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n=p-harmonic maps: Regularity for the sphere case
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Abstract. We introduce n/p˛-harmonic maps as critical points of the energy

En;p˛ .v/ D

Z
Rn
j�

˛
2 vj

p˛

where pointwise v W D � Rn ! SN�1, for the N -sphere SN�1 � RN and p˛ D n
˛

. This
energy combines the non-local behaviour of the fractional harmonic maps introduced by
Rivière and the first author with the degenerate arguments of the n-Laplacian. In this set-
ting, we will prove Hölder continuity.
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1 Introduction

Our work is motivated by recent results [3–5, 16, 18] which proved regularity for
critical points of the energy Fn acting on maps v W Rn ! RN , n;N 2 N, for
closed manifolds N � RN ,

Fn.v/ D

Z
Rn
j�

n
4 vj

2
v 2 N � RN a.e.

Here, the operator�
˛
2 v is defined as a multiplier operator with symbol �j�j˛, that

is, denoting the Fourier transform and its inverse by . � /^ and . � /_, respectively,

�
˛
2 v D

�
�j�j˛v^

�_
:

These energies were introduced by T. Rivière and the first author – and they can
be seen as an n-dimensional alternative to the two-dimensional Dirichlet energy

D2.v/ D

Z
R2
jrvj2; v 2 N � RN a.e.
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Both energies have critical Euler–Lagrange equations. That is, the highest order
terms scale exactly as the lower-order terms, thus inhibiting the application of
a general regularity theory based only on the general growth of the right-hand
side – one has to consider the finer behaviour of the equation: these exhibit an an-
tisymmetric structure, which is closely related to the appearance of Hardy spaces
and compensated compactness – and induces regularity of critical points. In two
dimensions, these facts were observed in Rivière’s celebrated [14] for all confor-
mally invariant variational functionals (of which the Dirichlet energy is a proto-
type). We refer the interested reader to the introductions of [4, 5] for more on this.

Another possibility of generalizing the Dirichlet energy to arbitrary dimensions
(whilst preserving the criticality of the Euler–Lagrange equations) is to consider

Dn.v/ D

Z
Rn
jrvjn; v 2 N � RN a.e.

Again in this case, the now degenerate Euler–Lagrange equations are critical and
exhibit an antisymmetric structure, cf. [15, Chapter III] – only that it is not known
so far, whether in general this structure implies even continuity. In fact, towards
regularity of these systems, only few results are known. In [19] P. Strzelecki proved
regularity if the target manifold is a round sphere SN�1 – which extended the re-
spective Dirichlet-energy result by F. Hélein [10]. In the setting of general mani-
folds, we know so far of convergence results, cf. [21], and only under additional
assumptions on the solution there are regularity results, cf. [8, 13, 17].

It then seems interesting to consider an energy which combines the difficulties
of Dn and Fn. Namely we will work with

En;p˛ .v/ D

Z
Rn
j�

˛
2 vj

p˛
; vjD 2 N � RN a.e., where p˛ D n

˛
, D �� Rn.

(1.1)
Note, in the Euler–Lagrange equations of En;p˛ , the leading order differential op-
erator is nonlocal and degenerate. Again, these setting are critical for regularity:
one checks that any mapping v with finite energy En;p˛ belongs to BMO, but does
not necessarily need to be continuous, as Frehse’s counterexample [9] shows.

Here we consider the situation of a sphere, i.e. N D SN�1. Our main result is:

Theorem 1.1. Let u be a critical point of En;p˛ as in (1.1), p˛ 2 .1;1/. Then u
is Hölder-continuous.

For a special case of p-biharmonic maps into spheres there are earlier results
by Strzelecki, see [20].

Naturally, one expects at least parts of this result to hold for more general man-
ifolds N . To this end, in [6] we will treat the case of general manifolds, but with
the condition p˛ � 2.
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The proof relies on a suitable adaption of the arguments in [3–5, 16, 18], the
details of which we will explain in the next section: the Euler–Lagrange equations
of a critical point, see [5, 16], imply thatZ

Rn
j�

˛
2 uj

p˛�2
�
˛
2 ui �

˛
2 .�iju

j'/ D 0 (1.2)

for all ' 2 C10 .D/, �ij D ��j i 2 R. Note that the main difference and difficulty
comparing this equation to the n=2-harmonic case in [5, 16] is the weight

j�
˛
2 uj

p˛�2
:

Moreover, we have the sphere-condition,

ju.x/j D 1 for a.e. x 2 D: (1.3)

For a sketch of the proof, let us assume that D D Rn. Note that (1.3) reveals
information about the growth of the derivatives of u in the direction of u:

u � ru � 0:

Moreover – and more suitable to our case –

�2u ��
˛
2 u D

�
�
˛
2 juj2 � u ��

˛
2 u � u ��

˛
2 u
�
��

˛
2

�1‚…„ƒ
juj2„ ƒ‚ …
�0

:

These 3-term commutators H˛.u; u/ appearing on the right-hand side,

H˛.u; v/ WD �
˛
2 .uv/ � u�

˛
2 v � v�

˛
2 u;

have a special behaviour, which can best be seen by taking ˛ D 2: H2.u; v/ D
2ru � rv – they behave like products of lower-order operators applied to u and v,
for this interpretation cf. [16,18]. They are also closely related to the T1-Theorem
and the “Leibniz rule” for fractional order derivatives obtained by Kato and Ponce,
see [12] and [11, Corollary 1.2]. In our context, certain versions of these commu-
tators were observed in [5] and estimated in Triebel- and Besov-spaces via fine
estimates by paraproducts, cf. [6]. The necessary estimates for these operators can
be paraphrased by

Theorem 1.2 (cf. [18]). For any ˛ 2 .0; n/, let u D ��
˛
2�

˛
2 u, v D ��

˛
2�

˛
2 v.

Then for ˛ 2 .0; n/ there exists some constantC˛ > 0 and a numberL � L˛ 2 N,
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and for k 2 ¹1; : : : ; Lº there exist constants sk 2 .0; ˛/, tk 2 Œ0; sk� such that for
any i D 1; : : : ; n, where Ri denotes the Riesz transform,

jRiH˛.u; v/.x/j � C

LX
kD1

Mk�
�
sk�tk
2

�
��

tk
2 j�

˛
2 uj Nk�

�˛
2
C
sk
2 j�

˛
2 vj

�
:

Here, Mk; Nk are possibly Riesz transforms, or the identity. Moreover, jsk � tkj
can be supposed to be arbitrarily small. In particular, for any ˛ 2 .0; n/ and any
q; q1; q2 2 Œ1;1� such that

1

q
D

1

q1
C
1

q2
;

we have

kH˛.u; v/k. n
˛
;q/;Rn � k�

˛
2 uk. n

˛
;q2/;Rn k�

˛
2 vk. n

˛
;q2/;Rn : (1.4)

Here, k � k.p;q/ denotes the Lorentz-space Lp;q.Rn/-norm.

Consequently, (1.3) controls u ��
˛
2 u roughly like

ku ��
˛
2 ukp˛;Rn � k�

˛
2 uk

2

p˛;Rn :

This argument can be localized and then implies an estimate for the growth u��
˛
2 u

in the Lp˛ -norm on small balls by the square k�
˛
2 uk

2

p˛
localized essentially to

slightly bigger balls.
Now the fact that juj � 1 implies also that in order to control the growth of

�
˛
2 u, it suffices to estimate the growth of u ��

˛
2 u and the growth of �ijui�

˛
2 uj

for finitely many �ij D ��j i 2 R, see Proposition B.1. But terms of the form
�iju

i�
˛
2 uj can be estimated by the Euler–Lagrange equation (1.2).

By this kind of argument, we obtain (essentially) the following growth estimates
for all balls Br :

k�
˛
2 ukp˛;Br � k�

˛
2 uk

2

p˛;Bƒr

Cƒ� k�
˛
2 ukp˛;Rn

1X
kD1

2�kk�
˛
2 ukp˛;B2kƒrnB2kƒr

;

for some  > 0, and any ƒ > 2. Using an iteration technique, this implies that

k�
˛
2 ukp˛;Br � Cr

˛;

which accounts for the Hölder-continuity of u.



n=p-harmonic maps 5

Let us briefly underline the differences with respect to the manifold case treated
in [6]. There, instead of using such a simple condition (1.3), we are forced to work
with more general projections in the tangential and normal components of �

˛
2 u

(that is, we work with projections related to the derivatives of u). This seems to
prohibit extremely small ˛ (which in the sphere case pose no problem). On the
other hand, the respective Euler–Lagrange equations actually exhibit a non-trivial
right-hand side with antisymmetric structure. This will force us to estimate the
growth of �

˛
2 u in the weak (Lorentz) space Lp˛;1, which in turn will make it

necessary to gain Lp˛;1-estimates from the three-term commutatorsH˛.� ; �/. This
again, cf. (1.4) for q1 D q2 D 2, will only be possible if p˛ � 2.

We will use notation similar to [16]: We say that A �� Rn if A is a bounded
subset of Rn. For a set A � Rn we will denote its n-dimensional Lebesgue mea-
sure by jAj. By Br.x/ � Rn we denote the open ball with radius r and center
x 2 Rn. If no confusion arises, we will abbreviate Br � Br.x/. If p 2 Œ1;1�, we
usually will denote by p0 the Hölder conjugate, that is, 1

p
C

1
p0
D 1. By f � g

we denote the convolution of two functions f and g. Lastly, our constants – fre-
quently denoted by C or c – can possibly change from line to line and usually
depend on the space dimensions involved, further dependencies will be denoted
by a subscript, though we will make no effort to pin down the exact value of those
constants. If we consider the constant factors to be irrelevant with respect to the
mathematical argument, for the sake of simplicity we will omit them in the calcu-
lations, writing � , � ,� instead of �, � andD.

We will use the same cutoff-functions as in, e.g., [5,16]: �kr 2 C
1
0 .Ar;k/where

Br;k.x/ WD B2kr.x/

for k � 1,
Ar;k.x/ WD Br;kC1.x/nBr;k�1.x/;

and for k D 0
Ar;0.x/ WD Br;0.x/:

Moreover,
P
k �

k
r � 1 pointwise everywhere, and we assume thatˇ̌

r
l�kr

ˇ̌
� Cl

�
2kr

��l
; for l 2 N.

2 Proof of Theorem 1.1

Let ˛ 2 .0; n/, p˛ D n
˛
2 .1;1/, and u 2 Lp˛ .Rn;RN /,�

˛
2 u 2 Lp˛ .Rn;RN /.

Assume moreover that D �� Rn such that (1.2), (1.3) hold.
As (1.2) and (1.3) are equations satisfied by any critical point u of Theorem 1.1,

we have to show the following.
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Theorem 2.1. Let u 2 Lp˛ .Rn;RN /, �
˛
2 u 2 Lp.Rn;RN / satisfy (1.2), (1.3).

Then u is Hölder continuous in D.

In order to prove Theorem 2.1, we first rewrite equations (1.2) and (1.3) in a
fashion similar to [5, 16]: Firstly, equation (1.2) is equivalent toZ

Rn
j�

˛
2 uj

p˛�2
uj�ij�

˛
2 ui �

˛
2 ' D �

Z
Rn
j�

˛
2 uj

p˛�2
�
˛
2 ui �ij H.u

j ; '/;

(2.1)
for all ' 2 C10 .D/, �ij D ��j i 2 R. Here and henceforth,

H.a; b/ � H˛.a; b/ � �
˛
2 .ab/ � a�

˛
2 b � b�

˛
2 a:

Assume we proven Hölder-continuity of u in a ball B �� D. Pick a slightly big-
ger ball QB �� D, QB �� B , and let w WD �u, for some

� 2 C10 .D; Œ0; 1�/; � � 1 on QB:

Note that w 2 Lp.Rn/ for any p 2 Œ1;1�. It suffices to show Hölder regularity
for w. The relevant equations for w stemming from (1.3) and (2.1) are then (again,
cf. [5, 16])

w ��
˛
2w D

1

2
H.w;w/C

1

2
�
˛
2 �2 a.e. in Rn; (2.2)

and for all ' 2 C10 .D/, �ij D ��j i 2 R,Z
Rn
j�

˛
2wj

p˛�2
wj�ij�

˛
2wi �

˛
2 ' (2.3)

D �ij

Z
Rn

�
j�

˛
2wj

p˛�2
�
˛
2wi � j�

˛
2 uj

p˛�2
�
˛
2 ui

�
wj�

˛
2 ' (2.4)

C �ij

Z
Rn

�
j�

˛
2 uj

p˛�2
�
˛
2 ui

�
.wj � uj /�

˛
2 ' (2.5)

C �ij

Z
Rn
j�

˛
2 uj

p˛�2
�
˛
2 ui H.wj � uj ; '/ (2.6)

C �ij

Z
Rn

�
j�

˛
2wj

p˛�2
�
˛
2wi � j�

˛
2 uj

p˛�2
�
˛
2 ui

�
H.wj ; '/ (2.7)

� �ij

Z
Rn
j�

˛
2wj

p˛�2
�
˛
2wi H.wj ; '/: (2.8)

Now we need to appropriately adapt several arguments of [5,16]: first of all, using
(2.2) we control�

˛
2w projected into the orthogonal space to the sphere at the point

w, T?w SN�1.
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The orthogonal part

Namely, from (2.2) and Lemma A.9 one infers

Lemma 2.2. There is  D ˛:p˛ > 0 and a constant C depending on the choice
of B , QB , �, such that the following holds: for any " > 0 there exist ƒ > 0, R > 0,
such that for any Bƒr �� B , r 2 .0; R/,

kw ��
˛
2wkp˛;Br � " k�

˛
2wkp˛;Bƒr C C r

C "

1X
kD1

2�k k�
˛
2wkp˛;B2kƒrnB2k�1ƒr

:

The next step is to control the tangential part of �
˛
2w by means of (2.3). The

terms on the right-hand side of (2.3) can be divided into two groups. The integrands
of (2.4), (2.5), (2.6), and (2.7) always contain differences of the form w�u which
is trivial in QB . Consequently, we show that these terms behave subcritical.

Estimates of tangential part: Subcritical terms (2.4), (2.5), (2.6), (2.7)

In order to be more precise, we need the following proposition, which can be
proven by an method which appears in a similar form already in [5].

Proposition 2.3 (Estimates for disjoint-support terms). Let r 2 .0; 1/, d > 0 and
p; q 2 Œ1;1/ such that BrCd � QB . Then, for any f;�

˛
2 f 2 Lq.Rn/,

k�
˛
2 ..1 � �/f /kp;Br � Cd r

n
p
�
kf kq;Rn C k�

˛
2 f kq;Rn

�
: (2.9)

If moreover suppf � Br , for some  D ˛,

k.1 � �/�
˛
2 f k1;Rn � Cd r


k�

˛
2 f kq: (2.10)

Proof. Instead of using Fourier-transform as in [5, 16] etc., we use the following
strategy: let ˛ WD 2KC s, where s 2 .0; 2/ (the case s D 0 is trivial),K 2 N, that
is,

�
˛
2 D �

s
2�K :

Set h WD �Kg, and recall that (cf., e.g., [7, Lemma 3.2])

�
s
2h.x/ D c

Z
h.x C z/C h.x � z/ � 2h.x/

jzjnCs
dz:

Thus, if suppg � RnnBrCd and x 2 Br , as is the case in (2.9), or suppg � Br
and x 2 RnnBrCd , as is the case in (2.10)

j�
s
2h.x/j �

Z
jzj>d

jh.x C z/j jzj�n�s dz D jhj �
�
j � j
�n�s�j � j>d

�
.x/;
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and

kjhj �
�
j � j
�n�s�j � j>d

�
k
p
� khkq d

�n.q2�1/�2sq2

� d�n.q2�1/�2sq2
�
kf kq;Rn C k�

Kf kq;Rn
�
;

where q2 is chosen such that

1C
1

p
D
1

q
C
1

q2
:

For (2.9) we then use the fact that W ˛;q D W 2KCs;q � W 2K;q , see for example
[7, Proposition 2.1], that is

kf kq;Rn C k�
Kf kq;Rn � kf kq;Rn C k�

˛
2 f kq;Rn :

For (2.9), note that by Poincaré’s inequality,

kf kq;Rn C k�
Kf kq;Rn � k�

Kf kq;Rn � r
˛�K
k�

˛
2 f kq;Rn :

Now, assume j�ij j � 2. We claim that for any ' 2 C10 .Br/, where B2r � B ,
all but the last term on the right-hand side of (2.3) can be estimated by r for some
 , up to a constant factor depending on u, B , and the distance betweenBr and @ QB:

Proposition 2.4 (Subcritical terms). There exists a constant C depending on u, B ,
QB , the choice of �, and an exponent  � p˛;˛ > 0 such that for any ' 2 C10 .Br/,
k�

˛
2 'kp˛ � 1 for arbitrary B2r � B , if

I WD

Z
Rn

�
j�

˛
2wj

p˛�2
�
˛
2wi � j�

˛
2 uj

p˛�2
�
˛
2 ui

�
wj�

˛
2 ';

II WD
Z

Rn

�
j�

˛
2 uj

p˛�2
�
˛
2 ui

�
.wj � uj /�

˛
2 ';

III WD
Z

Rn
j�

˛
2 uj

p˛�2
�
˛
2 ui H.wj � uj ; '/;

IV WD
Z

Rn

�
j�

˛
2wj

p˛�2
�
˛
2wi � j�

˛
2 uj

p˛�2
�
˛
2 ui

�
H.wj ; '/;

then
jI j C jIIj C jIIIj C jIVj � C r :

Proof. Note that for any a; b 2 RN we have

ˇ̌
jajp�2a � jbjp�2b

ˇ̌
� Cp

´
ja � bjp�1 if p 2 Œ1; 2�,
ja � bjp�1 C ja � bjjbjp�2 if p > 2:
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Now we argue via Proposition 2.3, using that there exists a constant d D d
B; QB

> 0

such that dist.supp';Rnn QB/ > d . This is straightforward for I and IV (recall that
w 2 L1 for I and use Proposition A.7 for IV). For III, we apply Proposition 2.3
to the terms

H.wj � uj ; '/ D H..� � 1/uj ; '/ D ' �
˛
2 ..� � 1/uj /C .� � 1/uj �

˛
2 ';

and finally, for II we first estimate

k.1 � �/u�
˛
2 'kp˛ � kukp˛k.1 � �/�

˛
2 'k1:

Estimates of tangential part – the critical term (2.8)

In order to estimate the tangential part of�
˛
2w completely, we now need to control

the last term (2.8), which is done in the following two propositions.

Proposition 2.5. There is a constant C˛, R > 0 and an exponent  > 0 such that
the following holds. Let kwk1 � 1, and assume �

˛
2w 2 Lp˛ .Rn/. Then for any

' 2 C10 .Br/, ƒ � 5, r 2 .0; R/

kH.w; '/kp˛;B2kƒrnB2k�1ƒr
� C .2kƒ/� k�

˛
2 'kp˛ :

Proof. We have on B2kƒrnB2k�1ƒr

H.w; '/ D �
˛
2 .w'/ � w�

˛
2 ':

One checks that (exploiting the disjoint support via similar arguments as in Propo-
sition 2.3)

k�
˛
2 .w'/kp˛;B2kƒrnB2k�1ƒr

� kwk1
�
2kƒ

��n
:

and as well
kw �

˛
2 'kp˛;B2kƒrnB2k�1ƒr

� kwk1
�
2kƒ

��n
:

Moreover:

Proposition 2.6. There is a constant C˛ and an exponent  > 0 such that the fol-
lowing holds. Let kwk1 � 1, and assume that �

˛
2w 2 Lp˛ .Rn/. Then for any

' 2 C10 .Br/, ƒ � 5

kH.w; '/kp˛;Bƒr � C
�
ƒ� k�

˛
2wkp˛ C k�ƒ3r�

˛
2wkp˛

�
k�

˛
2 'kp˛ :

Proof. Set

w D ��
˛
2 .�ƒ3r�

˛
2w/C��

˛
2 ..1 � �ƒ3r/�

˛
2w/ DW w1 C w2;
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and
' D ��

˛
2 .�ƒr�

˛
2 '/C��

˛
2 ..1 � �ƒr/�

˛
2 '/ DW '1 C '2:

Then
H.w; '/ D H.w1; '/CH.w2; '2/CH.w2; '1/:

We compute via Proposition A.7,

kH.w1; '/kp˛ � k�ƒ3r�
˛
2wkp˛ k�

˛
2 'kp˛ ;

kH.w2; '2/kp˛ � k�
˛
2wkp˛ k.1 � �ƒr/�

˛
2 'kp˛

� ƒ�n k�
˛
2wkp˛k�

˛
2 'kp˛ :

In order to estimate kH.w2; '1/kp˛ in the given set, according to Lemma A.6,
similar to the arguments in [18], it suffices to estimate terms of the following
form, for some  2 C10 .Br/, k kp˛ 0 � 1, and for s 2 .0; ˛/, t 2 Œ0; s� (in fact,
there might appear additional 0-multipliers, but as they do not interfere with the
argument, we ignore this for the sake of readability)Z

��
s�t
2  ��

s
2 j.1 � �ƒ3r/�

˛
2wj��

˛�t
2 j�ƒr�

˛
2 'j

D

Z
��

s�t
2  �ƒ2r�

� t
2 j.1 � �ƒ3r/�

˛
2wj��

˛�s
2 j�ƒr�

˛
2 'j

C

Z
.1 � �ƒ2r/�

� s�t
2  ��

t
2 j.1 � �ƒ3r/�

˛
2wj ��

˛�s
2 j�ƒr�

˛
2 'j

� k�ƒ2r�
� t
2 j.1 � �ƒ3r/�

˛
2wjk n

˛�t
k�

˛
2 'kp˛

C k.1 � �ƒ2r/�
� s�t

2  k n
n�sCt�˛

k�
˛
2wkp˛ k�

˛
2 'kp˛

�
�
ƒt�˛ Cƒ�˛

�
k�

˛
2wkp˛ k�

˛
2 'kp˛ :

Here, we have used several times the techniques for products of (non-local) frac-
tional operators with disjoint support, for the details of which we refer to, e.g., the
arguments of Proposition 2.3 or [18, Proposition 4.4].

Setting  WD min¹˛ � t; ˛; nº, we conclude.

Conclusion for the tangential part

By Proposition 2.4, Proposition 2.5 and Proposition 2.6, we arrive at the following

Proposition 2.7 (Estimate of (2.8)). There is  D ˛:p˛ > 0 and a constant C
depending on the choice of B , QB , �, such that the following holds: for any " > 0
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there exists ƒ > 0, R > 0, such that for any Br �� B , r 2 .0; R/, ' 2 C10 .Br/,
k�

˛
2 'kp˛ � 1, �ij D ��ji , j�j � 1,

�ij

Z
Rn
j�

˛
2wj

p˛�2
wj�

˛
2wi �

˛
2 '

� " k�
˛
2wk

p˛�1

p˛;Bƒr
C C r C "

1X
kD1

2�k k�
˛
2wk

p˛�1

p˛;B2kƒrnB2k�1ƒr
:

Now we can proceed by virtually the same arguments as in [5,16]: firstly, Propo-
sition 2.7 finally implies

Lemma 2.8. There is  D ˛:p˛ > 0 and a constant C depending on the choice of
B , QB , �, such that the following holds: for any " > 0 there exists ƒ > 0, R > 0,
such that for any Br �� B , r 2 .0; R/, �ij D ��ji , j�j � 1,

kj�
˛
2wj

p˛�2
�ij w

j�
˛
2wikp˛ 0;Bƒ�1r

� " k�
˛
2wk

p˛�1

p˛;Bƒr
C C r C "

1X
kD1

2�k k�
˛
2wk

p˛�1

p˛;B2kƒrnB2k�1ƒr
:

Putting tangential and normal part together

Together, Lemma 2.8 and Lemma 2.2 imply

Lemma 2.9. There is  D ˛:p˛ > 0 and a constant C depending on the choice
of B , QB , �, such that the following holds: for any " > 0 there existsƒ > 0, R > 0,
such that for any Br �� B , r 2 .0; R/,

k�
˛
2wik

p˛�1

p˛;Bƒ�1r
� " k�

˛
2wk

p˛�1

p˛;Bƒr
C C r

C "

1X
kD1

2�k k�
˛
2wk

p˛�1

p˛;B2kƒrnB2k�1ƒr
:

Proof. Note that, if p˛ � 2,

k�ij w
j�

˛
2wik

p˛�1

p˛;Bƒ�1r
D kj�ij w

j�
˛
2wi j

p˛�2
�ij w

j�
˛
2wikp˛ 0;Bƒ�1r

� kj�
˛
2wj

p˛�2
�ij w

j�
˛
2wikp˛ 0;Bƒ�1r

:

On the other hand, if p˛ 2 .1; 2/, we set for � > 0 from Proposition B.1,

A�;� WD
°
jwi�ij�

˛
2wj j � � j�

˛
2wj

±
: (2.11)
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Then, in view of Proposition B.1, for any � 2 �, we have

k�ij w
j�

˛
2wik

p˛�1

p˛;Bƒ�1r

� k�ij w
j�

˛
2wik

p˛�1

p˛;Bƒ�1r\A�;�
C k�ij w

j�
˛
2wik

p˛�1

p˛;Bƒ�1r\A
c
�;�

(by Proposition B.1)

� k�ij w
j�

˛
2wik

p˛�1

p˛;Bƒ�1r\A�;�
C

X
Q�2�

k Q�ij w
j�

˛
2wik

p˛�1

p˛;Bƒ�1r\A Q�;�

C kwi�
˛
2wik

p˛�1

p˛;Bƒ�1r

(by (2.11))

� C�
X
Q�2�

kj�
˛
2wj

p˛�2
Q�ij w

j�
˛
2wikp˛ 0;Bƒ�1r

C kwi�
˛
2wik

p˛�1

p˛;Bƒ�1r
:

Applying again Proposition B.1, we arrive for any p˛ > 1 at

k�
˛
2wk

p˛�1

p˛;Bƒ�1r
�

X
�2�

kj�
˛
2wj

p˛�2
�ij w

j�
˛
2wikp˛ 0;Bƒ�1r

C kwi�
˛
2wik

p˛�1

p˛;Bƒ�1r
:

We conclude by Lemma 2.8 and Lemma 2.2.

The proof of Theorem 2.1 follows now by an iteration argument and an appli-
cation of Dirichlet’s growth theorem (cf. [5], [4, (43)] and [18, arguments after
Lemma 6.4]).

A Lower order arguments: Proof of Theorem 1.2

Let ˛ 2 .0; n/. In this section, we treat estimates on the bilinear operator

H˛.u; v/ WD �
˛
2 .uv/ � u�

˛
2 v � v�

˛
2 u;

which behaves, in some sense, like a product of lower operators (take, for example,
the classic case ˛ D 2). The estimates are similar to the ones obtained and used in
[3–5, 16, 18], and here, we will adopt the general strategy of the latter article [18].
The argument relies on the estimates on singular kernels of Proposition A.1. These
kernels (the geometric-space analogue to the Fourier-multiplier estimates in [16])
appear because of the following representation of �

˛
2 , ��

˛
2 : For f 2 C10 .R

n/,

�
˛
2 f .x/ D c˛;n

Z
Rn

f .x/ � f .y/

jx � yjnC˛
dx if ˛ 2 .0; 1/;
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for some c˛;n 2 Rn¹0º. The inverse operator of �
˛
2 is the so-called Riesz poten-

tial,

��
˛
2 f .x/ D c˛;n

Z
Rn
f .�/ jx � �j�nC˛ d� if ˛ 2 .0; n/: (A.1)

The essential argument appears in the case ˛ 2 .0; 1/. As mentioned above, they
are similar to the ones in [18], though there, for convenience, only special cases
for ˛ were considered.

A.1 The case ˛ 2 .0; 1/

With the representation for �
˛
2 , one has for ˛ 2 .0; 1/,

�
˛
2 .u v/.x/ D c˛;n

Z
u.x/ v.x/ � u.y/ v.y/

jx � yjnC˛
dy

D c˛;n

Z
.u.x/ � u.y// v.x/C u.y/ .v.x/ � v.y//

jx � yjnC˛
dy

D �
˛
2 u.x/ v.x/C c˛;n

Z
.u.y/ � u.x// .v.x/ � v.y//

jx � yjnC˛
dy

C�
˛
2 v.x/ u.x/;

that is,

H˛.u; v/ D c˛;n

Z
.u.y/ � u.x// .v.x/ � v.y//

jx � yjnC˛
dy:

Replacing now
u WD ��

˛
2 a; v WD ��

˛
2 b;

this is equivalent to

H˛.u; v/ D Qc˛;n

•
1

jx � yjnC˛
.jy � �j�nC˛ � jx � �j�nC˛/

� .jy � �j�nC˛ � jx � �j�nC˛/ a.�/ b.�/ d� d� dy:

Thus, the main point of our argument is to replace the differences of functions in
the definition ofH by differences on the kernels of the respective operators. In the
representation above of H˛.u; v/ it is useful to observe: whenever jx � yj�n�˛

becomes singular, both the difference of terms with � and the terms with � tend to
zero as well, thus “absorbing” the singularity up to a certain point. More precisely,
these kernels can be estimated as in the following proposition.
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Proposition A.1 (Multiplier estimate). Let ˛ 2 Œ0; 1� and " 2 .0; 1/. Then for al-
most every x; y; �; � 2 Rn, and a uniform constant Cˇ̌
j� � yj�nC˛ � j� � xj�nC˛

ˇ̌ ˇ̌
j� � yj�nC˛ � j� � xj�nC˛

ˇ̌
� C jy � �j�nC˛�"

�
jx � �j�nC˛�" C jy � �j�nC˛�"

�
jx � yj2"

C C
�
jx � �j�nC˛�" C jy � �j�nC˛�"

�
jy � �j�nC˛�"jx � yj2"

C C jx � �j�nC˛jx � �j�nC˛ �jx�yj>2jx��j �jx�yj>2jx��j:

In particular, multiplying this estimate with the hypersingular (i.e. not locally
integrable) kernel jx � yj�n�˛ (the kernel of the differentiation �

˛
2 ), choosing "

such that 1 > 2" > ˛ > " > 0, the first two terms on the right-hand side consist
of products of locally integrable kernels, or, more precisely, kernels of the Riesz
potentials ��

˛�"
2 and ��

2"�˛
2 . In the last term, we then have twice kernels of

��
˛
2 , and the kernel jx � yj�n�˛�jx�yj>2jx��j �jx�yj>2jx��j where the singu-

larity x D y is somewhat cut away.
As we will see in Proposition A.2, this enables us, to show that the operators

�
˛
2 in the definition of H˛.� ; �/ “distribute their differentiation” on both entry-

functions.

Proof of Proposition A.1. Observe that in the following argument, since ˛ 2 Œ0; 1�,
all the constants can be taken independently from ˛. We set

k.x; y; �/ WD
ˇ̌
j� � yj�nC˛ � j� � xj�nC˛

ˇ̌
:

Decompose the space .x; y; �/ 2 R3n into several subspaces depending on the
relations of jy � �j, jx � yj, jx � �j:

1 � �1.x; y; �/C �2.x; y; �/C �3.x; y; �/ for x; y; � 2 Rn;

where
�1 WD �jx�yj�2jy��j �jx�yj�2jx��j;

�2 WD �jx�yj�2jy��j �jx�yj>2jx��j;

�3 WD �jx�yj>2jy��j �jx�yj�2jx��j;

and functions of the form �f .x;y;�/<0 denote the usual characteristic functions of
the set ¹.x; y; �/ 2 R3N W f .x; y; �/ < 0º. Note that with a uniform constant

jy � �j�1 � jx � �j�1: (A.2)
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Then, by the mean value theorem, for the details in this context cf. [18, Proposi-
tion 3.3], for any " 2 .0; 1/

k.x; y; �/�1 � jx � �j
�nC˛�1

jx � yj�1

� jx � �j�nC˛�"jx � yj" �1
(A.2)
� jy � �j�nC˛�"jx � yj" �1:

Moreover, for any " > 0,

k.x; y; �/�2 � jx � �j
�nC˛�2 � jx � �j

�nC˛�"
jx � yj";

and also for any " > 0,

k.x; y; �/�3 � jy � �j
�nC˛�3 � jy � �j

�nC˛�"
jx � yj":

In order to estimate now the product k.x; y; �/k.x; y; �/ we have to check the
claim for all cases .i; j /, i; j 2 ¹1; 2; 3º, where we say

case .i; j /, .x; y; �; �/ 2 R4n such that �i .x; y; �/�j .x; y; �/ D 1:

Let us denote

Type I-estimate WD jy � �j�nC˛�"jx � �j�nC˛�"jx � yj2";

Type II-estimate WD jy � �j�nC˛�"jy � �j�nC˛�"jx � yj2";

Type III-estimate WD jx � �j�nC˛�"jy � �j�nC˛�"jx � yj2";

Type IV-estimate WD jx � �j�nC˛jx � �j�nC˛�jx�yj>2jx��j�jx�yj>2jx��j:

One checks, that each of these types have to appear. Note, the only case where we
choose the Type IV-estimate is .2; 2/.

As a consequence of Proposition A.1 above, we obtain the following estimate
for ˛ 2 .0; 1/:

Proposition A.2. Let u D ��
˛
2�

˛
2 u, v D ��

˛
2�

˛
2 v. Then, for ˛ 2 .0; 1/ there

exist constants C˛ > 0, L� L˛ 2N, sk 2 .0; ˛/, tk 2 Œ0; sk�, for k 2 ¹1; : : : ; Lº,
such that

jH˛.u; v/.x/j � C

LX
kD1

��
sk�tk
2

�
��

tk
2 j�

˛
2 uj��

˛
2
C
sk
2 j�

˛
2 vj

�
:

Moreover, jsk � tkj can be supposed to be arbitrarily small.
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Proof. Set a WD �
˛
2 u, b WD �

˛
2 v. By the definition of �

˛
2 for ˛ 2 .0; 1/,

�
˛
2 .��

˛
2 a��

˛
2 b/.x/

D cn;˛

Z
��

˛
2 a.x/ ��

˛
2 b.x/ ���

˛
2 a.y/��

˛
2 a.y/

jx � yjnC˛
dy

D cn;˛

Z
1

jx � yjnC˛

��
��

˛
2 a.x/ ���

˛
2 a.y/

�
��

˛
2 b.x/

C��
˛
2 a.y/

�
��

˛
2 b.x/ ���

˛
2 b.y/

��
dy

D a.x/��
˛
2 b.x/C cn;˛

Z
1

jx � yjnC˛

�
��

˛
2 a.y/ ���

˛
2 a.x/

�
�
�
��

˛
2 b.x/ ���

˛
2 b.y/

�
dy

C b.x/��
˛
2 a.x/:

Consequently,

jH.��
˛
2 a;��

˛
2 b/.x/j

�

Z
Rn

Z
Rn

Z
Rn

1

jx � yjnC˛

ˇ̌
jy � �j�nC˛ � jx � �j�nC˛

ˇ̌
�
ˇ̌
jy � �j�nC˛ � jx � �j�nC˛

ˇ̌
jaj.�/ jbj.�/ dy d� d�:

Pick " 2 .0; 1/ in Proposition A.1 such that

˛ < 2" < min¹2˛; nC ˛º:

Let us see, for instance, how our expression behaves if the “Type I”-estimate from
the proof of Proposition A.1 is applicable, that is, ifˇ̌

jy � �j�nC˛ � jx � �j�nC˛
ˇ̌ ˇ̌
jy � �j�nC˛ � jx � �j�nC˛

ˇ̌
jx � yjnC˛

� jy � �j�nC˛�" jx � �j�nC˛�"jx � yj�nC2"�˛:

Observe, by the choice of ", all the appearing kernels on the right-hand side of
this estimate have the exponent n � � for some � > 0. That is, all the appearing
kernels correspond to the kernel of a Riesz potential ��

�
2 , see (A.1). Namely,Z

jy � �j�nC˛�" jaj.�/ d� � ��
˛�"
2 jaj.y/;Z

jx � �j�nC˛�" jbj.�/ d� � ��
˛�"
2 jbj.x/;
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and finallyZ
jx � yj�nC2"�˛��

˛�"
2 jaj.y/ dy � ��

2"�˛
2 ��

˛�"
2 jaj.x/ � ��

"
2 jaj.x/:

By this kind of strategy, one obtainsˇ̌̌
H.��

˛
2 a;��

˛
2 b/.x/

ˇ̌̌
� ��

"
2 jaj.x/��

˛�"
2 jbj.x/C��

˛�"
2 jaj.x/��

"
2 jbj.x/

C��
2"�˛
2

�
��

˛�"
2 jaj ��

˛�"
2 jbj

�
.x/C A;

where

A WD

Z
Rn

Z
Rn

Z
Rn

jx � �j�nC˛jx � �j�nC˛

jx � yjnC˛
�jx�yj>2jx��j

� �jx�yj>2jx��j jaj.�/ jbj.�/ dy d� d�

�

Z
Rn

Z
Rn
jx � �j�nC˛jx � �j�nC˛jx � �j�

˛
2 jx � �j�

˛
2 jaj.�/ jbj.�/ d� d�

D ��
˛
4 jaj.x/��

˛
4 jbj.x/:

Thus we can conclude the proof: we choose L˛ D 3, with s1 D ", t1 D ˛ � ",
s1 � t1 D 2" � ˛ as first term, then with interchanged roles s2 D t1 and t2 D s2,
and finally s3 D ˛=2, t3 D ˛=2, and s2 � t2 D 2" � ˛.

Remark A.3. About the strategy of the proof above let us remark how the decom-
position strategy we apply in [18] and here is related to the arguments in [5] and
[16]: For the para-product estimates of the bi-commutator in [5], they used an in-
finite Taylor expansion after Fourier transform in the phase space whenever the
symbols were rather close to each other.

Instead, in [16] the mean value formula (that is, a one-step Taylor expansion)
was employed, also after Fourier transform, which lead to a simple pointwise es-
timate in the phase space which sufficed for the purposes there, but did not have
the full power of the more complicated, yet more generalizable technique in [5].
Both of these arguments, essentially obtained pointwise bounds in the phase space,
which – transformed in the geometric space – gives not pointwise, butLp.Rn/-es-
timates.

With the method introduced in [18] and employed here, we obtain pointwise
results in the geometric space.

But let us stress, that both the arguments in [16] in the phase space and in [18]
in the geometric space, which apply both a one-step Taylor expansion, are rough
in the following sense: when considering Hardy-space or BMO-space estimates,
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they do not seem to give the optimal result (which is not pointwise anymore), and
in this case, the strategy of using para-products as developed in [5] seems more
viable, see, e.g., the Hardy-space estimates in [5].

A.2 The case ˛ � 1

We will reduce the case ˛ � 1 to the case ˛ 2 .0; 1/ already discussed. For the
case ˛ D 1C Q̨ 2 Œ1; 2/, we use the following argument: let Ri be the i -th Riesz-
transform, defined by

Rif .x/ D c

Z
.x � y/i

jx � yjnC1
f .y/ dy:

Then for 1C Q̨ 2 Œ1; 2/,

RiH1CQ̨ .u; v/ D �
˛
2 @i .uv/ �Ri .u�

1C Q̨
2 v/ �Ri .v�

1C Q̨
2 u/

D �
˛
2 .u@iv/ � u�

Q̨
2 @iv ��

Q̨
2 u @iv

C�
˛
2 .v@iu/ � v�

Q̨
2 @iu ��

Q̨
2 v @iu

�Ri .u�
1C Q̨
2 v/C u�

Q̨
2 @iv

�Ri .v�
1C Q̨
2 u/C v�

Q̨
2 @iu

C�
Q̨
2 v @iuC�

Q̨
2 u @iv

D H Q̨ .u; @iv/CH Q̨ .v; @iu/

�Ri .u�
1C Q̨
2 v/C uRi�

1C Q̨
2 v

�Ri .v�
1C Q̨
2 u/C vRi�

1C Q̨
2 u

C�
Q̨
2 v @iuC�

Q̨
2 u @iv:

In the case Q̨ D 0, we write this as

RiH1.u; v/ D �Ri .u�
1
2 v/C uRi�

1
2 @iv �Ri .v�

1
2u/C vRi�

1
2u:

The termsH Q̨ .� ; �/, as we’ve seen above, and the terms�
Q̨
2 u @iv and�

Q̨
2 v @iu are

actually products of lower order operators applied to u and v, respectively. More-
over, we have the following estimate, which should be compared to the famous
commutator estimates and their relation to Hardy spaces and BMO, by Coifman,
Rochberg and Weiss [2] and the related work by [1].
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Proposition A.4. For Q̨ 2 Œ0; 1/ there exist a positive constant C Q̨ and a number
L � L Q̨ 2 N, and for k 2 ¹1; : : : ; Lº constants sk 2 .0; 1/, tk 2 Œ0; sk� such that

Ri .G ��
1C Q̨
2 F / � .RiG�

�
1C Q̨
2 F /

� C

LX
kD1

��
sk�tk
2

�
��

tk
2 jGj��

1C Q̨
2
C
sk
2 jF j

�
:

Moreover, jsk � tkj can be supposed to be arbitrarily small.

Proof. As in the case of H˛ for ˛ 2 .0; 1/ above, we exploit that the difference of
the involved operators can be expressed by the differences of their kernels, more
precisely

Ri .G �
�
1C Q̨
2 F /.x/ � .RiG�

�
1C Q̨
2 F.x/

D c

“
.x � y/i

jx � yjnC1

�
jy � zj�nC1CQ̨ � jx � zj�nC1CQ̨

�
G.y/F.z/ dy dz

� c

“ ˇ̌
jy � zj�nC1CQ̨ � jx � zj�nC1CQ̨

ˇ̌
jx � yjn

jGj.y/ jF j.z/ dy dz:

Using the mean value theorem, similar to the proof of Proposition A.1, precisely
as in [18], we conclude.

In particular, we have

Proposition A.5. Let u D ��
˛
2�

˛
2 u, v D ��

˛
2�

˛
2 v. Then for ˛ 2 .0; 2/ there

exists some constant C˛ > 0 and a number L � L˛ 2 N, and for k 2 ¹1; : : : ; Lº
constants sk 2 .0; ˛/, tk 2 Œ0; sk� such that for any i D 1; : : : ; n, where Ri de-
notes the Riesz transform,

jRiH˛.u; v/.x/j � C

LX
kD1

��
sk�tk
2

�
Mk�

�
tk
2 �

˛
2 u Nk�

�˛
2
C
sk
2

ˇ̌̌
�
˛
2 v
ˇ̌̌�
:

Here, Mk; Nk are possibly Riesz transforms, or the identity. Moreover, jsk � tkj
can be supposed to be arbitrarily small.

For ˛ D K C Q̨ , Q̨ 2 .0; 2/, K 2 N, observe that

H˛.u; v/ D �
Q̨
2 .�Ku v/C�

Q̨
2 .u �Kv/C

X
j jCj Q jD2K
j j;j Q j�1

c; Q �
Q̨
2 .@u@ Qv/

� u �K�
Q̨
2 v � u�K�

Q̨
2 v
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D H Q̨ .�
Ku; v/C�Ku �

Q̨
2 v CH Q̨ .u;�

Kv/C�Kv �
Q̨
2 u

C

X
j jCj Q jD2K
j j;j Q j�1

c; Q H Q̨ .@
u; @ Qv/

C

X
j jCj Q jD2K
j j;j Q j�1

c; Q �
Q̨
2 @u @ Qv C @u �

Q̨
2 @ Qv:

Using that all terms which are not of the form H˛ are actually products of lower
order operators, one concludes

Lemma A.6. Let u D ��
˛
2�

˛
2 u, v D ��

˛
2�

˛
2 v. Then for ˛ 2 .0; n/ there exist

some constant C˛ > 0 and a number L � L˛ 2 N, and for k 2 ¹1; : : : ; Lº con-
stants sk 2 .0; ˛/, tk 2 Œ0; sk� such that for any i D 1; : : : ; n,

jRiH˛.u; v/.x/j � C

LX
kD1

Mk�
�
sk�tk
2

�
��

tk
2 j�

˛
2 uj Nk�

�˛
2
C
sk
2 j�

˛
2 vj

�
:

Here, Mk; Nk are possibly Riesz transforms, or the identity. Moreover, jsk � tkj
can be supposed to be arbitrarily small.

In particular:

Proposition A.7. Let ˛ 2 .0; n/, q; q1; q2 2 Œ1;1� such that

1

q
D

1

q1
C
1

q2
:

Then
kH˛.u; v/k. n

˛
;q/;Rn � k�

˛
2 uk. n

˛
;q2/;Rn k�

˛
2 vk. n

˛
;q2/;Rn :

A.3 Local estimates

In this section, the goal is to give in Lemma A.9 a localized version of Proposi-
tion A.7.

Similar to the arguments in Proposition 2.6, one can show

Proposition A.8. There is  > 0 such that for any ƒ > 4, s 2 .0; ˛/, t 2 Œ0; s�,

k��
s�t
2 .��

t
2 j��ƒraj �

�˛
2
C s
2 jbj/k n

˛
;Br � ƒ

�
kak n

˛
kbk n

˛

and for ƒ1; ƒ2 > 4

k��
s�t
2 .��

t
2 j��ƒ1raj �

�˛
2
C s
2 .��ƒ2r jbj//k n˛ ;Br

� ƒ
�
1 ƒ

�
2 kak n˛

kbk n
˛
:
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Proof. For some  2 C10 .Br/, k k n
n�˛
� 1 we have to estimate (up to possibly

Riesz transforms, which we will ignore again, as they do not change the argument)Z
��

s�t
2

�
��

t
2 j��ƒaj �

�˛
2
C s
2 jbj

�
 

D

Z
��

t
2 j��ƒaj�

�˛
2
C s
2 jbj��

s�t
2  

� k�p
ƒ
��

t
2 j��ƒajk n

˛�t
k��

˛
2
C s
2 jbjkn

s
k��

s�t
2  k n

n�˛�sCt

C k��
t
2 j��ƒajk n

˛�t
k��

˛
2
C s
2 jbjkn

s
k.1 � �p

ƒ
/��

s�t
2  k n

n�˛�sCt

� k�p
ƒ
��

t
2 j��ƒajk n

˛�t
kbk n

˛
C kak n

˛
kbk n

˛
k.1 � �p

ƒ
/��

s�t
2  k n

n�˛�sCt
:

Then the first claim follows the arguments for products of (non-local) fractional
operators with disjoint support, cf., e.g., the arguments of Proposition 2.3 or [18,
Proposition 4.4].

The second claim follows by the same method, only taking more care in the
cutoff for b.

Lemma A.9. Let v;w 2 W ˛;p.Rn/. Then for any ƒ > 2

kH.v;w/k n
˛
;Br � k�ƒr�

˛
2 vk n

˛
k�ƒr�

˛
2wk n

˛

Cƒ� k�
˛
2wk n

˛
k�ƒr�

˛
2 vk n

˛

Cƒ� k�
˛
2 vk n

˛
k�ƒr�

˛
2wk n

˛

Cƒ� k�
˛
2 vk n

˛

1X
kD1

2�k k�kƒr�
˛
2wk n

˛
:

Proof. Set

vƒ WD �
�˛
2

�
�ƒr�

˛
2 v
�
;

v�ƒ WD �
�˛
2

�
.1 � �ƒr/�

˛
2 v
�
;

v�ƒ;k WD �
�˛
2

�
�kƒr�

˛
2 v
�
:

Then

H.v;w/ D H.vƒ; wƒ/CH.v�ƒ; wƒ/CH.vƒ; w�ƒ/CH.v�ƒ; w�ƒ/:

We have
kH.vƒ; wƒ/k n

˛
� k�ƒr�

˛
2 vk n

˛
k�ƒr�

˛
2wk n

˛
:
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Moreover, the second and the third term are controlled by means of Proposi-
tion A.8. It remains to estimate H.v�ƒ; w�ƒ/,

H.v�ƒ; w�ƒ/ D

1X
kD1

H.v�ƒ; w�ƒ;k/

and again by Proposition A.8,

kH.v�ƒ; w�ƒ;k/k n
˛
;Br � 2

�kƒ�2 kvk n
˛
k�kƒr�

˛
2wk n

˛
:

B Decomposition in Euclidean spaces

In the proof of Lemma 2.9 we used the following fact, which permitted us to get a
full information of k�

˛
2wkp˛ from the information of k�ijwj�

˛
2wikp˛ , and the

normal projection kwi�
˛
2wikp˛ .

Proposition B.1. Let Ep 2 RN , j Epj D 1. Set

� WD ¹� � .�ij /
N
i;jD1 W �ij D ��ij 2 ¹�1; 0; 1ºº;

and let for � 2 �
Ep� � . Ep�i /

N
iD1 WD .�ij Ep

j /NiD1:

Then, for uniform constants c; C , depending only on the dimension N ,

c
ˇ̌
Eq
ˇ̌
�

X
�2�

ˇ̌
h Ep�; Eqi

ˇ̌
C
ˇ̌
h Ep; Eqi

ˇ̌
� C

ˇ̌
Eq
ˇ̌

for all Eq 2 RN . (B.1)

In particular, there is a uniform � 2 .0; 1/ such that for any Eq 2 RN , if for some
� 2 �, ˇ̌

h Ep�; Eqi
ˇ̌
� �

ˇ̌
Eq
ˇ̌
;

then there exists Q� 2 �, such thatˇ̌
h Ep�; Eqi

ˇ̌
� �

ˇ̌
Eq
ˇ̌
� max

®ˇ̌
h Ep Q�; Eqi

ˇ̌
;
ˇ̌
h Ep; Eqi

ˇ̌¯
:

For the convenience of the reader, we will give a proof.

Proof. We prove the first inequality of the claim (B.1) for
ˇ̌
Eq
ˇ̌
D 1 and Eq ? Ep. The

case N D 1 is trivial, of course, so assume N � 2. Let for ˛ ¤ ˇ,

�
˛ˇ
i;j WD ı

˛
i ı
ˇ
j � ı

˛
j ı
ˇ
i 2 �;
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where ı denotes the Kronecker symbol

ıi˛ D

´
1 if ˛ D i ,
0 else.

The claim (B.1) then follows if we can show that there exists a uniform constant
c > 0 such that vor any Ep � . Epi /

N
iD1, Eq � .Eqi /

N
iD1 2 RN with j Epj D jEqj D 1,

and Ep ? Eq 2 RN , there are ˛ ¤ ˇ such thatˇ̌
h Ep�˛ˇ ; EqiRN

ˇ̌
� j Ep˛ Eqˇ � Epˇ Eq˛j � c:

Choose i0 ¤ k0 such that (w.l.o.g) Epi0 ; Eqk0 > 0 and, more important,

Epi0 ; Eqk0 �
1

2
p
N � 1

DW c0: (B.2)

In fact, by orthonormality of Ep ? Eq, it cannot happen that for some i , both

j Epi j
2
; jEqi j

2
�
3

4
:

Thus, if there is some i0 such that j Epi0 j
2
�
3
4

, then Eq2i0 �
3
4

and because of jEqj D 1
there has to exist at least one k0 ¤ i0 such that Eqk0 satisfies (B.2). An analogous
argument holds if jEqk0 j

2
�
3
4

for some k0. In the remaining cases, we can assume
that j Epi j

2
; jEqkj

2
< 3
4

for all i; k. But then there have to be at least two indices
i0 ¤ i1 such that Epi satisfies (B.2) for i D i1; i1: because if this was not the case,
we had the following contradiction:

1 D

NX
iD1

j Epi j
2
<
3

4
C .N � 1/

1

4.N � 1/
D 1:

We thus have two different choices for both for i0 in order for Epi0 to satisfy (B.2),
so whichever the choice of k0 is, we can choose i0 ¤ k0. Then,

h Ep�i0k0 ; EqiRN D Epi0 Eqk0 � Epk0 Eqi0 :

If Epk0 Eqi0 � 0, this implies

h Ep�i0k0 ; EqiRN � .c0/
2:

Assume on the other hand that Epk0 Eqi0 > 0 and that even

h Ep�i0k0 ; Eqi �
1

10
.c0/

2:

Then,

j Epk0 Eqi0 j D Epk0 Eqi0 D Epi0 Eqk0 � h Ep�i0k0 ; EqiRN � .c0/
2
�
1

10
.c0/

2:
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Since j Epk0 j; jEqi0 j � 1, we infer

j Epk0 j; jEqi0 j �
9

10
.c0/

2:

It follows that

c1 WD
9

10
.c0/

3
� jEqi0 jj Epi0 j C jEqk0 jj Epk0 j: (B.3)

Because of orthogonality Ep ? Eq,

�
�
Eqi0 Epi0 C Eqk0 Epk0

�
D

X
i¤i0;k0

Epi Eqi : (B.4)

As the product Epk0 Eqi0 > 0, we have to consider the case I where both Epk0 ; Eqi0 > 0
and the case II where both Epk0 ; Eqi0 < 0. Recall that in both cases Epi0 ; Eqk0 > 0. As
for case I , (B.4), (B.3) imply

�c1 �
X

i¤i0;k0
Epi Eqi<0

Epi Eqi C
X

i¤i0;k0
Epi Eqi>0

Epi Eqi D �
X

i¤i0;k0
Epi Eqi<0

j Epi jjEqi j C
X

i¤i0;k0
Epi Eqi>0

j Epi jjEqi j

� �

X
i¤i0;k0
Epi Eqi<0

j Epi jjEqi j:

In particular, this implies that there is i1 ¤ i0; k0 such that Epi1 Eqi1 < 0 and still
(recall j Epi1 j; jEqi1 j � 1)

j Epi1 j; jEqi1 j �
c1

N
:

Assuming Epi1 > 0, Eqi1 < 0, since we know Eqi0 > 0, Epi0 > 0, we have

h Ep�i1i0 ; EqiRN D Epi1 Eqi0 � Epi0 Eqi1 > j Epi0 jjEqi1 j � c0
c1

N
:

If we assume, on the other hand, Epi1 > 0, Eqi1 < 0,

�h Ep�i1i0 ; EqiRN D � Epi1 Eqi0 C Epi0 Eqi1 < �j Epi0 jjEqi1 j � �c0
c1

N
:

In case II, where both Epk0 ; Eqi0 < 0, we have instead

c1 � �
X

i¤i0;k0
Epi Eqi<0

j Epi jjEqi j C
X

i¤i0;k0
Epi Eqi>0

j Epi jjEqi j �
X

i¤i0;k0
Epi Eqi>0

j Epi jjEqi j;
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and we can find i2 ¤ i0; k0 such that Epi2 Eqi2 > 0 and

j Epi2 j; jEqi2 j �
c1

N
:

Then,
� sign. Epi2/h Ep�i2i0 ; EqiRN D j Epi2 jjEqi0 j C Epi0 jEqi2 j � c0

c1

N
:

This proves the first claim, which essentially is contained in the following: for
j Epj D 1, the finite set ¹ Ep� W � 2 �º may not be a basis; nevertheless, it is a linear
generator of the space Ep? � RN .

For the second claim we use the following argument: since � is finite, any vec-
tor Eq of length jEqj D 1 has to have length at least � D 1

j�jC1
in at least one of the

linear spaces generated by some Ep� or generated by Ep itself. That is jh Ep�; Eqij � �
for some � 2 �, or jh Ep; Eqij � � . Consequently, if there exists some � such that
jh Ep�; Eqij < � , then there has to be another Q� 2 � such that jh Ep Q�; Eqij � � or, al-
ternatively,

ˇ̌
h Ep; Eqi

ˇ̌
� � .
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