
ar
X

iv
:c

s/
04

01
01

6v
3

 [c
s.

LO
]

14
 M

ar
 2

00
6

Generalized Strong Preservation
by Abstract Interpretation

FRANCESCORANZATO FRANCESCOTAPPARO

Dipartimento di Matematica Pura ed Applicata, Universitàdi Padova

Via Belzoni 7, 35131 Padova, Italy

franz@math.unipd.it tapparo@math.unipd.it

Abstract

Standard abstract model checking relies on abstract Kripkestructures which approximate concrete
models by gluing together indistinguishable states, namely by a partition of the concrete state space.
Strong preservation for a specification languageL encodes the equivalence of concrete and abstract
model checking of formulas inL . We show how abstract interpretation can be used to design abstract
models that are more general than abstract Kripke structures. Accordingly, strong preservation is gen-
eralized to abstract interpretation-based models and precisely related to the concept of completeness in
abstract interpretation. The problem of minimally refiningan abstract model in order to make it strongly
preserving for some languageL can be formulated as a minimal domain refinement in abstract interpre-
tation in order to get completeness w.r.t. the logical/temporal operators ofL . It turns out that this refined
strongly preserving abstract model always exists and can becharacterized as a greatest fixed point. As
a consequence, some well-known behavioural equivalences,like bisimulation, simulation and stuttering,
and their corresponding partition refinement algorithms can be elegantly characterized in abstract inter-
pretation as completeness properties and refinements.

Keywords:Abstract interpretation, abstract model checking, strongpreservation, completeness, refine-
ment, behavioural equivalence.

1 Introduction

The design of an abstract model checking framework always includes a preservation result, roughly stating
that for any formulaϕ specified in some temporal languageL , if ϕ holds on an abstract model thenϕ
also holds on the concrete model. On the other hand,strong preservationmeans that a formula ofL holds
on an abstract model if and only if it holds on the concrete model. Strong preservation is highly desirable
since it allows to draw consequences from negative answers on the abstract side [10].

Generalized Strong Preservation.The relationship between abstract interpretation and abstract model
checking has been the subject of a number of works (see e.g. [9, 11, 16, 17, 19, 20, 28, 39, 40, 41, 43, 47]).
This paper follows the standard abstract interpretation approach [13, 14] where abstract domains are speci-
fied by Galois connections, namely pairs of abstraction and concretization mapsα/γ. We deal with generic
(temporal) languagesL of state formulae that are inductively generated by some given sets of atomic
propositions and operators. The interpretationp of atomic propositionsp ∈ AP as subsets ofStates and
of operatorsf ∈ Op as mappingsf on℘(States) is determined by a suitable semantic structureS, e.g. a
Kripke structure, so that the concrete semanticsJϕKS ∈ ℘(States) of a formulaϕ ∈ L is the set of states
makingϕ true w.r.t.S. Abstract semanticscan be systematically defined by standard abstract interpreta-
tion. The powerset℘(States) plays the role of concrete semantic domain so that abstract domains range
in AbsDom(℘(States)). Any abstract domainA ∈ AbsDom(℘(States)) induces an abstract semantic
structureSA where atomsp are abstracted toα(p) and operatorsf are interpreted as best correct approxi-
mations onA, that isα◦f ◦γ. Thus,A determines an abstract semanticsJϕKAS ∈ A that evaluates formulae
ϕ ∈ L in the abstract domainA.

It turns out that this approach generalizes standard abstract model checking [9, 10]. Given a Kripke

1

http://arxiv.org/abs/cs/0401016v3

structureK = (States ,→) (for simplicity we omit here a labeling function for atomic propositions), a
standard abstract model is specified as an abstract Kripke structureA = (AStates,→♯) where the set
AStates of abstract states is defined by a surjective maph : States → AStates. Thus,AStates deter-
mines a partition ofStates and vice versa. It turns out that state partitions are particular abstract domains.
In fact, the lattice of partitions ofStates is an abstract interpretation of the lattice of abstract domains
AbsDom(℘(States)) so that the abstract state spaceAStates corresponds to a particular abstract domain
ad(AStates) ∈ AbsDom(℘(States)). Abstract domains that can be derived from a state partitionare
calledpartitioning. The interpretation of the languageL w.r.t. the abstract Kripke structureA determines
an abstract semantic functionJϕKA ∈ AStates. The abstract Kripke structureA strongly preservesL
when for anyϕ ∈ L ands ∈ States, it turns out thath(s) ∈ JϕKA ⇔ s ∈ JϕKK.

Strong preservation can then be generalized from standard abstract models to abstract interpretation-
based models. Given a generalized abstract modelA ∈ AbsDom(℘(States)), the induced abstract seman-
tics J·KAS is strongly preserving forL when for anyϕ ∈ L andS ∈ ℘(States), α(S) ≤A JϕKAS ⇔ S ⊆
JϕKS . It turns out that this is an abstract domain property, because any abstract semanticsJ·K♯ : L → A that
evaluates formulae in the abstract domainA is strongly preserving forL if and only if J·KAS is. Standard
strong preservation becomes a particular instance, namelyan abstract Kripke structure strongly preserves
L if and only if the corresponding partitioning abstract model strongly preservesL . On the other hand,
generalized strong preservation may work where standard strong preservation may fail, namely it may hap-
pen that although a strongly preserving abstract semanticson a partitioning abstract modelad(AStates)
exists this cannot be derived from a strongly preserving abstract Kripke structure onAStates.

Generalized Strong Preservation and Complete Abstract Interpretations. Given a languageL and
a Kripke structureK = (States,→), a well-known key problem is to compute the smallest abstract
state spaceAStatesL , when this exists, such that one can define an abstract KripkestructureAL =
(AStatesL ,→

♯) that strongly preservesL . This problem admits solution for a number of well-known
temporal languages likeCTL (or, equivalently, theµ-calculus),ACTL andCTL-X (i.e.CTL without the
next-time operatorX). A number of algorithms for solving this problem exist, like those by Paige and
Tarjan [42] forCTL, by Henzinger et al. [35], Bustan and Grumberg [5] and Tan andCleaveland [48]
for ACTL, and Groote and Vaandrager [32] forCTL-X. These are coarsest partition refinement algo-
rithms: given a languageL and a partitionP of States, which is determined by a state labeling, these
algorithms can be viewed as computing the coarsest partition PL that refinesP and strongly preserves
L . It is worth remarking that most of these algorithms have been designed for computing well-known
behavioural equivalences used in process algebra like bisimulation (forCTL), simulation (forACTL) and
divergence-blind stuttering (forCTL-X) equivalence. Our abstract interpretation-based framework allows
to give a generalized view of the above partition refinement algorithms. We show that the most abstract do-
mainADL ∈ AbsDom(℘(States)) that strongly preserves a given languageL always exists. It turns out
thatADL is a partitioning abstract domain if and only ifL includes full propositional logic, that is when
L is closed under logical conjunction and negation. Otherwise, a proper loss of information occurs when
abstractingADL to the corresponding partitionPL . Moreover, for some languagesL , it may happen that
one cannot define an abstract Kripke structure on the abstract state spacePL that strongly preservesL
whereas the most abstract strongly preserving semantics inAbsDom(℘(States)) instead exists.

The concept ofcompleteabstract interpretation is well known [14, 31]. This encodes an ideal situ-
ation where the abstract semantics coincides with the abstraction of the concrete semantics. We estab-
lish a precise correspondence between generalized strong preservation of abstract models and complete-
ness in abstract interpretation. Our results are based on the notion offorward completeabstract domain.
An abstract domainA is forward complete for a concrete semantic functionf when for anya ∈ A,
f(γ(a)) = γ(α(f (γ(a)))), namely when no loss of precision occurs by approximating inA a compu-
tationf(γ(a)). This notion of forward completeness is dual and orthogonalto the standard definition of
completeness in abstract interpretation. Giacobazzi et al. [31] showed how complete abstract domains can
be systematically and constructively derived from noncomplete abstract domains by minimal refinements.
This can be done for forward completeness as well. Given any domainA, the most abstract domain that
refinesA and is forward complete forf does exist and can be characterized as a greatest fixpoint. Such a
domain is called theforward complete shellofA for f . It turns out that strong preservation is related to for-
ward completeness as follows. As described above, the most abstract domainADL that strongly preserves

2

L always exists. It turns out thatADL coincides with the forward complete shell for the operatorsof L

of a basic abstract domain determined by the state labeling.This characterization provides an elegant gen-
eralization of partition refinement algorithms used in standard abstract model checking. As a consequence
of these results, we derive a novel characterization of the corresponding behavioural equivalences in terms
of forward completeness of abstract domains. For example, it turns out that a partitionP is a bisimulation
on some Kripke structureK if and only if the corresponding partitioning abstract domain ad(P) is forward
complete for the standard predecessor transformerpre→ in K.

2 Basic Notions

2.1 Notation and Preliminaries

Let X be any set.Fun(X) denotes the set of functionsf : Xn → X , for somen ≥ 0, called arity of
f . Following a standard convention, whenn = 0, f is meant to be a specific object ofX . The arity
of f is also denoted by♯(f) ≥ 0. id denotes the identity map. IfF ⊆ Fun(X) andY ⊆ X then
F (Y)

def
= {f(~y) | f ∈ F, ~y ∈ Y ♯(f)}, namelyF (Y) is the set of images ofY for each function inF . If

f : X → Y then the image off is also denoted byimg(f) = {f(x) ∈ Y | x ∈ X}. If f : X → Y
andg : Y → Z theng ◦ f : X → Z denotes the composition off andg, i.e.g ◦ f = λx.g(f(x)). The
complement operator for the universe setX is ∁ : ℘(X) → ℘(X), where∁(S) = X r S. When writing
a setS of subsets of a given set, like a partition, we often writeS in a compact form like{1, 12, 13} or
{[1], [12], [13]} that stand for{{1}, {1, 2}, {1, 3}}. Ord denotes the proper class of ordinals andω ∈ Ord
denotes the first infinite ordinal.

Let 〈P,≤〉 be a poset. Posets are often denoted also byP≤. We use the symbol⊑ to denote pointwise
ordering between functions: IfX is any set andf, g : X → P thenf ⊑ g if for all x ∈ X , f(x) ≤ g(x).
A mappingf : P → Q on posets is continuous whenf preserves least upper bounds (lub’s) of countable
chains inP , while, dually, it is co-continuous whenf preserves greatest lower bounds (glb’s) of countable
chains inP . A complete latticeC≤ is also denoted by〈C,≤,∨,∧,⊤,⊥〉 where∨, ∧, ⊤ and⊥ denote,
respectively, lub, glb, greatest element and least elementin C. A mappingf : C → D between complete
lattices is additive (co-additive) when for anyY ⊆ C, f(∨CY) = ∨Df(Y) (f(∧CY) = ∧Df(Y)). We
denote bylfp(f) andgfp(f), respectively, the least and greatest fixpoint, when they exist, of an operatorf
on a poset. The well-known Knaster-Tarski’s theorem statesthat any monotone operatorf : C → C on a
complete latticeC admits a least fixpoint and the following characterization holds:

lfp(f) = ∧{x ∈ C | f(x) ≤ x} = ∨α∈Ordf
α,↑(⊥)

where the upper iteration sequence{fα,↑(x)}α∈Ord of f in x ∈ C is defined by transfinite induction onα
as usual:

– α = 0: f0,↑(x) = x;

– successor ordinalα = β + 1: fβ+1,↑(x) = f(fβ,↑(x));

– limit ordinalα: fα,↑(x) = ∨β<αf
β,↑(x).

It is well known that iff is continuous thenlfp(f) = ∨α∈ωf
α,↑(⊥). Dually, f also admits a greatest

fixpoint and the following characterization holds:

gfp(f) = ∨{x ∈ C | x ≤ f(x)} = ∧α∈Ordf
α,↓(⊤),

where the lower iteration sequence{fα,↓(x)}α∈Ord of f in x ∈ C is defined as the upper iteration sequence
but for the case of limit ordinals:fα,↓(x) = ∧β<αf

β,↓(x).
Let Σ be any set.PreOrd(Σ) denotes the set of preorder relations onΣ, that isR ⊆ Σ × Σ is a

preorder onΣ if R is reflexive and transitive.Part(Σ) denotes the set of partitions ofΣ. Sets in a partition
P are called blocks ofP . If ≡ ⊆ Σ × Σ is an equivalence relation then we denote byP≡ ∈ Part(Σ) the
corresponding partition ofΣ. Vice versa, ifP ∈ Part(Σ) then≡P ⊆ Σ × Σ denotes the corresponding

3

equivalence relation onΣ. Part(Σ) is endowed with the following standard partial order4: P1 4 P2, i.e.
P2 is coarser thanP1 (orP1 refinesP2) iff ∀B ∈ P1.∃B

′ ∈ P2.B ⊆ B′. It is well known that〈Part(Σ),4〉
is a complete lattice.

A transition systemT = (Σ,�) consists of a (possibly infinite) setΣ of states and a transition relation
� ⊆ Σ × Σ. As usual [10], we assume that the relation� is total, i.e., for anys ∈ Σ there exists some
t ∈ Σ such thats�t, so that any maximal path inT is necessarily infinite.T is finitely branching when for
anys ∈ Σ, {t ∈ Σ | s�t} is a finite set. The pre/post transformers on℘(Σ) are defined as usual:

– pre
�

def
= λY.{a ∈ Σ | ∃b ∈ Y. a�b};

– p̃re
�

def
= ∁ ◦ pre

�
◦∁ = λY.{a ∈ Σ | ∀b ∈ Σ.(a�b⇒ b ∈ Y)};

– post
�

def
= λY.{b ∈ Σ | ∃a ∈ Y. a�b};

– p̃ost
�

def
= ∁ ◦ post

�
◦∁ = λY.{b ∈ Σ | ∀a ∈ Σ.(a�b⇒ a ∈ Y)}.

Let us observe thatpre
�

andpost
�

are additive operators on℘(Σ)⊆ while p̃re
�

andp̃ost
�

are co-additive.
If R ⊆ Σ1 × Σ2 is any relation then the relationsR∃∃, R∀∃ ⊆ ℘(Σ1)× ℘(Σ2) are defined as follows:

– (S1, S2) ∈ R∃∃ iff ∃s1 ∈ S1.∃s2 ∈ S2. (s1, s2) ∈ R;

– (S1, S2) ∈ R∀∃ iff ∀s1 ∈ S1.∃s2 ∈ S2. (s1, s2) ∈ R.

2.2 Abstract Interpretation and Completeness

2.2.1 Abstract Domains

In standard Cousot and Cousot’s abstract interpretation, abstract domains can be equivalently specified
either by Galois connections, i.e. adjunctions, or by upperclosure operators (uco’s) [13, 14]. Let us recall
these standard notions.

Galois Connections and Insertions. If A andC are posets andα : C → A andγ : A → C are
monotone functions such that∀c ∈ C. c ≤C γ(α(c)) andα(γ(a)) ≤A a then the quadruple(α,C,A, γ) is
called a Galois connection (GC for short) betweenC andA. If in additionα ◦ γ = λx.x then(α,C,A, γ)
is a Galois insertion (GI for short) ofA in C. In a GI,γ is 1-1 andα is onto. Let us also recall that the
notion of GC is equivalent to that of adjunction: ifα : C → A andγ : A → C then(α,C,A, γ) is a GC
iff ∀c ∈ C.∀a ∈ A. α(c) ≤A a ⇔ c ≤C γ(a). The mapα (γ) is called the left- (right-) adjoint toγ (α).
It turns out that one adjoint mapα/γ uniquely determines the other adjoint mapγ/α as follows. On the
one hand, a mapα : C → A admits a necessarily unique right-adjoint mapγ : A → C iff α preserves
arbitrary lub’s; in this case, we have thatγ

def
= λa. ∨C {c ∈ C | α(c) ≤A a}. On the other hand, a map

γ : A → C admits a necessarily unique left-adjoint mapα : C → A iff γ preserves arbitrary glb’s; in
this case,α

def
= λc. ∧A {a ∈ A | c ≤C γ(a)}. In particular, we have that in any GC(α,C,A, γ) between

complete lattices it turns out thatα is additive andγ is co-additive. Also, if(α,C,A, γ) is a GI andC is a
complete lattice thenA is a complete lattice as well and〈A,≤A〉 is order-isomorphic to〈img(γ),≤C〉.

We assume the standard abstract interpretation framework,where concrete and abstract domains,C and
A, are complete lattices related by abstraction and concretization mapsα andγ forming a GC(α,C,A, γ).
A is called an abstraction ofC andC a concretization ofA. The ordering relations on concrete and abstract
domains describe the relative precision of domain values:x ≤ y means thaty is an approximation ofx or,
equivalently,x is more precise thany. Galois connections allow to relate the concrete and abstract notions
of relative precision: an abstract valuea ∈ A approximates a concrete valuec ∈ C whenα(c) ≤A a, or,
equivalently (by adjunction),c ≤C γ(a). As a key consequence of requiring a Galois connection, it turns
out thatα(c) is the best possible approximation inA of c, that isα(c) = ∧{a ∈ A | c ≤C γ(a)} holds. If
(α,C,A, γ) is a GI then each value of the abstract domainA is useful in representingC, because all the
values inA represent distinct members ofC, beingγ 1-1. Any GC can be lifted to a GI by identifying in
an equivalence class those values of the abstract domain with the same concretization.Abs(C) denotes the
set of abstract domains ofC and we writeA ∈ Abs(C) to mean that the abstract domainA is related to

4

C through a GI(α,C,A, γ). An abstract domainA is disjunctive when the corresponding concretization
mapγ is additive.

Closure Operators. An (upper) closure operator, or simply a closure, on a posetP≤ is an operator
µ : P → P that is monotone, idempotent and extensive, i.e.,∀x ∈ P. x ≤ µ(x). Dually, lower closure
operators are monotone, idempotent, and restrictive, i.e., ∀x ∈ P. µ(x) ≤ x. uco(P) denotes the set of
closure operators onP . Let 〈C,≤,∨,∧,⊤,⊥〉 be a complete lattice. A closureµ ∈ uco(C) is uniquely
determined by its imageimg(µ), which coincides with its set of fixpoints, as follows:µ = λy. ∧ {x ∈
img(µ) | y ≤ x}. Also,X ⊆ C is the image of some closure operatorµX onC iff X is a Moore-family of
C, i.e.,X = M(X)

def
= {∧S | S ⊆ X} — where∧∅ = ⊤ ∈ M(X). In other terms,X is a Moore-family

of C whenX is meet-closed. In this case,µX = λy. ∧ {x ∈ X | y ≤ x} is the corresponding closure
operator onC. For anyX ⊆ C, M(X) is called the Moore-closure ofX in C, i.e.,M(X) is the least
(w.r.t. set inclusion) subset ofC which containsX and is a Moore-family ofC. Moreover, it turns out
that for anyµ ∈ uco(C) and any Moore-familyX ⊆ C, µimg(µ) = µ andimg(µX) = X . Thus, closure
operators onC are in bijection with Moore-families ofC. This allows us to consider a closure operator
µ ∈ uco(C) both as a functionµ : C → C and as a Moore-familyimg(µ) ⊆ C. This is particularly
useful and does not give rise to ambiguity since one can distinguish the use of a closureµ as function or
set according to the context.

It turns out that〈µ,≤〉 is a complete meet subsemilattice ofC, i.e.∧ is its glb, but, in general, it is not
a complete sublattice ofC, since the lub inµ — defined byλY ⊆ µ. µ(∨Y) — might be different from
that inC. In fact, it turns out thatµ is a complete sublattice ofC (namely,img(µ) is also join-closed) iffµ
is additive.

If C is a complete lattice thenuco(C) endowed with the pointwise ordering⊑ is a complete lattice
denoted by〈uco(C),⊑,⊔,⊓, λx.⊤, λx.x〉, where for everyµ, η ∈ uco(C), {µi}i∈I ⊆ uco(C) andx ∈ C:

– µ ⊑ η iff ∀y ∈ C. µ(y) ≤ η(y) iff img(η) ⊆ img(µ);

– (⊓i∈Iµi)(x) = ∧i∈Iµi(x);

– x ∈ ⊔i∈Iµi ⇔ ∀i ∈ I. x ∈ µi;

– λx.⊤ is the greatest element, whereasλx.x is the least element.

Thus, the glb inuco(C) is defined pointwise, while the lub of a set of closures{µi}i∈I ⊆ uco(C) is the
closure whose image is given by the set-intersection∩i∈Iµi.

The Lattice of Abstract Domains. It is well known since [14] that abstract domains can be equivalently
specified either as Galois insertions or as closures. These two approaches are completely equivalent. On the
one hand, ifµ ∈ uco(C) andA is a complete lattice which is isomorphic toimg(µ), whereι : img(µ) → A
andι−1 : A → img(µ) provide the isomorphism, then(ι ◦ µ,C,A, ι−1) is a GI. On the other hand, if
(α,C,A, γ) is a GI thenµA

def
= γ ◦ α ∈ uco(C) is the closure associated withA such that〈img(µA),≤C〉

is a complete lattice which is isomorphic to〈A,≤A〉. Furthermore, these two constructions are inverse of
each other. Let us also remark that an abstract domainA is disjunctive iffµA is additive. Given an abstract
domainA specified by a GI(α,C,A, γ), its associated closureγ ◦α onC can be thought of as the “logical
meaning” ofA in C, since this is shared by any other abstract representation for the objects ofA. Thus, the
closure operator approach is particularly convenient whenreasoning about properties of abstract domains
independently from the representation of their objects.

Abstract domains specified by GIs can be pre-ordered w.r.t. precision as follows: ifA1, A2 ∈ Abs(C)
thenA1 is more precise (or concrete) thanA2 (orA2 is an abstraction ofA1), denoted byA1 � A2, when
µA1 ⊑ µA2 . The pointwise ordering⊑ between uco’s corresponds therefore to the standard ordering used
to compare abstract domains with respect to their precision. Also,A1 andA2 are equivalent, denoted by
A1 ≃ A2, when their associated closures coincide, i.e.µA1 = µA2 . Hence, the quotientAbs(C)/≃ gives
rise to a poset that, by a slight abuse of notation, is simply denoted by〈Abs(C),⊑〉. Thus, when we write
A ∈ Abs(C) we mean thatA is any representative of an equivalence class inAbs(C)/≃ and is specified by

5

a Galois insertition(α,C,A, γ). It turns out that〈Abs(C),⊑〉 is a complete lattice, called the lattice of ab-
stract interpretations ofC [13, 14], because it is isomorphic to the complete lattice〈uco(C),⊑〉. Lub’s and
glb’s in Abs(C) have therefore the following reading as operators on domains. Let{Ai}i∈I ⊆ Abs(C):
(i) ⊔i∈IAi is the most concrete among the domains which are abstractions of all theAi’s; (ii) ⊓i∈IAi is
the most abstract among the domains which are more concrete than everyAi — this latter domain is also
known as reduced product of all theAi’s.

2.2.2 Completeness

Let C be a concrete domain,f : C → C be a concrete semantic function1 and letf ♯ : A → A be
a corresponding abstract function on an abstract domainA ∈ Abs(C) specified by a GI(α,C,A, γ).
Then,〈A, f ♯〉 is a sound abstract interpretation whenα ◦ f ⊑ f ♯ ◦ α holds. The abstract functionf ♯ is
called a correct approximation onA of f . This means that a concrete computationf(c) can be correctly
approximated inA by f ♯(α(c)), namelyα(f(c)) ≤A f ♯(α(c)). An abstract functionf ♯

1 : A → A is more
precise thanf ♯

2 : A→ A whenf ♯
1 ⊑ f ♯

2 . Sinceα ◦ f ⊑ f ♯ ◦ α holds iffα ◦ f ◦ γ ⊑ f ♯ holds, the abstract
functionfA def

= α ◦ f ◦ γ : A→ A is called the best correct approximation off in A.
Completeness in abstract interpretation corresponds to requiring that, in addition to soundness, no loss

of precision occurs whenf(c) is approximated inA byf ♯(α(c)). Thus, completeness off ♯ for f is encoded
by the equationα ◦ f = f ♯ ◦ α. This is also called backward completeness because a dual form of forward
completeness may be considered. As a very simple example, let us consider the abstract domainSign
representing the sign of an integer variable, namelySign = {⊥,Z<0, 0,Z>0,⊤} ∈ Abs(℘(Z)⊆). Let us
consider the binary concrete operation of integer additionon sets of integers, that isX+Y

def
= {x+ y | x ∈

X, y ∈ Y }, and the square operator on sets of integers, that isX2 def
= {x2 | x ∈ X}. It turns out that

the best correct approximation+Sign of integer addition inSign is sound but not complete — because
α({−1} + {1}) = 0 <Sign⊤ = α({−1})+Signα({1}) — while it is easy to check that the best correct
approximation of the square operation inSign is instead complete.

A dual form of completeness may be considered. The soundnessconditionα ◦ f ⊑ f ♯ ◦ α can be
equivalently formulated asf ◦ γ ⊑ γ ◦ f ♯. Forward completeness forf ♯ corresponds to requiring that
the equationf ◦ γ = γ ◦ f ♯ holds, and therefore means that no loss of precision occurs when a concrete
computationf(γ(a)), for some abstract valuea ∈ A, is approximated inA by f ♯(a). Let us notice
that backward and forward completeness are orthogonal concepts. In fact: (1) as observed above, we
have that+Sign is not backward complete while it is forward complete because for anya1, a2 ∈ Sign,
γ(a1) + γ(a2) = γ(a1+

Signa2); (2) the best correct approximation(·)2Sign of the square operator onSign
is not forward complete becauseγ(Z>0)

2 (γ(Z>0) = γ((Z>0)
2Sign) while, as observed above, it is

instead backward complete.
Giacobazzi et al. [31] observed that completeness uniquelydepends upon the abstraction map, i.e. upon

the abstract domain: this means that iff ♯ is backward complete forf then the best correct approximation
fA of f in A is backward complete as well, and, in this case,f ♯ indeed coincides withfA. Hence, for any
abstract domainA, one can define a backward complete abstract operationf ♯ onA if and only if fA is
backward complete. Thus, an abstract domainA ∈ Abs(C) is defined to be backward complete forf iff the
equationα◦ f = fA ◦α holds. This simple observation makes backward completeness an abstract domain
property, namely an intrinsic characteristic of the abstract domain. Let us observe thatα ◦ f = fA ◦ α
holds iff γ ◦ α ◦ f = γ ◦ fA ◦ α = γ ◦ α ◦ f ◦ γ ◦ α holds, so thatA is backward complete forf when
µA ◦ f = µA ◦ f ◦ µA. Thus, a closureµ ∈ uco(C), that defines some abstract domain, is backward
complete forf whenµ ◦ f = µ ◦ f ◦ µ holds. Analogous observations apply to forward completeness,
which is also an abstract domain property:A ∈ Abs(C) is forward complete forf (or forwardf -complete)
whenf ◦µA = µA ◦ f ◦µA, while a closureµ ∈ uco(C) is forward complete forf whenf ◦µ = µ◦ f ◦µ
holds.

Let us also recall that, by a well-known result (see, e.g., [14, Theorem 7.1.0.4], [1, Fact 2.3] and [21,
Lemma 4.3]), backward complete abstract domains are “fixpoint complete” as well. This means that if
A ∈ Abs(C) is backward complete for a concrete monotone functionf : C → C thenα(lfp(f)) =
lfp(fA). Moreover, ifα andf are both co-continuous then this also holds for greatest fixpoints, namely

1For simplicity of notation we consider here unary functionssince the extension to genericn-ary functions is straightforward.

6

α(gfp(f)) = gfp(fA). As far as forward completeness is concerned, the followingresult holds.

Lemma 2.1. If A ∈ Abs(C) is forward complete for a monotonef thenα(gfp(f)) = gfp(fA). Moreover,
if γ andf are both continuous andγ(⊥A) = ⊥C thenα(lfp(f)) = lfp(fA).

Proof. Let us show thatα(gfp(f)) = gfp(fA). On the one hand, sincegfp(f) ≤ γ(α(gfp(f))), we
have thatgfp(f) = f(gfp(f)) ≤ f(γ(α(gfp(f)))), therefore, by using forward completeness,gfp(f) ≤
γ(fA(α(gfp(f)))). Thus,α(gfp(f)) ≤ fA(α(gfp(f))), from which follows thatα(gfp(f)) ≤ gfp(fA).
On the other hand, by using forward completeness,f(γ(gfp(fA))) = γ(fA(gfp(fA))) = γ(gfp(fA)),
so thatγ(gfp(fA)) ≤ gfp(f), and therefore, by applyingα, we obtain thatgfp(fA) = α(γ(gfp(fA))) ≤
α(gfp(f)).
Assume now thatγ andf are both continuous andγ(⊥A) = ⊥C . Let us show by induction onk that for
anyk ∈ N, γ((fA)k,↑(⊥A)) = fk,↑(⊥C).
(k = 0): By hypothesis,γ((fA)0,↑(⊥A)) = γ(⊥A) = ⊥C = f0,↑(⊥C).
(k + 1):

γ((fA)k+1,↑(⊥A)) =

γ(fA((fA)k,↑(⊥A))) = [by forward completeness]

f(γ((fA)k,↑(⊥A))) = [by inductive hypothesis]

f(fk,↑(⊥C)) =

fk+1,↑(⊥C)).

Thus, by applyingα, we obtain that for anyk ∈ N,

(fA)k,↑(⊥A) = α(fk,↑(⊥C)). (†)

Sinceγ andf are continuous andα is always additive, we have thatfA = α ◦ f ◦ γ is continuous because
it is a composition of continuous functions. Hence:

lfp(fA) = [by Knaster-Tarski’s theorem]

∨k∈N(f
A)k,↑(⊥A) = [by (†)]

∨k∈Nα(f
k,↑(⊥C)) = [asα is additive]

α(∨k∈Nf
k,↑(⊥C)) = [by Knaster-Tarski’s theorem]

α(lfp(f))

and this concludes the proof.

It is worth noting that concretization maps of abstract domains which satisfies the ascending chain
conditions (i.e., every ascending chain is eventually stationary) are always trivially continuous.

2.2.3 Shells

Refinements of abstract domains have been studied from the beginning of abstract interpretation [13, 14]
and led to the notion of shell of an abstract domain [26, 29, 31]. Given a generic posetP≤ of semantic
objects — wherex ≤ y intuitively means thatx is a “refinement” ofy — and a propertyP ⊆ P of these
objects, the generic notion ofshell goes as follows: theP-shell of an objectx ∈ P is defined to be an
objectsx ∈ P such that:

(i) sx satisties the propertyP ,

(ii) sx is a refinement ofx, and

(iii) sx is the greatest among the objects satisfying (i) and (ii).

7

Note that if aP-shell exists then it is unique. Moreover, if theP-shell exists for any object inP then it
turns out that the operator mappingx ∈ P to itsP-shell is a lower closure operator onP , being monotone,
idempotent and reductive: this operator will be called theP-shell refinement. We will be particularly
interested in shells of abstract domains and partitions, namely shells in the complete lattices of abstract
domains and partitions. Given a state spaceΣ and a partition propertyP ⊆ Part(Σ), theP-shell of
P ∈ Part(Σ) is the coarsest refinement ofP satisfyingP , when this exists. Also, given a concrete
domainC and a domain propertyP ⊆ Abs(C), theP-shell ofA ∈ Abs(C), when this exists, is the most
abstract domain that satisfiesP and refinesA. Giacobazzi et al. [31] gave a constructive characterization of
backward complete abstract domains, under the assumption of dealing with continuous concrete functions.
As a consequence, they showed that backward complete shellsalways exist when the concrete functions
are continuous. In Section 6 we will follow this same idea forforward completeness and this will provide
the link between strongly preserving abstract models and complete abstract interpretations.

2.3 Abstract Model Checking and Strong Preservation

Standard temporal languages likeCTL, CTL∗, ACTL, theµ-calculus,LTL, etc., are interpreted on mod-
els specified as Kripke structures. Given a setAP of atomic propositions (of some language), a Kripke
structureK = (Σ,�, ℓ) overAP consists of a transition system(Σ,�) together with a state labeling func-
tion ℓ : Σ → ℘(AP). We use the following notation: for anys ∈ Σ, [s]ℓ

def
= {s′ ∈ Σ | ℓ(s) = ℓ(s′)},

while Pℓ
def
= {[s]ℓ | s ∈ Σ} ∈ Part(Σ) denotes the state partition that is induced byℓ. The notations|=Kϕ

means that a states ∈ Σ satisfies inK a state formulaϕ of some languageL , where the specific definition
of the satisfaction relation|=K depends on the languageL (interpretations of standard logical/temporal
operators can be found in [10]).

Standard abstract model checking [9, 10] relies on abstractKripke structures that are defined over
partitions of the concrete state spaceΣ. A setA of abstract states is related toΣ by a surjective ab-
stractionh : Σ → A that maps concrete states into abstract states and thus gives rise to a state partition
Ph

def
= {h−1(a) | a ∈ A} ∈ Part(Σ). Thus, in standard abstract model checking, formulae are interpreted

on an abstract Kripke structureA = (A,�♯, ℓ♯) whose states are an abstract representation inA of some
block of the partitionPh. Given a specification languageL of state formulae, a weak preservation result
for L guarantees that if a formula inL holds on an abstract Ktipke structureA then it also holds on the
corresponding concrete structureK: for anyϕ ∈ L , a ∈ A ands ∈ Σ such thath(s) = a, if a|=Aϕ
thens|=Kϕ. Moreover, strong preservation (s.p. for short) forL encodes the equivalence of abstract and
concrete validity for formulae inL : for anyϕ ∈ L , a ∈ A ands ∈ Σ such thath(s) = a, a|=Aϕ if and
only if s|=Kϕ.

The definition of weakly/strongly preserving abstract Kripke structures depends on the languageL .
Let us recall some well-known examples [9, 10, 33]. LetK = (Σ,�, ℓ) be a concrete Kripke structure
h : Σ → A be a surjection.

(i) Consider the languageACTL∗. If Ph � Pℓ then the abstract Kripke structureA = (A,�∃∃
h , ℓh)

weakly preservesACTL∗, whereℓh(a) = ∪{ℓ(s) | s ∈ Σ, h(s) = a} and�∃∃
h ⊆ A×A is defined

as:h(s1)�∃∃
h h(s2) ⇔ ∃s′1, s

′
2. h(s

′
1) = h(s1) & h(s′2) = h(s2) & s′1�s

′
2.

(ii) Let Psim ∈ Part(Σ) be the partition induced by simulation equivalence onK. If Ph = Psim (this
also holds whenPh � Psim) then the abstract Kripke structureA = (A,�∀∃

h , ℓh) strongly preserves
ACTL∗, whereh(s1)�∀∃

h h(s2) ⇔ ∀s′1. h(s
′
1) = h(s1). ∃s

′
2. h(s

′
2) = h(s2) & s′1�s

′
2.

(iii) Let Pbis ∈ Part(Σ) be the partition induced by bisimulation equivalence onK. If Ph = Pbis (this
also holds whenPh � Pbis) then the abstract Kripke structureA = (A,�∃∃

h , ℓh) strongly preserves
CTL∗.

Following Dams [19, Section 6.1] and Henzinger et al. [36, Section 2.2], the notion of strong preser-
vation can be also given w.r.t. a mere state partition ratherthan w.r.t. an abstract Kripke structure. Let
J·KK : L → ℘(Σ) be the semantic function of state formulae inL w.r.t. a Kripke structureK = (Σ,�, ℓ),
i.e.,JϕKK

def
= {s ∈ Σ | s|=Kϕ}. Then, the semantic interpretation ofL onK induces the following logical

8

GFED@ABCR
stop // ONMLHIJKRY

stop // GFED@ABCG
go // GFED@ABCY

go
ww

Figure 1: A U.K. traffic light.

equivalence≡K
L

⊆ Σ× Σ:

s≡K
L
s′ iff ∀ϕ ∈ L . s ∈ JϕKK ⇔ s′ ∈ JϕKK.

Let PL ∈ Part(Σ) be the partition induced by≡K
L

(the indexK denoting the Kripke structure is omit-
ted). Then, a partitionP ∈ Part(Σ) is strongly preserving2 for L (when interpreted onK) if P 4 PL .
Thus,PL is the coarsest partition that is strongly preserving forL . For a number of well known temporal
languages, likeACTL∗, CTL∗ (see, respectively, the above points (ii) and (iii)),CTL∗-X and the frag-
ments of theµ-calculus described by Henzinger et al. [36], it turns out that if P is strongly preserving for
L then the abstract Kripke structure(P,�∃∃, ℓL) is strongly preserving forL , where, for anyB ∈ P ,
ℓL (B) = ∪s∈Bℓ(s). In particular,(PL ,�∃∃, ℓL) is strongly preserving forL and, additionally,PL is
the smallest possible abstract state space, namely ifA = (A,�♯, ℓ♯) is an abstract Kripke structure that
strongly preservesL then|PL | ≤ |A|.

However, given a languageL and a Kripke structureK where formulae ofL are interpreted, the
following example shows that it is not always possible to define an abstract Kripke structureA on the
partitionPL such thatA strongly preservesL .

Example 2.2. Consider the following simple languageL :

L ∋ ϕ ::= stop | go | AXXϕ

and the Kripke structureK depicted in Figure 1, where superscripts determine the labeling function. K
models a four-state traffic light controller (like in the U.K. and in Germany): Red→ RedYellow→
Green→ Yellow. According to the standard semantics ofAXX, we have thats|=KAXXϕ iff for any
paths0s1s2 . . . starting froms0 = s, it happens thats2|=Kϕ. It turns out thatJAXXstopKK = {G, Y }
and JAXXgoKK = {R,RY }. Thus, we have thatPL = {{R,RY }, {G, Y }}. However, let us show
that there exists no abstract transition relation�♯ ⊆ PL × PL such that the abstract Kripke structure
A = (PL ,�♯, ℓL) strongly preservesL . Assume by contradiction that such an abstract Kripke structure
A exists. LetB1 = {R,RY } ∈ PL andB2 = {G, Y } ∈ PL . SinceR|=KAXXgo andG|=KAXXstop,
by strong preservation, it must be thatB1|=

AAXXgo andB2|=
AAXXstop. Hence, necessarily,B1�

♯B2

andB2�
♯B1. This leads to the contradictionB1 6|=

A
AXXgo. In fact, if �♯ = {(B1, B2), (B2, B1)} then

we would have thatB1 6|=
A
AXXgo. On the other hand, if, instead,B1�

♯B1 (the caseB2�
♯B2 is analo-

gous), then we would still have thatB1 6|=
AAXXgo. Even more, along the same lines it is not hard to show

that no proper abstract Kripke structure that strongly preservesL can be defined, because even if either
B1 orB2 is split we still cannot define an abstract transition relation that is strongly preserving forL .

3 Partitions as Abstract Domains

Let Σ be any (possibly infinite) set of states. Following [15, Section 5], a partitionP ∈ Part(Σ) can be
viewed as an abstraction of℘(Σ)⊆ as follows: anyS ⊆ Σ is over approximated by the unique minimal
cover ofS in P , namely by the union of all the blocksB ∈ P such thatB∩S 6= ∅. A graphical example is
depicted on the left-hand side of Figure 2. This abstractionis formalized by a GI(αP , ℘(Σ)⊆, ℘(P)⊆, γP)
where:

αP (S)
def
= {B ∈ P | B ∩ S 6= ∅} γP (B)

def
= ∪B∈B B.

Hence, any partitionP ∈ Part(Σ) induces an abstract domainadp(P) ∈ Abs(℘(Σ)), and an abstract
domainA ∈ Abs(℘(Σ)) is calledpartitioning whenA is equivalent toadp(P) for some partitionP .
Observe that the closureadp(P) = γP ◦ αP associated to a partitioning abstract domain is defined as

2Dams [19] uses the term “fine” instead of “strongly preserving”.

9

Figure 2: Partitions as abstract domains: over-approximation on the left and under-approximation on the
right.

adp(P) = λS. ∪ {B ∈ P | B ∩ S 6= ∅}. Accordingly, a closureµ ∈ uco(℘(Σ)) that coincides with
γP ◦ αP , for some partitionP , is called partitioning. We denote byAbspar(℘(Σ)) anducopar(℘(Σ))
the sets of, respectively, partitioning abstract domains and closures on℘(Σ). As noted in [16], a sur-
jective abstractionh : Σ → A used in standard abstract model checking that maps concretestates into
abstract states (cf. Section 2.3) gives rise to a partitioning Galois insertion(αh, ℘(Σ)⊆, ℘(A)⊆, γh) where
αh

def
= λS ⊆ Σ.{h(s) ∈ A | s ∈ S} andγh

def
= λX ⊆ A.{s ∈ Σ | h(s) ∈ X}.

Partitions can be also viewed as dual abstractions when a setS is under approximated by the union of
all the blocksB ∈ P such thatB ⊆ S. A graphical example of this under approximation is depicted on the
right-hand side of Figure 2. This dual abstraction is formalized by the GI(α̃P , ℘(Σ)⊇, ℘(P)⊇, γ̃P) where
the ordering on the concrete domain℘(Σ) is given by the subset relation and

α̃P (S)
def
= {B ∈ P | B ⊆ S} γ̃P (B)

def
= ∪B∈B B.

In the following, we will be interested in viewing partitions as over approximations, that is partitions as
abstract domains of℘(Σ)⊆.

Thus, partitions can be viewed as representations of abstract domains. On the other hand, it turns out
that abstract domains can be abstracted to partitions. An abstract domainA ∈ Abs(℘(Σ)⊆) induces a state
equivalence≡A onΣ by identifying those states that cannot be distinguished byA:

s ≡A s′ iff α({s}) = α({s′}).

For anys ∈ Σ, [s]A
def
= {s′ ∈ Σ | α({s}) = α({s′})} is a block of the state partitionpar(A) induced byA:

par(A)
def
= {[s]A | s ∈ Σ}.

Thus,par : Abs(℘(Σ)) → Part(Σ) is a mapping from abstract domains to partitions.

Example 3.1. Let Σ = {1, 2, 3, 4} and let us specify abstract domains as uco’s on℘(Σ). The uco’s
µ1 = {∅, 12, 3, 4, 1234}, µ2 = {∅, 12, 3, 4, 34, 1234}, µ3 = {∅, 12, 3, 4, 34, 123, 124, 1234}, µ4 =
{12, 123, 124, 1234} andµ5 = {∅, 12, 123, 124, 1234} all induce the same partitionP = par(µi) =
{12, 3, 4} ∈ Part(Σ). For example,µ5({1}) = µ5({2}) = {1, 2}, µ5({3}) = {1, 2, 3} andµ5({4}) =
{1, 2, 3, 4} so thatpar(µ5) = P . Observe thatµ3 is the only partitioning abstract domain because
adp(P) = µ3.

Abstract domains of℘(Σ) carry additional information other than the underlying state partition and
this additional information allows us to distinguish them.It turns out that this can be precisely stated by
abstract interpretation since the above mappingspar andadp allows us to show that the whole lattice of
partitions ofΣ can be viewed as a (“higher-order”) abstraction of the lattice of abstract domains of℘(Σ).

Theorem 3.2. (par,Abs(℘(Σ))⊒,Part(Σ)�, adp) is a Galois insertion.

Proof. LetA ∈ Abs(℘(Σ)) andP ∈ Part(Σ) and letµA ∈ uco(℘(Σ)) be the closure associated with the
abstract domainA. Let us prove thatP � par(A) ⇔ adp(P) ⊑ µA.

10

(⇒) ForS ∈ ℘(Σ) we have to prove thatadp(P)(S) ⊆ µA(S). Considers ∈ adp(P)(S). Hence, there
exists someB ∈ P such thats ∈ B andB ∩ S 6= ∅. Let q ∈ B ∩ S. SinceP � par(A), there exists
some block[r]A ∈ par(A) such thatB ⊆ [r]A. Thus, for anyx, y ∈ B, α({x}) = α({r}) = α({y}), in
particular,α({s}) = α({q}). Consequently, sinceq ∈ S and thereforeµA({q}) ⊆ µA(S), we have that
µA({s}) = µA({q}) ⊆ µA(S), so thats ∈ µA(S).
(⇐) Consider a blockB ∈ P and somes ∈ B. We show thatB ⊆ [s]A, namely if s′, s′′ ∈ B
thenα({s′}) = α({s′′}). Sinceadp(P) ⊑ µA, if s′, s′′ ∈ B thenadp(P)({s′}) = B ⊆ µA({s

′})
so thats′′ ∈ µA({s

′}) and thereforeµA({s
′′}) ⊆ µA({s

′}). Likewise,µA({s
′}) ⊆ µA({s

′′}) so that
µA({s

′}) = µA({s
′′}) and in turnα({s′}) = α({s′′}).

Finally, observe thatadp is 1-1 so that the above adjunction is indeed a Galois insertion.

Let us observe that, as recalled in Section 2.2, the adjoint mapspar andadp give rise to an order
isomorphism between the lattices〈Part(Σ),�〉 and〈Abspar(℘(Σ)),⊑〉.

Corollary 3.3. LetA ∈ Abs(℘(Σ)). The following statements are equivalent:
(1)A is partitioning.
(2) γ is additive and{γ(α({s}))}s∈Σ is a partition ofΣ. In this case,par(A) = {γ(α({s}))}s∈Σ.
(3)A is forward complete for the complement operator∁.

Proof. LetA ∈ Abs(℘(Σ)) and letµA = γ ◦ α ∈ uco(℘(Σ)) be the corresponding uco.
(1) ⇒ (2) By Theorem 3.2,A ∈ Abspar(℘(Σ)) iff adp(par(A)) = A. Thus, ifadp(par(A)) = A then
µA = γ ◦ α is obviously additive. Moreover,s ≡A s′ iff α({s}) = α({s′}) iff γ(α({s})) = γ(α({s′})),
so that, for anys ∈ Σ, [s]A = γ(α({s})) and thereforepar(A) = {γ(α({s}))}s∈Σ.
(2)⇒ (1) Since{γ(α({s}))}s∈Σ = P ∈ Part(Σ) we have that for anys ∈ Σ, [s]A = γ(α({s})): in fact,
if s′ ∈ γ(α({s})) thenα({s′}) ≤ α({s}), henceγ(α({s′})) ⊆ γ(α({s})) and thereforeγ(α({s′})) =
γ(α({s})). Thus,par(A) = P . Moreover, sinceγ is additive, for anyS ⊆ Σ, ∪s∈Sγ(α({s})) =
γ(∨s∈Sα({s})) = γ(α(S)) ∈ µA. Hence, sinceadp(P) = {∪s∈Sγ(α({s})) | S ⊆ Σ} we have that
adp(par(A)) = A.
(1)⇒ (3) Assume thatA ∈ Abspar(℘(Σ)). It is enough to prove that for anys ∈ Σ, ∁(µA({s})) ∈ µA: in
fact, by (1)⇒ (2),γ is additive and thereforeµA is additive (because it is a composition of additive maps)
and therefore ifS ∈ µA thenS = ∪s∈SµA({s}) so that∁(S) = ∩s∈S∁(µA({s})). Let us observe the
following fact (∗): for anys, s′ ∈ Σ, s 6∈ µA({s

′}) ⇔ µA({s}) ∩ µA({s
′}) = ∅; this is a consequence of

the fact that, by (1)⇒ (2), {µA({s})}s∈Σ is a partition. For anys ∈ Σ, we have that∁(µA({s})) ∈ µA

because:

µA(∁(µA({s}))) = µA({s
′ ∈ Σ | s′ 6∈ µA({s})} [by additivity of µA]

= ∪{µA({s
′}) | s′ 6∈ µA({s})} [by the above fact(∗)]

= ∪{µA({s
′}) | µA({s

′}) ∩ µA({s}) = ∅}

= ∪{µA({s
′}) | µA({s

′}) ⊆ ∁(µA({s}))}

⊆ ∁(µA({s}))

(3) ⇒ (1) Assume thatµA is forward complete for∁, i.e.µA is closed under complements. By (2)⇒ (1),
it is enough to prove thatγ is additive and that{µA({s})}s∈Σ ∈ Part(Σ).
(i) γ is additive. Observe thatγ is additive iff µA is additive iff µA is closed under arbitrary unions. If
{Si}i∈I ⊆ µA then∪iSi = ∁(∩i∁(Si)) ∈ µA, because,µA is closed under complements (and arbitrary
intersections).
(ii) {µA({s})}s∈Σ ∈ Part(Σ). Clearly, we have that∪s∈ΣµA({s}) = Σ. Consider nows, r ∈ Σ such that
µA({s}) ∩ µA({r}) 6= ∅. Let us show thatµA({s}) = µA({r}). In order to show this, let us prove that
s ∈ µA({r}). Notice thatµA({s})rµA({r}) = µA({s})∩∁(µA({r})) ∈ µA, becauseµA is closed under
complements. Ifs 6∈ µA({r}) then we would have thats ∈ µA({s}) r µA({r}) ∈ µA, and this would
imply µA({s}) ⊆ µA({s}) r µA({r}) ⊆ µA({s}), namelyµA({s}) = µA({s}) r µA({r}). Thus, we
would obtain the contradictionµA({s}) ∩ µA({r}) = ∅. Hence, we have thats ∈ µA({r}) and therefore
µA({s}) ⊆ µA({r}). By swapping the roles ofs andr, we also obtain thatµA({r}) ⊆ µA({s}), so that
µA({s}) = µA({r}).

11

Let us remark thatP
def
= adp ◦ par is a lower closure operator on〈Abs(℘(Σ)),⊑〉 and that for any

A ∈ Abs(℘(Σ)), A is partitioning iff P(A) = A. Hence,P is exactly the partitioning-shell refinement,
namelyP(A) is the most abstract refinement ofA that is partitioning.

4 Abstract Semantics of Languages

4.1 Concrete Semantics

We consider temporal specification languagesL whose state formulaeϕ are inductively defined by:

L ∋ ϕ ::= p | f(ϕ1, ..., ϕn)

wherep ranges over a (typically finite) set of atomic propositionsAP , while f ranges over a finite setOp

of operators.AP andOp are also denoted, respectively, byAPL andOpL . Each operatorf ∈ Op has
an arity3 ♯(f) > 0.

Formulae inL are interpreted on asemantic structureS = (Σ, I) whereΣ is any (possibly infinite) set
of states andI is an interpretation functionI : AP ∪Op → Fun(℘(Σ)) that mapsp ∈ AP to I(p) ∈ ℘(Σ)
andf ∈ Op to I(f) : ℘(Σ)♯(f) → ℘(Σ). I(p) andI(f) are also denoted by, respectively,p andf .
Moreover,AP

def
= {p ∈ ℘(Σ) | p ∈ AP} andOp

def
= {f : ℘(Σ)♯(f) → ℘(Σ) | f ∈ Op}. Note that the

interpretationI induces a state labelingℓI : Σ → ℘(AP) by ℓI(s)
def
= {p ∈ AP | s ∈ I(p)}. Theconcrete

state semantic functionJ·KS : L → ℘(Σ) evaluates a formulaϕ ∈ L to the set of states makingϕ true
w.r.t. the semantic structureS:

JpKS = p and Jf(ϕ1, ..., ϕn)KS = f(Jϕ1KS , ..., JϕnKS).

Semantic structures generalize the role of Kripke structures. In fact, in standard model checking a semantic
structure is usually defined through a Kripke structureK so that the interpretation of logical/temporal
operators is defined in terms of standard logical operators and paths inK. In the following, we freely
use standard logical and temporal operators together with their corresponding usual interpretations: for
example,I(∧) = ∩, I(∨) = ∪, I(¬) = ∁, I(EX) = preR, I(AX) = p̃reR, etc. As an example, consider
the standard semantics ofCTL:

CTL ∋ ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | AXϕ | EXϕ | AU(ϕ1, ϕ2) | EU(ϕ1, ϕ2) | AR(ϕ1, ϕ2) | ER(ϕ1, ϕ2)

with respect to a Kripke structureK = (Σ, R, ℓ). Hence,K determines a corresponding interpretationI
for atoms inAP and operators ofOpCTL, namelyI(AX) = p̃reR, I(EX) = preR, etc., and this defines
the concrete semantic functionJ·KK : CTL → ℘(Σ).

If g is any operator with arity♯(g) = n > 0 whose interpretation is given byg : ℘(Σ)n → ℘(Σ) and
S = (Σ, I) is a semantic structure then we say that a languageL is closed underg for S when for any
ϕ1, ..., ϕn ∈ L there exists someψ ∈ L such thatg(Jϕ1KS , ..., JϕnKS) = JψKS . For instance, ifOpL

includesEX and negation with their standard interpretations, i.e.I(EX) = preR andI(¬) = ∁, thenL

is closed underAX with its standard interpretatioñpreR becausẽpreR = ∁ ◦ preR ◦∁. This notion can be
extended in a straightforward way to infinitary operators: for instance,L is closed under infinite logical
conjunction forS iff for anyΦ ⊆ L , there exists someψ ∈ L such that

⋂
ϕ∈ΦJϕKS = JψKS . In particular,

let us remark that ifL is closed under infinite logical conjunction then it must exist someψ ∈ L such
that∩∅ = Σ = JψKS , namelyL is able to express the tautologytrue. Let us remark that if the state space
Σ is finite andL is closed under logical conjunction then we always mean thatthere exists someψ ∈ L

such that∩∅ = Σ = JψKS . Finally, note thatL is closed under negation and infinite logical conjunction
if and only if L includes propositional logic.

3It would be possible to consider generic operators whose arity is any possibly infinite ordinal, thus allowing, for example, infinite
conjunctions or disjunctions.

12

?>=<89:;1

��

p p//?>=<89:;2
		

����
��

��
��

�

?>=<89:;3
p,q

//?>=<89:;4
r **?>=<89:;5

q
jj

⊤

a4

~~~
a5

@@@

a1

}}}
a2

}}}
AAA

a3

AAA

⊥

OOOOOO
oooooo

Figure 3: A Kripke structre on the left and an abstract domainon the right.

4.2 Abstract Semantics

In the following, we apply the standard abstract interpretation approach for defining abstract semantics
[13, 14]. LetL be a language andS = (Σ, I) be a semantic structure forL . An abstract semantic
structureS♯ = (A, I♯) is given by an abstract domainA ∈ Abs(℘(Σ)⊆) and by an abstract interpretation
function I♯ : AP ∪ Op → Fun(A). An abstract semantic structureS♯ therefore induces anabstract
semantic functionJ·KS♯ : L → A that evaluates formulae inL to abstract values inA. The abstract
interpretationI♯ is a correct over-approximation (respectively, under-approximation) ofI onA when for
any p ∈ AP , γ(I♯(p)) ⊇ I(p) (respectively,γ(I♯(p)) ⊆ I(p)) and for anyf ∈ Op, γ ◦ I♯(f) ⊒
I(f) ◦ γ (respectively,γ ◦ I♯(f) ⊑ I(f) ◦ γ). If I♯ is a correct over-approximation (respectively, under-
approximation) ofI and the semantic operations inOp are monotone then the abstract semantics is an
over-approximation (respectively, under-approximation)of the concrete semantics, namely for anyϕ ∈ L ,
γ(JϕKS♯) ⊇ JϕKS (respectively,γ(JϕKS♯) ⊆ JϕKS ).

In particular, the abstract domainA always induces an abstract semantic structureSA = (A, IA) where
IA is the best correct approximation ofI onA, i.e. IA interprets atomsp and operatorsf as best correct
approximations onA of, respectively,p andf : for anyp ∈ AP andf ∈ Op,

IA(p)
def
= α(p) and IA(f)

def
= f

A.

Thus, the abstract domainA systematically induces an abstract semantic functionJ·KSA : L → A, also
denoted byJ·KAS , which is therefore defined by:

JpKAS = α(p) and Jf(ϕ1, ..., ϕn)K
A
S = fA(Jϕ1K

A
S , ..., JϕnKAS ).

As usual in abstract interpretation, observe that the concrete semantics is a particular abstract semantics,
namely it is the abstract semantics induced by the “identical abstraction”(id, ℘(Σ), ℘(Σ), id).

Example 4.1. Let L ∋ ϕ ::= p | q | r | ϕ1∧ϕ2 | EXϕ. Let us consider the Kripke structureK = (Σ,�, ℓ)
and the latticeA both depicted in Figure 3. LetS be the semantic structure induced by the Kripke structure
K so thatEX = pre

�
. Let us consider the formulaeEXr andEX(p∧ q), whose concrete semantics are as

follows: JEXrKS = {3, 5} andJEX(p ∧ q)KS = {1, 2}. A is an abstract domain of℘(Σ) where the Galois
insertion(α, ℘(Σ), A, γ) is determined by the following concretization map:

γ(⊥) = ∅; γ(a1) = {1, 2}; γ(a2) = {3}; γ(a3) = {3, 4};

γ(a4) = {1, 2, 3}; γ(a5) = {3, 4, 5}; γ(⊤) = {1, 2, 3, 4, 5}.

Note that, by Corollary 3.3,A is not partitioning becauseγ is not additive:γ(a2) ∪ γ(a3) = {3, 4} (

{3, 4, 5} = γ(a2 ∨ a3). It turns out that:

JEXrKAS = α(pre
�
(γ(JrKAS )) = α(pre

�
(γ(α(r)))) = α(pre

�
(γ(a3)))

= α(pre
�
({3, 4})) = α({1, 2, 3, 5}) = ⊤;

JEX(p ∧ q)KAS = α(pre
�
(γ(JpKAS ∧ JqKAS ))) = α(pre

�
(γ(α(p) ∧ α(q))))

= α(pre
�
(γ(a4 ∧ a5))) = α(pre

�
(γ(a2))) = α(pre

�
(3)) = α({1, 2}) = a1.

Observe that the abstract semanticsJEXrKAS is a proper over-approximationofJEXrKS becauseJEXrKS (

γ(JEXrKAS ). On the other hand, the concrete semanticsJEX(p ∧ q)KS is precisely represented inA because
γ(JEX(p ∧ q)KAS ) = JEX(p ∧ q)KS .

13



5 Generalized Strong Preservation

We showed in Section 3 how a state partitionP can be viewed as a partitioning abstract domainadp(P )
specified by the GI(αP , ℘(Σ)⊆, ℘(P )⊆, γP ). Thus, given a languageL and a corresponding semantic
structureS = (Σ, I), it turns out that any partitionP ∈ Part(Σ) systematically induces a correspond-
ing abstract semanticsJ·KPS

def
= J·K

adp(P )
S : L → adp(P ) that evaluates a formula inL to a (possibly

empty) union of blocks ofP . Strong preservation for a partitionP can be characterized in terms of the
corresponding abstract domainadp(P ) as follows.

Lemma 5.1. P ∈ Part(Σ) is s.p. forL iff ∀ϕ ∈ L andS ⊆ Σ, αP (S) ⊆ JϕKPS ⇔ S ⊆ JϕKS .

Proof. (⇒): Let us first observe that for anyϕ ∈ L , γP (αP (JϕKS)) = JϕKS : in fact, for anys ∈ JϕKS ,
αP ({s}) is the block ofP containings; sinceP � PL , we have thatαP ({s}) ⊆ JϕKS , and from this
αP (JϕKS ) ⊆ JϕKS and in turnγP (αP (JϕKS)) = JϕKS .
Let us now prove by structural induction onϕ ∈ L thatJϕKS = γP (JϕKPS ):

– ϕ ≡ p ∈ APL : by using the above observation,JpKS = γP (αP (JpKS)) = γP (JpK
P
S ).

– ϕ ≡ f(ϕ1, . . . , ϕn):

Jf(ϕ1, . . . , ϕn)KS = [by the above observation]

γP (αP (Jf(ϕ1, . . . , ϕn)KS)) = [by definition]

γP (αP (f(Jϕ1KS , . . . , JϕnKS))) = [by inductive hypothesis]

γP (αP (f(γP (Jϕ1K
P
S ), . . . , γP (JϕnKPS )))) = [by definition]

γP (Jf(ϕ1, . . . , ϕn)K
P
S ).

Now, consider anyϕ ∈ L . If S ⊆ JϕKS thenαP (S) ⊆ αP (JϕKS) = αP (γP (JϕKPS )) = JϕKPS . Conversely,
if αP (S) ⊆ JϕKPS thenS ⊆ γP (JϕKPS ) = JϕKS .
(⇐): Consider a blockB ∈ P ands, s′ ∈ B so thatαP ({s}) = B = αP ({s

′}). By hypothesis, for
anyϕ ∈ L , we have thats ∈ JϕKS iff αP ({s}) ⊆ JϕKPS iff αP ({s

′}) ⊆ JϕKPS iff s′ ∈ JϕKS . Thus,
s ≡L s′.

This states that a partitionP ∈ Part(Σ) is s.p. forL if and only if to check whether some setS of
states satisfies some formulaϕ ∈ L , i.e. S ⊆ JϕKS , is equivalent to check whether the abstract state
αP (S) is more precise than the abstract semanticsJϕKPS , that isS is over-approximated byJϕKPS . The
key observation here is that in our abstract interpretation-based framework partitions are particular abstract
domains. This allows us to generalize the notion of strong preservation from partitions to generic abstract
semantic functions as follows.

Definition 5.2. Let L be a language,S = (Σ, I) be a semantic structure forL andS♯ = (A, I♯) be a
corresponding abstract semantic structure. The abstract semanticsJ·KS♯ is strongly preservingfor L (w.r.t.
S) if for anyϕ ∈ L andS ⊆ Σ,

α(S) ≤A JϕKS♯ ⇔ S ⊆ JϕKS .

Definition 5.2 generalizes standard strong preservation from partitions, as characterized by Lemma 5.1,
both to an arbitrary abstract domainA ∈ Abs(℘(Σ)) and to a corresponding abstract interpretation function
I♯. Likewise, standard weak preservation can be generalized as follows. LetK = (Σ, R, ℓ) be a concrete
Kripke structure that induces the concrete semanticsJϕKK = {s ∈ Σ | s|=Kϕ}. Let h : Σ → A be a
surjective abstraction and let(αh, ℘(Σ), ℘(A), γh) be the corresponding partitioning abstract domain. Let
A = (A,R♯, ℓ♯) be an abstract Kripke structure onA that gives rise to the abstract semanticsJϕKA = {a ∈
A | a|=Aϕ}. Then,A weakly preservesL when

∀φ ∈ L .∀S ⊆ Σ. αh(S) ⊆ JϕKA ⇒ S ⊆ JϕKK.

Hence, weak preservation can be generalized to generic abstract domains and abstract semantics accord-
ingly to Definition 5.2.

14



?>=<89:;1
p

//?>=<89:;2
p

//?>=<89:;3

p

hh
ONMLHIJK[12]

p
// ONMLHIJK[3]

p

rr

Figure 4: A Kripke structureK on the left and an abstract Kripke structureA on the right.

5.1 Strong Preservation is an Abstract Domain Property

Definition 5.2 is a direct and natural generalization of the standard notion of strong preservation in abstract
model checking. It can be equivalently stated as follows.

Lemma 5.3. J·KS♯ is s.p. forL iff for anyϕ ∈ L , JϕKS = γ(JϕKS♯).

Proof. (⇒) On the one hand,γ(JϕKS♯) ⊆ JϕKS iff α(γ(JϕKS♯)) ≤ JϕKS♯ iff JϕKS♯ ≤ JϕKS♯ , which is
trivially true. On the other hand,JϕKS ⊆ γ(JϕKS♯) iff α(JϕKS ) ≤ JϕKS♯ iff JϕKS ⊆ JϕKS , that is trivially
true.
(⇐) We have thatS ⊆ JϕKS iff S ⊆ γ(JϕKS♯ ) iff α(S) ≤ JϕKS♯ .

In particular, it is worth noting that ifJ·KS♯ is s.p. forL thenJ·KS♯ = α ◦ J·KS holds.

Lemma 5.4. LetA ∈ Abs(℘(Σ)).
(1) LetS♯

1 = (A, I♯1) andS♯
2 = (A, I♯2) be abstract semantic structures onA. If J·KS♯

1
andJ·KS♯

2
are both

s.p. forL thenJ·KS♯
1
= J·KS♯

2
.

(2) LetS♯ = (A, I♯) be an abstract semantic structure onA. If J·KS♯ is s.p. forL thenJ·KAS is s.p. forL .

Proof. (1) By Lemma 5.3, for anyϕ ∈ L , γ(JϕKS♯
1
) = JϕKS = γ(JϕKS♯

2
), so that, by applyingα,

JϕKS♯
1
= α(γ(JϕKS♯

1
)) = α(JϕKS ) = α(γ(JϕKS♯

2
)) = JϕKS♯

2
.

(2) Let us first observe that for anyϕ ∈ L , γ(α(JϕKS )) = JϕKS . In fact, γ(α(JϕKS )) ⊆ JϕKS ⇔
α(γ(α(JϕKS ))) ≤ JϕKS♯ ⇔ α(JϕKS ) ≤ JϕKS♯ ⇔ JϕKS ⊆ JϕKS . As a consequence of this fact, by

structural induction onϕ ∈ L , analogously to the proof of Lemma 5.1, it is easy to prove that γ(JϕKAS ) =
JϕKS . Thus, by Lemma 5.3,J·KAS is s.p. forL .

Thus, it turns out that strong preservation is anabstract domain property. This means that given any
abstract domainA ∈ Abs(℘(Σ)), it is possible to define an abstract semantic structureS♯ = (A, I♯) on
A such that the corresponding abstract semanticsJ·KS♯ is s.p. forL if and only if the induced abstract
semanticsJ·KAS : L → A is s.p. forL . In particular, this also holds for the standard approach: if A =
(A,R♯, ℓ♯) is an abstract Kripke structure forL , whereh : Σ → A is the corresponding surjection, then
the standard abstract semanticsJ·KA strongly preservesL if and only if the abstract semantics induced by
the partitioning abstract domain(αh, ℘(Σ), ℘(A), γh) strongly preservesL , and in this case this abstract
semantics coincides with the standard abstract semanticsJ·KA. Strong preservation is an abstract domain
property and therefore can be defined without loss of generality as follows.

Definition 5.5. An abstract domainA ∈ Abs(℘(Σ)) is strongly preserving forL (w.r.t. a semantic struc-
tureS) whenJ·KAS is s.p. forL (w.r.t. S). We denote bySPL ⊆ Abs(℘(Σ)) the set of abstract domains
that are s.p. forL .

Example 5.6. Let us consider Example 4.1. It turns out that the abstract domainA is not s.p. forL
because, by Lemma 5.3,JEXrKS = {3, 5} ( {1, 2, 3, 4, 5} = γ(⊤) = γ(JEXrKAS ).

Example 5.7. Let us consider the simple languageL ∋ ϕ ::= p | EXϕ and the Kripke structureK
depicted in Figure 4. The Kripke structureK induces the semantic structureS = ({1, 2, 3}, I) such that
I(p) = {1, 2, 3} andI(EX) = pre

�
. Hence, we have thatJpKS = {1, 2, 3}, JEXpKS = {1, 2, 3} and, for

k > 1, JEXkpKS = {1, 2, 3}. Let us consider the partitioning abstract domainA induced by the partition
P = {[12], [3]} and related to℘(Σ) by α andγ. Let us consider two different abstract semantic structures
onA.

15



– The abstract semantic structureSA = (A, IA) is induced as best correct approximation ofI byA.

– The abstract semantic structureSA = (A, IA) is instead induced by the abstract Kripke structure
A = (A,�♯, ℓ♯) in Figure 4. Hence,IA(p) = {[12], [3]} andIA(EX) = pre

�
♯ .

SA is different fromSA becauseIA(EX) 6= IA(EX). In fact,IA(EX)({[12]}) = α(pre
�
(γ({[12]}))) =

α(pre
�
({1, 2})) = α({1}) = {[12]}, while IA(EX)({[12]}) = pre

�
♯({[12]}) = ∅.

Let us show that both the abstract semanticsJ·KAS andJ·KS♯ are s.p. forL .

– We have thatJpKAS = {[12], [3]}, JEXpKAS = α(pre
�
({1, 2, 3})) = α({1, 2, 3}) = {[12], [3]} and,

for k > 1, JEXkpKAS = {[12], [3]}. Thus, for anyϕ ∈ L, JϕKS = γ(JϕKAS ).

– We have thatJpKSA = {[12], [3]}, JEXpKSA = pre
�

♯({[12], [3]}) = {[12], [3]} and, fork > 1,
JEXkpKSA = {[12], [3]}. Thus, for anyϕ ∈ L, JϕKS = γ(JϕKSA ).

Consequently, by Lemma 5.3, both abstract semantics are s.p. for L .

5.2 The Most Abstract Strongly Preserving Domain

As recalled in Section 2.3, a languageL and a semantic structureS for L induce a corresponding logical
partitionPL ∈ Part(Σ). By Lemma 5.1, it turns out thatPL is the coarsest strongly preserving partition-
ing abstract domain forL . This can be generalized to arbitrary abstract domains as follows. Let us define
ADL by:

ADL

def
= M({JϕKS | ϕ ∈ L }).

Hence,ADL is the closure under arbitrary intersections of the set of concrete semantics of formulae inL .
Observe thatADL ∈ Abs(℘(Σ)) because it is a Moore-family of℘(Σ).

Theorem 5.8. For anyA ∈ Abs(℘(Σ)), A ∈ SPL iff A ⊑ ADL .

Proof. Let µ = γ ◦ α ∈ uco(℘(Σ)) and letµL ∈ uco(℘(Σ)) be the uco associated toADL , that is
µL (S) = ∩{JϕKS | ϕ ∈ L , S ⊆ JϕKS}. Recall thatA ⊑ ADL iff for any ϕ ∈ L , JϕKS ∈ µ.
(⇒) For anyϕ ∈ L , we have thatγ(α(JϕKS )) = JϕKS because, by Lemma 5.3,γ(α(JϕKS )) =
γ(α(γ(JϕKAS ))) = γ(JϕKAS ) = JϕKS .
(⇐) By hypothesis,γ(α(JϕKS )) = JϕKS for anyϕ. Let us show by structural induction onϕ ∈ L that
JϕKS = γ(JϕKAS ).

– ϕ ≡ p ∈ APL : by using the hypothesis,JpKS = γP (αP (JpKS)) = γP (JpK
A
S ).

– ϕ ≡ f(ϕ1, . . . , ϕn):

Jf(ϕ1, . . . , ϕn)KS = [by hypothesis]

γ(α(Jf(ϕ1, . . . , ϕn)KS)) = [by definition]

γ(α(f (Jϕ1KS , . . . , JϕnKS))) = [by inductive hypothesis]

γ(α(f (γ(Jϕ1K
A
S ), . . . , γ(JϕnKAS )))) = [by definition]

γ(Jf(ϕ1, . . . , ϕn)K
A
S ).

Thus, by Lemma 5.3,A ∈ SPL .

Thus,ADL is the most abstract domain that is s.p. forL w.r.t.S. As a consequence, it turns out that
A is s.p. forL if and only ifA represents with no loss of precision the concrete semanticsof any formula
in L , that is∀ϕ ∈ L . γ(α(JϕKS )) = JϕKS . Lemma 5.4 states that if a s.p. abstract semantics on a given
abstract domain exists then this is unique. Nevertheless, Example 5.7 shows that this unique s.p. abstract
semantics may be induced from different abstract semantic structures, i.e. different abstract interpretation
functions. However, whenL is closed under conjunction, it turns out that on the most abstract s.p. domain
ADL , the abstract interpretation function is unique and is given by the best correct approximationIADL .

16



Theorem 5.9. LetL be closed under infinite logical conjunction and letS♯ = (ADL , I♯) be an abstract
semantic structure onADL . If J·KS♯ is s.p. forL thenI♯ = IADL .

Proof. SinceL is closed under arbritrary logical conjunctions we have that ADL = {JϕKS | ϕ ∈ L }.
Thus, for anya ∈ ADL , there exists someϕ ∈ L such thata = JϕKS♯ = JϕKADL

S . In fact, if a ∈ ADL

thena = JϕKS , for someϕ ∈ L , so that, by Lemmata 5.3 and 5.4,a = JϕKS = γ(JϕKS♯ ) = JϕKS♯ =
JϕKADL

S .
Let p ∈ AP . Then, by Lemma 5.4,JpKS♯ = JpKADL

S so thatI♯(p) = IADL (p).
Let f ∈ Op. Then,

I♯(f)(a1, ..., an) = [by the observation above]

I♯(f)(Jϕ1KS♯ , ..., JϕnKS♯) = [by definition]

Jf(ϕ1, ..., ϕn)KS♯ = [by Lemma 5.4]

Jf(ϕ1, ..., ϕn)K
ADL

S = [by definition]

IADL (f)(Jϕ1K
ADL

S , ..., JϕnKADL

S ) = [by the observation above]

IADL (f)(a1, ..., an).

Thus,I♯ = IADL .

Hence, in the most abstract s.p. domainADL there is a unique choice for interpreting atoms and operations
of L .

In our generalized framework, strong preservation for partitions becomes a particular instance through
the Galois insertionpar/adp. Moreover, whenL is closed under infinite conjunction, it turns out that the
most abstract s.p. domainADL is partitioning if and only ifL is also closed under negation.

Proposition 5.10.
(1)PL = par(ADL ) andadp(PL ) = P(ADL ).
(2)P is strongly preserving forL iff P 4 par(ADL ) iff adp(P ) ⊑ ADL .
(3) LetL be closed under conjunction. Then,ADL is partitioning iffL is closed under logical negation.

Proof. (1) LetµL ∈ uco(℘(Σ)) be the uco associated toADL . We have thatpar(ADL ) = {[s]ADL
| s ∈

Σ}, where[s]ADL
= {s′ ∈ Σ | µL ({s′}) = µL ({s})}. We also have thats ≡L s′ iff ∀ϕ ∈ L .s ∈

JϕKS ⇔ s′ ∈ JϕKS iff µL ({s}) = µL ({s′}), so thatPL = par(ADL ). Moreover,adp(PL ) =
adp(par(ADL )) = P(ADL ).
(2) P is s.p. forL iff P 4 PL iff, by Point (1),P 4 par(AL ) iff, by Theorem 3.2,adp(P ) ⊑ ADL .
(3) SinceL is closed under infinite logical conjunction,ADL = {JϕKS | ϕ ∈ L }. Thus,L is closed
under logical negation iffADL is closed under complementation∁ and this exactly means thatADL is
forward complete for the complement∁. By Corollary 3.3, this latter fact happens iffADL is partitioning.

In particular, whenL is closed under conjunction but not under negation, it turnsout thatadp(PL ) ⊏
ADL , i.e. a proper loss of information occurs when the domainADL is abstracted to the partition
par(ADL ) = PL . On the other hand, whenL is closed under conjunction and negation, we have that
adp(PL ) = ADL and therefore, by Theorem 5.9, the abstract interpretationfunction on the partitioning
abstract domainadp(PL ) is uniquely determined.

Example 5.11.Let us consider the traffic light controllerK in Example 2.2. As already observed, formulae
of L have the following semantics inK:

JstopKK = {R,RY }; JgoKK = {G, Y }; JAXXstopKK = {G, Y }; JAXXgoKK = {R,RY }

so that
ADL = M({JϕKK | ϕ ∈ L }) = {∅, {R,RY }, {G, Y }, {R,RY,G, Y }}

andPL = par(ADL ) = {{R,RY }, {G, Y }}. We denote byµL the uco associated toADL . As
shown in Example 2.2, it turns out that no abstract Kripke structure that properly abstractsK and strongly

17



?>=<89:;1

��

p p
//?>=<89:;2

		

����
��

��
��

�

?>=<89:;3
p //?>=<89:;4

p
**?>=<89:;5
q

jj

GFED@ABC[12]

p

��

��

GFED@ABC[3]
p // GFED@ABC[4]

p ++ GFED@ABC[5]
q

kk

Figure 5: Concrete (on the left) and abstract (on the right) Kripke structures.

preservesL can be defined. In our approach, the abstract domainADL induces a corresponding strongly
preserving abstract semanticsJ·KADL

K : L → ADL , where the best correct approximation of the operator
AXX : ℘(Σ) → ℘(Σ) onADL is:

µL ◦AXX = {∅ 7→ ∅, {R,RY } 7→ {G, Y }, {G, Y } 7→ {R,RY },

{R,RY,G, Y } 7→ {R,RY,G, Y }}.

Example 5.12. Consider the languageCTL and the Kripke structureK = (Σ, R, ℓ) depicted in Figure 5,
where the interpretation of temporal operators ofCTL onK is standard. It is well known that the coarsest
s.p. partitionPCTL can be obtained by refining the initial partitionP = {1234, 5} induced by the labeling
ℓ through the Paige-Tarjan [42] algorithm, sincePCTL coincides with bisimulation equivalence onK. It
is easy to check thatPCTL = {12, 3, 4, 5}. This partition determines (see point (2) in Section 2.3) the
s.p. abstract Kripke structure depicted in Figure 5. SinceCTL is closed under conjunction and negation,
by Proposition 5.10 (1) and (3), it turns out that the most abstract s.p. domainACTL is partitioning and
coincides with the following partitioning closure:

adp(PCTL) = {∅, 12, 3, 4, 5, 34, 35, 45, 122, 124, 125, 345, 1234, 1235, 1245, 12345}.

Let us now consider the following languageL ∋ ϕ ::= p | q | ϕ1 ∧ ϕ2 | EF[0,2]ϕ, whereEF[0,2] is
a time bounded reachability operator that is useful for quantitative temporal analysis [24], e.g., of discrete
real-time systems [10, Chapter 16]. The standard interpretation ofEF[0,2] is as follows:s|=KEF[0,2]ϕ iff
there exists a paths0s1s2s3 . . . in K starting froms = s0 and somen ∈ [0, 2] such thatsn|=Kϕ. Let us
characterize the semantics of formulae inL :

JpKK = {1, 2, 3, 4}; JqKK = {5}; JEF[0,2]pKK = {1, 2, 3, 4, 5};

JEF[0,2]qKK = {3, 4, 5}; JEF[0,2](EF[0,2]q)KK = {1, 2, 3, 4, 5};

Jp ∧ EF[0,2]qKK = {3, 4}; JEF[0,2](p ∧ EF[0,2]q)KK = {1, 2, 3, 4, 5}.

Thus,ADL = M({JϕKK | ϕ ∈ L }) = {∅, 5, 34, 345, 1234, 12345}. On the other hand, by Proposi-
tion 5.10 (1),PL = par(ADL ) = {12, 34, 5}. In this case, it turns out thatadp(PL ) ⊏ ADL . Moreover,
analogously to Example 2.2, let us show that there exists no abstract transition relation�♯ ⊆ PL ×PL that
determines an abstract Kripke structureA = (PL ,�♯, ℓL ) which strongly preservesL . LetB = {1, 2},
B′ = {3, 4} andB′′ = {5} be the blocks inPL . Assume by contradiction that such an abstract Kripke
structureA exists.

(i) On the concrete modelK we have that3|=KEF[0,2]q. Thus, by strong preservation, it must be that

B′|=AEF[0,2]q. On the other hand, ifB′�♯B andB�♯B′′ thenB|=AEF[0,2]q and therefore, by
weak preservation, we would have that1|=KEF[0,2]q, which is a contradiction. Thus, necessarily,

B′�♯B′′.

(ii) Let us observe that1|=KEF[0,2]EF[0,2]q. Hence, by strong preservation,B|=AEF[0,2]EF[0,2]q. If

B�♯B′′ then, as in point (i), we would still have that1|=KEF[0,2]q, i.e. a contradiction. Hence,

necessarily,B�♯B′.

18



(iii) From B�♯B′ andB′�♯B′′, we would obtain thatB|=AEF[0,2]q that, as observed in point (ii), is a
contradiction.

Thus, this shows that it is not possible to define an abstract Kripke structure on the abstract state spacePL

that strongly preservesL . The abstract domainADL induces a corresponding abstract semanticsJ·KADL

K

that instead strongly preservesL . In this case, the best correct approximation of the operator EF[0,2] on
ADL is:

µL ◦EF[0,2] = {∅ 7→ ∅, 5 7→ 345, 34 7→ 12345, 345 7→ 12345,

1234 7→ 12345, 12345 7→ 12345}.

6 Strong Preservation and Completeness

In this section we establish a precise correspondence between generalized strong preservation of abstract
models and completeness of abstract interpretations, so that the problem of minimally refining an abstract
model in order to get strong preservation can be formulated as a complete domain refinement in abstract
interpretation.

6.1 Forward Complete Shells

Let us consider forward completeness of abstract domainsA ∈ Abs(C) for genericn-ary concrete op-
erationsf : Cn → C, with n ≥ 0. Hence,A is forward complete forf , or simply f -complete,
when f ◦ 〈µA, ..., µA〉 = µA ◦ f ◦ 〈µA, ..., µA〉, that is, for any~x ∈ Cn, f(µA(x1), ..., µA(xn)) =
µA(f(µA(x1), ..., µA(xn))). Equivalently,A is f -complete when for any~a ∈ An, f(γ(a1), ..., γ(an)) =
γ(α(f(γ(a1), ..., γ(an)))). For a set of operationsF ⊆ Fun(C), A is F -complete whenA is f -complete
for eachf ∈ F . Observe thatF -completeness for an abstract domainA means that the associated closure
µA is closed under the image of functions inF , namelyF (µA) ⊆ µA. Also note that whenk : C0 → C,
i.e. k ∈ C is a constant,A is k-complete iffk is precisely represented inA, i.e. γ(α(k)) = k. Let
us also note that an abstract domainA ∈ Abs(C) is always forward meet-complete because any uco is
Moore-closed.

Let us first note that forwardF -complete shells always exist. LetSF : Abs(C) → Abs(C) be defined
asSF (A)

def
= ⊔ {X ∈ Abs(C) | X ⊑ A, X is F -complete}.

Lemma 6.1. SF (A) is theF -complete shell ofA.

Proof. Letη = ⊔{ρ ∈ uco(C) | ρ ⊑ µA, ρ is F -complete} = ∩{ρ ∈ uco(C) | ρ ⊑ µA, ρ is F -complete}.
Let f ∈ F , with ♯(f) = n > 0 (if ♯(f) = 0 then, trivially,f ∈ η) and~c ∈ ηn. Consider anyρ ∈ uco(C)
that isF -complete and such thatρ ⊑ µ. Sinceη ⊆ ρ, we have that~c ∈ ρn and thereforef(~c) ∈ ρ because
ρ is F -complete. Thus,f(~c) ∈ η, i.e.,η is F -complete.

A forward complete shellSF (A) is a more concrete abstraction thanA. How to characterizeSF (A)?
It is here useful to view abstract domains as closure operators on the concrete domain, i.e. as subsets
of C. Hence,A is viewed as the subsetimg(µA) = γ(A) of the concrete domainC so thatSF (A)
can be characterized as the least Moore-closed subset ofC that containsimg(µA) and is forwardF -
complete. We need to characterize the least amount of concrete information that must be added toγ(A) in
order to get forward completeness. It turns out that forwardcomplete shells admit a constructive fixpoint
characterization. LetF uco : uco(C) → uco(C) be defined as follows:F uco(ρ)

def
= M(F (ρ)), namely

F uco(ρ) is the most abstract domain that contains the image ofF onρ. Observe that the operatorλρ.µA ⊓
F uco(ρ) : uco(C) → uco(C) is monotone.

Lemma 6.2. SF (A) = gfp(λρ.µA ⊓ F uco(ρ)).

Proof. Observe that a ucoρ is F -complete iffF (ρ) ⊆ ρ iff M(F (ρ)) = F uco(ρ) ⊆ ρ iff ρ ⊑ F uco(ρ).
Thus, we have thatSF (A) = ⊔{ρ ∈ uco(C) | ρ ⊑ µA, ρ is F -complete} = ⊔{ρ ∈ uco(C) | ρ ⊑ µA, ρ ⊑
F uco(ρ)} = ⊔{ρ ∈ uco(C) | ρ ⊑ µA ⊓ F uco(ρ)} = gfp(λρ.µA ⊓ F uco(ρ)).

19



Thus, it turns out that the lower iteration sequence ofλρ.µA⊓F uco(ρ) in uco(C) converges to the complete
shellSF (µA).

Example 6.3. Let us consider the square operator on sets of integerssq : ℘(Z) → ℘(Z), i.e. sq(X) =
X2 = {x2 | x ∈ X}, and the abstract domainSign = {∅,Z<0, {0},Z>0,Z}. As observed in Sec-
tion 2.2.2,Sign is not forward complete for the square operator. Let us applyLemma 6.2 in order to
compute the forward complete shellSsq(Sign). Observe that

∅2 = ∅ ∈ Sign; {0}2 = {0} ∈ Sign; Z2
<0 = Z2

>0 = Z2 6∈ Sign.

Thus, the first step of iteration refinesSign to Sign ∪ {Z2} (notice that this is an abstract domain because
it is Moore-closed). Then,(Z2)2 = Z22 6∈ Sign ∪ {Z2}, so that on the second step of iteration we obtain
Sign ∪ {Z2,Z22}. In general, forn ≥ 1, then-th step of iteration providesSign ∪ {Z2k | k ∈ [1, n]}, so
that the complete shellSsq(Sign) coincides with the least fixpointSign ∪ {Z2n | n ≥ 1}.

Finally, the following easy observation will be useful later on.

Lemma 6.4. LetF,G ⊆ Fun(C). Then,SF = SG if and only if for anyA ∈ Abs(C), A is F -complete
⇔ A isG-complete.

Proof. (⇒) If A is F -complete thenA = SF (A) = SG(A) and thereforeA isG-complete as well.
(⇐) This follows fromSF (A) = ⊔{X ∈ Abs(C) |X ⊑ A, X is F -complete} = ⊔{X ∈ Abs(C) |X ⊑
A, X isG-complete} = SG(A).

6.2 Strong Preservation and Complete Shells

Let L be a language with atoms inAPL and operators inOpL and letS = (Σ, I) be a semantic structure
for L so thatAPL andOpL denote, respectively, the corresponding sets of semantic interpretations of
atoms and operators. It turns out that forward completenessfor APL andOpL implies strong preserva-
tion for L .

Lemma 6.5. If A ∈ Abs(℘(Σ)) is forward complete forAPL andOpL thenA is s.p. forL .

Proof. By Theorem 5.8, we show thatA ⊑ ADL . Let us show by induction that for anyϕ ∈ L ,
JϕKS = γ(α(JϕKS )).

– ϕ ≡ p ∈ APL : sinceA is forward complete forp, JpKS = p = γ(α(p)) = γ(α(JpKS)).

– ϕ ≡ f(ϕ1, . . . , ϕn) with f ∈ OpL :

Jf(ϕ1, ..., ϕn)KS = [by definition]

f (Jϕ1KS , ..., JϕnKS) = [by inductive hypothesis]

f(γ(α(Jϕ1KS)), ..., γ(α(JϕnKS))) = [sinceA is forward complete forf ]

γ(α(f (γ(α(Jϕ1KS)), ..., γ(α(JϕnKS))))) = [by inductive hypothesis and by definition]

γ(α(Jf(ϕ1, ..., ϕn)KS)).

On the other hand, the converse is not true, that is strong preservation does not imply forward com-
pleteness, as shown by the following example.

Example 6.6. Let us consider again Example 5.7 where we showed that the partitioning abstract do-
mainA = ℘(P )⊆ is s.p. forL . However,A is not forward complete forOpL = {pre

�
}. In fact:

γ(α(pre
�
(γ(α({3}))))) = γ(α(pre

�
({3}))) = γ(α({2, 3})) = {1, 2, 3} while pre

�
(γ(α({3}))) =

pre
�
({3}) = {2, 3}.

Instead, it turns out that most abstract s.p. domains can be characterized as forward complete shells.

20



6.2.1 Complete Shells as Strongly Preserving Abstract Domains

Partition refinement algorithms for computing behaviouralequivalences like bisimulation [42], simulation
equivalence [5, 35, 48] and (divergence blind) stuttering equivalence [32] are used in standard abstract
model checking to compute the coarsest strongly preservingpartition of temporal languages likeCTL∗ or
theµ-calculus for the case of bisimulation equivalence,ACTL∗ for simulation equivalence andCTL∗-X
for stuttering equivalence.

Given a languageL and a concrete state spaceΣ, these partition refinement algorithms work by it-
eratively refining an initial partitionP within the lattice of partitionsPart(Σ) until the fixpointPL is
reached. The input partitionP determines the setAPP of atoms and their interpretationIP as fol-
lows: APP

def
= {pB | B ∈ P} and IP (pB)

def
= B. More in general, anyX ⊆ ℘(Σ) determines a set

{pX}X∈X of atoms with interpretationIX (pX) = X . In particular, this can be done for an abstract do-
mainA ∈ Abs(℘(Σ)) by considering its concretizationγ(A) ⊆ Σ, namelyA is viewed as a set of atoms
with interpretationIA(a) = γ(a). Thus, an abstract domainA ∈ Abs(℘(Σ)) together with a set of func-
tionsF ⊆ Fun(℘(Σ)) determine a languageLA,F , with atoms inA, operations inF and endowed with
a semantic structureSA,F = (Σ, IA ∪ IF ) such that for anya ∈ A, IA(a) = γ(a) and for anyf ∈ F ,
IF (f) = f . Therefore, the most abstract s.p. domainADLA,F

generalizes in our framework the output
of a partition refinement algorithm for some language. Accordingly, we aim at characterizingADLA,F

as the output of a refinement process of the initial domainA within the latticeAbs(℘(Σ)) of abstract do-
mains. The following result shows that forward completeness for the operations inF is the right notion of
refinement to be used for the case of abstract domains.

Theorem 6.7. Let A ∈ Abs(℘(Σ)), F ⊆ Fun(℘(Σ)) and assume thatLA,F is closed under infinite
logical conjunction. Then,ADLA,F

= SF (A).

Proof. SinceLA,F is closed under conjunction we have thatADLA,F
= {JϕKSA,F

| ϕ ∈ LA,F }. Let us
first prove that{JϕKSA,F

| ϕ ∈ LA,F} ⊆ SF (A) by structural induction onϕ ∈ LA,F :

– ϕ ≡ a ∈ A: JaKSA,F
= IA(a) = γ(a) ∈ γ(A) ⊆ SF (A).

– ϕ ≡ f(ϕ1, ..., ϕn) with f ∈ F : Jf(ϕ1, ..., ϕn)KSA,F
= f(Jϕ1KSA,F

, ..., JϕnKSA,F
), where, by

inductive hypothesis,JϕiKSA,F
∈ SF (A). Therefore, sinceSF (A) is forwardf -complete, we have

thatf(Jϕ1KSA,F
, ..., JϕnKSA,F

) ∈ SF (A).

Let us now prove the opposite inclusion. Let us first observe thatADLA,F
is forwardF -complete. For

simplicity of notation, considerf ∈ F with ♯(f) = 1. If JϕKSA,F
∈ ADLA,F

, whereϕ ∈ LA,F , then,
f(ϕ) ∈ LA,F andf(JϕKSA,F

) = Jf(ϕ)KSA,F
∈ ADLA,F

. By Lemma 6.2, we know thatSA(A) =
⊓α∈Ord(λρ.µA ⊓ M(F (ρ)))α,↓(⊤uco(℘(Σ))), so that it is sufficient to prove by transfinite induction on
α ∈ Ord that

(λρ.µA ⊓M(F (ρ)))α,↓(⊤uco(℘(Σ))) ⊆ ADLA,F
.

– α = 0: (λρ.µA ⊓M(F (ρ)))0,↓(⊤uco(℘(Σ))) = ⊤uco(℘(Σ)) = {Σ} ∈ γ(A) ⊆ ADLA,F
.

– α + 1: By inductive hypothesis,(λρ.µA ⊓ M(F (ρ)))α,↓(⊤uco(℘(Σ))) ⊆ ADLA,F
. Moreover,

ADLA,F
is Moore-closed and forwardF -complete (hence closed underF ). Thus,M(F ((λρ.µA ⊓

M(F (ρ)))α,↓(⊤uco(℘(Σ))))) ⊆ ADLA,F
, namely(λρ.µA⊓M(F (ρ)))α+1,↓(⊤uco(℘(Σ))) ⊆ ADLA,F

.

– limit ordinalα: This follows from

(λρ.µA ⊓M(F (ρ)))α,↓(⊤uco(℘(Σ))) = ⊓β<α(λρ.µA ⊓M(F (ρ)))β,↓(⊤uco(℘(Σ)))

because, by inductive hypothesis,(λρ.µA ⊓M(F (ρ)))β,↓(⊤uco(℘(Σ))) ⊆ ADLA,F
, for anyβ < α.

21



6.2.2 Strongly Preserving Abstract Domains as Complete Shells

Let us consider a languageL , with atoms inAPL and operators inOpL , and a semantic structure
S = (Σ, I). As an immediate consequence of Theorem 6.7, the most abstract s.p. domainADL for L

w.r.t. S can be characterized as the forwardAPL ∪ OpL -complete shell of the most abstract domain
{Σ}.

Corollary 6.8. LetL be closed under infinite logical conjunction. Then,ADL = SAPL ∪Op
L
({Σ}).

Let us also observe thatADL can be equivalently characterized as the forwardOpL -complete shell
of an initial abstract domainM(APL ) induced by atoms:ADL = SOp

L
(M(APL )).

6.2.3 Strongly Preserving Partitions

Theorem 6.7 and Corollary 6.8 provide an elegant generalization of partition refinement algorithms for
strong preservation from an abstract interpretation perspective.

Given a languageL with operators inOpL and a corresponding semantic structureS = (Σ, I), as
recalled in Section 6.2.1, an input partitionP ∈ Part(Σ) for a partition refinement algorithm determines
the setAPL = {pB | B ∈ P} of atoms ofL and their interpretationI(pB) = B. Thus,M(APL ) =
M(P ) = P ∪ {∅,Σ}. It turns out that the coarsest s.p. partitionPL for L can be characterized in our
abstract domain-based approach as follows.

Corollary 6.9. LetL be closed under infinite logical conjunction.
(1)PL = par(SOp

L
(M(P ))).

(2) LetL be closed under logical negation. Then,adp(PL ) = SOp
L
(M(P )).

Proof. (1) By Corollary 6.8,ADL = SOpL
(M(P )) and by Proposition 5.10 (1),PL = par(ADL ) =

par(SOp
L
(M(P ))).

(2) By Proposition 5.10 (1) and (3), Corollary 6.8 and point (1),adp(PL ) = adp(par(ADL )) = ADL =
SOp

L
(M(P )).

It is worth remarking that whenL is not closed under negation, by Proposition 5.10 (3) and Corol-
lary 6.9 (2), it turns out thatadp(PL ) ⊏ SOp

L
(M(P )). This means that whenL is not closed under

negation the output partitionPL of any partition refinement algorithm for achieving strong preservation
for L is not optimal within the lattice of abstract domains.

Example 6.10. Let us consider the languageL and the concrete Kripke structureK in Example 5.12.
The labeling determines the initial partitionP = {p = 1234, q = 5} ∈ Part(Σ), so thatM(P ) =
{∅, 1234, 5, 12345} ∈ Abs(℘(Σ)). Here,OpL = {∧,EF[0,2]}. Abstract domains are Moore-closed so
thatSOp

L
= SEF[0,2]

. Let us computeSEF[0,2]
(M(P )).

A0 = M(P ) = {∅, 1234, 5, 12345}

A1 = A0 ⊓M(EF[0,2](A0)) = M(A0 ∪EF[0,2](A0))

= M({∅, 1234, 5, 12345}∪ {EF[0,2]({5}) = 345}) = {∅, 5, 34, 1234, 12345}

A2 = A1 (fixpoint)

As already observed in Example 5.12,PL = {12, 34, 5} is such thatadp(PL ) ⊏ µL and it is not possible
to define a strongly preserving abstract Kripke structure onthe abstract spacePL .

7 An Application to some Behavioural Equivalences

It is well known that some temporal languages likeCTL, ACTL andCTL-X induce state logical equiv-
alences that coincide with standard behavioural equivalences like bisimulation equivalence forCTL, (di-
vergence blind) stuttering equivalence forCTL-X and simulation equivalence forACTL. We derive here
a novel characterization of these behavioural equivalences in terms of forward completeness of abstract
interpretations.

22



7.1 Bisimulation Equivalence

Let K = (Σ,�, ℓ) be a Kripke structure over some setAP of atomic propositions. A relationR ⊆ Σ× Σ
is a bisimulation onK if for any s, s′ ∈ Σ such thatsRs′:

(1) ℓ(s) = ℓ(s′);

(2) For anyt ∈ Σ such thats�t, there existst′ ∈ Σ such thats′�t′ andtRt′;

(3) s′Rs, i.e.R is symmetric.

Since the empty relation is a bisimulation and bisimulations are closed under union, it turns out that the
largest (as a set) bisimulation relation exists. This largest bisimulation is an equivalence relation called
bisimulation equivalence and is denoted by∼bis whilePbis ∈ Part(Σ) denotes the corresponding partition.
Thus, a partitionP ∈ Part(Σ) is a bisimulation onK whenP � Pbis.

It is well known [4] that whenK is finitely branching, bisimulation equivalence coincideswith the
state equivalence induced byCTL, i.e.,Pbis = PCTL (the same holds forCTL∗ and theµ-calculus, see
e.g. [19, Lemma 6.2.0.5]). Moreover, it is known (see e.g. [49, Section 12]) that it is enough to consider
finitary Hennessy-Milner logic [34], i.e. a languageL1 including propositional logic and the existential
next operator in order to have thatPL1 = Pbis:

L1 ∋ ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ

where, as usual, the interpretationEX of EX in K is pre
�

. A number of algorithms for computing
bisimulation equivalence exists [3, 23, 38, 42]. The Paige-Tarjan algorithm [42] runs inO(|�| log(|Σ|))-
time and is the most time-efficient algorithm that computes bisimulation equivalence.

We recalled above thatPL1 = PCTL. In our framework, this can be obtained as a consequence of the
fact that the most abstract s.p. domains forCTL andL1 coincide.

Lemma 7.1. LetK be finitely branching. Then,ADCTL = ADL1 = adp(Pbis).

Proof. Let OpCTL = {∩, ∁,AX,EX,AU,EU,AR,ER} be the set of standard interpretations of the
operators ofCTL onK, so thatAX = p̃re

�
andEX = pre

�
. We show thatµ ∈ uco(℘(Σ)) is forward

complete forOpCTL iff µ is forward complete for{∁, pre
�
}. Assume thatµ is forward complete for

{∁, pre
�
}. Let us first prove thatµ is forward complete for̃pre

�
= AX:

µ ◦ p̃re
�
◦ µ = [by definition ofp̃re

�
]

µ ◦ ∁ ◦ pre
�
◦∁ ◦ µ = [asµ is complete for∁]

µ ◦ ∁ ◦ pre
�
◦µ ◦ ∁ ◦ µ = [asµ is complete forpre

�
]

µ ◦ ∁ ◦ µ ◦ pre
�
◦µ ◦ ∁ ◦ µ = [asµ is complete for∁]

∁ ◦ µ ◦ pre
�
◦µ ◦ ∁ ◦ µ = [asµ is complete forpre

�
]

∁ ◦ pre
�
◦µ ◦ ∁ ◦ µ = [asµ is complete for∁]

∁ ◦ pre
�
◦∁ ◦ µ = [by definition ofp̃re

�
]

p̃re
�
◦ µ

The following fixpoint characterizations are well known [10]:

– AU(S1, S2) = lfp(λZ.S2 ∪ (S1 ∩ p̃re
�
(Z)));

– EU(S1, S2) = lfp(λZ.S2 ∪ (S1 ∩ pre
�
(Z)));

– AR(S1, S2) = gfp(λZ.S2 ∩ (S1 ∪ p̃re
�
(Z)));

– ER(S1, S2) = gfp(λZ.S2 ∩ (S1 ∪ pre
�
(Z))).

23



Let us show thatµ is forward complete forAU. The proofs for the remaining operators inOpCTL are
analogous. We need to show thatµ(lfp(λZ.µ(S2) ∪ (µ(S1) ∩ p̃re

�
(Z)))) = lfp(λZ.µ(S2) ∪ (µ(S1) ∩

p̃re
�
(Z))). Let us show thatµ is forward complete for the functionλZ.µ(S2) ∪ (µ(S1) ∩ p̃re

�
(Z)):

µ(µ(S2) ∪ (µ(S1) ∩ p̃re
�
(µ(Z)))) = [asµ is complete forp̃re

�
]

µ(µ(S2) ∪ (µ(S1) ∩ µ(p̃re�
(µ(Z))))) = [asµ is complete for∩]

µ(µ(S2) ∪ µ(µ(S1) ∩ µ(p̃re�
(µ(Z))))) = [asµ is complete for∪]

µ(S2) ∪ µ(µ(S1) ∩ µ(p̃re�
(µ(Z)))) = [asµ is complete for∩]

µ(S2) ∪ (µ(S1) ∩ µ(p̃re�
(µ(Z)))) = [asµ is complete forp̃re

�
]

µ(S2) ∪ (µ(S1) ∩ p̃re
�
(µ(Z))).

Observe that sinceµ is additive (and therefore continuous) we have thatµ(∅) = ∅. Moreover, let us
show that from the hypothesis thatK is finitely branching it follows that̃pre

�
is continuous. First, notice

that p̃re
�

is continuous iffpre
�

is co-continuous. Hence, let us check thatpre
�

is co-continuous. Let
{Xi}i∈N be a decreasing chain of subsets ofΣ and letx ∈ ∩i∈N pre

�
(Xi). SinceK is finitely branching,

post
�
({x}) is finite so that there exists somek ∈ N such that for anyj > 0, post

�
({x}) ∩ Xk =

post
�
({x}) ∩ Xk+j . Hence, there exists somez ∈ ∩i∈NXi ∩ post

�
({x}), so thatx ∈ pre

�
(∩i∈NXi).

Therefore, sincẽpre
�

is continuous we also have thatλZ.µ(S2) ∪ (µ(S1) ∩ p̃re
�
(Z)) is continuous. We

can therefore apply Lemma 2.1 so thatµ(lfp(λZ.µ(S2)∪(µ(S1)∩p̃re�
(Z)))) = lfp(λZ.µ(S2)∪(µ(S1)∩

p̃re
�
(Z))).

Thus, by Lemma 6.4,S{∁,pre
�
} = SOpCTL

, so that, by Corollary 6.8,ADL1 = ADCTL. Finally, since
K is finitely branching andL1 is closed under conjunction and negation,adp(PL1) = adp(Pbis) =
adp(PL1 ) = ADL1 .

As a consequence of this and of the results in Section 6 (in particular of Corollary 6.9), any partition re-
finement algorithmAlgbis for computing bisimulation equivalence on a finitely branching Kripke structure,
like those in [3, 23, 38, 42], can be characterized as a complete shell refinement as follows:

Algbis(P ) = par(S{∁,pre
�
}(M(P ))).

Thus,Algbis is viewed as an algorithm for computing a particular abstraction, that ispar, of a partic-
ular complete shell, that isS{∁,pre

�
}. In particular, this holds for the Paige-Tarjan algorithm [42] and

leads to design a generalized Paige-Tarjan-like procedurefor computing most abstract strongly preserving
domains [45].

Finally, our abstract intepretation-based approach allows us to give the following nice characteriza-
tion of bisimulation for a partitionP in terms of forward completeness for the corresponding partitioning
abstract domainadp(P ).

Theorem 7.2. Let P ∈ Part(Σ). Then,P is a bisimulation onK iff adp(P ) is forward complete for
{p | p ∈ AP} ∪ {pre

�
}.

Proof. We view adp(P ) as a uco so thatadp(P ) = {∪iBi ∈ ℘(Σ) | {Bi} ⊆ P}. Let us first ob-
serve thatP � Pℓ iff adp(P ) is forward complete for{p ⊆ Σ | p ∈ AP}. On the one hand, since
p = {s ∈ Σ | p ∈ ℓ(s)}, if s ∈ p ands ∈ B, for someB ∈ P , thenB ⊆ [s]ℓ ⊆ p. Hence,p is a union of
some blocks ofP and thereforep ∈ adp(P ). On the other hand, ifadp(P ) contains{p ⊆ Σ | p ∈ AP}
then, for anyp ∈ AP , p is a union of some blocks inP . Thus, for anyB ∈ P , eitherB ⊆ p orB∩p = ∅.
Consequently, ifs ∈ B thenB ⊆ [s]ℓ ∈ Pℓ.
Let us now note thatadp(P ) is forward complete forpre

�
iff for any blockB ∈ P , pre

�
(B) is a (pos-

sibly empty) union of blocks ofP : this holds becausepre
�

is additive, and therefore if{Bi} ⊆ P
thenpre

�
(∪iBi) = ∪ipre�

(Bi). The fact that, for someB ∈ P , pre
�
(B) = ∪iBi, for some blocks

{Bi} ⊆ P , implies that ifs ∈ pre
�
(B), i.e.,s�t for somet ∈ B, thens ∈ Bj , for somej, and ifs′ ∈ Bj

thens′ ∈ pre
�
(B), i.e., s′�t′ for somet′ ∈ B, namely condition (2) of bisimulation forP holds. On

the other hand, if condition (2) of bisimulation forP holds then ifs, s′ ∈ B′ ands ∈ pre
�
(B), for some

B,B′ ∈ P , thens′�t′ for somet ∈ B, i.e.,s′ ∈ pre
�
(B), and thereforepre

�
(B) is a union of blocks of

P . This closes the proof.

24



7.1.1 On the Smallest Abstract Transition Relation

As recalled in Section 2.3, the abstract Kripke structureA = (Pbis,�
∃∃, ℓ∃) strongly preservesCTL,

whereB1�
∃∃B2 iff there exists1 ∈ B1 ands2 ∈ B2 such thats1�s2, andℓ∃(B) = ∪s∈Bℓ(s). As a

simple and elegant consequence of our approach, it is easy toshow that�∃∃ is theunique(and therefore
the smallest) abstract transition relation onPbis that induces strong preservation forCTL.

LetK = (Σ,�, ℓ) be finitely branching so that, by Lemma 7.1,ADL1 = adp(Pbis) = ℘(Pbis). Recall
that the concrete interpretationI induced byK is such thatI(EX) = pre

�
. By Theorem 5.9, the unique

interpretation of atoms and operations inL1 on the abstract domain℘(Pbis) that gives rise to a s.p. abstract
semantics is the best correct approximationI℘(Pbis). Hence, ifA = (Pbis,�

♯, ℓ♯) is strongly preserving for
CTL then the interpretationpre

�
♯ of EX induced byA must coincide withI℘(Pbis)(EX). Consequently,

pre
�

♯ = α ◦ pre
�
◦γ so that for anyB1, B2 ∈ Pbis, we have thatB1�

♯B2 iff B1 ∈ α(pre
�
(γ({B2}))).

Therefore, we conclude by observing thatB1 ∈ α(pre
�
(γ({B2}))) iff B1�

∃∃B2.
We believe that a similar reasoning could be also useful for other languagesL in order to prove that

the smallest abstract transition relation onPL that induces strong preservation exists. For example, this
has been proved for the case ofACTL by Bustan and Grumberg [5].

7.2 Stuttering Equivalence

Lamport’s criticism [37] of the next-time operatorX in CTL/CTL∗ is well known. This motivated the
study of temporal logicsCTL-X/CTL∗-X obtained fromCTL/CTL∗ by removing the next-time operator
and this led to study notions of behaviouralstuttering-based equivalences [4, 22, 32]. We are interested
here indivergence blind stuttering(dbs for short) equivalence. LetK = (Σ,�, ℓ) be a Kripke structure
over a setAP of atoms. A relationR ⊆ Σ × Σ is a divergence blind stuttering relation onK if for any
s, s′ ∈ Σ such thatsRs′:

(1) ℓ(s) = ℓ(s′);

(2) If s�t then there existt0, ..., tk ∈ Σ, with k ≥ 0, such that: (i)t0 = s′; (ii) for all i ∈ [0, k − 1],
ti�ti+i andsRti; (iii) tRtk;

(3) s′Rs, i.e.R is symmetric.

Observe that condition (2) allows the casek = 0 and this simply boils down to requiring thattRs′. Since
the empty relation is a dbs relation and dbs relations are closed under union, it turns out that the largest
dbs relation relation exists. It turns out that this largestdbs relation is an equivalence relation called
dbs equivalence and is denoted by∼dbs while Pdbs ∈ Part(Σ) denotes the corresponding partition. In
particular, a partitionP ∈ Part(Σ) is a dbs relation onK when whenP � Pdbs.

De Nicola and Vaandrager [22, Theorem 3.2.5] showed that forfinite Kripke structures and for an
interpretation of universal/existential path quantifiersover all the, possibly finite, prefixes, dbs equivalence
coincides with the state equivalence induced from the languageCTL-X (this also holds forCTL∗-X),
that isPdbs = PCTL-X. This is not true with the standard interpretation of path quantifiers over infinite
paths, since this requires a divergence sensitive notion ofstuttering (see the details in [22]). Groote and
Vaandrager [32] presented a partition refinement algorithmthat computes the partitionPdbs in O(|Σ||�|)-
time.

We provide a characterization of divergence blind stuttering equivalence as the state equivalence in-
duced by the following languageL2 that includes propositional logic and the existential until operatorEU,
where the interpretation of the existential path quantifieris standard, i.e. over infinite paths:

L2 ∋ ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EU(ϕ1, ϕ2)

Since the transition relation� is assumed to be total, let us recall that the standard semantics EU� :
℘(Σ)2 → ℘(Σ) of the existential until operator is as follows:

EU�(S1, S2) = S2 ∪ {s ∈ S1 | ∃s0, ..., sn ∈ Σ, with n ≥ 0, such that (i)s0 = s,
(ii) ∀i ∈ [0, n− 1]. si ∈ S1 andsi�si+1, (iii) sn ∈ S2}.

25



The following result characterizes a dbs partitionP in terms of forward completeness for the corresponding
partitioning abstract domainadp(P ).

Theorem 7.3. Let P ∈ Part(Σ). Then,P ∈ Part(Σ) is a dbs partition onK iff adp(P ) is forward
complete for{p | p ∈ AP} ∪ {EU�}.

Proof. As already shown in the proof of Theorem 7.2, it turns out thatP � Pℓ iff adp(P ) is forward
complete for{p ⊆ Σ | p ∈ AP}. Thus, it remains to showP ∈ Part(Σ) satisfies condition (2) of the
definition of dbs relation iffadp(P ) is forward complete forEU�. Let us first observe thatP ∈ Part(Σ)
satisfies this condition (2) iff for anyB1, B2 ∈ P , EU�(B1, B2) = B1 ∪B2.
(⇒) If B1 = B2 thenEU�(B1, B1) = B1. Otherwise, assume thatB1 6= B2. If B2 ( EU�(B1, B2) ⊆
B1 ∪ B2 then there existss ∈ EU�(B1, B2) such thats ∈ B1. Thus, ifs′ ∈ B1 then, by condition (2),
s′ ∈ EU�(B1, B2). This implies thatEU�(B1, B2) = B1 ∪B2.
(⇐) LetB ∈ P , s, s′ ∈ B ands�t. If t ∈ B then condition (2) is satisfied. Otherwise,t ∈ B′, for some
B′ ∈ P , with B 6= B′. Thus,s ∈ EU�(B,B

′) and thereforeEU�(B,B
′) = B ∪ B′. This means that

condition (2) is satisfied forP .
To complete the proof it is now sufficient to show that if, for anyB1, B2 ∈ P , EU�(B1, B2) = B1 ∪ B2

thenadp(P ) is forward complete forEU�, i.e., for any{Bi}i∈I , {Bj}j∈J ⊆ P , EU�(∪iBi,∪jBj) =
∪kBk, for some{Bk}k∈K ⊆ P . The functionEU� is additive in its second argument, thus we only need
to show that, for anyB ∈ P , EU�(∪iBi, B) = ∪kBk, namely ifs ∈ EU�(∪iBi, B) ands ∈ B′, for
someB′ ∈ P , thenB′ ⊆ EU�(∪iBi, B). If s ∈ EU�(∪iBi, B) ands ∈ B′, for someB′ ∈ {Bi}i,
then there existn ≥ 0 ands0, ..., sn ∈ Σ such thats0 = s, ∀j ∈ [0, n− 1].sj ∈ ∪iBi andsj�sj+1, and
sn ∈ B. Let us prove by induction onn ∈ N that if s′ ∈ B′ thens′ ∈ EU�(∪iBi, B).

(n = 0): In this cases ∈ ∪iBi ands ∈ B = B′. Hence, for somek, s ∈ Bk = B = B′ and therefore
s ∈ EU�(B,B). By hypothesis,EU�(B,B) = B. Moreover,EU� is monotone on its first component
and thereforeB′ = B = EU�(B,B) ⊆ EU�(∪iBi, B).

(n+1): Suppose that there exists0, ..., sn+1 ∈ Σ such thats0 = s, ∀j ∈ [0, n].sj ∈ ∪iBi andsj�sj+1, and
sn+1 ∈ B. Let sn ∈ Bk, for someBk ∈ {Bi}i∈I . Then,s ∈ EU�(∪iBi, Bk) ands = s0�s1�...�sn.
Since this finite path has lengthn, by inductive hypothesis,s′ ∈ EU�(∪iBi, Bk). Hence, there exist
r0, ..., rm ∈ Σ, with m ≥ 0, such thats′ = r0, ∀j ∈ [0,m − 1].rj ∈ ∪iBi andrj�rj+1, andrm ∈ Bk.
Moreover, sincesn�sn+1, we have thatsn ∈ EU�(Bk, B). By hypothesis,EU�(Bk, B) = Bk ∪ B,
and thereforerm ∈ EU�(Bk, B). Thus, there existq0, ..., ql ∈ Σ, with l ≥ 0, such thatrm = q0,
∀j ∈ [0, l − 1].qj ∈ Bk and qj�qj+1, and ql ∈ B. We have thus found the following finite path:
s′ = r0�r1�...�rm = q0�q1�...�ql, where all the states in the sequence but the last oneql belong to
∪iBi, while ql ∈ B. This means thats′ ∈ EU�(∪iBi, B).

As a consequence, we obtain a characterization of dbs equivalence as the state equivalence induced by
the standard interpretation of the languageL2.

Corollary 7.4. LetΣ be finite. Then,Pdbs = PL2 .

Proof. By definition,Pdbs = gPart(Σ){P ∈ Part(Σ) | P is a dbs relation onK}. By Theorem 7.3,
Pdbs = gPart(Σ){P ∈ Part(Σ) | adp(P ) is complete for{p | p ∈ AP} ∪ {EU�}}. By Theo-
rem 3.2,adp is co-additive onPart(Σ)�, that isadp preserves lub’s inPart(Σ)�. Hence,adp(Pdbs) =
⊔Abs(℘(Σ)){ad

p(P ) ∈ Abs(℘(Σ)) | P ∈ Part(Σ), adp(P ) is complete for{p | p ∈ AP} ∪ {EU�}}.
By Theorem 3.2,Abspar(℘(Σ)) = {adp(P ) | P ∈ Part(Σ)} so thatadp(Pdbs) = ⊔Abs(℘(Σ)){A ∈
Abspar(℘(Σ)) | A is complete for{p | p ∈ AP} ∪ {EU�}}. By Corollary 3.3,A ∈ Abspar(℘(Σ))
iff A is forward complete for∁, so thatadp(Pdbs) = ⊔Abs(℘(Σ)){A ∈ Abs(℘(Σ)) | A is complete
for {p | p ∈ AP} ∪ {∁,EU�}}. Then, we note thatA is forward complete for{p | p ∈ AP} iff
A ⊑ M({p | p ∈ AP}). Hence,adp(Pdbs) = ⊔Abs(℘(Σ)){A ∈ Abs(℘(Σ)) | A ⊑ M({p | p ∈ AP}), A
is complete for{∁,EU�}} = S{∁,EU�}(M({p | p ∈ AP})). Finally, sinceΣ is finite and there-
fore closure under infinite conjunction boils down to closure under finite conjunction, by Corollary 6.8,
S{∁,EU�}(M({p | p ∈ AP})) = ADL2 . Thus, by Proposition 5.10 (1),adp(Pdbs) = ADL2 , so that
Pdbs = par(adp(Pdbs)) = par(ADL2) = PL2 .

26



As a consequence of Corollary 6.9, the Groote-Vaandrageralgorithm [32]GV for computing dsb equiv-
alence on a finite Kripke structure can be characterized as a complete shell refinement as follows:

GV(P ) = par(S{∁,EU�}(M(P ))).

7.3 Simulation Preorder and Equivalence

Simulations are possibly nonsymmetric bisimulations, that is R ⊆ Σ × Σ is a simulation on a Kripke
structureK = (Σ,�, ℓ) if for any s, s′ ∈ Σ such thatsRs′:

(1) ℓ(s′) ⊆ ℓ(s);

(2) For anyt ∈ Σ such thats�t, there existst′ ∈ Σ such thats′�t′ andtRt′.

The empty relation is a simulation and simulation relationsare closed under union, so that the largest simu-
lation relation exists. It turns out that the largest simulation is a preorder relation called similarity preorder
and denoted byRsim ∈ PreOrd(Σ). Therefore, a preorder relationR ∈ PreOrd(Σ) is a simulation onK
whenR ⊆ Rsim. Simulation equivalence∼simeq⊆ Σ × Σ is the symmetric closure ofRsim: s ∼simeq s

′

iff there exist two simulation relationsR1 andR2 such thatsR1s
′ ands′R2s. Psimeq ∈ Part(Σ) denotes

the partition corresponding to∼simeq.
A number of algorithms for computing simulation equivalence have been proposed [2, 5, 12, 27, 35]

and some of them like [2, 35] first compute the similarity preorder and then from it they obtain simulation
equivalence. The problem of computing simulation equivalence is important in model checking because,
as recalled in Section 2.3, simulation equivalence strongly preservesACTL so thatPsimeq = PACTL (see
[33, Section 4]). Recall thatACTL is obtained by restrictingCTL, as defined in Section 4.1, to universal
quantifiers and by allowing negation on atomic propositionsonly:

ACTL ∋ ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | AXϕ | AU(ϕ1, ϕ2) | AR(ϕ1, ϕ2)

It turns out that the most abstract s.p. domain forACTL can be obtained as the most abstract s.p.
domain for the following sublanguageL3:

L3 ∋ ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | AXϕ

Lemma 7.5. LetK be finitely branching. Then,ADACTL = ADL3 .

Proof. Let OpACTL = {∩,∪,AX,AU,AR} be the set of standard interpretations of the operators of
ACTL on K, so thatAX = p̃re

�
. Analogously to the proof of Lemma 7.1, as a consequence of

the least/greatest fixpoint characterizations ofAU andAR, it turns out that for anyA ∈ Abs(℘(Σ)),
A is forward complete forOpACTL iff A is forward complete for{∪, p̃re

�
}. Thus, by Lemma 6.4,

S{∪,p̃re
�
} = SOpACTL

, so that, by Corollary 6.8,ADL3 = ADACTL.

Thus, by Proposition 5.10 (1),PACTL = par(ADACTL) = par(ADL3) = PL3 , so thatPsimeq = PL3 .
As a further consequence, by Corollary 6.9, any algorithmAlgsimeq that computes simulation equivalence
can be viewed as a partitioning abstraction of the{∪, p̃re

�
}-complete shell refinement:

Algsimeq(P ) = par(S{∪,pre
�
}(M(P ))).

An instantiation of the generalized Paige-Tarjan-like procedure in [45] for the complete shellS{∪,pre
�
}

allows to design a new efficient abstract intepretation-based algorithm for computing simulation equiva-
lence [46] whose space and time complexity is comparable with that of state-of-the-art algorithms like
[5, 27].

27



7.3.1 Preorders as Abstract Domains

Simulations give rise to preorders rather than equivalences like in the case of bisimulations and dbs rela-
tions. Thus, in order to characterize simulation for preorders as forward completeness for abstract domains
we need to view preorders as abstract domains. This can be obtained by generalizing the abstraction in
Section 3 from partitions to preorders.

LetR ∈ PreOrd(Σ) and for anyx ∈ Σ let us defineRpre def
= {preR({x}) ⊆ Σ | x ∈ Σ}. The preorder

R gives rise to an abstract domain℘(Rpre)⊆ which is related to℘(Σ)⊆ through the following abstraction
and concretization maps:

αR(S)
def
= {preR({x}) ⊆ Σ | x ∈ S} γR(X )

def
= ∪X∈X X.

It is easy to check that from the hypothesis thatR is a preorder it follows that(αR, ℘(Σ)⊆, ℘(R
pre)⊆, γR)

is indeed a GI. Hence, anyR ∈ PreOrd(Σ) induces an abstract domain denoted byadd(R) ∈ Abs(℘(Σ)).
Also, note thatγR ◦αR = preR, namelypreR is the closure associated toadd(R). The notationadd comes
from the fact that an abstract domainA is equivalent to someadd(R) if and only ifA is disjunctive.

Lemma 7.6. {add(R) ∈ Abs(℘(Σ)) | R ∈ PreOrd(Σ)} = {A ∈ Abs(℘(Σ)) | A is disjunctive}.

Proof. Observe thatγR is trivially additive, so that anyadd(R) is disjunctive. On the other hand, let
A ∈ Abs(℘(Σ)) be disjunctive and consider the relationRA = {(x, y) | α({x}) ≤A α({y})} which is
trivially a preorder. Thus,add(RA) is disjunctive so that in order to conclude thatadd(RA) is equivalent to
A it is enough to observe that for anyy ∈ Σ, preRA({y}) = γ(α({y})): this is true becauseγ(α({y})) =
{x ∈ Σ | α({x}) ≤A α({y})} = preRA({y}).

Let us observe thatadd indeed generalizesadp from partitions to preorders because for anyP ∈
Part(Σ), adp(P ) = add(R): this is a simple consequence of the fact that for a partitionP viewed as an
equivalence relation and forx ∈ Σ, Px is exactly a block ofP so thatαP (S) = {preP ({x}) | x ∈ S}. On
the other hand, an abstract domainA ∈ Abs(℘(Σ)) induces a preorder relationpreord(A) ∈ PreOrd(Σ)
as follows:

(x, y) ∈ preord(A) iff α({x}) ≤A α({y}).

It turns out that the mapsadd andpreord allows to view the lattice of preorder relations as an abstraction
of the lattice of abstract domains.

Theorem 7.7. (preord,Abs(℘(Σ))⊒,PreOrd(Σ)⊇, ad
d).

Proof. LetA ∈ Abs(℘(Σ)) andR ∈ PreOrd(Σ). Let us prove thatR ⊆ preord(A) ⇔ add(R) ⊑ γ ◦α.
(⇒) Let S ⊆ Σ and let us show thatadd(R)(S) = preR(S) ⊆ γ(α(S)). If x ∈ preR(S) thenxRy for
somey ∈ S, so that(x, y) ∈ preord(A), i.e.α({x}) ≤A α({y}). Thus, by applyingγ, x ∈ γ(α({x})) ⊆
γ(α({y})) ⊆ γ(α(S)).
(⇐) Let (x, y) ∈ R and let us show thatα({x}) ≤ α({y}). Note thatx ∈ preR({y}) = add(R)({y}) ⊆
γ(α({y})), so thatα({x}) ≤A α({y}), namely(x, y) ∈ preord(A).

Let us remark thatD
def
= add ◦ preord is a lower closure operator on〈Abs(℘(Σ)),⊑〉 and that, by

Lemma 7.6, for anyA ∈ Abs(℘(Σ)), A is disjunctive iff D(A) = A. Hence,D coincides with the
disjunctive-shell refinement, also known as disjunctive completion [14], namelyD(A) is the most abstract
disjunctive refinement ofA.

We can now provide a characterization of simulation preorders in terms of forward completeness.

Theorem 7.8. LetR ∈ PreOrd(Σ). Then,R is a simulation onK iff add(R) is forward complete for
{p | p ∈ AP} ∪ {p̃re

�
}.

Proof. Recall thatpreR is the closure associated toadd(R). We first observe that(sRs′ ⇒ ℓ(s′) ⊆ ℓ(s))
iff preR is forward complete forAP . On the one hand, ifp ∈ AP ands ∈ preR(p) thensRs′ for some
s′ ∈ p, so that, fromℓ(s′) ⊆ ℓ(s), we obtains ∈ p, and thereforepreR(p) = p. On the other hand, if
sRs′ ands′ ∈ p, for somep ∈ AP , thens′ ∈ p = preR(p) so thatpreR({s

′}) ⊆ preR(preR(p)) =
preR(p) = p and therefore froms ∈ preR({s

′}) we obtains ∈ p.

28



Thus, it remains to show thatR satisfies condition (2) of the definition of simulation iffpreR is forward
complete forpre

�
.

(⇒) We prove that for anyS, preR(p̃re�
(preR(S))) ⊆ p̃re

�
(preR(S)). Let x ∈ preR(p̃re�

(preR(S)))
so that there exists somey ∈ p̃re

�
(preR(S)) such thatxRy. If x�x′, for somex′, then, by simulation,

there exists somey′ such thaty�y′ andx′Ry′. Hence,y′ ∈ preR(S) and this together withx′Ry′, asR is
transitive, givesx′ ∈ preR(S). Therefore,x ∈ p̃re

�
(preR(S)).

(⇐) Observe that in order to show thatR is a simulation it is enough to show that ifxRy thenx ∈
p̃re

�
(preR(post�({y}))). The following implications hold, wherepost

�
({y}) ⊆ preR(post�({y}))

holds becausepreR is a uco:

post
�
({y}) ⊆ preR(post�({y})) ⇒ [asp̃re

�
is monotone]

p̃re
�
(post

�
({y})) ⊆ p̃re

�
(preR(post�({y}))) ⇒ [asy ∈ p̃re

�
(post

�
({y}))]

{y} ⊆ p̃re
�
(preR(post�({y}))) ⇒ [aspreR is monotone]

preR({y}) ⊆ preR(p̃re�
(preR(post�({y})))) ⇒ [aspreR is forward complete for̃pre

�
]

preR({y}) ⊆ p̃re
�
(preR(post�({y}))) ⇒ [asx ∈ preR({y})]

x ∈ p̃re
�
(preR(post�({y})))

and this closes the proof.

8 Related work

Loiseaux et al. [39] generalized the standard approach to abstract model checking to more general ab-
stract models where an abstraction relationσ ⊆ States × A is used instead of a surjective function
h : States → A. However, the results of strong preservation given there (cf. [39, Theorems 3 and 4])
require the hypothesis that the relationσ is difunctional, i.e.σ = σσ−1σ. In this case the abstraction
relationσ can indeed be derived from a function, so that the class of strongly preserving abstract models
in Loiseaux et al.’s framework is not really larger than the class of standard partition-based abstract models
(see the detailed discussion by Dams et al. [20, Section 8.1]).

Giacobazzi and Quintarelli [28] first noted that strong preservation is related to completeness in ab-
stract interpretation by studying the relationship between complete abstract interpretations and Clarke et
al.’s [6, 7, 8] spurious counterexamples. Given a formulaϕ of ACTL, a model checker running on a stan-
dard abstract Kripke structure defined over a state partition P may provide a spurious counterexampleπ♯

for ϕ, namely a path of abstract states, namely blocks ofP , which does not correspond to a real concrete
counterexample. In this case, by exploiting the spurious counterexampleπ♯, the partitionP is refined toP ′

by splitting a single block ofP . As a result, this refined partitionP ′ does not admit the spurious counterex-
ampleπ♯ for ϕ so thatP ′ is given as a new refined abstract model forϕ to the model checker. Giacobazzi
and Quintarelli [28] cast spurious counterexamples for a partition P as a lack of (standard) completeness
in the abstract interpretation sense for the correspondingpartitioning abstract domainadp(P ). Then, by
applying the results in [31] they put forward a method for systematically refining abstract domains in order
to eliminate spurious counterexamples. The relationship between completeness and spurious counterex-
amples was further studied in [18], where it is also shown that a block splitting operation in Paige and
Tarjan [42] partition refinement algorithm can be characterized in terms of complete abstract interpreta-
tions. More in general, the idea of systematically enhancing the precision of abstract interpretations by
refining the underlying abstract domains dates back to the early works by Cousot and Cousot [14], and
evolved to the systematic design of abstract interpretations by abstract domain refinements [26, 29, 31].

9 Conclusion

This work shows how the abstract interpretation technique allows to generalize the notion of strong preser-
vation from standard abstract models specified as abstract Kripke structures to generic domains in abstract
interpretation. For any inductively defined languageL , it turns out that strong preservation ofL in a
standard abstract model checking framework based on partitions of the space stateΣ becomes a particular

29



instance of the property of forward completeness of abstract domains w.r.t. the semantic operators of the
languageL . In particular, a generalized abstract model can always be refined through a fixpoint iteration
to the most abstract domain that strongly preservesL . This generalizes in our framework the idea of
partition refinement algorithms that reduce the state spaceΣ in order to obtain a minimal abstract Kripke
structure that is strongly preserving for some temporal language.

This work deals with generic temporal languages consistingof state formulae only. As future work,
it would be interesting to study whether the ideas of our abstract interpretation-based approach can be
applied to linear languages likeLTL consisting of formulae that are interpreted as sets of pathsof a Kripke
structure. The idea here is to investigate whether standardstrong preservation ofLTL can be generalized to
abstract interpretations of the powerset of traces and to the corresponding completeness properties. Fairness
can be also an interesting topic of investigation, namely tostudy whether our abstract interpretation-based
framework allows to handle fair semantics and fairness constraints [10].

Finally, let us mention that the results presented in this paper led to design a generalized Paige-Tarjan
refinement algorithm based on abstract interpretation for computing most abstract strongly preserving do-
mains [45]. As shown in Section 6, a most abstract strongly preserving domain can be characterized as
a greatest fixpoint computation inAbs(℘(Σ)). It is shown in [45] that the Paige-Tarjan algorithm [42]
can be viewed exactly as a corresponding abstract greatest fixpoint computation inPart(Σ). This leads to
an abstract interpretation-based Paige-Tarjan-like refinement algorithm that is parameteric on any abstract
interpretation of the latticeAbs(℘(Σ)) of abstract domains of℘(Σ) and on any generic inductive language
L .

Acknowledgements.We wish to thank Mila Dalla Preda and Roberto Giacobazzi who contributed to the
early stage of this work. This paper is an extended and revised version of [44]. This work was partially
supported by the FIRB Project “Abstract interpretation andmodel checking for the verification of embedded
systems” and by the COFIN2004 Project “AIDA: Abstract Interpretation Design and Applications”.

References
[1] K.R. Apt and G.D. Plotkin. Countable nondeterminism andrandom assignment.J. ACM, 33(4):724–767, 1986.

[2] B. Bloom and R. Paige. Transformational design and implementation of a new efficient solution to the ready
simulation problem.Sci. Comp. Program., 24(3):189–220, 1995.

[3] A. Bouajjani, J.-C. Fernandez and N. Halbwachs. Minimalmodel generation. InProc. of the 2nd Internat. Conf.
on Computer Aided Verification (CAV’90), LNCS 531, pp. 197–203, Springer, 1990.

[4] M.C. Browne, E.M. Clarke and O. Grumberg. Characterizing finite Kripke structures in propositional temporal
logic. Theoret. Comp. Sci., 59:115–131, 1988.

[5] D. Bustan and O. Grumberg. Simulation-based minimization. ACM Trans. Comput. Log., 4(2):181–204, 2003.

[6] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Counterexample-guided abstraction refinement. InProc.
of the 12th Internat. Conf. on Computer Aided Verification (CAV’00), LNCS 1855, pp. 154–169, Springer, 2000.

[7] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Counterexample-guided abstraction refinement for
symbolic model checking.J. ACM, 50(5):752–794, 2003.

[8] E.M. Clarke, S. Jha, Y. Lu and H. Veith. Tree-like counterexamples in model checking. InProc. of the 17th IEEE
Symp. on Logic in Computer Science (LICS’02), pp. 19–29, IEEE Press, 2002.

[9] E.M. Clarke, O. Grumberg and D. Long. Model checking and abstraction.ACM Trans. Program. Lang. Syst.,
16(5):1512–1542, 1994.

[10] E.M. Clarke, O. Grumberg and D.A. Peled.Model checking. The MIT Press, 1999.

[11] R. Cleaveland, S.P. Iyer, D. Yankelevich. Optimality in abstractions of model checking. InProc. 2nd Intern.
Static Analysis Symposium (SAS’95), LNCS 983, pp. 51–63, Springer, 1995.

[12] R. Cleaveland, J. Parrow and B. Steffen. The Concurrency Workbench: a semantics based tool for the verification
of concurrent systems.ACM Trans. Program. Lang. Syst., 15(1):36–72, 1993.

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. InProc. 4th ACM POPL, pp. 238–252, 1977.

30



[14] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InProc. 6th ACM POPL, pp. 269–
282, 1979.

[15] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comportment analysis general-
izing strictness, termination, projection and PER analysis of functional languages). InProc. IEEE Int. Conf. on
Computer Languages (ICCL’94), pp. 95–112, 1994.

[16] P. Cousot and R. Cousot. Refining model checking by abstract interpretation.Automated Software Engineering
Journal, 6(1):69–95, 1999.

[17] P. Cousot and R. Cousot. Temporal abstract interpretation. In Proc. 27th ACM POPL, pp. 12–25, 2000.

[18] M. Dalla Preda. Completeness and stability in abstract model checking. Laurea Thesis (in Italian), Univ. of
Verona, Italy, 2003.

[19] D. Dams.Abstract interpretation and partition refinement for modelchecking. Ph.D. Thesis, Eindhoven Univer-
sity of Technology, The Netherlands, 1996.

[20] D. Dams, O. Grumberg and R. Gerth. Abstract interpretation of reactive systems.ACM Trans. Program. Lang.
Syst., 16(5):1512–1542, 1997.

[21] J.W. De Bakker, J.-J.C. Meyer and J.I. Zucker. On infinite computations in denotational semantics.Theoret.
Comp. Sci., 26(1-2):53–82, 1983.

[22] R. De Nicola and F. Vaandrager. Three logics for branching bisimulation.J. ACM, 42(2):458–487, 1995

[23] A. Dovier, C. Piazza and A. Policriti. An efficient algorithm for computing bisimulation equivalence.Theoret.
Comp. Sci., 311(1-3):221–256, 2004.

[24] E.A. Emerson, A.K. Mok, A.P. Sistla and J. Srinivasen. Quantitative temporal reasoning. InProc. of the 2nd
Internat. Conf. on Computer Aided Verification (CAV’90), LNCS 531, pp. 136–145, Springer, 1990.

[25] E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel programs using fixpoints. In
Proc. ICALP’80, LNCS 85, pp. 169–181, Springer, 1980.

[26] G. Filé, R. Giacobazzi and F. Ranzato. A unifying view of abstract domain design.ACM Comput. Surv.,
28(2):333–336, 1996.

[27] R. Gentilini, C. Piazza and A. Policriti. From bisimulation to simulation: coarsest partition problems.J. Auto-
mated Reasoning, 31(1):73-103, 2003.

[28] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements in abstract model checking.
In Proc. 8th Intern. Static Analysis Symposium (SAS’01), LNCS 2126, pp. 356–373, Springer, 2001.

[29] R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains. InProc. 24th ICALP, LNCS 1256,
pp. 771–781, Springer, 1997.

[30] R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract interpretation.Sci. Comp. Program.,
32:177–210, 1998.

[31] R. Giacobazzi, F. Ranzato and F. Scozzari. Making abstract interpretations complete.J. ACM, 47(2):361–416,
2000.

[32] J.F. Groote and F. Vaandrager. An efficient algorithm for branching bisimulation and stuttering equivalence. In
Proc. ICALP’90, LNCS 443, pp. 626-638, Springer, 1990.

[33] O. Grumberg and D.E. Long. Model checking and modular verification. ACM Trans. Program. Lang. Syst.,
16(3):843–871, 1994.

[34] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.J. ACM, 32(1):137–161, 1985.

[35] M.R. Henzinger, T.A. Henzinger and P.W. Kopke. Computing simulations on finite and infinite graphs. InProc.
36th FOCS, pp. 453–462, IEEE Press, 1995.

[36] T.A. Henzinger, R. Maujumdar and J.-F. Raskin. A classification of symbolic transition systems.ACM Trans.
Comput. Log., 6(1), 2005.

[37] L. Lamport. What good is temporal logic? InInformation Processing ’83, pp. 657–668, IFIP North-Holland,
1983.

[38] D. Lee and M. Yannakakis. Online minimization of transition systems. InProc. 24th ACM STOC, pp. 264–274,
1992.

[39] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani and S. Bensalem. Property preserving abstractions for the verifica-
tion of concurrent systems.Formal Methods in System Design, 6:1–36, 1995.

31



[40] D. Massé. Semantics for abstract interpretation-based static analyzes of temporal properties. InProc. 9th Intern.
Static Analysis Symposium (SAS’02), LNCS 2477, pp. 428–443, Springer, 2002.

[41] D. Massé. Abstract domains for property checking driven analysis of temporal properties. InProc. 10th Intern.
Conf. on Algebraic Methodology and Software Technology (AMAST’04), LNCS 3116, pp. 349–363, Springer,
2004.

[42] R. Paige and R.E. Tarjan. Three partition refinement algorithms.SIAM J. Comput., 16(6):973–989, 1987

[43] F. Ranzato and F. Tapparo. Making abstract model checking strongly preserving. InProc. 9th Intern. Static
Analysis Symposium (SAS’02), LNCS 2477, pp. 411–427, Springer, 2002.

[44] F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract interpretation. InProc. 13th European
Symposium on Programming (ESOP’04), LNCS. 2986, pp. 18–32, Springer, 2004.

[45] F. Ranzato and F. Tapparo. An abstract interpretation-based refinement algorithm for strong preservation. In
Proc. 11th Intern. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’05),
LNCS 3440, pp. 140–156, Springer, 2005.

[46] F. Ranzato and F. Tapparo. An efficient algorithm for computing simulation equivalence based on abstract inter-
pretation. In preparation, 2006.

[47] D.A. Schmidt. Closed and logical relations for over- and under-approximation of powersets. InProc. 11th Intern.
Static Analysis Symposium (SAS’04), LNCS 3148, pp. 22–37, Springer, 2004.

[48] L. Tan and R. Cleaveland. Simulation revisited. In InProc. 7th Intern. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’01), LNCS 2031, pp. 480-495, Springer, 2001.

[49] R.J. van Glabbeek. The linear time - branching time spectrum. In Handbook of Process Algebra, pp. 3–99,
Elsevier, 2001.

32


