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ABSTRACT 

Intrinsic disorder (ID) in proteins is well-established
in structural biology, with increasing evidence for
its involvement in essential biological processes. As
measuring d ynamic ID beha vior e xperimentall y on a
large scale remains difficult, scores of published ID
predictor s ha ve tried to fill this gap. Unfortunatel y,
their heterogeneity makes it difficult to compare per-
f ormance, conf ounding biologists wanting to make
an informed choice. To address this issue, the Crit-
ical Assessment of protein Intrinsic Disorder (CAID)
benchmarks predictors for ID and binding regions
as a community blind-test in a standardized comput-
ing environment. Here we present the CAID Predic-
tion Portal, a web server executing all CAID meth-
ods on user-defined sequences. The server gener-
ates standardized output and facilitates comparison
between methods, producing a consensus predic-
tion highlighting high-confidence ID regions. The
website contains extensive documentation explain-
ing the meaning of different CAID statistics and pro-
viding a brief description of all methods. Predictor
output is visualized in an interactive feature viewer
and made available for download in a single table,
with the option to recover previous sessions via a pri-
v ate dashboar d. The CAID Prediction Portal is a valu-
able resource for researchers interested in studying
ID in proteins. The server is available at the URL:
https://caid.idpcentral.org . 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

The study of intrinsically disordered proteins and re-
gions (IDPs / IDRs), which do not adopt a fixed three-
dimensional fold in isolation under physiological condi-
tions, is now a well-established field in structural biology.
Over the past two decades, there has been increasing ev-
idence for the involvement of IDPs and IDRs in a vari-
ety of essential biological processes, making them promis-
ing novel targets for drug discovery ( 1 ). While experimen-
tal methods can detect intrinsic structural disorder, such
as X-ray crystallo gra phy, nuclear magnetic resonance spec-
troscopy, small-angle X-ray scattering, circular dichroism,
and F ̈orster resonance energy transfer, directly measuring
their dynamic behavior and their context-dependent struc-
tural disorder remains difficult ( 2 ). Furthermore, various
types of experiments emphasize distinct functional mech-
anisms of IDPs, commonly identified as disorder ‘flavors’,
including flexibility, folding-upon-binding and conforma-
tional heterogeneity ( 3 ). 

Dozens of ID prediction methods have been published,
and both predicted and e xperimentally deri v ed properties
of IDRs, as well as annota tions rela ted to their function,
ar e stor ed in dedicated databases ( 4 ). Howe v er, the large va-
riety of available predictors makes it difficult to compare
their performance, which can confound biologists wanting
to make an informed choice. 
ilvio.tosatto@unipd.it 
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To address this issue, the Critical Assessment of Pro- 
ein Intrinsic Disorder (CAID) ( 2 ) was introduced to 

enchmark ID and binding predictors on a community- 
ura ted da taset of novel proteins obtained from the Dis- 
rot database ( 5 ). In CAID, participants submit their im- 
lemented pr ediction softwar e to the organizers, who gen- 
rate predictions by executing the software on selected pro- 
ein targets whose disorder annotations were not previously 

vailab le. Gi v en a new protein sequence, the task of an IDR
redictor is to assign a score to each residue for the ten- 
ency to be intrinsically disordered at any stage of the pro- 
ein life. In CAID, both the accuracy of prediction meth- 
ds and technical aspects related to software implementa- 
ion are e valuated. Howe v er, accessing the prediction power 
f the tools is not al ways possib le. Often, the software is not
ub licly availab le, e xists solely as a stand-alone e xecutab le,
r is available as a w e b server with limitations. Moreover, 
ub licly availab le methods are not standardized and r equir e 

nformed use, often entailing careful reading of the corre- 
ponding publication and interpreting predictors’ output. 

To address these issues, we present the CAID Predic- 
ion Portal, a w e b server that executes all CAID methods 
ith a single click on a user-defined input sequence. The 

erver generates a standardized output and facilitates com- 
aring methods, and it produces a consensus prediction that 
ighlights high-confidence disordered regions. Disordered 

or binding) residues are identified by selecting a threshold 

n the prediction score. Depending on the type of bench- 
ark, differ ent thr esholds can be selected, leading to differ- 

nt results. To guide the user in selecting the best param- 
ters, the w e bsite is accompanied by extended documen- 
a tion tha t explains the meaning of the dif ferent sta tistics
resented in CAID and provides a brief description of all 
he methods. The predictors’ output is r ender ed in a fea- 
ure viewer and made available for download in a single ta- 
le. While anonymous usage of the CAID Prediction Por- 
al is always permitted, interested users can choose to use 
n optional log in to recover previous sessions via a private 
ashboard. 

MPLEMENT A TION 

n ov ervie w of the CAID Prediction Portal is provided 

n Figure 1 . The CAID Prediction Portal needs to execute 
any differ ent pr edictors on the same input sequence, pro- 

ided by the user. To do so, we implemented a back-end 

nterface using the Django REST frame wor k (DRF, https: 
/www.django- rest- frame wor k.org ) that interacts with the 
cheduler controller of a computing cluster through the 
istrib uted Resource Mana gement Application API (DR- 
AA) ( 6 ), a high-le v el API that provides a standar dized in-

erface for submitting and managing jobs on a wide range of 
luster systems. In our specific implementation, we used the 
lurm Workload Manager ( https://slurm.schedmd.com ) as 
 job scheduler for the cluster. The purpose of this imple- 
entation is to allow users to submit, monitor and manage 

obs on the computing cluster through a friendly w e b inter- 
ace which exploits the RESTful API provided by the DRF. 

e also implemented various management features, such as 
he ability to stop or delete jobs, and to retrie v e the job state,
istory and outputs for a particular user. 
The server provides OAuth 2.0 authentication for OR- 
ID users. W hen authentica ted the user is able to re- 

ov er pre vious sessions via a pri vate dashboar d. Non- 
uthenticated users are allowed to create new jobs and ac- 
ess the results. Howe v er, the amount of resources available 
o a single non-authenticated user is more limited, mean- 
ng that the number of daily and burst requests allowed is 
educed. 

The DRF back-end is also responsible for managing all 
he possible jobs that can be submitted to the cluster, the re- 
ources to allocate for each specific job (e.g. CPUs, random 

ccess memory), and the dependencies that can be created 

etween different jobs. 
For the CAID Prediction Portal, we created separate jobs 

or each of the available predictors, and a few additional 
obs for creating input data for some predictors such as PSI- 
LAST ( 7 ), HHBlits ( 8 ), SPIDER2 ( 9 ). This separation of
r edictors into differ ent jobs is crucial as it provides flexi- 
ility to execute only the predictors of interest and display 

he results of fast predictors without waiting for others to 

nish. 
The CAID Prediction Portal includes a server (dark 

ackground), which accepts a protein sequence as input, 
nd a computing cluster (pale background), which gener- 
tes the output, which is available as a table (TSV format) 
nd r ender ed in a d ynamic fea ture view er on the w e b inter-
ace. 

tandardization 

e used Singularity ( https://sylabs.io ) containers to con- 
ainerize all the predictor software in order to standard- 
ze the input and output data, and ensur e r eproducible r e- 
ults. By containerizing the software, we can ensure that 
he software runs consistently across different machines, 
nd most importantly it is not needed to install it manu- 
lly in each machine. Furthermore, containerizing the pre- 
ictors enables us to package all the necessary software 
nd dependencies together, making it easier to deploy and 

pdate the predictors. With the creation of the container 
e also included scripts that are executed before and after 

he predictor, in order to standardize the input and out- 
ut of the container, creating an interface with the pre- 
ictor software. The input of the predictor is a FASTA 

le containing multiple sequences, and the predictor is exe- 
uted on each sequence, producing one output per sequence 
please note that this should not be confused with the in- 
ut of the CAID server, which is restricted to a single se- 
uence). The execution time of the predictor for each se- 
uence is also recorded. If the predictor generates multiple 
utputs, each output will be stored in a distinct directory 

orresponding to the different variations, or ‘flavors,’ of the 
redictor. 
Some softwar e pr esent in the CAID Pr ediction Portal r e- 

uires additional inputs, such as the results of PSI-BLAST, 
Hblits, or SPIDER2, to make their predictions. These ad- 

itional inputs can be created inside the software’s con- 
ainer itself, but they can also be provided in most of the 
ases as an additional parameter. This ensures that the com- 
utation of common inputs is not duplicated, leading to 

aster and more efficient predictions. 

https://www.django-rest-framework.org
https://slurm.schedmd.com
https://sylabs.io
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Figure 1. Ov ervie w of the CAID Prediction Portal implementation. 
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We used Singularity containers o ver Dock er ( https://
www.docker.com ) containers because Singularity is de-
signed specifically for high-performance computing envi-
ronments and has se v eral advantages in the context of com-
puting clusters. Firstly, Singularity does not r equir e root ac-
cess, making it easier to deploy and manage in a shared com-
puting environment. Secondly, Singularity is optimized for
running scientific workloads, with features such as support
for MPI (Message Passing Interface) and GPUs (Graphical
Processing Units). Thirdly, Singularity images can be easily
hosted on a variety of storage systems, such as local filesys-
tems, netw ork ed file systems, and cloud storage. 

To make the container size smaller, some large datasets
such as UniRef90 ( 10 ), Uniclust30 ( 11 ) or large machine
learning models are mounted inside the container at run-
time. This approach allows the container to access these
datasets only when needed, rather than including them in
the container itself. Howe v er, it is important to note that if
these mounts are not created, the script that runs the predic-
tor inside the container will fail with an error, since it will
not be able to access the r equir ed data. 

In order to provide a comparison baseline, we also inte-
grate the AlphaFold-disorder ( 12 ) method that infers disor-
der and binding predictions by exploiting AlphaFold pre-
dicted structures available in public databases ( 13 ). 

As the last step of our standardization process, we opted
to create individualized tasks for each predictor that can be
conv eniently e x ecuted through the CAID Pr ediction Portal.
This implementation grants users a heightened le v el of fle x-
ibility in their selection of methods, allowing them to make
informed decisions that best suit their specific needs. Each
pr edictor ex ecution is linked to an API call through the
portal’s front-end interface, while also remaining compati-
ble with stand-alone usage for batch executions. The API is
pub licly availab le and lets thir d party services request spe-
cific predictions on demand. Full documentation is avail-
able on the w e bsite. 
Benchmarking 

The CAID Prediction Portal includes a CAID page ( https://
caid.idpcentral.org/challenge ) which contains information
about how the challenge is organized, a detailed descrip-
tion of the methods, and the main benchmarking results.
In Table 1 , we reported all methods available in the CAID
server along with the corresponding publication when avail-
able. These methods are a subset of those evaluated in the
second round of the CAID challenge, i.e. those for which
the authors gave permission or those that wer e alr eady pub-
licly available and licensed for free use. Some of the methods
can include more than one predictor (disorder and binding)
and the same predictor can generate more than one out-
put (different flavors) representing different implementa-
tions (fast, slow), tr aining str a tegies (da taset), or prediction
features (DN A / RN A / protein binding, linker, short / long
region, etc.). Gi v en the repertoire of different flavors pre-
dicted by the various methods, in the CAID Prediction Por-
tal, we divided them into two broad disorder and binding
categories. Users interested in specific subcategories or fla-
vors are invited to read the description of the methods as
reported on the w e bsite. 

All methods generate predictions from the protein se-
quence. Some methods r equir e additional input which is
generated by helper methods, e.g. BLAST or HHblits for
sequence profiles. In those cases, the additional input is gen-
erated once and shared with all dependent methods. 

The AlphaFold-disorder ( 12 ) method, instead of using
the sequence, takes as input the protein structure pre-
dicted by AlphaFold. In the CAID Prediction Portal the
structure is retrie v ed directly from the AlphaFoldDB ( 13 )
database by searching the UniProtKB accession number.
The server tries to retrieve the accession number by query-
ing the UniProtKB mapping service with the provided se-
quence encoded with the CRC64 algorithm, and selecting
the first result. If the protein sequence is not present in the

https://www.docker.com
https://caid.idpcentral.org/challenge
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Table 1. Pr edictors included in the CAID pr ediction portal 

Name Type (flavour) * Authors Reference 

AIUPred-0.5 Disorder G ́abor Erd ̋ os, Zsuzsanna Doszt ́anyi 
AlphaFold-disorder Disor der (Disor der, RSA), 

Binding 
Damiano Piovesan, Alexander Miguel 
Monzon, Silvio C E Tosatto 

( 12 ) 

ANCHOR2 Binding B ́alint M ́esz ́aros, G ́abor Erd ̋ os, 
Zsuzsanna Doszt ́anyi 

( 14 ) 

APOD Disorder Zhenling Peng, Qian Xing, Lukasz 
Kurgan 

( 15 ) 

AUCpred Disorder Sheng Wang, Jianzhu Ma, Jinbo Xu ( 16 ) 
bindEmbed21IDR Binding (idrGeneral, 

idrNuc, r awGener al, 
rawNuc) 

Bur khar d Rost ( 17 ) 

DeepDISObind Binding Fuhao Zhang, Bi Zhao, Wenbo Shi, Min 
Li, Lukasz Kurgan 

( 18 ) 

DeepIDP-2L Disorder Yi Jun Tang, Yi-He Pang, Bin Liu ( 19 ) 
DisEMBL Disorder (dis465, disHL) Rune Linding, Lars Juhl Jensen, 

Francesca Diella, Peer Bork, Toby J 
Gibson, Robert B Russell 

( 20 ) 

DisoMine Disorder Gabriele Orlando, Daniele Raimondi, 
Francesco Codic ̀e, Francesco Tabaro, 
Adri ́an D ́ıaz, Wim Vranken 

( 21 ) 

DisoPred Disorder Min Li, Yida Wang, Fuhao Zhang 
DISOPRED3 Disorder, Binding David T Jones, Domenico Cozzetto ( 22 ) 
DisPredict2 Disorder Sumaiya Iqbal, Md Tamjidul Hoque ( 23 ) 
DisPredict3 Disorder Md Wasi Ul Kabir, Md Tamjidul Hoque 
DRPBind Binding (DNA, RNA, 

Protein, DeepDNA, 
DeepRNA, DeepProtein) 

Alok Sharma, Ronesh Sharma, 
Tatsuhiko Tsunoda 

( 24 ) 

ENSHROUD Binding (all, nucleic, 
protein) 

Min Li, Fuhao Zhang, Pengzhen Jia 

ESpritz Disorder (D, N, X) Ian Walsh, Alberto J M Martin, Tom ̀as 
Di Domenico, Silvio Tosatto 

( 25 ) 

flDPlr Disorder Gang Hu, Akila Katuw aw ala, Kui Wang, 
Zhonghua Wu, Sina Ghadermarzi, 
Jianzhao Gao, Lukasz Kurgan 

( 26 ) 

flDPnn Disorder Gang Hu, Akila Katuw aw ala, Kui Wang, 
Zhonghua Wu, Sina Ghadermarzi, 
Jianzhao Gao, Lukasz Kurgan 

( 26 ) 

FoldUnfold Disorder Oxana V Galzitskaya, Sergiy O 

Garbuzynskiy, Michail Yu Lobanov 
( 27 ) 

IDP-Fusion Disorder Yi Jun Tang, Bin Liu 
IsUnstruct Disorder Oxana V Galzitskaya, Michail Yu 

Lobanov 
( 28 ) 

IUPred3 Disorder G ́abor Erd ̋ os, M ́aty ́as Pajkos, Zsuzsanna 
Doszt ́anyi 

( 29 ) 

Metapredict (V2) Disorder Ryan J Emenecker, Daniel Griffith, Alex 
S Holehouse 

( 30 ) 

MobiDB-lite Disorder Marco Necci, Damiano Piovesan, 
Zsuzsanna Doszt ́anyi, Silvio C E Tosatto 

( 31 ) 

MoRFchibi Binding (w e b, light) Nawar Malhis, Matthew Jacobson, J ̈org 
Gsponer 

( 32 ) 

OPAL Binding Ronesh Sharma, Gaurav Raicar, 
Tatsuhiko Tsunoda, Ashwini Patil, Alok 
Sharma 

( 33 ) 

PredIDR Disorder (long, short) Kun-Sop Han, Chol-Song Kim, 
Myong-Chol Ma 

PreDisorder Disorder Xin Deng, Jesse Eickholt, Jianlin Cheng ( 34 ) 
ProBiPred Binding (nucleic, protein) Lea I M Krautheimer, Michael 

Bernhofer, Bur khar d Rost 
pyHCA Disorder Isabelle Callebaut, Tristan Bitard Feildel 
rawMSA Disorder Claudio Mirabello, Bj ̈orn Wallner ( 35 ) 
RONN Disorder Zheng Rong Yang, Rebecca Thomson, 

Philip McNeil, Robert M Esnouf 
( 36 ) 

s2D-2 Disorder Pietro Sormanni, Carlo Camilloni, Piero 
Fariselli, Michele Vendruscolo 

( 37 ) 

SETH 0 Disorder Dagmar Ilzh ̈ofer, Michael Heinzinger, 
Bur khar d Rost 

( 38 ) 

SETH 1 Disorder Dagmar Ilzh ̈ofer, Michael Heinzinger, 
Bur khar d Rost 

( 38 ) 

SPOT-Disorder Disorder Jack Hanson, Yuedong Yang, Kuldip 
Paliwal, Yaoqi Zhou 

( 39 ) 

SPOT-Disorder-Single Disorder Jack Hanson, Kuldip Paliwal, Yaoqi 
Zhou 

( 40 ) 
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Table 1. Continued 

Name Type (flavour) * Authors Reference 

SPOT-Disorder2 Disorder Jack Hanson, Kuldip Paliwal, Thomas 
Litfin, Yaoqi Zhou 

( 41 ) 

VSL2 Disorder Kang Peng, Predrag Radivojac, 
Slobodan Vucetic, A Keith Dunker, 
Zor an Obr adovic 

( 42 ) 
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UniprotKB, no structure can be downloaded and the pre-
dictor will fail to execute. 

Methods are listed in alphabetical order. (*) The same
package can include multiple predictors, each generating
multiple outputs. The Type column indicates the type of
output and the values in parentheses indicate the predictor
name suffixes which correspond to different flavors or dif-
ferent implementa tions. W hen available, the corresponding
publication is provided along with the corresponding au-
thors. For new methods, authors are those that submitted
the method to CAID. 

Website 

The CAID Prediction Portal w e bsite allows users to execute
the available predictors on a pr ovided pr otein sequence. The
server can process only one sequence at a time. The predic-
tors that are going to be executed can be configured, with
some pre-made settings (e.g. running only disorder, binding
or quick predictors), or manually, selecting the predictors
of interest. When submitting a new job, the user can also
decide to associate a description to the job and an email ad-
dress that will be used to send a notification when all the
predictors will finish executing. The job name is helpful to
attach a text description or just a meaningful identifier to
the input sequence, while the user email can be used to re-
cei v e a notification when the calculation is done. 

After the submission, the user will be r edir ected to the
results page. At the top of the page, a header card will be
displayed, this contains various information about the exe-
cution status of the predictors, along with a control for stop-
ping the jobs still executing, and a button to download all
the currently available results in tab-separated values (TSV)
format. 

The result page will poll the back-end server to update the
status of the jobs that did not finish yet, to retrie v e their cur-
rent status and download the results from the server when
available. These results will be used to create and update
a feature viewer, to display the outputs of the predictors.
These outputs are all aligned to the protein sequence that
was submitted, and they can be of two different types, a bi-
nary score and a probability score. 

The feature viewer offers various controls to manipulate
the display of the results. The predictions can be filtered
based on their type (disorder or binding), the threshold for
the binary score can be changed from the predictor’s default
to optimized thresholds as provided by CAID. Optimized
thr esholds corr espond to a selection of metrics reported by
the CAID challenge. The optimization strategy depends on
the type of metric and validation dataset, those available
in the CAID Prediction Portal are described in the w e bsite
documentation, while we refer to the CAID paper ( 2 ) for
a full description of all possible benchmarks. The methods
can be sorted based on their performance in CAID, disor-
der (or binding) content, or alphabetically based on their
names. 

In the feature viewer, a consensus is also computed with
the prediction of the availab le predictors, di vided in the two
categories, disordered and binding. This consensus is cal-
culated as a majority vote of the binary predictions avail-
able. The consensus will also be influenced by the chosen
threshold. In order to compare predictions with structural
and functional domains, Pfam ( 43 ) and Gene3D ( 44 ) as-
signments from the InterProScan ( 45 ) output are reported.
These annotations are calculated in parallel on a separate
job, and shown as separate tracks on the feature viewer
when available. 

While anonymous usage of the CAID Prediction Portal
is always permitted, interested users can choose to recover
previous sessions via a private dashboard after a login using
their ORCID cr edentials, wher e all the pr eviously submitted
jobs can be accessed. An anonymous user can recover a pre-
vious job by saving its UUID and later use it to access the
results again. 

CONCLUSIONS 

The CAID Prediction Portal is a valuable resource for re-
searchers and scientists working in the field of protein struc-
ture and intrinsic disorder prediction. By combining state-
of-the-art ID and binding prediction methods with the
CAID optimization strategy, the portal allows users to cal-
culate and compare differ ent pr edictions in a single view.
Predictions can be dynamically adapted on the fly by choos-
ing different CAID optimization strategies. For example,
the user can focus on precision over recall, or on the con-
trary, can relax the optimization cutoffs to expand disorder
detection. 

One of the key advantages of the portal is its speed
and dynamic nature, as the server displays the results of
a method as soon as the calculation is completed. Addi-
tionally, the portal’s modular and e xtensib le design makes it
easy to add or remove prediction methods at any time, pro-
viding maintainers with the flexibility to adapt to new devel-
opments in the field. Finally, all methods are standardized
and their output is made available in the same format. 

The CAID section of the portal provides benchmarking
results and sta tistics tha t can guide users in the evaluation of
the performance of the predictors. This information is par-
ticularly useful for r esear chers who are looking to improve
their methods and algorithms. 

Mor eover, the CAID Pr ediction Server is integrated into
the OpenEBench ( 46 ) infrastructure for community bench-
mar king e xperiments of computational methods in the life
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ciences, which displays the results of various CAID edi- 
ions in a dedicated section. This integration allows for the 
rediction output generated by the portal to be used in 

enerating assessment r esults, ther eby facilitating a transi- 
ion from a timeframe-based challenge (as was the case for 
AID rounds 1 and 2) into a continuous assessment. 
Last but not least, the CAID portal will help inform and 

mprove the selection ID predictors available in the Mo- 
iDB database ( 47 ) for large-scale annotation of ID in pro- 
eins. The latter is the main source of ID data for core 
ata r esour ces such as InterPro ( 48 ) and UniProtKB ( 49 ).
ny small improvement in ID prediction performance doc- 
mented in the CAID Portal ther efor e has a large poten- 
ial knock-on effect in improving ID annotations across the 
nown protein uni v erse. 
In summary, the CAID Prediction Portal is a valuable 

 esour ce that can help r esear chers de v elop more accurate
nd effecti v e methods for predicting intrinsic protein disor- 
er and their binding regions. By enabling continuous as- 
essment and benchmarking of different prediction meth- 
ds, the portal can help accelerate progress in this important 
eld and benefit the scientific community at large. 
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1. Piovesan,D., Arbesú,M., Fuxreiter,M. and Pons,M. (2022) Editorial: 
fuzzy interactions: many facets of protein binding. Front. Mol. 
Biosci. , 9 , 947215. 

2. CAID Predictors, DisProt Curators, Necci,M., Piovesan,D. and 
Tosa tto,S.C .E. (2021) Critical assessment of protein intrinsic disorder 
prediction. Nat. Methods , 18 , 472–481. 
3. Necci,M., Piovesan,D. and Tosa tto,S.C .E. (2016) Large-scale analysis 
of intrinsic disorder flavors and associated functions in the protein 
sequence uni v erse. Pr otein Sci. Pub l. Pr otein Soc. , 25 , 2164–2174. 

4. Piovesan,D., Monzon,A.M., Quaglia,F. and Tosa tto,S.C .E. (2022) 
Databases for intrinsically disordered proteins. Acta Crystallogr. Sect. 
Struct. Biol. , 78 , 144. 

5. Quaglia,F., M ́esz ́aros,B., Salladini,E., Hatos,A., Pancsa,R., 
Chemes,L.B., Pajkos,M., Lazar,T., Pe ̃ na-D ́ıaz,S., Santos,J. et al. 
(2021) DisProt in 2022: improved quality and accessibility of protein 
intrinsic disorder annotation. Nucleic Acids Res. , 50 , D480–D487 . 

6. Troger,P., Rajic,H., Haas,A. and Domagalski,P. (2007) 
Standardization of an API for distributed r esour ce management 
systems. In: Seventh IEEE International Symposium on Cluster 
Computing and the Grid (CCGrid ’07) . pp. 619–626. 

7. Sch ̈affer,A.A., Aravind,L., Madden,T.L., Shavirin,S., Spouge,J.L., 
Wolf,Y.I., Koonin,E.V. and Altschul,S.F. (2001) Improving the 
accuracy of PSI-BLAST protein database searches with 
composition-based statistics and other refinements. Nucleic Acids 
Res. , 29 , 2994–3005. 

8. Steinegger,M., Meier,M., Mirdita,M., V ̈ohringer,H., 
Haunsberger,S.J. and S ̈oding,J. (2019) HH-suite3 for fast remote 
homology detection and deep protein annotation. BMC Bioinf. , 20 , 
473. 

9. Yang,Y., Heffernan,R., Paliwal,K., Lyons,J., Dehzangi,A., 
Sharma,A., Wang,J., Sattar,A. and Zhou,Y. (2017) SPIDER2: a 
package to predict secondary structure, accessible surface area, and 
main-chain torsional angles by deep neural networks. In: Zhou,Y., 
Kloczkowski,A., Faraggi,E. and Yang,Y. (eds.) Prediction of Protein 
Secondary Structure, Methods in Molecular Biology . Springer, New 

York, NY, pp. 55–63. 
0. UniProt Consortium, Suzek,B.E., Wang,Y., Huang,H., 

McGarvey,P.B. and Wu,C.H. (2015) UniRef clusters: a 
comprehensi v e and scalable alternative for improving sequence 
similarity searches. Bioinforma. Oxf. Engl. , 31 , 926–932. 

1. Mirdita,M., von den Driesch,L., Galiez,C., Martin,M.J., S ̈oding,J. 
and Steinegger,M. (2017) Uniclust databases of clustered and deeply 
annotated protein sequences and alignments. Nucleic Acids Res. , 45 , 
D170–D176. 

2. Piovesan,D., Monzon,A.M. and Tosa tto,S.C .E. (2022) Intrinsic 
protein disorder and conditional folding in AlphaFoldDB. Protein 
Sci. , 31 , e4466. 

3. Varadi,M., Anyango,S., Deshpande,M., Nair,S., Na tassia,C ., 
Yordanova,G., Yuan,D., Stroe,O., Wood,G., Laydon,A. et al. (2022) 
AlphaFold Protein Structure Database: massi v ely e xpanding the 
structur al cover age of protein-sequence space with high-accur acy 
models. Nucleic Acids Res. , 50 ,D439-D444. 

4. M ́esz ́aros,B., Erd ̋ os,G. and Doszt ́anyi,Z. (2018) IUPred2A: 
context-dependent prediction of protein disorder as a function of 
redox state and protein binding. Nucleic Acids Res. , 46 , W329–W337. 

5. Peng,Z., Xing,Q. and Kurgan,L. (2020) APOD: accurate 
sequence-based predictor of disordered fle xib le linkers. 
Bioinformatics , 36 , i754–i761. 

6. Wang,S., Ma,J. and Xu,J. (2016) AUCpreD: proteome-le v el protein 
disorder prediction by AUC-maximized deep convolutional neural 
fields. Bioinformatics , 32 , i672–i679. 

7. Littmann,M., Heinzinger,M., Dallago,C., Weissenow,K. and Rost,B. 
(2021) Protein embeddings and deep learning predict binding residues 
for various ligand classes. Sci. Rep. , 11 , 23916. 

8. Zhang,F., Zhao,B., Shi,W., Li,M. and Kurgan,L. (2022) 
DeepDISOBind: accurate prediction of RNA-, DNA- and 
protein-binding intrinsically disordered residues with deep multi-task 
learning. Brief. Bioinform. , 23 , bbab521. 

9. Tang,Y .-J., Pang,Y .-H. and Liu,B. (2022) DeepIDP-2L: protein 
intrinsically disordered region prediction by combining convolutional 
attention network and hierarchical attention network. Bioinformatics , 
38 , 1252–1260. 

0. Linding,R., Jensen,L.J., Diella,F., Bork,P., Gibson,T.J. and 
Russell,R.B. (2003) Protein disorder prediction: implications for 
structural proteomics. Structure , 11 , 1453–1459. 

1. Orlando,G., Raimondi,D., Codic ̀e,F., Tabaro,F. and Vranken,W. 
(2022) Prediction of disordered regions in proteins with recurrent 
neural networks and protein dynamics. J. Mol. Biol. , 434 , 167579. 

https://caid.idpcentral.org


W68 Nucleic Acids Research, 2023, Vol. 51, Web Server issue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/W

1/W
62/7184153 by U

niversità degli Studi di Padova user on 25 Septem
ber 2023
22. Jones,D.T. and Cozzetto,D. (2015) DISOPRED3: precise disordered 
r egion pr edictions with annotated protein-binding activity. 
Bioinformatics , 31 , 857–863. 

23. Iqbal,S. and Hoque,M.T. (2016) Estimation of position specific 
energy as a feature of protein residues from sequence alone for 
structural classification. PLoS One , 11 , e0161452. 

24. Sharma,R., Tsunoda,T. and Sharma,A. (2023) DRPBind: prediction 
of DNA, RNA and protein binding residues in intrinsically 
disordered protein sequences. . bioRxiv doi: 
https://doi.org/10.1101/2023.03.20.533427 , 23 March 2023, preprint: 
not peer re vie wed. 

25. Walsh,I., Martin,A.J.M., Di Domenico,T. and Tosa tto,S.C .E. (2012) 
ESpritz: accurate and fast prediction of protein disorder. 
Bioinformatics , 28 , 503–509. 

26. Hu,G., Katuw aw ala,A., Wang,K., Wu,Z., Ghadermarzi,S., Gao,J. 
and Kurgan,L. (2021) flDPnn: accurate intrinsic disorder prediction 
with putati v e propensities of disor der functions. Nat. Commun. , 12 , 
4438. 

27. Galzitskaya,O .V., Garbuzynskiy,S.O . and Lobanov,M.Y. (2006) 
FoldUnfold: w e b serv er for the prediction of disor der ed r egions in 
protein chain. Bioinformatics , 22 , 2948–2949. 

28. Lobano v,M.Y., Sokolo vskiy,I.V . and Galzitskaya,O.V . (2013) 
IsUnstruct: prediction of the residue status to be ordered or 
disordered in the protein chain by a method based on the Ising 
model. J. Biomol. Struct. Dyn. , 31 , 1034–1043. 

29. Erd ̋ os,G., Pajkos,M. and Doszt ́anyi,Z. (2021) IUPred3: prediction of 
protein disorder enhanced with unambiguous experimental 
annotation and visualization of evolutionary conservation. Nucleic 
Acids Res. , 49 , W297–W303. 

30. Emenecker,R.J., Griffith,D. and Holehouse,A.S. (2021) Metapredict: 
a fast, accurate, and easy-to-use predictor of consensus disorder and 
structure. Biophys. J. , 120 , 4312–4319. 

31. Necci,M., Piovesan,D., Clementel,D., Doszt ́anyi,Z. and 
Tosa tto,S.C .E. (2020) MobiDB-lite 3.0: fast consensus annotation of 
intrinsic disorder flavours in proteins. Bioinformatics , 36 , 5533–5534. 

32. Malhis,N., Jacobson,M. and Gsponer,J. (2016) MoRFchibi 
SYSTEM: software tools for the identification of MoRFs in protein 
sequences. Nucleic Acids Res. , 44 , W488–W493. 

33. Sharma,R., Raicar,G., Tsunoda,T., Patil,A. and Sharma,A. (2018) 
OPAL: prediction of MoRF regions in intrinsically disordered 
protein sequences. Bioinformatics , 34 , 1850–1858. 

34. Deng,X., Eickholt,J. and Cheng,J. (2009) PreDisorder: ab initio 
sequence-based prediction of protein disordered regions. BMC 

Bioinf. , 10 , 436. 
35. Mirabello,C. and Wallner,B. (2019) rawMSA: end-to-end deep 

learning using raw multiple sequence alignments. PLoS One , 14 , 
e0220182. 

36. Yang,Z.R., Thomson,R., McNeil,P. and Esnouf,R.M. (2005) RONN:
the bio-basis function neural network technique applied to the 
detection of nati v ely disor der ed r egions in proteins. Bioinformatics , 
21 , 3369–3376. 

37. Sormanni,P., Camilloni,C., Fariselli,P. and Vendruscolo,M. (2015) 
The s2D method: simultaneous sequence-based prediction of the 
sta tistical popula tions of or dered and disor der ed r egions in proteins. 
J. Mol. Biol. , 427 , 982–996. 

38. Ilzh ̈ofer,D., Heinzinger,M. and Rost,B. (2022) SETH predicts 
nuances of residue disorder from protein embeddings. Front. 
Bioinforma. , 2 , 1019597. 

39. Hanson,J ., Y ang,Y ., Paliwal,K. and Zhou,Y . (2017) Impr oving pr otein
disorder prediction by deep bidirectional long short-term memory 
r ecurr ent neural networks. Bioinforma. Oxf. Engl. , 33 , 685–692. 

40. Hanson,J., Paliwal,K. and Zhou,Y. (2018) Accurate single-sequence 
prediction of protein intrinsic disorder by an ensemble of deep 
r ecurr ent and convolutional ar chitectur es. J. Chem. Inf. Model. , 58 , 
2369–2376. 

41. Hanson,J., Paliwal,K.K., Litfin,T. and Zhou,Y. (2019) 
SPOT-Disor der2: improv ed protein intrinsic disor der prediction by 
ensembled deep learning. Genomics Proteomics Bioinformatics , 17 , 
645–656. 

42. Peng,K., Radivojac,P., Vucetic,S., Dunker,A.K. and Obradovic,Z. 
(2006) Length-dependent prediction of protein intrinsic disorder. 
BMC Bioinf. , 7 , 208. 

43. Mistry,J., Chuguransky,S., Williams,L., Qureshi,M., Salazar,G.A., 
Sonnhammer,E.L.L., Tosa tto,S.C .E., Paladin,L., Raj,S., 
Richardson,L.J. et al. (2021) Pfam: the protein families database in 
2021. Nucleic Acids Res. , 49 , D412–D419. 

44. Lewis,T.E., Sillitoe,I., Dawson,N., Lam,S.D., Clarke,T., Lee,D., 
Orengo,C. and Lees,J. (2018) Gene3D: e xtensi v e prediction of 
globular domains in proteins. Nucleic Acids Res. , 46 , D1282. 

45. Pa ysan-Laf osse,T., Blum,M., Chuguransky,S., Grego,T., Pinto,B.L., 
Salazar,G.A., Bileschi,M.L., Bork,P., Bridge,A., Colwell,L. et al. 
(2023) InterPro in 2022. Nucleic Acids Res. , 51 , D418–D427. 

46. Capella-Gutierrez,S., Iglesia,D.d., Haas,J., Lourenco,A., 
Fern ́andez,J.M., Repchevsky,D., Dessimoz,C., Schwede,T., 
Notredame,C., Gelpi,J.L. et al. (2017) Lessons learned: 
recommendations for establishing critical periodic scientific 
benchmar king. bioRxi v doi: https://doi.org/10.1101/181677 , 31 
August 2017, preprint: not peer re vie wed. 

47. Piovesan,D., Del Conte,A., Clementel,D., Monzon,A.M., 
Bevilacqua,M., Aspromonte,M.C., Iserte,J.A., Orti,F.E., 
Marino-Buslje,C. and Tosatto,S.C.E. (2023) MobiDB: 10 years of 
intrinsically disordered proteins. Nucleic Acids Res. , 51 , D438–D444. 

48. Blum,M., Chang,H.-Y., Chuguransky,S., Grego,T., Kandasaamy,S., 
Mitchell,A., Nuka,G., Pa ysan-Laf osse,T., Qureshi,M., Raj,S. et al. 
(2021) The InterPro protein families and domains database: 20 years 
on. Nucleic Acids Res. , 49 , D344–D354. 

49. The UniProt Consortium (2021) UniProt: the uni v ersal protein 
knowledgebase in 2021. Nucleic Acids Res. , 49 , D480–D489. 

APPENDIX 

CAID predictors 

Alex S Holehouse 3,4 , Daniel Griffith 

3,4 , Ryan J
Emenecker 3,4 , Ashwini Patil 5 , Ronesh Sharma 

6 , Tat-
suhiko Tsunoda 

7,8,9 , Alok Sharma 

9,10 , Yi Jun Tang 

11 ,
Bin Liu 

11 , Claudio Mirabello 

12 , Bj ̈orn Wallner 12 ,
Bur khar d Rost 13 , Dagmar Ilzh ̈ofer 13 , Maria Littmann 

13 ,
Michael Heinzinger 13 , Lea I M Krautheimer 13 , Michael
Bernhofer 13 , Liam J McGuffin 

14 , Isabelle Callebaut 15 ,
Tristan Bitard Feildel 16 , Jian Liu 

17 , Jianlin Cheng 

17 , Zhiye
Guo 

17 , Jinbo Xu 

18 , Sheng Wang 

18,19 , Nawar Malhis 20 , J ̈org
Gsponer 21 , Chol-Song Kim 

22 , Kun-Sop Han 

22 , Myong-
Chol Ma 

22 , Lukasz Kurgan 

23 , Sina Ghadermarzi 23 ,
Akila Katuw aw ala 

23,24 , Bi Zhao 

25 , Zhenling Peng 

26 ,
Zhonghua Wu 

27 , Gang Hu 

28 , Kui Wang 

28 , Md Tamjidul
Hoque 29 , Md Wasi Ul Kabir 29 , Michele Vendruscolo 

30 ,
Pietro Sormanni 30 , Min Li 31 , Fuhao Zhang 

31 , Pengzhen
Jia 

31 , Yida Wang 

32 , Michail Yu Lobanov 

33 , Oxana V
Galzitskaya 

33,34 , Wim Vranken 

35,36 , Adri ́an D ́ıaz 35,36 ,
Thomas Litfin 

37 , Yaoqi Zhou 

37,38 , Jack Hanson 

39 , Kuldip
Paliwal 39 , Zsuzsanna Doszt ́anyi 40 , G ́abor Erd ̋

 os 40 . 
3 Department of Biochemistry and Molecular Biophysics,
Washington Uni v ersity School of Medicine , St. Louis , Mis-
souri 
4 Center for Biomolecular Condensates, Washington Uni-
versity in St. Louis, St. Louis, MO, USA 

5 Combinatics Inc. Ichikawa-shi, Chiba 272-0824, Japan 

6 Fiji National Uni v ersity, Suva, Fiji 
7 Laboratory for Medical Science Mathematics, Depart-
ment of Biological Sciences, School of Science, The Uni v er-
sity of Tok yo , Tok yo ,113-0033, Japan 

8 Laboratory for Medical Science Mathematics, Depart-
ment of Computational Biology and Medical Sciences,
Graduate School of Frontier Sciences, The Uni v ersity of
Tok yo , Tok yo 113–0033, Japan 

9 Laboratory for Medical Science Mathematics, RIKEN
Center for Integrati v e Medical Sciences, Yokohama 230-
0045, Japan 

https://doi.org/10.1101/2023.03.20.533427
https://doi.org/10.1101/181677


Nucleic Acids Research, 2023, Vol. 51, Web Server issue W69 

1

U
1

s
1

C
1

o
U
1

W
1

t
1

1

e
6
1

U
1

C
2

C
2

i
C
2

2

w
2

U
2

o
2

S

2

U
2

D
2

l
3

m
C
3

C
s
3

S
i
C
3

S
1
3

R
3

U
3

B
3

S
3

L
3

B
4
4

P

©
T
(
i

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/W

1/W
62/7184153 by U

niver
0 Institute for Integrated and Intelligent Systems, Griffith 

ni v ersity, Nathan, Brisbane, QLD 4111, Australia 

1 School of Computer Science and Technology, Beijing In- 
titute of Technology, Beijing 100081, China 

2 Division of Bioinformatics, Department of Physics, 
hemistry, and Biology, Link ̈oping Uni v ersity 

3 TUM School of Computa tion, Informa tion and Technol- 
gy, Department of Computer Science, TUM (Technical 
ni v ersity of Munich), Garching / Munich 85748, Germany 

4 School of Biological Sciences, Uni v ersity of Reading, 
hiteknights, Reading RG6 6AS, UK 

5 Sorbonne Uni v ersit ́e, Mus ́eum National d’Histoire Na- 
urelle, UMR CNRS 7590, IMPMC, 75005 Paris, France 
6 DGA Ma ̂

 ıtrise de l’information, 35170 Bruz, France 
7 Department of Electrical Engineering and Computer Sci- 
nce, Uni v ersity of Missouri – Columbia, Columbia, MO 

5211, USA 

8 Toyota Technological Institute at Chica go, Chica go, IL, 
SA 

9 Department of Human Genetics, Uni v ersity of Chicago, 
hicago, IL, USA 

0 Michael Smith Laboratories, The Uni v ersity of British 

olumbia, Vancouver, BC V6T 1Z4, Canada 

1 Michael Smith Laboratories, Department of Biochem- 
stry and Molecular Biology, The Uni v ersity of British 

olumbia, Vancouver, BC V6T 1Z4, Canada 

2 Uni v ersity of Sciences, Pyongyang, D.P.R. of Korea 

3 Department of Computer Science, V ir ginia Common- 
ealth Uni v ersity, Richmond, VA, USA 

4 Adimab LLC ,Computa tional Biology, Palo Alto, CA, 
SA 

5 Genomics program, College of Public Health, University 

f South Florida, Tampa, FL, USA 

6 Research Center for Ma thema tics and Interdisciplinary 

ciences, Shandong Uni v ersity, Qingdao, 266237, China 
C The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Ac
his is an Open Access article distributed under the terms of the Creati v e Commons 

http: // creati v ecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re
s properly cited. For commercial re-use, please contact journals .permissions@oup .co
7 School of Ma thema tical Sciences and LPMC, Nankai 
ni v ersity, Tianjin 300071, China 

8 School of Statistics and Data Science, LPMC and KLM- 
ASR, Nankai Uni v ersity, Tianjin, China 

9 Department of Computer Science, Uni v ersity of Ne w Or- 
eans, New Orleans, LA, USA 

0 Centre for Misfolding Diseases, Yusuf Hamied Depart- 
ent of Chemistry, Uni v ersity of Cambridge, Cambridge 
B2 1EW, UK 

1 Hunan Pr ovincial K ey Lab on Bioinformatics, School of 
omputer Science and Engineering, Central South Uni v er- 

ity, Changsha, 410083, China 

2 Department of Computer Science and Engineering, 
chool of Electronic Information and Electrical Engineer- 

ng, Shanghai Jiao Tong Uni v ersity, Shanghai 200240, 
hina 

3 Institute of Protein Research of the Russian Academy of 
ciences, 4 Institutskaya str., Pushchino, Moscow Region 

42290, Russia 

4 Institute of Theoretical and Experimental Biophysics, 
ussian Academy of Sciences, 142290 Pushchino, Russia 

5 Interuni v ersity Institute of Bioinformatics in Brussels, 
LB-VUB, Brussels 1050, Belgium 

6 Structural Biology Brussels, Vrije Uni v ersiteit Brussel, 
russels 1050, Belgium 

7 Institute for Glycomics, Griffith University, Parklands Dr. 
outhport, QLD 4222, Australia 

8 Institute of Systems and Physical Biology, Shenzhen Bay 

aboratory, Shenzhen 518107, China 

9 Signal Processing Laboratory, School of Engineering and 

uilt Environment, Griffith Uni v ersity, Brisbane, QLD 

111, Australia 

0 Department of Biochemistry, E ̈otv ̈os Lor ́and Uni v ersity, 
 ́azm ́any P ́eter stny 1 / c, Budapest H-1117, Hungary 
ids Research. 
Attribution-NonCommercial License 
-use, distribution, and reproduction in any medium, provided the original work 
m 

sità degli Studi di Padova user on 25 Septem
ber 2023


	ABSTRACT
	GRAPHICAL ABSTRACT
	INTRODUCTION
	IMPLEMENTATION
	CONCLUSIONS
	DATA AVAILABILITY
	ACKNOWLEDGEMENTS
	FUNDING
	Conflict of interest statement
	REFERENCES
	APPENDIX

