arXiv:cs/0401016v3 [cs.LO] 14 Mar 2006

Generalized Strong Preservation
by Abstract Interpretation

FRANCESCORANZATO FRANCESCOTAPPARO
Dipartimento di Matematica Pura ed Applicata, Univerdit®adova
Via Belzoni 7, 35131 Padova, Italy

franz@math.unipd.it tapparo@math.unipd.it

Abstract

Standard abstract model checking relies on abstract Kspketures which approximate concrete
models by gluing together indistinguishable states, narbgla partition of the concrete state space.
Strong preservation for a specification languageencodes the equivalence of concrete and abstract
model checking of formulas ir¥". We show how abstract interpretation can be used to desigmaab
models that are more general than abstract Kripke strustukecordingly, strong preservation is gen-
eralized to abstract interpretation-based models andsefgaelated to the concept of completeness in
abstract interpretation. The problem of minimally refinamgabstract model in order to make it strongly
preserving for some languagé can be formulated as a minimal domain refinement in abstnéatgire-
tation in order to get completeness w.r.t. the logical/terapoperators ofZ. It turns out that this refined
strongly preserving abstract model always exists and carhbrcterized as a greatest fixed point. As
a consequence, some well-known behavioural equivalelikedisimulation, simulation and stuttering,
and their corresponding partition refinement algorithms loa elegantly characterized in abstract inter-
pretation as completeness properties and refinements.

Keywords: Abstract interpretation, abstract model checking, strpregervation, completeness, refine-
ment, behavioural equivalence.

1 Introduction

The design of an abstract model checking framework alwastadies a preservation result, roughly stating
that for any formulap specified in some temporal languagg if ¢ holds on an abstract model then
also holds on the concrete model. On the other hsinolng preservatiomeans that a formula o holds

on an abstract model if and only if it holds on the concrete ehofitrong preservation is highly desirable
since it allows to draw consequences from negative answettssoabstract side [10].

Generalized Strong Preservation. The relationship between abstract interpretation andadismodel
checking has been the subject of a number of works (see el [26, 17, 19, 20, 28, 39, 40, 41, 43, 47)).
This paper follows the standard abstract interpretatigmagch [13, 14] where abstract domains are speci-
fied by Galois connections, namely pairs of abstraction andietization mapa/~. We deal with generic
(temporal) languageg’ of state formulae that are inductively generated by somergsets of atomic
propositions and operators. The interpretafioof atomic propositionp € AP as subsets aoftates and
of operatorsf € Op as mappingg on p(States) is determined by a suitable semantic structbire.g. a
Kripke structure, so that the concrete semaritigls € p(States) of a formulay € .2 is the set of states
makingy true w.r.t.S. Abstract semanticean be systematically defined by standard abstract interpre
tion. The powersep(States) plays the role of concrete semantic domain so that abstoanaihs range
in AbsDom(p(States)). Any abstract domait € AbsDom(gp(States)) induces an abstract semantic
structureS# where atomg are abstracted ta(p) and operatorg are interpreted as best correct approxi-
mations om, that isao f oy. Thus,A determines an abstract semanfiggs € A that evaluates formulae
p € .Z in the abstract domaiA.

It turns out that this approach generalizes standard abstradel checking [9, 10]. Given a Kripke

http://arxiv.org/abs/cs/0401016v3

structurekC = (States, —) (for simplicity we omit here a labeling function for atomicgpositions), a
standard abstract model is specified as an abstract Kripketste A = (AStates, —*) where the set
AStates of abstract states is defined by a surjective hap States — AStates. Thus, AStates deter-
mines a partition obtates and vice versa. It turns out that state partitions are pdai@bstract domains.
In fact, the lattice of partitions oftates is an abstract interpretation of the lattice of abstract aios
AbsDom(p(States)) so that the abstract state spat&ates corresponds to a particular abstract domain
ad(AStates) € AbsDom(p(States)). Abstract domains that can be derived from a state partéien
calledpartitioning. The interpretation of the languagé w.r.t. the abstract Kripke structuré determines
an abstract semantic functidp] 4 € AStates. The abstract Kripke structurd strongly preserves”
when for anyp € .Z ands € States, it turns out thati(s) € [p]a < s € [¢]k.

Strong preservation can then be generalized from standetdaat models to abstract interpretation-
based models. Given a generalized abstract mddelAbsDom (p(States)), the induced abstract seman-
tics [-]4 is strongly preserving faZ when for anyy € % andS € p(States), a(S) <4 [¢]4 & S C
[¢]s. Itturns out that this is an abstract domain property, bseany abstract semantfel’ : .2 — A that
evaluates formulae in the abstract domaiis strongly preserving fo if and only if [-]4 is. Standard
strong preservation becomes a particular instance, naanedpstract Kripke structure strongly preserves
£ if and only if the corresponding partitioning abstract miagteongly preserves”. On the other hand,
generalized strong preservation may work where standamdgpreservation may fail, namely it may hap-
pen that although a strongly preserving abstract semamiics partitioning abstract modedl(AStates)
exists this cannot be derived from a strongly preservingrabisKripke structure onlStates.

Generalized Strong Preservation and Complete Abstract Intrpretations. Given a languageZ and

a Kripke structure/lC = (States,—), a well-known key problem is to compute the smallest abstrac
state spacelStates.y, when this exists, such that one can define an abstract Kepketure A, =
(AStates,—*) that strongly preserve&’. This problem admits solution for a number of well-known
temporal languages liké TL (or, equivalently, thei-calculus),ACTL andCTL-X (i.e. CTL without the
next-time operatoX). A number of algorithms for solving this problem exist,dikhose by Paige and
Tarjan [42] forCTL, by Henzinger et al. [35], Bustan and Grumberg [5] and Tan @leéveland [48]
for ACTL, and Groote and Vaandrager [32] fofTL-X. These are coarsest partition refinement algo-
rithms: given a languag&” and a partitionP of States, which is determined by a state labeling, these
algorithms can be viewed as computing the coarsest partitip that refinesP and strongly preserves
Z. Itis worth remarking that most of these algorithms havenbéesigned for computing well-known
behavioural equivalences used in process algebra likebiation (forCTL), simulation (forACTL) and
divergence-blind stuttering (faf TL-X) equivalence. Our abstract interpretation-based framealtows

to give a generalized view of the above partition refinembgarithms. We show that the most abstract do-
mainAD ¢ € AbsDom(p(States)) that strongly preserves a given languagealways exists. It turns out
thatAD ¢ is a partitioning abstract domain if and only.% includes full propositional logic, that is when
Z is closed under logical conjunction and negation. Othexyasproper loss of information occurs when
abstractingAD & to the corresponding partitiaR,. Moreover, for some languagés, it may happen that
one cannot define an abstract Kripke structure on the absti@te spacé’« that strongly preserve&’
whereas the most abstract strongly preserving semantitbsiDom (p(States)) instead exists.

The concept otompleteabstract interpretation is well known [14, 31]. This encode ideal situ-
ation where the abstract semantics coincides with the adigin of the concrete semantics. We estab-
lish a precise correspondence between generalized stresgrpation of abstract models and complete-
ness in abstract interpretation. Our results are basedeondtion offorward completeabstract domain.
An abstract domaim is forward complete for a concrete semantic functiprwhen for anya € A,
f(v(a)) = v(a(f(y(a)))), namely when no loss of precision occurs by approximating ia compu-
tation f((a)). This notion of forward completeness is dual and orthogtm#he standard definition of
completeness in abstract interpretation. Giacobazzi € H showed how complete abstract domains can
be systematically and constructively derived from noncletepabstract domains by minimal refinements.
This can be done for forward completeness as well. Given anyaih A, the most abstract domain that
refinesA and is forward complete fof does exist and can be characterized as a greatest fixpoit.aSu
domain is called théorward complete shetif A for f. It turns out that strong preservation is related to for-
ward completeness as follows. As described above, the rhsstat domaimAD & that strongly preserves

£ always exists. It turns out tha&tD ¢ coincides with the forward complete shell for the operatsrs”

of a basic abstract domain determined by the state labélinig.characterization provides an elegant gen-
eralization of partition refinement algorithms used in dtnd abstract model checking. As a consequence
of these results, we derive a novel characterization of tiieesponding behavioural equivalences in terms
of forward completeness of abstract domains. For exantdlerns out that a partitiof? is a bisimulation

on some Kripke structurk if and only if the corresponding partitioning abstract domal(P) is forward
complete for the standard predecessor transfopmer in /.

2 Basic Notions

2.1 Notation and Preliminaries

Let X be any set.Fun(X) denotes the set of functions: X" — X, for somen > 0, called arity of
f. Following a standard convention, when= 0, f is meant to be a specific object &f. The arity
of f is also denoted by(f) > 0. id denotes the identity map. I C Fun(X) andY C X then
FOY)EA{f(@) | f e F, ¢e Y} namelyF(Y) is the set of images df for each function inF. If
f + X — Y then the image of is also denoted bymg(f) = {f(z) e Y|z e X}. If f: X - Y
andg : Y — Zthengo f : X — Z denotes the composition gfandg, i.e.g o f = \x.g(f(x)). The
complement operator for the universe 8eis C : p(X) — p(X), whereC(S) = X ~ S. When writing
a setS of subsets of a given set, like a partition, we often whtén a compact form like{1, 12,13} or
{[1], [12],[13]} that stand fo{ {1}, {1, 2}, {1, 3}}. Ord denotes the proper class of ordinals and Ord
denotes the first infinite ordinal.

Let (P, <) be a poset. Posets are often denoted alsBhyWe use the symbdal to denote pointwise
ordering between functions: X is any setand,g : X — Pthenf C gifforall z € X, f(x) < g(x).
A mappingf : P — @ on posets is continuous whegmpreserves least upper bounds (lub’s) of countable
chains inP, while, dually, it is co-continuous whehpreserves greatest lower bounds (glb’s) of countable
chains inP. A complete latticeC< is also denoted byC, <,Vv,A, T, L) wherev, A, T and_L denote,
respectively, lub, glb, greatest element and least elemetit A mappingf : C — D between complete
lattices is additive (co-additive) when for aliy C C, f(VcY) = Vpf(Y) (f(AcY) = Apf(Y)). We
denote byifp(f) andgfp(f), respectively, the least and greatest fixpoint, when thest,ef an operatoy
on a poset. The well-known Knaster-Tarski's theorem stidii@sany monotone operatgr: C — C on a
complete lattice” admits a least fixpoint and the following characterizatiofdb:

lfp(f) = /\{I el | f('r) S x} - vaEOrdfa7T(J-)

where the upper iteration sequerg& " (x)}ocorq Of f in 2 € C is defined by transfinite induction an
as usual:

—a=0 fON(z) =1
— successor ordinal = 3 + 1: fA*11(2) = f(fP1(2));
— limitordinala: f*1(z) = Voo fo1(z).

It is well known that if f is continuous thefp(f) = Vaewf®T(L). Dually, f also admits a greatest
fixpoint and the following characterization holds:

gfp(f) = \/{(E € C | X S f(iC)} = AaEOrdfahL(T)a

where the lower iteration sequengf® (z) }acora Of f inz € C'is defined as the upper iteration sequence
but for the case of limit ordinalsf*+(z) = Ag<a fP4 ().

Let X be any set.PreOrd(X) denotes the set of preorder relations®nthat isR C ¥ x Y is a
preorder ok if R is reflexive and transitivePart(3) denotes the set of partitions Bf Sets in a partition
P are called blocks of. If = C ¥ x X is an equivalence relation then we denotefy € Part(X) the
corresponding partition of. Vice versa, ifP € Part(X) then=p C ¥ x X denotes the corresponding

equivalence relation oB. Part(X) is endowed with the following standard partial orderP, < P, i.e.
P, is coarser thai; (or P; refinesP,) iff VB € P,.3B’ € P,.B C B'. Itis well known thatPart(X), <)
is a complete lattice.

A transition systeny = (X, —) consists of a (possibly infinite) s&tof states and a transition relation
- C ¥ x X. As usual [10], we assume that the relatiens total, i.e., for anys € X there exists some
t € ¥ such thats—t, so that any maximal path ifi is necessarily infinite7 is finitely branching when for
anys € 3, {t € ¥ | s—t} is afinite set. The pre/post transformersig(iX.) are defined as usual:

— pre, = \Y.{a € X |3bEY. ab};

—pre, =Copre, o0 =AY{aeX|VbeX.(amb=beY)};

— post, =AY.{be X |3acY.a-b};

— post, “Copost,oC=AY{beX|VaeX.(a~b=acY)}

Let us observe thatre_, andpost_, are additive operators gn(2)c while pre_, andpost_, are co-additive.
If R C X x Xy is any relation then the relatiod®™>, R¥ C p(3;) x p(X2) are defined as follows:

— (Sl, SQ) S]’%33 iff ds; € S1.ds9 € Ss. (81752) € R;
- (Sl, SQ) S RYF iff Vs1 € S1.ds0 € Ss. (81752) € R.

2.2 Abstract Interpretation and Completeness
2.2.1 Abstract Domains

In standard Cousot and Cousot’'s abstract interpretatiostyact domains can be equivalently specified
either by Galois connections, i.e. adjunctions, or by ugf@sure operators (uco’s) [13, 14]. Let us recall
these standard notions.

Galois Connections and Insertions. If A andC are posets and : C — A andy : A — C are
monotone functions such thet € C. ¢ <¢ v(a(c)) anda(vy(a)) <4 a then the quadruplex, C, A,) is
called a Galois connection (GC for short) betwé&eand A. If in additiona o v = Az.x then(«, C, A,)
is a Galois insertion (Gl for short) ol in C. In a Gl,~ is 1-1 and« is onto. Let us also recall that the
notion of GC is equivalent to that of adjunction:df: C — Aand~y : A — C then(a,C, A,v) isa GC
iff Ve € CVa € A. a(c) <a a < ¢ <¢ v(a). The mapx (v) is called the left- (right-) adjoint tey ().
It turns out that one adjoint mag@/~y uniquely determines the other adjoint mafar as follows. On the
one hand, a map : C — A admits a necessarily unique right-adjoint map A — C iff o preserves
arbitrary lub’s; in this case, we have that \a. Vo {c € C' | a(c) <4 a}. On the other hand, a map
v : A — C admits a necessarily unique left-adjoint map C — A iff v preserves arbitrary glb’s; in
this caseq = Ac. Aa {a € A | ¢ <¢ v(a)}. In particular, we have that in any G@, C, A,~) between
complete lattices it turns out thatis additive andy is co-additive. Also, if{«, C, A, v) isa Gl andC' is a
complete lattice ther is a complete lattice as well arjd\, < 4) is order-isomorphic tdimg(v), <c).

We assume the standard abstract interpretation framewbdce concrete and abstract domairignd
A, are complete lattices related by abstraction and cozeatein mapsv andy forming a GC(«, C, A, 7).
Ais called an abstraction 6f andC' a concretization ofi. The ordering relations on concrete and abstract
domains describe the relative precision of domain valites:y means thay is an approximation aof: or,
equivalently is more precise thap. Galois connections allow to relate the concrete and adisicions
of relative precision: an abstract value= A approximates a concrete value= C' whena(c) <4 a, o,
equivalently (by adjunction); <¢ ~(a). As a key consequence of requiring a Galois connectiongritstu
out thata(c) is the best possible approximationdnof ¢, that isa(c) = A{a € A | ¢ <¢ 7v(a)} holds. If
(o, C, A, ~) is a Gl then each value of the abstract domdirs useful in representing’, because all the
values inA represent distinct members 6f beingy 1-1. Any GC can be lifted to a Gl by identifying in
an equivalence class those values of the abstract domdittheisame concretizatioAbs(C') denotes the
set of abstract domains ¢f and we writeA € Abs(C) to mean that the abstract domainis related to

C through a Gl(«, C, A, ~). An abstract domainl is disjunctive when the corresponding concretization
map-y is additive.

Closure Operators. An (upper) closure operator, or simply a closure, on a péeis an operator
u : P — P that is monotone, idempotent and extensive, We.£ P. z < p(xz). Dually, lower closure
operators are monotone, idempotent, and restrictivevhec P. p(x) < x. uco(P) denotes the set of
closure operators oR. Let (C,<,V,A, T, L) be a complete lattice. A closuge € uco(C) is uniquely
determined by its imageng(u), which coincides with its set of fixpoints, as followg: = \y. A {z €
img(u) |y < a}. Also, X C C'is the image of some closure operatar on C' iff X is a Moore-family of
C,ie, X = M(X)= {AS|S C X} —whereA@ = T € M(X). In other termsX is a Moore-family
of C' whenX is meet-closed. In this casgex = Ay. A {x € X | y < x} is the corresponding closure
operator onC'. For anyX C C, M(X) is called the Moore-closure of in C, i.e., M(X) is the least
(w.r.t. set inclusion) subset @ which containsX and is a Moore-family of”. Moreover, it turns out
that for anyu € uco(C') and any Moore-familyX' C C, pipg(,) = 1 andimg(px) = X. Thus, closure
operators orC' are in bijection with Moore-families of’. This allows us to consider a closure operator
1 € uco(C) both as a function, : C — C and as a Moore-familymmg(x) € C. This is particularly
useful and does not give rise to ambiguity since one camdigish the use of a closugeas function or
set according to the context.

It turns out that{i:, <) is a complete meet subsemilattice(@fi.e. A is its glb, but, in general, it is not
a complete sublattice af', since the lub inu — defined by\Y C pu. u(VY') — might be different from
thatinC'. In fact, it turns out that: is a complete sublattice @¢f (namely,img(x) is also join-closed) iffu
is additive.

If C'is a complete lattice thenco(C') endowed with the pointwise orderirig is a complete lattice
denoted by(uco(C), C, U, M, A\x. T, Az.x), where for everyi, € uco(C'), {u; }ier € uco(C) andz € C:

— nEniff vy € C. u(y) < n(y) iff img(n) € img(u);

= (Mierp) (@) = Nierpi(@);

—x€lierp; & Viel. x e

— A\z.T is the greatest element, whereasz is the least element.

Thus, the glb inuco(C) is defined pointwise, while the lub of a set of closufes}i.c; C uco(C) is the
closure whose image is given by the set-intersectiQn ;.

The Lattice of Abstract Domains. It is well known since [14] that abstract domains can be egjaivly
specified either as Galois insertions or as closures. Thasggproaches are completely equivalent. On the
one hand, ifx € uco(C) andA is a complete lattice which is isomorphicitag(u), wheres : img(u) — A
and:~! : A — img(u) provide the isomorphism, thefa o 11, C, A,.~1) is a GI. On the other hand, if
(o, C, A,~) is a Gl themua = ~ o o € uco(C) is the closure associated withsuch thatimg (), <¢)
is a complete lattice which is isomorphic ¢d, < ,). Furthermore, these two constructions are inverse of
each other. Let us also remark that an abstract dohasdisjunctive iff . 4 is additive. Given an abstract
domainA specified by a Gla, C, A, v), its associated closurec « onC' can be thought of as the “logical
meaning” ofA in C, since this is shared by any other abstract representatidhd objects ofA. Thus, the
closure operator approach is particularly convenient wieasoning about properties of abstract domains
independently from the representation of their objects.

Abstract domains specified by Gls can be pre-ordered wietigion as follows: ifd;, As € Abs(C)
then A, is more precise (or concrete) than (or A, is an abstraction ofl;), denoted by4; < A,, when
wa, C pa,. The pointwise ordering. between uco’s corresponds therefore to the standard ngdesied
to compare abstract domains with respect to their precisidso, A; and A, are equivalent, denoted by
Ay ~ Ay, when their associated closures coincide, /., = 114,. Hence, the quotienibs(C),~. gives
rise to a poset that, by a slight abuse of notation, is simphoted by(Abs(C'), C). Thus, when we write
A € Abs(C) we mean thatl is any representative of an equivalence classhin(C) ;.. and is specified by

a Galois insertitior{r, C, A, 7). Itturns out that Abs(C'), C) is a complete lattice, called the lattice of ab-
stract interpretations @ [13, 14], because it is isomorphic to the complete lattige(C'), C). Lub’s and
glb’s in Abs(C) have therefore the following reading as operators on dosndiet{A;},c; € Abs(C):

() W;erA; is the most concrete among the domains which are abstraatfoall the A;’s; (i) M;er A; is
the most abstract among the domains which are more conbiaiestreryA; — this latter domain is also
known as reduced product of all thg’s.

2.2.2 Completeness

Let C be a concrete domairy, : C — C be a concrete semantic functioand letf* : A — A be
a corresponding abstract function on an abstract doaia Abs(C) specified by a Gl«, C, A,).
Then, (A, f%) is a sound abstract interpretation when f C f* o a holds. The abstract functioff is
called a correct approximation ot of f. This means that a concrete computatfgn) can be correctly
approximated i by f*(a(c)), namelya(f(c)) <a f*(a(c)). An abstract functiorf{j : A — Ais more
precise tharff : A — Awhenf? C fi. Sinceao f T ffoaholdsiffao f oy C f* holds, the abstract
function f4 < oo f o : A — Alis called the best correct approximationfoin A.

Completeness in abstract interpretation correspondsjtdrieg that, in addition to soundness, no loss
of precision occurs whefi(c) is approximated iml by f#(«(c)). Thus, completeness ¢t for f is encoded
by the equation o f = f* o . This is also called backward completeness because a doabfdorward
completeness may be considered. As a very simple examples leonsider the abstract domaiyn
representing the sign of an integer variable, nan$ély, = { L, Z.,0,Z~o, T} € Abs(p(Z)c). Letus
consider the binary concrete operation of integer addiiosets of integers, that§ + ¥ & {z+y|ze
X,y € Y}, and the square operator on sets of integers, that%§< {22 | z € X}. It turns out that
the best correct approximation“9" of integer addition inSign is sound but not complete — because
al{=1} + {1}) = 0 <gign T = a({=1})+59"a({1}) — while it is easy to check that the best correct
approximation of the square operationdiyn is instead complete.

A dual form of completeness may be considered. The soundmgssitiona o f C f* o o can be
equivalently formulated ag oy C v o ff. Forward completeness fgf¥ corresponds to requiring that
the equationf o v = v o f* holds, and therefore means that no loss of precision occhen\a concrete
computationf(vy(a)), for some abstract value € A, is approximated ind by f%(a). Let us notice
that backward and forward completeness are orthogonaleptsic In fact: (1) as observed above, we
have that+°%" is not backward complete while it is forward complete beeafos anya;,a> € Sign,
y(ar) +y(az) = v(a1+%9"ay); (2) the best correct approximation?ss» of the square operator dfign
is not forward complete becausé€Z-,)? C v(Zso) = v((Z=o)?ss) while, as observed above, it is
instead backward complete.

Giacobazzi et al. [31] observed that completeness unigieggnds upon the abstraction map, i.e. upon
the abstract domain: this means thafifis backward complete fof then the best correct approximation
4 of fin Ais backward complete as well, and, in this cafeindeed coincides withf 4. Hence, for any
abstract domain, one can define a backward complete abstract opergtfiam A if and only if f4 is
backward complete. Thus, an abstract dombin Abs(C) is defined to be backward complete foiff the
equatiom o f = % o« holds. This simple observation makes backward compleseaareabstract domain
property, namely an intrinsic characteristic of the alusttmain. Let us observe thato f = 4 o «
holdsiffyoao f =~o0 fAoa =~yoao fo~oa holds, sothat is backward complete fof when
pnaof = pao fopua Thus, aclosurg € uco(C), that defines some abstract domain, is backward
complete forf whenp o f = o f o p holds. Analogous observations apply to forward completsne
which is also an abstract domain propetty= Abs(C') is forward complete fof (or forward f-complete)
whenfoua = pao fopua, while aclosurg: € uco(C) is forward complete fof whenfopu = po fou
holds.

Let us also recall that, by a well-known result (see, e.gi, heorem 7.1.0.4], [1, Fact 2.3] and [21,
Lemma 4.3]), backward complete abstract domains are “fipmamplete” as well. This means that if
A € Abs(C) is backward complete for a concrete monotone funcfionC — C thena(lfp(f)) =
Ifp(f4). Moreover, ifa and f are both co-continuous then this also holds for greatespifitg, namely

1For simplicity of notation we consider here unary functisirsce the extension to genericary functions is straightforward.

a(gfp(f)) = gfp(f4). As far as forward completeness is concerned, the followesglt holds.

Lemma 2.1. If A € Abs(C) is forward complete for a monotorfethena(gfp(f)) = gfp(f#). Moreover,
if v and f are both continuous ang(_L 1) = L¢ thena(lfp(f)) = lfp(f4).

Proof. Let us show thatv(gfp(f)) = gfp(f4). On the one hand, sinagp(f) < ~v(a(gfp(f))), we
have thakfp(f) = f(gfp(f)) < f(v(a(gfp(f)))), therefore, by using forward completenes&(f) <
v(fH(algtp(f))))- Thus,a(efp(f)) < f4(algfp(f))), from which follows thai(gfp(f)) < gfp(f4).
On the other hand, by using forward completengss gfp(f4))) = v(f4(gfp(f4))) = ~(gfp(f4)),
so thaty(gfp(f4)) < gfp(f), and therefore, by applying, we obtain thagfp(f4) = a(y(gfp(f4))) <

a(gfp(f)).

Assume now that and f are both continuous and L 4) = L. Let us show by induction ok that for
anyk € N, y((f4)"(La)) = fH"(Le).
gZ N ?)): By hypothesisy ((f4)*1(La)) =v(La) = Lo = foT(Lo).
+ 1):

Y (La

YA (L)

FOUHE(La)

F(N (Le

fk+1 T()

Thus, by applyingy, we obtain that for any € N,
(fHE(La) = a4 (Le)). (1)

Sincey andf are continuous and is always additive, we have that' = o o f o is continuous because
it is a composition of continuous functions. Hence:

Ifp(f4) = [by Knaster-Tarski's theorem]

)
Vien(f4)*T(La) = [by (1)]
Viena(f*T(Le)) = [asa is additive]
)=
)

)
a(Vienf*1(Le)
a(lfp(f)

and this concludes the proof. O

[by forward completeness]

)
)
) [by inductive hypothesis]
)

)
)
)
)
)-

[by Knaster-Tarski's theorem]

It is worth noting that concretization maps of abstract dowavhich satisfies the ascending chain
conditions (i.e., every ascending chain is eventuallyatary) are always trivially continuous.
2.2.3 Shells

Refinements of abstract domains have been studied from thieriieg of abstract interpretation [13, 14]
and led to the notion of shell of an abstract domain [26, 29, &lven a generic posdt< of semantic
objects — where: < y intuitively means that is a “refinement” ofy — and a property? C P of these
objects, the generic notion shellgoes as follows: thé-shell of an objectz € P is defined to be an
objects, € P such that:

(i) s, satisties the propert®,
(ii) s, is arefinement of, and

(i) s, is the greatest among the objects satisfying (i) and (ii).

Note that if aP-shell exists then it is unique. Moreover, if tieshell exists for any object i then it
turns out that the operator mapping: P to its P-shell is a lower closure operator h being monotone,
idempotent and reductive: this operator will be called thshell refinement We will be particularly
interested in shells of abstract domains and partitionsyeta shells in the complete lattices of abstract
domains and partitions. Given a state spaceand a partition propertf? C Part(X), the P-shell of

P € Part(X) is the coarsest refinement &f satisfyingP, when this exists. Also, given a concrete
domainC and a domain property C Abs(C'), theP-shell of A € Abs(C'), when this exists, is the most
abstract domain that satisfi®sand refinesd. Giacobazzi et al. [31] gave a constructive charactennaif
backward complete abstract domains, under the assumgtitaating with continuous concrete functions.
As a consequence, they showed that backward complete shetlgs exist when the concrete functions
are continuous. In Section 6 we will follow this same ideaffoward completeness and this will provide
the link between strongly preserving abstract models antptete abstract interpretations.

2.3 Abstract Model Checking and Strong Preservation

Standard temporal languages lik&'L, CTL*, ACTL, the u-calculus,LTL, etc., are interpreted on mod-
els specified as Kripke structures. Given a 4ét of atomic propositions (of some language), a Kripke
structurelC = (3, —, £) over AP consists of a transition systefl, —) together with a state labeling func-
tion/ : ¥ — p(AP). We use the following notation: for any € ¥, [s]; = {s’ € X | £(s) = £(s')},
while P, = {[s], | s € ¥} € Part(X) denotes the state partition that is induced’b¥he notations}="
means that a statec X satisfies inC a state formulag of some language’, where the specific definition
of the satisfaction relatiop=" depends on the languagé (interpretations of standard logical/temporal
operators can be found in [10]).

Standard abstract model checking [9, 10] relies on abskepke structures that are defined over
partitions of the concrete state spafe A set A of abstract states is related ¥ by a surjective ab-
stractionh : 2 — A that maps concrete states into abstract states and thissrigeeto a state partition
P, = {h~'(a) | a € A} € Part(X). Thus, in standard abstract model checking, formulae aeegreted
on an abstract Kripke structuré = (A, -, /¥) whose states are an abstract representatiohoh some
block of the partitionP;,. Given a specification languag€ of state formulae, a weak preservation result
for . guarantees that if a formula i’ holds on an abstract Ktipke structurethen it also holds on the
corresponding concrete structute for anyp € %, a € A ands € ¥ such thath(s) = a, if aE2¢
thensi=" . Moreover, strong preservation (s.p. for short) frencodes the equivalence of abstract and
concrete validity for formulae it?: for anyy € ., a € A ands € ¥ such thatu(s) = a, a="¢ if and
only if s=Fp.

The definition of weakly/strongly preserving abstract Kepstructures depends on the langugge
Let us recall some well-known examples [9, 10, 33]. Ket= (X, —,¢) be a concrete Kripke structure
h: 3 — A be a surjection.

(i) Consider the languag&CTL". If P, < P, then the abstract Kripke structusé = (A4, -3, ¢5)
weakly preserveACTL*, wherel),(a) = U{/(s) | s € £, h(s) = a} and—;> C A x A is defined
as:h(s1) =37 h(sz) & 3s|,sh. h(s)) = h(s1) & h(sh) = h(s2) & si—sh.

(i) Let Py, € Part(X) be the partition induced by simulation equivalenceXanif P, = Py, (this
also holds whetP, < Py,,) then the abstract Kripke structure= (A, —>)‘{3, ¢1,) strongly preserves
ACTL*, whereh(s1) =}= h(ss) < Vsi. h(s}) = h(s1). 3sh. h(sh) = h(s2) & s|—sh.

(iii) Let P,is € Part(X) be the partition induced by bisimulation equivalencetanif P, = Py (this
also holds wherP, < P;s) then the abstract Kripke structude= (A, —>,3137 ¢p,) strongly preserves
CTL".

Following Dams [19, Section 6.1] and Henzinger et al. [3&t®a 2.2], the notion of strong preser-
vation can be also given w.r.t. a mere state partition rathan w.r.t. an abstract Kripke structure. Let
[k : £ — o(2) be the semantic function of state formulaeghw.r.t. a Kripke structurdC = (X, —, £),
i.e., [¢lx = {s € & | s=X¢}. Then, the semantic interpretation.gf on K induces the following logical

go
stop stop go
- =

Figure 1: A U.K. traffic light.

equivalencesk, C ¥ x %
s=le, s iff Voe Z.selelk & § € o]k

Let P € Part(X) be the partition induced bs%, (the indexC denoting the Kripke structure is omit-
ted). Then, a partitiol® € Part(X) is strongly preservingfor . (when interpreted o) if P < P
Thus, Py is the coarsest partition that is strongly preserving®rFor a number of well known temporal
languages, likeACTL", CTL* (see, respectively, the above points (ii) and (il))TL*-X and the frag-
ments of theu-calculus described by Henzinger et al. [36], it turns oat ih P is strongly preserving for
& then the abstract Kripke structuf®, -7, /) is strongly preserving foiZ, where, for anyB € P,
(o (B) = Usepl(s). In particular,(Py, -7,) is strongly preserving farZ and, additionallyP is
the smallest possible abstract state space, namely=i (A, %, /%) is an abstract Kripke structure that
strongly preserve¥’ then|Py| < |A|.

However, given a languag®’ and a Kripke structurdC where formulae ofZ are interpreted, the
following example shows that it is not always possible torefan abstract Kripke structuré on the
partition P such thatA strongly preserves”.

Example 2.2. Consider the following simple languaggé:
L 3¢ = stop | go | AXXyp

and the Kripke structuré& depicted in Figure 1, where superscripts determine thditap&unction. 1C
models a four-state traffic light controller (like in the U.End in Germany): Red+» RedYellow —
Green— Yellow. According to the standard semantics KX, we have thak="AXX iff for any
pathsgsiss . .. starting fromsy = s, it happens thats =" ¢. It turns out thaff AXXstop]x = {G,Y}
and [AXXgo]x = {R,RY}. Thus, we have thaP» = {{R, RY},{G,Y}}. However, let us show
that there exists no abstract transition relatioh C Py x Py such that the abstract Kripke structure
A = (Pg, % L) strongly preserves”’. Assume by contradiction that such an abstract Kripke &irac
Aexists. LetB; = {R,RY} € Py andBy = {G,Y} € Py. SinceR=*AXX go andGE="N AXX stop,

by strong preservation, it must be tﬂaﬂ:AAXXgo and B, =*AXXstop. Hence, necessarilyg; —! B,
andB,—1By. This Ieads to the contradlct|oﬂlbé AXXgo. Infact, if =* = {(By, Bs), (BQ,Bl)} then
we would have thaBllyé AXXgo. On the other hand, if, instead, -~ B; (the caseB,—!B, is analo-
gous), then we would still have thBtlbé AXXgo. Even more, along the same lines it is not hard to show
that no proper abstract Kripke structure that strongly gmess.# can be defined, because even if either
By or Bs is split we still cannot define an abstract transition relathat is strongly preserving fa. [

3 Partitions as Abstract Domains

Let X be any (possibly infinite) set of states. Following [15, 8&t6], a partitionP € Part(X) can be
viewed as an abstraction gfX)c as follows: anyS C X is over approximated by the unique minimal
cover ofS in P, namely by the union of all the block3 € P such thatBNS # @. A graphical example is
depicted on the left-hand side of Figure 2. This abstragtidormalized by a Glap, p(X)c, 9(P)c,vp)
where:

ap(S)E{BeP|BNS#a} p(B)= Upes B.

Hence, any partitior? € Part(X) induces an abstract domaid?(P) € Abs(p(X)), and an abstract
domainA € Abs(p(X)) is calledpartitioning when A is equivalent toadP(P) for some partitionP.
Observe that the closutel?(P) = vp o ap associated to a partitioning abstract domain is defined as

2Dams [19] uses the term “fine” instead of “strongly presegtin

71 il
= =N

Figure 2: Partitions as abstract domains: over-approximain the left and under-approximation on the
right.

ad?(P) = AS.U{B € P| BN S # @}. Accordingly, a closurg. € uco(p(X)) that coincides with
~vp o ap, for some partitionP, is called partitioning. We denote bybsP?"(p(X)) anducoP? (p(3))
the sets of, respectively, partitioning abstract domaims @losures orp(X). As noted in [16], a sur-
jective abstractiorh : ¥ — A used in standard abstract model checking that maps corstegés into
abstract states (cf. Section 2.3) gives rise to a partitp@alois insertiofay,, p(X)c, p(A)c, vn) where
an =ANS CY{h(s) € A|se Standy, EAX C A{se X |h(s) € X}.

Partitions can be also viewed as dual abstractions when&isainder approximated by the union of
all the blocksB € P such thatB C S. A graphical example of this under approximation is depicte the
right-hand side of Figure 2. This dual abstraction is foiee by the Gl(ap, p(X)>, p(P)>,7p) Where
the ordering on the concrete domgi(®) is given by the subset relation and

ap(S)={BecP|BCS} AFp(B)= Upes B.

In the following, we will be interested in viewing partitieras over approximations, that is partitions as
abstract domains @f(X)c.

Thus, partitions can be viewed as representations of abstomains. On the other hand, it turns out
that abstract domains can be abstracted to partitions. Anaatt domaiml € Abs(p(X)c) induces a state
equivalence= 4 on ¥ by identifying those states that cannot be distinguished by

s=as iff al{s}) = a({s}).

Foranys € ¥, [s]a = {s' € ¥ | a({s}) = a({s'})} is a block of the state partitigpar(A) induced byA:
par(4) = {[s]a | s € T}

Thus,par : Abs(p(X)) — Part(X) is a mapping from abstract domains to partitions.

Example 3.1. Let ¥ = {1,2,3,4} and let us specify abstract domains as uco’sgdR). The uco’s
o= {2,12,3,4,1234}, o = {2,12,3,4,34,1234}, pus = {@,12,3,4,34,123,124,1234}, juy =
{12,123,124,1234} and s = {2,12,123,124,1234} all induce the same partitioR = par(u;) =
{12,3,4} € Part(S). For exampleps({1}) = u5({2}) = {1,2}, us({3}) = {1,2,3} andus({4}) =
{1,2,3,4} so thatpar(us) = P. Observe thajs is the only partitioning abstract domain because
adP(P) = 3. O

Abstract domains of(X) carry additional information other than the underlyingstpartition and
this additional information allows us to distinguish thehturns out that this can be precisely stated by
abstract interpretation since the above mappisgsandad? allows us to show that the whole lattice of
partitions ofY can be viewed as a (“higher-order”) abstraction of thedattif abstract domains @f(X).

Theorem 3.2. (par, Abs(p(X))7, Part(X),, adP) is a Galois insertion.

Proof. Let A € Abs(p(X)) andP € Part(X) and letus € uco(p(X)) be the closure associated with the
abstract domainl. Let us prove thaP < par(4) < adP(P) C ua.

10

(=) For S € p(X) we have to prove thatd?(P)(S) C pa(S). Considers € adP(P)(S). Hence, there
exists some&B € P suchthats € BandBN S # &. Letqg € BN S. SinceP < par(A), there exists
some blocKr| 4 € par(A) such thatB C [r]4. Thus, foranyz,y € B, a({z}) = a({r}) = a({y}), in
particular,a({s}) = a({¢q}). Consequently, sincg € S and thereforgi4({¢}) C pa(S), we have that
pa({s}) = pa({a}) C pa(S), sothats € pa(S).

(«<) Consider a blockB € P and somes € B. We show thatB C [s]4, namely ifs',s" € B
thena({s'}) = a({s”}). Sincead?(P) C pa, if s',s” € Bthenad?(P)({s'}) = B C ua({s'})
so thats” € pa({s'}) and thereforgis ({s”}) C ua({s’'}). Likewise,pua({s'}) C pa({s”}) so that
pa({s't) = pa({s"}) andin tuma({s'}) = a({s"}).

Finally, observe thaid® is 1-1 so that the above adjunction is indeed a Galois irserti O

Let us observe that, as recalled in Section 2.2, the adjoagispar andadP give rise to an order
isomorphism between the latticEBart(X), <) and(AbsP?" (p(X)), C).

Corollary 3.3. LetA € Abs(p(X)). The following statements are equivalent:

(1) A is partitioning.

(2) v is additive and{y(a({s}))}sex is a partition ofZ. In this casepar(A) = {v(a({s}))}sex.
(3) A is forward complete for the complement operdior

Proof. Let A € Abs(p(X)) and letus = v o « € uco(p(2)) be the corresponding uco.

(1) = (2) By Theorem 3.24 € AbsP?"(p(X)) iff adP(par(A4)) = A. Thus, ifadP(par(A4)) = A then
pa = v o« is obviously additive. Moreoves, =4 s’ iff a({s}) = a({s'}) iff y(a({s})) = y(a({s'})),
so that, for any € %, [s]a = v(a({s})) and thereforgar(A) = {v(a({s}))}ses.

(2) = (1) since{~y(a({s}))}sex = P € Part(X) we have that for any € %, [s]a = v(a({s})): in fact,

it s € 7(a({s})) thena({s'}) < a({s}), hencey(a({s'})) C Y(a({s})) and therefore/(a({s'})) =
v(a({s})). Thus,par(A) = P. Moreover, sincey is additive, for anyS C %, Usesy(a({s})) =
v(Vsesa({s})) = v(a(S)) € pa. Hence, sincad?(P) = {Usesy(a({s})) | S € £} we have that
adP(par(A)) = A.

(1) = (3) Assume thatt € AbsP¥ (p(X)). Itis enough to prove that for anye 3, C(pa({s})) € pa: in
fact, by (1)= (2), v is additive and thereforge 4 is additive (because it is a composition of additive maps)
and therefore ifS € 114 thenS = Usespa({s}) so thatC(S) = NsesC(pa({s})). Let us observe the
following fact (x): foranys,s’ € &, s & pa({s'}) & pa({s}) Nnpa({s'}) = o, this is a consequence of
the fact that, by (1)= (2), {ia({s})}ses is a partition. For any € 3, we have thab(u4({s})) € pa
because:

paClpa({s}h)) = na{s’ € 2| s" & pa({s}h)} [by additivity of .4]
=U{pa({s'H) | 8" & pa({s})} [by the above factx)]
= U{pa{s'H) [pal{sh) Npa({s}) = 2}
=U{pa{s'}) [pa({s'}) € Clua({s})}

€ Cua({s}))

(3) = (1) Assume that. 4 is forward complete foE, i.e. uu4 is closed under complements. By) (1),

it is enough to prove that is additive and thaf 4 ({s})}.ex € Part(X).

(i) ~ is additive. Observe that is additive iff 4 is additive iff 14 is closed under arbitrary unions. If
{Si}ier C pa thenu;S; = C(n,0(S;)) € pa, becausey 4 is closed under complements (and arbitrary
intersections).

(i) {£a({s})}sex € Part(X). Clearly, we have that,cx 104 ({s}) = . Consider now, r € ¥ such that
wa({s}) Npa({r}) # @. Let us show thati4({s}) = pa({r}). In order to show this, let us prove that
s € pa({r}). Notice thatua ({s})~pa({r}) = pa({s})NC(pa({r})) € pua, because is closed under
complements. I& ¢ pa({r}) then we would have that € s ({s}) ~ pa({r}) € wa, and this would
imply pa({s}) € wa({s}) ~ ma({r}) € na({s}), namelyua({s}) = ua({s}) ~ pa({r}). Thus, we
would obtain the contradictions ({s}) N ua({r}) = @. Hence, we have thate p4({r}) and therefore
ua({s}) € pa({r}). By swapping the roles of andr, we also obtain that 4 ({r}) C na({s}), so that

pa({s}) = pa({r}). O

11

Let us remark thaP = adP o par is a lower closure operator ofi\bs(p(X)), C) and that for any
A € Abs(p(X)), A is partitioning iff P(4) = A. Hence,P is exactly the partitioning-shell refinement,
namelyP(A) is the most abstract refinementfthat is partitioning.

4 Abstract Semantics of Languages

4.1 Concrete Semantics

We consider temporal specification languagésvhose state formulag are inductively defined by:

ZL3pu=pl fle1,.0n)

wherep ranges over a (typically finite) set of atomic propositioh8, while f ranges over a finite sé&bp
of operators.AP and Op are also denoted, respectively, By’ - and Op .. Each operatof € Op has
an arity? £(f) > 0.

Formulae inZ are interpreted onsemantic structuré = (X, I) whereX is any (possibly infinite) set
of states and is an interpretation functioh: AP U Op — Fun(p(X)) thatmap® € APtoI(p) € p(X)
andf € Opto I(f) : p(X)*) — o(X). I(p) andI(f) are also denoted by, respectivetyand f.
Moreover,AP = {p € p(X) | p € AP} andOp = {f : (X)) = o(X) | f € Op}. Note that the
interpretation/ induces a state labeling : ¥ — @(AP) by ¢;(s) < {p € AP | s € I(p)}. Theconcrete
state semantic functiof]s : . — (X) evaluates a formula € . to the set of states makingtrue
w.r.t. the semantic structuege

[pls =p and [f(p1,...,0n)ls = f(lp1]s, - [enls)-

Semantic structures generalize the role of Kripke strgstuin fact, in standard model checking a semantic
structure is usually defined through a Kripke structiireso that the interpretation of logical/temporal
operators is defined in terms of standard logical operatodspaths inC. In the following, we freely
use standard logical and temporal operators together Wéin torresponding usual interpretations: for
example,](A) = N, I(V) = U, I(=) = C, I(EX) = preg, [(AX) = prey, etc. As an example, consider
the standard semantics GfT'L:

CTL > pu=p|y1 Apa | ¢ | AXp | EXp | AU(p1, 02) | EU(p1, p2) | AR(¢1, p2) | ER(¢1, 92)

with respect to a Kripke structuré = (X, R, ¢). Hence,K determines a corresponding interpretation
for atoms inA P and operators 0Opqrr,, NnamelyI (AX) = prep, I(EX) = prep, etc., and this defines
the concrete semantic functi¢r : CTL — p(X).

If g is any operator with arity(g) = n > 0 whose interpretation is given by : p(3)" — p(X) and
S = (%,1) is a semantic structure then we say that a langu#ge closed undey for S when for any
01, ..., pn € Z there exists some € .« such thayg([¢1]s, -, [¢n]ls) = [¢]s. Forinstance, ifOp .,
includesEX and negation with their standard interpretations, i(@X) = pre, andI(—) = C, then.#
is closed undeAX with its standard interpretatigsre , becauserey = C o prey oC. This notion can be
extended in a straightforward way to infinitary operatos: ifistance,? is closed under infinite logical
conjunctionforS iff forany ¢ C ., there exists some € . such thaf) .4 [¢]s = [¢]s. Inparticular,
let us remark that ifZ is closed under infinite logical conjunction then it muststxdomey € .Z such
thatng = ¥ = [¢]s, namely.Z is able to express the tautologyue. Let us remark that if the state space
3 is finite and.Z is closed under logical conjunction then we always meanttieae exists somg € .&
such thahhg = ¥ = [¢]s. Finally, note that? is closed under negation and infinite logical conjunction
if and only if .Z includes propositional logic.

31t would be possible to consider generic operators whosgiarany possibly infinite ordinal, thus allowing, for exalaginfinite
conjunctions or disjunctions.

12

P mp
O—(2) T
M T) / 4\a2/ 5\(13
= <:>$@ \JI_/ l

q

Figure 3: A Kripke structre on the left and an abstract donoaitthe right.

4.2 Abstract Semantics

In the following, we apply the standard abstract intergietaapproach for defining abstract semantics
[13, 14]. Let.Z be a language and = (X,1) be a semantic structure fa¥. An abstract semantic
structureS* = (A, I*) is given by an abstract domait € Abs(p(X)c) and by an abstract interpretation
function I* : AP U Op — Fun(A). An abstract semantic structu& therefore induces aabstract
semantic functiorf-]s: : .2 — A that evaluates formulae it¥’ to abstract values inl. The abstract
interpretationl* is a correct over-approximation (respectively, underrappnation) of I on A when for
anyp € AP, y(I*(p)) 2 I(p) (respectivelyy(I*(p)) C I(p)) and for anyf € Op, v o I*(f) 3
I(f) o v (respectivelyyy o I*(f) T I(f) o). If I* is a correct over-approximation (respectively, under-
approximation) ofl and the semantic operations@p are monotone then the abstract semantics is an
over-approximation (respectively, under-approximatmfthe concrete semantics, namely for any <,
v([wls) 2 [#]s (respectivelyy([¢ls:) € [¢]s)-

In particular, the abstract domaihalways induces an abstract semantic strucifte= (A, I4) where
I4 is the best correct approximation bfon A, i.e. I interprets atomg and operatorg as best correct
approximations o of, respectivelyp and f: for anyp € AP andf € Op,

I'(p) = alp) and I4(f)= f7.

Thus, the abstract domait systematically induces an abstract semantic fundfipsu : . — A, also
denoted by[-]4, which is therefore defined by:

[Pl§ = a(p) and [f(o1,-0n)]8 = £ ([91]8, s [0n]§)-

As usual in abstract interpretation, observe that the aa@emantics is a particular abstract semantics,
namely it is the abstract semantics induced by the “idelaiostraction”(id, p(X2), p(X), id).

Example 4.1.Let.Z 3 p :=p|q|r| 1 Aps | EXp. Let us consider the Kripke structuke= (%, —, ¢)

and the latticed both depicted in Figure 3. L&k be the semantic structure induced by the Kripke structure
K sothatEX = pre_, . Let us consider the formuld&Xr andEX(p A ¢), whose concrete semantics are as
follows: [EXr]s = {3,5} and[EX(p A q)]s = {1,2}. Ais an abstract domain @f(X) where the Galois
insertion(a, p(2), A,~) is determined by the following concretization map:

(L) =25 v(a) ={1,2}; v(az) = {3} ~(as) = {3,4};
7(&4) = {15 273}? 7(&5) = {3’475}5 V(T) = {172’374’ 5}'

Note that, by Corollary 3.34 is not partitioning because is not additive:y(az) U y(as) = {3,4} C
{3,4,5} = y(az2 V a3). It turns out that:

[EXr]5 a(pre (v([r]3)) = a(pre_ (y(a(r)))) a(pre_, (v(as)))
afpre_, ({3,4})) = a({1,2,3,5}) =

(
a(pre_ (v([p]§ A [dls))) = a(preﬁ(v(a(p) A (q))))
a(pre_, (v(as A as))) = a(pre_, (v(az))) = a(pre_,(3)) = a({1,2}) = a1.

Observe that the abstract semanfiexr]4 is a proper over-approximation i Xr| s becaus§EXr]s <
v([EXr]4). Onthe other hand, the concrete semarfi(p A)]s is precisely represented ihbecause

Y([EX(p Aq)ls) = [EX(p A q)]s- 0

[EX(p A q)ﬂ?

13

5 Generalized Strong Preservation

We showed in Section 3 how a state partitiBrcan be viewed as a partitioning abstract domaih(P)
specified by the Glap, p(X)c, 9(P)c,vp). Thus, given a languag#’ and a corresponding semantic
structureS = (3, 1), it turns out that any partitio® € Part(X) systematically induces a correspond-
ing abstract semantids]5 = [[-]]gd"“’) : % — adP(P) that evaluates a formula i’ to a (possibly
empty) union of blocks of?. Strong preservation for a partitidd can be characterized in terms of the
corresponding abstract domaid® (P) as follows.

Lemma5.1. P € Part(¥) is s.p. forZ iff Vo € Z andS C X, ap(S) C [p]5 & S C[¢]s.

Proof. (=): Let us first observe that for any € .2, vp(ap([¢ls)) = [¢ls: in fact, for anys € [¢]s,
ap({s}) is the block of P containings; sinceP < Py, we have thatvp({s}) C [¢]s, and from this

ap([els) € [#ls and inturmyp(ap([¢]s)) = [¢ls-
Let us now prove by structural induction gne . that[¢]s = vp([¢]5):

— ¢ = p € AP: by using the above observatidn]s = vr(ap([p]s)) = vp([p]5).
- @Ef((plaa(pn)
[[f(@l, (RS ‘Pn)ﬂs

by the above observation]

[
Tp(ap([f (@1 on)ls)) = by definition]
ve(ap(f(I¢i]s. - - [eals)) = [by inductive hypothesis]
ve(ep(F(vp([e1]§), - - vp(lenl§)))) = [by definition]
v (Lf (@1, -5 o))

Now, considerany € .Z. If S C [¢]s thenap(S) C ap([¢ls) = ar(vr([¢]5)) = [¢]%. Conversely,
if ap(S) C [¢]§ thenS C vp([£]5) = [¢]s-

(«<): Consider a blockB € P ands,s’ € B so thatap({s}) = B = ap({s'}). By hypothesis, for
any ¢ € ., we have that € [¢]s iff ap({s}) C [¢]% iff ap({s'}) C [¢]5 iff s’ € [¢]s. Thus,
s=g s, O

This states that a partitioR € Part(X) is s.p. for.Z if and only if to check whether some sg&tof
states satisfies some formulac Z, i.e. S C [¢]s, is equivalent to check whether the abstract state
ap(S) is more precise than the abstract semarfiigs,, that is S is over-approximated bfo]5. The
key observation here is that in our abstract interpretaiased framework partitions are particular abstract
domains. This allows us to generalize the notion of stromggivation from partitions to generic abstract
semantic functions as follows.

Definition 5.2. Let.# be a languageS = (¥, I) be a semantic structure f&¥ andS* = (A, I*) be a
corresponding abstract semantic structure. The absaawrgticy-|| s: is strongly preservindor .Z (w.r.t.
S)ifforany p € £ andS C ¥,

a(S) <alels: & SClels. O

Definition 5.2 generalizes standard strong preservatam frartitions, as characterized by Lemma 5.1,
both to an arbitrary abstract domaine Abs(p(3)) and to a corresponding abstract interpretation function
I*. Likewise, standard weak preservation can be generalzédlaws. Let = (X, R, /) be a concrete
Kripke structure that induces the concrete semalftids = {s € | s=*¢}. Leth : ¥ — Abea
surjective abstraction and &k, p(X), p(A),v,) be the corresponding partitioning abstract domain. Let
A = (A, R, %) be an abstract Kripke structure drnthat gives rise to the abstract semanfiek4 = {a €
Al aE="¢}. Then, A weakly preserve” when

Ve LNSCE. an(S) Cle]la = SC ok
Hence, weak preservation can be generalized to generi@abdbmains and abstract semantics accord-

ingly to Definition 5.2.

14

p p
Q=@ (D
Figure 4: A Kripke structurdC on the left and an abstract Kripke structudeon the right.

5.1 Strong Preservation is an Abstract Domain Property

Definition 5.2 is a direct and natural generalization of ttaadard notion of strong preservation in abstract
model checking. It can be equivalently stated as follows.

Lemma 5.3. []s: is s.p. forZ iff forany ¢ € .Z, [¥]s = v([¢]st)-

Proof. (=) On the one handy([¢]s:) C [¢ls iff a(v([els:)) < [¢ls iff [¢ls: < [¢]ss, which is
trivially true. On the other handy]s C ~v([¢]s:) iff a([¢]s) < [¢]s: iff [¢]ls C [¢]s, thatis trivially

true.
(<) We have thas C [¢]s iff S C y([¢]ss) iff a(S) < [¢]ss- O

In particular, it is worth noting that if-] s¢ is s.p. for.Z then[-]s: = « o [-] s holds.

Lemma5.4. Let A € Abs(p(X)).

(1) LetS! = (A, I}) andS! = (A,Ig) be abstract semantic structures én If [-];: and[-] 5: are both
s.p. forZ then[[~]}$§ = [[~]]S§. ' ’

(2) LetS* = (A, I¥) be an abstract semantic structure dn If [-] s: is s.p. for.# then[-]4 is s.p. for.Z.

Proof. (1) By Lemma 5.3, for anyy € %, 7([[90]}55) = [¢ls = 7([[<p]]5§), so that, by applyingy,
[els: = a(v(lels:)) = allels) = a(v(lels)) = Tels:-

(2) Let us first observe that for any € ., y(a([¢]s)) = [¢ls. In fact, y(a([¢]s)) C [¢ls <
a(1(a(l¢ls)) < [els: < a(lels) < [els: [¢ls C [els. As a consequence of this fact, by
structural induction op € ., analogously to the proof of Lemma 5.1, it is easy to proveiipy]a) =
[¢]s. Thus, by Lemma5.3;]4 is s.p. for.Z.

Thus, it turns out that strong preservation isastract domain propertyThis means that given any
abstract domainl € Abs(p(X)), it is possible to define an abstract semantic strucflire= (A4, I*) on
A such that the corresponding abstract semaifties is s.p. forZ if and only if the induced abstract
semantic§-[4 : . — Ais s.p. forZ. In particular, this also holds for the standard approath! i=
(A, R, /%) is an abstract Kripke structure fa#, whereh : ¥ — A is the corresponding surjection, then
the standard abstract semanfids, strongly preserve¥” if and only if the abstract semantics induced by
the partitioning abstract domaijn,, p(X), p(A), v,) strongly preserve, and in this case this abstract
semantics coincides with the standard abstract semdritigs Strong preservation is an abstract domain
property and therefore can be defined without loss of geityeea follows.

Definition 5.5. An abstract domainl € Abs(p(X)) is strongly preserving forZ (w.r.t. a semantic struc-
tureS) when[-]4 is s.p. for.Z (w.r.t. S). We denote bysP & C Abs(p(X)) the set of abstract domains
that are s.p. forZ. O

Example 5.6. Let us consider Example 4.1. It turns out that the abstrantadio A is not s.p. for.Z
because, by Lemma 5.8 Xr]s = {3,5} € {1,2,3,4,5} = v(T) = v([EXr]4). O

Example 5.7. Let us consider the simple language> ¢ ::= p | EXp and the Kripke structur&
depicted in Figure 4. The Kripke structukeinduces the semantic structuse= ({1, 2,3}, I) such that
I(p) ={1,2,3} andI(EX) = pre_,. Hence, we have thgp]s = {1, 2,3}, [EXp]s = {1,2,3} and, for
k> 1, [EX*p]s = {1,2,3}. Let us consider the partitioning abstract domdimduced by the partition
P = {[12],[3]} and related t@(X) by « and~. Let us consider two different abstract semantic strusture
onA.

15

— The abstract semantic struct#é = (A, I4) is induced as best correct approximatior dfy A.

— The abstract semantic structu#¢ = (A, I4) is instead induced by the abstract Kripke structure
A = (A, -F (%) in Figure 4. Hence[“(p) = {[12],[3]} andI*(EX) = pre_;.
X).

S is different fromS# becausd 4 (EX) # I4(EX). In fact, I (EX)({[12]}) = a(pre_, (v({[12]}))) =
a(pre_({1,2})) = a({1}) = {[12]}, while I*(EX)({[12]}) = pre_. ({[12]}) = 2.

Let us show that both the abstract semarttit$ and[] s are s.p. forZ.

— We have thafp]§ = {[12], 3]}, [EXp]s = a(pre_({1,2,3})) = a({1,2,3}) = {[12],[3]} and,
for k > 1, [EX*p]4 = {[12],[3]}. Thus, for anyp € £, [¢]s = v([¢]2)

— We have thafp]s+ = {[12],[3]}, [EXp]sa = pre_:({[12],[3]}) = {[12],[3]} and, fork > 1,
[EX*plsa = {[12],[3]}. Thus, for anyp € L, [¢]s = 7([¢]s4)-

Consequently, by Lemma 5.3, both abstract semantics aros.f . O

5.2 The Most Abstract Strongly Preserving Domain

As recalled in Section 2.3, a languagéand a semantic structugfor . induce a corresponding logical
partition P, € Part(X). By Lemma 5.1, it turns out tha®y is the coarsest strongly preserving partition-
ing abstract domain fa&. This can be generalized to arbitrary abstract domainsllasvia Let us define
AD ¢ by:

ADz = M({[¢ls | ¢ € £3).
Hence AD ¢ is the closure under arbitrary intersections of the set ntoete semantics of formulae.i.
Observe thahD » € Abs(p(X)) because it is a Moore-family @f(X).

Theorem 5.8. For any A € Abs(p(X)), A € SPy iff AC AD .

Proof. Let u = v o a € uco(p(X)) and letyy» € uco(p(X)) be the uco associated #D &, that is
ue(S) ={l¢ls ¢ € Z, SClpls} Recallthatd C AD ¢ iff forany ¢ € .Z, [¢]s € p.
(=) For anyy € .Z, we have thaty(a([¢]ls)) = [¢]s because, by Lemma 5.3,(a([¢]s)) =

Y(a(y([els) = 1([e8) = [¢]s-
(<) By hypothesisy (a([¢]s)) = [¢]s for any . Let us show by structural induction an € # that

[els = v([¢l8)-
— ¢ =p € AP by using the hypothesi§p]s = vr(apr([pls)) = vr([p]2).

—<P5f(‘ﬁ1a---a‘ﬁn):

[f(o1,...,0n)]s = [by hypothesis]
Y(a([f(e1,---¢n)]s)) = [by definition]
Y(a(f([p1]s,---,[enls))) = [by inductive hypothesis]
Ya(F(([1]§), -1 ([eal5)))) = [by definition]
Y([f (1, -, 0n)]5)-
Thus, by Lemma5.34 € SP . O

Thus,AD ¢ is the most abstract domain that is s.p. f6rw.r.t. S. As a consequence, it turns out that
Alis s.p. forZ if and only if A represents with no loss of precision the concrete semauitansy formula
in .Z, thatisVy € Z. v(a([¢lls)) = [¢]s. Lemma 5.4 states that if a s.p. abstract semantics on a given
abstract domain exists then this is unique. Neverthelessnile 5.7 shows that this unique s.p. abstract
semantics may be induced from different abstract sematntictares, i.e. different abstract interpretation
functions. However, whel¥ is closed under conjunction, it turns out that on the modfrabiss.p. domain
AD ¢, the abstract interpretation function is unique and ismivg the best correct approximatién®«

16

Theorem 5.9. Let.# be closed under infinite logical conjunction and#t= (AD ¢, I*) be an abstract
semantic structure oAD . If []s: is s.p. for.Z thenl? = [AP=.

Proof. Since.Z is closed under arbritrary logical conjunctions we have thB ¢ = {[¢]s | ¢ € .£}.
Thus, for anye € AD &, there exists some € .£ such thats = [¢]s: = [[go]}éfo. Infact, ifa € AD &
thena = [¢]s, for somep € %, so that, by Lemmata 5.3 and 5& = [¢]ls = Y([¢lst) = [¢ls: =

[elsP=.
Letp € AP. Then, by Lemma 5.4p]s: = [p]5°% so thatl*(p) = I°P# (p).
Let f € Op. Then,

I*(f)(ai,...,a,) = [by the observation above]

F(f)([p1lses - [onls:) = [by definition]
[f (1, n)] s2 [by Lemma 5.4]
[f (o1, 00)]2P% = [by definition]
P2 (£ (11827, ... [pa]5°¢) = [y the observation above]
P2 (f)(ay, ..., an).

Thus,I? = [AP=, O

Hence, in the most abstract s.p. domaib » there is a unique choice for interpreting atoms and operatio
of Z.

In our generalized framework, strong preservation forippants becomes a particular instance through
the Galois insertiopar/adP. Moreover, when? is closed under infinite conjunction, it turns out that the
most abstract s.p. domaixD ¢ is partitioning if and only ifZ is also closed under negation.

Proposition 5.10.

(1) Py = par(ADg) andadp(P;La) =]P)(ADg).

(2) P is strongly preserving foiZ iff P < par(AD.g) iff ad?(P) C AD .

(3) LetZ be closed under conjunction. TheXD & is partitioning iff . is closed under logical negation.

Proof. (1) Letu» € uco(p(X)) be the uco associatedAdD . We have thapar(AD ¢) = {[s]ap, | s €

¥}, where[s]ap, = {s' € ¥ | pe({s'}) = ne({s})}. We also have that =¢ ¢ iff Vp € L.s €

[els < ¢ € [¢ls iff pe({s}) = ue({s'}), so thatPy = par(ADy). Moreover,ad?(Py) =

adP(par(AD¢)) = P(AD).

(2) Piss.p.forZiff P < Py iff, by Point (1), P < par(A) iff, by Theorem 3.2adP(P) C AD &.

(3) Since.Z is closed under infinite logical conjunctioAD ¢ = {[¢]s | ¢ € -£}. Thus,.Z is closed

under logical negation ifAD ¢ is closed under complementatiGrand this exactly means thatD o is

forward complete for the complemehtBy Corollary 3.3, this latter fact happens D « is partitioning.
|

In particular, when¢ is closed under conjunction but not under negation, it toutdhatad? (Py) C
AD, i.e. a proper loss of information occurs when the domaidy is abstracted to the partition
par(AD) = Py. On the other hand, whe#’ is closed under conjunction and negation, we have that
ad?(Py) = AD .« and therefore, by Theorem 5.9, the abstract interpretétioction on the partitioning
abstract domaindP (P) is uniquely determined.

Example 5.11.Let us consider the traffic light controll&rin Example 2.2. As already observed, formulae
of . have the following semantics iq:

[stoplc = {R,RY}; [golx ={G,Y}; [AXXstop]x ={G,Y}; [AXXgo]x = {R,RY}

so that
AD.% = M({[[@HIC | S g}) = {Q, {Rv RY}? {Gv Y}v {Rv RYa Gv Y}}

and Py = par(ADg) = {{R,RY},{G,Y}}. We denote by« the uco associated tAD ». As
shown in Example 2.2, it turns out that no abstract Kripkadtrre that properly abstradtSand strongly

17

.
@4@:“/@ B —@—)

q

ag

Figure 5: Concrete (on the left) and abstract (on the righi)ke structures.

preserves? can be defined. In our approach, the abstract dom#&in- induces a corresponding strongly
preserving abstract semantﬂc%w : Z — AD .y, where the best correct approximation of the operator
AXX : p(X) = p(X)onADy is:

iy 0o AXX = {2 — @,{R,RY} — {G,Y},{G,Y} = {R,RY},
{R,RY,G,Y} — {R,RY,G,Y}}. 0

Example 5.12. Consider the languadéTL and the Kripke structurk€ = (X, R, ¢) depicted in Figure 5,
where the interpretation of temporal operator€dfL. on K is standard. It is well known that the coarsest
s.p. partitionPcry, can be obtained by refining the initial partitidgh= {1234, 5} induced by the labeling

¢ through the Paige-Tarjan [42] algorithm, sinBer, coincides with bisimulation equivalence én It

is easy to check thaPerr, = {12,3,4,5}. This partition determines (see point (2) in Section 2.8) th
s.p. abstract Kripke structure depicted in Figure 5. Sid@d. is closed under conjunction and negation,
by Proposition 5.10 (1) and (3), it turns out that the mostralss s.p. domaimcrr, is partitioning and
coincides with the following partitioning closure:

ad®(Pory) = {2,12,3,4,5,34, 35, 45,122,124, 125, 345, 1234, 1235, 1245, 12345}

Let us now consider the following languagé > ¢ ::= p | q | ¢1 A @2 | EF[g 210, whereEF g o is
a time bounded reachability operator that is useful for ¢jtetive temporal analysis [24], e.g., of discrete
real-time systems [10, Chapter 16]. The standard inteapogt of EFg o) is as fO||OWSZS|:/CEF[072](p iff
there exists a pathys;s2ss ... in K starting froms = sq and somen € [0, 2] such thats,, =~ . Let us
characterize the semantics of formulae4h

[[p]]fc = {1725374}3 [[qﬂ/C = {5}7 [[EF[O,Q]pH/C = {172737475}5
[[EF[O.,Q] Q]]/C = {37 4, 5}; [[EF[O,Q] (EF[O,Z]Q)HIC = {15 2,3,4, 5};
[[p A EF[O_]Q]q]]’C = {3, 4}; [[EF[OQ] (p A\ EF[OQ]Q)]];C = {1, 2,3,4, 5}.

Thus,AD» = M{[¢lk | ¢ € £}) = {2,5,34,345,1234,12345}. On the other hand, by Proposi-
tion 5.10 (1),P¢ = par(AD) = {12,34,5}. In this case, it turns out thatl’(P») C AD . Moreover,
analogously to Example 2.2, let us show that there existdswact transition relation? C Py x Py that
determines an abstract Kripke structute= (Py, —*, /) which strongly preserve&’. Let B = {1, 2},

B’ = {3,4} andB” = {5} be the blocks inP». Assume by contradiction that such an abstract Kripke
structureA exists.

(i) On the concrete modél we have tha8|:’CEF[O,2]q. Thus, by strong preservation, it must be that
B'=4EF |y 5. On the other hand, i’~?B and B—*B" then BE=AEF|, 5 q and therefore, by
weak preservation, we would have th&t:’CEF[OVQJq, which is a contradiction. Thus, necessarily,
B/_>ﬁB//.

(ii) Let us observe thal|:’CEF[072]EF[O,2]q. Hence, by strong preservatioBJ:AEF[w]EF[OQ]q. If
B-!B” then, as in point (i), we would still have that="EF|, »¢, i.e. a contradiction. Hence,
necessarilyB—*B’.

18

(iiiy From B—fB’ andB’-!B", we would obtain thaB|:AEF[072]q that, as observed in point (ii), is a
contradiction.

Thus, this shows that it is not possible to define an abstrepki structure on the abstract state spBee
that strongly preserve®’. The abstract domaiAD ¢ induces a corresponding abstract semarﬁt]]:g‘g

that instead strongly preserveés. In this case, the best correct approximation of the opeiaky 5 on
AD g is:

prz 0 EF|gq = {@ — @, 5 — 345, 34 — 12345, 345 — 12345,
1234 — 12345, 12345 — 12345}, m

6 Strong Preservation and Completeness

In this section we establish a precise correspondence betgeneralized strong preservation of abstract
models and completeness of abstract interpretations asoht problem of minimally refining an abstract
model in order to get strong preservation can be formulaseal @mplete domain refinement in abstract
interpretation.

6.1 Forward Complete Shells

Let us consider forward completeness of abstract domairs Abs(C') for genericn-ary concrete op-
erationsf : C"™ — C, withn > 0. Hence, A is forward complete forf, or simply f-complete,
when f o (i, ...,pua) = pa o f o {a,....pua), thatis, for anyz € C", f(ua(x1), ..., pa(zn)) =
wa(f(na(zr), ..., pa(zy))). Equivalently,A is f-complete when for ang € A™, f(y(a1),...,v(an)) =
y(a(f(y(ar),...,7(an)))). For a set of operation8 C Fun(C'), A is F-complete whem is f-complete
for eachf € F. Observe that'-completeness for an abstract domdimeans that the associated closure
w4 is closed under the image of functionsiih namelyF (114) C 4. Also note that whei : C° — C,
i.e. k € Cis a constantA is k-complete iffk is precisely represented iA, i.e. yv(a(k)) = k. Let
us also note that an abstract domaine Abs(C) is always forward meet-complete because any uco is
Moore-closed.

Let us first note that forwar&-complete shells always exist. Letr : Abs(C') — Abs(C) be defined
as.”r(A) = U{X € Abs(C) | X C A, X is F-completd.

Lemma 6.1. .7 (A) is the F-complete shell ofi.

Proof. Letn = LI{p € uco(C) | p C p4, pis F-completé = N{p € uco(C) | p C pa, pis F-complets.
Let f € F,witht(f) =n > 0 (if 4(f) = 0 then, trivially, f € n) and¢ € ™. Consider any € uco(C)
that is F-complete and such thatC p. Sincen C p, we have thaf € p™ and thereforef (¢) € p because
pis F-complete. Thusf(¢) € n, i.e.,n is F-complete. O

A forward complete shell”r(A) is a more concrete abstraction thanHow to characterize’r(A)?
It is here useful to view abstract domains as closure opexato the concrete domain, i.e. as subsets
of C. Hence, A is viewed as the subséing(ua) = v(A) of the concrete domaift’ so that.r(A)
can be characterized as the least Moore-closed subs€ttht containdmg(u4) and is forwardF-
complete. We need to characterize the least amount of deriofermation that must be added+6A4) in
order to get forward completeness. It turns out that forveanthplete shells admit a constructive fixpoint
characterization. LeF™° : uco(C) — uco(C) be defined as followsF"<°(p) = M(F(p)), namely
Fueo(p) is the most abstract domain that contains the imageé of p. Observe that the operat@p. 4 M

Fue°(p) : uco(C) — uco(C') is monotone.
Lemma 6.2. 5 (A) = gip(Ap.pa M EF°(p)).

Proof. Observe that a ucp is F-complete iff F'(p) C p iff M(F(p)) = F"°(p) C piff p T F(p).
Thus, we have tha?p (A) = L{p € uco(C) | p C pa, pis F-completé = LI{p € uco(C) | pC pa, p C
Fee(p)} = U{p € uco(C) | p E pa M EF"(p)} = gfp(Ap.pa 11" (p)).

O

19

Thus, it turns out that the lower iteration sequencgmf. 4 M F°(p) in uco(C) converges to the complete
shell 75 (14).

Example 6.3. Let us consider the square operator on sets of integersp(Z) — p(Z), i.e.sq(X) =
X? = {2% | z € X}, and the abstract domaifign = {@,Z.¢,{0},Z~0,Z}. As observed in Sec-
tion 2.2.2, Sign is not forward complete for the square operator. Let us applyma 6.2 in order to
compute the forward complete shefl, (Sign). Observe that

2% = @ € Sign; {0}?={0} € Sign; 72, =7%,=17?¢ Sign.

Thus, the first step of iteration refinégn to Sign U {Z?} (notice that this is an abstract domain because
it is Moore-closed). ThenZ?)? = Z2* ¢ Sign U {Z?}, so that on the second step of iteration we obtain
Sign U {Z2,Z%"}. In general, fom > 1, then-th step of iteration provideSign U {Z2" | k € [1,n]}, SO
that the complete shel¥,, (Sign) coincides with the least fixpoirftign U {Z?" | n > 1}. O

Finally, the following easy observation will be useful lata.

Lemma 6.4. Let I, G C Fun(C). Then,.”r = .7 if and only if for anyA € Abs(C), A is F-complete
< Ais G-complete.

Proof. (=) If Ais F’-complete them = .¥»(A) = .7+ (A) and therefored is G-complete as well.
(<) This follows from.r(A) = L{X € Abs(C) | X C A, X is F-completé = LI{X € Abs(C) | X C
A, X is G-completd = .7 (A). O

6.2 Strong Preservation and Complete Shells

Let.Z be a language with atoms i » and operators ifp ., and letS = (X, I) be a semantic structure
for ¢ so thatAP » andOp ., denote, respectively, the corresponding sets of semamépiretations of
atoms and operators. It turns out that forward completeioesd P » andOp o, implies strong preserva-
tion for .Z.

Lemma 6.5. If A € Abs(p(X)) is forward complete foA P ¢ andOp o, thenA is s.p. for.Z.

Proof. By Theorem 5.8, we show that C AD . Let us show by induction that for any € £,
[els = v(a([e]s))-

— ¢ =p € APy: sinceA is forward complete fop, [p]s = p = v(a(p)) = v(a([p]s))-
— o= flp1,...,pn) With f € Op o:

[f(e1s-mron)]s
Fleils, - [enls

F(v(e([p1]s)), s v(allwn]s)
Y(a(f(v(alleils)), - v(allenls)))
Y(a([f(e1; s 0n)]s

by definition]

by inductive hypothesis]

since A is forward complete foif]

by inductive hypothesis and by definition]

—_ — =

)
)
)
))-
O

On the other hand, the converse is not true, that is strorggpration does not imply forward com-
pleteness, as shown by the following example.

Example 6.6. Let us consider again Example 5.7 where we showed that thiigraing abstract do-
main A = p(P)c is s.p. for.Z. However, A is not forward complete foOp., = {pre_}. In fact:

y(a(pre_ (v(a({3}))))) = y(alpre.({3}))) = v(a({2,3})) = {1,2.3} while pre_(v(a({3}))) =
pre_, ({3}) = {2,3}. .

Instead, it turns out that most abstract s.p. domains cahdm@cterized as forward complete shells.

20

6.2.1 Complete Shells as Strongly Preserving Abstract Donires

Partition refinement algorithms for computing behavioelivalences like bisimulation [42], simulation
equivalence [5, 35, 48] and (divergence blind) stutteriggiealence [32] are used in standard abstract
model checking to compute the coarsest strongly presepantition of temporal languages liKéT'L* or

the p-calculus for the case of bisimulation equivalen&d€;TL* for simulation equivalence andTL*-X

for stuttering equivalence.

Given a language”Z and a concrete state spacethese partition refinement algorithms work by it-
eratively refining an initial partition” within the lattice of partition®art(X) until the fixpoint Py is
reached. The input partitio? determines the sel Pp of atoms and their interpretatioh> as fol-
lows: APp = {pp | B € P} andIp(pp)= B. More in general, anyt C (%) determines a set
{px} xex of atoms with interpretatiofix (px) = X. In particular, this can be done for an abstract do-
main A € Abs(p(X)) by considering its concretizatiof(A) C 3, namelyA is viewed as a set of atoms
with interpretation/4 (a) = v(a). Thus, an abstract domaifi € Abs(p(X)) together with a set of func-
tions FF C Fun(p(X)) determine a languag&s, », with atoms inA, operations inF’ and endowed with
a semantic structur§4 r = (2,14 U Ir) such that for any: € A, I4(a) = v(a) and for anyf € F,
Ir(f) = f. Therefore, the most abstract s.p. domain «, .. generalizes in our framework the output
of a partition refinement algorithm for some language. Adougly, we aim at characterizingD ¢, ..
as the output of a refinement process of the initial dorahimithin the latticeAbs(p(X)) of abstract do-
mains. The following result shows that forward completarfes the operations i’ is the right notion of
refinement to be used for the case of abstract domains.

Theorem 6.7. Let A € Abs(p(X)), F C Fun(p(X)) and assume that’s is closed under infinite
logical conjunction. ThemMAD ¢, . = .“#(A).

Proof. Since.Z4, r is closed under conjunction we have thdd o, . = {[¢]s, » | ¢ € Za,r}. Letus
first prove that{[¢]s, » | ¢ € Za.r} C .7F(A) by structural induction op € £ r:

—p=ac A [[a]]SA,F = IA(G) = W(G) €v(A) € Ir(A).

- P = f(solaason) with f € I [[f((pl""ason)ﬂs,qyp = f([[sol]]SA,Fa"'a IISOn]]SAVF)y Where: by
inductive hypothesidy;]s, , € -#r(A). Therefore, since’r(A) is forward f-complete, we have

thatf([[sol]]SA,F’ RS [[‘PHHSA,F) € yF(A)

Let us now prove the opposite inclusion. Let us first obseime¢ AD o, ,. is forward F-complete. For
simplicity of notation, considef € F with §(f) = 1. If [¢]s, » € ADg, ., Wherep € Z4 r, then,
flp) € ZLarand f([¢ls,) = [f(@)]ssr € ADg, .. By Lemma 6.2, we know that’4(A) =
Macord(Ap.pra M M(F(p)))a’i(Tuco(p(g))), so that it is sufficient to prove by transfinite induction on
a € Ord that

(/\p.,LLA r M(F(p)))aﬂl(—ruco(p(z))) C ADfA,F .
= a=0: (Appa TM(F () (Tuco(o(2)) = Tuco(om) = {2} € 1(4) € AD g, 1.

— « + 1: By inductive hypothesis(Ap.pa 1 M(F())* (T uco(o(s)) € ADg, .. Moreover,
AD g, .. is Moore-closed and forwarH-complete (hence closed und€). Thus, M (F((Ap.pea M
M(F(p)))a’i(Tuco(p(E))))) - ADfA,Fv namely(/\p.MArl/\/l(F(p)))"““lvi(Tuco(p(g))) c AD_Z’A,F'

— limit ordinal o: This follows from
(Ap-fia TMF(p)* (T ucotos)) = Mp<aMp-pa TMEF ()P H(T weo(o(n))

because, by inductive hypothesisp.jia 1 M(F(p))? (T yeo(o(s))) € ADg, ., foranys < a.
O

21

6.2.2 Strongly Preserving Abstract Domains as Complete She

Let us consider a languag®, with atoms inAP ¢ and operators iDp ,, and a semantic structure
S = (¥,I). As an immediate consequence of Theorem 6.7, the most ebstpa domaimD ¢ for &
w.r.t. S can be characterized as the forwadd® » U Op -complete shell of the most abstract domain

{}.
Corollary 6.8. Let.Z be closed under infinite logical conjunction. Théd) & = “ap,u0p., ({X}).

Let us also observe th&D « can be equivalently characterized as the forw@psl,,-complete shell
of an initial abstract domain (AP) induced by atomsAD ¢ = Lo, , (M(AP 2)).

6.2.3 Strongly Preserving Partitions

Theorem 6.7 and Corollary 6.8 provide an elegant genetaizaf partition refinement algorithms for
strong preservation from an abstract interpretation patspe.

Given a languageZ’ with operators inOp ., and a corresponding semantic structSre= (X, 1), as
recalled in Section 6.2.1, an input partitithe Part(X) for a partition refinement algorithm determines
the setAP » = {pp | B € P} of atoms of.Z and their interpretatiofi(pg) = B. Thus, M(AP ») =
M(P) = PU{@,X}. Itturns out that the coarsest s.p. partitiBy for . can be characterized in our
abstract domain-based approach as follows.

Corollary 6.9. Let.Z be closed under infinite logical conjunction.
(1) Py = par(Fop., (M(P))).
(2) Let.Z be closed under logical negation. ThedP (Py) = Yop., (M(P)).

Proof. (1) By Corollary 6.8 AD ¢ = Yo, (M(P)) and by Proposition 5.10 (1R¢ = par(AD.y)
par(-Lop., (M(P))).

(2) By Proposition 5.10 (1) and (3), Corollary 6.8 and poii)t ¢dP(Py) = adP(par(ADy¢)) = ADy =
Fop, (M(P)). O

It is worth remarking that wheif is not closed under negation, by Proposition 5.10 (3) andcor
lary 6.9 (2), it turns out thadd”(Py) C -Yop., (M(P)). This means that wheg’ is not closed under
negation the output partitioR, of any partition refinement algorithm for achieving strormrggervation
for . is not optimal within the lattice of abstract domains.

Example 6.10. Let us consider the languag€ and the concrete Kripke structukein Example 5.12.
The labeling determines the initial partitidh = {p = 1234,q = 5} € Part(X), so thatM(P) =
{2,1234,5,12345} € Abs(p(X)). Here,Op o, = {A,EF|g 2 }. Abstract domains are Moore-closed so
that%op,, = JEF, Let us compute’gr,, ,, (M(P)).

0,2]"
Ay = M(P) = {2, 1234, 5, 12345}
Ay = Ao TM(EF g 91(Ao)) = M(Ag UEF 2(Ao))

= M({2,1234,5,12345} U {EF o 5y ({5}) = 345}) = {2, 5, 34,1234, 12345}
Ay = Ay (fixpoint)

As already observed in Example 5.12, = {12,34, 5} is such thatd?(Py¢) C & and itis not possible
to define a strongly preserving abstract Kripke structuréherabstract spade.. O

7 An Application to some Behavioural Equivalences

It is well known that some temporal languages IK&'L, ACTL andCTL-X induce state logical equiv-
alences that coincide with standard behavioural equicalefike bisimulation equivalence faITL, (di-
vergence blind) stuttering equivalence fOf'L-X and simulation equivalence f&vxCTL. We derive here

a novel characterization of these behavioural equivakeitéerms of forward completeness of abstract
interpretations.

22

7.1 Bisimulation Equivalence

Let £ = (X, —, ¢) be a Kripke structure over some s&P of atomic propositions. A relatioR C ¥ x 3
is a bisimulation ork if for any s, s’ € X such thats Rs’:

(1) €(s) = €(s");
(2) Foranyt € ¥ such thats—t, there exist¢’ € X such that’—t" andtRt’;
(3) s'Rs, i.e. R is symmetric.

Since the empty relation is a bisimulation and bisimulatiare closed under union, it turns out that the
largest (as a set) bisimulation relation exists. This lardgsimulation is an equivalence relation called
bisimulation equivalence and is denotedby,; while Py,;s € Part(3) denotes the corresponding partition.
Thus, a partition? € Part(X) is a bisimulation orilC whenP < Pis.

It is well known [4] that whenK is finitely branching, bisimulation equivalence coincideish the
state equivalence induced KYI'L, i.e., Pyis = Pcrr (the same holds fo£ TL* and theu-calculus, see
e.g. [19, Lemma 6.2.0.5]). Moreover, it is known (see e.§, Bection 12]) that it is enough to consider
finitary Hennessy-Milner logic [34], i.e. a languadgd including propositional logic and the existential
next operator in order to have thBt,, = P;s:

L1opu=plei N2 | @ | EXe

where, as usual, the interpretati@X of EX in K is pre_. A number of algorithms for computing
bisimulation equivalence exists [3, 23, 38, 42]. The Pdiggan algorithm [42] runs i) (|—|log(|X|))-
time and is the most time-efficient algorithm that compuissrulation equivalence.

We recalled above thdty, = Pcrr,. In our framework, this can be obtained as a consequenceof th
fact that the most abstract s.p. domains@arL. and.#; coincide.

Lemma 7.1. LetK be finitely branching. TheMD¢rr, = AD.g, = adP(Pis)-

Proof. Let Oporp, = {N,0, AX, EX, AU, EU, AR, ER} be the set of standard interpretations of the
operators o£TL on K, so thatAX = pre_, andEX = pre_ . We show thaj: € uco(p(X)) is forward
complete forOp, iff 1 is forward complete fofC, pre_ }. Assume tha: is forward complete for
{C, pre_ }. Let us first prove that is forward complete fopre , = AX:

pwopre, ou= [bydefinition ofpre_]

polopre olopu= [asuis complete fol]
polopre, opolop= [asuis complete forpre]

pobopopre opolop= [asuis complete fof]
Copopre_ opolopu= [asuis complete fopre_]

Copre_ouolop= [asuis complete folf]

Copre,olop= [by definition ofpre_]

pre_, o /1

The following fixpoint characterizations are well known 10

- AU 51,52) = lfp()\ZSQ U (Sl ﬁ;ﬁ/e_‘(Z))),
)

(
- EU(Sl, Sy) = 1fp(/\ZSQ U (Sl N pre_>(Z))

)
— AR(S51, 82) = gfp(AZ.52 N (S1 U pre_(Z))
) =

)
— ER(S1, S2) = gfp(AZ.52 N (S1 Upre_, (2))).

23

Let us show thaj: is forward complete foAU. The proofs for the remaining operators@p;, are
analogous. We need to show thalfp(AZ.u(S2) U (u(S1) Npre_ (Z2)))) = Up(AZ.u(S2) U (u(S1) N
pre_(Z))). Let us show that is forward complete for the functionZ.p.(S2) U (u(S1) Npre_, (Z)):

u(p(S2) U (u(S1) Npre_, (u(Z
(p(S2) U (u(S1) N p(pre_ (u(2)
p(p(S2) U p(p(S1) N p(pre, (u(Z)

1(S2) U p(u(S1) N p(pre, (u(Z

1(S2) U (u(S1) N p(pre_, (u(Z

©(S2) U (u(S1) Npre_, (u(Z)))

Observe that sincg is additive (and therefore continuous) we have th@s) = @. Moreover, let us
show that from the hypothesis thtis finitely branching it follows thapre_, is continuous. First, notice
that pre_, is continuous iffpre_, is co-continuous. Hence, let us check tphat_, is co-continuous. Let
{X}ien be a decreasing chain of subsetsodnd letx € N;ey pre_, (X;). Sincek is finitely branching,
post_, ({z}) is finite so that there exists sonte € N such that for anyj > 0, post_ ({z}) N Xi =
post_, ({z}) N Xy;. Hence, there exists somec N;enX; N post_, ({z}), so thatr € pre_, (NienX;).
Therefore, sincere_, is continuous we also have thaZ..(S2) U (u(S1) Npre_ (7)) is continuous. We
can therefore apply Lemma 2.1 so thdtfp(\Z.u(S2) U (u(S1)Npre_, (2)))) = Up(AZ.pu(S2) U (u(S1)N
pre_, (2))).

Thus, by Lemma 6.47¢ 1 1 = YOper,,» SO that, by Corollary 6.80D ¢, = ADcrr. Finally, since
K is finitely branching and?; is closed under conjunction and negati@dP (Py,) = adP(Pyis) =
adp(Pgl) ZADgl. O

= [aspis complete fopre]

= [asuis complete for)]

= [asuis complete for]
[asp is complete foN]
[asu is complete fopre._,]

)
)
)
)
)

As a consequence of this and of the results in Section 6 (ircp&ar of Corollary 6.9), any partition re-
finement algorithm\lg, ;. for computing bisimulation equivalence on a finitely braingfKripke structure,
like those in [3, 23, 38, 42], can be characterized as a camplell refinement as follows:

Algbis(P) = par(y{ﬂ,prca}(M(P)))'

Thus, Alg, ;. is viewed as an algorithm for computing a particular absivag that ispar, of a partic-
ular complete shell, that is”¢ ... ;. In particular, this holds for the Paige-Tarjan algorithi2] and
leads to design a generalized Paige-Tarjan-like procdummputing most abstract strongly preserving
domains [45].

Finally, our abstract intepretation-based approach allaw to give the following nice characteriza-
tion of bisimulation for a partitiorP in terms of forward completeness for the correspondingtjgaring
abstract domaind®(P).

Theorem 7.2. Let P € Part(X). Then,P is a bisimulation onk iff ad®(P) is forward complete for
{plpe AP} U {pre_}.

Proof. We view ad?(P) as a uco so thatd?(P) = {U;B; € p(X) | {B;} C P}. Let us first ob-
serve thatP < P, iff adP(P) is forward complete fo{p C ¥ | p € AP}. On the one hand, since
p={seX|pel(s)} ifsepands € B, forsomeB € P, thenB C [s], C p. Hencep is a union of
some blocks of” and therefore € adP(P). On the other hand, €dP(P) contains{p C ¥ | p € AP}
then, forany € AP, pis a union of some blocks iR. Thus, foranyB € P, eitherB C porBNp = .
Consequently, it € B thenB C [s]; € P;.

Let us now note thaidP(P) is forward complete fopre_, iff for any block B € P, pre_ (B) is a (pos-
sibly empty) union of blocks of?: this holds becausgre_, is additive, and therefore §B;} C P
thenpre_ (U; B;) = U;pre_(B;). The fact that, for som& € P, pre_(B) = U;B;, for some blocks
{B;} C P,implies thatifs € pre_ (B), i.e.,s—t for somet € B, thens € B;, for somej, and ifs’ € B;
thens’ € pre_ (B), i.e., s'>t' for somet’ € B, namely condition (2) of bisimulation faP holds. On
the other hand, if condition (2) of bisimulation fét holds then ifs, s’ € B’ ands € pre_ (B), for some
B, B’ € P, thens'—t’ for somet € B, i.e.,s’ € pre_ (B), and thereforere_, (B) is a union of blocks of
P. This closes the proof. O

24

7.1.1 On the Smallest Abstract Transition Relation

As recalled in Section 2.3, the abstract Kripke structdre= (P, —=7,¢7) strongly preserve§TL,
where B; -3 B, iff there exists; € B; andsy € By such thats;—s, and/?(B) = Ugepl(s). As a
simple and elegant consequence of our approach, it is eahote that-= is theunique(and therefore
the smallest) abstract transition relation8r, that induces strong preservation fot'L.

Let £ = (X, —, ¢) be finitely branching so that, by Lemma 7AD ¢, = adP(Pyis) = p(Pyis). Recall
that the concrete interpretatidrninduced byK is such that/ (EX) = pre_. By Theorem 5.9, the unique
interpretation of atoms and operations# on the abstract domajp(P,;s) that gives rise to a s.p. abstract
semantics is the best correct approximatiet{»<). Hence, ifA = (Py, —F, %) is strongly preserving for
CTL then the interpretatiopre_; of EX induced by.A must coincide with/#("i<) (EX). Consequently,
pre_; = a o pre_ oy SO that for anyB;, By € P, we have thaB, —! B, iff By € a(pre_ (y({B2}))).
Therefore, we conclude by observing ti#at € a(pre_ (v({Bz2}))) iff B1—">Ba.

We believe that a similar reasoning could be also useful fleerlanguages” in order to prove that
the smallest abstract transition relation By that induces strong preservation exists. For example, this
has been proved for the caseAf TL by Bustan and Grumberg [5].

7.2 Stuttering Equivalence

Lamport’s criticism [37] of the next-time operatdr in CTL/CTL" is well known. This motivated the
study of temporal logic€ TL-X/CTL*-X obtained fromCTL/CTL* by removing the next-time operator
and this led to study notions of behaviouslitteringbased equivalences [4, 22, 32]. We are interested
here indivergence blind stutterin¢dbs for short) equivalence. L& = (X, —, ¢) be a Kripke structure
over a setAP of atoms. A relationR C ¥ x X is a divergence blind stuttering relation &nif for any

s,s' € ¥ such thakRs’:

(1) £(s) = £(s);

(2) If s—t then there existy, ..., t; € 3, with k& > 0, such that: (i}, = s'; (i) for all ¢ € [0,k — 1],
t;—t;1; andsRt;; (i) tRiy;

(3) s'Rs, i.e. Ris symmetric.

Observe that condition (2) allows the case- 0 and this simply boils down to requiring thaks’. Since
the empty relation is a dbs relation and dbs relations argedi@nder union, it turns out that the largest
dbs relation relation exists. It turns out that this largeiss relation is an equivalence relation called
dbs equivalence and is denoted by while Py, € Part(X) denotes the corresponding partition. In
particular, a partitior? € Part(X) is a dbs relation oL when whenP < Pyps.

De Nicola and Vaandrager [22, Theorem 3.2.5] showed thafifiiie Kripke structures and for an
interpretation of universal/existential path quantifiever all the, possibly finite, prefixes, dbs equivalence
coincides with the state equivalence induced from the lagg@TL-X (this also holds folCTL*-X),
that is Pyps = Poro-x. This is not true with the standard interpretation of pathrgifiers over infinite
paths, since this requires a divergence sensitive notictuttering (see the details in [22]). Groote and
Vaandrager [32] presented a partition refinement algorttrabhcomputes the partitioRy,s in O(|XZ||—1)-
time.

We provide a characterization of divergence blind stutgpequivalence as the state equivalence in-
duced by the following languag# that includes propositional logic and the existential lopieratorE U,
where the interpretation of the existential path quantiietandard, i.e. over infinite paths:

Ly pu=ploi Aps | 2 | EU(pr, 02)

Since the transition relatiop is assumed to be total, let us recall that the standard sasdU_, :
©(2)? — (%) of the existential until operator is as follows:

EU_(51,52) = Se U{s € 51| 3so, ..., sp, € X, with n > 0, such that (i)so = s,
(ii) Vi € [0,n — 1]. s; € S; ands;—s;41, (iii) s, € S2}.

25

The following result characterizes a dbs partitidim terms of forward completeness for the corresponding
partitioning abstract domaind®? (P).

Theorem 7.3. Let P € Part(X). Then,P € Part(X) is a dbs partition onk iff adP(P) is forward
complete fo{p | p € AP} U{EU.}.

Proof. As already shown in the proof of Theorem 7.2, it turns out thak P, iff ad®(P) is forward
complete for{p C ¥ | p € AP}. Thus, it remains to show € Part(X) satisfies condition (2) of the
definition of dbs relation ifadP(P) is forward complete foEU_,. Let us first observe that € Part(X)
satisfies this condition (2) iff for ang;, B, € P, EU_, (B, Bs) = B; U Bo.

(=) If By = BythenEU_ (B, B1) = B;. Otherwise, assume th&y # Bs. If By C EU_ (B, Bs) C
By U By then there exists € EU_, (B, Bs) such thats € B;. Thus, ifs’ € B; then, by condition (2),
s’ € EU_ (By, Bs). This implies thalEU, (B, B2) = By U Bs.

(<) LetB e P, s,s’ € Bands—t. If t € B then condition (2) is satisfied. Otherwises B’, for some
B’ € P, with B # B’. Thus,s € EU_ (B, B’) and therefor&U_ (B, B') = B U B’. This means that
condition (2) is satisfied foP.

To complete the proof it is now sufficient to show that if, fowyaB,, B, € P, EU_, (B, Bs) = B; U By
thenad®(P) is forward complete foEU._, i.e., for any{B; }icr. {B;}jes € P, EU_(U;B;,U;B;) =
Uy Bi, for some{ By} rex € P. The functionEU., is additive in its second argument, thus we only need
to show that, foranyB € P, EU_,(U;B;, B) = U By, namely ifs € EU_,(U; B;, B) ands € B’, for
someB’ € P,thenB’ C EU_(U;B;,B). If s € EU,(U;B;,B) ands € B’, for someB’ € {B;},,
then there exist > 0 andsy, ..., s, € X such thatsy = s,Vj € [0,n — 1].s; € U;B; ands;—s;41, and
s, € B. Letus prove by induction on € Nthatif s’ € B’ thens’ € EU_(U;B;, B).

(n = 0): In this cases € U;B; ands € B = B’. Hence, for somé&, s € B, = B = B’ and therefore
s € EU.(B, B). By hypothesisEU_, (B, B) = B. Moreover,EU_, is monotone on its first component
and thereford3’ = B = EU_ (B, B) C EU_(U;B;, B).

(n+1): Suppose thatthere exist, ..., s,+1 € X suchthaky = s,Vj € [0,n].s; € U;B; ands;j—s;41, and
Snt1 € B. Lets, € By, forsomeBy, € {B;};cr. Then,s € EU_(U;B;, B;) ands = sp—81—...— .
Since this finite path has length by inductive hypothesiss’ € EU_, (U;B;, Bx). Hence, there exist
70, ..., Tm € X5, With m > 0, such that’ = o, Vj € [0,m — 1].r; € U;B; andr;—r;1, andr,, € By.
Moreover, sinces,,—s,+1, we have thas,, € EU_ (By, B). By hypothesisEU_, (B, B) = B, U B,
and thereforer,,, € EU_ (B, B). Thus, there exisy,...,q; € X, with [> 0, such that,, = qo,
Vj € [0, — 1].q; € By andg;—q;+1, andg, € B. We have thus found the following finite path:
s’ = rg—ri—...orm = qo—q1—...—q, where all the states in the sequence but the lasgypbelong to
U; B;, while ¢, € B. This means that’ € EU_, (U; B;, B). O

As a consequence, we obtain a characterization of dbs denoeas the state equivalence induced by
the standard interpretation of the language

Corollary 7.4. LetX be finite. ThenPaps = Pe,.

Proof. By definition, Pans = Ypare(sy{P € Part(X) | P is a dbs relation orkC}. By Theorem 7.3,
Paps = Ypargs){P € Part(¥) | adP(P) is complete for{p | p € AP} U {EU.}}. By Theo-
rem 3.2,adP is co-additive orPart(X),-, that isadP preserves lub’s iPart(X)<. HenceadP(Pyps) =
Uabs(p(x)) {adP(P) € Abs(p(X)) | P € Part(X), ad?(P) is complete for{p | p € AP} U{EU_}}.
By Theorem 3.2AbsP*(p(X)) = {adP(P) | P € Part(X)} so thatad®(Paps) = Uabs(pr)i4 €
AbsP*((X)) | A is complete for{p | p € AP} U {EU_}}. By Corollary 3.3,4 € AbsP*(p(X))
iff A is forward complete fo, so thatad®(Pabs) = Uaps(ps){A € Abs(p(X)) | A is complete
for {p | p € AP} U {C,EU.}}. Then, we note that! is forward complete fo{p | p € AP} iff
AC M({p | S AP}) Hence,adP(des) = I—'Abs(p(E)){A S Abs(p(z)) | AC ./\/l({p | pE AP}), A
is complete for{C,EU_}} = gy ;(M{p | p € AP})). Finally, since¥ is finite and there-
fore closure under infinite conjunction boils down to clasunder finite conjunction, by Corollary 6.8,
Jeeu1M{p|p € AP})) = ADg,. Thus, by Proposition 5.10 (1)dP(Pans) = AD.g,, SO that
Paps = par(adP(Paps)) = par(AD.g,) = Pg,. O

26

As a consequence of Corollary 6.9, the Groote-Vaandragerigtm [32]GV for computing dsb equiv-
alence on a finite Kripke structure can be characterized asplete shell refinement as follows:

GV(P) = par(Z(¢ gy} (M(P))).

7.3 Simulation Preorder and Equivalence

Simulations are possibly nonsymmetric bisimulationsf tkaR C ¥ x X is a simulation on a Kripke
structurelC = (X, -, /) if for any s, s’ € ¥ such thatsRs’:

(D) &s") < €(s);
(2) Foranyt € ¥ such thats—t, there exist¢’ € X such that’—t" andtRt’.

The empty relation is a simulation and simulation relatiaresclosed under union, so that the largest simu-
lation relation exists. It turns out that the largest sintiolais a preorder relation called similarity preorder
and denoted by, € PreOrd(X). Therefore, a preorder relatidd € PreOrd(X) is a simulation oriC
whenR C Rgim. Simulation equivalencegimeq € X x X is the symmetric closure QRgim: § ~simeq

iff there exist two simulation relation®; and R, such thatsR,s" ands’Ras. Piimeq € Part(X) denotes
the partition corresponding t9gimeq-

A number of algorithms for computing simulation equivaler@ave been proposed [2, 5, 12, 27, 35]
and some of them like [2, 35] first compute the similarity pdss and then from it they obtain simulation
equivalence. The problem of computing simulation equiveéeis important in model checking because,
as recalled in Section 2.3, simulation equivalence styopggserves\CTL so thatPsmeq = PacrL (see
[33, Section 4]). Recall thatCTL is obtained by restrictingTL, as defined in Section 4.1, to universal
guantifiers and by allowing negation on atomic propositionly:

ACTL> g u=p|-ploi Apa| @1V | AXp [AU(p1,02) | AR(p1,@2)

It turns out that the most abstract s.p. domain A@f'TL can be obtained as the most abstract s.p.
domain for the following sublanguag#s:

Lsopu=pl-plei Ap2|p1 Ve | AXp
Lemma 7.5. Let K be finitely branching. ThedADactr, = AD «,.

Proof. Let Op,crr, = {N,U,AX, AU, AR} be the set of standard interpretations of the operators of
ACTL on K, so thatAX = pre_. Analogously to the proof of Lemma 7.1, as a consequence of
the least/greatest fixpoint characterizationsAd and AR, it turns out that for anyd € Abs(p(X)),

A is forward complete folOp 1y, iff A is forward complete fo{U, pre_ }. Thus, by Lemma 6.4,
S prey = LOp,or,» SO that, by Corollary 6.8AD &, = ADacrL- O

Thus, by Proposition 5.10 (1Pacrr, = par(ADacrr) = par(AD) = Py, SO thatPsimeq = P, .
As a further consequence, by Corollary 6.9, any algorittig),;,,,., that computes simulation equivalence
can be viewed as a partitioning abstraction of{hepre_, }-complete shell refinement:

Algsimeq(P) = par(y{u,prca}(M(P)))'

An instantiation of the generalized Paige-Tarjan-likeqeure in [45] for the complete shely ..}
allows to design a new efficient abstract intepretatioretiaggorithm for computing simulation equiva-
lence [46] whose space and time complexity is comparablie thiat of state-of-the-art algorithms like
[5, 27].

27

7.3.1 Preorders as Abstract Domains

Simulations give rise to preorders rather than equivalketike in the case of bisimulations and dbs rela-
tions. Thus, in order to characterize simulation for preosds forward completeness for abstract domains
we need to view preorders as abstract domains. This can h&elbtby generalizing the abstraction in
Section 3 from partitions to preorders.

Let R € PreOrd(X) and for anyz € ¥ let us defingkP™ = {prep({z}) C ¥ | z € X}. The preorder
R gives rise to an abstract domaiiRP™) which is related tg>(X)c through the following abstraction
and concretization maps:

ar(S) = {preg({z}) €S|z € S} YrR(X) = Uxex X.

It is easy to check that from the hypothesis tRas a preorder it follows thafo g, p(2)c, p(RP™)c,vr)
is indeed a GI. Hence, anfy € PreOrd(Y) induces an abstract domain denotedii§f(R) € Abs(p(X)).
Also, note thatyg oar = prey, Nnamelyprey, is the closure associated4d?(R). The notatiorad comes
from the fact that an abstract domainis equivalent to somead?(R) if and only if A is disjunctive.

Lemma 7.6. {ad4(R) € Abs(p(X)) | R € PreOrd(X)} = {A € Abs(p(X)) | A is disjunctive.

Proof. Observe thatyr is trivially additive, so that anyd?(R) is disjunctive. On the other hand, let
A € Abs(p(X)) be disjunctive and consider the relati® = {(z,y) | a({z}) <4 a({y})} which is
trivially a preorder. Thussd?(R4) is disjunctive so that in order to conclude that'(R*) is equivalent to
A itis enough to observe that for apyc X, pregpa ({y}) = v(a({y})): thisis true because(a({y})) =

{reX]a({z}) <aa({y})} = prega({y}). -

Let us observe thaid? indeed generalizesd® from partitions to preorders because for aRyc
Part(X), ad®?(P) = ad?(R): this is a simple consequence of the fact that for a partifforiewed as an
equivalence relation and fare X, P, is exactly a block ofP so thatap(S) = {prep({z}) |z € S}. On
the other hand, an abstract domalire Abs(p(X)) induces a preorder relatigneord(A) € PreOrd(X)
as follows:

(2,y) € preord(4) it a({z}) <a a({y})-

It turns out that the mapsd? andpreord allows to view the lattice of preorder relations as an abtira
of the lattice of abstract domains.

Theorem 7.7. (preord, Abs(p(¥))5, PreOrd(X)-, ad?).

Proof. Let A € Abs(p(X)) andR € PreOrd(X). Let us prove thak C preord(A4) < ad!(R) C yoa.
(=) Let S C X and let us show thatd?(R)(S) = preg(S) C v(a(S)). If 2 € preg(S) thenzRy for
somey € S, so that(z,y) € preord(A), i.e.a({z}) <a a({y}). Thus, by applying;, z € v(a({z})) C
y(a({y})) € V(S)).

(<) Let (z,y) € R and let us show that({z}) < a({y}). Note thatr € pre,({y}) = add(R)({y}) C
v(a({y})), so that({z}) <a a({y}), namely(z,y) € preord(A). O

Let us remark thaD = ad9 o preord is a lower closure operator ofAbs(p(X)), =) and that, by
Lemma 7.6, for anyd € Abs(p(X)), A is disjunctive iff D(A) = A. Hence,D coincides with the
disjunctive-shell refinement, also known as disjunctiveaptetion [14], namelyD(A) is the most abstract
disjunctive refinement ofl.

We can now provide a characterization of simulation pre@rdeterms of forward completeness.

Theorem 7.8. Let R € PreOrd(X). Then,R is a simulation onK iff ad4(R) is forward complete for
{p|pe AP} U {pre_}.

Proof. Recall thatpre, is the closure associated4d? (R). We first observe thatsRs’ = ¢(s') C (s))
iff prey is forward complete fod P. On the one hand, jp € AP ands € prey(p) thensRs’ for some
s’ € p, so that, fromé(s’) C £¢(s), we obtains € p, and therefor@re(p) = p. On the other hand, if
sRs' ands’ € p, for somep € AP, thens’ € p = preg(p) so thatprei({s'}) C preg(preg(p)) =
prez(p) = p and therefore from € prey({s'}) we obtains € p.

28

Thus, it remains to show thdt satisfies condition (2) of the definition of simulation jffe is forward
complete forpre .

(=) We prove that for anyy, prey (pre_ (preg(S))) C pre_, (prez(S)). Letx € pregy(pre, (prez(5)))
so that there exists somee pre_, (prey(S)) such thateRy. If z—2a’, for somez’, then, by simulation,
there exists somg such thay—y’ anda’ Ry’. Hencey' € preg(S) and this together with’ Ry’, asR is
transitive, gives’ € prey(.S). Thereforex € pre_, (preg(.9)).

(<) Observe that in order to show th&tis a simulation it is enough to show thatifRy thenz €
pre_, (preg(post_ ({y}))). The following implications hold, whergost_, ({y}) C preg(post_ ({y}))
holds becausprey, is a uco:

post_, ({y}) C pregp(post_ ({y})) = [aspre_, is monotone]
pre_ (post_, ({y})) C pre_ (preg(post_ ({y}))) = [asy € pre_ (post_, ({y}))]
{y} C pre_ (preg(post, ({y})) = [aspre , is monotone]
prep({y}) C preg(pre_, (preg(post_, ({v})))) = [asprep, is forward complete fopre .,]
preg({y}) € pre_ (preg(post_ ({y}))) = [asz € preg({y})]
a € pre_ (preg (post_, ({y})))
and this closes the proof. O

8 Related work

Loiseaux et al. [39] generalized the standard approach straatt model checking to more general ab-
stract models where an abstraction relationC States x A is used instead of a surjective function
h : States — A. However, the results of strong preservation given thef.e[§0, Theorems 3 and 4])
require the hypothesis that the relatioris difunctional, i.e.c = oo~ 'o. In this case the abstraction
relationo can indeed be derived from a function, so that the class ofigly preserving abstract models
in Loiseaux et al.’s framework is not really larger than thess of standard partition-based abstract models
(see the detailed discussion by Dams et al. [20, Sectioi.8.1]

Giacobazzi and Quintarelli [28] first noted that strong preation is related to completeness in ab-
stract interpretation by studying the relationship betweemplete abstract interpretations and Clarke et
al’s [6, 7, 8] spurious counterexamples. Given a formulaf ACTL, a model checker running on a stan-
dard abstract Kripke structure defined over a state partffianay provide a spurious counterexample
for ¢, namely a path of abstract states, namely blockB oivhich does not correspond to a real concrete
counterexample. In this case, by exploiting the spuriousiterexampler’, the partitionP is refined toP’
by splitting a single block of’. As a result, this refined partitioR’ does not admit the spurious counterex-
ampler? for o so thatP’ is given as a new refined abstract modelgao the model checker. Giacobazzi
and Quintarelli [28] cast spurious counterexamples forréitfmn P as a lack of (standard) completeness
in the abstract interpretation sense for the correspornghntitioning abstract domaiad?(P). Then, by
applying the results in [31] they put forward a method fortegatically refining abstract domains in order
to eliminate spurious counterexamples. The relationsktpiéen completeness and spurious counterex-
amples was further studied in [18], where it is also shown ¢ghblock splitting operation in Paige and
Tarjan [42] partition refinement algorithm can be charazést in terms of complete abstract interpreta-
tions. More in general, the idea of systematically enhapdie precision of abstract interpretations by
refining the underlying abstract domains dates back to thg e@rks by Cousot and Cousot [14], and
evolved to the systematic design of abstract interpretatity abstract domain refinements [26, 29, 31].

9 Conclusion

This work shows how the abstract interpretation technidjogva to generalize the notion of strong preser-
vation from standard abstract models specified as abstrgaté<structures to generic domains in abstract
interpretation. For any inductively defined langua@f® it turns out that strong preservation &f in a
standard abstract model checking framework based onipagibf the space stabe becomes a particular

29

instance of the property of forward completeness of abisttamains w.r.t. the semantic operators of the
languageZ. In particular, a generalized abstract model can alwayefiead through a fixpoint iteration
to the most abstract domain that strongly preseri#es This generalizes in our framework the idea of
partition refinement algorithms that reduce the state spaiceorder to obtain a minimal abstract Kripke
structure that is strongly preserving for some temporajlege.

This work deals with generic temporal languages consisifrgfate formulae only. As future work,
it would be interesting to study whether the ideas of ourralstinterpretation-based approach can be
applied to linear languages likel'L consisting of formulae that are interpreted as sets of pdta¥Kripke
structure. The idea here is to investigate whether starsleondg preservation dfT'L can be generalized to
abstract interpretations of the powerset of traces andttodhresponding completeness properties. Fairness
can be also an interesting topic of investigation, namebtudy whether our abstract interpretation-based
framework allows to handle fair semantics and fairnesstcaimés [10].

Finally, let us mention that the results presented in thigepéed to design a generalized Paige-Tarjan
refinement algorithm based on abstract interpretationdorputing most abstract strongly preserving do-
mains [45]. As shown in Section 6, a most abstract strongdggnving domain can be characterized as
a greatest fixpoint computation ifabs(p(X)). It is shown in [45] that the Paige-Tarjan algorithm [42]
can be viewed exactly as a corresponding abstract greagesirft computation irPart(X). This leads to
an abstract interpretation-based Paige-Tarjan-likeeefant algorithm that is parameteric on any abstract
interpretation of the latticAbs(p (X)) of abstract domains gf(3) and on any generic inductive language
Z.

Acknowledgements.We wish to thank Mila Dalla Preda and Roberto Giacobazzi wérdributed to the
early stage of this work. This paper is an extended and réwisesion of [44]. This work was partially
supported by the FIRB Project “Abstract interpretation anatiel checking for the verification of embedded
systems” and by the COFIN2004 Project “AIDA: Abstract Iipetation Design and Applications”.

References

[1] K.R. Apt and G.D. Plotkin. Countable nondeterminism aaddom assignmenf.. ACM 33(4):724-767, 1986.

[2] B. Bloom and R. Paige. Transformational design and imgetation of a new efficient solution to the ready
simulation problemSci. Comp. Program24(3):189-220, 1995.

[3] A.Bouajjani, J.-C. Fernandez and N. Halbwachs. Minimaidel generation. IRroc. of the 2nd Internat. Conf.
on Computer Aided Verification (CAV'9Q)NCS 531, pp. 197-203, Springer, 1990.

[4] M.C. Browne, E.M. Clarke and O. Grumberg. CharactegZimite Kripke structures in propositional temporal
logic. Theoret. Comp. S¢i59:115-131, 1988.

[5] D. Bustan and O. Grumberg. Simulation-based minima@atACM Trans. Comput. Log4(2):181-204, 2003.

[6] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Carakample-guided abstraction refinementPtoc.
of the 12th Internat. Conf. on Computer Aided VerificatioAY®O0), LNCS 1855, pp. 154-169, Springer, 2000.

[7] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Cauwakample-guided abstraction refinement for
symbolic model checkingl. ACM 50(5):752—794, 2003.

[8] E.M. Clarke, S. Jha, Y. Lu and H. Veith. Tree-like cousbteamples in model checking. Rroc. of the 17th IEEE
Symp. on Logic in Computer Science (LICS;@#). 19-29, IEEE Press, 2002.

[9] E.M. Clarke, O. Grumberg and D. Long. Model checking abdteaction. ACM Trans. Program. Lang. Syst.
16(5):1512-1542, 1994.

[10] E.M. Clarke, O. Grumberg and D.A. Pelddodel checking The MIT Press, 1999.

[11] R. Cleaveland, S.P. lyer, D. Yankelevich. Optimalityabstractions of model checking. Rroc. 2nd Intern.
Static Analysis Symposium (SAS9S)CS 983, pp. 51-63, Springer, 1995.

[12] R.Cleaveland, J. Parrow and B. Steffen. The Concuyr®viarkbench: a semantics based tool for the verification
of concurrent system#CM Trans. Program. Lang. Sys1.5(1):36-72, 1993.

[13] P. Cousot and R. Cousot. Abstract interpretation: dieohilattice model for static analysis of programs by
construction or approximation of fixpoints. Rroc. 4th ACM POPLpp. 238-252, 1977.

30

[14] P. Cousot and R. Cousot. Systematic design of progratysis frameworks. IfProc. 6th ACM POPLpp. 269—
282, 1979.

[15] P. Cousot and R. Cousot. Higher-order abstract iné¢gion (and application to comportment analysis general-
izing strictness, termination, projection and PER analgsifunctional languages). IRroc. IEEE Int. Conf. on
Computer Languages (ICCL'94p. 95-112, 1994.

[16] P. Cousot and R. Cousot. Refining model checking by absinterpretation Automated Software Engineering
Journal 6(1):69-95, 1999.

[17] P. Cousot and R. Cousot. Temporal abstract interpostain Proc. 27th ACM POPLpp. 12-25, 2000.

[18] M. Dalla Preda. Completeness and stability in abstract model checkihgurea Thesis (in Italian), Univ. of
Verona, Italy, 2003.

[19] D. Dams.Abstract interpretation and partition refinement for modkecking Ph.D. Thesis, Eindhoven Univer-
sity of Technology, The Netherlands, 1996.

[20] D. Dams, O. Grumberg and R. Gerth. Abstract interpratadf reactive systemsACM Trans. Program. Lang.
Syst, 16(5):1512—-1542, 1997.

[21] J.W. De Bakker, J.-J.C. Meyer and J.I. Zucker. On indiibmputations in denotational semantidheoret.
Comp. Sci.26(1-2):53-82, 1983.

[22] R. De Nicola and F. Vaandrager. Three logics for branghiisimulation.J. ACM 42(2):458-487, 1995

[23] A. Dovier, C. Piazza and A. Policriti. An efficient algthrm for computing bisimulation equivalenc&@heoret.
Comp. Scj.311(1-3):221-256, 2004.

[24] E.A. Emerson, A.K. Mok, A.P. Sistla and J. Srinivasenua@titative temporal reasoning. Rroc. of the 2nd
Internat. Conf. on Computer Aided Verification (CAV'9ONCS 531, pp. 136-145, Springer, 1990.

[25] E.A. Emerson and E.M. Clarke. Characterizing correstnproperties of parallel programs using fixpoints. In
Proc. ICALP’8Q LNCS 85, pp. 169-181, Springer, 1980.

[26] G. File, R. Giacobazzi and F. Ranzato. A unifying vieWatstract domain design ACM Comput. Sury.
28(2):333-336, 1996.

[27] R. Gentilini, C. Piazza and A. Policriti. From bisimtilan to simulation: coarsest partition problems.Auto-
mated Reasonin@1(1):73-103, 2003.

[28] R. Giacobazzi and E. Quintarelli. Incompletenessnterexamples and refinements in abstract model checking.
In Proc. 8th Intern. Static Analysis Symposium (SAS'DNCS 2126, pp. 356-373, Springer, 2001.

[29] R. Giacobazzi and F. Ranzato. Refining and compressiagiact domains. IProc. 24th ICALR LNCS 1256,
pp. 771-781, Springer, 1997.

[30] R. Giacobazzi and F. Ranzato. Optimal domains for disjive abstract interpretatiorSci. Comp. Program.
32:177-210, 1998.

[31] R. Giacobazzi, F. Ranzato and F. Scozzari. Making absinterpretations completel. ACM, 47(2):361-416,
2000.

[32] J.F. Groote and F. Vaandrager. An efficient algorithmbfiaanching bisimulation and stuttering equivalence. In
Proc. ICALP’9Q LNCS 443, pp. 626-638, Springer, 1990.

[33] O. Grumberg and D.E. Long. Model checking and modulaifieation. ACM Trans. Program. Lang. Syst.
16(3):843-871, 1994.

[34] M. Hennessy and R. Milner. Algebraic laws for nondetigism and concurrencyl. ACM 32(1):137-161, 1985.

[35] M.R. Henzinger, T.A. Henzinger and P.W. Kopke. Compgtsimulations on finite and infinite graphs. Prnoc.
36th FOCSpp. 453-462, IEEE Press, 1995.

[36] T.A. Henzinger, R. Maujumdar and J.-F. Raskin. A clésation of symbolic transition system&8CM Trans.
Comput. Log.6(1), 2005.

[37] L. Lamport. What good is temporal logic? Information Processing '83pp. 657—668, IFIP North-Holland,
1983.

[38] D. Lee and M. Yannakakis. Online minimization of traii systems. IProc. 24th ACM STO(p. 264-274,
1992.

[39] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani and S. Balem. Property preserving abstractions for the verifica-
tion of concurrent system&ormal Methods in System Desjg$11-36, 1995.

31

[40] D. Massé. Semantics for abstract interpretatioretasatic analyzes of temporal propertiesPhoc. 9th Intern.
Static Analysis Symposium (SAS'ANCS 2477, pp. 428—-443, Springer, 2002.

[41] D. Massé. Abstract domains for property checking ehianalysis of temporal properties. Pnoc. 10th Intern.
Conf. on Algebraic Methodology and Software Technology A8W04) LNCS 3116, pp. 349-363, Springer,
2004.

[42] R. Paige and R.E. Tarjan. Three partition refinementritigms. SIAM J. Comput.16(6):973-989, 1987

[43] F. Ranzato and F. Tapparo. Making abstract model chgckirongly preserving. IRroc. 9th Intern. Static
Analysis Symposium (SAS’ORNCS 2477, pp. 411-427, Springer, 2002.

[44] F. Ranzato and F. Tapparo. Strong preservation as aemass in abstract interpretation Piroc. 13th European
Symposium on Programming (ESOP’0UNCS. 2986, pp. 18-32, Springer, 2004.

[45] F. Ranzato and F. Tapparo. An abstract interpretatased refinement algorithm for strong preservation. In
Proc. 11th Intern. Conf. on Tools and Algorithms for the Gamstion and Analysis of Systems (TACAS,05)
LNCS 3440, pp. 140-156, Springer, 2005.

[46] F. Ranzato and F. Tapparo. An efficient algorithm for poing simulation equivalence based on abstract inter-
pretation. In preparation, 2006.

[47] D.A. Schmidt. Closed and logical relations for overdamder-approximation of powersets.Rroc. 11th Intern.
Static Analysis Symposium (SAS'AACS 3148, pp. 22—-37, Springer, 2004.

[48] L. Tan and R. Cleaveland. Simulation revisited. InAroc. 7th Intern. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'DRCS 2031, pp. 480-495, Springer, 2001.

[49] R.J. van Glabbeek. The linear time - branching time spet. In Handbook of Process Algebrap. 3-99,
Elsevier, 2001.

32

