.2), to obtain

=
(4
3 +O(ℓ2)

)(
α

π
Cϵ

)
(−gµνℓ2 + ℓµℓν) , (B.10)

and thus
Z

(1)
3 = −4

3

(
α

π
Cϵ

)
= − 4

3ϵ

(
m2

e

m2
i

)ϵ (
α

π
Cϵ

)
, (B.11)

where in the last equality we have used eq. (4.4).
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B.2 Diagram for subdivergence renormalization

We consider the decomposition in terms of MIs of

Tr

P µ
1

  =
(

α

π
Cϵ

)(2
(
2 (ϵ − 1) (2ϵ + 1)m2

e + s
)

ϵ(2ϵ − 1) (4m2
e − s)

−
(
4m2

e − s
(
2ϵ2 − ϵ + 2

))
ϵ (4m2

e − s)

)
Z

(1)
3 , (B.12)

and

Tr

P µ
2

  =
(

α

π
Cϵ

)( 4(2ϵ + 1)m2
e

(2ϵ − 1) (s − 4m2
e)

−4(2ϵ + 1)m2
e

s − 4m2
e

)
Z

(1)
3 .

The one-loop MIs, although simple, are computed with the method of differential equations,
using the change of variables as in eq. (4.9) to ensure compatibility with the unrenormalized
form factors.

B.2.1 Z
(2)
V renormalization constant

We define Z
(2)
V through the requirement that

lim
s→0

Tr
(
P µ

F 1 Γ
(k)ren
µ

)
= 0 , (B.13)

which, by employing eq. (5.1), implies

Z
(2)
V = − lim

s→0
Tr

P µ
F 1

 − lim
s→0

Tr

P µ
F 1

 
= − lim

s→0
Tr

P µ
F 1

 − lim
s→0

[
F

(k)
1

]
.

(B.14)

The first contribution on the r.h.s. can be evaluated by using eq. (B.12) and eq. (B.9),
giving

lim
s→0

Tr

P µ
F 1

  =
(

α

π
Cϵ

) (2ϵ − 3)
(2ϵ − 1) Z

(1)
3

=
(

α

π
Cϵ

)2 4(3− 2ϵ)
3(2ϵ − 1) . (B.15)
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To evaluate F
(k)
1 in the limit s → 0 we proceed in a similar manner to in that in section B.1.

By considering the leading term of the master integrals T5,6,7 with respect to s we obtain

= +O(s)=− 2ϵ

4m2
e

+O(s) ,

= +O(s) ,

= +O(s)= ϵ

8m2
e(m2

e−m2
i )

(
+

)

+m2
i (2ϵ+1)−m2

e

8m2
e

(
m2

e−m2
i

) +(2ϵ+1)m2
i −(3ϵ+1)m2

e

4m2
e

(
m2

e−m2
i

) +O(s) .

(B.16)
The integrals T1,2,3,4 do not depend on s and thus do not need to be expanded. Using these
identities we can evaluate the limit as

lim
s→0

[
F

(k)
1

]
= a1 + a2 + a3 + a4 , (B.17)

with
ai = âi C2

ϵ ,

and

â1 =
(

2ϵ(4ϵ − 5)(ϵ(2ϵ + 7)− 7)(ϵ + 1)2

(ϵ − 1)(2ϵ + 1)(2ϵ + 3) (9ϵ3 − 7ϵ + 2) +
4m2

i ϵ(ϵ((5− 4ϵ)ϵ − 7) + 4)
m2

e(2ϵ − 1) (9ϵ3 − 7ϵ + 2)

)
,

â2 =
(

4m2
i ϵ(ϵ(ϵ(2ϵ + 19)− 7)− 4)

m2
e(ϵ + 1)(2ϵ − 1)(3ϵ − 2)(3ϵ − 1) −

8(ϵ − 1)(ϵ + 1)
(3ϵ − 2)(3ϵ − 1)

)
,

â3 =
(
4m4

i (ϵ(ϵ(2ϵ(4ϵ − 7) + 17) + 9)− 10)
m2

e(ϵ + 1)(2ϵ − 1)(3ϵ − 2)(3ϵ − 1) + 4m2
i (ϵ(ϵ(21− 4ϵ(ϵ + 3)) + 3)− 6)

(ϵ + 1)(2ϵ − 1)(3ϵ − 2)(3ϵ − 1)

)
,

â4 =
(

8m4
i (ϵ(ϵ(2ϵ + 19)− 7)− 4)

m2
e(ϵ + 1)(2ϵ − 1)(3ϵ − 2)(3ϵ − 1) +

8m2
i (−ϵ − 1)(ϵ(ϵ(2ϵ + 15)− 21) + 6)
(ϵ + 1)(2ϵ − 1)(3ϵ − 2)(3ϵ − 1)

+16m2
e(ϵ − 1)(ϵ + 1)

(3ϵ − 2)(3ϵ − 1)

)
.

(B.18)
Finally, by summing the two relevant contributions, the expression of Z

(2)
V reads

Z
(2)
V =

−
(

α

π

)2(
a1 +

[
a2+

4(3−2ϵ)
3(2ϵ−1)C2

ϵ

]
+a3 +a4

)
.

(B.19)
By substituting in the relevant expansions for the master integrals, at leading order, the
expression for Z

(2)
V takes the simple form

Z
(2)
V =

(
α

π
Cϵ

)2 (
−1

ϵ
+O(ϵ0)

)
. (B.20)
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