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Pure mathematics and physics are becoming ever
more closely connected, though their methods remain
different. One may describe the situation by saying
that the mathematician plays a game in which he
himself invents the rules while the physicist plays a
game in which the rules are provided by Nature, but
as time goes on it becomes increasingly evident that
the rules which the mathematician őnds interesting
are the same as those which Nature has chosen. It
is difficult to predict what the result of all this will
be. Possibly, the two subjects will ultimately unify,
every branch of pure mathematics then having its
physical application, its importance in physics being
proportional to its interest in mathematics.

Paul Adrien Maurice Dirac
The Relation between Mathematics and Physics





Abstract

The central goal of the present thesis consists in proposing a novel threshold,
in the context of the restricted three-body problem, capable to discriminate
between the regime of motion governed by the classic secular theory and the
rest of regimes, which are mainly inŕuenced either by close encounters or by
resonant interactions of the test particle (e.g. asteroid) with the primary per-
turber (e.g. Jupiter). This goal is reached operating on the following fronts:

i) We explore at the beginning the possibility to take into account suitable
regularization methods in the vicinity of the gravitational singularities: we
introduce a Hamiltonian extension of the Kustaanheimo-Stiefel regularization
to the elliptic restricted 𝑁-body problem by means of a symplectic reduction of
the extended phase space. After a short review of the state of the art on regular-
ization techniques, we develop the theory for 𝑁 = 3 and test it numerically. In
particular, we provide an implementation of the theory in the propagation of
the orbits having close encounters with the primary perturber. This is shown
to usefully improve the performance of numerical integrations when needed,
regardless the complexity of the three-body model considered (planar/spatial,
circular/elliptic).

ii) We pass to the machinery of Hamiltonian canonical perturbation the-
ory and present a closed-form approach (i.e. without expanding in powers of
the eccentricities) without use of relegation for particles with non-crossing tra-
jectories exterior to the primary perturber’s trajectory, including those highly
eccentric.

iii) At this point, we address the question of identifying and topologically
characterizing the long-term (secular) stability regions in appropriate sections
of the phase space via different numerical stability maps. We discuss, then, the
applicability of the above closed-form method as a criterion for estimating the
boundary of such domains for orbits further than Jupiter’s when the planet is
assumed on a circular orbit and compare the result to other existent heuristic
criteria.

iv) As a side result from the above analysis, the aforementioned stability
maps reveal a much richer orbital architecture consisting in an łornamental
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structurež of manifolds generated by the planet connected in a series of arches
that spread throughout the whole Solar System. We then investigate the im-
plications of these structures for small body dynamics. As a pivotal case,
we consider the well-known open problem of the observed asymmetry in the
number and phase-space distribution of Trojan asteroids around Jupiter’s equi-
lateral equilibrium points 𝐿4 and 𝐿5 in our solar system. We discuss possible
links of this problem to a detected asymmetry in the heteroclinic intersections
between the unstable and stable manifolds of the Lyapunov orbits around the
Lagrangian points 𝐿1, 𝐿2 and 𝐿3. We show how these intersections inŕuence
the inŕow of particles to the Trojan region, and propose a plausible trapping
mechanism of the bodies under an approximately adiabatic process of plane-
tary migration.



Sommario

Lo scopo principale della presente tesi consiste nel proporre, nell’ambito del
problema dei tre corpi ristretto, una nuova deőnizione del limite che discrimina
tra il regime di moto governato dalla teoria secolare classica e gli altri tipi di
regime, in cui questi ultimi risultano essenzialmente inŕuenzati o dalla pre-
senza di incontri ravvicinati o da interazioni risonanti della particella di massa
trascurabile (p.e. un asteroide) con il perturbatore primario (p.e. Giove). Tale
obiettivo viene raggiunto operando sui seguenti fronti:

i) Esploriamo all’inizio la possibilità di tenere conto di opportuni metodi di
regolarizzazione in prossimità delle singolarità gravitazionali: si introduce così
un’estensione hamiltoniana della regolarizzazione di Kustaanheimo-Stiefel al
problema ellittico ristretto degli 𝑁 corpi mediante una riduzione simplettica
dello spazio delle fasi esteso. Dopo una breve rassegna dello stato dell’arte
sulle tecniche di regolarizzazione, la teoria viene sviluppata per 𝑁 = 3 e testata
numericamente. In particolare forniamo un’implementazione della teoria nella
propagazione di orbite aventi incontri ravvicinati con il perturbatore primario.
Tale implementazione si dimostra migliorativa in termini di accuratezza delle
prestazioni numeriche durante l’integrazione laddove necessario, indipenden-
temente dalla complessità del modello a tre corpi considerato (piano/spaziale,
circolare/ellittico).

ii) Passiamo ora al contesto della teoria perturbativa canonica hamiltoni-
ana e presentiamo un approccio in forma chiusa (cioè senza espandere nelle
potenze delle eccentricità) senza l’uso dell’algoritmo di łrelegationž per par-
ticelle con traiettorie non intersecanti esterne alla traiettoria del perturbatore
primario, comprese quelle altamente eccentriche.

iii) A questo punto ci si preőgge di identiőcare e caratterizzare topologica-
mente le regioni di stabilità a lungo termine (secolari) in sezioni appropriate
dello spazio delle fasi tramite diverse mappe di stabilità numerica. Discutiamo
l’applicabilità del metodo come criterio per stimare la frontiera dei suddetti
domini per orbite lontane da quella di Giove quando il pianeta è assunto in
orbita circolare e confrontiamo il risultato con altri criteri euristici esistenti.

iv) In qualità di risultato complementare, le suddette mappe di stabilità
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rivelano un’architettura orbitale assai più ricca costituita da una łstruttura or-
namentalež di varietà generate dal pianeta e collegate in una serie di archi che
si estendono per l’intero Sistema Solare. Indaghiamo così le implicazioni di
queste strutture riguardo alla dinamica dei corpi minori. Come caso di riferi-
mento consideriamo il noto problema aperto nel nostro sistema solare relativo
all’asimmetria osservata nel numero e nella distribuzione nello spazio delle fasi
degli asteroidi troiani attorno ai punti di equilibrio equilateri di Giove 𝐿4 ed
𝐿5. Si discutono i possibili collegamenti di questo fenomeno con un’asimmetria
rilevata che interessa le intersezioni eterocline tra le varietà stabili e instabili
delle orbite periodiche di Lyapunov attorno ai punti lagrangiani 𝐿1, 𝐿2 ed 𝐿3.
Mostriamo come tali intersezioni inŕuenzino il ŕusso di particelle nella regione
troiana e proponiamo un meccanismo plausibile di intrappolamento dei corpi
in presenza di un processo di migrazione planetaria approssimativamente adi-
abatico.
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1
Introduction

This thesis is devoted to the inspection of different regimes of motion in the
so-called restricted three-body problem (R3BP), a widely studied model in the
framework of the gravitational 𝑁-body problem in celestial mechanics. The
applications of such model are countless: in our case, for example, the mi-
nor body typically represents an asteroid (or minor planet) orbiting either in
the outer reaches of the Solar System, like the trans-Neptunian ones, or in a
neighborhood of Jupiter. In extrasolar planetary systems, the model describes
the motion of a small planet under the gravitational inŕuence of a star and of
another giant planet in the same system.

By its very nature, the topic is advantageously contextualized in the environ-
ment of the Hamiltonian dynamical systems theory (H. Poincaré, [86]), whose
formalism is founded on the use of a special class of inőnitely differentiable
transformations, called canonical or symplectic. These diffeomorphisms allow
to carry out perturbative treatments in a convenient way, leading to formal
series solutions to the equations of motion known in literature as the method
of Hamiltonian normal forms.
Hamiltonian mechanics turns out to be the right setting for the study of the
R3BP also because of its elegant symplectic geometric interpretation and ad-
equacy in describing reversible dynamics: locally, Hamiltonian structures are
equivalent to symplectic ones (Poincaré lemma) and physical properties, like
energy conservation over time, are naturally embedded in the Hamiltonian
formalism.

In this chapter we summarize some basic notions of the theory of dynamical
systems as well as its Hamiltonian formulation, with emphasis on the 𝑁-body
problem and on aspects particularly relevant to our study. Finally, we expose
the structure and the goal of the present dissertation.

1.1 Non-linear dynamical systems

1.1.1 General definitions

Definition 1.1.1. A (smooth) dynamical system is a triple (𝐺, 𝑀,𝛷) s.t.:
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2 1. INTRODUCTION

• 𝑀 is a smooth manifold called phase space;

• 𝐺 = R (continuous time) or 𝐺 = Z (discrete time);

• 𝛷 is a free differentiable action of the group 𝐺 on 𝑀.

Speciőcally, in the continuous case a dynamical system is represented by an
ordinary differential equation of the form

¤𝑥 = 𝑋(𝑥) , 𝑥 ∈ 𝑀 , (1.1)

where 𝑋 : 𝑀 → 𝑇𝑀 is a smooth vector őeld and 𝑇𝑀 =
⊔
𝑥∈𝑀 𝑇𝑥𝑀 denotes the

tangent bundle of 𝑀; the map 𝛷 : R×𝑀 → 𝑀 is called the ŕow of 𝑋, such that
𝛷(𝑡 , 𝑥0) denotes the value at current time 𝑡 of the solution which at initial time
𝑡 = 0 is equal to 𝑥0.
Likewise, it is also possible to consider phenomena evolving in discrete time,
whose associated mathematical law, that is a function, is iteratively repeated.
The resulting dynamical system is thus obtained by the relationship

𝑥𝑛 = 𝛹 𝑛(𝑥0) , 𝑥0, 𝑥𝑛 ∈ 𝑀 , 𝑛 ∈ Z , (1.2)

where 𝛹 : 𝑀 → 𝑀 is a diffeomorphism and

𝛹 𝑛 =

{
𝛹 ◦ . . . ◦𝛹 𝑛 times, 𝑛 > 0

𝛹−1 ◦ . . . ◦𝛹−1 |𝑛 | times, 𝑛 < 0
.

Analogously, we can deőne now 𝛷 : Z×𝑀 → 𝑀 by setting 𝛷(𝑛, 𝑥0) ≔ 𝛹 𝑛(𝑥0).
Finally, we remind that 𝛷 is a differentiable action in the sense that it satisőes
the following properties:

(i) 𝛷(0, ·) = id𝑀 ;

(ii) 𝑥 ↦→ 𝛷(𝑡 , 𝑥) is a diffeomorphism ∀𝑡 ∈ 𝐺;

(iii) 𝛷(𝑡 ,𝛷(𝑠, ·)) = 𝛷(𝑡 + 𝑠, ·) ∀𝑡 , 𝑠 ∈ 𝐺.

For practical purposes, we work in local coordinates and shall assume from
now on that 𝑀 = 𝐷 ⊆ R𝑑 and mostly 𝐺 = R.

Definition 1.1.2. The orbit (or integral curve) of a point 𝑥 ∈ 𝐷 is the set 𝒪𝑥 =

{𝛷(𝑡 , 𝑥) : 𝑡 ∈ R}. The set of all orbits is called phase portrait.

Remark 1.1.1. Given 𝑋 ∈ 𝒞∞(𝐷;R𝑑), Cauchy theorem about the existence and
uniqueness of the solution in a neighborhood of 𝑡 = 0 to (1.1) with initial
condition 𝑥(0) = 𝑥0 holds. In addition, as already understood, we assume to
extend this ∀𝑡 ∈ R, so that the phase portrait forms a partition of 𝐷.
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1.1.2 Non-integrability and chaotic systems

In general (1.1) is non-linear and the corresponding solutions cannot be pro-
vided easily. Usually it is not possible to őnd a global analytic formula ac-
counting for all orbits, but not even local solutions valid in open domains of
the phase space and given under, e.g., the form of convergent series in a small
parameter.
These observations about the solvability of a system are encompassed by the
notion of non-integrability. This roughly refers to the incapability of determining
all the solutions explicitly, or characterizing them in terms of invariant objects
embedded in the phase space. More speciőcally, we can give the following two
broad deőnitions of integrability:

Operational: The solutions as functions of time can be expressed in terms of
quadratures, that is simple arithmetic operations (+,−, ·, :), radicals ( ·

√·)
or integration and inversion of elementary functions (

∫
·, ·−1).

Geometric: There exists an embedded 𝛷-invariant foliation in the phase space
(e.g. invariant tori in integrable Hamiltonian systems, see ğ1.2.4).

The second deőnition is intimately related to the existence of conserved quan-
tities along the ŕow, that act as constraints for the orbits (Remark 1.1.2).

Definition 1.1.3. A őrst integral of ¤𝑥 = 𝑋(𝑥) is a smooth function 𝑓 : 𝐷 → R
which is constant on all the solutions of (1.1), i.e. 𝑓 (𝛷(𝑡 , 𝑥)) = 𝑓 (𝑥) ∀𝑡 ∈ R and
𝑥 ∈ 𝐷.

Remark 1.1.2. Every time we provide a őrst integral, the problem is reduced
from dimension 𝑑 to dimension 𝑑 − 1. So if ∃ 𝑓1, . . . , 𝑓𝑑−1 independent őrst
integrals, the level sets have dimension 𝑑 − (𝑑 − 1) = 1, which are the orbits of
the differential equation.

Non-integrability is a necessary condition for chaos.

Definition 1.1.4. We call a dynamical system chaotic [6] whenever

(i) it is topologically transitive, namely ∀𝑈,𝑉 ⊆ 𝐷 open, ∃ 𝑡 ∈ R s.t. 𝛷(𝑡 , 𝑈) ∩
𝑉 ≠ ∅;

(ii) it has a dense set of periodic orbits;

(iii) it is sensitive to initial conditions.

Banks et al. in [6] proved that (iii) is redundant, that is the őrst two conditions
(i) and (ii) imply the third one. However, it is precisely the picture that we
practically bear in mind: depending on the rate of separation 𝜆 > 0 (Lipschitz
constant), given initial conditions s.t. ∥𝑥1 − 𝑥0∥ < 𝜀, we have

∥𝛷(𝑡 , 𝑥1) −𝛷(𝑡 , 𝑥0)∥ ≤ 𝑒𝜆|𝑡 | ∥𝑥1 − 𝑥0∥ , (1.3)

so in principle the dynamics becomes unpredictable for |𝑡 | large enough. Then,
we customarily associate chaos to the worst case: exponential separation in time
of orbits of close initial data.
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Figure 1.1: Example of Poincaré surface of section. Top panel: schematic illus-
tration of the transversal intersection of 𝛷 with Σ. Bottom panels: example of
numerical computation for the classic (ChirikovśTaylor) standard map [15, 16],
with Σ given by a coordinate plane, for two different values of the perturbing
parameter; in the picture on the right we have more chaos, represented by ap-
parently randomly distributed points, as opposed to regular motions leading
to points distributed along closed invariant curves.

1.1.3 Poincaré maps and spectral stability of periodic orbits

An effective technique to explore the phase space of a dynamical system consists
in reducing the study of the ŕow of the differential equation (1.1) to the study
of the iterations of a discrete map, called Poincaré map, deőned in a subspace of
dimension 𝑑−1, called accordingly Poincaré section. Poincaré sections are used,
in particular, to visualize the complicated topology of non-integrable systems.
Basically, we consider Σ𝑑−1 ⊆ 𝐷: ∀𝑥 ∈ Σ, ∃ 𝑡(𝑥) such that 𝛷(𝑡(𝑥), 𝑥) ∈ Σ,
returning always łon the same sidež of Σ (Fig. 1.1); viz.

⋃
𝑥∈Σ𝒪𝑥 is replaced by⋃

𝑛∈Z𝛹
𝑛(𝑥), where 𝛹 (𝑥) ≔ 𝛷(𝑡(𝑥), 𝑥).

Periodic orbits (i.e. ∃𝑇 ≠ 0: 𝛷(𝑡 + 𝑇, 𝑥) = 𝛷(𝑡 , 𝑥) ∀𝑡 ∈ R) appear as őxed
points of 𝛹 . In particular, it is possible to map the analysis of local properties
of stability of a periodic orbit to the stability of the corresponding őxed point
in the Poincaré map.

Definition 1.1.5. A őxed point 𝑥̄ ∈ 𝐷 for (1.2) is said to be:

• attractive if there exists a neighborhood 𝑉 of 𝑥̄ s.t. for all 𝑥 ∈ 𝑉
lim𝑛→+∞𝛷(𝑛, 𝑥) = 𝑥̄, whereas repulsive if lim𝑛→−∞𝛷(𝑛, 𝑥) = 𝑥̄.

• (Lyapunov) stable if for every neighborhood 𝑈 of 𝑥̄ there exists a neigh-
borhood𝑈0 of 𝑥̄ s.t. 𝛷(𝑛,𝑈0) ⊆ 𝑈 ∀𝑛 ≥ 0.

• asymptotically stable if it is stable and attractive.

• (Lyapunov) unstable if it is not stable.
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The same deőnitions apply straightforwardly to periodic orbits. We have the
following.

Proposition 1.1.1. A periodic orbit of a given ŕow is attractive (resp. Lyapunov stable,
asymptotically stable, Lyapunov unstable) if and only if the corresponding őxed point
of any associated Poincaré map is attractive (resp. Lyapunov stable, asymptotically
stable, Lyapunov unstable).

Proposition (1.1.1) states the equivalence claimed above. Such study is usually
carried out by classic Lyapunov-Floquet’s theory [29]:

Theorem 1.1.1 (Lyapunov’s spectral theorem). Let 𝑥̄ be a őxed point of (1.2) and
𝐷𝛹 (𝑥̄) the Jacobian matrix of 𝛹 computed at 𝑥̄.

(i) If all the eigenvalues of 𝐷𝛹 (𝑥̄) have absolute value < 1, then 𝑥̄ is asymptotically
stable.

(ii) If at least one eigenvalue of 𝐷𝛹 (𝑥̄) has absolute value > 1, then 𝑥̄ is Lyapunov
unstable.

At őrst glance this seems unpractical because in general an analytic expression
for 𝛹 is not available. However, there is a way to calculate its linearization
starting from the linearization of 𝛷, through the so-called monodromy matrix.

Definition 1.1.6. Let 𝒪𝑥̄ a periodic orbit of period 𝑇 ≠ 0. Then the Jacobian
matrix 𝐷𝛷(𝑇, 𝑥̄) of the mapping 𝑥 ↦→ 𝛷(𝑡 , 𝑥) at (𝑇, 𝑥̄) is called monodromy
matrix of 𝒪𝑥̄ related to the point 𝑥̄.

Since 𝐷𝛷 is supposed to fulől the variational equation

d

d𝑡
𝐷𝛷(𝑡 , 𝑥) = 𝐷𝑋(𝛷(𝑡 , 𝑥))𝐷𝛷(𝑡 , 𝑥) , (1.4)

in which𝐷𝑋 = 𝜕𝑋/𝜕𝑥, the monodromy matrix𝐷𝛷(𝑇, 𝑥̄) is the solution of (1.4)
at time 𝑇 along the periodic orbit 𝒪𝑥̄ with initial condition 𝐷𝛷(0, 𝑥̄) = I.
We can now enunciate the result on the link between monodromy matrixes and
linearizations of Poincaré maps, recalling that Spec(𝐴) indicates the collection
of the eigenvalues of the operator 𝐴 (its spectrum).

Proposition 1.1.2. Let 𝒪𝑥̄ a periodic orbit, 𝐷𝛷(𝑇, 𝑥̄) its monodromy matrix and
𝐷𝛹 (𝑥̄) the linearization of a Poincaré map 𝛹 at 𝑥̄. Then

Spec(𝐷𝛷(𝑇, 𝑥̄)) = Spec(𝐷𝛹 (𝑥̄)) ∪ {1} .
The eigenvalues of the monodromy matrix are called Floquet multipliers and
their logarithms are called Floquet exponents. The Floquet multipliers give a
measure of the rate by which the ŕow expands or contracts the orbits close
to the periodic orbit. The existence of the eigenvalue 1 implies that there is
always a direction of neither expansion nor contraction, which is, clearly, the
one tangent to the orbit itself.

Remark 1.1.3. When 𝐷𝑋 is constant along the periodic orbit, (1.4) has constant
coefficients and thus

Spec(𝐷𝛷(𝑇, 𝑥̄)) = 𝑒Spec(𝑇𝐷𝑋(𝑥̄)) .
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1.1.4 Hyperbolic dynamics

Equilibrium points are the simplest solutions to (1.1) and are found as criti-
cal points of the vector őeld 𝑋(𝑥). Among all of them, those of hyperbolic
or partially hyperbolic origin are, in general, sources of chaos and exhibit the
richest and most interesting local dynamics, characterized by intricate struc-
tures stemming from such equilibria that have the structure of differentiable
manifolds.

Definition 1.1.7. An equilibrium point for (1.1) (that is 𝑥 = 𝑐 ∈ 𝐷 s.t. 𝑋(𝑐) = 0)
is called

• hyperbolic if all the eigenvalues of the Jacobian matrix 𝐷𝑋 have non-zero
real part.

• partially hyperbolic if the Jacobian matrix 𝐷𝑋 has both eigenvalues with
zero and non-zero real part.

As for őxed points in ğ1.1.3, around equilibria one performs the linearization of
the system in order to make the investigation easier and try to deduce relevant
properties of the full dynamics or at least of the approximate one. So we look
at

¤𝑦 = 𝐷𝑋(𝑐)𝑦 , 𝑦 = 𝑥 − 𝑐 . (1.5)

We assume 𝐷𝑋(𝑐) diagonalizable, so, by standard theory of linear ODEs,1 the
system has three invariant vector spaces, called stable, unstable and center space
(resp. 𝐸𝑠(𝑐), 𝐸𝑢(𝑐), 𝐸𝑐(𝑐)).

This strategy turns out to be extremely powerful with hyperbolic equilib-
rium points thanks to the two following fundamental results.

Theorem 1.1.2 (GrobmanśHartman theorem). Let 𝑐 ∈ 𝐷 be an hyperbolic equi-
librium point. Then there exists a neighborhood 𝑈 of 𝑐 in 𝐷, a neighborhood 𝑉 of
0 ∈ R𝑑 and a homeomorphism ℎ : 𝑈 → 𝑉 such that

(i) ℎ(𝑐) = 0,

(ii) ℎ(𝛷(𝑡 , 𝑐)) = 𝑒 𝑡𝐷𝑋(𝑐)ℎ(𝑐),
for all 𝑥 ∈ 𝑈0 ⊆ 𝑈 neighborhood of 𝑐 and 𝑡 ∈] − 𝜀, 𝜀[, 𝜀 > 0 small enough.

The upshot is that the phase portraits around hyperbolic equilibrium points
appear locally as deformations of the portraits of their linearized system. Nev-
ertheless, ℎ is only continuous and out of 𝑈 there is no information about
the global evolution. Luckily, we can beneőt from the so-called stable manifold
theorem about the existence and regularity of the sets

𝑊 𝑠(𝑐) =
{
𝑥 ∈ 𝐷 : lim

𝑡→+∞
𝛷(𝑡 , 𝑥) = 𝑐

}
𝑊𝑢(𝑐) =

{
𝑥 ∈ 𝐷 : lim

𝑡→−∞
𝛷(𝑡 , 𝑥) = 𝑐

} (1.6)

which represent a non-linear generalization of 𝐸𝑠(𝑐), 𝐸𝑢(𝑐), called respectively
and consequently stable and unstable manifold of 𝑐.

1Ordinary Differential Equation
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Theorem 1.1.3 (Local stable manifold theorem). Given 𝑐 hyperbolic equilibrium
point, let 𝐸𝑠 , 𝐸𝑢 be the stable and unstable spaces of the linearization (1.5) at 𝑐. Then
∃ 𝑈 neighborhood of 𝑐 s.t.:

(i) 𝑊 𝑠
loc ≔ 𝑊 𝑠 |𝑈 , 𝑊𝑢

loc ≔ 𝑊𝑢 |𝑈 are smooth invariant connected embedded sub-
manifolds of 𝐷 with 𝑇𝑐𝑊 𝑠

loc = 𝐸
𝑠 , 𝑇𝑐𝑊𝑢

loc = 𝐸
𝑢 ;

(ii) ∃ 𝑎𝑠 , 𝑎𝑢 ∈ (0, 1) and 𝑏 > 0 s.t.

𝑥 ∈𝑊 𝑠
loc, 𝜁 ∈ 𝑇𝑥𝑊

𝑠
loc =⇒ ∥𝐷𝛷(𝑡 , 𝑥)𝜁∥ ≤ 𝑏𝑎𝑡𝑠 ∥𝜁∥

𝑥 ∈𝑊𝑢
loc, 𝜁 ∈ 𝑇𝑥𝑊

𝑢
loc =⇒ ∥𝐷𝛷(−𝑡 , 𝑥)𝜁∥ ≤ 𝑏𝑎−𝑡𝑢 ∥𝜁∥

for all 𝑡 > 0.

Proof (sketch). Being a crucial result in this section and later on in the present
thesis, let us quickly sketch part of the proof of (i) following essentially the
reference [83]. We wish to show that there exists a positively invariant set𝑊 𝑠

loc
such that, given 𝑥 ∈ 𝑊 𝑠

loc
, we have lim𝑡→+∞𝛷(𝑡 , 𝑥) = 0. For the regularity and

connectedness of𝑊 𝑠
loc

, as well as its tangency to 𝐸𝑠 , the reader can refer to [17].
We set 𝑐 = 0 (equivalent to the simple translation in (1.5) for 𝑐 ≠ 0, so that the
equilibrium point is located always at the origin). Since we work locally, it is
not restrictive to assume the vector őeld 𝑋 of the form

𝑋(𝑥) = 𝐴𝑥 + 𝑓 (𝑥) , 𝐴 ≔ 𝐷𝑋(0) , (1.7)

where 𝑓 : R𝑑 → R𝑑 is a smooth function at least of quadratic order close to 0,
viz.

𝑓 (0) = 𝜕 𝑓

𝜕𝑥
(0) = 0 .

The idea is to consider the space of curves that approach 0 with a certain
exponential rate. In particular, for each 𝑧 ∈ 𝐸𝑠 we will consider the set of such
curves that begin at 𝑧 + 𝑤 for some 𝑤 ∈ 𝐸𝑐 ⊕ 𝐸𝑢 . We do not assume a priori
that these curves are trajectories of the ODE. Then, we will deőne an integral
operator on this space whose őxed points are solutions of (1.1) under (1.7).
Lastly, an application of the Banach contraction mapping theorem completes
the proof.
Let 𝐵 ≔ 𝐴|𝐸𝑠 and 𝐶 ≔ 𝐴|𝐸𝑐⊕𝐸𝑢 . Let −𝛼 be the maximum value of Re𝜆 for
the eigenvalues 𝜆 of 𝐵 and őx constants 0 < 𝛾 < 𝑖𝑖 < 𝛽 < 𝛼 such that all the
eigenvalues of 𝐵 lie strictly to the left of −𝛽 and all eigenvalues of 𝐶 lie strictly
to the right of −𝛾. Notably, we can set a matrix norm on R𝑑 with the property
that 

𝑒𝐵𝑡

 ≤ 𝑒−𝛽𝑡 , 

𝑒−𝐶𝑡

 ≤ 𝑒𝛾𝑡 ,
for all 𝑡 ≥ 0.
We work in the space of all smooth curves for positive times approaching 0
with exponential rate at least 𝜉:

𝒳 ≔
{
𝑥 ∈ 𝒞∞

(
[0,∞[;R𝑑

) ���� ∥𝑥∥𝜉 ≔ sup
𝑡≥0

|𝑥(𝑡)|𝑒𝜉𝑡 < ∞
}
.
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This is a complete metric space (alias Banach space) with distance given by
𝛿(𝑥, 𝑦) = ∥𝑥 − 𝑦∥𝜉. Fixing 𝑧 ∈ 𝐸𝑠 , we consider the subspace 𝒳𝑧 = {𝑥 ∈ 𝒳 |
𝑥𝑠(0) = 𝑧}, where 𝑥𝑠 ∈ 𝐸𝑠 and 𝑥𝑐𝑢 ∈ 𝐸𝑐 ⊕𝐸𝑢 for the components of 𝑥 lying in the
stable and center-unstable subspaces, so that 𝑥 = 𝑥𝑠 + 𝑥𝑐𝑢 . Having established
𝒳𝑧 , we deőne an integral operator on it whose őxed points are trajectories of the
system. According to the method of variation of constants for inhomogeneous
linear ODEs, we have, integrating from 0 to 𝑡,

𝑥(𝑡) = 𝑒𝐴𝑡𝑥(0) +
∫ 𝑡

0

𝑒𝐴(𝑡−𝑠) 𝑓 (𝑥(𝑠))d𝑠 .

Now by decomposing 𝑓 = 𝑓 𝑠 + 𝑓 𝑐𝑢 for 𝑓 𝑠 ∈ 𝐸𝑠 , 𝑓 𝑐𝑢 ∈ 𝐸𝑐 ⊕ 𝐸𝑢 , we see that 𝑥(𝑡)
is a solution to (1.1)-(1.7) if and only if

𝑥𝑠(𝑡) = 𝑒𝐵𝑡𝑥𝑠(0) +
∫ 𝑡

0

𝑒𝐵(𝑡−𝑠) 𝑓 𝑠(𝑥(𝑠))d𝑠

𝑥𝑐𝑢(𝑡) = 𝑒𝐶(𝑡−𝑇)𝑥𝑐𝑢(𝑇) +
∫ 𝑡

𝑇

𝑒𝐶(𝑡−𝑠) 𝑓 𝑐𝑢(𝑥(𝑠))d𝑠

for every 𝑇 ≥ 0. Note that, owing to the choices above, by letting 𝑇 →∞,

���𝑒𝐶(𝑡−𝑇)𝑥𝑐𝑢(𝑇)��� ≤ 


𝑒𝐶(𝑡−𝑇)


 |𝑥(𝑇)| ≤ 𝑒−𝛾(𝑡−𝑇) ∥𝑥∥𝜉 𝑒−𝜉𝑇 = 𝑒−𝛾𝑡 ∥𝑥∥𝜉 𝑒(𝛾−𝜉)𝑇 −→ 0 .

Hence, we can introduce

(𝒫𝑥)(𝑡) ≔ 𝑒𝐵𝑡𝑥𝑠(0) +
∫ 𝑡

0

𝑒𝐵(𝑡−𝑠) 𝑓 𝑠(𝑥(𝑠))d𝑠 −
∫ ∞

𝑡

𝑒𝐶(𝑡−𝑠) 𝑓 𝑐𝑢(𝑥(𝑠))d𝑠

and 𝑥 = 𝒫𝑥 if and only if 𝑥 solves the ODE in question.
Now we show that 𝒫 maps 𝒳𝑧 to itself, and that it is a contraction. First
we observe that because the non-linear part 𝑓 of the vector őeld X is 𝒞∞
with Jacobian matrix at the equilibrium 𝐷 𝑓 (0) = 0, it is Lipschitz on small
neighborhoods of 0, and the Lipschitz constant can be selected arbitrarily small
by making the neighborhood small enough: ∀𝜀 > 0 there exists 𝑟 > 0 such that
if |𝑥 |, |𝑦 | ≤ 𝑟 then | 𝑓 (𝑥)− 𝑓 (𝑦)| ≤ 𝜀|𝑥−𝑦 |. By deőnition, |𝑥(𝑡)−𝑦(𝑡)| ≤ 𝛿(𝑥, 𝑦)𝑒−𝜉𝑡
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for all 𝑡 ≥ 0, and write Δ𝑠(𝑥, 𝑦) ≔ |𝑥𝑠(0) − 𝑦𝑠(0)|. Then

|(𝒫𝑥)(𝑡) − (𝒫𝑦)(𝑡)| ≤


𝑒𝐵𝑡

 |𝑥𝑠(0) − 𝑦𝑠(0)| + ∫ 𝑡

0




𝑒𝐵(𝑡−𝑠)


 | 𝑓 𝑠(𝑥(𝑠)) − 𝑓 𝑠(𝑦(𝑠))|d𝑠
+

∫ ∞

𝑡




𝑒𝐶(𝑡−𝑠)


 | 𝑓 𝑐𝑢(𝑥(𝑠)) − 𝑓 𝑐𝑢(𝑦(𝑠))|d𝑠
≤ 𝑒−𝛽𝑡Δ𝑠(𝑥, 𝑦) +

∫ 𝑡

0

𝑒−𝛽(𝑡−𝑠)𝜀|𝑥(𝑠) − 𝑦(𝑠)|d𝑠

+
∫ ∞

𝑡

𝑒−𝛾(𝑡−𝑠)𝜀|𝑥(𝑠) − 𝑦(𝑠)|d𝑠

≤ 𝑒−𝛽𝑡Δ𝑠(𝑥, 𝑦) + 𝜀𝛿(𝑥, 𝑦)
( ∫ 𝑡

0

𝑒−𝛽(𝑡−𝑠)𝑒−𝜉𝑠d𝑠

+
∫ ∞

𝑡

𝑒−𝛾(𝑡−𝑠)𝑒−𝜉𝑠d𝑠

)

= 𝑒−𝛽𝑡Δ𝑠(𝑥, 𝑦) + 𝜀𝛿(𝑥, 𝑦)
(
𝑒−𝜉𝑡 − 𝑒−𝛽𝑡

𝛽 − 𝜉 − 𝑒−𝜉𝑡

𝛾 − 𝜉

)

≤
(
Δ𝑠(𝑥, 𝑦) + 𝜀(𝛽 − 𝛾)

(𝛽 − 𝜉)(𝜉 − 𝛾)𝛿(𝑥, 𝑦)
)
𝑒−𝜉𝑡 .

Writing 𝐿 ≔ (𝛽 − 𝛾)/((𝛽 − 𝜉)(𝜉 − 𝛾)) and recalling the deőnition of ∥·∥𝜉, this
gives

∥𝒫𝑥 −𝒫𝑦∥𝜉 ≤ Δ𝑠(𝑥, 𝑦) + 𝜀𝐿𝛿(𝑥, 𝑦) .

Given 𝑥 ∈ 𝒳, by putting 𝑦 = 0 we realize that

∥𝒫𝑥∥𝜉 ≤ |𝑥𝑠(0)| + 𝜀𝐿 ∥𝑥∥𝜉 < ∞ ,

and so 𝒫 maps 𝒳 to itself. Moreover, if 𝑥 ∈ 𝒳𝑧 then it is evident from the
deőnition of (𝒫𝑥)(𝑡) that 𝒫𝑥 ∈ 𝒳𝑧 as well. Finally, if 𝑥, 𝑦 ∈ 𝒳𝑧 for some 𝑧 ∈ 𝐸𝑠 ,
then Δ𝑠(𝑥, 𝑦) = 0 and the estimate above yields

𝛿(𝒫𝑥,𝒫𝑦) ≤ 𝜀𝐿𝛿(𝑥, 𝑦) .

By choosing 𝑟 small enough we can guarantee that 𝜀𝐿 < 1 and hence 𝒫 is a
contraction. Thus it has a unique őxed point 𝑥̄ ∈ 𝒳𝑧 . This is an orbit of (1.1)-
(1.7) which approaches 0 exponentially (with at least rate 𝜉) and has 𝑥̄𝑠(0) = 𝑧,
so we work out a function

𝜓 : B𝑟(0) ∩ 𝐸𝑠 −→ 𝐸𝑐 ⊕ 𝐸𝑢

such that 𝜓(𝑧) = 𝑥𝑐𝑢(0) and whose graph is the local stable manifold, namely
𝑊 𝑠

loc
= Graph 𝜓. By construction, 𝑊 𝑠

loc
has the properties of invariance and

convergence claimed at the very beginning. □

Remark 1.1.4.
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𝐸𝑢
𝑊𝑢

loc

𝑊 𝑠
loc

𝐸𝑠

𝑊𝑢

𝑊 𝑠

𝑐
𝑐1

𝑐2

𝑊 𝑠(𝑐1)

𝑊𝑢(𝑐2)

Figure 1.2: Dynamics originating at hyperbolic equilibria. Left panel: illustra-
tion of statement (i) of Theorem 1.1.3. Middle panel: intersection between𝑊 𝑠

and𝑊𝑢 spreading from an hyperbolic equilibrium point 𝑐 (homoclinic). Right
panel: intersection between 𝑊 𝑠(𝑐1) and 𝑊𝑢(𝑐2) emanating from two different
hyperbolic equilibrium points 𝑐1, 𝑐2(heteroclinic).

(i) From the knowledge of 𝑊 𝑠
loc
,𝑊𝑢

loc
we can recover the global manifolds

𝑊 𝑠 ,𝑊𝑢 considering respectively
⋃
𝑡≤0 𝛷(𝑡 ,𝑊 𝑠

loc
)and

⋃
𝑡≥0 𝛷(𝑡 ,𝑊𝑢

loc
). Anal-

ogous characteristics of these sets are encapsulated in the global variant of
Theorem 1.1.3, although these in general are slightly weaker (for example
𝑊 𝑠 ,𝑊𝑢 are only immersed and not embedded in the phase space, thus
their overall structure may be way more complicated than𝑊 𝑠

loc
,𝑊𝑢

loc
, like

the presence of accumulation points).

(ii) The geometric structure of the stable and unstable manifolds becomes
even more complex when they have transverse intersections, especially
homoclinic points (Fig. 1.2, middle panel) or heteroclinic points (Fig. 1.2,
right panel).

When the equilibrium point is partially hyperbolic, we still have the same
conőguration described in Fig. 1.2, but also another object, called center manifold
𝑊 𝑐 , as in the following theorem.

Theorem 1.1.4 (Center manifold theorem). Consider the differential equation (1.1)
with vector őeld expressed by (1.7). Suppose now that 𝑓 ∈ 𝒞𝑘(R𝑑;R𝑑) and let the origin
be a partially hyperbolic equilibrium point. Then, there exists a 𝒞𝑘−1 manifold 𝑊 𝑐

tangent at 0 to the center space 𝐸𝑐 .

Remark 1.1.5.

(i) The center manifold is, generally, locally invariant: ∀𝑥 ∈ 𝑊 𝑐 ∃ 𝐼 neigh-
borhood of 𝑡 = 0 such that 𝛷(𝑡 , 𝑥) ∈ 𝑊 𝑐 for any 𝑡 ∈ 𝐼, i.e. a solution
supported by𝑊 𝑐 can exit from the manifold at some given time.

(ii) Contrary to𝑊 𝑠 and𝑊𝑢 ,𝑊 𝑐 is not necessarily unique.

Remark 1.1.6. The stable, unstable and center manifolds can be deőned also for
periodic orbits and even higher dimensional invariant sets under a condition
of hyperbolicity resembling the one in Deőnition 1.1.7.
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1.2 Hamiltonian dynamical systems

1.2.1 Hamilton’s equations of motion

Consider a phase space 𝐷 ⊆ R𝑑 open of even dimension 𝑑 = 2𝑛 equipped with
coordinates 𝑥 = (𝑞, 𝑝), 𝑞 = (𝑞𝑖)𝑖=1,...,𝑛 , 𝑝 = (𝑝𝑖)𝑖=1,...,𝑛 . The dynamical system
(1.1) with vector őeld

𝑋 = 𝑋𝐻 ≔ J∇𝐻 =

(
𝜕𝐻

𝜕𝑝
,−𝜕𝐻

𝜕𝑞

)
, (1.8)

where

J =

(
0𝑛 I𝑛

−I𝑛 0𝑛

)
(1.9)

is the 2𝑛 × 2𝑛 symplectic unit and 𝐻 ∈ 𝒞∞(𝐷), is called Hamiltonian. The ODEs

¤𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖
, ¤𝑝𝑖 = −

𝜕𝐻

𝜕𝑞𝑖
, 𝑖 = 1, . . . , 𝑛 (1.10)

are Hamilton’s (canonical) equations. The coordinates (𝑞, 𝑝) are called canonical
(and usually the 𝑝𝑖 are said to be the conjugate momenta of the generalized positions
𝑞𝑖). 𝐻(𝑞, 𝑝) is called the Hamiltonian. The integer 𝑛 is referred to as the number
of degrees of freedom (d.o.f). As in Remark 1.1.1, we assume to have a Hamiltonian
ŕow 𝛷𝐻 associated to (1.8) deőned ∀𝑡 ∈ R.

Remark 1.2.1. The Hamiltonian 𝐻 may also explicitly depend on time 𝑡 (𝐻 =

𝐻(𝑞, 𝑝, 𝑡)). Then, the system (1.10) is called non-autonomous and of 𝑛 + 1/2
d.o.f. However, it is possible to treat non-autonomous systems as autonomous
ones (ğ1.1) by formally extending the phase space 𝐷. In practice, one appends
one more dimension to 𝑞𝑛+1 ≔ 𝑡:

𝐷′ =
{
(𝑞1, . . . , 𝑞𝑛 , 𝑞𝑛+1, 𝑝1, . . . , 𝑝𝑛 , 𝑝𝑛+1)

��
(𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛) ∈ 𝐷, 𝑞𝑛+1, 𝑝𝑛+1 ∈ R

}
,

so that now 𝑞 = (𝑞𝑖)𝑖=1,...,𝑛+1, 𝑝 = (𝑝𝑖)𝑖=1,...,𝑛+1, and consider Hamilton’s equa-
tions induced by

𝐻′ : 𝐷′ −→ R
(𝑞, 𝑝) ↦−→ 𝐻′(𝑞, 𝑝) ≔ 𝐻(𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛 , 𝑞𝑛+1) + 𝑝𝑛+1

. (1.11)

In particular ¤𝑞𝑛+1 = 1, thus Hamilton’s equations associated to 𝐻′ do not
depend on the cyclic coordinate2 𝑝𝑛+1 and we can ignore the corresponding
equation ¤𝑝𝑛+1. The solutions of these ODEs with 𝑞𝑛+1(0) = 0 provide the solu-
tions 𝑞1(𝑡), . . . , 𝑞𝑛(𝑡), 𝑝1(𝑡), . . . , 𝑝𝑛(𝑡) to Hamilton’s equations with Hamiltonian
𝐻(𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛 , 𝑡).

2A coordinate is said to be cyclic when it does not appear explicitly in the Hamiltonian.
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1.2.2 Conservation properties of Hamiltonian systems

Let us focus on the Hamiltonian system (1.10). Denote byℒ2𝑛 the 2𝑛-dimensional
Lebesgue measure of a measurable set 𝐸 ⊆ 𝐷:

ℒ2𝑛(𝐸) =
∫
𝐸

d𝑞1 . . . d𝑞𝑛d𝑝1 . . . d𝑝𝑛 .

Proposition 1.2.1. The Hamiltonian ŕow𝛷𝐻 preserves the measure of the phase space,
that is for every Lebesgue measurable set 𝐸 ⊆ 𝐷

ℒ2𝑛(𝐸) = ℒ2𝑛(𝛷𝐻(𝑡 , 𝐸))

∀𝑡 ∈ R.

This assertion is a direct consequence of the transport theorem for general
ODEs (1.1). Under the assumptions of Remark 1.1.1, the theorem states that

d

d𝑡

∫
𝛷(𝑡 ,𝐸)

d𝑥1 . . . d𝑥𝑑 =

∫
𝛷(𝑡 ,𝐸)

div𝑋(𝑥)d𝑥1 . . . d𝑥𝑑 (1.12)

for every ℒ𝑑-measurable set 𝐸 ⊆ 𝐷. Since div𝑋𝐻(𝑞, 𝑝) ≡ 0, ℒ2𝑛(𝛷𝐻(𝑡 , 𝐸)) is
constant over time.

Autonomous Hamiltonian systems preserve another quantity along the
ŕow, which is the Hamiltonian itself, i.e., the energy. An immediate com-
putation yields indeed

d

d𝑡
𝐻(𝑞(𝑡), 𝑝(𝑡)) =

𝑛∑
𝑗=1

(
𝜕𝐻

𝜕𝑞 𝑗
¤𝑞 𝑗 +

𝜕𝐻

𝜕𝑝 𝑗
¤𝑝 𝑗
)
=

𝑛∑
𝑗=1

(
𝜕𝐻

𝜕𝑞 𝑗

𝜕𝐻

𝜕𝑝 𝑗
− 𝜕𝐻

𝜕𝑝 𝑗

𝜕𝐻

𝜕𝑞 𝑗

)
= 0 , (1.13)

hence 𝐻(𝑞(𝑡), 𝑝(𝑡)) = 𝐻(𝑞(0), 𝑝(0)). This is no longer true for non-autonomous
Hamiltonians 𝐻(𝑞, 𝑝, 𝑡), where ¤𝐻 = 𝜕𝐻/𝜕𝑡, but, in virtue of Remark 1.2.1, the
extended Hamiltonian 𝐻′ is a constant of motion of the ŕow in the extended
phase space.

1.2.3 Canonical transformations

A change of variables can be useful to simplify the study of the solutions to
(1.10) and may bring out possible symmetries. The characterization of the
transformations of the phase space that maintain the canonical structure in
(1.8) is a fundamental aspect of Hamiltonian mechanics.

We consider 𝒞∞-diffeomorphisms between 𝐷, 𝐷 ⊆ R2𝑛 s.t.

𝑤 : 𝐷 −→ 𝐷
(𝑞, 𝑝) ↦−→ 𝑤(𝑞, 𝑝) = (𝑞̃ , 𝑝̃) . (1.14)

We denote synthetically 𝑦 = (𝑞̃ , 𝑝̃), 𝑞̃ = 𝑢(𝑞, 𝑝), 𝑝̃ = 𝑣(𝑞, 𝑝), so that 𝑦 = 𝑤(𝑥),
𝑤 = (𝑢, 𝑣).3

3Again, on the basis of Remark 1.2.1, we do not tackle separately time-dependent transfor-
mations.
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The mapping (1.14) conjugates the equation made up of (1.1)-(1.8) to ¤𝑦 = 𝑌(𝑦),
where

𝑌(𝑦) = 𝐷𝑤(𝑥)𝑋𝐻(𝑥)
��
𝑥=𝑤−1(𝑦) (1.15)

and 𝐷𝑤(𝑥) is the Jacobian matrix of 𝑤.

Definition 1.2.1. The transformation (1.14) is called canonical or symplectic if
for every Hamiltonian 𝐻(𝑞, 𝑝), the vector őeld (1.15) conjugated to (1.8) is still

Hamiltonian for the Hamilton’s function 𝐻(𝑞̃ , 𝑝̃) obtained as

𝐻(𝑞̃ , 𝑝̃) = 𝐻(𝑢−1(𝑞̃ , 𝑝̃), 𝑣−1(𝑞̃ , 𝑝̃)) .

Remark 1.2.2. Canonical transformations satisfy Proposition 1.2.1, namely they
preserve the measure of the phase space.

Remark 1.2.3. When𝑋 = 𝑋𝐻 = J∇𝐻, let us consider the restriction𝛷𝐻 |𝐷ℎ of the
Hamiltonian ŕow 𝛷𝐻 to a regular set 𝐷ℎ ≔ 𝐻−1(ℎ), ℎ ∈ R, of 𝐻. Let Σℎ ⊂ 𝐷ℎ

be a section of 𝛷𝐻 |𝐷ℎ and suppose that the orbit of a point of Σℎ returns to Σℎ ,
so that there exists a Poincaré map 𝛹 (ğ1.1.3) relative to Σℎ . Then Σℎ inherits a
symplectic structure with respect to which 𝛹 is symplectic.

The following are some equivalent criteria to check whether a mapping 𝑤
is canonical.

Proposition 1.2.2. The following are equivalent. The map (1.14) is canonical if and
only if

(i) the Poisson bracket

{·, ·} : 𝒞∞(𝐷) × 𝒞∞(𝐷) −→ 𝒞∞(𝐷)
( 𝑓 , 𝑔) ↦−→ { 𝑓 , 𝑔} = ∇ 𝑓 · J∇𝑔 =

𝜕 𝑓

𝜕𝑞
· 𝜕𝑔
𝜕𝑝
− 𝜕 𝑓

𝜕𝑝
· 𝜕𝑔
𝜕𝑞

(1.16)

are preserved by 𝑦 = 𝑤(𝑥), i.e.

{ 𝑓 , 𝑔}𝑞,𝑝(𝑥) = { 𝑓 , 𝑔̃} 𝑞̃ ,𝑝̃(𝑤(𝑥)) , (1.17)

for every 𝑓 (𝑥) = 𝑓 (𝑤(𝑥)), 𝑔(𝑥) = 𝑔̃(𝑤(𝑥)) ∈ 𝒞∞(𝐷). Particularly, (1.17) holds
if and only if the elementary Poisson brackets

{𝑞𝑖 , 𝑝 𝑗} = 𝛿𝑖 𝑗 , {𝑞𝑖 , 𝑞 𝑗} = {𝑝𝑖 , 𝑝 𝑗} = 0 , 𝑖 , 𝑗 = 1, . . . , 𝑛 , (1.18)

are preserved by 𝑤.

(ii)
𝐷𝑤(𝑥)J𝐷𝑤(𝑥)𝑇 = J ∀𝑥 ∈ 𝐷 . (1.19)

(iii) the Liouville 1-form (or tautological 1-form)

𝜃 : 𝐷 −→
(
R2𝑛

)∗
(𝑞, 𝑝) ↦−→ 𝜃(𝑞, 𝑝) = 𝑝 · d𝑞 = ∑𝑛

𝑖=1 𝑝𝑖d𝑞𝑖
(1.20)
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is preserved by 𝑤, viz. there exists a differentiable function 𝑓 (𝑞, 𝑝) s.t.

𝑣 · d𝑢 = 𝑝 · d𝑞 − d 𝑓 ; (1.21)

in other words, the differential form 𝑝 · d𝑞 − 𝑣 · d𝑢 is closed, or equivalently
locally exact.

Remark 1.2.4. The Hamiltonian ŕow𝛷𝐻(𝑡 , 𝑥) satisőes (1.21), i.e. it is canonical.

Remark 1.2.5. The pair (𝒞∞(𝐷), {·, ·}) forms an associative commutative al-
gebra, called Poisson algebra, and has the structure of a Lie algebra satisfying
Leibniz rule

{ 𝑓 , 𝑔ℎ} = { 𝑓 , 𝑔}ℎ + 𝑔{ 𝑓 , ℎ} ∀ 𝑓 , 𝑔, ℎ ∈ 𝒞∞(𝐷) .

Moreover, for every őxed 𝑔 ∈ 𝒞∞(𝐷), we can deőne the operator

ℒ𝑔 : 𝒞∞(𝐷) −→ 𝒞∞(𝐷)
𝑓 ↦−→ ℒ𝑔 𝑓 ≔ { 𝑓 , 𝑔} (1.22)

which is the Lie derivative related to the Hamiltonian vector őeld𝑋𝑔 = (−𝜕𝑔/𝜕𝑞,
𝜕𝑔/𝜕𝑝) of Hamiltonian 𝑔.

A useful technique to construct canonical transformations, which naturally
emerges from the condition on the preservation of the Liouville 1-form (Propo-
sition (1.2.2)), consists in assigning 𝑓 and consequently determining 𝑢, 𝑣 so that
the condition (1.21) be true. Brieŕy, given a function 𝑓 (𝑞, 𝑝), it can be shown
[60] that the system

𝑝̃𝑖 = −
𝜕𝐹

𝜕𝑞̃𝑖
(𝑞, 𝑞̃) , 𝑝𝑖 =

𝜕𝐹

𝜕𝑞𝑖
(𝑞, 𝑞̃) , 𝑖 = 1, . . . , 𝑛 (1.23)

under the invertibility condition

det
𝜕2𝐹

𝜕𝑞𝜕𝑞̃
(𝑞, 𝑞̃) ≠ 0 (1.24)

deőnes, after inversion, a canonical transformation (𝑞̃ , 𝑝̃) = 𝑤(𝑞, 𝑝), where
𝐹(𝑞̃ , 𝑞) ≔ 𝑓 (𝑞,𝑈(𝑞, 𝑞̃)) for𝑈(𝑞, 𝑞̃) the inverse of 𝑢 with respect to 𝑝, that is

𝑢(𝑞,𝑈(𝑞, 𝑞̃)) = 𝑞̃ .

Functions of mixed variables 𝐹(𝑞, 𝑞̃) fulőlling the requirement (1.24) are called
generating functions of the 1st kind.
The argument can be repeated for other choices of independent variables,
namely with respect to (𝑞, 𝑝̃) (generating functions of the 2nd kind), (𝑝, 𝑞̃) (generating
functions of the 3rd kind), (𝑝, 𝑝̃) (generating functions of the 4th kind).

A class of maps particularly relevant for canonical perturbation theory is
represented by near-identity transformations. For instance, all functions of the
form 𝐹(𝑞, 𝑝̃) = 𝑝̃ · 𝑞 + 𝜀𝑆(𝑞, 𝑝̃), for |𝜀| small enough, are generating functions
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of the second kind. They give rise to a family of canonical transformations by
inversion of

𝑞̃𝑖 = 𝑞𝑖 + 𝜀
𝜕𝑆

𝜕𝑝̃𝑖
, 𝑝𝑖 = 𝑝̃𝑖 + 𝜀

𝜕𝑆

𝜕𝑞𝑖
, 𝑖 = 1, . . . , 𝑛 , (1.25)

which, for 𝜀 = 0, correspond to the identity. Near-identity canonical transfor-
mations produced in the framework of the Lie method [23, 45] are discussed in
ğ1.2.5.

1.2.4 Action-angle variables and Liouville-Arnold theorem

We have already introduced the notion of integrability in ğ1.1.2 for general
ODEs. For Hamiltonian systems in particular, the geometric description of in-
tegrability is encapsulated in the celebrated theorem by Liouville and Arnold4
[3], which exploits the existence of 𝑛 independent integrals of motion in invo-
lution to őnd the orbits of the differential system (1.10).

Theorem 1.2.1 (Liouville-Arnold theorem). Let𝐻 be an autonomous Hamiltonian
of 𝑛 d.o.f. If

• 𝐻 possesses a set of 𝑛 őrst integrals ℐ = (ℐ1, . . . ,ℐ𝑛) which are independent,
that is

rk

(
𝜕ℐ
𝜕𝑥

)
= 𝑛 ; (1.26)

• ℐ𝑖 are mutually in involution, that is

{ℐ𝑖 ,ℐ𝑗} = 0 , 𝑖 , 𝑗 = 1, . . . , 𝑛 ; (1.27)

• the level surfaces

𝑀𝒥 =

{
(𝑞, 𝑝) ∈ 𝐷

�� ℐ𝑖(𝑞, 𝑝) = 𝒥𝑖 , 𝑖 = 1, . . . , 𝑛
}
, (1.28)

for 𝒥 ∈ R𝑛 , are compact and connected;

then there exists a symplectic map

𝑤 :
⋃
𝒥∈𝒥

𝑀𝒥 −→ T𝑛 ×𝒜

(𝑞, 𝑝) ↦−→ (𝜑, 𝐼)
, (1.29)

where ℐ is a neighborhood of ℐ̂, such that (1.28) is diffeomorphic to T𝑛 ≔ R𝑛/(2𝜋Z𝑛)
and 𝐻 ◦ 𝑤−1(𝜑, 𝐼) = 𝐻(𝐼).

4and actually Jost [49]
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𝜑2

𝐼2

𝐼1

𝜑1

Figure 1.3: Schematic illustration of a foliation of invariant tori for 𝑛 = 2 and
increasing 𝐼2 immersed in R3. The constant action vector 𝐼 = (𝐼1, 𝐼2) identiőes
the torus (in gray scale, for similar values of 𝐼1) on which the orbits lie (blue),
while the two angles 𝜑 = (𝜑1, 𝜑2) parametrize the motion around it. The
innermost torus of the family degenerates into a circle (black arc), viz. a
periodic orbit.

The canonical variables 𝜑, 𝐼 are called respectively angles and actions. The

solution of Hamilton’s equations for the Hamiltonian 𝐻(𝐼) are trivial:

𝐼(𝑡) = 𝐼0 , 𝜑(𝑡) = 𝜑0 + 𝜔(𝐼0)𝑡 , 𝜔(𝐼) ≔ 𝜕𝐻

𝜕𝐼
(𝐼) , (1.30)

which indicate that the temporal evolution of each 𝐼𝑖 is constant, while the one
of each 𝜑𝑖 is linear modulo 2𝜋 with frequency 𝜔𝑖 . The resulting orbit spirals
on the torus T𝑛 (a schematic representation is portrayed in Fig. 1.3). Unless
all the frequencies 𝜔𝑖 have pairwise rational ratio, the orbits are called quasi-
periodic and densely wrap around the invariant torus supporting them, called
non-resonant; this is equivalent to

𝑘 · 𝜔 = 0 ⇐⇒ 𝑘 = 0 , 𝑘 ∈ Z𝑛 . (1.31)

On the other hand, if there exist one or more combinations of integers 𝑘𝑖 such
that

𝑘1𝜔1 + . . . + 𝑘𝑛𝜔𝑛 = 0 ,

𝑛∑
𝑖=1

|𝑘𝑖 | ≠ 0 , (1.32)

the torus is called resonant. The commensurability between frequencies induces
orbits lying on tori of dimension lower than 𝑛: if𝑚 independent relations of the
form (1.32) exist, the corresponding orbits lie in a (𝑛 − 𝑚)-dimensional torus.

Remark 1.2.6. In the case 𝑚 = 𝑛 − 1 the orbits become 1-dimensional tori, i.e.,
periodic orbits.
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1.2.5 Perturbations of integrable systems

A variety of phenomena in nature are described by models representing, math-
ematically, a special class of non-integrable systems, called quasi-integrable.
Given a phase space T𝑛 × 𝒜, 𝒜 ⊆ R𝑛 , endowed with action-angle variables
(𝜑, 𝐼) and standard symplectic form d𝜑 ∧ d𝐼, quasi-integrable systems are de-
őned by Hamiltonian functions of the form

𝐻(𝜑, 𝐼) = 𝐻0(𝐼) + 𝜀𝐻1(𝜑, 𝐼; 𝜀) , (1.33)

where 𝜀 is a small parameter. The Hamiltonian 𝐻0, depending only on the ac-
tions, is Liouville-Arnold integrable and it is called the integrable approximation
to the system (1.33). The orbits of 𝐻0 deviate from the orbits of 𝐻 by a quantity
of order |𝜀| in a time of order unity and by a quantity of order unity in a time of
order 1/|𝜀|. The function 𝐻1 is called the perturbation, usually parametrically
dependent on 𝜀 and assumed analytic for |𝜀| small enough.

Remark 1.2.7. The easiest formulation of perturbation theory holds when one
assumes the maximum regularity for 𝐻0 and 𝐻1. Typically, passing to a com-
plexiőcation of the domains, we suppose that𝐻0, 𝐻1 are holomorphic functions
in a complex neighborhood of T𝑛 ×𝒜, so they admit a convergent expansion in
Fourier series with harmonics exponentially decaying as their order increases
(for details, see [32]).

Although cases of strong chaos are possible to encounter, nearly integrable
models (1.33) are the most common case in Solar System dynamics. For such
systems, quite precise approximations of the orbits can be found using the
perturbative method of Hamiltonian normal forms [26].
A normal form is a Hamiltonian yielding a dynamics which only approximates
the true one, but is simpler to control. The normalized Hamiltonian is obtained
by implementing a sequence of conveniently chosen canonical transformations
of the form

(𝜑̃, 𝐼) = 𝑤(𝜑, 𝐼) (1.34)

such that, after one application of (1.34) to (1.33), the new conjugated Hamil-
tonian displays the dependence on the angles at higher order in 𝜀 (for instance
at order 2):

𝐻(𝜑̃, 𝐼) = 𝑍(𝜑̃, 𝐼; 𝜀) + 𝜀2𝐻2(𝜑̃, 𝐼; 𝜀) . (1.35)

The term 𝑍(𝜑̃, 𝐼; 𝜀) = 𝐻0(𝐼) + 𝜀𝐻1(𝜑̃, 𝐼), called the normal form, yields a dynam-

ics on which we have control. The term 𝑅(𝜑̃, 𝐼; 𝜀) = 𝜀2𝐻2(𝜑̃, 𝐼; 𝜀), called the
remainder, is an order of magnitude less in size than the normal form. Iterating
the procedure via (1.34) one expects in principle to push the perturbation to
higher orders in 𝜀 at every step. However, in general this process cannot be
done endlessly: it is necessary to stop at some optimal order, depending on 𝜀
and on the properties of the system (see, for example, [26]).
By łcontrolž we mean, for instance, that one could be interested in eliminating
only some of the angles at őrst order (this is quite customary in celestial me-
chanics when we distinguish between łfastž and łslowž angles, see Chapter 3).
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Transformations (1.34) leading to (1.35) or variants are feasible by means of es-
sentially two methods taking advantage of near-identity canonical mappings:
the method of the generating functions (1.25) and the method of Lie series. We
hereby illustrate the latter.

The canonicity of the Hamiltonian ŕow (Remark 1.2.4) allows to produce
transformations 𝜀-close to the identity. Consider the ŕow 𝛷𝜒 of a generating
Hamiltonian 𝜒(𝜑, 𝐼) (or Lie generating function) at time 𝑡 = 𝜀 with initial datum
(𝜑̃, 𝐼)

(𝜑, 𝐼) = 𝛷𝜒(𝜀, (𝜑̃, 𝐼))
and denote by (𝜑(𝑡), 𝐼(𝑡)) the corresponding solutions of Hamilton’s equations.
The canonical transformation at issue is the map

(𝜑̃, 𝐼) ↦−→ (𝜑, 𝐼) = (𝜑(𝜀), 𝐼(𝜀)) . (1.36)

Consider, now, the Hamiltonian (1.33) which is to be normalized. From the
relationships

d

d𝑡
𝐻(𝜑(𝑡), 𝐼(𝑡)) = {𝐻, 𝜒} = ℒ𝜒𝐻

d𝑗

d𝑡 𝑗
𝐻(𝜑(𝑡), 𝐼(𝑡)) = {. . . {{𝐻, 𝜒}, 𝜒}, . . . , 𝜒} = ℒ 𝑗

𝜒𝐻

, (1.37)

where ℒ𝜒 is the operator deőned as in (1.22), using a Maclaurin expansion of
𝐻(𝜑(𝑡), 𝐼(𝑡))we get the representation

𝐻(𝜑̃, 𝐼) = 𝐻(𝜑(𝜀), 𝐼(𝜀)) =
∑
𝑗≥0

𝜀 𝑗

𝑗!

d𝑗

d𝑡
𝐻(𝜑(𝑡), 𝐼(𝑡))

����
𝑡=0

=
∑
𝑗≥0

𝜀 𝑗

𝑗!
ℒ 𝑗

𝜒𝐻(𝜑̃, 𝐼)

= 𝐻(𝜑̃, 𝐼) + 𝜀{𝐻, 𝜒}(𝜑̃, 𝐼) + 𝜀2

2
{{𝐻, 𝜒}, 𝜒}(𝜑̃, 𝐼) + . . .

= exp
(
𝜀ℒ𝜒

)
𝐻(𝜑̃, 𝐼) ,

(1.38)

in which exp
(
𝜀ℒ𝜒

)
is the Lie series operator, namely

exp
(
𝜀ℒ𝜒

)
: 𝒞𝜔(T𝑛 ×𝒜) −→ 𝒞𝜔(T𝑛 ×𝒜)

exp
(
𝜀ℒ𝜒

)
=

∑
𝑗≥0

𝜀 𝑗

𝑗!
ℒ𝜒 = idT𝑛×𝒜 + 𝜀ℒ𝜒 +

𝜀2

2
ℒ𝜒 ◦ ℒ𝜒 + . . . , (1.39)

where 𝒞𝜔(T𝑛 × 𝒜) indicates the set of real analytic functions on the phase
space; thus, the expressions of (1.36) are

𝜑 = exp
(
𝜀ℒ𝜒

)
𝜑̃ , 𝐼 = exp

(
𝜀ℒ𝜒

)
𝐼 . (1.40)

Remark 1.2.8. The equality between the left- and the last right-hand side in
(1.38) implies that the series expansion in 𝜀 of the transformed Hamiltonian
may be calculated by applying the exponential operator of the Lie series directly
to the Hamiltonian itself with no need of making a substitution of variables.
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This is a special case of the so-called Gröbner exchange theorem [37], according
to which

𝑓 (𝜑, 𝐼)
��
𝜑=exp(𝜀ℒ𝜒)𝜑̃, 𝐼=exp(𝜀ℒ𝜒)𝐼 = exp

(
𝜀ℒ𝜒

)
𝑓
��
𝜑=𝜑̃, 𝐼=𝐼

for any 𝑓 ∈ 𝒞𝜔(T𝑛 ×𝒜).

We now explicitly determine 𝜒 such that 𝐻 has the form (1.35). If 𝐻 has the
form (1.33), (1.38) becomes

𝐻 = 𝐻0 + 𝜀𝐻1 + 𝜀{𝐻0, 𝜒} + 𝜀2{𝐻1, 𝜒} +
𝜀2

2
{{𝐻0, 𝜒}, 𝜒} + 𝒪(𝜀3) , (1.41)

implicitly assuming hereafter that the right-hand side is a function of (𝜑̃, 𝐼).
Split now 𝐻1 in a normal form part and a part to eliminate: 𝐻1 = 𝑍1 + ℎ1. 𝐻
will assume the desired form if there exists an analytic function 𝜒 s.t.

𝐻1 + {𝐻0, 𝜒} = 𝑍1 . (1.42)

Equation (1.42) is known in literature as the homological equation. To solve (1.42)
we exploit the quasi-periodicity of 𝐻 and expand ℎ1 in Fourier series in light
of Remark 1.2.7 as

ℎ1(𝜑̃, 𝐼) =
∑
𝑘∈Z𝑛

𝑐𝑘(𝐼)𝑒 i𝑘·𝜑 , i =
√
−1 . (1.43)

We then look for a solution 𝜒 to (1.42) of the same form

𝜒(𝜑̃, 𝐼) =
∑
𝑘∈Z𝑛

𝑑𝑘(𝐼)𝑒 i𝑘·𝜑̃ , (1.44)

so that in the left-hand side of (1.42) we get

ℎ1(𝜑̃, 𝐼) − 𝜔0(𝐼) ·
𝜕𝜒

𝜕𝜑̃
(𝜑̃, 𝐼) =

∑
𝑘∈Z𝑛
(𝑐𝑘(𝐼) − i𝑘 · 𝜔0(𝐼)𝑑𝑘(𝐼))𝑒 i𝑘·𝜑̃ = 0 ,

where 𝜔0(𝐼) ≔ 𝜕𝐻0(𝐼)/𝜕𝐼. Hence

𝑑𝑘(𝐼) =
𝑐𝑘(𝐼)

𝑖𝑘 · 𝜔0(𝐼)
, 𝑘 ∈ Z𝑛 \ {0} . (1.45)

Equation (1.45) has a caveat: for the solution to exist, all denominators 𝑘 ·𝜔0

must satisfy the condition 𝑘 · 𝜔0 ≠ 0 and for practical computations we usually
exclude also the harmonics satisfying 𝑘 · 𝜔0 ≃ 0. Strictly speaking, to every
𝑘 ∈ Z𝑛 \ {0} there is an associated locus

ℛ𝑘 = {𝐼 ∈ 𝒜 : 𝑘 · 𝜔0(𝐼) = 0} (1.46)

called resonant module: the Fourier coefficients of 𝜒 can be deőned only when
𝒜′ does not intersect any resonant module. This restriction, known as the
problem of small divisors is fundamental in normal form theory. Customarily,
there are two ways to sort this situation out (cf. [69]).
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(i) By Remark 1.2.7, the Fourier coefficients of ℎ1 decay exponentially. Then

we can choose to decompose ℎ1 into two parts, one ℎ≥𝐾
1

with |𝑘 | ≥ 𝐾 and

ℎ<𝐾
1

with |𝑘 | < 𝐾, for 𝐾 large enough (|𝑘 | = |𝑘1 | + . . . + |𝑘𝑛 | is the order of
the Fourier harmonic 𝑘 = (𝑘1, . . . , 𝑘𝑛)). We then set

𝜒(𝜑̃, 𝐼) = −
∑

𝑘∈Z𝑛 , |𝑘 |<𝐾
i
𝑐𝑘(𝐼)

𝑘 · 𝜔0(𝐼)
exp(i𝑘 · 𝜑̃) , (1.47)

accepting a remainder 𝜀ℎ≥𝐾
1

in the series after normalization. Since 𝜒
contains only a őnite number of harmonics, it is possible to őnd an open
domain 𝒜𝐾 in the action space, such that the denominators in (1.47) do
not vanish for any 𝐼 ∈ 𝒜𝐾 . The domain 𝒜𝐾 is said to be non-resonant up
to order 𝐾 (cf. [69]).

(ii) A second strategy consists in selecting a point 𝐼∗ ∈ 𝒜 expanding 𝐻
in power series of the small quantity 𝛿𝐼 = 𝐼 − 𝐼∗. In this way 𝐻0 can
be redeőned as 𝐻0 = 𝜔∗𝛿𝐼, where 𝜔∗ = 𝜔0(𝐼∗). This implies that the
frequencies in all small divisors do not depend on the actions, hence,
with the correct choice of resonant module, 𝜒 can be deőned in an open
ball around 𝐼∗ (see Remark 3.2.3 in Chapter 3 for a concrete application).

Remark 1.2.9. The notorious Kolmogorov-Arnold-Moser (KAM) theorem [5,
50, 72] examines the existence of quasi-periodic orbits in (1.33) when 𝜀 > 0 is
sufficiently small. Under suitable hypotheses, the theorem states that some of
the non-resonant invariant tori of the unperturbed problem of Hamiltonian 𝐻0

survive as deformed invariant tori (KAM tori), whose union őlls locally a region
in phase space of density 1 − 𝒪(

√
𝜀) as 𝜀 goes to zero. While the dynamics on

this set trivializes (being conjugated to a linear quasi-periodic translation on
T𝑛 with a Diophantine frequency vector), in its complement (which asymptot-
ically represents a small region of measure 𝒪(

√
𝜀)) the dynamics can be very

complicated, exhibiting, in many cases, łrandom motionsž5 or Arnold diffusion
[4].
In the case of a system with 2 d.o.f, any trajectory evolves on an 3-dimensional
iso-energetic surface, thus a KAM torus divides the phase space in two non-
communicating parts, ensuring non-linear stability for all the orbits conőned
in the interior of an invariant KAM torus. On the contrary, in systems with
more than 2 d.o.f. the invariant tori do not isolate the orbits in their interior
and the non-linear stability of such orbits has to be analyzed by other methods
(like Nekhoroshev’s theorem [74]).

The above normalization scheme in question can be iterated 𝑟 times per-
forming a composition 𝒮𝜒(𝑟) of Lie series to eliminate the dependence on 𝜑̃ at
higher orders in 𝜀, where

𝒮𝜒(𝑟) = exp
(
𝜀𝑟ℒ𝜒𝑟

)
. . . ◦ exp

(
𝜀2ℒ𝜒2

)
◦ exp

(
𝜀ℒ𝜒1

)
, (1.48)

5Not in literal sense, i.e. a dynamics generated according to some probability distribution
over time (stochastic process), but in the sense of ğ1.1.2, i.e. so highly unpredictable to be de
facto assimilated to a random process.
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𝜒(𝑟) = {𝜒𝑗} 𝑗=1,...,𝑟 . We then end up with a normal form of order 𝜀𝑟 with a

remainder of order 𝒪(𝜀𝑟+1).

Remark 1.2.10. Several variations to this perturbative treatment have been
proposed so far and a ŕourishing literature exists also in the case of resonance
dynamics (refer to e.g. [69]). A novel alternative in the framework of the
three-body problem is presented in Chapter 3.

1.3 The 𝑵 -body problem

1.3.1 Kepler’s problem

The two-body problem (2BP) (or Kepler’s problem) consists in the motion of two
point masses 𝑚0 and 𝑚1 moving under their mutual gravitational attraction in
R3 equipped with the usual Euclidean metric and an inertial reference frame
𝑂𝑋𝑌𝑍. Denoting respectively with 𝑅0, 𝑅1 the two position vectors, and by
𝑟 = 𝑅1−𝑅0 their relative position, the force on the mass𝑚1 (planet) by𝑚0 (Sun)
is given by Newton’s law:

𝐹 = −𝒢𝑚0𝑚1

∥𝑟∥3
𝑟 (1.49)

where 𝒢 = 6.6726 · 10−11 Nm2kg−2 is the universal constant of gravitation. The
heliocentric vector 𝑟 fulőls the second-order differential equation

¥𝑟 = −𝒢(𝑚0 + 𝑚1)
∥𝑟∥3

𝑟 . (1.50)

Passing to the Hamiltonian formalism giving rise to (1.50), i.e. őxing a
co-moving frame 𝑂𝑥𝑦𝑧 centered at one of the two masses, say 𝑚0, so that
𝑟 = (𝑥, 𝑦, 𝑧), the two-body problem possesses őve independent scalar őrst
integrals (Equation (1.26)) in the six-dimensional phase space𝐷 = (R3\{0})×R3,
three out of which are in involution (Equation (1.27)). Therefore Kepler’s
problem is completely integrable. The integrals are:

• three components of the angular momentum (per unit of mass)

ℳ = (ℳ𝑥 ,ℳ𝑦 ,ℳ𝑧) = 𝑟 × ¤𝑟 = (𝑦 ¤𝑧 − 𝑧 ¤𝑦, 𝑧 ¤𝑥 − 𝑥 ¤𝑧, 𝑥 ¤𝑦 − 𝑦 ¤𝑥) . (1.51)

An orbit with angular momentum ℳ lies constantly in a őxed plane,
called the orbital plane, normal toℳ;

• the energy (per unit of mass)

ℰ =
1

2
∥ ¤𝑟∥2 − 𝒢(𝑚0 + 𝑚1)

∥𝑟∥ =
1

2
( ¤𝑥2 + ¤𝑦2 + ¤𝑧2) − 𝒢(𝑚0 + 𝑚1)√

𝑥2 + 𝑦2 + 𝑧2
. (1.52)

• the RungeśLenz vector

ℒ = (ℒ𝑥 ,ℒ𝑦 ,ℒ𝑧) = ¤𝑟 ×ℳ − 𝒢(𝑚0 + 𝑚1)
𝑟

∥𝑟∥ , (1.53)
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that represents the constancy of the direction of the pericenter (or periapsis),
the position of closest approach between the two bodies.

As pointed out, only őve of these integrals are independent: they can be chosen
asℳ𝑥 ,ℳ𝑦 ,ℳ𝑧 , ℰ, ℒ𝑥 . Three can be chosen in involution, ∥ℳ∥, ℰ and, for
example,ℳ𝑧 .

The Keplerian trajectories are either bounded or unbounded conic sections
where 𝑚0 occupies one of the foci and are described by the polar orbit equation:

∥𝑟(𝑡)∥ = 𝔭

1 + 𝑒 cos 𝑓 (𝑡) , (1.54)

where 𝔭 = ∥ℳ∥2 /(𝒢(𝑚0 + 𝑚1)) is the conic parameter, 𝑒 ≥ 0 the eccentricity
and 𝑓 ∈ T the true anomaly, the angle identifying the actual position of the
particle at time 𝑡 along the orbit since the pericenter (usually coinciding with
𝑓 = 0). Depending on the eccentricity we have either a circle (𝑒 = 0), an ellipse
(0 < 𝑒 < 1), a parabola (𝑒 = 1), a hyperbola (𝑒 > 1). In the present thesis we are
interested in elliptic motions (𝑒 < 1, see Fig. 1.4). The ellipse’s semi-major axis
is 𝑎 = −𝒢(𝑚0 + 𝑚1)/(2ℰ), with ℰ < 0; the semi-minor axis is 𝑏 = 𝑎

√
1 − 𝑒2. The

distance to the pericenter Π is equal to 𝑎(1− 𝑒), the distance to the apocenter (or
apoapsis) 𝐴 is equal to 𝑎(1 + 𝑒).
Besides the true anomaly, another convenient angle to express the position of
the orbiting body in time is the eccentric anomaly 𝐸 (see Fig. 1.4). We have the
identities

cos 𝑓 =
cos𝐸 − 𝑒

1 − 𝑒 cos𝐸
, sin 𝑓 =

√
1 − 𝑒2 sin𝐸

1 − 𝑒 cos𝐸
(1.55)

and
∥𝑟∥ = 𝑎(1 − 𝑒 cos𝐸) . (1.56)

The relationship between 𝐸 and the time 𝑡 is given by Kepler’s equation [20]:

𝐸 − 𝑒 sin𝐸 = 𝑀 , 𝑀 ≔ 𝑛(𝑡 − 𝑡0) , (1.57)

where 𝑀 is called mean anomaly,

𝑛 =
√
𝒢(𝑚0 + 𝑚1)𝑎−3/2 (1.58)

the mean motion and 𝑡0 is the time of passage from the periapsis.
The orientation of the ellipse with respect to 𝑂𝑥𝑦𝑧 requires to deőne three

additional angles (Fig. 1.5). The the inclination 𝑖 ∈ [0,𝜋[ of the orbital plane
with respect to the 𝑥-𝑦 plane is given by

𝑖 = arccos

(
ℳ𝑧

∥ℳ∥

)
.

If 𝑖 ≠ 0 the orbit intersects the reference plane in two points, called respectively
the ascending node, where the body passes from negative to positive 𝑧, and the
descending node, where the body goes from positive to negative 𝑧. We then
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𝐸

ℱ ′ ℱ

𝐵

𝐶𝐴 Π

𝑏
𝑎

𝑓

𝑎𝑒

∥𝑟∥

𝑎

Figure 1.4: Elliptical orbit and its geometric parameters (semi-major axis 𝑎 =

𝐶𝐴 = 𝐶Π = ℱ 𝐵, eccentricity 𝑒 = 𝐶ℱ /𝐶Π, semi-minor axis 𝑏 = 𝐶𝐵): 𝑚0 is
positioned at focus ℱ ≡ 𝑂, at distance 𝑎𝑒 from the center 𝐶, while ℱ ′ denotes
the empty one; 𝑚1 moves on the ellipse counterclockwise from the pericenter
Π towards the apocenter 𝐴 (red arc spanned by the true anomaly 𝑓 ) and 𝐸
denotes the eccentric anomaly.

Π

𝑦

𝑧

𝑥

𝑂

𝑟

Ω

𝜔

𝑖

ℳ
𝑓

Figure 1.5: Orbit of the 2BP in the 3D 𝑂𝑥𝑦𝑧 reference frame. The ellipse is
oriented in space through the longitude of the ascending nodeΩ, the argument
of pericenter 𝜔 and the inclination 𝑖. The intersection between the dotted line
(intersection between the orbital plane and the reference plane 𝑥-𝑦) and the
path of 𝑚1 reckoned counterclockwise (direction of the arrow) determines the
ascending node.
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deőne the longitude of the ascending node Ω ∈ T, and the argument of pericenter
𝜔 ∈ T (see Fig. 1.5).

The variables 𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝑀 (or 𝑓 ), called orbital elements, completely deőne
the position and velocity of 𝑚1 with respect to 𝑚0, that is the mapping

(R3 \ {0}) × R3 −→]0,+∞[×[0, 1[×[0,𝜋[×T3

(𝑥, 𝑦, 𝑧, ¤𝑥, ¤𝑦, ¤𝑧) ↦−→ (𝑎, 𝑒 , 𝑖, 𝜔,Ω, 𝑀) (1.59)

is a bĳection (see [73]). The transformation from the elements to the state vector
(𝑟, ¤𝑟) is given by

𝑟 = ℛ ©­
«
𝑎(cos𝐸 − 𝑒)
𝑎
√

1 − 𝑒2 sin𝐸
0

ª®
¬
, ¤𝑟 = ℛ

©­­­­­
«

− 𝑛𝑎 sin𝐸

1 − 𝑒 cos𝐸

𝑛𝑎
√

1 − 𝑒2 cos𝐸

1 − 𝑒 cos𝐸
0

ª®®®®®
¬
, (1.60)

where

ℛ =
©­
«
cΩ c𝜔 − sΩ c𝑖 s𝜔 −cΩ s𝜔 − sΩ c𝑖 c𝜔 sΩ s𝑖
sΩ c𝜔 + cΩ c𝑖 s𝜔 −sΩ s𝜔 + cΩ c𝑖 c𝜔 −cΩ s𝑖

s𝑖 s𝜔 s𝑖 c𝜔 c𝑖

ª®
¬
, (1.61)

c·, s· are abbreviations for cos ·, sin · and the dependence on 𝑀 is obtained
through 𝐸 via (1.57).
In the cases 𝑖 = 0 and 𝑒 = 0 two singularities appear: in the former the line of
nodes is not well-deőned, and so Ω, 𝜔 are, while in the latter the periapsis is
not unique (cirular orbit), hence 𝜔, 𝑀 are undeőned. To deal with the case, we
consider angles

𝜛 ≔ 𝜔 +Ω , 𝜆 ≔ 𝑀 + 𝜔 +Ω , (1.62)

named respectively longitude of the pericenter and mean longitude. In particular,
𝜆 is well-deőned if 𝑒 = 0, 𝑖 ≠ 0, and absent from the transformation (1.60) if
𝑖 = 𝑒 = 0.

The Hamiltonian formulation of Kepler’s problem

ℋE2BP(𝑟, 𝑝) =
1

2
∥𝑝∥2 − 𝒢(𝑚0 + 𝑚1)

∥𝑟∥ = −𝒢(𝑚0 + 𝑚1)
2𝑎

< 0 , (1.63)

with 𝑝 = ¤𝑟, is Liouville-Arnold integrable, so we can derive action-angle vari-
ables from it. Their expressions are

𝐿 =
√
𝒢(𝑚0 + 𝑚1)𝑎 , ℓ = 𝑀 ,

𝐺 = 𝐿
√

1 − 𝑒2 , 𝑔 = 𝜔 , (1.64)

𝐻 = 𝐺 cos 𝑖 , ℎ = Ω ,

called Delaunay variables (or Delaunay elements). We have 𝐺 = ∥ℳ∥ and 𝐻 =

ℳ𝑧 . ℋE2BP in these new variables reads

ℋE2BP(𝑟(ℓ , 𝑔, ℎ, 𝐿, 𝐺, 𝐻), 𝑝(ℓ , 𝑔, ℎ, 𝐿, 𝐺, 𝐻)) = −
𝒢2(𝑚0 + 𝑚1)2

2𝐿2
. (1.65)
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Delaunay variables become singular when 𝑒 = 0 or 𝑖 = 0. Thus, we need the
modiőed Delaunay variables:

Λ = 𝐿 , 𝜆 = 𝑀 + 𝜛 ,

Γ = Λ(1 −
√

1 − 𝑒2) , 𝛾 = −𝜛 , (1.66)

𝑍 = Γ(1 − cos 𝑖) , 𝜁 = −Ω .

The singularities now correspond to the fact that the angles 𝛾 and 𝜁 are multi-
valued whenever their corresponding actions are null. This is bypassed by the
use of Cartesian-like variables known as Poincaré variables:

Λ , 𝜆 ,

𝜉 =
√

2Γ cos 𝛾 , 𝜂 =
√

2Γ sin 𝛾 , (1.67)

𝜐 =
√

2𝑍 cos 𝜁 , 𝜗 =
√

2𝑍 sin 𝜁 .

1.3.2 The planetary 𝑵 -body problem

The Hamiltonian of the planetary 𝑁-body problem (NBP) is given by

ℋNBP(𝑟0, . . . , 𝑟𝑁−1, 𝑝0, . . . , 𝑝𝑁−1) =
1

2

𝑁−1∑
𝑖=0

∥𝑝𝑖 ∥2
2𝑚𝑖

− 𝒢
∑

0≤𝑖< 𝑗≤𝑁−1

𝑚𝑖𝑚 𝑗

𝑟𝑖 − 𝑟 𝑗

 , (1.68)

where (𝑟𝑖 , 𝑝𝑖) ∈ R6, 𝑖 = 0, . . . , 𝑁 − 1, are barycentric conjugate variables and
𝑚0 ≫ 𝑚𝑖 , 𝑖 = 1, . . . , 𝑁 − 1. This problem for 𝑁 ≥ 3 is not integrable.
Assigning 𝑚0 as the mass of the central star, the perturbative parameter of the
problem is

𝜇 = max
𝑖=1,...,𝑁−1

𝜇𝑖 ,

where 𝜇𝑖 = 𝑚𝑖/𝑚0 ≪ 1.
We reduce the d.o.f. by 3 passing to heliocentric coordinates 𝑄𝑖 and extend

canonically the change of variables to construct the new momenta 𝑃𝑖 :

𝑄0 = 𝑟0 , 𝑄𝑖 = 𝑟𝑖 − 𝑟0 , 𝑖 = 1, . . . , 𝑁 − 1 ,

𝑝0 = 𝑃0 −
𝑁−1∑
𝑗=1

𝑃𝑗 , 𝑝𝑖 = 𝑃𝑖 , 𝑖 = 1, . . . , 𝑁 − 1 .

In particular𝑃0 =
∑𝑁−1
𝑗=0 𝑝 𝑗 is the total linear momentum and since it is conserved

we can limit ourselves to study the dynamics corresponding to 𝑃0 = 0. The
heliocentric Hamiltonian of the planetary 𝑁-body problem then reads

ℋHelNBP(𝑄1, . . . , 𝑄𝑁−1, 𝑃1, . . . , 𝑃𝑁−1) =
𝑁−1∑
𝑖=1

(
1

2

(
1

𝑚0
+ 1

𝑚𝑖

)
∥𝑃𝑖 ∥2 − 𝒢

𝑚0𝑚𝑖

∥𝑄𝑖 ∥

)

+
∑

1≤𝑖< 𝑗≤𝑁−1

(
𝑃𝑖 · 𝑃𝑗
𝑚0

− 𝒢
𝑚𝑖𝑚 𝑗

𝑄𝑖 −𝑄 𝑗




)

(1.69)
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on the collisionless domain

𝐷 = {(𝑄1, . . . , 𝑄𝑁−1, 𝑃1, . . . , 𝑃𝑁−1) ∈ R6(𝑁−1) : 𝑄𝑖 ≠ 0 ∀𝑖 , 𝑄𝑖 ≠ 𝑄 𝑗 ∀𝑖 , 𝑗} .
(1.70)

The őrst summation in (1.69) is a sum of 𝑁 − 1 decoupled 2BP (1.63) each
multiplied by 𝑚̄𝑖 with masses 𝑚0, 𝑚𝑖 and re-scaled gravitational constant 𝒢𝑚̄2

𝑖
,

where 𝑚̄𝑖 = 𝑚0𝑚𝑖/(𝑚0 + 𝑚𝑖) is the reduced mass. Keplerian action-angle
variables (like Delaunay elements, etc.) thus can be introduced in a suitable
domain far from collisions in a similar manner as at the end of ğ1.3.1.

1.3.3 The restricted three-body problem

A simpliőed version of the 𝑁-body problem, yet interesting and highly non-
trivial, is the so called restricted 𝑁-body problem (RNBP), in which we analyze
the motion of a body of negligible mass under the gravitational forces of the
Sun and of 𝑁 − 2 planets in given orbits, typically assumed to be circular or
elliptic. Basically we focus on the dynamics of a single massless body under the
effect of𝑁−2 uncoupled elliptic 2BP, whose Hamilton’s function in heliocentric
variables is written as

ℋRNBP(𝑄, 𝑃, 𝑡) =
∥𝑃∥2

2
− 𝒢𝑚0

∥𝑄∥ − 𝒢
𝑁−2∑
𝑖=1

𝑚𝑖

(
1

Δ𝑖(𝑡)
− 𝑄 · 𝑄𝑖(𝑡)
∥𝑄𝑖(𝑡)∥3

)
, (1.71)

for (𝑄, 𝑃) ∈ R6 position-momentum couple of the particle, Δ𝑖(𝑡) = 𝑄 − 𝑄𝑖(𝑡),
𝑖 = 1, . . . , 𝑁 − 2, and 𝑄𝑖(𝑡) the 𝑖-th given heliocentric two-body motion whose
magnitude is computed according to (1.54) and 𝔭𝑖 = 𝑎𝑖(1 − 𝑒2

𝑖
). The structure

of the Hamiltonian ℋRNBP is also the one of a quasi-integrable system: the
őrst two addenda give the Keplerian part, while the rest represents a small
perturbation, since, under the planetary model assumption, it is proportional
to 𝑚𝑖 ≪ 𝑚0.

Remark 1.3.1. The Hamiltonian (1.71) is non-autonomous. However, introduc-
ing the planetary mean motions 𝑛𝑖 of the 2BPs involved: one then introduces
mean anomalies 𝑀𝑖 = 𝑛𝑖𝑡 and conjugate momenta 𝐽𝑖 , 𝑖 = 1, . . . , 𝑁 − 2, (1.71)
can be extended to a formally autonomous model

ℋ ′RNBP(𝑄, 𝑀1, . . . , 𝑀𝑁−2, 𝑃, 𝐽1, . . . , 𝐽𝑁−2)

= ℋRNBP(𝑄, 𝑃, 𝑀1, . . . , 𝑀𝑁−2) +
𝑁−2∑
𝑖=1

𝑛𝑖 𝐽𝑖 .

It is trivial to check that the equations of motion for 𝑄 and 𝑃 underℋ ′
RNBP

are
identical with those underℋRNBP.

The case 𝑁 = 3, named restricted three-body problem (R3BP hereafter), is
a cornerstone model extensively studied which carries a highly non-trivial
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dynamics.
The Hamiltonian of the R3BP is provided by (1.71) after setting 𝑁 = 3:

ℋR3BP(𝑄, 𝑃, 𝑡) =
∥𝑃∥2

2
− 𝒢𝑚0

∥𝑄∥ − 𝒢𝑚1

(
1

Δ(𝑡) −
𝑄 · 𝑄1(𝑡)
∥𝑄1(𝑡)∥3

)
, (1.72)

where, to ease notation, we drop labels for quantities referring to the test par-
ticle 𝒫 of null mass 𝑚 ≡ 𝑚2 = 0 and simply put Δ = 𝑄 − 𝑄1. The two massive
bodies 𝒫0 and 𝒫1 with masses 𝑚0 > 𝑚1 are called respectively primary (or
central mass) and secondary (or primary perturber) (together simply the primaries).
The perturbative part dependent on 𝑚1 in (1.72) is the disturbing function of the
R3BP and is responsible for all the interesting dynamical peculiarities of the
problem; for this reason it lends itself to several manipulations, like series ex-
pansion (see [13] and Chapter 3) in order to decompose the various perturbing
effects.

Let us select now as Keplerian orbit performed by 𝒫0 and 𝒫1 a circular
trajectory: this is called the Circular Restricted 3-Body Problem (CR3BP). The
study of the CR3BP is simpliőed by passing to a suitably deőned rotating
frame. Consider:

• a non-inertial, called also synodic, Cartesian reference frame centered
at the barycenter of the system (that we keep denoting by 𝑂𝑥𝑦𝑧), and
rotating at uniform speed so that its 𝑥 axis contains𝒫0 and𝒫1 for all times
𝑡, hence 𝑥-𝑦 coincides with the orbital plane of the Keplerian motion (Fig.
1.6);

• a unit of time so that the revolution period of the 𝒫0-𝒫1 2BP is 𝑇1 = 2𝜋
and thus the angular speed is 𝑛1 = 1;

• the primary and the secondary particles have masses respectively 𝑚0 =

1 − 𝜇 and 𝑚1 = 𝜇, with

𝜇 =
𝑚1

𝑚0 + 𝑚1
∈ ]0, 1/2] (1.73)

the mass parameter (or reduced mass), such that the unit of mass is given
by 𝑚0 + 𝑚1 = 1;

• 𝒫0 and 𝒫1 located on the 𝑥 axis with coordinates 𝒫0(−𝜇, 0, 0) and 𝒫1(1 −
𝜇, 0, 0), which in turn determine the unit of distance 𝒫0𝒫1 = 1.

In the above units we have 𝒢 = 1. The resulting Hamiltonian in symplectic
variables

(𝑥, 𝑦, 𝑧), (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) ∈ (R3 \ {(−𝜇, 0, 0), (1 − 𝜇, 0, 0)}) × R3 ,

d𝑥 ∧ d𝑝𝑥 + d𝑦 ∧ d𝑝𝑦 + d𝑧 ∧ d𝑝𝑧 ,

becomes autonomous:

ℋ(𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) =
𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧

2
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥 −

1 − 𝜇
𝑑0
− 𝜇

𝑑1
, (1.74)
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𝑛1𝑡

𝑥

𝑦

𝒫0

𝒫1

𝒫

𝑧

𝑑1

𝑑0

Figure 1.6: The co-rotating synodic reference frame (in red) rotating at radial
frequency 𝑛1 with outgoing 𝑧 axis showing the conőguration of the CR3BP; the

inter-distances are indicated by 𝑑0 = 𝒫0𝒫 and 𝑑1 = 𝒫1𝒫.

where

𝑑0 = ∥𝒫 − 𝒫0∥ =
√
(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2

𝑑1 = ∥𝒫 − 𝒫1∥ =
√
(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2

(1.75)

denote the distances of 𝒫(𝑥, 𝑦, 𝑧) from 𝒫0 and 𝒫1.
No smooth global őrst integrals exist besides the Hamiltonian itself, usually

called, in terms of the velocity ( ¤𝑥, ¤𝑦, ¤𝑧), Jacobi integral:

𝐸𝐽 = ℋ
��
𝑝𝑥= ¤𝑥−𝑦, 𝑝𝑦= ¤𝑦+𝑥, 𝑝𝑧=¤𝑧 =

1

2
( ¤𝑥2 + ¤𝑦2 + ¤𝑧2) + 𝒰(𝑥, 𝑦, 𝑧) , (1.76)

in which

𝒰(𝑥, 𝑦, 𝑧) = −1

2
(𝑥2 + 𝑦2) + 𝒱(𝑥, 𝑦, 𝑧) = −1

2
(𝑥2 + 𝑦2) − 1 − 𝜇

𝑑0
− 𝜇

𝑑1
(1.77)

is the effective potential. The Jacobi constant is deőned as 𝐶𝐽 = −2𝐸𝐽 . Its impor-
tance is twofold: on one hand, although the CR3BP is not Liouville-Arnold
integrable (ğ1.3.2), the őrst integral can be exploited to obtain some relevant
information and restrictions about the dynamics; on the other hand, in dy-
namical astronomy 𝐶𝐽 is historically well-known to be useful in the study of
orbits of small particles under the inŕuence of a planet (e.g. Jupiter in our solar
system, cf. [73]). In particular, due to the conservation of the Jacobi constant,
the quantity

𝒯 (𝑎, 𝑒 , 𝑖) = 1

𝑎
+ 2

√
𝑎(1 − 𝑒2) cos 𝑖 (1.78)

called Tisserand’s parameter (see [10] for a review) remains approximately con-
stant before and after the encounter of the small particle with the planet (Fig.
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Figure 1.7: Tisserand’s parameter for a small body in the circular and elliptic
Sun-Jupiter R3BP with close encounter at 𝑡 = 0 (𝜇 = 9.536433730801362 · 10−4).
The initial conditions are 𝑥(0) = 1.0009678077067754, 𝑦(0) = 0, 𝑧(0) = 0, 𝑝𝑥(0) =
0.2, 𝑝𝑦(0) = 1.8, 𝑝𝑧(0) = 0.6, then the orbit is propagated backward and őnally
forward in time to get a full deŕection. Top panel: zero Jupiter’s eccentricity
(CR3BP). Bottom panel: Jupiter’s eccentricity equal to 0.0489 (ER3BP).

1.7). In Jupiter’s case, 𝒯 is frequently applied to distinguish asteroids (typically
𝒯 > 3) from Jupiter-family comets (typically 2 < 𝒯 < 3).
In reality, although (1.78) is only an approximation to the Jacobi constant and is
derived by assuming that Jupiter is in a circular orbit (CR3BP), the quantity 𝒯
is still an approximate constant of the motion in the case where the eccentricity
of Jupiter is taken with its actual nonzero value, i.e. considering an Elliptic
Restricted 3-Body problem (ER3BP, see ğ2.3.1). An example is shown in Fig. 1.7.
As claimed above, (1.76) constrains the phase space: to be precise, a solution
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑝𝑥(𝑡), 𝑝𝑦(𝑡), 𝑝𝑧(𝑡)) of Hamilton’s equations associated to (1.74)

characterized by a value 𝐸𝐽 ∈ R of 𝐸𝐽 is forced to project for any time 𝑡 in the
portion of space:

𝒜(𝐸𝐽) = {(𝑥, 𝑦, 𝑧) ∈ R3 \ {(−𝜇, 0, 0), (1 − 𝜇, 0, 0)} : 𝒰(𝑥, 𝑦, 𝑧) ≤ 𝐸𝐽} , (1.79)

called admissible region. Its complement R3 \ 𝒜(𝐸𝐽) is the forbidden region. The
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Figure 1.8: Zero-velocity surfaces of the spatial CR3BP. Left panel: cross-
section of three zero-velocity surfaces around the primary and secondary for
𝜇 = 0.01 (close to the mass parameter of the Earth-Moon system) in the regimes

described in text. The green surface is obtained for 𝐸𝐽 = −2 and delimits the
realm of motions only around 𝒫0 or exterior to 𝒫0-𝒫1; the blue one surrounds
the two disconnected realms of motions around𝒫0 and𝒫1 or the external realm
and is obtained for 𝐸𝐽 = −1.587; the orange one creates a channel opening
allowing transits between the realms of the two bodies and transits which go

outwards and is obtained for 𝐸𝐽 = −1.51. Right panel: top view of the three-
dimensional zero-velocity surfaces projected onto the 𝑥-𝑦 plane and plotted
with low opacity to visualize the self-contained lobes for the three different

values of 𝐸𝐽 at issue. The admissible regions are the set of points enclosed by
the lobes around 𝒫0, 𝒫1 or outside the double paraboloid-like shapes.

boundary of the admissible region 𝜕𝒜(𝐸𝐽) is deőned by the equation

𝒰(𝑥, 𝑦, 𝑧) = 𝐸𝐽 (1.80)

and therefore the trajectory (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) can hit 𝜕𝒜(𝐸𝐽)when the kinetic part
in (1.76) is equal to zero, i.e. when ¤𝑥 = ¤𝑦 = ¤𝑧 = 0. For this reason the surfaces
deőned by (1.80) are called zero-velocity surfaces (in the spatial case, otherwise
when the dynamics develops only in two dimensions in the orbital plane, that
is considering a planar CR3BP, they are usually known as zero-velocity curves).
The topology of the admissible region, highly dependent on the value of 𝐸𝐽 ,
is important to properly understand the dynamics taking place: we have the
following three scenarios.

(i) 𝒜(𝐸𝐽) corresponds to the whole physical spaceR3\{(−𝜇, 0, 0), (1−𝜇, 0, 0)}
if 𝐸𝐽 ≥ max(𝑥,𝑦,𝑧)𝒰(𝑥, 𝑦, 𝑧); for these large values, the energy integral
does not actually constrain the path (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)).

(ii) For suitably small values of 𝐸𝐽 , the admissible region is made up of three
disconnected components (Fig.1.8), in particular the region of the motions
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which are satellite of 𝒫0, the region of the motions which are satellite of
𝒫1 and the region of motions which are external to the binary system

𝒫0-𝒫1. Any motion of energy 𝐸𝐽 with (𝑥(0), 𝑦(0), 𝑧(0)) in the region of the
satellites of 𝒫0 will never visit the region of satellites of 𝒫1. To have an
orbit which transits between the two regions one has to consider larger
values.

(iii) For lower values of 𝐸𝐽 , the admissible region asymptotically shrinks to
two disconnected components and eventually one: the realm of motions
around 𝒫0 and the external one, with the second one eventually taking
over (Fig.1.8).

We can even better characterize 𝒜(𝐸𝐽) by looking at the critical points of
the effective potential, the Lagrangian points.

Proposition 1.3.1. For any value of 𝜇 ∈ ]0, 1/2], the effective potential𝒰(𝑥, 𝑦, 𝑧) has
őve critical points:

𝐿1(𝑥𝐿1 , 0, 0) , 𝐿2(𝑥𝐿2 , 0, 0) , 𝐿3(𝑥𝐿3 , 0, 0) ,

which are saddle points for𝒰 and are named collinear points, where

𝑥𝐿3 < −𝜇 < 𝑥𝐿1 < 1 − 𝜇 < 𝑥𝐿2

and 𝑥𝐿1 , 𝑥𝐿2 , 𝑥𝐿3 are found as the solutions of

(1 − 𝜇) 𝑥 + 𝜇|𝑥 + 𝜇|3 + 𝜇
𝑥 − 1 + 𝜇
|𝑥 − 1 + 𝜇|3 = 𝑥 ;

𝐿4(𝑥𝐿4 , 𝑦𝐿4 , 0) , 𝐿5(𝑥𝐿5 , 𝑦𝐿5 , 0) ,
which are local (and absolute) maxima for𝒰 and are named equilateral points, with

𝑥𝐿4 = 𝑥𝐿5 =
1

2
− 𝜇 , 𝑦𝐿4 = −𝑦𝐿5 =

√
3

2
.

The indices attributed to 𝐿1, 𝐿2, 𝐿3 and 𝐿4, 𝐿5 reŕect the ordering of the corre-
sponding value of the value of the effective potential, i.e.

𝒰(𝑥𝐿5 , 𝑦𝐿5 , 𝑧𝐿5) =𝒰(𝑥𝐿4 , 𝑦𝐿4 , 𝑧𝐿4) > 𝒰(𝑥𝐿3 , 𝑦𝐿3 , 𝑧𝐿3)
> 𝒰(𝑥𝐿2 , 𝑦𝐿2 , 𝑧𝐿2) > 𝒰(𝑥𝐿1 , 𝑦𝐿1 , 𝑧𝐿1) .

This gives further information on the topology of the zero-velocity curves/
surfaces (Fig. 1.9).
Besides, one can promptly realize that these conőgurations, complemented by
¤𝑥𝐿𝑗 = ¤𝑦𝐿𝑗 = ¤𝑧𝐿 𝑗 = 0, 𝑗 = 1, . . . , 5, are equilibria for the Lagrange’s equations
of motion.6 The corresponding orbits in the inertial reference frame will be
circular periodic orbits and the mutual distances 𝑑0, 𝑑1 in (1.75) remain constant
in time. It comes natural then to inspect the motion in the vicinity of equilibrium

6Or equivalently for the Hamilton’s equations with 𝑝𝑥𝐿𝑗 = −𝑦𝐿𝑗 , 𝑝𝑦𝐿𝑗 = 𝑥𝐿𝑗 , 𝑝𝑧𝐿𝑗 = 0,

𝑗 = 1, . . . , 5.
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𝒫0 𝒫1

𝑥

𝑦

𝐿3 𝐿1 𝐿2

𝐿4

𝐿5

Figure 1.9: Lagrangian points of the CR3BP and zero-velocity curves in the pla-
nar case. Left panel: location of the őve Lagrangian critical points. The red dots
stand for the collinear points, being aligned along the 𝑥 axis, while the green
ones stand for the equilateral points, since they have same distance from 𝒫0

and 𝒫1 equal to 𝒫0𝒫1 = 1, thus they are positioned on one of the vertices of two
equilateral triangles. Right panel: zero-velocity curves for the planar CR3BP.

The iso-lines are computed for𝜇 = 0.01 in ascending order of Jacobi energy𝐸𝐽 ∈
{−1.6,−1.5838,−1.5772,−1.5050,−1.50}, where −1.6 < 𝒰(𝑥𝐿1 , 𝑦𝐿1) (blue con-
tour), −1.5838 =𝒰(𝑥𝐿1 , 𝑦𝐿1) (ocher contour), −1.5772 =𝒰(𝑥𝐿2 , 𝑦𝐿2) (green con-
tour), −1.5050 = 𝒰(𝑥𝐿3 , 𝑦𝐿3) (red contour), 𝒰(𝑥𝐿3 , 𝑦𝐿3) < −1.50 < 𝒰(𝑥𝐿4 , 𝑦𝐿4)
(violet contour). For𝒰(𝑥𝐿4 , 𝑦𝐿4) =𝒰(𝑥𝐿5 , 𝑦𝐿5), the two violet łtadpolesž shrink
to 𝐿4, 𝐿5 and from this value on all motions are permitted. The global picture
gives an intuition on how the topology of the admissible/forbidden region

changes around the Lagrangian points along with 𝐸𝐽 . For clear symmetry rea-
sons, the spatial analogues behave accordingly.
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positions, namely to study their linear stability.
Let us linearize the equations of motion at 𝐿 𝑗 , 𝑗 = 1, . . . , 5. We limit ourselves

to the investigation in the planar case. Combining Hamilton’s equations of
(1.74) (dropping the couple (𝑧, 𝑝𝑧)), the coordinates 𝑥(𝑡), 𝑦(𝑡) of 𝒫 solve

¥𝑥 − 2 ¤𝑦 = −𝜕𝒰
𝜕𝑥
(𝑥, 𝑦) , ¥𝑦 + 2 ¤𝑥 = −𝜕𝒰

𝜕𝑦
(𝑥, 𝑦) ,

or 


¤𝑥 = 𝑣𝑥

¤𝑦 = 𝑣𝑦

¤𝑣𝑥 = 2𝑣𝑦 −
𝜕𝒰
𝜕𝑥
(𝑥, 𝑦)

¤𝑣𝑦 = −2𝑣𝑥 −
𝜕𝒰
𝜕𝑦
(𝑥, 𝑦)

. (1.81)

The Jacobian matrix of the vector őeld deőned by the right-hand sides of (1.81)
reads

𝐴(𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦) =

©­­­­­­­
«

0 0 1 0
0 0 0 1

−𝜕
2𝒰
𝜕𝑥2

− 𝜕
2𝒰

𝜕𝑥𝜕𝑦
0 2

− 𝜕
2𝒰

𝜕𝑦𝜕𝑥
−𝜕

2𝒰
𝜕𝑦2

−2 0

ª®®®®®®®
¬

(1.82)

and we need to őnd eigenvalues and eigenvectors at each point (𝑥𝐿𝑗 , 𝑦𝐿 𝑗 , 0, 0),
𝑗 = 1 . . . , 5. We have the following.

Proposition 1.3.2. For 0 < 𝜇 < 𝜇𝑅 the equilateral equilibrium points 𝐿4, 𝐿5 are
linearly stable with purely imaginary eigenvalues

𝜆1,2 = ±i

√
1 +

√
1 − 27𝜇 + 27𝜇2

2
, 𝜆3,4 = ±i

√
1 −

√
1 − 27𝜇 + 27𝜇2

2
,

where

𝜇𝑅 =
9 −
√

69

18
≈ 0.038

is the Routh’s critical value.
The collinear equilibrium points 𝐿1, 𝐿2, 𝐿3 have linearization matrix (1.82) with
eigenvalues

𝜆1,2 = ±

√√
(𝛼1 + 𝛼2 + 4)2 − 4𝛼1𝛼2 − 𝛼1 − 𝛼2 − 4

2
,

𝜆3,4 = ±i

√√
(𝛼1 + 𝛼2 + 4)2 − 4𝛼1𝛼2 + 𝛼1 + 𝛼2 + 4

2
,
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where

𝛼1 = −1 − 2(1 − 𝜇)
|𝑥𝐿𝑗 + 𝜇|3

− 2𝜇

|𝑥𝐿 𝑗 − 1 + 𝜇|3 ,

𝛼2 =
1 − 𝜇
|𝑥𝐿 𝑗 + 𝜇|3

+ 𝜇

|𝑥𝐿𝑗 − 1 + 𝜇|3 − 1 , 𝑗 = 1, 2, 3 ,

which are pairwise opposite real and opposite purely imaginary, i.e. they are partially
hyperbolic equilibria (Deőnition 1.1.7) with dim𝐸𝑠 = 1, dim𝐸𝑢 = 1, dim𝐸𝑐 = 2
(ğ1.1.4).

For details on Proposition 1.3.2 see, for example, [73]. In the case of the Sun-
Jupiter system, the class of minor bodies orbiting nearby 𝐿4 and 𝐿5 are called
(Jupiter’s) Trojan asteroids. Relative to Jupiter, these objects librate in tadpole-
shaped regions co-orbital with Jupiter with average semi-major axis of about
5.2 AU around one of the equilateral points, either 60◦ ahead of the planet or
60◦ behind. Their study has a long history in the literature, especially regarding
their chaotic nature (cf., e.g., [58, 59, 70, 88]). The topic is treated in Chapter
5 in relation to the question of the asymmetry in their distribution around the
two regions of 𝐿4 and 𝐿5.
Linear stability results are applicable in very small domains, where the lin-
earization of the system is a valid approximation. More general results can be
formulated only by the use of non-linear stability theorems (Remark 1.2.9) or
by numerical analysis of the orbits.

We conclude the subsection with a short recap on interesting types of orbits
in the planar CR3BP and hyperbolic structures stemming from the collinear
Lagrangian points (cf. Fig. 1.10). We can give the following classiőcation:

• If 𝐸𝐽𝐿3
< 𝐸𝐽 < 𝐸𝐽𝐿4

, the motion in the proximity of 𝐿4/𝐿5 is energetically

allowed to take place surrounding the equilateral points only (although

it is not energetically restricted to do so); however, if 𝐸𝐽 < 𝐸𝐽𝐿3
the orbits

necessarily surround all the three points 𝐿3, 𝐿4, 𝐿5, thus this distinction
raises two different kinds of motion in the neighborhood of the equilat-
eral points, known as tadpole orbits (the former) and horseshoe orbits (the
latter). Their dynamics is characterized, in the linear approximation, by
a decomposition of two different contributions: the slow motion, associ-
ated to the motion of a guiding center around the position of equilibrium,
with long period ≈ 2𝜋/| Im𝜆3,4 | and 𝜆3,4 as in Proposition 1.3.2 for 𝐿4/𝐿5,
known as synodic libration, and the fast one, attributed to the short period
motion of the particle around the guiding center.

• Families of periodic orbits associated to linearized centers around 𝐿4,
𝐿5 and central invariant structures due to the partially hyperbolic char-
acter around 𝐿1, 𝐿2, 𝐿3, still persisting in the original non-linear exten-
sion. There are also other groups of periodic orbits not associated with
a particular Lagrangian point: resonant orbits, i.e. the ratio between the
Keplerian period of 𝒫 around the primary and the Keplerian period of
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the secondary around the primary is a rational number, or 𝒫1-centered
orbits, originating from the secondary body’s dynamical neighborhood.
Notably, among these collections we mention

– the Lyapunov orbits of 𝐿1, 𝐿2 or 𝐿3 (which extend to halo orbits in the
3D case), indicated respectively by 𝑃𝐿1, 𝑃𝐿2, 𝑃𝐿3 and existing for

any 𝐸𝐽 ∈ ]𝐸𝐽𝐿𝑗 , 𝐸𝐽𝐿𝑗 + 𝜖[, 𝑗 = 1, 2, 3, 𝜖 = 𝜖(𝜇) > 0;

– the short and long period orbits stemming from 𝐿4 and 𝐿5.

• 𝐿1, 𝐿2, 𝐿3 are partially hyperbolic equilibria for (1.81) (ğ1.1.4), therefore
for any value of the reduced mass 𝜇 ∈ [0, 1/2[, besides a two-dimensional
differentiable center manifold𝑊 𝑐 tangent at each 𝐿 𝑗 , 𝑗 = 1, 2, 3, to its cen-
ter space 𝐸𝑐 which gives birth to the Lyapunov orbits, there exist smooth
stable and unstable manifolds 𝑊 𝑠 , 𝑊𝑢 made of two tubes, on both sides
of the Lyapunov orbit, locally diffeomorphic to cylinders S1 × R (S1 de-
noting the unit circle). Instead, the global structure, as it happens for
stable and unstable manifolds in non-integrable systems, may be very
complicated due to the presence of folds and lobes, and its projections
are essentially visualized by integrating numerically the ŕow backward
and forward. Moreover, the stable and unstable manifolds of 𝑃𝐿1 and
𝑃𝐿2 intersect transversely, providing orbits which are homoclinic to 𝑃𝐿1,
to 𝑃𝐿2, or heteroclinic orbits, i.e. orbits which in the future converge to
one Lyapunov orbit and in the past to a different one (ğ1.1.4). This has
considerable implications in space mission design by cleverly maneuver-
ing the spacecraft (see e.g. [18, 36]). Indeed, such a geometry enables one
to move

– from the realm of motions around 𝐿1, following 𝑊 𝑠 of 𝑃𝐿1, close to
𝑃𝐿1;

– from a neighborhood of 𝑃𝐿1 to a neighborhood of 𝑃𝐿2 following a
heteroclinic orbit;

– from 𝑃𝐿2 to the external region following𝑊𝑢 of 𝑃𝐿2.

We note that all results regarding the existence and stability of the Lagrangian
őxed points can be extended from the circular to the elliptic R3BP using a
łpulsating and non-uniformly rotatingž reference system (see Appendix A). In
that case, the equilibria correspond to periodic orbits in the uniformly rotating
system of reference whose angular velocity is equal to the mean motion of the
primary perturber. On the other hand, the Lyapunov families of the CR3BP
generalize to 2D-hyperbolic tori in the ER3BP (see [76] and references therein).

1.4 Goal and structure of the thesis

From what was exposed in these introductory paragraphs, it becomes clear that
the challenging dynamical phenomenology of the R3BP gives rise to a necessity
for methods of study based on an interplay between analytical and numerical
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Figure 1.10: Some orbits of the planar CR3BP for 𝜇 = 9.536433730801362 · 10−4

(Sun-Jupiter system). Top left panel: tadpole orbit around 𝐿4 integrated

with 𝐸𝐽 = −1.4996 s.t. 𝐸𝐽𝐿3
< 𝐸𝐽 < 𝐸𝐽𝐿4

. The initial conditions are

(𝑥(0), 𝑦(0), 𝑝𝑥(0), 𝑝𝑦(0)) = (0.44075, 0.86597,−0.908, 0.46215). Top right panel:
collection of 𝑃𝐿1 Lyapunov orbits for decreasing energy values starting from

𝐸𝐽 = −1.498943763343622. Bottom left panel: horseshoe orbit embrac-

ing 𝐿3, 𝐿4, 𝐿5 for 𝐸𝐽 = −1.500518632470854 < 𝐸𝐽𝐿3
and initial conditions

(𝑥(0), 𝑦(0), 𝑝𝑥(0), 𝑝𝑦(0)) = (−1.02445, 0, 0,−0.98413). Bottom right panel: or-
bits in the branches of the stable (red) and unstable (blue) tube manifolds

relative to 𝑃𝐿1 (green) at energy 𝐸𝐽 = −1.498943763343622. In the vicinity of
the Lyapunov orbit we can appreciate the local topology of the projection of
the manifolds𝑊 𝑠 and𝑊𝑢 , which are diffeomorphic to cylinders.
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approaches.
In view of the above, we now state the main goal of the thesis, which is the de-
velopment of semi-analytical methods allowing to clearly separate between two
regimes, namely i) one in which the test particle remains always far from close
encounters with the primary perturber, called hereafter the regime of secular mo-
tion, and ii) another in which short-period effects introduced by the interaction
with the primary perturber dominate the dynamics. The methods developed
in the present thesis aim also to provide a clear way to identify semi-analytically
the border between these two regimes, and to predict whether particular initial
conditions lead to one or the other regime of motion.
The here developed methods are compared with the results of numerical sim-
ulations. In particular:

In Chapter 2 we revisit the Kustaanheimo-Stiefel (KS) regularization of the
spatial elliptic restricted three-body problem by adopting a simple geometric
Hamiltonian approach introduced in a recent paper [9], and report consequent
numerical results. We start from the Lagrangian of the system in a suitable
rotating and pulsating frame and then we apply the classic KS transformation.
By exploiting its rotational symmetries and a precise condition on the initial
data, we are able to move to the Hamiltonian formulation and subsequently
perform a local geometric regularization analogous to the circular case, even
if in the elliptic problem there is no conservation of the Jacobi constant. In
particular, we prove a theorem on the projection of the regularized to the orig-
inal solutions, also when the primaries perform an elliptic motion. Finally we
test the theoretical apparatus numerically on selected orbits of the Sun-Jupiter
system, providing evidence of the beneőts in terms of the computational cost.

Chapter 3 proposes a closed-form (i.e. without expansion in the orbital ec-
centricities) scheme the derivation of a secular normal form in the restricted
three-body problem when the massless particle is in an orbit exterior to the one
of the primary perturber. Starting with a multipole expansion of the barycen-
tric (Jacobi-reduced) Hamiltonian, we carry out a sequence of normalizations
in Delaunay variables by Lie series, leading to a secular Hamiltonian model
without use of relegation. To this end, we introduce a book-keeping analogous
to the one proposed in [11] for test particle orbits interior to the one of the
primary perturber, but here adapted, instead, to the case of exterior orbits. We
give numerical examples of the performance of the method in both the planar
circular and the spatial elliptic restricted three-body problem, for parameters
pertinent to the Sun-Jupiter system. In particular, we demonstrate the method’s
accuracy in terms of reproducibility of the orbital elements’ variations far from
mean-motion resonances.

Chapter 4 contains the core result of the present work. It begins with the
geometric visualization of suitable projections in phase space of regions sub-
ject to different regimes of motion when Jupiter is retained as the source of
the perturbation. These sets are made of several components which include
trajectories either crossing Jupiter’s orbit or protected from collision. By means
of stability (e.g. FLI [56]) maps, we classify the regimes at issue and portray, in
addition, the fractal-like boundary of the region inhabited by weakly chaotic or-
bits exterior to Jupiter. As a fundamental outcome of the perturbative method
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in Chapter 3, we show how, using as criterion the size of the series’ remainder,
we reach to obtain an accurate semi-analytical estimate of the boundary (in
the space of orbital elements) where the secular Hamiltonian model arrived at
after eliminating the particle’s fast degree of freedom provides a valid approx-
imation of the true dynamics.

Chapter 5 explores motions far from the secular regime. These are driven
by invariant manifolds associated to periodic orbits originating at the collinear
őxed points. In this respect, we analyze the distribution in phase space of
heteroclinic intersections (with various other periodic orbits) of the two oppo-
site branches of the stable and unstable manifolds of the short-period family
of unstable periodic orbits emanating from the Lagrangian point 𝐿3 for dif-
ferent energy values. We observe an asymmetry in the distribution of the
intersections. We examine possible correlations of this asymmetry with the
well-known open problem of the 𝐿4/𝐿5 asymmetry for Jupiter’s Trojans. In
particular, following the scenario discussed in [70], we examine the captures
and escapes of Trojans as driven by the invariant manifolds when Jupiter’s
migratory motion is taken into account.

Chapter 6 contains the conclusions of the present work and gives some per-
spectives on possible future extensions.



2
Hamiltonian regularization

theory in the restricted

three-body problem

In this chapter we systematize and extend in the Hamiltonian setting the theory
of local geometric regularization of gravitational singularities in the spatial
restricted three-body problem. We develop the theory in detail in the case of
the ER3BP resuming the research documented in [92], so that the planar or
circular problems (for which a canonical structure, albeit quite different, exists)
are naturally included and become just a particular case.

2.1 The nature of the singularities in the 𝑵 -body

problem

As a consequence of Newton’s law of gravitation (1.49), according to which
the forces acting between particles tend to inőnity when the distance between
them approaches zero, at collision the corresponding equations of motion show
singularities. However, the wording łsingularityž as synonym of łcollisionž
in this context is not strictly rigorous, since, quite surprisingly for 𝑁 not too
small, it has been shown that the 𝑁-body problem admits also other types of
mathematical singularities and this fact is far from being trivial. Although
it is true that singularities that are not collisions are fairly rare to encounter
and physically represent limit cases in Newtonian mechanics, let us clarify the
matter at introductory level.

If we select initial conditions (𝑄(0)
1
, . . . , 𝑄

(0)
𝑁−1

, 𝑃
(0)
1
, . . . , 𝑃

(0)
𝑁−1
) ∈ 𝐷 for the

Hamiltonian (1.69) at time 𝑡 = 0, where 𝐷 is the non-collision conőguration set
(1.70), then by Remark 1.1.1 we have in principle a unique real smooth solution,
that we can also assume analytic operating in the Hamiltonian environment
(ğ1.2.5), to the Hamilton’s equations deőned only on a maximal time interval
]𝑡−, 𝑡+[. For example indeed, it is easy to come up with choices of initial data so

39
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that, for smaller or larger times, the orbits of the Hamiltonian vector őeld exit
𝐷 (i.e. binary or simultaneous multiple collisions occur). Thus, depending on

(𝑄(0)
1
, . . . , 𝑄

(0)
𝑁−1

, 𝑃
(0)
1
, . . . , 𝑃

(0)
𝑁−1
), we can have either a solution getting singular

at 𝑡− > −∞ or 𝑡+ < +∞ or a regular one, whose time extremes therefore extend
to inőnity (𝑡− = −∞, 𝑡+ = +∞).
Due to the symmetry of the problem, let us reduce ourselves to the study of
the problem on the interval [0, 𝑡∗[, where 𝑡∗ ∈ R>0 is a singularity time.

Definition 2.1.1. We say that a singularity time 𝑡∗ is due to a collision if

lim
𝑡→𝑡−∗

𝑄(𝑡) ∈ R3(𝑁−1)

where 𝑄(𝑡) = (𝑄1(𝑡), . . . , 𝑄𝑁−1(𝑡)) and, correspondingly, 𝑡∗ is the collision time.
If 𝑄 has no limit, or it is unbounded when 𝑡 → 𝑡−∗ , we say that the singularity
is a pseudo-collision or a non-collision singularity.

If we introduce the distance function

𝜌 : R3(𝑁−1) −→ [0,+∞[
𝜌(𝑄) = min1≤𝑖< 𝑗≤𝑁−1{∥𝑄𝑖 ∥ ,



𝑄 𝑗



 , 

𝑄𝑖 −𝑄 𝑗



} , (2.1)

the following holds [77].

Theorem 2.1.1 (Painlevé theorem). If (𝑄(𝑡), 𝑃(𝑡)), 𝑃(𝑡) = (𝑃1(𝑡), . . . , 𝑃𝑁−1(𝑡)), is
an analytic solution of the Hamilton’s equations associated to (1.69) deőned on maximal
interval [0, 𝑡∗[, then at 𝑡∗ there is a singularity of the solution if and only if

lim
𝑡→𝑡−∗

𝜌(𝑄(𝑡)) = 0 .

The theorem, in practice, states that at singularity times at least a single or
mutual distance vanishes. This is particularly helpful to dynamically picture
and characterize non-collision singularities, which, thanks to the result below
by von Zeipel [108], are non-local behaviors as opposed to collision ones, and
highly counter-intuitive [71]. Such wild conőgurations require indeed inőnitely
large velocities, hence physically incompatible with classical mechanics1. So,
essentially, pseudo-collisions happen when some particles scatter together with
others zeroing their inter-distance (and thus the global limit, in the sense of
Deőnition 2.1.1, does not exist).

Theorem 2.1.2 (von Zeipel theorem). If a non-collision singularity occurs at time
𝑡∗, then

lim
𝑡→𝑡−∗

𝜌(𝑄(𝑡)) = 0 and lim
𝑡→𝑡−∗

max
1≤𝑖< 𝑗≤𝑁−1

{∥𝑄𝑖 ∥ ,


𝑄 𝑗



 , 

𝑄𝑖 −𝑄 𝑗



} = +∞ .

How likely are pseudo-collision singularities? As anticipated, not so much.2
They can be even impossible. Coming indeed to our interests, where we mainly
consider 𝑁 = 3, another assertion by Painlevé allow us to worry only about
gravitational collision singularities.

1But technically admissible in special relativity.
2Actually the set of initial conditions leading to discontinuities in general is (Lebesgue)

negligible [93].
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Theorem 2.1.3. For 𝑁 = 3 let (𝑄1(𝑡), 𝑄2(𝑡), 𝑃1(𝑡), 𝑃2(𝑡)) be a solution of the helio-
centric three-body problem equations deőned on [0, 𝑡∗[. Then the singularity is due to
a collision.

Non-collision singularities are so hard to produce that, historically, Painlevé
just conjectured that in the 𝑁-body problem with 𝑁 ≥ 4 there can exist non-
collision singularities. Only in recent years the conjecture has been positively
solved by Xia [106] for 𝑁 ≥ 5 and later on completed by Xue [107] for 𝑁 = 4.

In conclusion, from now on, it will be implicit that by singularity we mean
collision singularity and, in the restricted case where the motion of the planets
is elliptic/circular Keplerian, only a binary collision with one of the primaries
at a time is possible (and this motivates our focus on local regularization tech-
niques in contrast to global ones, which aim to regularize all the singularities
at once). Besides, even though pointwise exact collisions in őnite time are, like
said above, rather infrequent, in practical numerical computations we need to
handle orbits passing by arbitrarily close to them, since 𝜌(𝑄) ≈ 0, and thereby
numerical schemes are inevitably affected. This translates into paying attention
not just to the mere discontinuity points, but also to small balls of positions
around them. Therefore, close approaches are deőnitely prevalent and reg-
ularization methods are almost indispensable both for better accuracy and to
save computational time.

2.2 Motivations

The regularization of the gravitational singularities, appeared at the begin-
ning of the XXth century, has become in the last decades an extremely useful
technique to deal with the numerical integration of the 𝑁-body problems. Par-
ticularly two kinds of regularization techniques are widely known: a geometric
one, which basically aims to modify the equations of motion such that they are
deőned and regular even on the singularities, and a solution-based one, whose
goal consists in an analytic continuation of the original solution through the
singular point. In this chapter we focus precisely on the former.

A special case of utmost importance, and central for this thesis, is rep-
resented by the restricted three-body problem, originally in its circular and
then elliptic variant. In his celebrated paper [57] Levi-Civita performed a local
regularization3 of the planar CR3BP, which relies on the conservation of the
Jacobi integral (1.76), through the introduction of canonical transformations
and a time reparametrization that nowadays are known, after his name, as
Levi-Civita (LC) regularization. The issue for the spatial CR3BP was solved
by Kustaanheimo and Stiefel in the mid-1990s [51, 52]. The latter procedure
is more complicated than the LC one since it exploits a projection map from
a space of four redundant variables to the three-dimensional Cartesian space.
Both LC and KS regularizations are iso-energetic, since they exploit the existence

3The global one is mainly due to Birkhoff [8].
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of a global őrst integral, that is the Jacobi constant. On the contrary, much less
attention has been devoted to the geometric regularization of the ER3BP, which
is complicated by the absence of any known integral of motion. The most rele-
vant references in this regard remain [99, 100] for the planar setting and [2, 98,
104] for the full one, which date back more or less to the same years. In both
cases the main idea consists in generalizing the respective circular counterpart,
but unlike the former, whose complete extension has been carried out resulting
in a system of integro-differential equations [100], the latter has been addressed
by Waldvogel, Stiefel and Arenstorf in their works [2, 98] by transferring to the
elliptic problem directly the global regularization theory, thus leaving the door
open for a further insight on the local case, especially on a possible alternative
derivation in view of the Hamiltonian formalism.

Although a local treatment represents a sort of sub-case of a simultaneous
removal of the two centers of attraction, it is more proőtable for the sake of
deőnition simplicity and resulting numerical implementation to rely to switch-
ing single body-centered regularizations rather than a full one, therefore our
focus is still meaningful, especially in virtue of ğ2.1. In light of such situation a
reasonable interest in accomplishing these purposes follows quite naturally. In
particular our goal here translates into obtaining a simpler construction of the
KS formulation for the spatial ER3BP drawing the inspiration from the paper
[9] about the CR3BP.

We hereby present a step-by-step construction of the regularization with
a őnal rigorous statement on the projection of the regularized solutions onto
the original ones, and related proof, which can be recognized as a symplec-
tic reduction of the KS phase space; secondarily, after a short description of
the algorithmic procedure employed, we perform numerical explorations in a
neighborhood of 𝒫1 and outlines quantitatively the gain as regards computa-
tional effort.

2.3 Kustaanheimo-Stiefel regularization of the el-

liptic restricted three-body problem

2.3.1 Formulation in the rotating-pulsating frame

The ER3BP is deőned by the motion of a body 𝒫 of negligible mass in the
gravitation őeld of two massive bodies 𝒫0 and 𝒫1, which trace this time an
elliptic Keplerian path. As usual, the simplifying assumptions on the units
correspond to setting

• 𝑚0 = 1 − 𝜇 and 𝑚1 = 𝜇 for the masses, where 𝜇 is given by (1.73);

• 𝑇1 = 2𝜋 for the period of the elliptic motion (thus 𝒢 = 1);

• 𝑎1 = 1 for the semi-major axis of the elliptic motion.

The Hamiltonian of the problem is conveniently expressed in a rotating-pulsating
Cartesian frame𝑂𝑥𝑦𝑧 [99] with the classic simpliőcation of explicit dependence
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on the true anomaly 𝑓1 ∈ T of the elliptic motion of 𝒫1 taken as independent
variable [95] (in which, henceforth, we shall drop the subscript ł1ž for the sake
of notational simplicity and clarity in treating this angle as a variable). In such
a reference system, the bodies 𝒫0, 𝒫1 have coordinates (−𝜇, 0, 0), (1 − 𝜇, 0, 0)
respectively. By denoting with (𝑥, 𝑦, 𝑧), (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) the coordinates of 𝒫 and
their conjugate momenta, the Hamiltonian in question reads

ℋ(𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝑓 ) =
1

2
(𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧) + 𝑝𝑥𝑦 − 𝑥𝑝𝑦

− 1

1 + 𝑒1 cos 𝑓

(
1 − 𝜇
𝑑0
+ 𝜇

𝑑1
− 1

2
𝑒1 cos 𝑓 (𝑥2 + 𝑦2 + 𝑧2)

)
, (2.2)

where 𝑑0, 𝑑1 are given by (1.75) and 0 ≤ 𝑒1 < 1 is the eccentricity of 𝒫0-𝒫1. The
derivation of (2.2) is detailed in Appendix A.

Even though the Hamiltonian (2.2) is the object of the KS regularization,
for reasons that will be clear after introducing the KS machinery, our starting
point is represented by the Lagrangian in 𝑂𝑥𝑦𝑧 (see Appendix A):

𝐿(𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′, 𝑓 ) = 1

2
((𝑥′)2 + (𝑦′)2 + (𝑧′)2) + 𝑥𝑦′ − 𝑥′𝑦

+ 1

1 + 𝑒1 cos 𝑓

(
1 − 𝜇
𝑑0
+ 𝜇

𝑑1
+ 1

2
(𝑥2 + 𝑦2 − 𝑧2𝑒1 cos 𝑓 )

)
, (2.3)

where the superscript denotes the derivative with respect to 𝑓 .
The origin of the coordinate axes is now moved to one of the two targeted
singular positions, say, hereafter, the secondary body’s location 𝒫1(1−𝜇, 0, 0):4

(𝑥 − 1 + 𝜇, 𝑦, 𝑧) = 𝑞 . (2.4)

Then (2.3) becomes

𝐿(𝑞, 𝑞′, 𝑓 ) = 1

2
∥𝑞′∥2 + 𝑞′ × (0, 0, 1) · 𝑞

+ 1

1 + 𝑒1 cos 𝑓

[
(1 − 𝜇)

(
1

∥𝑞 + (1, 0, 0)∥ + 𝑞1

)

+ 𝜇

∥𝑞∥ +
1

2
(𝑞2

1 + 𝑞2
2 − 𝑞2

3𝑒1 cos 𝑓 )
]
, (2.5)

where the addenda 𝑞′ × (0, 0, 1) · (1 − 𝜇, 0, 0) and (1 − 𝜇)2/(2(1 + 𝑒1 cos 𝑓 )) are
dropped because they do not contribute to the Lagrange’s equations.

2.3.2 The space of redundant variables

Following [9] and reprising their argument to the elliptic problem, we introduce
the Kustaanheimo-Stiefel space map as a projection from a space of redundant

4The local regularization at the primary body 𝑃0 could be introduced following the same
scheme. We here focus on the regularization at 𝑃1 because it is particularly relevant for
applications to the motion of asteroids, comets and space-ŕight dynamics.
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variables 𝑢1, 𝑢2, 𝑢3, 𝑢4 to a space of Cartesian variables 𝑞1, 𝑞2, 𝑞3:

𝜋 : R4 −→ R3

𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) ↦−→ 𝜋(𝑢) = (𝑞1, 𝑞2, 𝑞3) = 𝑞
(2.6)

where
(𝑞1, 𝑞2, 𝑞3, 0) = 𝐴(𝑢)𝑢 (2.7)

and

𝐴(𝑢) =
©­­­
«

𝑢1 −𝑢2 −𝑢3 𝑢4

𝑢2 𝑢1 −𝑢4 −𝑢3

𝑢3 𝑢4 𝑢1 𝑢2

𝑢4 −𝑢3 𝑢2 −𝑢1

ª®®®
¬

(2.8)

is a matrix that plays a central role in the KS regularization. In particular, 𝐴(𝑢)
fulőlls the two properties below.

(i) It is a linear homogeneous function of 𝑢1, 𝑢2, 𝑢3, 𝑢4.

(ii) It satisőes
𝐴(𝑢)𝐴𝑇(𝑢) = 𝐴𝑇(𝑢)𝐴(𝑢) = ∥𝑢∥ I , (2.9)

hence ∥𝑢∥2 = 𝑑1.

Remark 2.3.1. The two properties above are necessary to move forward and
are peculiar of 𝑛 × 𝑛 matrices only with 𝑛 = 1, 2, 4, 8, as discovered by Hurwitz
in one of his number theory result [48]; the lack of this result for 𝑛 = 3 thus
gives reason to pass to a four-dimensional space. Particularly, the KS map can
be rephrased equivalently using quaternions H:

𝜋 : H � R4 −→ IH � R3

𝑤 = 𝑤1 + 𝑤2i + 𝑤3j + 𝑤4k ↦−→ 𝜋(𝑤) = 𝑤i𝑤
,

with i2 = j2 = k2
= ĳk = −1, 𝑤 = 𝑤1+𝑤2i+𝑤3j+𝑤4k and IH = {𝑤 ∈ H | Re𝑤 =

0}.
We apply now (2.7) to (2.5) exploiting (2.9) and the relationship by simple
differentiation

(𝑞′1, 𝑞′2, 𝑞′3, 0) =
(
𝜕𝜋

𝜕𝑢
(𝑢)𝑢′, 0

)
= 2𝐴(𝑢)𝑢′ − 2(0, 0, 0, 𝑙(𝑢, 𝑢′)) , (2.10)

in which
𝑙(𝑢, 𝑢′) ≔ 𝑢4𝑢

′
1 − 𝑢3𝑢

′
2 + 𝑢2𝑢

′
3 − 𝑢1𝑢

′
4 (2.11)

is the bilinear form appearing in the usual KS regularization, that has a very
important and fundamental role in the regularizing procedure, as it will be
appreciated subsequently.

ℒ(𝑢, 𝑢′, 𝑓 ) = 𝐿

(
𝜋(𝑢), 𝜕𝜋

𝜕𝑢
(𝑢)𝑢′, 𝑓

)
= 2 ∥𝑢∥2 ∥𝑢′∥2 − 2𝑙2(𝑢, 𝑢′) + 𝑏(𝑢) · 𝑢′

+ 1

1 + 𝑒1 cos 𝑓

[
(1 − 𝜇)

(
1

∥𝜋(𝑢) + (1, 0, 0)∥ + 𝜋1(𝑢)
)

+ 𝜇

∥𝑢∥2
+ 1

2
(𝜋2

1(𝑢) + 𝜋2
2(𝑢) − 𝜋2

3(𝑢)𝑒1 cos 𝑓 )
]
, (2.12)
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for

𝑏(𝑢) = 2𝐴𝑇(𝑢)Λ𝐴(𝑢)𝑢 , Λ =

©­­­
«

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

ª®®®
¬
∈ Skew(4) (2.13)

and Skew(4) is the vector space of 4 × 4 (real) skew-symmetric matrices. The
computation is straightforward, the only contribution that needs a little work
is

𝜕𝜋

𝜕𝑢
𝑢′ × (0, 0, 1) · 𝜋 ;

recall that, thanks to the representation theorem of skew-symmetric operators,

∀𝑣 ∈ R3 and 𝜔 = (𝜔1, 𝜔2, 𝜔3) ∈ R3, ∃!Λ ∈ Skew(3) such that

𝜔 × 𝑣 = Λ𝑣 , Λ =
©­
«

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

ª®
¬
,

thence setting 𝜔 = (0, 0, 1),
𝜕𝜋

𝜕𝑢
𝑢′ × (0, 0, 1) = −Λ𝜕𝜋

𝜕𝑢
𝑢′ .

Therefore re-adding the fourth dimension and performing the scalar product
it yields

−Λ𝜕𝜋

𝜕𝑢
𝑢′ · 𝜋 = −

(
Λ
𝜕𝜋

𝜕𝑢
𝑢′, 0

)
· (𝜋, 0) = −Λ ©­

«
𝜕𝜋

𝜕𝑢
𝑢′

0

ª®
¬
· (𝜋, 0)

= −Λ(2𝐴𝑢′ − 2(0, 0, 0, 𝑙)) · 𝐴𝑢 .
Then

−Λ
©­­­
«
2𝐴𝑢′ − 2

©­­­
«

0
0
0
𝑙

ª®®®
¬
ª®®®
¬
· 𝐴𝑢 = −2Λ𝐴𝑢′ · 𝐴𝑢 = 2𝑢′ · 𝐴𝑇Λ𝐴𝑢 = 𝑏(𝑢) · 𝑢′ .

The őrst task consists in proving the speciőc invariance of Lagrange’s equa-
tions under the transformation at issue. In practice, the solutions of Lagrange’s
equations for ℒ(𝑢, 𝑢′, 𝑓 ), which we write using the operator notation

[ℒ]𝑖(𝑢, 𝑢′, 𝑢′′, 𝑓 ) =
d

d 𝑓

𝜕ℒ

𝜕𝑢′
𝑖

− 𝜕ℒ

𝜕𝑢𝑖
= 0 , 𝑖 = 1, 2, 3, 4 , (2.14)

have to be compared with the solutions of Lagrange’s equations for 𝐿(𝑞, 𝑞′, 𝑓 ),
denoted by

〈
𝐿
〉
𝑖
(𝑞, 𝑞′, 𝑞′′, 𝑓 ) = d

d 𝑓

𝜕𝐿

𝜕𝑞′
𝑗

− 𝜕𝐿

𝜕𝑞 𝑗
= 0 , 𝑗 = 1, 2, 3 . (2.15)

With the following statement it turns out that this requirement is fulőlled as
soon as the solution 𝑢( 𝑓 ) ≠ 0 for all 𝑓 ∈ T.
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Proposition 2.3.1. If𝑢( 𝑓 ) is a solution of Lagrange’s equations associated toℒ(𝑢, 𝑢′, 𝑓 )
with initial condition 𝑢(0) ≠ 0, then 𝑞( 𝑓 ) = 𝜋(𝑢( 𝑓 )) is a solution of Lagrange’s equa-
tions associated to 𝐿(𝑞, 𝑞′, 𝑓 ) as soon as 𝑢( 𝑓 ) ≠ 0.

Proof. For any smooth curve 𝑢( 𝑓 ), reminding that

ℒ(𝑢, 𝑢′, 𝑓 ) = 𝐿

(
𝜋(𝑢), 𝜕𝜋

𝜕𝑢
(𝑢)𝑢′, 𝑓

)
,

as well as
𝜕𝑞′

𝜕𝑢′
=
𝜕𝜋

𝜕𝑢
,

one gets from the chain rule

𝜕ℒ

𝜕𝑢′
𝑖

=

3∑
𝑗=1

𝜕𝐿

𝜕𝑞′
𝑗

𝜕𝑞′
𝑗

𝜕𝑢′
𝑖

=

3∑
𝑗=1

𝜕𝐿

𝜕𝑞′
𝑗

𝜕𝜋 𝑗

𝜕𝑢𝑖

and

d

d 𝑓

𝜕ℒ

𝜕𝑢′
𝑖

=

3∑
𝑗=1

d

d 𝑓

𝜕𝐿

𝜕𝑞′
𝑗

𝜕𝜋 𝑗

𝜕𝑢𝑖
+

3∑
𝑗=1

𝜕𝐿

𝜕𝑞′
𝑗

d

d 𝑓

𝜕𝜋 𝑗

𝜕𝑢𝑖

=

3∑
𝑗=1

d

d 𝑓

𝜕𝐿

𝜕𝑞′
𝑗

𝜕𝜋 𝑗

𝜕𝑢𝑖
+

3∑
𝑗=1

𝜕𝐿

𝜕𝑞′
𝑗

4∑
𝑘=1

𝜕2𝜋 𝑗

𝜕𝑢𝑖𝜕𝑢𝑘
𝑢′𝑘 ,

𝜕ℒ

𝜕𝑢𝑖
=

3∑
𝑗=1

𝜕𝐿

𝜕𝑞 𝑗

𝜕𝜋 𝑗

𝜕𝑢𝑖
+

3∑
𝑗=1

𝜕𝐿

𝜕𝑞′
𝑗

4∑
𝑘=1

𝜕2𝜋 𝑗

𝜕𝑢𝑖𝜕𝑢𝑘
𝑢′𝑘 ,

for 𝑖 = 1, 2, 3, 4. As a consequence we have

[ℒ](𝑢( 𝑓 ), 𝑢′( 𝑓 ), 𝑢′′( 𝑓 ), 𝑓 )

=

(
𝜕𝜋

𝜕𝑢
(𝑢( 𝑓 ))

)𝑇 〈
𝐿
〉 (

𝜋(𝑢( 𝑓 )), d

d 𝑓
𝜋(𝑢( 𝑓 )), d2

d 𝑓 2
𝜋(𝑢( 𝑓 )), 𝑓

)

where [ℒ] ∈ R4,
〈
𝐿
〉
∈ R3 are the vectors of components respectively [ℒ]𝑖 ,〈

𝐿
〉
𝑗
.

Since by assumption [ℒ]𝑖(𝑢( 𝑓 ), 𝑢′( 𝑓 ), 𝑢′′( 𝑓 ), 𝑓 ) = 0, the vector

〈
𝐿
〉 (

𝜋(𝑢( 𝑓 )), d

d 𝑓
𝜋(𝑢( 𝑓 )), d2

d 𝑓 2
𝜋(𝑢( 𝑓 )), 𝑓

)

is for any 𝑓 in the kernel of the matrix (𝜕𝜋(𝑢( 𝑓 ))/𝜕𝑢)𝑇 . We claim that the kernel
of (𝜕𝜋(𝑢( 𝑓 ))/𝜕𝑢)𝑇 contains only (0, 0, 0) if 𝑢 ≠ 0. In fact, an element (𝛼, 𝛽, 𝛾) is
in the kernel of (𝜕𝜋(𝑢( 𝑓 ))/𝜕𝑢)𝑇 if and only if its components satisfy the system:




𝑢1𝛼 + 𝑢2𝛽 + 𝑢3𝛾 = 0

−𝑢2𝛼 + 𝑢1𝛽 + 𝑢4𝛾 = 0

−𝑢3𝛼 − 𝑢4𝛽 + 𝑢1𝛾 = 0

𝑢4𝛼 − 𝑢3𝛽 + 𝑢2𝛾 = 0

,
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which admits the unique solution 𝛼 = 𝛽 = 𝛾 = 0 as long as at least one of the
components of 𝑢 is different from zero.

This implies
〈
𝐿
〉
(𝜋(𝑢( 𝑓 )), d𝜋(𝑢( 𝑓 ))/d 𝑓 , d2𝜋(𝑢( 𝑓 ))/d 𝑓 2, 𝑓 ) = 0 and 𝑞( 𝑓 ) = 𝜋(𝑢( 𝑓 ))

is a solution of the Lagrange’s equations of 𝐿. □

2.3.3 The modified Lagrangian

The second matter to tackle regards the Legendre transform (necessary to
deduce in the next ğ2.3.5 the corresponding transformed Hamiltonian and
then proceed with the development):

𝜕ℒ

𝜕𝑢′
=

(
𝜕ℒ

𝜕𝑢′
1

,
𝜕ℒ

𝜕𝑢′2
,
𝜕ℒ

𝜕𝑢′3
,
𝜕ℒ

𝜕𝑢′
4

)
= 4 ∥𝑢∥2 𝑢′ − 4(Ω𝑢 · 𝑢′)Ω𝑢 + 𝑏(𝑢) , (2.16)

where

Ω =

©­­­
«

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

ª®®®
¬
∈ Skew(4) (2.17)

is an ad hoc permutation matrix coming from the bilinear form term (𝑙(𝑢, 𝑢′) =
Ω𝑢·𝑢′), which is not invertible with respect to the generalized velocities, because
the Hessian matrix

ℋ𝑢′ =

(
𝜕2ℒ

𝜕𝑢′
𝑖
𝜕𝑢′

𝑗

)
, 𝑖 , 𝑗 ∈ {1, 2, 3, 4} , (2.18)

is identically singular, indeed

detℋ𝑢′ = det

©­­­­
«

4 ∥𝑢∥2 − 4𝑢2
4

4𝑢3𝑢4 −4𝑢2𝑢4 4𝑢1𝑢4

4𝑢3𝑢4 4 ∥𝑢∥2 − 4𝑢2
3 4𝑢2𝑢3 −4𝑢1𝑢3

−4𝑢2𝑢4 4𝑢2𝑢3 4 ∥𝑢∥2 − 4𝑢2
2 4𝑢1𝑢2

4𝑢1𝑢4 −4𝑢1𝑢3 4𝑢1𝑢2 4 ∥𝑢∥2 − 4𝑢2
1

ª®®®®
¬

= 256 ∥𝑢∥6 (∥𝑢∥2 − ∥𝑢∥2) = 0 .

This criticality is due to the presence of the degenerate quadratic form in 𝑢′

variables 2 ∥𝑢∥2 ∥𝑢′∥2 − 2𝑙2(𝑢, 𝑢′) in (2.12), that makes the implicit function
theorem not applicable.
To overcome the degeneracy we proceed as in [9]: it is proőtable to change the
Lagrangian just by adding two times the square of the bilinear form (so that
−2𝑙2 vanishes). Such artiőce precisely allows to restore the invertibility, thereby

ℒ(𝑢, 𝑢′, 𝑓 ) = ℒ(𝑢, 𝑢′, 𝑓 ) + 2𝑙2(𝑢, 𝑢′) = 2 ∥𝑢∥2 ∥𝑢′∥2 + 𝑏(𝑢) · 𝑢′

+ 1

1 + 𝑒1 cos 𝑓

[
(1 − 𝜇)

(
1

∥𝜋(𝑢) + (1, 0, 0)∥ + 𝜋1(𝑢)
)

+ 𝜇

∥𝑢∥2
+ 1

2
(𝜋2

1(𝑢) + 𝜋2
2(𝑢) − 𝜋2

3(𝑢)𝑒1 cos 𝑓 )
]

(2.19)
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is the modiőed Lagrangian and in fact, introducing the KS momenta 𝑈 =

(𝑈1, 𝑈2, 𝑈3, 𝑈4) conjugate to 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4), the relationship

𝑈 =
𝜕ℒ
𝜕𝑢′
(𝑢, 𝑢′) = 4 ∥𝑢∥2 𝑢′ + 𝑏(𝑢) (2.20)

is non-degenerate (thus invertible) in 𝑢′ for 𝑢 ≠ 0.

2.3.4 Rotational invariance of the modified Lagrangian

The sum of the quadratic expression 2𝑙2(𝑢, 𝑢′) of course alters ℒ(𝑢, 𝑢′, 𝑓 ) and
again one has to make sure that such action is legitimized under appropriate
conditions (until now 𝑢( 𝑓 ) ≠ 0 always). Let then the investigation begin by
realizing the well known remarkable symmetry property of the KS transfor-
mation.

Proposition 2.3.2. The modiőed Lagrangian ℒ(𝑢, 𝑢′, 𝑓 ) is invariant under the one-
parameter family of transformations involving the redundant coordinates

𝑆𝜃 : R4 −→ R4

𝑢 ↦−→ 𝑆𝜃𝑢
, (2.21)

where 𝑆𝜃 ∈ 𝑆𝑂(4) is the four-dimensional rotation matrix

𝑆𝜃 =

©­­­
«

cos𝜃 0 0 − sin𝜃
0 cos𝜃 sin𝜃 0
0 − sin𝜃 cos𝜃 0

sin𝜃 0 0 cos𝜃

ª®®®
¬
, (2.22)

whose orbits deőne the őbers of the projection 𝜋, i.e. 𝜋(𝑆𝜃𝑢) = 𝜋(𝑢) for all 𝜃 ∈ T.
More precisely

ℒ(𝑆𝜃𝑢, 𝑆𝜃𝑢′, 𝑓 ) = ℒ(𝑢, 𝑢′, 𝑓 ) . (2.23)

Proof. First off

(𝜋(𝑆𝜃𝑢), 0) = 𝐴(𝑆𝜃𝑢)𝑆𝜃𝑢 = 𝐴(𝑢)𝑆𝑇𝜃𝑆𝜃𝑢 = 𝐴(𝑢)𝑢 = (𝜋(𝑢), 0) ,

and

𝑏(𝑆𝜃𝑢) = 2𝐴𝑇(𝑆𝜃𝑢)Λ𝐴(𝑆𝜃𝑢)𝑆𝜃𝑢 = 2𝑆𝜃𝐴
𝑇(𝑢)Λ𝐴(𝑢)𝑢 = 𝑆𝜃𝑏(𝑢) .

So
ℒ(𝑆𝜃𝑢, 𝑆𝜃𝑢′, 𝑓 ) = ℒ(𝑢, 𝑢′, 𝑓 ) ,

using the above results and the properties of orthogonal matrices. □

This fact implies that there exists, by Noether’s theorem, a conserved quantity

𝐽(𝑢, 𝑢′) = 𝜕ℒ
𝜕𝑢′
· d

d𝜃
𝑆𝜃𝑢

����
𝜃=0

= −4 ∥𝑢∥2 𝑙(𝑢, 𝑢′) − 𝑏(𝑢) ·Ω𝑢 = −4 ∥𝑢∥2 𝑙(𝑢, 𝑢′)
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which is an autonomous őrst integral for the Lagrangian (2.19). For convenience
the őnal constant of motion is given by

𝒥(𝑢, 𝑢′) = ∥𝑢∥2 𝑙(𝑢, 𝑢′). (2.24)

If the bilinear form is cleverly zeroed out at 𝑓 = 0 (by proper initial conditions),
it will keep taking zero value for further 𝑓 (since we only consider time in-
tervals such that ∥𝑢∥ ≠ 0), so the extra factor 2𝑙2 would become a vanishing
contribution to the Lagrange’s equations.
According to such idea, the bilinear form assumes the meaning of non-holonomic
constraint5 to be respected along the motion and the őnal claim, whose proof
in the proposition below resolves completely the issue, that is the Lagrange’s
equations associated to ℒ have the same solutions of the Lagrange’s equations
associated to ℒ.

Proposition 2.3.3. If 𝑢( 𝑓 ) is a solution of the Lagrange’s equations of ℒ(𝑢, 𝑢′, 𝑓 )
with initial data 𝑢(0), 𝑢′(0) satisfying 𝑢(0) ≠ 0 and 𝑙(𝑢(0), 𝑢′(0)) = 0, then it is also
a solution of the Lagrange’s equations of ℒ(𝑢, 𝑢′, 𝑓 ) as long as 𝑢( 𝑓 ) ≠ 0.

Proof. Consider a solution 𝑢( 𝑓 ) of the ℒ-equations with 𝑢(0) ≠ 0 and 𝑙(𝑢(0),
𝑢′(0)) = 0. As long as 𝑢( 𝑓 ) ≠ 0, by (2.24), 𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 )) = 0. Moreover

d

d 𝑓
𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 )) = 𝑙(𝑢′( 𝑓 ), 𝑢′( 𝑓 )) + 𝑙(𝑢( 𝑓 ), 𝑢′′( 𝑓 )) = 𝑙(𝑢( 𝑓 ), 𝑢′′( 𝑓 )) .

Now 𝑢( 𝑓 ) solves the Lagrange’s equations for ℒ too, in fact, referring to the
previous notation (2.14), for any 𝑖 = 1, 2, 3, 4,

[ℒ]𝑖 = [ℒ − 2𝑙2]𝑖 = [ℒ]𝑖 − 2

(
d

d 𝑓

𝜕

𝜕𝑢′
𝑖

𝑙2(𝑢, 𝑢′) − 𝜕

𝜕𝑢𝑖
𝑙2(𝑢, 𝑢′)

)

= [ℒ]𝑖 − 4

[
d

d 𝑓

(
𝑙(𝑢, 𝑢′) 𝜕

𝜕𝑢′
𝑖

𝑙(𝑢, 𝑢′)
)
− 𝑙(𝑢, 𝑢′) 𝜕

𝜕𝑢𝑖
𝑙(𝑢, 𝑢′)

]

and when evaluated along the curve 𝑢( 𝑓 )

[ℒ]𝑖(𝑢( 𝑓 ), 𝑢′( 𝑓 ), 𝑢′′( 𝑓 ), 𝑓 ) = [ℒ]𝑖(𝑢( 𝑓 ), 𝑢′( 𝑓 ), 𝑢′′( 𝑓 ), 𝑓 )

− 4

(
𝑙(𝑢( 𝑓 ), 𝑢′′( 𝑓 )) 𝜕

𝜕𝑢′
𝑖

𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 )) + 𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 )) d

d 𝑓

𝜕

𝜕𝑢′
𝑖

𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 ))

− 𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 )) 𝜕
𝜕𝑢𝑖

𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 ))
)
= 0 ,

owing to 𝑙(𝑢( 𝑓 ), 𝑢′′( 𝑓 )) = 𝑙(𝑢( 𝑓 ), 𝑢′( 𝑓 )) = 0. □

5We remind that non-holonomic constraints acting on mechanical systems are constraints
on the velocities that are not derivatives of constraints in positions.
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2.3.5 The regularized Hamiltonian

The corresponding singular, i.e. non-regularized, Hamiltonian enters now by
performing the Legendre transform:

𝒦(𝑢,𝑈, 𝑓 ) = 𝑈 · 𝑔(𝑢,𝑈) − ℒ(𝑢, 𝑔(𝑢,𝑈), 𝑓 ) , (2.25)

where

𝑢′ = 𝑔(𝑢,𝑈) = 𝑈 − 𝑏(𝑢)
4 ∥𝑢∥2

is the inverse of𝑈 with respect to 𝑢′; more explicitly we have

𝒦(𝑢,𝑈, 𝑓 ) = 1

8 ∥𝑢∥2
∥𝑈 − 𝑏(𝑢)∥2

− 1

1 + 𝑒1 cos 𝑓

[
(1 − 𝜇)

(
1

∥𝜋(𝑢) + (1, 0, 0)∥ + 𝜋1(𝑢)
)

+ 𝜇

∥𝑢∥2
+ 1

2
(𝜋1(𝑢)2 + 𝜋2(𝑢)2 − 𝜋3(𝑢)2𝑒1 cos 𝑓 )

]
(2.26)

and the bilinear equality 𝑙(𝑢, 𝑢′) = 0 straightforwardly translates in the Hamil-
tonian formalism as 𝑙(𝑢,𝑈) = 0 for 𝑢 ≠ 0, because

𝑙(𝑢, 𝑢′) = 𝑙(𝑢, 𝑔(𝑢,𝑈)) = 1

4 ∥𝑢∥2
𝑙(𝑢,𝑈) − 1

4 ∥𝑢∥2
𝑙(𝑢, 𝑏(𝑢)) ,

but 𝑙(𝑢, 𝑏(𝑢)) = Ω𝑢 · 𝑏(𝑢) = 0 identically, hence we have 𝑙(𝑢, 𝑢′) = 0 if and only
if 𝑙(𝑢,𝑈) = 0.

With all this in hand it is useful to work with an autonomous extension of
the transformed Hamiltonian 𝒦. So we append one more degree of freedom to
form the extended phase space𝑇∗((R4\𝒞)×T), where𝑇∗· denotes the cotangent
bundle of ·, and

𝒞 = {(0, 0, 0, 0)} ∪
{(

0, 𝑢2,±
√

1 − 𝑢2
2 , 0

)
, 𝑢2 ∈ R

}
(2.27)

is the collision set in KS coordinates, with the extra couple of variables (𝜙,Φ) ∈
T×R and standard symplectic form d𝑢∧d𝑈+d𝜙∧dΦ (d𝑢∧d𝑈 =

∑4
𝑖=1 d𝑢𝑖∧d𝑈𝑖),

in such a way to build the autonomous transformed Hamiltonian

𝒦 (𝑢, 𝜙, 𝑈,Φ) = 𝒦(𝑢,𝑈, 𝜙) +Φ , (2.28)

and consider the solutions 𝑢( 𝑓 ), 𝑈( 𝑓 ), 𝜙( 𝑓 ),Φ( 𝑓 ) of the Hamilton’s equations
of (2.28) such that, for given initial value 𝑓0 of the true anomaly, satisfy

𝑢( 𝑓0) = 𝑢0 , 𝑈( 𝑓0) = 𝑈0 , 𝜙( 𝑓0) = 𝑓0 , Φ( 𝑓0) = −𝒦(𝑢0, 𝑈0, 𝑓0) .
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At this point we perform a rescaling similar to the one in the Levi-Civita
regularization, and deőne the regularized Hamiltonian

𝒦(𝑢, 𝜙, 𝑈,Φ) = ∥𝑢∥2 𝒦 (𝑢, 𝜙, 𝑈,Φ) = 1

8
∥𝑈 − 𝑏(𝑢)∥2

− 1

1 + 𝑒1 cos𝜙

[
(1 − 𝜇) ∥𝑢∥2

(
1

∥𝜋(𝑢) + (1, 0, 0)∥ + 𝜋1(𝑢)
)
+ 𝜇

+ 1

2
∥𝑢∥2 (𝜋2

1(𝑢) + 𝜋2
2(𝑢) − 𝜋2

3(𝑢)𝑒1 cos𝜙) + (1 − 𝜇)
2

2
∥𝑢∥2

]
+Φ ∥𝑢∥2 . (2.29)

Remark 2.3.2.

• For 𝑒1 = 0, the action Φ is a constant of motion and the Hamiltonian (2.29)
is identical to the KS Hamiltonian of the CR3BP, as represented in [9] with
Φ = −𝐸.

• 𝒦(𝑢, 𝜙, 𝑈,Φ) is invariant under the same one-parameter family of trans-
formations deőned by (2.21) and (2.22), hence 𝒥(𝑢, 𝑔(𝑢,𝑈)) = 𝑙(𝑢,𝑈) is
a őrst integral also for the Hamilton’s equations of𝒦(𝑢, 𝜙, 𝑈,Φ).

• Hamiltonian (2.29) is regular at 𝑢 = 0.

2.3.6 Projection of the solutions of the regularized Hamilto-

nian

Let us prove that the solutions of the Hamilton’s equations of the regularized
Hamiltonian (2.29) project on the Hamilton’s solutions of the Hamiltonian (2.2)
of the ER3BP. Similarly to the classic LC and KS techniques we need an inde-
pendent variable redeőnition, which for the ER3BP is obtained by introducing
the őctitious true anomaly 𝑠 such that:

𝑠′( 𝑓 ) = 1

∥𝑢( 𝑓 )∥2
, 𝑠( 𝑓0) = 0 , (2.30)

whose inverse is precisely 𝜕𝒦/𝜕Φ. Thereby we state our result.

Theorem 2.3.1. The solutions (𝑢(𝑠), 𝜙(𝑠), 𝑈(𝑠),Φ(𝑠)) of Hamilton’s equations related
to𝒦(𝑢, 𝜙, 𝑈,Φ) with initial conditions satisfying

(i) 𝑢(0) ≠ 0,

(ii) 𝑙(𝑢(0), 𝑈(0)) = 0,

(iii) 𝒦(𝑢(0), 𝜙(0), 𝑈(0),Φ(0)) = 0

project, for 𝑠 in a neighborhood of 𝑠 = 0, via the true anomaly reparametrization:

𝑓 (𝑠) = 𝑓0 +
∫ 𝑠

0
∥𝑢(𝜎)∥2 d𝜎 , (2.31)

the transformation (2.7) and the translation (2.4), onto solutions (𝑥( 𝑓 ), 𝑦( 𝑓 ), 𝑧( 𝑓 ),
𝑝1( 𝑓 ), 𝑝2( 𝑓 ), 𝑝3( 𝑓 )) of the Hamilton’s equations of Hamiltonian (2.2).
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Proof. In light of what already derived in the previous subsections, we only
need to prove the equivalence between the solutions associated to the trans-

formed Hamilton’s function 𝒦 and the regularized function 𝒦 . Given the

initial conditions 𝑢0, 𝑈0, 𝑓0, let us consider the solution (𝑢̃(𝑠), 𝜙̃(𝑠), 𝑈(𝑠), Φ̃(𝑠))
of the Hamilton’s equations of𝒦 with

𝑢̃(0) = 𝑢0 , 𝑈(0) = 𝑈0 𝜙̃(0) = 𝑓0 Φ̃(0) = −𝒦(𝑢0, 𝑈0, 𝑓0) ,

and 𝑠 in a neighborhood of 𝑠 = 0 such that ∥𝑢̃(𝑠)∥ > 0; in particular we have

𝒦(𝑢̃(𝑠), 𝜙̃(𝑠), 𝑈(𝑠), Φ̃(𝑠)) = 0

for all 𝑠. Next, consider

𝑓 (𝑠) = 𝑓0 +
∫ 𝑠

0
∥𝑢̃(𝜎)∥2 d𝜎 ,

which is invertible (since in the neighborhood of 𝑠 = 0 we have ∥𝑢̃(𝑠)∥ > 0),
and (𝑢( 𝑓 ), 𝜙( 𝑓 ), 𝑈( 𝑓 ),Φ( 𝑓 )) deőned by

𝑢( 𝑓 ) = 𝑢̃(𝑠( 𝑓 )) , 𝑈( 𝑓 ) = 𝑈(𝑠( 𝑓 )) , 𝜙( 𝑓 ) = 𝜙̃(𝑠( 𝑓 )) , Φ( 𝑓 ) = Φ̃(𝑠( 𝑓 )) .

We claim that (𝑢( 𝑓 ), 𝜙( 𝑓 ), 𝑈( 𝑓 ),Φ( 𝑓 )) are the solutions of the Hamilton’s equa-

tions of 𝒦 with initial conditions

(𝑢( 𝑓0), 𝜙( 𝑓0), 𝑈( 𝑓0),Φ( 𝑓0)) = (𝑢0, 𝑓0, 𝑈0,−𝒦(𝑢0, 𝑈0, 𝑓0)) .

In fact, for 𝑖 ∈ {1, 2, 3, 4}, we have

d𝑢𝑖
d 𝑓

=
d𝑠

d 𝑓

d𝑢̃𝑖
d𝑠

����
𝑠=𝑠( 𝑓 )

=
1

∥𝑢̃(𝑠( 𝑓 ))∥2

[
𝜕

𝜕𝑈𝑖

(
∥𝑢∥2 𝒦

)] ����
(𝑢,𝑈,𝜙,Φ)=(𝑢̃(𝑠),𝜙̃(𝑠),𝑈(𝑠),Φ̃(𝑠)), 𝑠=𝑠( 𝑓 )

=

[
𝜕

𝜕𝑈𝑖
𝒦

]
(𝑢̃(𝑠( 𝑓 )), 𝜙̃(𝑠( 𝑓 )), 𝑈(𝑠( 𝑓 )), Φ̃(𝑠( 𝑓 )))

=

[
𝜕

𝜕𝑈𝑖
𝒦

]
(𝑢( 𝑓 ), 𝜙( 𝑓 ), 𝑈( 𝑓 ),Φ( 𝑓 )) ,

as well as

d𝜙

d 𝑓
=

d𝑠

d 𝑓

d𝜙̃

d𝑠

����
𝑠=𝑠( 𝑓 )

=
1

∥𝑢̃(𝑠( 𝑓 ))∥2

[
𝜕

𝜕Φ

(
∥𝑢∥2 𝒦

)] ����
(𝑢,𝑈,𝜙,Φ)=(𝑢̃(𝑠),𝜙̃(𝑠),𝑈(𝑠),Φ̃(𝑠)), 𝑠=𝑠( 𝑓 )

=
𝜕𝒦

𝜕Φ
= 1
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and

d𝑈𝑖

d 𝑓
=

d𝑠

d 𝑓

d𝑈𝑖

d𝑠

����
𝑠=𝑠( 𝑓 )

= − 1

∥𝑢̃(𝑠( 𝑓 ))∥2

[
𝜕

𝜕𝑢𝑖

(
∥𝑢∥2 𝒦

)] ����
(𝑢,𝑈,𝜙,Φ)=(𝑢̃(𝑠),𝜙̃(𝑠),𝑈(𝑠),Φ̃(𝑠)), 𝑠=𝑠( 𝑓 )

= −
[
𝜕

𝜕𝑢𝑖
𝒦

]
(𝑢̃(𝑠( 𝑓 )), 𝜙̃(𝑠( 𝑓 )), 𝑈(𝑠( 𝑓 )), Φ̃(𝑠( 𝑓 )))

= −
[
𝜕

𝜕𝑢𝑖
𝒦

]
(𝑢( 𝑓 ), 𝜙( 𝑓 ), 𝑈( 𝑓 ),Φ( 𝑓 )) ,

where to obtain the second equality we used 𝒦(𝑢̃(𝑠), 𝜙̃(𝑠), 𝑈(𝑠), Φ̃(𝑠)) = 0.
Finally, we also have

dΦ

d 𝑓
=

d𝑠

d 𝑓

dΦ̃

d𝑠

����
𝑠=𝑠( 𝑓 )

= − 1

∥𝑢̃(𝑠( 𝑓 ))∥2

[
𝜕

𝜕𝜙

(
∥𝑢∥2 𝒦

)] ����
(𝑢,𝑈,𝜙,Φ)=(𝑢̃(𝑠),𝜙̃(𝑠),𝑈(𝑠),Φ̃(𝑠)), 𝑠=𝑠( 𝑓 )

= −
[
𝜕

𝜕𝜙
𝒦

]
(𝑢̃(𝑠( 𝑓 )), 𝜙̃(𝑠( 𝑓 )), 𝑈(𝑠( 𝑓 )), Φ̃(𝑠( 𝑓 )))

= −
[
𝜕

𝜕𝜙
𝒦

]
(𝑢( 𝑓 ), 𝜙( 𝑓 ), 𝑈( 𝑓 ),Φ( 𝑓 )) .

□

Remark 2.3.3. The correspondence between the initial conditions of the solu-
tions to the Hamilton’s equations with regularized Hamiltonian𝒦

(𝑢1(0), 𝑢2(0), 𝑢3(0), 𝑢4(0), 𝜙(0), 𝑈1(0), 𝑈2(0), 𝑈3(0), 𝑈4(0),Φ(0))

and the Cartesian set

(𝑥( 𝑓0), 𝑦( 𝑓0), 𝑧( 𝑓0), 𝑝𝑥( 𝑓0), 𝑝𝑦( 𝑓0), 𝑝𝑧( 𝑓0))

is clearly not of type one-to-one, leading to many possible real solutions all of
them acceptable. It turns out that to close the problem one has some freedom
on 𝑢(0) to exploit, provided the conditions on the initial bilinear form and
energy level of Theorem 2.3.1, for example by simply zeroing out 𝑢3(0) or 𝑢4(0).
We exhibit two possible local inversions in ğ2.3.7.

As in the CR3BP, it is always possible to canonically extend the KS map

to conjugate momenta that matches the solutions of the 𝒦-equations with

those of the ℋ̂ -equations, with ℋ̂ = ℋ + Φ autonomous version of (2.2), by
considering the bilinear form-induced restriction and taking the quotient space
by its characteristic foliation, i.e. the foliation by the orbits of the free circle
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action (2.21) (because, like 𝜋, 𝑙(𝑆𝜃𝑢, 𝑆𝜃𝑈) = 𝑙(𝑢,𝑈), as for any bilinear form in
general). Let

Γ =
{
(𝑢, 𝜙, 𝑈,Φ) ∈ 𝑇∗((R4 \ 𝒞) × T) : 𝑙(𝑢,𝑈) = 0

}
,

be the constrained phase space of (2.28). The mapping

Π : (R4 \ {(0, 0, 0, 0)}) × R4 −→ R3

(𝑢,𝑈) ↦−→ Π(𝑢,𝑈) = 𝑝̄ = (𝑝𝑥 , 𝑝𝑦 − 1 + 𝜇, 𝑝𝑧) , (2.32)

where

(𝑝̄ , 0) = (𝑝̄1, 𝑝̄2, 𝑝̄3, 0) =
1

2 ∥𝑢∥2
𝐴(𝑢)𝑈 , (2.33)

together with (2.6) induce a symplectic correspondence between Γ/𝒮, that
denotes the quotient of Γ by the group action of 𝒮 = ⟨𝑆𝜃 : 𝜃 ∈ T⟩ < 𝑆𝑂(4), and

the Cartesian phase space of ℋ̂ , namely

𝜋̄ : Γ/𝒮 −→ 𝑇∗((R3 \ {(−1, 0, 0), (0, 0, 0)}) × T)
(𝑢, 𝜙, 𝑈,Φ) ↦−→ 𝜋̄(𝑢, 𝜙, 𝑈,Φ) = (𝑞, 𝜙, 𝑝̄ ,Φ) , (2.34)

with 𝜋̄(𝑢, 𝜙, 𝑈,Φ) = (𝜋(𝑢), 𝜙,Π(𝑢,𝑈),Φ), is canonical. Indeed (2.34) preserves
the elementary Poisson brackets, because the only non-trivial veriőcations rest
on

{𝑝̄1, 𝑝̄2} =
𝜋3(𝑢)
2 ∥𝑢∥6

𝑙(𝑢,𝑈) ,

{𝑝̄1, 𝑝̄3} = −
𝜋2(𝑢)
2 ∥𝑢∥6

𝑙(𝑢,𝑈) ,

{𝑝̄2, 𝑝̄3} =
𝜋1(𝑢)
2 ∥𝑢∥6

𝑙(𝑢,𝑈) ,

which are all zero on Γ/𝒮. Notice, however, that this can be done only a poste-
riori, once Γ is identiőed by Theorem (2.3.1) and the earlier construction.
In the language of symplectic geometry, the argument rephrases more formally
as follows. The bilinear relation 𝑙(𝑢,𝑈) = 0 deőnes a 9-dimensional manifold
in the augmented phase space𝑇∗((R4\𝒞)×T) interpreted as properly őxing the
value of the moment map of the (Hamiltonian) 𝒮 action of the KS transforma-
tion; by standard symplectic reduction,6 the symplectic form d𝑢∧d𝑈+d𝜙∧dΦ
determines a symplectic form on the quotient Γ/𝒮, hence we get a symplec-
tic submanifold (Γ/𝒮 , (d𝑢 ∧ d𝑈 + d𝜙 ∧ dΦ)|Γ/𝒮). Finally, as showed above,
the KS transformation induces a symplectic diffeomorphism between Γ/𝒮 and
𝑇∗((R3 \ {(−1, 0, 0), (0, 0, 0)}) × T); the regularization is achieved by changing
time via (2.30) on a őxed zero energy surface of the Hamiltonian (2.28) and
extending this function through the pre-images of the collisions (cf. [109] and
references therein for more details on the geometry of the KS).

6This is the content of Marsden-Weinstein-Meyer theorem [64, 67], stating that on a sym-
plectic manifold (𝑀, 𝜂) with a Hamiltonian action of a compact Lie group 𝐺 and associated
moment map ℳ : 𝑀 → 𝔤∗, where 𝔤 is the Lie algebra of 𝐺, if 0 ∈ 𝔤∗ is a regular value of ℳ

such that 𝐺 acts freely on 𝑀 ≔ ℳ−1(0), then 𝑀/𝐺 is a symplectic manifold with symplectic
structure induced by 𝜂.
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2.3.7 Implementation procedure

We take advantage of the canonical extension at the end of ğ2.3.6 and rely to
the following roadmap to conduct the regularization numerically.

(i) Initial conditions. Pick a Cartesian datum (𝑥0, 𝑦0, 𝑧0, 𝑓0, 𝑝𝑥,0, 𝑝𝑦,0, 𝑝𝑧,0,Φ0)
s.t. (𝑥0, 𝑦0, 𝑧0) ∉ {(−𝜇, 0, 0), (1 − 𝜇, 0, 0)} with the choice

Φ0 = −ℋ(𝑥0, 𝑦0, 𝑧0, 𝑝𝑥,0, 𝑝𝑦,0, 𝑝𝑧,0, 𝑓0)

for the ℋ̂ -equations.

(ii) Transformed initial conditions. Find 𝑢0, 𝑈0 using the bilinear form rela-
tion plus the possible closing relationship 𝑢4,0 = 0 (Remark 2.3.3) and the
following atlas of local inversions of the map 𝜋̄ [9]

𝜋̄−1
− : 𝑇∗((R3 \ {(𝑞1, 0, 0) : 𝑞1 ≥ 0, 𝑞1 = −1}) × T) −→ Γ

𝜋̄−1
+ : 𝑇∗((R3 \ {(𝑞1, 0, 0) : 𝑞1 ≤ 0}) × T) −→ Γ

(2.35)

s.t.

𝜋̄−1
− (𝑞, 𝜙, 𝑝̄ ,Φ) =

(
𝜋−1
− (𝑞), 𝜙, 2𝐴(𝜋−1

− (𝑞))𝑇(𝑝̄ , 0),Φ
)

𝜋̄−1
+ (𝑞, 𝜙, 𝑝̄ ,Φ) =

(
𝜋−1
+ (𝑞), 𝜙, 2𝐴(𝜋−1

+ (𝑞))𝑇(𝑝̄ , 0),Φ
) , (2.36)

where

𝜋−1
− (𝑞) =

(
𝑞2√

2(𝑑 − 𝑞1)
,

√
𝑑 − 𝑞1

2
, 0,

𝑞3√
2(𝑑 − 𝑞1)

)

𝜋−1
+ (𝑞) =

(√
𝑑 + 𝑞1

2
,

𝑞2√
2(𝑑 + 𝑞1)

,
𝑞3√

2(𝑑 + 𝑞1)
, 0

) (2.37)

and 𝑑 =

√
𝑞2

1
+ 𝑞2

2 + 𝑞2
3.

(iii) Fictitious true anomaly span. Given a certain true anomaly frame
[ 𝑓0, 𝑓max] of interest, select a suitable integration interval [0, 𝑠max] accord-
ing to the fact that the parametric motion typically łslows downž while
approaching the singularity due to the rescaling (2.30), therefore tune
properly 𝑠max ≳ 𝑓max − 𝑓0 based on the case under consideration.

(iv) Solutions in redundant variables. Integrate the regularized𝒦 -ODEs.
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(v) Original solutions. Retrieve the originalℋ -solutions:




𝑥𝑘 = 𝑢
2
1,𝑘 − 𝑢

2
2,𝑘 − 𝑢

2
3,𝑘 + 𝑢

2
4,𝑘 + 1 − 𝜇

𝑦𝑘 = 2𝑢1,𝑘𝑢2,𝑘 − 2𝑢3,𝑘𝑢4,𝑘

𝑧𝑘 = 2𝑢3,𝑘𝑢1,𝑘 + 2𝑢4,𝑘𝑢2,𝑘

𝑝𝑥,𝑘 =
1

2∥𝑢𝑘 ∥2
(𝑢1,𝑘𝑈1,𝑘 − 𝑢2,𝑘𝑈2,𝑘 − 𝑢3,𝑘𝑈3,𝑘 + 𝑢4,𝑘𝑈4,𝑘)

𝑝𝑦,𝑘 =
1

2∥𝑢𝑘 ∥2
(𝑢2,𝑘𝑈1,𝑘 + 𝑢1,𝑘𝑈2,𝑘 − 𝑢4,𝑘𝑈3,𝑘 − 𝑢3,𝑘𝑈4,𝑘) + 1 − 𝜇

𝑝𝑧,𝑘 =
1

2∥𝑢𝑘 ∥2
(𝑢3,𝑘𝑈1,𝑘 + 𝑢4,𝑘𝑈2,𝑘 + 𝑢1,𝑘𝑈3,𝑘 + 𝑢2,𝑘𝑈4,𝑘)

(2.38)

at sample points 𝑓𝑘 ≈ 𝑓 (𝑠𝑘), 𝑘 = 1, 2, . . . , 𝐾, given by (2.31).

2.3.8 The advantage of the regularization: a numerical test

In order to assess the effectiveness of KS regularization of the ER3BP near
the singularity at 𝒫1 for numerical integrations, we consider a őctitious sim-
ple scenario which is nevertheless representative (for the choice of the initial
conditions) of realistic close encounters in the Solar System, such as the close
encounters of small objects (such as a comet) with Jupiter, in the Sun-Jupiter
ER3BP (here identiőed by the values 𝜇 = 9.536433730801362 ·10−4, 𝑒1 = 0.0489).
Precisely we consider the case, critical for the numerical integrations, of fast
close encounters where łfastž means that the close encounter does not pro-
duce a temporary capture through the Lagrangian points 𝐿1, 𝐿2 (see ğA.1).
We emphasize that fast close encounters are observed for celestial bodies in
the Solar System (see for example [40, 42] where the dynamics of comet 67P
Churyumov-Gerasimenko, target of the recent Rosetta mission, is discussed in
detail), and are used in astrodynamics to accelerate spacecrafts.

In this subsection we consider a model example numerically integrated
with an explicit őxed step numerical integrator of the Runge-Kutta family
(Luther’s method [61], RK6 for brevity) to analyze possible gains in the use of
the KS regularization. The choice of using an explicit őxed step integrator is
motivated by the need to avoid any interference of a variable step strategy with
the regularization, which automatically performs the reduction of the step size
by adopting a őctitiuos independent variable. We also remark that, even if the
RK6 integrator is not symplectic, it does not produce a relevant energy loss
since fast close encounters occurr in small time intervals.

In this regard, we choose orbits with initial conditions characterized by a
high initial energy ℰ > ℰ𝐿4 := 𝐽(𝑥𝐿4 , 𝑦𝐿4 , 𝑧𝐿4 , 𝑥

′
𝐿4
, 𝑦′

𝐿4
, 𝑧′
𝐿4
, 𝑓0), where 𝐽 is the



2.3. KS regularization of the ER3BP 57

𝑓 -dependent Jacobi łintegralž7

𝐽(𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′, 𝑓 ) = 1

2

(
(𝑥′)2 + (𝑦′)2 + (𝑧′)2

)
− 1

1 + 𝑒1 cos 𝑓

(
1 − 𝜇
𝑑0
+ 𝜇

𝑑1
+ 1

2
(𝑥2 + 𝑦2 − 𝑧2𝑒1 cos 𝑓 )

)
, (2.39)

having, in the vicinity of the secondary body, an important deŕection of the tra-
jectory with respect to the solutions of the Kepler problem deőned by the Sun.
Moreover, we consider orbits which are non-planar with Jupiter’s orbit. An
efficient way to analyze the effect of the regularization on the fast close encoun-
ters is to consider the initial conditions already at their minimum distance from
Jupiter, withℰ > ℰ𝐿4 , with inclination different from 0, and then to numerically
integrate the orbit by őrst running a backward integration up to a sufficiently
large distance (at least 𝑑1 = ∥𝒫 − 𝒫1∥ > 1 = ∥𝒫1 − 𝒫0∥) and then, at 𝑓 = −2𝑛𝜋
with 𝑛 ∈ N \ {0} in principle at will, we switch to a forward integration lasting
exactly twice the number of iterations of the previous operation, so that the
upshot produces almost equal-length branches before and after the encounter
(blue and red lines in top panels of Fig. 2.1). More details on the choice of the
initial conditions are given in the captions of Fig. 2.1; the physical parameters
are drawn from [1]. In such a way, we appreciate the whole dynamics with the
deviation caused by the planet.

In Fig. 2.1 and 2.2 we illustrate the particle’s orbit: we set initial values so
that the planetary ŕyby is of hyperbolic gravity-assist type and the heliocentric
paths before and after the encounter are almost Keplerian ellipses.
In Table 2.1 we compare the numerical integration of the close encounter rep-
resented in Fig. 2.1 and 2.2 using both the Cartesian and the KS regularized
equations of motion, for different values of the integration steps. Precisely, us-
ing as initial condition the point of closest approach, we integrate the equations
of motion forward and backward for about |Δ 𝑓 | ≈ 0.5, since Δ 𝑓 ≈ 1 represents
the interval of the true anomaly in which the close encounter takes place. We

compare both the conservation of the extended Hamiltonians ℋ̂ , 𝒦 and the
value of ∥𝑟∥, 𝑟 = (𝑥, 𝑦, 𝑧), at the end of the numerical integration. Since the
numerical integration of the Cartesian equations of motion is carried out with
a őxed step Δ 𝑓 , while the numerical integration of the regularized equations
of motion is realized with a őxed őctitious time Δ𝑠, in order to compare the
outputs of the two numerical integrations at the same values of 𝑓 we add a
further step to the Cartesian numerical integration in order to reach the őnal
value of 𝑓 obtained with the KS numerical integration. We note the sharp
advantage of the KS algorithm in terms of computational efficiency, providing
a sharp reduction of the number of iterations needed to maintain a high level
of accuracy in the representation of the trajectory around 𝒫1.
We őnally argue that, to maximize the computational efficiency in a long sim-
ulation, one should implement as usual a switching tool which works with the
ℋ -equations out of a ball centered at 𝒫1, say the body’s Hill sphere, and the

7We recall that, instead of (1.76), 𝐽 is not a őrst integral for the eccentricities 𝑒1 > 0; therefore
the choiceℰ > ℰ𝐿4 provides only a trial initial condition for having a fast close encounter.
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Figure 2.1: Physical orbit in the Sun-Jupiter ER3BP (reported in convenient
aspect ratio for visual clarity) integrated backward and forward in true anomaly
following the arrow heads for 𝑥0 = 1 − 𝜇 + 1.921451079855507 · 10−3 (≈ 0.01
AU of altitude), 𝑦0 = 𝑧0 = 𝑓0 = 0, 𝑝𝑥,0 = 0.2, 𝑝𝑦,0 = 1.8, 𝑝𝑧,0 = 0.6. The yellow
dot symbolizes the Sun, whereas the black thin style curve represents Jupiter’s
elliptic motion. Top panel: Cartesian version (backward in blue overlapping
the forward in red) traced in the rotating-pulsating frame 𝑂𝑥𝑦𝑧. Left bottom
panel: Cartesian backward (blue) and forward (red) trajectory in the inertial
barycentric frame 𝑂𝑋𝑌𝑍 with osculating heliocentric ellipses belonging to
mutually inclined planes. Right bottom panels: KS integration of the inertial
trajectory in the forward case.
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Figure 2.2: Projections on the coordinate planes of the right bottom panel of
Fig. 2.1 on equal axis aspect ratio.
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Figure 2.3: Logarithmic scale convergence proőle of the maximum committed
error in the bilinear form preservation along the forward motion in Fig. 2.1.
Here 𝑣 ≔ (𝑢,𝑈) and the discretization is 𝑣𝑘 ≈ 𝑣(𝑠𝑘) for 𝑠𝑘 = 𝑘Δ𝑠, 𝑘 = 0, . . . , 𝐾.
The blue dots correspond to the worst errors found for őve consecutive re-
ductions starting from Δ𝑠 = 2𝜋 · 10−3, halving each time the value (reversed
horizontal axis). The best linear őtting returns the red straight interpolant with
slope 𝛽 = 6.0000334 and intercept 𝛼 = −2.2403447.

𝒦 -equations once inside. This is exactly the strategy adopted with numerical
propagations throughout the thesis whenever needed.

As conclusive remark, since 𝒦 and 𝑙 are smooth functions in a neighbor-
hood of 𝒫1, we get that the invariances given by 𝒦(𝑢, 𝜙, 𝑈,Φ) = 0, 𝑙(𝑢,𝑈) = 0
are numerically satisőed with high precision, and eventually the machine pre-
cision is quickly reached after lowering Δ𝑠 by about a factor of a hundredth (in
a convergence proőle, the rate of decay reŕects the accuracy of the method, i.e.
𝒪(Δ𝑠6), as illustrated in Fig. 2.3).
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Δ 𝑓 (Cart.) ∥𝑟(−0.506682)∥ ∥𝑟(0.496131)∥ # iter.

2𝜋 · 10−6 0.8553075048550535 0.9760051057296899 240244
2𝜋 · 10−5 0.8553075048542582 0.9760051057288172 24026
2𝜋 · 10−4 0.8553060796173549 0.9760054080001320 2404
2𝜋 · 10−3 (∗) 0.8248588821498852 0.9897100124542644 241

Δ𝑠 (KS reg.) ∥𝑟( 𝑓 (−3.7𝜋))∥ ∥𝑟( 𝑓 (3.5𝜋))∥ # iter.

𝜋 · 10−4 0.8553075048550521 0.9760051057296942 109000
𝜋 · 10−3 0.8553075048550521 0.9760051057296942 10900
𝜋 · 10−2 0.8553075048550522 0.9760051057296968 1090
𝜋 · 10−1 0.8553075050607468 0.9760051591505222 109

Δ 𝑓 (Cart.) |ℋ̂ (−0.506682)| |ℋ̂ (0.496131)|
2𝜋 · 10−6 1.0417562295 · 10−18 1.0277827090 · 10−18

2𝜋 · 10−5 9.3757489321 · 10−13 7.9843639352 · 10−13

2𝜋 · 10−4 1.1893484533 · 10−7 8.5748939646 · 10−7

2𝜋 · 10−3 (∗) 8.0281428133 · 10−2 0.10590853333

Δ𝑠 (KS reg.) |𝒦 (−3.7𝜋)| |𝒦 (3.5𝜋)|
𝜋 · 10−4 1.3746151644 · 10−27 1.3290033656 · 10−28

𝜋 · 10−3 1.3738069068 · 10−21 1.3119148531 · 10−22

𝜋 · 10−2 1.3654070424 · 10−15 1.1227698042 · 10−16

𝜋 · 10−1 1.2545211218 · 10−9 3.0569361253 · 10−10

Table 2.1: Comparison of Cartesian with KS integrations for four consecutively
increased step sizes in a small neighborhood of 𝑓 = 𝑠 = 0 (close approach). The
propagations are performed backward in time up to 𝑓 (−3.7𝜋) = −0.506682,
then forward up to 𝑓 (3.5𝜋) = 0.496131, according to choices of 𝑠 such that
the true anomaly interval is almost symmetric with respect to the origin and
nodes are multiple integers of every Δ𝑠 considered. For each case the step
size is adapted in order to evaluate the singular and regularized solution at
same corresponding times. The asterisk in the last Cartesian experiment indi-
cates failure of the adopted numerical method (explicit RK6) to compute the
orbit accurately. The computations are performed using a quadruple-precision
ŕoating-point format in Fortran 2008. Top panel: norm of the solutions and
total number of iterations. Bottom panel: degree of conservation of the singu-

lar extended Hamiltonians, where ℋ̂(0) = 𝒦 (0) = 0.
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3
Closed-form perturbation

theory for external orbits in the

restricted three-body problem

without relegation

This chapter aims to develop a semi-analytic algorithm that models the secular
dynamics of bodies with orbits external to the one of the primary perturber
of the R3BP using a sophisticated ad hoc version of the normal form theory
recalled in ğ1.2.5. The content, jointly with the results of the next chapter, is
partly available in [89] and entirely in [91].

3.1 Introduction

As opposed to the usual (Laplace-Lagrange) theory, closed-form perturbation
theory [78] provides a framework for series calculations in perturbed Keple-
rian problems without expansions in powers of the bodies’ orbital eccentricities.
This is mainly motivated by the necessity to construct secular models for suffi-
ciently eccentric orbits, like those of many asteroids, in our solar system, or the
planets in extrasolar planetary systems.

The efficiency of the usual series methods of expansion in the orbital eccen-
tricities is limited by the fact that the inversion of Kepler’s equation in powers
of the eccentricity converges only up to the so-called Laplace limit 𝑒𝐿 ≈ 0.66274
[28]. Generally, such convergence slows down way before this value (around
𝑒 ∼ 0.3 − 0.4 in many applications). In order to address this issue, closed form
perturbation theory aims to solve in łclosed-formž the homological equation
by which the Lie generating function is computed at every perturbative step
(see for example [23, 26]). The process is far from being priceless: a major
obstruction appears when the kernel of the homological equations contains
addenda beyond the Keplerian terms. The most common such addendum
([78]) is the centrifugal term −𝜈𝐻, where 𝜈 is the angular frequency in a frame
co-rotating with the primary perturber, and 𝐻 is the Delaunay action equal to

63
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the particle’s angular momentum in the direction of the axis of rotation. In
the case of a planet’s orbiter, 𝜈 is equal to the planet’s rotation frequency, and
the problem appears for all non-axisymmetric terms (tesseral harmonics) of
the planet’s multipole potential. In the R3BP, instead, 𝜈 represents the mean
motion of the primary perturber (e.g. Jupiter in the Sun-Jupiter system), while
the problem appears in a similar way after introducing a multipole expansion
of the disturbing function in the particle’s Hamiltonian.

An algorithm to overcome the above issue, called the relegation algorithm,
has been proposed in works by Deprit, Palacián and collaborators [12, 24, 53,
79, 94]. Brieŕy, given a quasi-integrable Hamiltonian𝐻 = 𝐻0+𝜀𝐻1, where 𝜀 is a
small parameter, suppose that𝐻0 = 𝐻′0+𝐻′′0 , where, in a domain in phase space
we have that𝐻′0 yields the dominant contribution to the Hamiltonian ŕow of𝐻0

versus the 𝐻′′0 term. In usual perturbation theory, we seek to partly normalize
the perturbation 𝐻1 via a sequence of canonical transformations deőned by
generating functions 𝜒(𝑟), 𝑟 = 1, 2, . . . satisfying a homological equation of the

form {𝐻0, 𝜒(𝑟)} + ℎ(𝑟)1
= 0, where {·, ·} denotes the Poisson bracket between

two functions of the canonical variables and ℎ
(𝑟)
1

is a term in the Hamiltonian
to be normalized. In the relegation technique, we use instead the equation

{𝐻′0, 𝜒(𝑟)} + ℎ
(𝑟)
1

= 0, i.e., letting only the dominant function 𝐻′0 in the kernel
of the homological equation. Such a choice stems mostly from motives of
algorithmic convenience. For example, identifying 𝐻′0 with the Keplerian term
(when 𝜈 is small) leads to a homological equation that can be solved in closed
form (we set, instead, 𝐻′0 = −𝜈𝐻 when 𝜈 is large). However, all Poisson

brackets of 𝜒(𝑟) with the part 𝐻′′0 left out of the kernel lead to terms which
need to be łrelegatedž, i.e., pushed to normalization in subsequent steps. For
reasons explained in detail in [96], only a őnite number or relegation steps
can be performed before reaching a point beyond which the scheme generates
divergent sequences of terms (see also [94]). This implies that the process
necessarily stops after some steps, leading to a őnite, albeit possibly quite small
remainder.

Relegation is a technique particularly suitable to the limiting situation of
a strongly hierarchical problem, when the integrable part 𝐻0 depends on a
frequency vector involving 𝑛 frequencies𝜔 = (𝜔1, . . . , 𝜔𝑛)out of which one, say
𝜔𝑖 for some 𝑖with 1 ≤ 𝑖 ≤ 𝑛 is signiőcantly larger in absolute value than the rest.
In particular, the harmonics cos(𝑘 ·𝜑) in the Hamiltonian whose normalization
can be ‘relegated’ should satisfy |𝑘𝑖𝜔𝑖 | ≫ |𝑘 𝑗𝜔 𝑗 |, 𝑗 = 1, . . . , 𝑛, 𝑗 ≠ 𝑖, for every
integer 𝑘𝑖 , 𝑘 𝑗 ∈ Z \ {0} (assuming also the non-resonant condition 𝑘 · 𝜔 ≠ 0,
𝑘 = (𝑘1, . . . , 𝑘𝑛)). For example, as explained in [96] in the simple case with
𝑛 = 2 and 𝜔2 ≫ 𝜔1, the generating function 𝜒(𝑁) produced after 𝑁 relegation
steps contains terms with coefficients growing as a geometric sequence with
ratio 𝑘1𝜔1/𝑘2𝜔2. Thus, relagation is limited to those terms for which the above
ratio is smaller than unity. This includes most harmonics of low Fourier order
in the Hamiltonian perturbation when 𝜔2 ≫ 𝜔1, but only few when the two
frequencies become comparable in size. Hence, by construction, relegation has
limited applicability in this latter, non-hierarchical, case.

Variants of the relegation technique have been discussed in literature to
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address perturbed Keplerian problems in which the gravitational potential is
due to an extended body expanded in spherical harmonics (e.g. [53, 62]). To
address the non-hierarchical case, a techique similar to the one of the present
paper is discussed in [53], referring to the averaging of the tesseral harmonics
in the case of the Earth’s artiőcial satellites. In the case of the R3BP, instead,
Cavallari and Efthymiopoulos [11] discuss a relegation-free algorithm for the
elimination of short-period terms in the particle’s Hamiltonian, when the orbit
of the particle (e.g. an asteroid) is totally interior to the orbit of the primary
perturber (e.g. Jupiter). We are aware of no relegation-free algorithm pro-
posed in literature which addresses, instead, the case when the particle’s orbit
is exterior to the orbit of the primary perturber. Providing such an algorithm,
discussing some of its important differences with past-proposed algorithms,
as well as checking its limits of applicability (addressed in more detail later in
Chapter 4), constitutes the primary goal of the present chapter.

The R3BP has already been deőned in ğ1.3.3. The starting point for our
analysis in the sequel is the Hamiltonian of the model, obtained after reduction
via Jacobi coordinates (𝑅, 𝑃).1. Adopting the usual notation for labels as before,
we keep referring to the primary (or central body) as 𝒫0 and to the secondary
(or primary perturber) as 𝒫1. Expressing time through the secondary’s mean
anomaly 𝑀1 = 𝑛1𝑡, where 𝑛1 is the mean motion of the secondary, and canon-
ically conjugating 𝑀1 with a dummy action variable 𝐽1 allows to express the
Hamiltonian as

ℋ(𝑅, 𝑀1, 𝑃, 𝐽1) =
∥𝑃∥2

2
− 𝒢𝑚0

∥𝑅 + 𝜇𝑟1(𝑀1)∥
− 𝒢𝑚1

∥𝑅 − (1 − 𝜇)𝑟1(𝑀1)∥
+ 𝑛1𝐽1 , (3.1)

where 𝒢 is the gravitational constant and

𝜇 =
𝑚1

𝑚0 + 𝑚1
∈]0, 1/2]

is the mass parameter;

𝑟1(𝑀1) = 𝑎1

(
cos𝐸1(𝑀1) − 𝑒1,

√
1 − 𝑒2

1
sin𝐸1(𝑀1), 0

)
(3.2)

is the elliptic revolution of 𝒫0 − 𝒫1 around their barycenter with eccentricity
𝑒1 and semi-major axis 𝑎1, in which the dependence of the system’s eccentric
anomaly 𝐸1 ∈ T on the mean anomaly 𝑀1 ∈ T is given through Kepler’s
equation according to standard two-body problem setting; (𝑅 = (𝑋,𝑌, 𝑍), 𝑃 =

(𝑃𝑋 , 𝑃𝑌 , 𝑃𝑍)) ∈ 𝑇∗(R3 \ {−𝜇𝑟1, (1 − 𝜇)𝑟1}) is the position-momentum couple of
𝒫 and the phase space is endowed with standard symplectic form 𝑑𝑃𝑋 ∧ 𝑑𝑋 +
𝑑𝑃𝑌 ∧ 𝑑𝑌 + 𝑑𝑃𝑍 ∧ 𝑑𝑍 + 𝑑𝐽1 ∧ 𝑑𝑀1.
We make use then of Delaunay elements (1.64) (ℓ , 𝑔, ℎ, 𝐿, 𝐺, 𝐻) adapted to the

1In the R3BP problem the Jacobi transformation is implemented when ∥𝑅∥ > ∥𝑟1∥.
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restricted case, deőned by

𝐿 =
√
𝒢𝑚0𝑎 , ℓ = 𝑀 ,

𝐺 = 𝐿
√

1 − 𝑒2 , 𝑔 = 𝜔 , (3.3)

𝐻 = 𝐺 cos 𝑖 , ℎ = Ω ,

where 𝑎, 𝑒 , 𝑖, 𝑀,Ω, 𝜔 stand for the semi-major axis, the eccentricity, the incli-
nation, the mean anomaly, the longitude of the ascending node, the argument
of pericenter of the particle.

A key ingredient of the method proposed below is the following: similarly
as in [11], we introduce a book-keeping symbol 𝜎 with numerical value equal to
1, whose role is to organize the perturbative scheme so as to successively nor-
malize terms of similar order of smallness, treating together all small quantities
of the problem, i.e.,

ś the eccentricities 𝑒, 𝑒1 (when 𝑒1 ≠ 0),

ś the mass ratio 𝜇,

ś the semi-major axis ŕuctuation 𝛿𝐿 around the mean 𝐿∗ for a particular
particle trajectory.

The book-keeping symbol acts by assigning powers 𝜎1 and 𝜎𝜈1 (for 𝑒 and 𝑒1),
𝜎𝜈 (for 𝜇), 𝜎𝜈 (for 𝛿𝐿) respectively, for non-zero natural numbers 𝜈, 𝜈1 deőned
below, to all the terms in the original Hamiltonian as well as in the Hamiltonian
produced after every normalization step. Given this baseline, we arrive (in
ğ3.2) at the following result: we demonstrate that, for 𝑘𝜇, 𝑘mp ∈ N \ {0} with

𝑘𝜇 > 1, the combination of expansions of (3.1) up to 𝜇𝑘𝜇 and (∥𝑟1∥ /∥𝑅∥)𝑘mp is
canonically conjugate by 𝜈(𝑘𝜇 − 1) near-identity transformations to a secular
model, obtained as a normal form with respect to the fast angles ℓ , 𝑀1

ℋ(ℓ , 𝑔, ℎ, 𝑀1, 𝛿𝐿, 𝐺, 𝐻, 𝐽1) = ℋ0(𝑔, ℎ, 𝛿𝐿, 𝐺, 𝐻, 𝐽1) +ℛ(ℓ , 𝑔, ℎ, 𝑀1, 𝛿𝐿, 𝐺, 𝐻) ,
(3.4)

with

ℋ0 = 𝑛∗𝛿𝐿 + 𝑛1𝐽1 +
𝜈𝑘𝜇−1∑
𝑙=𝜈

∑
𝑝∈Z2

𝑐𝑙 ,𝑝(𝛿𝐿, 𝑒 , 𝑖;𝜇, 𝐿∗, 𝑎1, 𝑒1) cos(𝑝1𝑔 + 𝑝2ℎ)𝜎𝑙 , (3.5)

ℛ =
∑
𝑠∈Z4

𝑑𝜈𝑘𝜇 ,𝑠(𝐸1, 𝛿𝐿, 𝑒 , 𝑖;𝜇, 𝐿∗, 𝑎1, 𝑒1) cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)𝜎𝜈𝑘𝜇

+ 𝒪
(
𝜎𝜈𝑘𝜇+1;

(
∥𝑟1∥
∥𝑅∥

) 𝑘mp+1
)
. (3.6)

The dependencies 𝑓 = 𝑓 (ℓ , 𝛿𝐿, 𝐺) for the true anomaly, 𝑒 = 𝑒(𝛿𝐿, 𝐺) and 𝑖 =
𝑖(𝐺, 𝐻) are implied in all the above expressions; 𝑐𝑙 ,𝑝 , 𝑑𝜈𝑘𝜇 ,𝑠 are real coefficients.
A crucial point is the way by which the positive integers 𝜈 = 𝜈(𝑒∗, 𝜇) ≥ 1,
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𝜈1 = 𝜈1(𝑒∗, 𝑒1) ≥ 1 are chosen. As detailed below, these integers, which regulate
the book-keeping scheme, are suitably tuned on the basis of a selected reference
value 𝑒∗ ∈]0, 1[:

𝜈 =

⌈
log10 𝜇

log10 𝑒∗

⌉
, 𝜈1 =

⌈
log10 𝑒1

log10 𝑒∗

⌉
, (3.7)

where ⌈·⌉ is the ceiling function. The normalizing scheme leading to (3.4)
is local: knowing that the semi-major axis is preserved under the ŕow of
the (secular) normal form, we introduce the splitting 𝐿 = 𝐿∗ + 𝛿𝐿, where

𝐿∗ =
√
𝒢𝑚0𝑎∗ ≫ 𝛿𝐿, 𝑛∗ =

√
𝒢𝑚0𝑎

−3/2
∗ is a targeted reference value for the semi-

major axis 𝑎∗, and expand the Hamiltonian in powers of 𝛿𝐿, rendering 𝛿𝐿 the
new action variable canonically conjugated to the particle’s mean anomaly.

Given the above, the normalization algorithm provides a sequence of Lie

generating functions 𝜒
(𝑗)
𝜈+𝑗−1

= 𝒪(𝜎𝜈+𝑗−1), 𝑗 = 1, . . . , 𝜈(𝑘𝜇 − 1), which yields

the Lie canonical transformation allowing to recursively normalize all terms
depending on the angles 𝑓 and 𝐸1 in the Hamiltonian. The normalizing trasfor-
mations are possible to deőne for values of the frequencies 𝑛∗ (mean motion of
the particle at the semi-major axis 𝑎∗) and 𝑛1 far from mean-motion resonances
(see Remark 3.2.3). Furthermore, the generating functions are computed as
solutions of a homological equation of the form

{𝒵0, 𝜒
(𝑗)
𝜈+𝑗−1
} +ℛ(𝑗−1)

𝜈+𝑗−1,𝜈+𝑗−1
= 𝒪(𝜎𝜈+𝑗−1) , (3.8)

where 𝒵0 = 𝑛∗𝛿𝐿 + 𝑛1𝐽1 and ℛ
(𝑗−1)
𝜈+𝑗−1,𝜈+𝑗−1

∼ 𝜎𝜈+𝑗−1 collects the trigonometric

monomials of 𝒪(𝜎𝜈+𝑗−1) depending on at least one of the two anomalies. The
key to obtaining a closed-form solution for (3.8) is, precisely, the appropriate
choice of a 𝒪(𝜎𝜈+𝑗−1) remainder left in the second hand of the equation. In

words, we do not seek for an exact cancellation of the terms ℛ
(𝑗−1)
𝜈+𝑗−1,𝜈+𝑗−1

, but

only for an approximate cancellation, leading to a remainder, which, however,
is of higher order in book-keeping, and, hence, possible to reduce at subsequent
steps.

The presentation is structured as follows. ğ3.2 presents step-by-step the
algorithm that gives rise to (3.5) and (3.6), supplemented with the formulas
for the Poisson algebra in Keplerian elements used in all closed-form compu-
tations. ğ3.3 is devoted to a numerical investigation of the method’s accuracy
for an asteroid in the Sun-Jupiter system, őrst in the spatial ER3BP, and then in
the planar CR3BP.
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3.2 The closed-form method for the outermost R3BP

3.2.1 Multipole expansion of the perturbation

Referring to section 3.1, letℋ be given in barycentric Cartesian coordinates as
in (3.1):

ℋ =
∥𝑃∥2

2
+ 𝑛1𝐽1 − 𝒢𝑚0ℛ , (3.9)

Assuming ∥𝑟1∥ /∥𝑅∥ < 1, we carry out a multipole expansion of the function
ℛ(𝑅, 𝑀1) in powers of the ratio ∥𝑟1∥ /∥𝑅∥ < 1:

ℛ =
1

∥𝑅 + 𝜇𝑟1∥
+ 𝜇

1 − 𝜇
1

∥𝑅 + (1 − 𝜇)𝑟1∥

=
1

∥𝑅∥

(
∞∑
𝑙=0

(
−1/2
𝑙

) (
2𝜇𝑟1 · 𝑅
∥𝑅∥2

+ 𝜇2

(
∥𝑟1∥
∥𝑅∥

)2
) 𝑙

+ 𝜇

1 − 𝜇

∞∑
𝑙=0

(
−1/2
𝑙

) (
−2(1 − 𝜇)𝑟1 · 𝑅

∥𝑅∥2
+ (1 − 𝜇)2

(
∥𝑟1∥
∥𝑅∥

)2
) 𝑙 )

=
1

1 − 𝜇
1

∥𝑅∥ + 𝒪
((
∥𝑟1∥
∥𝑅∥

)2
)
.

(3.10)

where, for 𝛽 ∈ R (
𝛽

𝑙

)
=
𝛽(𝛽 − 1) · · · (𝛽 − 𝑙 + 1)

𝑙!

indicates the generalized binomial coefficient (equal to 1 for 𝑙 = 0).

Remark 3.2.1. For 𝑙 = 1 in (3.10) the coefficients of the dipole term (𝑟1 ·𝑅)/∥𝑅∥3
in the two sums in the right-hand side of the equation cancel each other exactly.
Thus, no dipole term appears in the disturbing function. This is a consequence
of the choice of Jacobi coordinates.

3.2.2 Canonical form of the Hamiltonian

Performing an extra series expansion in powers of 𝜇 < 1 yields the standard
nearly-integrable form

ℋ = ℋ0 + 𝜇ℋ1 , (3.11)

where the Keplerian part reads

ℋ0 =
∥𝑃∥2

2
− 𝒢𝑚0

∥𝑅∥ + 𝑛1𝐽1 (3.12)
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Figure 3.1: Representation of the R3BP in the barycentric frame (or equivalently
in Jacobi variables) with ∥𝑅∥ > ∥𝑟1∥.

and the disturbing function becomes

ℋ1 = −𝒢𝑚0

∥𝑅∥

(
∞∑
𝑙=0

𝜇𝑙 +
∞∑
𝑙=1

𝜇𝑙−1

(
−1/2
𝑙

) (
2𝑟1 · 𝑅
∥𝑅∥2

+ 𝜇
(
∥𝑟1∥
∥𝑅∥

)2
) 𝑙

+
∞∑
𝑙=1

(1 − 𝜇)𝑙−1

(
−1/2
𝑙

) (
−2𝑟1 · 𝑅
∥𝑅∥2

+ (1 − 𝜇)
(
∥𝑟1∥
∥𝑅∥

)2
) 𝑙 )

. (3.13)

We now move to Delaunay action-angle variables (3.3) by replacing into (3.11)
the relationships

ℋ0 = −𝒢𝑚0

2𝑎
+ 𝑛1𝐽1 , (3.14)

∥𝑅∥ = 𝑎(1 − 𝑒2)
1 + 𝑒 cos 𝑓

, (3.15)

𝑟1 · 𝑅 = 𝑎1 ∥𝑅∥
(
(cos𝐸1 − 𝑒1) (cos ℎ cos(𝑔 + 𝑓 ) − sin ℎ sin(𝑔 + 𝑓 ) cos 𝑖)

+
√

1 − 𝑒2
1

sin𝐸1 (sin ℎ cos(𝑔 + 𝑓 ) + cos ℎ sin(𝑔 + 𝑓 ) cos 𝑖)
)

(3.16)

as well as (3.2) for the vector 𝑟1. We get

ℋ = −𝒢𝑚0

2𝑎
+ 𝑛1𝐽1 + 𝜇ℋ1( 𝑓 , 𝑔, ℎ, 𝐸1, 𝑎, 𝑒 , 𝑖;𝜇, 𝑎1, 𝑒1) . (3.17)
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Remark 3.2.2. Only the square of the norm ∥𝑟1∥2 = 𝑟1 · 𝑟1 is required in (3.13),
while the norm ∥𝑅∥ appears only in the denominator of the above equation,
in powers equal to or higher than quadratic. Then equations (3.15) and (3.2),
respectively dependent on 𝑓 and 𝐸1, lead to a representation of the disturbing
function as a sum of trigonometric polynomials depending on harmonics of
the form cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1). This is a key ingredient of the closed-form
method, i.e., working with the angles 𝑓 and 𝐸1, instead of the mean anomalies
𝑀,𝑀1, no series reversion of Kepler’s equation is used throughout the whole
perturbative scheme.

In order to avoid relegation, our method discussed below works locally, by
constructing a model for the secular Hamiltonian valid for a particle’s semi-
major axis varying as 𝑎 = 𝑎∗ + 𝛿𝑎(𝑡), i.e., by a small quantity 𝛿𝐿 around some
reference value 𝑎∗. By standard secular theory, we have the estimate 𝛿𝑎 = 𝒪(𝜇)
far from mean-motion resonances. Formally, introducing the new canonical
variable 𝛿𝐿 as

𝐿 = 𝐿∗ + 𝛿𝐿 =
√
𝒢𝑚0𝑎∗ +

1

2

√
𝒢𝑚0

𝑎∗
𝛿𝑎 + 𝒪(𝛿𝑎2) . (3.18)

and expanding the Hamiltonian in powers of the quantity 𝛿𝐿 around 𝐿∗, we
obtain

ℋ = −
𝒢2𝑚2

0

2𝐿2∗

∞∑
𝑙=0

(
−2

𝑙

) (
𝛿𝐿

𝐿∗

) 𝑙
+ 𝑛1𝐽1 + 𝜇

∞∑
𝑙=0

1

𝑙!

𝜕𝑙ℋ1

𝜕𝐿𝑙

����
𝐿=𝐿∗

𝛿𝐿𝑙

= 𝑛∗𝛿𝐿 + 𝑛1𝐽1 + 𝜇
(
ℋ1 |𝛿𝐿=0, 𝜇=0 +

𝜕ℋ1

𝜕𝛿𝐿

����
𝛿𝐿=0, 𝜇=0

𝛿𝐿

)
+ 𝒪(𝜇2, 𝛿𝐿2) ,

(3.19)

where a constant term −𝒢2𝑚2
0/(2𝐿2

∗ ) was dropped from the expansion. The

constant 𝑛∗ = 𝒢2𝑚2
0/𝐿3
∗ is equal to the particle’s mean motion under Keplerian

orbit at the semi-major axis 𝑎∗. Other useful rewritings ofℋ1 depending on the
elements are exposed in Appendix B.

Remark 3.2.3. The choice of the reference value 𝑎∗ determines the kind of divi-
sors appearing in the normalization procedure. In the present paper, we deal
only with the łnon-resonantž case, in which the frequencies 𝑛∗ and 𝑛1 satisfy
no-commensurability condition. For example, to be far from any resonance we
may require that 𝑛∗ and 𝑛1 satisfy a Diophantine condition

|𝑘∗𝑛∗ + 𝑘1𝑛1 | >
𝛾

|𝑘 |𝜏 , ∀𝑘 = (𝑘∗, 𝑘1) ∈ Z2 \ {0} (3.20)

with |𝑘 | = |𝑘∗ | + |𝑘1 | and some suitable 𝛾 > 0, 𝜏 > 1.
However, the algorithm presented below can be readily extended to cases of
mean-motion resonance. We leave the details for a future work, noting only
that in resonant cases we have the estimate 𝛿𝐿 = 𝒪(𝜇1/2), instead of 𝒪(𝜇). The
effect of approaching close to a mean-motion resonance with the present series
is seen, instead, as a rise in the value of the series’ remainder, caused by (non-
zero) small divisors in the series (as visible, for example, in Fig. 4.6 discussed
in ğ4.4.2).
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3.2.3 Poisson structure and book-keeping

Poisson bracket formulas

All steps of closed-form perturbation theory involve Poisson brackets between
differentiable functions of the form 𝐹(ℓ , 𝑔, ℎ, 𝑀1, 𝛿𝐿, 𝐺, 𝐻, 𝐽1) ∈ 𝒞∞(T4 × 𝐷),
𝐷 ⊂ R4 being an open set, whose dependence on the variables ℓ , 𝑀1, 𝐺
and 𝐻 is given in implicit form through the functions 𝑓 (ℓ , 𝛿𝐿, 𝐺), 𝑒(𝛿𝐿, 𝐺),
𝐸1(𝑀1, 𝑒(𝛿𝐿, 𝐺)), 𝜄𝑐(𝐺, 𝐻) = cos 𝑖(𝐺, 𝐻), 𝜄𝑠(𝐺, 𝐻) = sin 𝑖(𝐺, 𝐻), 𝜂(𝛿𝐿, 𝐺) =√

1 − 𝑒(𝛿𝐿, 𝐺)2, ∥𝑟1∥ (𝑀1) = 𝑎1(1−𝑒1 cos𝐸1(𝑀1)), and𝜙1(𝑀1) = 𝐸1(𝑀1, 𝑒(𝛿𝐿, 𝐺))
− 𝑀1. The Poisson bracket between two functions 𝐹1, 𝐹2 of the above form is
computed by the formulas

{𝐹1, 𝐹2} =
d𝐹1

dℓ

d𝐹2

d𝛿𝐿
+ d𝐹1

d𝑔

d𝐹2

d𝐺
+ d𝐹1

dℎ

d𝐹2

d𝐻
+ d𝐹1

d𝑀1

d𝐹2

d𝐽1

− d𝐹1

d𝛿𝐿

d𝐹2

dℓ
− d𝐹1

d𝐺

d𝐹2

d𝑔
− d𝐹1

dℎ

d𝐹2

d𝐻
− d𝐹1

d𝐽1

d𝐹2

d𝑀1

(3.21)

implemented to the closed-form version of the functions 𝐹1, 𝐹2. The closed-
form version of a function 𝐹 is deőned as:

𝐹 = 𝐹( 𝑓 , 𝑔, ℎ, 𝐸1, 𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠 , 𝐽1) . (3.22)

The derivatives in the canonical variables of a function 𝐹 as in (3.21) are com-
puted by the chain rule formulas

d𝐹

dℓ
=
𝜕𝐹

𝜕 𝑓

𝜕 𝑓

𝜕ℓ
, (3.23)

d𝐹

d𝑔
=
𝜕𝐹

𝜕𝑔
, (3.24)

d𝐹

dℎ
=
𝜕𝐹

𝜕ℎ
, (3.25)

d𝐹

d𝑀1
=

(
𝜕𝐹

𝜕𝐸1
+ 𝜕𝐹

𝜕 ∥𝑟1∥
d ∥𝑟1∥
d𝐸1

+ 𝜕𝐹

𝜕𝜙1

)
d𝐸1

d𝑀1
− 𝜕𝐹

𝜕𝜙1
, (3.26)

d𝐹

d𝛿𝐿
=
𝜕𝐹

𝜕 𝑓

𝜕 𝑓

𝜕𝛿𝐿
+ 𝜕𝐹

𝜕𝛿𝐿
+ 𝜕𝐹

𝜕𝑒

𝜕𝑒

𝜕𝛿𝐿
+ 𝜕𝐹

𝜕𝜂

𝜕𝜂

𝜕𝛿𝐿
, (3.27)

d𝐹

d𝐺
=
𝜕𝐹

𝜕 𝑓

𝜕 𝑓

𝜕𝐺
+ 𝜕𝐹

𝜕𝑒

𝜕𝑒

𝜕𝐺
+ 𝜕𝐹

𝜕𝜂

𝜕𝜂

𝜕𝐺
+ 𝜕𝐹

𝜕𝜄𝑐

𝜕𝜄𝑐
𝜕𝐺
+ 𝜕𝐹

𝜕𝜄𝑠

𝜕𝜄𝑠
𝜕𝐺

, (3.28)

d𝐹

d𝐻
=

𝜕𝐹

𝜕𝜄𝑐

𝜕𝜄𝑐
𝜕𝐻
+ 𝜕𝐹

𝜕𝜄𝑠

𝜕𝜄𝑠
𝜕𝐻

, (3.29)

d𝐹

d𝐽1
=

𝜕𝐹

𝜕𝐽1
, (3.30)

where
𝜕 𝑓

𝜕ℓ
=
(1 + 𝑒 cos 𝑓 )2

𝜂3
, (3.31)
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d ∥𝑟1∥
d𝐸1

= 𝑎1𝑒1 sin𝐸1 , (3.32)

d𝐸1

d𝑀1
=

𝑎1

∥𝑟1∥
, (3.33)

𝜕 𝑓

𝜕𝛿𝐿
=

1

𝐿

(
2 sin 𝑓

𝑒
+ sin(2 𝑓 )

2

)
=

1

𝐿∗

(
2 sin 𝑓

𝑒
+ sin(2 𝑓 )

2

) (
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) ,

(3.34)

𝜕𝑒

𝜕𝛿𝐿
=

𝜂2

𝑒𝐿
=

𝜂2

𝑒𝐿∗

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.35)

𝜕𝜂

𝜕𝛿𝐿
= −𝜂

𝐿
= − 𝜂

𝐿∗

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.36)

𝜕 𝑓

𝜕𝐺
= − 1

𝜂𝐿

(
2 sin 𝑓

𝑒
+ sin(2 𝑓 )

2

)

= − 1

𝜂𝐿∗

(
2 sin 𝑓

𝑒
+ sin(2 𝑓 )

2

) (
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.37)

𝜕𝑒

𝜕𝐺
= − 𝜂

𝑒𝐿
= − 𝜂

𝑒𝐿∗

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.38)

𝜕𝜂

𝜕𝐺
=

1

𝐿
=

1

𝐿∗

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.39)

𝜕𝜄𝑐
𝜕𝐺

= − 𝜄𝑐
𝜂𝐿

= − 𝜄𝑐
𝜂𝐿∗

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.40)

𝜕𝜄𝑠
𝜕𝐺

= −1 − 𝜄2𝑠
𝜂𝐿𝜄𝑠

= −1 − 𝜄2𝑠
𝜂𝐿∗𝜄𝑠

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.41)

𝜕𝜄𝑐
𝜕𝐻

=
1

𝜂𝐿
=

1

𝜂𝐿∗

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) , (3.42)

𝜕𝜄𝑠
𝜕𝐻

= − 𝜄𝑐
𝜂𝐿𝜄𝑠

= − 𝜄𝑐
𝜂𝐿∗𝜄𝑠

(
1 − 𝛿𝐿

𝐿∗

)
+ 𝒪(𝛿𝐿2) . (3.43)

A sketch of the derivation of the above formulas can be found in Appendix C.
They are strictly valid with 𝑒 ∈]0, 1[, 𝑖 ∈]0,𝜋[. However, several cancellations
lead to no singular behavior of the Poisson bracket formulas arising throughout
the various perturbative steps also when 𝑒 = 0 or 𝑖 = 0.

Book-keeping: Hamiltonian

We introduce in the series a book-keeping symbol 𝜎 (see [26] for an introduction
to the book-keeping technique), with numerical value 𝜎 = 1, whose role is to
provide a grouping of all the various terms in the series according to their
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łorder of smallnessž. Hence, a group of terms with common factor 𝜎𝑙 , 𝑙 ∈ Z,
indicates a term considered as of the ł𝑙-th order of smallnessž.

Since in our series there are several small quantities, we introduce a book-
keeping scheme allowing to simultaneously deal with all small quantities while
maintaining the closed-form character of the series. To this end, we make the
following substitutions, called łbook-keeping rulesž, within the initial Hamil-
tonian:

• BK-Rule 1: 𝑒 { 𝜎1𝑒 = 𝜎𝑒 (not applicable to the quantity 𝑒2 within

𝜂 =
√

1 − 𝑒2),

• BK-Rule 2: 𝜂 { 𝜎0𝜂 = 𝜂,

• BK-Rule 3: 𝜇{ 𝜎𝜈𝜇, with 𝜈 as in (3.7),

• BK-Rule 4: 𝑒1 { 𝜎𝜈1𝑒1, with 𝜈1 as in (3.7) (not applicable to the quantity

𝑒2
1

within 𝜂1 ≔

√
1 − 𝑒2

1
),

• BK-Rule 5: 1
𝜂2 {

(
1
𝜂2 − 1

)
𝜎2 + 1,

• BK-Rule 6: 𝜂1 { (𝜂1 − 1)𝜎2𝜈1 + 1,

• BK-Rule 7: 𝛿𝐿𝜆 { 𝜎𝑙𝜈𝛿𝐿𝜆 with 𝑙 =

{
𝜆 , if 𝛿𝐿𝜆 comes fromℋ1 ,

𝜆 − 1 , if 𝛿𝐿𝜆 comes fromℋ0 ,
𝜆 ∈

N \ {0}.

Since 𝜎 = 1, the above substitutions affect the structure of the series only at
the formal level, and can be substituted directly into the original Hamiltomian,
whereby they propagate at subsequent normalization steps once these steps
are organized in successive powers 𝜎, 𝜎2, etc., of the book-keeping symbol. The
BK-Rules 1 to 7 above are justiőed on physical ground as well as on motives of
algorithmic convenience. In particular:

- BK-Rule 1 implies that, despite the use of closed-form formulas, the basic
small quantity in powers of which the series are organized is the eccentricity
of the test particle.

- BK-Rule 3 implies that a factor 𝜇 in front of a series term should be treated as
of comparable order of smallness as a term of order 𝑒𝜈, with 𝜈 given by (3.7).
Similarly, BK-Rule 4 implies that a term containing a factor 𝑒1 raised to some
power should be treated as of comparable order of smallness with a term 𝑒𝜈

1
raised to the same power. Note that the eccentricity 𝑒 is a quantity variable in
time, so that to compute the exponents 𝜈, 𝜈1 we need to use, for any examined
trajectory, a reference value 𝑒∗ yielding an estimate of the overall level of eccen-
tricity all along the orbital evolution for that trajectory. Note that, by standard
secular theory we have 𝑒(𝑡) = 𝑒∗ + 𝒪(𝜇) if 𝑒∗ is close to the mean eccentricity
(see also discussion at the introduction). Note őnally that we obtain exponents
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𝜈, 𝜈1 ≥ 1 in the typical case in which 𝑒 > 𝜇 and 𝑒 ≥ 𝑒1. These inequalities
arise naturally in the case of small bodies in highly eccentric orbits perturbed
by some planet of, say, our solar system, which are the cases of main interest in
applying the present method (see, nevertheless, Remark 3.2.4 on the treatment
of cases where the above conditions are not met).

- BK-Rule 7 stems from the estimate 𝛿𝐿 = 𝒪(𝛿𝑎) = 𝒪(𝜇) holding for the os-
cillations in semi-major axis of trajectories far from mean-motion resonances
(as already pointed outin the latter case, instead, we have in general 𝛿𝐿 =

𝒪(𝛿𝑎) = 𝒪(𝜇1/2) and the corresponding rule has to be adapted accordingly).
The lowering of the book-keeping power by one for within 𝐻0 is introduced for
reasons of algorithmic convenience, i.e., in order to maintain 𝑛∗𝛿𝐿 in the kernel
of the homological equation.

- BK-Rules 5 and 6 imply just a partition of the unity aiming at keeping the
perturbative scheme in closed-form while splitting the corresponding expres-
sions (involving 𝜂 and 𝜂1 respectively) in two parts, of orders 𝒪(1) and 𝒪(𝑒2),
or 𝒪(𝑒2

1
).

Book-keeping: Poisson structure

Some of the formulas listed at the beginning of the subsection imply differenti-
ation with respect to 𝑒 through the corresponding partial derivatives in (3.27),
(3.28), thus yielding a lowering of the power of the eccentricity in some terms
arising through Poisson brackets at consecutive steps of perturbation theory.
To account for this fact, similarly as in [11] we introduce the use of the book-
keeping symbol 𝜎 in the formulas of the Poisson algebra as follows: őrst, we
re-write the derivatives with respect to the angles ℓ , 𝑔, ℎ, 𝑀1 as

d𝐹

dℓ
=
𝜕𝐹

𝜕 𝑓

𝜕 𝑓

𝜕ℓ

𝑎1(1 − 𝑒1𝜎𝜈1 cos𝐸1)
∥𝑟1∥

, (3.44)

d𝐹

d𝑔
=
𝜕𝐹

𝜕𝑔

𝑎1(1 − 𝑒1𝜎𝜈1 cos𝐸1)
∥𝑟1∥

, (3.45)

d𝐹

dℎ
=
𝜕𝐹

𝜕ℎ

𝑎1(1 − 𝑒1𝜎𝜈1 cos𝐸1)
∥𝑟1∥

, (3.46)

d𝐹

d𝑀1
=

(
𝜕𝐹

𝜕𝐸1
+ 𝜕𝐹

𝜕 ∥𝑟1∥
d ∥𝑟1∥
d𝐸1

+ 𝜕𝐹

𝜕𝜙1
𝜎−𝜈1

)
d𝐸1

d𝑀1
− 𝜕𝐹

𝜕𝜙1
𝜎−𝜈1 , (3.47)

and with respect to the actions 𝛿𝐿, 𝐺 as

d𝐹

d𝛿𝐿
=
𝜕𝐹

𝜕 𝑓

𝜕 𝑓

𝜕𝛿𝐿
+ 𝜕𝐹

𝜕𝛿𝐿
+ 𝜕𝐹

𝜕𝑒

𝜕𝑒

𝜕𝛿𝐿
𝜎−1 + 𝜕𝐹

𝜕𝜂

𝜕𝜂

𝜕𝛿𝐿
, (3.48)

d𝐹

d𝐺
=
𝜕𝐹

𝜕 𝑓

𝜕 𝑓

𝜕𝐺
+ 𝜕𝐹

𝜕𝑒

𝜕𝑒

𝜕𝐺
𝜎−1 + 𝜕𝐹

𝜕𝜂

𝜕𝜂

𝜕𝐺
+ 𝜕𝐹

𝜕𝜄𝑐

𝜕𝜄𝑐
𝜕𝐺
+ 𝜕𝐹

𝜕𝜄𝑠

𝜕𝜄𝑠
𝜕𝐺

. (3.49)

Note that in (3.47) use was made of the identity 𝜙1 = 𝑒1 sin𝐸1 (Kepler’s equa-
tion). Finally, we revise formulas (3.31), (3.32), (3.34)ś(3.43), attributing a book-
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keeping to all factors involving the eccentricity function 𝜂 as

𝜕 𝑓

𝜕ℓ
= 1 + 2𝑒 cos 𝑓

𝜂3
𝜎 +

(
1

𝜂3
− 1 + 𝑒

2 cos2 𝑓

𝜂3

)
𝜎2 , (3.50)

d ∥𝑟1∥
d𝐸1

= 𝑎1𝑒1𝜎
𝜈1 sin𝐸1 (3.51)

𝜕 𝑓

𝜕𝛿𝐿
=

1

𝐿∗

(
2 sin 𝑓

𝑒
𝜎−1 + sin(2 𝑓 )

2

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.52)

𝜕𝑒

𝜕𝛿𝐿
=

1

𝐿∗

(
1

𝑒
𝜎−1 + 𝜂2 − 1

𝑒
𝜎

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.53)

𝜕𝜂

𝜕𝛿𝐿
= − 1

𝐿∗

(
1 + (𝜂 − 1)𝜎2

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.54)

𝜕 𝑓

𝜕𝐺
= − 1

𝐿∗

(
2 sin 𝑓

𝑒
𝜎−1 + sin(2 𝑓 )

2
+ 2 sin 𝑓

𝑒

(
1

𝜂
− 1

)
𝜎

+ sin 2 𝑓

2

(
1

𝜂
− 1

)
𝜎2

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.55)

𝜕𝑒

𝜕𝐺
= − 1

𝐿∗

(
1

𝑒
𝜎−1 + 𝜂 − 1

𝑒
𝜎

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.56)

𝜕𝜂

𝜕𝐺
=

1

𝐿∗
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.57)

𝜕𝜄𝑐
𝜕𝐺

= − 𝜄𝑐
𝐿∗

(
1 +

(
1

𝜂
− 1

)
𝜎2

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.58)

𝜕𝜄𝑠
𝜕𝐺

= −1 − 𝜄2𝑠
𝐿∗𝜄𝑠

(
1 +

(
1

𝜂
− 1

)
𝜎2

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.59)

𝜕𝜄𝑐
𝜕𝐻

=
1

𝐿∗

(
1 +

(
1

𝜂
− 1

)
𝜎2

)
+ 𝒪(𝛿𝐿𝜎𝜈) , (3.60)

𝜕𝜄𝑠
𝜕𝐻

= − 𝜄𝑐
𝐿∗𝜄𝑠

(
1 +

(
1

𝜂
− 1

)
𝜎2

)
+ 𝒪(𝛿𝐿𝜎𝜈) . (3.61)

Remark 3.2.4. The small eccentricity problem consists of the fact that the above-
proposed book-keeping rules are not applicable in the case 0 < 𝑒∗ ≲ 𝜇 < 𝑒1,
since, by (3.7), the exponents 𝜈, 𝜈1 would be smaller than unity. The simple
solution of rounding these exponents to 1, while maintaining the same book-
keeping rules as above, fails, since, at any given normalization order 𝑟, the
presence of 𝜎−1, 𝜎−𝜈1 terms in the formulas of the Poisson algebra leads to
the generation of terms of order lower than 𝑟 in the normal form’s remainder.
Notwithstanding our focus on a method dealing with large eccentricity orbits
(for which the problem does not appear), we discuss below a variant of the
main algorithm that deals with trajectories in the case 𝜈 = 1, i.e., when 𝑒∗ ≲ 𝜇.
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3.2.4 Iterative normalization algorithm

Preliminary step: Hamiltonian preparation

After implementing BK-Rules 1 to 7 the Hamiltonian (3.19) resumes the form:

ℋ = 𝑛∗𝛿𝐿+𝑛1𝐽1+
∑
𝑠∈Z4

𝑞𝑠(𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠 ;𝜇, 𝐿∗, 𝑎1, 𝑒1, 𝜂1) cos(𝑠1 𝑓+𝑠2𝑔+𝑠3ℎ+𝑠4𝐸1)𝜎𝑠

(3.62)
where 𝜎𝑠 ∈ {𝜎𝜈 , 𝜎𝜈+1, . . .} and, by D’Alembert rules, only cosines and real
coefficients 𝑞𝑠 appear (invariance under simultaneous change of sign of all
angles). Setting 𝒵0 = 𝑛∗𝛿𝐿 + 𝑛1𝐽1, for obtaining a closed-form normalization
algorithm it turns out convenient to re-express the Hamiltonian according to

ℋ = 𝒵0 + (ℋ −𝒵0)
𝑎1(1 − 𝑒1𝜎𝜈1 cos𝐸1)

∥𝑟1∥
. (3.63)

The Hamiltonian (3.63) resumes the form:

ℋ = ℋ(0) = 𝒵0 +ℛ(0)𝜈 , (3.64)

where

ℛ
(0)
𝜈 =

∑
𝑙≥𝜈

ℛ
(0)
𝜈,𝑙

=
∑
𝑙≥𝜈

𝑎1

∥𝑟1∥

©­­­
«
∑
𝑝∈Z2

𝑞′𝑙 ,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ)

+
∑
𝑠∈Z4

(𝑠1 ,𝑠4)≠(0,0)

𝑞′′𝑙 ,𝑠 cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)
ª®®®
¬
𝜎𝑙 ; (3.65)

We call ℛ
(0)
𝜈 the remainder at the zero-th normalization step (i.e. in the original

Hamiltonian). The terms ℛ
(0)
𝜈,𝑙

contain terms of book-keeping order 𝜎𝑙 , with

𝑙 ≥ 𝜈.

Step 1: normalization of the 𝝈𝝂-terms

For a suitable generating function 𝜒
(1)
𝜈 to be determined in a while, we rely to

the Lie series operator (1.39) under the ŕow of such map introduced as

exp
(
ℒ

𝜒
(1)
𝜈

)
: 𝒞𝜔(T4 × 𝐷) −→ 𝒞𝜔(T4 × 𝐷)

exp
(
ℒ

𝜒
(1)
𝜈

)
=

∑
𝑛≥0

1

𝑛!
ℒ𝑛

𝜒
(1)
𝜈

= I + ℒ
𝜒
(1)
𝜈
+ 1

2
ℒ

𝜒
(1)
𝜈
◦ ℒ

𝜒
(1)
𝜈
+ . . .

, (3.66)

where the Lie derivative ℒ
𝜒
(1)
𝜈
· is given by (1.22).

Applying (3.66) to (3.63) we get the transformed Hamiltonian

ℋ(1) = 𝒵0 +ℛ(0)𝜈 + {𝒵0, 𝜒
(1)
𝜈 } + {ℛ(0)𝜈 , 𝜒

(1)
𝜈 } +

1

2
{{ℋ , 𝜒(1)𝜈 }, 𝜒(1)𝜈 } + . . . , (3.67)
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in which, with the usual abuse of notation, we still indicate with ℓ , 𝑔, ℎ, 𝑀1,
𝛿𝐿, 𝐺, 𝐻, 𝐽1 the new canonical variables given by the inverse transformation

exp
(
ℒ

𝜒
(1)
𝜈

)−1

= exp
(
ℒ−𝜒(1)𝜈

)
. (3.68)

Our scope will be to deőne the Lie generating function 𝜒
(1)
𝜈 in such a way

that, after implementing the transformation (3.67), ℋ(1) contains no terms de-
pending on the angles 𝑓 and 𝐸1 at order 𝜎𝜈. The required generating function

𝜒
(1)
𝜈 is computed as an outcome of the following.

Proposition 3.2.1. Deőne 𝜒(1)𝜈 as

𝜒
(1)
𝜈 =

𝜙1

𝑛1
𝜎𝜈+𝜈1

∑
𝑝∈Z2

𝑞′𝜈,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ)

+ 𝜎𝜈
∑
𝑠∈Z4

(𝑠1 ,𝑠4)≠(0,0)

𝑞′′𝜈,𝑠
𝑠1𝑛∗ + 𝑠4𝑛1

sin(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1) . (3.69)

Then, it holds that

{𝒵0, 𝜒
(1)
𝜈 } +ℛ(0)𝜈,𝜈 = 𝒵

(1)
𝜈 + 𝒪

(
𝜎𝜈+1

)
, (3.70)

where

𝒵
(1)
𝜈 = 𝜎𝜈

∑
𝑝

𝑞′𝜈,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ) . (3.71)

Furthermore, the function ℋ(1) as computed by (3.67) takes the form

ℋ(1) = 𝒵0 +𝒵(1)𝜈 +ℛ(1) , (3.72)

where the remainder ℛ(1) is 𝒪(𝜎𝜈+1) ∀𝜈 ≥ 1 independently of the value of 𝜈1.

Proof. Setting

𝜒
(1)
𝜈 ( 𝑓 , 𝑔, ℎ, 𝐸1, 𝜙1, 𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠) = 𝜎𝜈

©­
«
𝜙1𝜎

𝜈1

∑
𝑝∈Z2

𝑞̂′𝜈,𝑝(𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠)×

cos(𝑝1𝑔 + 𝑝2ℎ) +
∑
𝑠∈Z4

(𝑠1 ,𝑠4)≠(0,0)

𝑞̂′′𝜈,𝑠(𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠) sin(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)
ª®®®
¬
,
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and recalling the chain rules (3.44), (3.47) and (3.50), (3.51), (3.33), we őnd

{𝒵0, 𝜒
(1)
𝜈 } +ℛ(0)𝜈,𝜈 = −𝑛∗

(
1 + 2𝑒 cos 𝑓

𝜂3
𝜎 +

(
1

𝜂3
− 1 + 𝑒

2 cos2 𝑓

𝜂3

)
𝜎2

)

𝑎1(1 − 𝑒1𝜎𝜈1 cos𝐸1)
∥𝑟1∥

𝜎𝜈
∑

(𝑠1 ,𝑠4)≠(0,0)
𝑠1 𝑞̂
′′
𝜈,𝑠 cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)

− 𝑛1
𝑎1

∥𝑟1∥
𝜎𝜈

©­
«

∑
(𝑠1 ,𝑠4)≠(0,0)

𝑠4 𝑞̂
′′
𝜈,𝑠 cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)

+
∑
𝑝

𝑞̂′𝜈,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ)
)
+ 𝑛1𝜎

𝜈
∑
𝑝

𝑞̂′𝜈,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ)

+𝜎𝜈 𝑎1

∥𝑟1∥
©­
«
∑
𝑝

𝑞′𝜈,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ) +
∑

(𝑠1 ,𝑠4)≠(0,0)
𝑞′′𝜈,𝑠 cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)ª®¬

.

Requiring that no trigonometric terms depending on 𝑓 , 𝐸1 be present at order
𝜎𝜈 then leads to

𝑞̂′′𝜈,𝑠 =
𝑞′′𝜈,𝑠

𝑠1𝑛∗ + 𝑠4𝑛1
, 𝑠 ∈ Z4 : (𝑠1, 𝑠4) ≠ (0, 0) ,

𝑞̂′𝜈,𝑝 =
𝑞′𝜈,𝑝
𝑛1

, 𝑝 ∈ Z2 ,

which implies (3.69). At order 𝜎𝜈 we then obtain immediately the formula

𝒵
(1)
𝜈 = 𝜎𝜈

∑
𝑝

𝑞′𝜈,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ) .

We now consider the function ℋ(1) computed by replacing (3.69) into (3.67).
The function ℋ(1) can be decomposed as in (3.72). We shall demonstrate that
the remainder ℛ(1) contains no terms of order lower than 𝜎𝜈+1. To this end, it
suffices to show that

{ℛ(0)𝜈 , 𝜒
(1)
𝜈 } = 𝒪(𝜎2𝜈) , 1

𝑛!
{. . . {{ℋ , 𝜒(1)𝜈 }, 𝜒(1)𝜈 }, . . . , 𝜒(1)𝜈︸                   ︷︷                   ︸

𝑛≥2

} = 𝒪(𝜎𝑛(𝜈−1)+2) ,

(3.73)
since 𝑛(𝜈 − 1) + 2 > 𝜈, for all 𝑛 ≥ 2, 𝜈 ≥ 1.

The term ℛ
(0)
𝜈 contains terms of order equal to or larger than 𝜎𝜈, while 𝜒

(1)
𝜈

contains only terms of order 𝜎𝜈. Thus, except for the Poisson bracket {𝒵0, 𝜒
(1)
𝜈 },

which only contributes to the secular terms 𝒵
(1)
𝜈 due to (3.70), the őrst Poisson

bracket in (3.73) contains prefactors of order 𝜎2𝜈 or higher, while the second
contains prefactors 𝜎𝑛𝜈 or higher. However, the exponent of 𝜎 in these brackets
can be lowered due to the negative powers introduced in the book-keeping
formulas in the following three classes of factors:
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(i) partial derivatives with respect to the eccentricity in (3.48), (3.49) (carrying
𝜎−1) multiplied by corresponding formulae (3.53), (3.56) (another 𝜎−1),
hence a total of 𝜎−2;

(ii) differentiations (3.52), (3.55) involving 𝑓 (weighting 𝜎−1) again in (3.48),
(3.49), thus a pre-factor 𝜎−1;

(iii) partial derivatives with respect to 𝜙1 in (3.47) (𝜎−𝜈1 , 𝜈1 ≥ 1), thus a
prefactor at least 𝜎−1.

As regards (iii) 𝜙1 shows up in the numerator of 𝜒
(1)
𝜈 accompanied by a pref-

actor 𝜎𝜈+𝜈1 (equation (3.69)), thus the negative powers 𝜎−𝜈1 are canceled by the
positive powers 𝜎𝜈1 , implying no dependence of the minimum order of the
remainder on 𝜈1.

As regards (i), we őrst note that 𝜒
(1)
𝜈 has no explicit dependence on 𝑒, but only

an implicit dependence through 𝜂, which in the closed-form context is treated
as an independent symbol. This follows from the fact that 𝜒(1) stems from bal-

ancing the coefficients of ℛ
(0)
𝜈,𝜈. The latter term contains a pre-factor 𝜇, which

is already 𝒪(𝜎𝜈), thus it cannot contain any further factors produced by any
explicit power of 𝑒. In view of the above, setting 𝜕𝜒(1)/𝜕𝑒 = 0, we őnd that for

any 𝐹 ∈ 𝒞∞(T4 × 𝐷) the expression in {𝐹, 𝜒(1)𝜈 } pertaining (i) can be factored
out as

{𝐹, 𝜒(1)𝜈 }(i) = −
𝜕𝐹

𝜕𝑒
𝜎−1

(
𝜕 𝑓

𝜕ℓ

𝜕𝑒

𝜕𝛿𝐿

𝜕𝜒
(1)
𝜈

𝜕 𝑓
+ 𝜕𝑒

𝜕𝐺

𝜕𝜒
(1)
𝜈

𝜕𝑔

)
. (3.74)

We now have the following lemma:

Lemma 3.2.1. For every term in the Hamiltonian (3.63) of the form

𝑞𝑠(∥𝑟1∥ , 𝛿𝐿, 𝜂, 𝜄𝑐 , 𝜄𝑠 ;𝜇, 𝐿∗, 𝑎1, 𝑒1, 𝜂1) cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)𝜎𝑠 , (3.75)

i.e., explicitly independent on 𝑒, we have 𝑠1 = 𝑠2.

Proof. This is a consequence of D’Alembert rules. Using modiőed Delaunay
angular elements𝜆, 𝛾, 𝜁 in (1.66), as well as the formulas 𝑓 = ℓ +2𝑒 sin ℓ +𝒪(𝑒2),
𝑒𝜂(𝑒)−2𝛼 = 𝑒+𝛼𝑒3+𝒪(𝑒5), 𝛼 ∈ N, we őnd that, after expanding in the eccentricity
𝑒, (3.75) should give the terms

𝑞𝑠 cos(𝑠1(𝜆 + 𝛾) + 𝑠2(𝜁 − 𝛾) − 𝑠3𝜁 + 𝑠4𝐸1)𝜎𝑠 + 𝒪(𝑒) . (3.76)

However, according to the D’Alembert rules, in a generic trigonometric mono-
mial of the form

𝑏𝑤(∥𝑟1∥ , 𝛿𝐿, 𝜂, 𝜄𝑐 , 𝜄𝑠 ;𝜇, 𝐿∗, 𝑎1, 𝑒1, 𝜂1)𝑒 𝑙𝜎𝑙 cos(𝑤1𝜆+𝑤2𝛾+𝑤3𝜁+𝑤4𝐸1)𝜎𝑤 , (3.77)

𝑙 ∈ N, appearing after expanding ℋ in the eccentricities 𝑒 , 𝑒1, we necessarily
have that 𝑙 − |𝑤2 | must be non-negative and even. Since for any closed-form
term in the Hamiltonian, explicitly independent of 𝑒, the lowermost term in 𝑒
produced after the expansion satisőes 𝑙 = 0, we necessarily have 𝑤2 = 0, that is
𝑠1 = 𝑠2. □
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In view, now, of (3.69), the relation 𝑠1 = 𝑠2 implies 𝜕𝜒
(1)
𝜈 /𝜕 𝑓 = 𝜕𝜒

(1)
𝜈 /𝜕𝑔. There-

fore, making use of (3.50), (3.53) and (3.56), the equation (3.74) translates into

{𝐹, 𝜒(1)𝜈 }(i) = −
𝜕𝐹

𝜕𝑒
𝜎−1 𝜕𝜒

(1)
𝜈

𝜕 𝑓

(
𝜎−1

𝐿∗𝑒
− 𝜎−1

𝐿∗𝑒
+ 𝒪(𝜎0)

)
= −𝜕𝐹

𝜕𝑒
𝜎−1 𝜕𝜒

(1)
𝜈

𝜕 𝑓
𝒪(𝜎0) .

It follows that for any of the functions 𝐹 = ℛ
(0)
𝜈 , {ℋ , 𝜒(1)𝜈 }, {{ℋ , 𝜒(1)𝜈 }, 𝜒(1)𝜈 }, . . .,

terms produced by derivatives of the type (i) in (3.67) are subject to a lowering
of the exponent of 𝜎 per Poisson bracket only by a factor 𝜎−1, instead of 𝜎−2. In

particular, in the case 𝐹 = ℛ
(0)
𝜈,𝜈 (as well as for any other closed-form function

explicitly independent on the eccentricity) we have that (3.74) is identically
vanishing.
As regards (ii), we őnd that for any 𝐹1, 𝐹2 ∈ 𝒞∞(T4 ×𝐷), the derivative 𝜕 𝑓 /𝜕𝛿𝐿
(equation (3.52)) participates in the Poisson bracket {𝐹1, 𝐹2} only through the
combination

𝜕 𝑓

𝜕ℓ

𝜕 𝑓

𝜕𝛿𝐿

(
𝜕𝐹1

𝜕 𝑓

𝜕𝐹2

𝜕 𝑓
− 𝜕𝐹1

𝜕 𝑓

𝜕𝐹2

𝜕 𝑓

)
= 0 . (3.78)

On the other hand, the derivative 𝜕 𝑓 /𝜕𝐺 (3.55) participates in the same Poisson
bracket through the combination

𝜕 𝑓

𝜕𝐺

(
𝜕𝐹1

𝜕𝑔

𝜕𝐹2

𝜕 𝑓
− 𝜕𝐹1

𝜕 𝑓

𝜕𝐹2

𝜕𝑔

)
(3.79)

which, by Lemma 3.2.1, is also equal to zero for 𝐹1 = ℛ
(0)
𝜈,𝜈 (or any other term

𝒪(𝜎𝜈+1) inℋ not depending explicitly on 𝑒), and 𝐹2 = 𝜒
(1)
𝜈 .

In conclusion, returning to (3.73), and taking all the above deductions into
account, we arrive at the expressions

{ℛ(0)𝜈 , 𝜒
(1)
𝜈 } = {ℛ(0)𝜈,𝜈 , 𝜒(1)𝜈 }+

{ ∑
𝑙≥𝜈+1

ℛ
(0)
𝜈,𝑙
, 𝜒
(1)
𝜈

}
= 𝒪(𝜎𝜈+𝜈)+𝒪(𝜎𝜈+1+𝜈−1) = 𝒪(𝜎2𝜈)

and similarly,

1

2
{{ℋ , 𝜒(1)𝜈 }, 𝜒(1)𝜈 } =

1

2
{{𝒵0, 𝜒

(1)
𝜈 }, 𝜒(1)𝜈 } +

1

2
{{ℛ(0)𝜈 , 𝜒

(1)
𝜈 }, 𝜒(1)𝜈 }

= 𝒪(𝜎2𝜈) + 𝒪(𝜎3𝜈−1) = 𝒪(𝜎2𝜈) ,

since {𝒵0, 𝜒
(1)
𝜈 } satisőes Lemma 3.2.1. We then have {𝒵0, 𝜒

(1)
𝜈 } = 𝒵

(1)
𝜈 −ℛ(0)𝜈,𝜈 +

𝒪(𝜎𝜈+1), with 𝒵
(1)
𝜈 independent on 𝑓 , 𝑔, 𝑒. Proceeding by induction

1

𝑛!
{. . . {{𝒵0 +ℛ(0)𝜈 , 𝜒

(1)
𝜈 }, 𝜒(1)𝜈 }, . . . , 𝜒(1)𝜈︸                   ︷︷                   ︸

𝑛≥3

} = 𝒪(𝜎min{𝑛𝜈−(𝑛−2), (𝑛+1)𝜈−(𝑛−1)})

= 𝒪(𝜎𝑛(𝜈−1)+2)

which concludes the proof of the proposition. □
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By Proposition 3.2.1, computing all Poisson brackets in (3.67), substituting
𝜙1 = 𝑒1 sin𝐸1 where appropriate, and multiplying all terms missing a factor

1/∥𝑟1∥with the factor 𝑎1(1−𝜎𝜈1𝑒1 cos(𝐸1))/∥𝑟1∥ (equal to 1), the remainderℛ
(1)
𝜈+1

resumes the standard form

ℛ
(1)
𝜈+1

=
∑
𝑙≥𝜈+1

ℛ
(1)
𝜈+1,𝑙

=
∑
𝑙≥𝜈+1

∑
𝜆≥1

𝑎1

∥𝑟1∥𝜆
∑
𝑠∈Z4

𝑑
(1)
𝑙 ,𝜆,𝑠

cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)𝜎𝑙 ,

(3.80)

where the coefficients 𝑑
(1)
𝑙 ,𝜆,𝑠

satisfy the relations

𝑑
(1)
𝑙 ,𝜆,𝑠

= 𝑑
(1)
𝑙 ,𝜆,𝑠
(𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠 , ;𝜇, 𝐿∗, 𝑎1, 𝑒1, 𝜂1)

=

{
𝑑
′(1)
𝑙 ,𝜆,𝑝

, 𝑠1 = 𝑠4 = 0, (𝑠2, 𝑠3) = 𝑝 ,

𝑑
′′(1)
𝑙 ,𝜆,𝑠

, (𝑠1, 𝑠4) ≠ (0, 0) ,
∈ R .

These last algebraic operations conclude the őrst normalization step.

Loop: normalization of the 𝝈𝝂+𝒋−1-terms

The procedure followed in the őrst step can be repeated iteratively in order
to normalize consecutively terms of order 𝜎𝜈+𝑗−1, with each time an 𝒪(𝜎𝜈+𝑗)
remainder, for 𝜈, 𝑗 > 1. As anticipated in Remark 3.2.4, the iterative procedure
described below fails in the case 𝜈 = 1 at step 𝑗 = 2, so an adjustment (involving
one more iteration) is required, as discussed later on below.

The 𝑗-th normalization step is carried out as follows from the next proposi-
tion.

Proposition 3.2.2. Assume 𝜈 ≥ 2, 𝜈1 ≥ 1. Assume that the Hamiltonian before the
𝑗-th normalization step has the form:

ℋ(𝑗−1) = 𝒵0 +
𝑗−1∑
𝑙=1

𝒵
(𝑙)
𝜈+𝑙−1

+ℛ(𝑗−1)
𝜈+𝑗−1

(3.81)

where
𝒵
(𝑙)
𝜈+𝑙−1

= 𝜎𝜈+𝑙−1
∑
𝜆≥1

∑
𝑝∈Z2

𝜁
(𝑙)
𝜈+𝑙−1,𝜆,𝑝

cos(𝑝1𝑔 + 𝑝2ℎ) . (3.82)

ℛ
(𝑗−1)
𝜈+𝑗−1

=
∑

𝑙≥𝜈+𝑗−1

ℛ
(𝑗−1)
𝜈+𝑗−1,𝑙

=
∑

𝑙≥𝜈+𝑗−1

∑
𝜆≥1

𝑎1

∥𝑟1∥𝜆
©­­­
«
∑
𝑝∈Z2

𝑑
′(𝑗−1)
𝑙 ,𝜆,𝑝

cos(𝑝1𝑔 + 𝑝2ℎ)

+
∑
𝑠∈Z4

(𝑠1 ,𝑠4)≠(0,0)

𝑑
′′(𝑗−1)
𝑙 ,𝜆,𝑠

cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1

ª®®®
¬
𝜎𝑙 , (3.83)
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for some real coefficients 𝜁(𝑙)
𝜈+𝑙−1,𝜆,𝑝

, 𝑑′(𝑗−1)
𝑙 ,𝜆,𝑝

, 𝑑′′(𝑗−1)
𝑙 ,𝜆,𝑠

speciőed at previous steps, where

𝜁
(1)
𝜈,𝜆,𝑝 =

{
𝑞′𝜈,𝑝 , 𝜆 = 1

0 , 𝜆 > 1

by (3.71).

Deőne the 𝑗-th step Lie generating function 𝜒
(𝑗)
𝜈+𝑗−1

as

𝜒
(𝑗)
𝜈+𝑗−1

=
𝜙1

𝑛1
𝜎𝜈+𝑗−1+𝜈1

∑
𝜆≥1

𝜆∑
𝜓=1

1

𝑎
𝜓−1

1 ∥𝑟1∥𝜆−𝜓
∑
𝑝∈Z2

𝑑
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ)

+ 𝜎𝜈+𝑗−1
∑
𝜆≥1

1

∥𝑟1∥𝜆−1

∑
𝑠∈Z4

(𝑠1 ,𝑠4)≠(0,0)

𝑑
′′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑠

𝑠1𝑛∗ + 𝑠4𝑛1
sin(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1) . (3.84)

Then, the Hamiltonianℋ(𝑗) produced by the Lie operationℋ(𝑗) = exp

(
ℒ

𝜒
(𝑗)
𝜈+𝑗−1

)
ℋ(𝑗−1)

has the form

ℋ(𝑗) = exp

(
ℒ

𝜒
(𝑗)
𝜈+𝑗−1

)
ℋ(𝑗−1) = 𝒵0 +

𝑗∑
𝑙=1

𝒵
(𝑙)
𝜈+𝑙−1

+ℛ(𝑗)𝜈+𝑗 , (3.85)

where
𝒵
(𝑗)
𝜈+𝑗−1

= 𝜎𝜈+𝑗−1
∑
𝜆≥1

∑
𝑝∈Z2

𝜁
(𝑗)
𝜈+𝑗−1,𝜆,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ) (3.86)

with

𝜁
(𝑗)
𝜈+𝑗−1,𝜆,𝑝 =

1

𝑎𝜆−1
1

𝑑
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 , (3.87)

and

ℛ
(𝑗)
𝜈+𝑗 =

∑
𝑙≥𝜈+𝑗

ℛ
(𝑗)
𝜈+𝑗 ,𝑙 =

∑
𝑙≥𝜈+𝑗

∑
𝜆≥1

𝑎1

∥𝑟1∥𝜆
©­­­
«
∑
𝑝∈Z2

𝑑
′(𝑗)
𝑙 ,𝜆,𝑝

cos(𝑝1𝑔 + 𝑝2ℎ)

+
∑
𝑠∈Z4

(𝑠1 ,𝑠4)≠(0,0)

𝑑
′′(𝑗)
𝑙 ,𝜆,𝑠

cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1

ª®®®
¬
𝜎𝑙 , (3.88)

with real coefficients 𝑑′(𝑗)
𝑙 ,𝜆,𝑝

, 𝑑′′(𝑗)
𝑙 ,𝜆,𝑠

computed from the known coefficients 𝜁
(𝑙)
𝜈+𝑙−1,𝜆,𝑝

(𝑙 = 1, . . . , 𝑗 − 1), 𝑑′(𝑗−1)
𝑙 ,𝜆,𝑝

, 𝑑′′(𝑗−1)
𝑙 ,𝜆,𝑠

.
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Proof. We repeat the strategy of Proposition 3.2.1 and look for a generating
Hamiltonian this time dependent on ∥𝑟1∥:

𝜒
(𝑗)
𝜈+𝑗−1
( 𝑓 , 𝑔, ℎ, 𝐸1, 𝜙1, ∥𝑟1∥ , 𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠)

= 𝜎𝜈+𝑗−1
©­­­
«
𝜙1𝜎

𝜈1

∑
𝜆≥1

∑
𝑝∈Z2

𝑑̂
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝(∥𝑟1∥ , 𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠) cos(𝑝1𝑔 + 𝑝2ℎ)

+
∑
𝜆≥1

∑
𝑠∈Z4

(𝑠1 ,𝑠4)≠(0,0)

𝑑̂
′′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑠 sin(𝑠1 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)

ª®®®
¬
.

Requiring {𝒵0, 𝜒
(𝑗)
𝜈+𝑗−1
} +ℛ

(𝑗−1)
𝜈+𝑗−1,𝜈+𝑗−1

to be 𝒪(𝜎𝜈+𝑗) in fast angles we come up

with

−𝑛∗𝑑̂′′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑠𝑠1 − 𝑛1𝑑̂

′′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑠𝑠4 +

1

∥𝑟1∥𝜆−1
𝑑
′′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑠 = 0 ,

−𝑛1
𝑎1

∥𝑟1∥
𝑑̂
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 + 𝑛1𝑑̂

′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 +

𝑎1

∥𝑟1∥𝜆
𝑑
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 =

1

𝑎𝜆−1
1

𝑑
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 ,

that is, for 𝜆 ≥ 1,

𝑑̂
′′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑠 =

1

∥𝑟1∥𝜆−1

𝑑
′′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑠

𝑠1𝑛∗ + 𝑠4𝑛1
, 𝑠 ∈ Z4 : (𝑠1, 𝑠4) ≠ (0, 0) ,

𝑑̂
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 =

1

𝑎𝜆−1
1

𝑑
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝

𝑛1

𝜆−1∑
𝜓=0

(
𝑎1

∥𝑟1∥

)𝜓
=
𝑑
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝

𝑛1

𝜆∑
𝜓=1

1

𝑎
𝜓−1

1 ∥𝑟1∥𝜆−𝜓
, 𝑝 ∈ Z2 ,

which proves (3.84), and new accumulated addenda in normal form

𝒵
(𝑗)
𝜈+𝑗−1

= 𝜎𝜈+𝑗−1
∑
𝜆≥1

1

𝑎𝜆−1
1

∑
𝑝

𝑑
′(𝑗−1)
𝜈+𝑗−1,𝜆,𝑝 cos(𝑝1𝑔 + 𝑝2ℎ) .

which proves (3.87). It remains to demonstrate that the expression (3.88) is
𝒪(𝜎𝜈+𝑗). The proof is done by induction: for 𝑗 = 2 we get

ℋ(2) = 𝒵0 +𝒵(1)𝜈 +𝒵(2)𝜈+1
+ 𝒪(𝜎𝜈+2) +

∑
𝑙≥𝜈+2

ℛ
(1)
𝜈+1,𝑙
+ {𝒵(1)𝜈 , 𝜒

(2)
𝜈+1
}

+ {ℛ(1)𝜈+1
, 𝜒
(2)
𝜈+1
} + . . . +

∑
𝑛≥2

1

𝑛!
{. . . {{ℋ(1), 𝜒(2)𝜈+1

}, 𝜒(2)𝜈+1
}, . . . , 𝜒(2)𝜈+1︸                      ︷︷                      ︸
𝑛

} . (3.89)

Similarly as in Proposition 3.2.1, a lowering of the book-keeping exponents in a

Poisson bracket of the form {𝐹, 𝜒(2)𝜈+1
} can occur through derivatives of the form
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(i). However, this time the latter can only appear in a Poisson bracket via the
combination

𝜎−1

(
𝜕 𝑓

𝜕ℓ

𝜕𝑒

𝜕𝛿𝐿

(
𝜕𝐹

𝜕 𝑓

𝜕𝜒
(2)
𝜈+1

𝜕𝑒
− 𝜕𝐹

𝜕𝑒

𝜕𝜒
(2)
𝜈+1

𝜕 𝑓

)
+ 𝜕𝑒

𝜕𝐺

(
𝜕𝐹

𝜕𝑔

𝜕𝜒
(2)
𝜈+1

𝜕𝑒
− 𝜕𝐹

𝜕𝑒

𝜕𝜒
(𝑗)
𝜈+1

𝜕𝑔

))
; (3.90)

so we can infer that

{𝒵(1)𝜈 , 𝜒
(2)
𝜈+1
} = 𝒪(𝜎2𝜈+1) , {ℛ(1)𝜈+1

, 𝜒
(2)
𝜈+1
} = 𝒪(𝜎2𝜈) ,

1

𝑛!
{. . . {{ℋ(1), 𝜒(2)𝜈+1

}, 𝜒(2)𝜈+1
}, . . . , 𝜒(2)𝜈+1︸                      ︷︷                      ︸

𝑛≥2

}

= 𝒪(𝜎min{𝑛(𝜈+1)−2(𝑛−1), 𝑛(𝜈+1)+𝜈−2(𝑛−1), (𝑛+1)(𝜈+1)−2𝑛}) = 𝒪(𝜎𝑛(𝜈−1)+2)

because (3.78), (3.79), (3.90) vanish when 𝐹 = 𝐹1 = 𝒵
(1)
𝜈 . Now, for all 𝜈 ≥ 2,

𝑛(𝜈 − 1) + 2 > 𝜈 + 1, 𝑛 ≥ 2, hence, the proposition is valid for 𝑗 = 2. For 𝑗 ≥ 3,
we have

ℋ(𝑗) = 𝒵0 +𝒵(1)𝜈 + . . . +𝒵
(𝑗−1)
𝜈+𝑗−2

+𝒵(𝑗)𝜈+𝑗−1
+ 𝒪(𝜎𝜈+𝑗) +

∑
𝑙≥𝜈+𝑗

ℛ
(𝑗−1)
𝜈+𝑗−1,𝑙

+ {𝒵(1)𝜈 + . . . +𝒵
(𝑗−1)
𝜈+𝑗−2

, 𝜒
(𝑗)
𝜈+𝑗−1
} + {ℛ(𝑗−1)

𝜈+𝑗−1
, 𝜒
(𝑗)
𝜈+𝑗−1
} + . . .

+
∑
𝑛≥2

1

𝑛!
{. . . {{ℋ(𝑗−1), 𝜒

(𝑗)
𝜈+𝑗−1
}, 𝜒(𝑗)𝜈+𝑗−1

}, . . . , 𝜒(𝑗)𝜈+𝑗−1︸                              ︷︷                              ︸
𝑛

} , (3.91)

and analogously

{𝒵(1)𝜈 , 𝜒
(𝑗)
𝜈+𝑗−1
} = 𝒪(𝜎2𝜈+𝑗−1) , {𝒵(𝑗−1)

𝜈+𝑗−2
, 𝜒
(𝑗)
𝜈+𝑗−1
} = 𝒪(𝜎2𝜈+2𝑗−5) ,

{ℛ(𝑗−1)
𝜈+𝑗−1

, 𝜒
(𝑗)
𝜈+𝑗−1
} = 𝒪(𝜎2𝜈+2𝑗−4) ,

1

𝑛!
{. . . {{ℋ(𝑗−1), 𝜒

(𝑗)
𝜈+𝑗−1
}, 𝜒(𝑗)𝜈+𝑗−1

}, . . . , 𝜒(𝑗)𝜈+𝑗−1︸                              ︷︷                              ︸
𝑛≥2

}

= 𝒪(𝜎min{𝑛(𝜈+𝑗−1)−2(𝑛−1), 𝑛(𝜈+𝑗−1)+𝜈−2(𝑛−1), 𝑛(𝜈+𝑗−1)+𝜈+𝑗−2−2𝑛, (𝑛+1)(𝜈+𝑗−1)−2𝑛})
= 𝒪(𝜎𝑛(𝜈+𝑗−3)+2) .

However, since 𝜈 > 1, 𝑛 ≥ 2, we readily őnd 𝑛(𝜈 + 𝑗 − 3) + 2 > 𝜈 + 𝑗 − 1, which
concludes the proof. □
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The case 𝜈 = 1

Coming to 𝜈 = 1, one realizes that (3.89) produces same order 𝜎2 non-normalized

terms via {ℛ(1)2 , 𝜒
(2)
2 } and {. . . {{𝒵0+ℛ(1)2 , 𝜒

(2)
2 }, 𝜒

(2)
2 }, . . . , 𝜒

(2)
2 }, namely the re-

sulting remainder is ℛ
(2)
2 , so the scheme in Proposition 3.2.2 is not directly

applicable beyond 𝑗 = 1. Despite this, it is worth noticing that if we manage to
get rid of these spurious terms, by performing, for instance, an extra normal-

ization II, such that the new outcome returns ℛ(II) = ℛ
(II)
3 , then the algorithm

(3.85) will work for 𝑗 ≥ 3 upon restarting the recursion from iteration II in place
of 2. This is precisely the claim we are about to show to complete the treatment.

Let us write (3.89) as ℋ(2) = 𝒵0 +𝒵(11
+𝒵(2)2 +ℛ

(2)
2 . Introduce the extra second

normalization II based on Proposition 3.2.2 targeted to ℛ
(2)
2,2 with generating

function 𝜒
(II)
2 . Then we have the following.

Proposition 3.2.3. For 𝜈 = 1 and any 𝜈1 ≥ 1,

ℋ(II) = exp
(
ℒ

𝜒
(II)
2

)
ℋ(2) = 𝒵0 +𝒵(1)1

+𝒵(2)2 +𝒵
(II)
2 +ℛ

(II)
3 . (3.92)

Moreover the loop composed by (3.85)ś(3.88) in Proposition 3.2.2 holds true for any
𝑗 ≥ 4 under the modiőcations

ℋ(3) = exp
(
ℒ

𝜒
(3)
3

)
ℋ(II) = 𝒵0 +𝒵(1)1

+𝒵(2)2 +𝒵
(II)
2 +𝒵

(3)
3 +ℛ

(3)
4
, (3.93)

ℋ(𝑗) = exp

(
ℒ

𝜒
(𝑗)
𝑗

)
ℋ(𝑗−1) = 𝒵0 +

𝑗∑
𝑙=1

𝒵
(𝑙)
𝑙
+𝒵(II)2 +ℛ

(𝑗)
𝑗+1

. (3.94)

Proof. We begin with a necessary generalization of Lemma 3.2.1.

Lemma 3.2.2. Given 𝐹1, 𝐹2 ∈ 𝒞𝜔(T×𝐷) trigonometric monomials of the form (3.75),
or equivalently in terms of the sine, fulőlling the property of Lemma 3.2.1, addenda of
the same type in the Lie series transformation applied to 𝐹1 with respect to 𝐹2 preserve
such property.

Proof. Since exp (ℒ𝐹2) 𝐹1 involves the computation of Poisson brackets of func-
tions explicitly independent on 𝑒, we have that (3.90), with 𝐹1, 𝐹2 in place

of 𝐹, 𝜒
(2)
𝜈+1

, is identically null, as well as (3.79) because 𝜕𝐹1/𝜕 𝑓 = 𝜕𝐹1/𝜕𝑔,
𝜕𝐹2/𝜕 𝑓 = 𝜕𝐹2/𝜕𝑔 by assumption. Thus, the bracket {𝐹1, 𝐹2} in the Lie se-
ries either does not introduce any eccentricity dependence at all, or only at
numerator through (3.50) multiplied by cos 𝑓 or cos2 𝑓 ; therefore its derivatives
contain products of cosines (sines) whose coefficients are independent on 𝑒 like

𝒢1(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1)𝒢2(𝑢1 𝑓 + 𝑢2𝑔 + 𝑢3ℎ + 𝑢4𝐸1) , 𝒢1,𝒢2 = cos, sin .

The arguments are now either summed or subtracted, hence they clearly satisfy
the property concerned. By cascade reasoning for further nested brackets we
conclude. □
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Remark 3.2.5. A straightforward use of the lemma in conjunction with formulae

(3.78), (3.79), (3.90) (𝜒
(2)
𝜈+1

replaced by generic differentiable function) reveal

that any transformed Hamiltonianℋ(𝑗) and corresponding generating function

𝜒
(𝑗)
𝜈+𝑗−1

encountered are regular at 𝑒 = 0 in agreement with D’Alembert rules,

i.e. they never depend on negative powers of 𝑒. Furthermore, every time one
of the two entries of {·, ·} does not depend on 𝑒, the upshot due to item (i) in the
proof of Proposition 3.2.1, as soon as non-zero, is diminished by 𝜎−1 instead of
𝜎−2.

We consider step II:

ℋ(II) = 𝒵0 +𝒵(1)1
+𝒵(2)2 +𝒵

(II)
2 + 𝒪(𝜎

3) +
∑
𝑙≥3

ℛ
(2)
2,𝑙
+ {𝒵(1)

1
, 𝜒
(II)
2 } + {𝒵

(2)
2 , 𝜒

(II)
2 }

+ {ℛ(2)2 , 𝜒
(II)
2 } + . . . +

∑
𝑛≥2

1

𝑛!
{. . . {{ℋ(2), 𝜒(II)2 }, 𝜒

(II)
2 }, . . . , 𝜒

(II)
2︸                    ︷︷                    ︸

𝑛

} . (3.95)

The analysis of the contributions reports these deductions, by which (3.92)
follows.

• {𝒵(1)
1
, 𝜒
(II)
2 } = 𝒪(𝜎3) because 𝒵

(1)
1

is independent on 𝑓 , 𝑔, 𝑒.

• {𝒵(2)2 , 𝜒
(II)
2 } = 𝒪(𝜎4) because 𝒵(2) and 𝜒

(II)
2 fulől Lemma 3.2.2. Indeed,

ℛ
(1)
2,2 depends on 𝑒 at most linearly by book-keeping rules, so it does 𝜒

(2)
2

by construction. At this point we show that for eccentricity dependent

terms stemming from ℛ
(1)
2,2 (or equivalently 𝜒

(2)
2 ) 𝑑

′(1)
2,𝜆,𝑝 = 0.

Lemma 3.2.3. Every trigonometric monomial in ℛ
(1)
2,2 explicitly dependent on

𝑒 carries the dependence on at least one of the two fast anomalies 𝑓 , 𝐸1 as well,
namely corresponding coefficients in (3.80) are 𝑑(1)

2,𝜆,𝑠 = 𝑑
′′(1)
2,𝜆,𝑠 , (𝑠1, 𝑠4) ≠ (0, 0).

Proof. By Proposition 3.2.1, Lemma 3.2.1 and 3.2.2, the substitution 𝜙1 =

𝑒1 sin𝐸1 and the formulas listed in ğ3.2.3, we take out of (3.67) the order
𝜎2 remainder and it is not restrictive to assume 𝜈1 = 1 in order to include
also the 𝑒1 cos𝐸1 dependent term in (3.70):

ℛ
(1)
2,2 = ℛ

(0)
1,2
+ 𝑎1

∥𝑟1∥

(
𝑛∗

(
𝑒1 cos𝐸1 −

2𝑒 cos 𝑓

𝜂3

)
𝜎
𝜕𝜒
(1)
1

𝜕 𝑓
+
𝜕ℛ
(0)
1,1

𝜕 𝑓

𝜕𝜒
(1)
1

𝜕𝛿𝐿

−
𝜕ℛ
(0)
1,1

𝜕𝛿𝐿

𝜕𝜒
(1)
1

𝜕 𝑓
− 1

𝐿∗

𝜕𝜒
(1)
1

𝜕𝜄𝑐

©­
«
𝜄𝑐
𝜕ℛ
(0)
1,1

𝜕 𝑓
−
𝜕ℛ
(0)
1,1

𝜕ℎ
ª®
¬

+ 1

𝐿∗

𝜕ℛ
(0)
1,1

𝜕𝜄𝑐

(
𝜄𝑐
𝜕𝜒
(1)
1

𝜕 𝑓
−
𝜕𝜒
(1)
1

𝜕ℎ

)
− 2 sin 𝑓

𝐿∗𝑒
𝜎−1

𝜕𝜒
(1)
1

𝜕 𝑓
©­
«
𝜕ℛ
(0)
1,2

𝜕𝑔
−
𝜕ℛ
(0)
1,2

𝜕 𝑓
ª®
¬
)

− 𝑎1

2

{
1

∥𝑟1∥

(
𝑛∗

(
1 + 2𝑒 cos 𝑓

𝜂3
𝜎

)
𝜕𝜒
(1)
1

𝜕 𝑓
+ 𝑛1

𝜕𝜒
(1)
1

𝜕𝐸1

)
, 𝜒
(1)
1

}
2

,
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where {·, ·}2 indicates that we retain only 𝜎2 quantities after the operation
(in virtue of Lemma 3.2.2 and Remark 3.2.5, inductions derived to demon-
strate Proposition 3.2.1 are a coarser bound and no other parts of order
𝜎2 come out). Plugging in (3.69) and (3.65) for 𝑙 = 1, 2 and taking into
account Lemma 3.2.1, upon simpliőcations the contributions involving 𝑒
result in

ℛ
(0)
1,2𝑒
− 𝑎1𝑒𝑛∗
𝜂3 ∥𝑟1∥

𝜎2
∑

(𝑠1 ,𝑠4)≠(0,0)

𝑠1𝑞
′′
1,𝑠

𝑠1𝑛∗ + 𝑠4𝑛1
(cos((1 − 𝑠1) 𝑓 − 𝑠1𝑔 − 𝑠3ℎ − 𝑠4𝐸1)

+ cos((1 + 𝑠1) 𝑓 + 𝑠1𝑔 + 𝑠3ℎ + 𝑠4𝐸1)) , (3.96)

where

ℛ
(0)
1,2𝑒

=
𝑎1

∥𝑟1∥
𝜎2

∑
𝑠∈Z4

𝑞2,𝑠 cos(𝑠1 𝑓 + 𝑠2𝑔 + 𝑠3ℎ + 𝑠4𝐸1) , 𝑞2,𝑠 = 𝑒 𝑞̄2,𝑠 . (3.97)

We employ now all D’Alembert rules to show that only the harmonics of
interest can exist.
Following the same argument as in Lemma 3.2.1, let us write the cosine
input of (3.97) using modiőed Delaunay angles (1.66) also for𝒫1 in relation
to corresponding orbital elements (3.3) (subscript ‘1’):

𝑠1𝜆 + (𝑠1 − 𝑠2)𝛾 + (𝑠2 − 𝑠3)𝜁 + 𝑠4𝜆1 + (𝑠4 − 𝑠5)𝛾1 + (𝑠5 − 𝑠6)𝜁1 , 𝑠𝑙 ∈ Z ,

in which 𝛾1 = 𝜁1 = 0. For the elimination of the apparent singularity at
𝑒 = 0, we must have 1 − |𝑠1 + 𝑠2 | ≥ 0 and even, hence 𝑠2 = 𝑠1 ± 1. Then,

since ℛ
(0)
1,2𝑒

is independent on 𝑒1 by book-keeping setting, analogously we

must end up with 𝑠4 = 𝑠5. Regarding instead the regularity at 𝑖1 = 0,
because of the absence of 𝑖1 we must conclude that 0 − |𝑠5 − 𝑠6 | ∈ 2N,
namely 𝑠5 = 𝑠6. At this stage, we invoke the invariance under rotation
around the 𝑍 axis, which prescribes

𝑠1 − 𝑠1 + 𝑠2 − 𝑠2 + 𝑠3 + 𝑠4 − 𝑠4 + 𝑠5 − 𝑠5 + 𝑠6 = 𝑠3 + 𝑠6 = 0 ,

and summing up this implies 𝑠3 = −𝑠4. Ultimately, concerning the incli-
nation, we must ensure that 𝑙 − |𝑠2 − 𝑠3 | ∈ 2N, with 𝑙 even as well again
being 𝑖1 not involved, thus 𝑠2 = 𝑠3 ± 2𝑛, 𝑛 ≤ 𝑙/2 natural number. Putting
all together we arrive at

𝑠1 𝑓 + 𝑠2𝑔+ 𝑠3ℎ+ 𝑠4𝐸1 =⇒ 𝑠1 𝑓 +(𝑠1±1)𝑔+(𝑠1∓2𝑛±1)ℎ+(±2𝑛∓1− 𝑠1)𝐸1 ,

which always depends on at least one among 𝑓 , 𝐸1 since the coefficients
𝑠1, ±2𝑛 ∓ 1 − 𝑠1 never vanish simultaneously.
By means of an identical reasoning and given the preservation of D’Alembert

rules under exp
(
ℒ

𝜒
(1)
1

)
, we achieve the same outcome for the remaining

part of (3.96) after replacing 𝑠1 ↦→ 1 ± 𝑠1, indeed we őnd

(1 ± 𝑠1) + (1 ± 𝑠1 ± 1)𝑔 + (1 ± 𝑠1 ∓ 2𝑛 ± 1)ℎ + (±2𝑛 ∓ 1 − 1 ∓ 𝑠1)𝐸1 ,

and no solutions to 1 ± 𝑠1 = 0, ±2𝑛 ∓ 1 − 1 ∓ 𝑠1 = 0. □
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Given that the order 2 normal form is sourced from the part of ℛ
(1)
2,2

explicitly independent on fast angles, it turns out that it is free of 𝑒.

Finally, ℛ
(2)
2,2 is free of 𝑒 too, being generated by terms in {ℛ(1)2,2, 𝜒

(2)
2 }

and {. . . {{𝒵0 +ℛ(1)2,2, 𝜒
(2)
2 }, 𝜒

(2)
2 }, . . . , 𝜒

(2)
2 } subjected to computation (i) of

Proposition 3.2.1 (Remark 3.2.5). Again by construction, the same applies

to 𝜒
(II)
2 .

• {ℛ(2)2 , 𝜒
(II)
2 } = 𝒪(𝜎4) by Remark 3.2.5.

•
1

𝑛!
{. . . {{ℋ(2), 𝜒(II)2 }, 𝜒

(II)
2 }, . . . , 𝜒

(II)
2︸                    ︷︷                    ︸

𝑛≥2

} = 𝒪(𝜎4) consequently.

In order to conclude, we just need to check that the next step gives rise to
an 𝒪(𝜎4) perturbation and the cycle of normalizations can restart for 𝑗 ≥ 4 in
light of the bounds on 𝜎 from (3.91) at the end of the proof of Proposition 3.2.2.
Upon repeating the usual argument, it is easy to see that the only bracket worth

investigating is {𝒵(II)2 , 𝜒
(3)
3 }, that is, nevertheless, 𝒪(𝜎4) because 𝒵

(II)
2 is made

out of ℛ
(2)
2,2 independent on 𝑒. □

Remark 3.2.6. By the above argument it is immediate to realize that even 𝑝2 ≡ 0
in (3.69) and (3.65) for 𝑙 = 𝜈, so 𝑞′𝜈,𝑝 = 0 for all 𝑝 ≠ (0, 0).

Remark 3.2.7. The content of Lemma 3.2.3 comes from a obvious physical in-
tuition: since the potential due to the secondary experienced by the particle
depends on their mutual position, which is determined by 𝑓 and 𝐸1, the un-
normalized short-effect harmonics in the remainder depend necessarily on one
of the two anomalies or both.

Serving as an example, a detailed demonstration of the normalization pro-
cedure exposed in the present section for a simple model, containing just few
terms of the disturbing function, is presented in Appendix D.

3.3 Numerical tests

3.3.1 Computer-algebraic implementation of the normaliza-

tion algorithm

Implementing the above normalization procedure, e.g. by use of a Computer
Algebra System (CAS), requires working with a őnite truncation of the initial
Hamiltonian model (3.11). To this end, the disturbing function (3.13) multiplied
by 𝜇 can be re-arranged as

𝜇ℋ1 = −𝒢𝑚0𝜇

∥𝑅∥

∞∑
𝜅1=0

∞∑
𝜅2=0
𝜅2≠1

∞∑
𝜅3=0

ℎ̃𝜅1 ,𝜅2 ,𝜅3𝜇
𝜅1

(
2𝑟1 · 𝑅
∥𝑅∥2

)𝜅2
(
∥𝑟1∥
∥𝑅∥

)2𝜅3

, (3.98)
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where ℎ̃𝜅1 ,𝜅2 ,𝜅3 are real coefficients derived from the coefficients of (3.13). A
convenient truncation of (3.98) stems from deőning two separate truncation or-
ders in powers of𝜇 (truncation order 𝑘𝜇), and in powers of ∥𝑟1∥ /∥𝑅∥ (multipole
truncation order 𝑘mp), through the formula

ℋ≤𝑘𝜇 ,𝑘mp

1
= −𝒢𝑚0𝜇

∥𝑅∥

𝑘𝜇−1∑
𝜅1=0

𝑘mp∑
𝜅2=0,𝜅≠1

⌊𝑘mp/2⌋∑
𝜅3=0

ℎ̃𝜅1 ,𝜅2 ,𝜅3𝜇
𝜅1

(
2𝑟1 · 𝑅
∥𝑅∥2

)𝜅2
(
∥𝑟1∥
∥𝑅∥

)2𝜅3

,

(3.99)
where ⌊·⌋ is the integer part function. Working with the truncated Hamiltonian

ℋ≤𝑘𝜇 ,𝑘mp = ℋ0 + ℋ
≤𝑘𝜇 ,𝑘mp

1
, we then obtain a sequence of secular models 𝒵(𝑗),

𝑗 = 1, 2, . . ., where 𝑗 denotes the normalization step, computed via the formula

𝒵(𝑗) = 𝒵0 +
𝑗∑
𝑙=1

𝒵
(𝑙)
𝜈+𝑙−1

. (3.100)

In particular, we implement the following steps of the CAS algorithm:

(i) for a őxed value of𝜇, choose values for 𝑘𝜇, 𝑘mp, perform the corresponding
expansions of the Hamiltonian as in (3.98) and compute the truncated
modelℋ≤𝑘𝜇 ,𝑘mp ;

(ii) choose the reference values of 𝑎∗ and 𝑒∗;

(iii) pass to variables ( 𝑓 , 𝑔, ℎ, 𝐸1, 𝛿𝐿, 𝑒 , 𝜂, 𝜄𝑐 , 𝜄𝑠 , 𝐽1) and parameters 𝐿∗, 𝑒1, 𝑎1, 𝜂1

on the basis of the selected 𝑎∗;

(iv) compute 𝜈 and 𝜈1 (equation (3.7));

(v) set the appropriate book-keeping weights following the rules in ğ3.2.3
and expand correspondingly the Hamiltonian in 𝛿𝐿 up to 𝜎𝜈𝑘𝜇 ;

(vi) drop constants, perform the identity operation (3.63), discard book-keeping
powers larger than 𝜈𝑘𝜇 and introduce 𝑛∗;

(vii) if 𝜈 > 1, compute the generating function (3.69) as well as the őrst-
normalized Hamiltonian ℋ(1) by the Lie series operation (3.66) truncated
at the maximum book-keeping order 𝑁bk ≤ 𝜈𝑘𝜇; if 𝜈 = 1, compute ℋ(1)

(always truncated to the book-keeping order 𝑁bk) via the procedure in
the dedicated paragraph of ğ3.2.4;

(viii) compute the successive normalizations ℋ(𝑗), truncated at book-keeping
order 𝑁bk via the procedure of ğ3.2.4 in the third paragraph, up to a
maximum normalization order 𝜈 + 𝑗max − 1 < 𝑁bk, 𝑗max ≤ 𝜈(𝑘𝜇 − 1);
this allows us to obtain truncated Hamiltonian models containing a őnite
number of normal form terms as well as a őnite number of terms provided
by the truncated remainder.
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Serving as additional support, the above road-map is structured as a pseudo-
code in Appendix E.

In the CAS implementation of the above algorithm we work in Wolfram

Mathematica 12 with numerical coefficients, substituting all constants with
their corresponding numerical values. Several types of numerical tests of the
precision of the method can be carried out as exempliőed in the sequel.

3.3.2 Semi-analytic orbit propagations in the Sun-Jupiter R3BP

For all numerical tests below we refer to the Sun-Jupiter one (𝜇 = 9.5364 · 10−4).
We employ Earth-orbit based units, such that 𝒢𝑚0 = 4𝜋2 AU3/y2, 𝑎1 = 5.2044
AU, so that Jupiter’s period is𝑇1 = 11.86 y. Jupiter’s mean motion is 𝑛1 = 2𝜋/𝑇1,
and eccentricity either 𝑒1 = 0.0489 (ER3BP) or 𝑒1 = 0 (CR3BP), used throughout
all computations.
In all tests below, a particle’s orbit is deőned by providing the initial conditions
𝑎(0), 𝑒(0), 𝑖(0) (𝑎(0), 𝑒(0) in the planar case), complemented by 𝑓 (0) = 𝑔(0) =
ℎ(0) = 0 ( 𝑓 (0) = 𝑔(0) = 0 in the planar case).

Our basic proof of the efficiency of the normalization method in the frame-
work of the ER3BP is given by comparing the short-period oscillations of the
orbital elements 𝑎(𝑡), 𝑒(𝑡), 𝑖(𝑡), 𝑔(𝑡), ℎ(𝑡), as found by two different methods.

Direct Cartesian propagation: the initial conditions

𝑧(0) ≔ (𝑎(0), 𝑒(0), 𝑖(0), 𝑓 (0), 𝑔(0), ℎ(0))

are mapped into initial conditions for the Cartesian canonical positions and
conjugate momenta (𝑋(0), 𝑌(0), 𝑍(0), 𝑃𝑋(0), 𝑃𝑌(0), 𝑃𝑍(0)). Using Hamilton’s
equations with the full Hamiltonian (3.1) (setting also 𝐽1(0) = 0, 𝑀1(0) = 0), we
obtain the numerical evolution (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑃𝑋(𝑡), 𝑃𝑌(𝑡), 𝑃𝑍(𝑡)), which can
be transformed to element evolution

𝑧(𝑡) = (𝑎(𝑡), 𝑒(𝑡), 𝑖(𝑡), 𝑓 (𝑡), 𝑔(𝑡), ℎ(𝑡)) .

Semi-analytical propagation: following the implementation of the normalization
algorithm as described in the previous subsection, the initial osculating element
state vector 𝑧(0) is transformed into an initial condition for the corresponding
‘mean element’ state vector 𝜉(𝑗)(𝑧(0)), i.e., the element vector corresponding to
the new canonical variables conjugated to the original ones after 𝑗 near-identity
normalizing transformations. This is computed by the Lie series composition
formula truncated at book-keeping order 𝑁bk:

𝜉(𝑗)(𝑧) =
(
exp

(
ℒ−𝜒(1)𝜈

)
◦ exp

(
ℒ−𝜒(2)𝜈+1

)
◦ . . . ◦ exp

(
ℒ−𝜒(𝑗)

𝜈+𝑗−1

)
𝑧

)≤𝑁bk

, (3.101)

using (3.68) for the inverse series. We then obtain the evolution of the mean
element vector 𝜉(𝑗)(𝑡) through numerical integration of the secular equations of
motion.

¤𝜉(𝑗) = J∇𝒵(𝑗)(𝜉(𝑗)) (3.102)
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Figure 3.2: First example (ER3BP). Data: 𝑎∗ = 50 AU, 𝑒∗ = 0.1 (𝜈 = 3), 𝑖(0) =
10◦, 𝑘𝜇 = 𝑘mp = 2. Black curves represent semi-analytic time variations (our
method), while red curves stand for Cartesian series.

This can be back-transformed to yield the evolution of the osculating element
vector 𝑧(𝑡) using the truncated Lie series composition formula

𝑧(𝜉(𝑗)) =
(
exp

(
ℒ

𝜒
(𝑗)
𝜈+𝑗−1

)
◦ exp

(
ℒ

𝜒
(𝑗−1)
𝜈+𝑗−2

)
◦ . . . ◦ exp

(
ℒ

𝜒
(1)
𝜈

)
𝜉(𝑗)

)≤𝑁bk

. (3.103)

Note that both the direct and inverse transformations (Eqs.(3.101) and (3.103)),
as well as Hamilton’s secular equations (3.102), can be computed in closed
form, using the Poisson algebra rules of ğ3.2.3. We then call semi-analytic the
evolution of the element vector 𝑧(𝑡) obtained via the formula

𝑧(𝑡) = 𝑧(𝜉(𝑗)(𝑡)) . (3.104)

Fig. 3.2 and 3.3 show the comparison between the Cartesian and the semi-
analytical propagation of the elements in łeasyž cases, where, for instance in
the former, the particle departs from initial conditions 𝑎(0) = 50 AU, with a
relatively low value of the eccentricity 𝑒(0) = 0.1 and inclination 𝑖(0) = 10◦. In
this case, the distance ratio ∥𝑟1∥ /∥𝑅∥ is small (about 10−1), a fact implying that
the quadrupolar expansion (𝑘mp = 2) suffices to have obtained a relative error
of about 0.1% in the representation of the Hamiltonian perturbationℋ1. Going
to higher multipoles is straightforward, albeit with a signiőcant computational
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Figure 3.3: Second example (ER3BP). Data: 𝑎∗ = 30 AU, 𝑒∗ = 0.15 (𝜈 = 4),
𝑖(0) = 10◦, 𝑘𝜇 = 𝑘mp = 2. Same color conventions of Fig. 3.2.

cost as the number of terms in the Hamiltonian grows signiőcantly. On the
other hand, even with low-order truncations of the Hamiltonian we achieve
to have an accurate semi-analytical representation of the 𝒪(𝜇) short-period
oscillations in all three łaction-likež elements (semi-major axis, eccentricity,
inclination). Most notably, keeping 𝑎(0) the same but changing the eccentricity
to 𝑒(0) = 0.7, i.e., beyond the Laplace value, yields an orbit whose pericenter is
at



𝑅𝑝

 = 15 AU, implying a distance ratio ∥𝑟1∥ /∥𝑅∥ ≈ 0.3 (Fig. 3.4). This time,
an octupole truncation (𝑘mp = 3) is required to produce an approximation of
the Hamiltonian model at the level of a relative error of 0.1%. Still, however, as
shown in Fig. 3.4 the semi-analytical propagation of the orbit is able to track
the fully numerical one with an error which does not exceed 0.2% even close
to the orbit’s pericentric passages.
Finally, we provide further time series examples in the case of the planar
CR3BP in Fig. 3.5, 3.6, 3.7. The simpler model allows to carry out more
computationally demanding performances. The agreements, indeed, reached
in Fig. 3.5-3.6 (including an example for the angle 𝑔(𝑡) in the former) are
obtained for 𝑗max = 6 and 𝑗max = 10 normalization steps respectively (see also
Fig. 4.5 in ğ4.4.1), which are more than those employed in the elliptic case
(respectively, 𝑗max = 3, 4, 4). Moreover in Fig. 3.7, an octupole expansion is not
good enough to cope with a distance ratio ∥𝑟1∥ /∥𝑅∥ ≈ 0.7 and a pericentric
distance



𝑅𝑝

 = 7.2 AU. Thus, a larger value 𝑘mp = 5 allows us to improve
considerably the degree of accuracy. More details in this regard are addressed



3.3. Numerical tests 93

0 200 400 600 800 1000

49.70

49.75

49.80

49.85

49.90

49.95

50.00

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

Figure 3.4: Third example (ER3BP). Data: 𝑎∗ = 50 AU, 𝑒∗ = 0.7 (𝜈 = 20),
𝑖(0) = 20◦, 𝑘𝜇 = 2, 𝑘mp = 3. On the left, the black curve represents the semi-
analytic time variation of the semi-major axis (our method) versus the one
found by propagation of the Cartesian equations of motion (red). The right
panel shows the evolution of the corresponding percent relative error ℰ%

𝑎 .

in ğ4.4.1.
A summary of the number of terms in the őnal truncated generating function,
normalized Hamiltonian and remainder for each example of Fig. 3.2-3.7 is
provided in Table 3.1.

In the above examples, the maximum number of normalization steps 𝑗max

at which the secular Hamiltonian is computed was set correspondingly to the
best achievable match. As discussed in the next chapter, an estimate of the
minimum possible error in the semi-analytic propagation of the trajectories re-
quires computing őrst the so-called optimal number of normalizations 𝑗opt (or
equivalently optimal normalization order 𝜈 + 𝑗opt − 1) as a function of the refer-
ence values (𝑎∗, 𝑒∗)within a model given by a preset őxed multipole truncation
order. Owing to the fact that the same divisors appear in the ER3BP and in

Ex. (𝑁bk, 𝑗max, 𝑘mp) #
(
𝜒
(𝑗max)
𝜈+𝑗max−1

)
#
(
𝒵
(𝑗max)
𝜈+𝑗max−1

)
#
(
ℛ
(𝑗max)
𝜈+𝑗max

)
1 (Fig. 3.2) (6, 3, 2) 179 18 418
2 (Fig. 3.3) (8, 4, 2) 330 19 1111
3 (Fig. 3.4) (24, 4, 3) 936 18 1842
4 (Fig. 3.5) (16, 6, 3) 204 72 543
5 (Fig. 3.6) (20, 10, 3) 618 126 726
6 (Fig. 3.7) (9, 6, 5) 2127 140 3514

Table 3.1: Computational details of the normalization for the examples in Fig.
3.2-3.7 (#(·) denotes the number of terms contained).



94 3. CLOSED-FORM PERT. TH. FOR EXT. ORBS. IN THE R3BP W/O REL.

0 150 300

19.97

19.99

20.01

0 150 300

0.3985

0.3995

0.4005

0 150 300

-0.002

0.001

0.004

Figure 3.5: Fourth example (planar CR3BP). Data: 𝑎∗ = 20 AU, 𝑒∗ = 0.4 (𝜈 = 8),
𝑘𝜇 = 2, 𝑘mp = 3. Black curves: semi-analytic. Red curves: Cartesian.
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Figure 3.6: Fifth example (planar CR3BP): 𝑎∗ = 30 AU, 𝑒∗ = 0.5 (𝜈 = 10), 𝑘𝜇 = 2,
𝑘mp = 3. Black curves: semi-analytic. Red curves: Cartesian.
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Figure 3.7: Sixth example (planar CR3BP): 𝑎∗ = 8 AU, 𝑒∗ = 0.1 (𝜈 = 3), 𝑘𝜇 = 3,
𝑘mp = 5. Black curves: semi-analytic. Red curves: Cartesian.

the CR3BP, we verify with numerical examples that the error analysis yields
essentially identical results in either case. However, the computation of the
optimal normalization is easier to perform in the CR3BP, owing to the con-
siderably smaller number of terms produced in the CAS computation of the
normal form. Such reduction of the operational cost, especially in the planar
restriction, is due, in particular, to the following:

• The dependence on 𝑀1 becomes explicit (𝑀1 = 𝐸1 in (3.2)), while 𝑎1 =

∥𝑟1∥. As a consequence, 𝜙1 = 0.

• No terms involving (ℎ, 𝐻) appear in the disturbing function, thus 𝜄𝑐 , 𝜄𝑠
are discarded (planar case).

• No terms requiring a book-keeping in terms of the exponent 𝜈1 appear,
hence, only 𝜈 is deőned, as in (3.7).

• 𝑑
′(𝑗)
𝑙 ,𝜆,𝑝

= 0 for every 𝑗 , 𝑙 ,𝜆, 𝑝 in (3.88), (3.84), and consequently 𝑝1 = 𝑝2 ≡ 0

in (3.86). This is due to the fact that the expression (3.16) reduces to

𝑟1 · 𝑅 = ∥𝑟1∥ ∥𝑅∥ cos( 𝑓 + 𝑔 −𝑀1) , (3.105)

which always depends on the difference 𝑔 − 𝑀1 by D’Alembert rules.
This implies that, unlike the ER3BP, the action 𝐺 (and the corresponding
eccentricity 𝑒) are integrals of the secular Hamiltonian.

• As a consequence no lower or equal book-keeping order terms appear
in any Poisson bracket of the őrst normalization step in the case 𝜈 = 1.
Hence Proposition 3.2.3 is redundant.

Hence, in the next chapter we turn our attention to a detailed study of the
application of closed-form theory to this latter model.
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4
Numerical detection of the

secular stability domain in the

Sun-Jupiter system

In this chapter we őrst discuss the usage of numerical techniques capable to
quantify the degree of orbital instability on either short- or long-term time
scales in the R3BP, taking as example the Sun-Jupiter system. The numerical
stability maps allow to obtain insights on the geometry of the projected phase
space (orbital elements’ space). We then return to the central goal of the dis-
sertation: we employ the semi-analytic machinery of Chapter 3 in order to
characterize, within the same portray, a particular domain of initial conditions
leading to motions which exhibit no instabilities caused by short-period inter-
actions with Jupiter. This is called hereafter the domain of secular motions. We
then explore how the closed-form technique to produce a secular normal form
can be exploited in order to develop a reliable criterion by which the border of
the domain of secular motion can be computed semi-analytically.
The main őndings of the present chapter are hinted in [89] and can be thor-
oughly consulted in [91].

4.1 State of the art on stability analysis and pur-

poses

The secular (long-term) behavior of the planetary orbits with one massive cen-
tral body and 𝑁 − 1 less massive bodies is a central question in the framework
of the 𝑁-body problem. Already in the R3BP, although simpler in its analytical
formulation, the question of long-term orbital stability remains a long-standing
and complex problem.

The question can be classically formulated basically in the following man-
ner: given a certain semi-major axis for the particle, and őxing the angles at
a certain value, what is the critical eccentricity that separates the domains of

97
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long-term stable and unstable motion?
This problem has been addressed by different methods. The coarsest cri-

terion one can think of is the pericenter/apocenter crossing method: whenever
Jupiter’s radius crosses the particle’s radius of pericenter (for external motions)
or radius of apocenter (for internal motions) the secular evolution is interrupted
due to close encounters of the test particle with the planet. However, by nu-
merical evidence, this condition seems to be inaccurate: as shown below, on
one hand there exist strips of stable orbits intersecting one of the two apsides
in the (𝑎, 𝑒) plane, while off these strips, on the other hand, the apse curves
overestimate the domain of regular orbits.

A more reőned way to investigate stability is the so-called Hill stability cri-
terion: an initial condition is said to be stable if its Jacobi constant 𝐶𝐽 > 𝐶𝐽𝐿1

,
where 𝐶𝐽𝐿1

is the value acquired at the Lagrangian point 𝐿1. This is based
on the fact that the particle will then be trapped within a zero-velocity region
that excludes the position of the secondary. The particle’s trajectory cannot
cross the orbit of the perturber and will therefore remain bounded. While such
a condition is sufficient for stability, it is not necessary: there exist solutions
which do not comply with this inequality, but are nevertheless stable, at least
for times of the order of the age of the Solar System [34].

An estimate of different nature, this time of orbital instability, is the resonance
overlap criterion, based on the work of Chirikov [15] and Wisdom [105]: it asserts
that global chaos (and therefore orbital instability) is triggered by the overlap of
adjacent mean-motion resonances. Based on what is known nowadays as the
Second Fundamental Model for Resonance [44], for an inner particle Wisdom
proposed the empirical law

𝑎crit = 𝑎1

(
1 − 1.3

(
𝑚1

𝑚0

) 2
7

)
(4.1)

for the critical semi-major axis leading to overlap. Various adjustments to (4.1)
and revisitations of the criterion have been examined so far (see e.g. [87] and
references therein).

Recently, Laskar and collaborators [22, 55, 84, 85] have presented another
heuristic criterion for the secular stability, with applicability in extrasolar plan-
etary environments. According to the so-called Angular Momentum Deőcit
(AMD) criterion, a system of bodies is AMD-stable if its total angular momen-
tum restricts the amplitude of the secular oscillations in the bodies’ orbital
eccentricities and inclinations in such a way as to protect the bodies from close
encounters, where the AMD is deőned as the difference between the norm of
the angular momentum of a coplanar and circular system with the same semi-
major axis values and the norm of the angular momentum. Nonetheless, there
are numerical indications that the AMD criterion has some limitations too as
regards its applicability [38, 39, 63].

Finally, it is worth recalling that the above strategies pay less attention to
the outermost zones of the Solar System as compared to the innermost ones.

In order to set up a new limit as regards the separation between stable and



4.1. State of the art on stability analysis and purposes 99

unstable orbits, whose distinction will be made precise in the treatment be-
low, we need an accurate representation of the domains of different regimes
of motion, with emphasis on trajectories larger than Jupiter’s. In the following
we present high-resolution stability maps in the semi-major axis-eccentricity
coordinates obtained via numerical integrations complemented by the reg-
ularization technique constructed in Chapter 2 when useful. The resulting
cartographies portray short- and long-time values of the well-known chaos in-
dicator named Fast Lyapunov Indicator [56].

Subsequently, subsets of the boundary separating strong from weak chaos
captured by these images are compared to their equivalent produced this time
using a coarser technique to represent instability: the particle’s sudden semi-
major axis jump in őnite time. This is displayed using plots with a binary input
(0 or 1) based on the exceeding of a chosen percentage of the moving average
along the integration. Notwithstanding its crudity and evident limitations, the
good match in the results proves its reliability as a simpler alternative for a
preliminary stability analysis.
Along with the indicator, a distribution of corresponding łblowupž times and
consequent minimum distances from the planet is provided as well.

After displaying a detailed cartography of the domain of order and chaos
using the above numerical chaos indicators, we then return to our central ques-
tion posed above: can we invoke, instead, a semi-analytic criterion allowing to
efficiently separate the domain of long-term stable from unstable motion? Our
basic result in the present chapter is that such a criterion can be obtained on
the basis of the closed-form technique of derivation of a secular normal form
exposed in Chapter 3.
A relevant outcome of the analysis of the behavior of the remainder obtained
by the closed-form method stems from an estimation of the optimal number of
normalization steps 𝑗opt, where the remainder becomes of order 𝜈 + 𝑗opt − 1 in
the book-keeping parameter, with 𝑗opt ≤ 𝜈(𝑘𝜇 − 1). The value of 𝑗opt is deőned

as the one where the error bound ℰ(𝑗)(𝑎∗, 𝑒∗) =
∑

𝜈+𝑗≤𝑙≤𝜈𝑘𝜇 ,𝑠 |𝑑
(𝑗)
𝑙 ,𝑠
| ≥




ℛ(𝑗)𝜈+𝑗




∞

=

sup |ℛ(𝑗)𝜈+𝑗 | becomes minimum, with ℛ
(𝑗)
𝜈+𝑗 = 𝒪(𝜎𝜈+𝑗) and 𝑑

(𝑗)
𝑙 ,𝑠

as in (3.6) after 𝑗

normalization steps. As typical in perturbation theory, the value of 𝑗opt depends
on the chosen reference values (𝑎∗, 𝑒∗). With the methods of Chapter 3, one can
then obtain a map of the size of the optimal remainder as a function of (𝑎∗, 𝑒∗)
in the semi-plane 𝑎 > 𝑎1. Using this information, we compute the limiting
locus uniting all points in (𝑎∗, 𝑒∗) such that the normal form computation yields
no improvement with increasing number of normalization steps, i.e., where
𝑗opt = 1. Comparing with the above numerical stability maps, one sees that, the
limiting locus found semi-analytically essentially coincides with the numerical
(FLI map) limit where no harmonic in the Hamiltonian associated with one of
the exterior mean-motion resonances affects the dynamics. As a consequence,
all motions in the sub-domain of the plane (𝑎∗, 𝑒∗) below the limiting locus are
stable in the secular sense, i.e., protected against instabilities caused by short-
period resonant effects. For this reason, we identify this locus as the border of
the domain of secular motions and substantiate the fact that its semi-analytical
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computation (through the normal forms) yields results in precise agreement
with those found by the heuristic deőnition of the same border via the fully
numerical (FLI) computation of stability maps.

4.2 Preliminaries on chaos indicators

4.2.1 Variational dynamics

The rate of growth of exponential separation of two trajectories starting at close
initial points (ğ1.1.2), can be quantiőed looking at the rate of change of tangent
vectors along the ŕow. For this purpose, instead of working only with the
system (1.1), we pass to the variational dynamics governed by (1.4) multiplied
by an initial tangent vector 𝑣0. Given a real phase space 𝐷 and introducing the
tangent map

𝑇𝛷(𝑡 , 𝑥) : 𝑇𝑥𝐷 −→ 𝑇𝛷(𝑡 ,𝑥)𝐷
𝑣0 ↦−→ 𝑣𝑡 = 𝐷𝛷(𝑡 , 𝑥)𝑣0

, (4.2)

the evolution 𝑣𝑡 ≔ 𝑣(𝑡) of 𝑣0 ≔ 𝑣(0) is determined according to the variational
equation

¤𝑣 = 𝐷𝑋(𝛷(𝑡 , 𝑥))𝑣 . (4.3)

Similarly to (1.3), from(4.3) we have the simple estimate

∥𝑣(𝑡)∥ ≤ 𝛼(𝑡) ∥𝑣(0)∥ , (4.4)

where 𝛼(𝑡) ≤ 𝑒Λ|𝑡 |, Λ > 0. We have that 𝛼(𝑡) ∼ 𝑒Λ|𝑡 | for chaotic trajectories.
The variational dynamics allows to deőne quantities which characterize the
asymptotic growth of the length of tangent vectors.

Definition 4.2.1. Let 𝑣(𝑡) be the solution of (4.3) with initial conditions 𝑥0, 𝑣0.
The characteristic Lyapunov exponent (CLE) of an initial condition 𝑥0 and initial
tangent vector 𝑣0 is the limit

𝜒(𝑥0, 𝑣0) = lim
𝑡→∞

ln ∥𝑣(𝑡)∥
𝑡

. (4.5)

The anticipated well-deőnedness of (4.5) descends from a classic theorem in
multiplicative ergodic theory.

Theorem 4.2.1 (Oseledets’s theorem). Let ℳ be a probability measure on 𝐷 ⊆ R𝑑.
𝜒(𝑥0, 𝑣0) is a real number ∀𝑣0 ∈ 𝑇𝑥0𝐷, 𝑣0 ≠ 0, and for ℳ-almost every 𝑥0 ∈ 𝐷.
Moreover:

(i) the CLE is a constant of motion for (4.3);

(ii) if 𝑐 is an equilibrium point and 𝑙𝑖𝑚𝑡→∞𝛷(𝑡 , 𝑥0) = 𝑐, then, called 𝐿(𝑥) ≔
{𝜒(𝑥, 𝑣0) : 𝑣0 ∈ 𝑇𝑥𝐷}, 𝐿(𝑥0) = 𝐿(𝑐);

(iii) 𝐿(𝑥0) for any 𝑥0 is discrete with at most 𝑑 different elements and for ℳ-almost
all 𝑣0 ∈ 𝑇𝑥0𝐷 𝜒(𝑥0, 𝑣0) = max 𝐿(𝑥0).
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The third property of Theorem 4.2.1 has important consequences for actual
computations: a random choice of the initial tangent vector provides the largest
characteristic Lyapunov exponent, that we denote henceforth by 𝜒𝐿. For further
readings on the computations of Lyapunov characteristic exponents, refer to
[7].

4.2.2 Finite time chaos indicators

About the necessity to őnd numerical approximations of the ŕow of (1.1), we
point out the following elementary facts:

• initial data of real systems are affected by errors, so we need to compute
the time evolution of a set of łcompatiblež initial conditions;

• there are strong limitations in terms of reliability of the approximate
solution when the dynamics separates exponentially the orbits.

We thereby overcome these inconveniences by making use of suitable chaos
indicators inspired by 𝜒𝐿. Clearly, chaotic orbits are detected by 𝜒𝐿 > 0, hence
𝑇𝐿 = 1/𝜒𝐿, called Lyapunov time, represents the time scale needed to observe the
exponential separation: ∥𝑣(𝑡)∥ ∼ ∥𝑣(0)∥ 𝑒 𝑡/𝑇𝐿 . This suggests to construct őnite
time chaos indicators, so they can be practically computed.

We outline in the following some of the most popular indicators, belonging
to the family of the so-called Fast Lyapunov Indicators originally introduced
by Froeschlé et al. [30] and further developed in Guzzo et al. [43, 56].

Definition 4.2.2. For 𝜏 > 0 the Fast Lyapunov Indicator is deőned as the quantity

FLI(𝑥0, 𝑣0; 𝜏) = max
𝑡∈[0,𝜏]

ln ∥𝑣(𝑡)∥ . (4.6)

Furthermore, given 𝑒 𝑗(𝑡) time evolution of ℬ = {𝑒 𝑗(0)} 𝑗=1,...,𝑑 orthonormal basis

of R𝑑, the Fast Lyapunov Indicator of the Basis ℬ is

FLIB(𝑥,ℬ; 𝜏) = max
𝑡∈[0,𝜏]

max
𝑗=1,...,𝑑



𝑒 𝑗(𝑡)

 , (4.7)

while the Finite Time Lyapunov Exponent is the number

FTLE(𝑥; 𝜏) = 1

𝜏
max
𝑒 𝑗(0)∈ℬ



𝐷𝛷(𝜏, 𝑥)𝑒 𝑗(0)



𝑒 𝑗(0)

 . (4.8)

Remark 4.2.1. As expected, these numbers are theoretically consistent, because

• FLI ≈ FLIB ≈ FTLE ,

• 𝜒(𝑥0, 𝑣0) = lim
𝜏→+∞

FLI(𝑥0, 𝑣0; 𝜏)
𝜏

.

Hence, in virtue of Theorem 4.2.1, 𝐹𝐿𝐼 ∝ 𝜒𝐿.
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Chaos can be driven by several dynamical instabilities, e.g. close encounters
or resonances. In [40], based on a previous study developed in [41], a slightly
modiőed deőnition of (4.6) is proposed in order to select only the chaos due
to close encounters. This is done by introducing a window function (like the
Hanning window) whose effect is that of őltering out all the contributions to
the indicator that are not due to close encounters. As an alternative to such
approach, we address the same matter in ğ4.3.1 by proposing an equivalent
method based on the behavior of the time series of the particle’s semi-major
axis.

4.3 FLI cartographies of the Sun-Jupiter planar

CR3BP

Let us consider the Hamiltonian (1.74) for

𝜇 ≡ 𝜇𝐽 = 9.536433730801362 · 10−4 (4.9)

written in inertial barycentric orbital elements using (1.59) via the relations
(1.60) and (1.61). We set the particle’s initial angles so that the motion develops
on the 𝑥-𝑦 plane and it starts either from the apocenter or the pericenter, namely
𝑖(0) = Ω(0) = 0, 𝑀(0) = 𝜋 or 0 plus 𝜔(0) = 𝜋. Then we let 𝑎(0) and 𝑒(0) vary in
the ranges [0.4, 16]AU (from Mercury’s to slightly less than Uranus’s distance),
suitably rescaled by 𝑎1 ≡ 𝑎𝐽 =



𝑟𝐽

 = 5.2044 AU, and [0, 0.9] respectively.
Given these premises, we compute the indicator (4.6) on a reőned grid of the

(𝑎, 𝑒) plane, in which, making use of the decimal logarithm for convenience, we
őlter out values of FLI larger than a reasonable threshold1, say 10. This means
that we cut out tangent vectors that has roughly grown more than a factor
of 1010. Furthermore, in order to pinpoint different types of emerging struc-
tures, we conduct a short- and long-time numerical experiment, viz. we set
the maximum integration time 𝜏 = 50𝑇𝐽 and 𝜏 = 1000𝑇𝐽 where 𝑇1 ≡ 𝑇𝐽 = 11.86
y is Jupiter’s mean orbital period opportunely converted in adimensionalized
CR3BP units (i.e. equal to 2𝜋).

Regarding the choice of 𝑣0, we remark that for chaotic orbits the time evolu-
tion of the FLI is approximately linear, while for regular orbits is approximately
logarithmic; this fact is independent of the choice of the initial tangent vector
as illustrated in ğ4.2, unless the initial tangent vector has null components on
some special directions, such as the expanding directions of the tangent space,
thence we expect chaotic orbits having a higher value of the FLI for the same
initial tangent vector. Hereby 𝑣0 = 1/2(1, 1, 1, 1, 1, 1).

Figure 4.1 shows the apocentric and pericentric short-term FLI stability
maps in question. We can observe how regions of regular (or weakly chaotic)
orbits permeate the whole phase space, even above the line of pericenter cross-
ing. In particular, for large values of the semi-major axis and correspondingly

1Equivalently, one can modify Deőnition 4.2.2 by rescaling (4.6) by ∥𝑣0∥ in the argument of
the logarithm, as originally done in [56].
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increasing eccentricities, a wide set of regular orbits emerges in the diagram.
These are clearly protected from collisions and we will address them from now
on as the łlower regularity regionž (blue low part of the (𝑎, 𝑒) plane). In the
sequel the lower regularity region will be precisely the target of the closed-
form perturbation theory approach presented in Chapter 3. Its boundary has
a fractal shape whose form becomes clearer increasing the integration time, as
displayed in Fig. 4.2. This highly complicates its characterization, especially
from an analytical viewpoint.
The aforementioned criteria in ğ4.1, then, turn out to be quite inaccurate to
ensure stability everywhere in the phase space: visibly, it is worth noticing for
example that the line of pericenter signiőcantly overestimates the boundary
of the lower regularity region. Also, mean-motion resonances are depicted as
spikes penetrating the deep blue region of the stability map.
We also observe in the same plot intricate arch-like structures created by the
projected manifolds of the unstable orbits of various hyperbolic sets, like pe-
riodic orbits existing at each mean-motion resonance (the so-called łarches of
chaosž according to [101], which we partially resume later in Chapter 5).
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Figure 4.1: Short-period FLI cartographies of the Sun-Jupiter planar CR3BP
computed over a grid of 300 × 900 initial data. The two curves represent the
loci of points



𝑟𝐽

 = 𝑎(1− 𝑒) (red line for 𝑎/𝑎𝐽 > 1) and


𝑟𝐽

 = 𝑎(1+ 𝑒) (magenta

line for 𝑎/𝑎𝐽 < 1). Top panel: apocentric section (𝑀(0) = 𝜋). Bottom panel:
pericentric section (𝑀(0) = 0).

4.3.1 The semi-major axis’s maximum variation indicator

Increasing the exposition time 𝜏 for 𝑀(0) = 𝜋 we get the top panel of Fig. 4.2:
the arches in the chaotic zones fade away, but in return we can better appreciate
the contour of the lower regularity region, resembling a Cantor set pattern; in
particular, the magniőcation in the left bottom panel highlights its sharpness.

Such behavior of the boundary is qualitatively already captured by the
distribution in phase space of suddenly destabilized orbits, as close encounter
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ones: in the bottom panels of Fig. 4.2 we confront a zoomed-in detail of the
FLI map (left panel) with the plot of the characteristic (indicator) function of
the critical set 𝒞 (right panel). This set is established heuristically according
to an abrupt detected displacement from the short-period oscillations in the
elements’ time series along a numerical integration lasting 106𝑇𝐽 with step size
Δ𝑡 = 𝑇𝐽/100, speciőcally looking at the semi-major axis 𝑎(𝑡). More precisely,
we represent the indicator function

✶𝒞(𝑎, 𝑒) =
{

1 (𝑎, 𝑒) ∈ 𝒞
0 (𝑎, 𝑒) ∉ 𝒞

, (4.10)

on a comparable grid of initial values (𝑎0, 𝑒0) ∈ [7.2, 7.5] AU×[0.1, 0.15], where

𝒞 =
{
(𝑎0, 𝑒0)

�� ∃𝑖 = 1, . . . , 106𝑇𝐽/Δ𝑡 s.t. |𝑎(𝑖Δ𝑡) − ⟨𝑎⟩𝑖 | > 10−1⟨𝑎⟩𝑖 ,
𝑎(0) = 𝑎0, 𝑒(0) = 𝑒0

}
(4.11)

embodies the criterion according to which an initial semi-major axis 𝑎(0) is
deemed non-regular whenever the corresponding ŕow 𝑎(𝑡) deviates, in terms
of relative error, more than the 10% with respect to the cumulative moving
average

⟨𝑎⟩𝑖 =
1

𝑖 + 1

𝑖∑
𝑗=0

𝑎(𝑗Δ𝑡) , 𝑖 = 1, . . . , 108 . (4.12)

The time endpoint is adequately tailored in order to push the integration far
enough in time, but concurrently to avoid to cope with diffusive phenomena
and important accumulations of the numerical error (this thanks also to the help
of regularization when pertinent), and thus to rely, for example, on symplectic
schemes.

Fig. 4.2 and Fig. 4.3 show that the method discussed is compatible with
the FLI representation, speciőcally concerning the boundary separating the
regimes characterized by a marked difference in the amount of chaos. This
trend is appreciable already at a lower level of resolution as in the latter of the
two őgures (computational details are written in the attached caption).

For orbits satisfying condition (4.11) one can wonder what is the instant at
which the łblowupž of 𝑎(𝑡) occurs. Slightly better, we determine the time of
minimum distance from Jupiter in a little larger time span [0, 𝑘Δ𝑡] ⊆ [0, 106𝑇𝐽],
𝑘 ≳ 𝑖, than the break-up moment 𝑖Δ𝑡 < 106𝑇𝐽 at which we could stop the
numerical integration for the binary diagrams. Basically, suppose that (𝑎0, 𝑒0) ∈
𝒞, then we compute the time 𝑡min along the ŕow such that

𝑡min = arg min
1≤ 𝑗≤𝑘

𝑑𝐽(𝑗Δ𝑡) ,

and 𝑑1 ≡ 𝑑𝐽 given by (1.75).
In the top panels of Fig. 4.4 we report the histograms of times 𝑡min for all
collision orbits detected with the indicator function (4.10) in Fig. 4.2. The left
plot demonstrates that almost the totality of trajectories (around 95%) escapes
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Figure 4.2: Long-period FLI cartography of the Sun-Jupiter planar CR3BP
computed over a grid of 300 × 900 initial data and criterion (4.11) on its mag-
niőcation. Top panel: apocentric section (𝑀(0) = 𝜋). The two colored curves
are as in Fig 4.1. Bottom left panel: magniőcation of the indicated rectangle in
top panel positioned on the borderline of the lower regularity region. Bottom
right panel: Close encounter binary plot according to (4.11) and (4.12) on the
same zoomed-in image of bottom left panel discretized in 60 × 50 (𝑎, 𝑒) grid
points. Black pixels (■) stand for 1 in (4.10), while white ones (□) stand for 0 in
(4.10).
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Figure 4.3: Comparison as in bottom panel of Fig. 4.2 on a larger region of
the long-time FLI map. The region is 100 times larger than the magniőcation
in Fig. 4.2, but the grid in bottom panel is kept identical to the previous one
(60 × 50 initial data) to ease the computational effort.

Figure 4.4: Histograms of the break-up times and corresponding distances for
the binary plot in Fig. 4.2 (more reőned grid of the two). Top panels: statistics
of all break-up events 𝑡min (left) and of those happening before 10000𝑇𝐽 (right).
Bottom panel: Relative frequency of 𝑑𝐽(𝑡min).
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within 10000 Jupiter’s orbital periods and actually, from the right plot, within
4000𝑇𝐽 , so of the order of 104 y. This hint suggests that the onset of chaos, for
example due to close encounters, takes place rapidly and gives credit to the
choice of 𝜏 = 1000𝑇𝐽 ≈ 104 y for the second proposed FLI cartography.

We complete the discussion with the bottom panel of Fig. 4.4: the average
distance from the planet at which we record 𝑡min, that is the mean of 𝑑𝐽(𝑡min),
is about 0.26 (in physical units equal to 0.26𝑎𝐽 = 1.35 AU) and almost all the
trajectories lie in the range [0.15, 0.4] (or [0.78, 2.08]AU). Such őnding conőrms
that instability can be experienced abruptly by an outer asteroid way before
than Jupiter’s Hill sphere, whose radius reads

𝜌Hill𝐽 ≈ 𝑎𝐽
3

√
𝜇𝐽

3
= 0.361 AU . (4.13)

This, combined with the above observation, can lead groups of distant small
objects to destabilize soon.

4.4 Semi-analytical determination of the domain of

secular motions

4.4.1 Order and size of the optimal remainder in the planar

CR3BP

As already stressed in ğ3.3.2, the computations in the planar CR3BP are short
enough to allow for a speciőcation of the optimal normalization order in the
closed-form algorithm outlined in the previous chapter. Owing to the above,
we are able to make normal form computations in a grid of points in the plane
(𝑎∗, 𝑒∗) up to a sufficiently high normalization order so that the asymptotic
character of the series computed by the algorithm of Section 3.2 can show up.
Fig. 4.5 shows an example of the behavior of the size of the remainder as a
function of the number of normalization steps 𝑗. We introduce an estimate of
the size of the series’ remainder after 𝑗 normalization steps via the upper norm
bound

ℰ(𝑗) =

𝜈𝑘𝜇∑
𝑙=𝜈+𝑗

∑
𝑠∈Z3

|𝑑(𝑗)
𝑙 ,𝑠
| ≥




ℛ(𝑗)𝜈+𝑗




∞
, 𝑗 = 1, . . . , 𝜈(𝑘𝜇 − 1) , (4.14)

where ∥·∥∞ denotes the sup norm. Plottingℰ(𝑗) against the number of normal-
ization steps 𝑗 allows then to estimate the error committed at any step (size of
the remainder). Figure 4.5 yields examples of such computation for the exper-
iments seen before. The relevant fact is that, looking at the top left panel of the
őgure, there is an optimal number of normalization steps (𝑗 = 𝑗opt = 6) where

the estimateℰ(𝑗) of the remainder size yields a global minimum.
Fig. 4.5 allows to gain some insight into the question of the dependence of

the optimal number of normalization steps 𝑗opt on the parameters (𝑎∗, 𝑒∗). The
most relevant remark concerns the dependence of the behavior of the curve
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Figure 4.5: Trend of the size of the remainder for the three examples in the
planar CR3BP of ğ3.3.2. Top left panel: example of Fig. 3.5. Top right panel:
example of Fig. 3.6. Bottom panel: example of Fig. 3.7. The estimate ℰ(𝑗) is
depicted in semi-logarithmic scale for 1 ≤ 𝑗 ≤ 𝜈(𝑘𝜇 − 1) accordingly to the data
of each case.
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ℰ(𝑗) (versus 𝑗) on how close to the łhierarchicalž regime the trajectory with
reference values (𝑎∗, 𝑒∗) is. As a measure of the hierarchical character of an
orbit we adopt either the ratio of the semi-major axes 𝑎1/𝑎∗, or of the pericentric
distances ∥𝑟1∥ /



𝑅𝑝

 = 𝑎1(1 − 𝑒1)/(𝑎∗(1 − 𝑒∗)) = 𝑎1/(𝑎∗(1 − 𝑒∗)). Top right panel

(𝑎∗ = 30 AU, 𝑒∗ = 0.5) implies a pericentric distance ratio ∥𝑟1∥ /


𝑅𝑝

 ≈ 0.3

smaller than the one of the example in the top left panel (∥𝑟1∥ /


𝑅𝑝

 ≈ 0.4).

We observe that the optimal number of normalization steps in the former case
satisőes 𝑗𝑜𝑝𝑡 = 10, i.e., it is larger than in the latter case. The bottom panel
shows, instead, an example of orbit far from the hierarchical limit, satisfying
the estimate ∥𝑟1∥ /



𝑅𝑝

 ≈ 0.7. As seen before, in this case a higher order multi-
pole (𝑘mp = 5) is required to obtain a precise truncated Hamiltonian model for
this orbit. We note, however, that the normalization procedure performs well,
producing a decreasing remainder as a function of 𝑗 up to the point where it
is arrested, i.e. 𝑗 = 6 = 𝜈(𝑘𝜇 − 1). We őnd numerically that this performance
is deteriorated as we gradually approach the condition ∥𝑟1∥ /∥𝑅∥ = 1, beyond
which the multipole expansion of the Hamiltonian is no longer convergent.

4.4.2 Semi-analytical determination of the domain of secular

motions

The results shown in the previous subsection refer to isolated examples of
orbits, with initial conditions in the deep blue regions of Fig. 4.1, or the
corresponding regions in the domain of secular motion for values of 𝑎 beyond
the limits of Fig. 4.1, treated within various multipole truncation orders as
well as different choices of the number of normalization steps, searching each
time to arrive at the best approximating secular model given computational
restrictions. In the present subsection, we aim to investigate the behavior of the
remainder in a closed-form normalization with uniform choice of all truncation
orders of the problem, but performed, instead, in a őne grid (100 × 20) of
reference values in the plane (𝑎∗, 𝑒∗). To this end, we set 𝑘𝜇 = 2 (second order
in the mass parameter), and őx 𝑘mp = 3 (octupole approximation). The latter
choice, imposed by computational restrictions, yields an initial model whose
error with respect to the full Hamiltonian becomes of the order of 1% only for
𝑎∗ > 2𝑎1. However, for reasons explained below, a computation within the
framework of the octupole approximation becomes relevant to the problem
addressed in the sequel also in the range 1.5𝑎1 < 𝑎∗ < 2𝑎1, while higher
multipoles are required to address still smaller values of 𝑎∗.

The result of the above computation is summarized in Fig. 4.6: the left
panel shows in logarithmic color scale the size of the remainder, estimated
by the value of ℰ(𝑛)(𝑎∗, 𝑒∗) computed as in (4.14), corresponding to each point
in the plane (𝑎∗, 𝑒∗), where the number of normalization steps is set as 𝑛 =

min{𝜈(𝑘𝜇 − 1), 7} = min{𝜈, 7}. The maximum value 𝑛 = 7 is, again, imposed
by computational restrictions, and it implies that 𝑛 varies with 𝑒∗ up to about
𝑒∗ = 0.37.

The relevant information in Fig. 4.6 is provided by the black curve, which
corresponds to the iso-contour ℰ(𝑛)(𝑎∗, 𝑒∗) = 10−2. Since in the original Hamil-
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tonian we have the estimate ℰ(0)(𝑎, 𝑒) ≔ ℋ 𝑘𝜇 ,𝑘mp

1
= 𝒪(10−2) (equation (3.99)),

the black curve provides a rough estimate of the limiting border dividing the
plane (𝑎∗, 𝑒∗) in two domains: in the one below the black curve the progressive
elimination of the fast angles by the iterative normalization steps leads to a
secular model whose remainder decreases with the number of normalization
steps 𝑗 at least up to 𝑗 = 𝑛.

A physical interpretation of the border approximated through the iso-
contourℰ(𝑛)(𝑎∗, 𝑒∗) = 10−2 can be given through a comparison with a numerical
stability map obtained, e.g. Fig. 4.1, as in the right panel of Fig. 4.6. As
already observed according to the FLI color map, deep blue colors indicate the
most regular orbits (termed lower regularity region), and light yellow the most
chaotic ones. Superposed to the FLI cartography are three curves:

(i) the perihelion crossing curve (red), that yields the locus of values satis-
fying the condition 𝑎(1 − 𝑒) =



𝑟𝐽

 = 𝑎𝐽 (circular case), that is the points
where the pericenter of the test particle’s orbit comes at distance equal to
the radius of Jupiter’s orbit;

(ii) the Hill limit [87] described in ğ4.1 (brown) is based on the Jacobi constant
relationship 𝐶𝐽(𝑎, 𝑒) = 𝐶𝐽𝐿1

written as function of the orbital elements,
recalling that 𝐶𝐽𝐿1

is its value at the Lagrangian point 𝐿1;

(iii) the iso-contour ℰ(𝑛)(𝑎, 𝑒) = 10−2 (black, same as in the left panel of Fig.
4.6).

Of the above three curves, the perihelion crossing curve is analogous, in the
R3BP, of Laskar’s Angular Momentum Deőcit criterion (ğ4.1) used to separate
systems protected from perihelia crossings in the case of the full planetary
three-body problem. As indicated by the FLI cartography data, Hill’s curve
gives an overall better approximation separating the domain of strong chaos
(yellow) from the domain of regular or weakly-chaotic orbits (all blue nuances).
This is expected, since the Hill’s curve separates orbits for which Jupiter’s grav-
itational effect becomes (at least temporarily) dominant from those for which it
does not. Nevertheless, through the FLI cartography we note the presence of a
large domain between the curves (ii) and (iii), where the trajectories, while pro-
tected from close encounters, are subject to the long term effects on dynamics
produced by resonant multiplets associated with the mean-motion resonances
of the problem (the most important of which are marked in the őgure). Note
that in the octupole approximation, the Hamiltonian contains harmonics in-
cluding all combinations of the fast angles of the form cos(𝑠1 𝑓 + 𝑠2(𝑔 − 𝑀1)),
with

(𝑠1, 𝑠2) = (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (7, 3),
(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1),

(1,−1), (2,−1), (3,−1), (1,−2), (1,−3),
thus including all harmonics associated with the mean-motion resonances de-
tected in the FLI cartography of Fig. 4.6 for 𝑎 > 1.5𝑎𝐽 . Through the closed-form
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Figure 4.6: Size of the remainder vs. short-period FLI map for the Sun-Jupiter
planar CR3BP in the semi-plane 𝑎/𝑎𝐽 > 1. Left panel: computation of log10ℰ

(𝑛),
𝑛 = min{𝜈, 7}, 𝑘mp = 3, over a 100 × 20 (𝑎, 𝑒) grid. For every 𝑒 = 𝑒∗, 𝑛 different
normalizations are executed and then evaluated for each 𝑎 = 𝑎∗. Right panel:
apocentric short-period (50𝑇𝐽) FLI map (top panel of Fig. 4.1). As indicated,
the three curves represent, respectively, the line of constant pericenter of the
particle’s trajectory equal to the radius of Jupiter’s orbit



𝑟𝐽

 = 𝑎𝐽 (red), Hill’s

stability criterion (brown) and the iso-level ℰ(𝑛) = 1% (black). Each region
enclosed by two consecutive above curves is labeled with the corresponding
regime of motion. The main mean-motion resonances are reported below the
pictures.
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normalization (equations (3.69) and (3.84)) we then obtain small divisors in the
series at every value of the semi-major axis 𝑎∗ for which one of the resonant
combinations 𝑠1𝑛∗ − 𝑠2𝑛𝐽 (𝑛𝐽 = 2𝜋/𝑇𝐽) takes a value near zero. All these inci-
dences lead to Arnold tongue-like spikes pointing downwards in the curve (iii),
marking the failure of the approximation of the orbits based on a non-resonant
normal form construction. On the other hand, we observe that, for any value
of 𝑎∗ there is a threshold value of the eccentricity 𝑒∗,𝑠 , such that, for 𝑒∗ < 𝑒∗,𝑠 no
visible effects of the harmonics associated with mean-motion resonances are
visible in the FLI cartography. This implies that the secular models constructed
by eliminating all harmonics involving the fast angles of the problem describe
with good precision the dynamics in this domain, which, for this reason, was
called the domain of secular motions. In physical terms, the domain of secular
motions corresponds to initial conditions for which the gravitational perturba-
tion of Jupiter is only felt in the łLaplacianž meaning, i.e., as a mass distributed
along a ring coinciding with Jupiter’s orbit. The curve (iii) then yields the limit
of this domain, which, as found by the FLI cartography, is well distinct from
the limit of the Hill domain.
The overall situation can therefore be summarized with the identiőcation of
four regimes of motion (speciőed in the FLI chart of Fig. 4.6):

• the crossing orbit regime (above curve (i));

• the close encounter regime (between curves (i) and (ii));

• the resonant regime (between curves (ii) and (iii));

• the secular regime (below curve (iii)).
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5
Manifolds in the Solar System:

an application to the 𝑳4/𝑳5

asymmetry of Trojan asteroids

We have already mentioned that, far from the domain of secular motions,
the dynamics can be strongly inŕuenced by the manifolds of unstable peri-
odic orbits formed at one or more mean-motion resonances with the primary
perturber. The present chapter deals with the exploration of the heteroclinic
dynamics of the neighborhood of the short-term co-orbital resonance in the
Sun-Jupiter system. We present ongoing results partly contained in [90].

5.1 On Trojan asteroids and the asymmetry problem

As introduced in ğ1.3.3, Jupiter’s Trojans are a group of asteroids located in
the vicinity of Jupiter’s Lagrangian points 𝐿4 and 𝐿5. Their tadpole orbits are
relatively stable and in 1 : 1 mean-motion resonance with Jupiter and are char-
acterized by an oscillation of the mean longitude difference 𝜆 − 𝜆𝐽 (the label
𝐽 stands for łJupiterž). The Trojan swarms are divided into two groups: the
Greeks, orbiting the 𝐿4 point, and the genuine Trojans, orbiting 𝐿5. The őrst
asteroid was spotted in 1906, later designated as (588) Achilles and was found
orbiting 𝐿5. The same year a second body, (617) Patroclus, was found in 𝐿5.
Since then, a continuous increasing number of asteroids have been discovered
and, as instruments improved, the rate of discovery has grown rapidly: by
November 2022 there are 7964 known Jupiter’s Trojans at 𝐿4 and 4226 at 𝐿5 [14].

Two theories have been proposed about the origin of Trojans: one is based
on the growing mass of Jupiter during the formation of the Solar System [65],
while the other hypothesizes the capture of present Trojans in the planetary
migration process that happens after the protoplanetary phase [70]. The former
suffers from a lack of a satisfactory explanation for the very large orbital inclina-
tions of some Trojans; the latter, based on the Nice model [35, 70, 103], solves the
issue by successfully reproducing the distribution of observed Trojans by nu-
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merical simulations. Recently, a modiőed Nice model with a łjumping Jupiterž
was proposed [75] leading to further reőnements of the previous theory.

As regards the size of the stability region of these bodies, analytic theo-
ries based on the analysis of the remainder of the corresponding constructed
normal form are available. Stability of speciőc Trojans is then obtained by
applying Nekhoroshev’s theorem [27, 33] or Kolmogorov’s normal form and
KAM theory [31]. These studies show limitations as the smallness of the es-
timated stability region or simplicity of the model considered (typically the
R3BP without for example Saturn’s perturbation).
Another approach is based on numerical analysis and is the one leading to a
proliőc literature, like [25, 59, 68, 88]. By integrating the equations of motion of
the outer Solar System model or the SunśJupiterśSaturn system, these studies
try to identify the boundary of the stability region within a őxed integration
time, in a similar fashion to what proposed herein in Chapter 4.

A curious dynamical feature of Jovian Trojans is the observed asymmetry
between the populations in 𝐿4 and 𝐿5. Not only does the leading swarm have
about 30-40% more asteroids than the trailing region, but there are also signiő-
cant differences in the distribution of inclinations: while the physical properties
are nearly identical (with some variations in size between the families of 𝐿4 and
the agglomerations of 𝐿5), on average the 𝐿4 region has objects slightly less
inclined. A statistical graphic recap of these peculiarities is proposed in Fig.
5.1 taken from [97] (see references therein for further insights).

The birth of this asymmetry is still nowadays not completely clear and re-
mains an open problem. Dynamical studies of the Trojan region show the
same resonance structure and stability limits in both Lagrange points, even
when considering the perturbations of additional planets [65, 88]. The Nice
model itself predicts similar populations in both equilateral Lagrange points,
so it seems that even under the most complex scenarios both 𝐿4 and 𝐿5 are dy-
namically equivalent. However, recently Hou et. al. in [46] have shown that a
temporary asymmetry may be obtained with the same initial conditions in both
tadpole regions, however such disparity is short-lived and cannot at present
account for the observed inequality. Later on, the same authors have studied
the problem including also the giant planets’ migration [47] and have discussed
several mechanisms that can cause asymmetries. Their őndings demonstrate
that the crucial ones are the short time scale for the spatial asymmetry when
Jupiter and Saturn are in resonance, the changing orbits of Jupiter and Saturn
and the chaotic nature of Trojan orbits. Lastly, the thermal Yarkovsky effect is
also found to be able to cause dynamical differences to the two swarms [102],
but generally they are too small to be practically observed [46].

About observations, it is interesting to mention that historically the truth-
fulness of differences in numbers of bodies in the two groups was strongly
questioned. The asymmetry was usually considered as due to observational
selection effects before being officially conőrmed. For more details, the inter-
ested reader can refer to [97] and references therein contained.

Following the aforementioned works, Trojans could have formed in distant
regions and been subsequently captured into co-orbital motion with Jupiter
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Figure 5.1: Distribution of Trojans and their inclinations in the 𝐿4/𝐿5 swarms
from [97]. Top panel: number of objects according to their observed absolute
magnitude. Bottom panels: relative frequency for the inclination distributions.

during the time when the giant planets migrated by depleting neighboring
planetesimals. The capture was possible during a short period of time, just after
Jupiter and Saturn crossed their mutual 1 : 2 resonance, when the dynamics of
the Trojan region was completely chaotic.
Adopting this scenario, we introduce another idea concerning the formation
of the asymmetry by asking this simple question: could such asymmetry be
manifold driven? If yes, to what extent? Starting with the non-migratory case,
we consider the pair of sets

𝑊 𝑠
𝐿4
(𝑃𝐿3) ∩ (𝑊𝑢(𝑃𝐿1) ∪𝑊𝑢(𝑃𝐿2)) vs. 𝑊 𝑠

𝐿5
(𝑃𝐿3) ∩ (𝑊𝑢(𝑃𝐿1) ∪𝑊𝑢(𝑃𝐿2)) ,

where 𝑊 𝑠
𝐿𝑖
(𝑃𝐿3) denotes the branch of 𝑊 𝑠(𝑃𝐿3) surrounding the co-orbital

𝐿𝑖 region for positive times, with 𝑖 = 4, 5. We illustrate that these pairwise
compared intersections are unevenly distributed in a suitable Poincaré section,
both in terms of location and their cardinality. Moreover, we provide numerical
experiments suggesting that particles from the outer region approach the 1 :
1 zone preferably through 𝐿4 over 𝐿5. Finally, we pass to the time-varying
case by injecting Jupiter’s migration according to a simple exponential law. A
direct computation shows that around 𝐿4 and 𝐿5 the non-autonomous resulting
Hamiltonian is a non-increasing function in time. This can locally translate into
a growth of the stability regions around the equilateral points, so that ultimately
a small fraction of objects may have non-zero probability to be trapped inside
newly generated invariant tori and, because of the dominance of 𝐿4, may trigger
the asymmetry.
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5.2 Heteroclinic dynamics at co-orbital resonance

5.2.1 On the computation of invariant manifolds

In Chapter 1 we have already listed the main concepts about hyperbolic dy-
namics and some interesting features in connection to the collinear points of
the CR3BP. By means of Floquet’s theory recalled in ğ1.1.3, we hereinafter stick
to the 2 d.o.f. case and describe below the adopted iterative procedure to nu-
merically identify periodic orbits stemming from 𝐿𝑖 (𝑃𝐿𝑖 , like the Lyapunov
orbits depicted in Fig. 1.10), 𝑖 = 1, 2, 3, as őxed points of a Poincaré map. Then,
using the corresponding Floquet multipliers, we can easily propagate𝑊 𝑠(𝑃𝐿𝑖),
𝑊𝑢(𝑃𝐿𝑖).

Let us begin by specifying the reference Poincaré section Σ and map 𝛹 .
Since the existence of the Jacobi integral constrains the Cartesian synodic ŕow
(𝑥(𝑡), 𝑦(𝑡), 𝑝𝑥(𝑡), 𝑝𝑦(𝑡)) to belong to a three-dimensional hypersurface in the

phase space, we can determine a two-dimensional subset Σ2 ⊂ R4 by imposing
one more constraint. A straightforward possibility consists in considering a
pericentric section, i.e. a point on Σ satisőes 𝑀 = 0 (for orbits of instantaneous
elliptic character). We are left with the parametrization of the surface of section,
that shall be taken as a coordinate plane whose abscissa and ordinate are played
by a pair of canonical variables for an accurate inspection of the dynamics. We
are deőnitely interested in the evolution of the angle 𝜆 − 𝜆𝐽 = ℓ + 𝑔 − ℓ𝐽 (by
(1.62), (3.3)), which on Σ simply reads 𝑔 − ℓ𝐽 . So, in the inertial frame 𝑂𝑋𝑌𝑍,
we deőne a canonical transformation using a generating function of the second
kind (ending part of ğ1.2.3)

𝐹(ℓ , 𝑔, ℓ𝐽 , 𝐼1, 𝐼2, 𝐼3) = (𝑔 − ℓ𝐽)𝐼1 + ℓ 𝐼2 + ℓ𝐽 𝐼3 (5.1)

so that

𝜑1 =
𝜕𝐹

𝜕𝐼1
= 𝑔 − ℓ𝐽 , 𝐺 =

𝜕𝐹

𝜕𝑔
= 𝐼1 ,

𝜑2 =
𝜕𝐹

𝜕𝐼2
= ℓ , 𝐿 =

𝜕𝐹

𝜕ℓ
= 𝐼2 , (5.2)

𝜑3 =
𝜕𝐹

𝜕𝐼3
= ℓ𝐽 , 𝐼𝐽 =

𝜕𝐹

𝜕ℓ𝐽
= 𝐼3 − 𝐼1 ,

which allows us to pass from Delaunay coordinates (ℓ , 𝑔, ℓ𝐽 , 𝐿, 𝐺, 𝐼𝐽), where 𝐼𝐽 is
the dummy action conjugated to Jupiter’s anomaly ℓ𝐽 = 𝑀𝐽 = 𝑡 (units according
to 𝑛𝐽 = 𝑎𝐽 = 1), to (𝜑1, 𝜑2, 𝜑3, 𝐼1, 𝐼2, 𝐼3) by trivial inversion of the expressions
pertaining the actions.
The Jacobi integral (1.76) in the planar case becomes, in terms of the variables
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(5.2), a function 𝐸𝐽(𝜑1, 𝜑2, 𝐼1, 𝐼2) and on the section Σ it takes the form

𝐸𝐽
��
Σ
=

𝐼2
1

2𝜚2
𝑝

− 𝐼1 −
1 − 𝜇𝐽√

(𝜚𝑝 cos𝜑1 + 𝜇𝐽)2 + 𝜚2
𝑝 sin2 𝜑1

−
𝜇𝐽√

(𝜚𝑝 cos𝜑1 − 1 + 𝜇𝐽)2 + 𝜚2
𝑝 sin2 𝜑1

, (5.3)

where 𝜚𝑝(𝐼1, 𝐼2) = 𝑎(1− 𝑒) is the radius of perihelion and 𝜇𝐽 is numerically given
by (4.9). Notice that neither 𝑓 nor ¤𝜚 , with 𝜚 = ∥(𝑥, 𝑦)∥, shows up in (5.3) being
vanishing on Σ.

Hence, for a őxed value 𝐸𝐽 ∈ R of (5.3),

Σ = {(𝜑1, 𝜑2, 𝐼1, 𝐼2) : 𝜑1 ∈ T, 𝐼1 > 0, 𝜑2 = 0, 𝐸𝐽(𝜑1, 𝜑2, 𝐼1, 𝐼2) = 𝐸𝐽} , (5.4)

with associated map 𝛹 : Σ → Σ such that the ŕow crosses Σ transversely łon
the same sidež (ğ1.1.3).

Remark 5.2.1. The equation involving 𝐸𝐽 in (5.4) to be solved for 𝐼2 admits a
unique acceptable solution (e.g. with 𝑒 < 1).

In practice, the return map 𝛹 is established as follows.

(i) Given 𝐸𝐽 , we pick an initial condition (𝜑1(0), 𝜑2(0), 𝐼1(0), 𝐼2(0)) ∈ Σ, relate
it to orbital elements 𝑎(0), 𝑒(0), 𝜔(0), 𝑓 (0) = 0 via (3.3), convert them
to (𝑋(0), 𝑌(0), ¤𝑋(0), ¤𝑌(0)) = (𝑥(0), 𝑦(0), 𝑝𝑥(0), 𝑝𝑦(0)) by (1.59) and linked
formulae.

(ii) We propagate the orbit by integrating the Cartesian vector őeld generated
by the 2D version of (1.74) until it returns on Σ. To ensure the appropri-
ateness of the crossing, we choose the criterion of the radial velocity at the
perihelion passage, namely we determine 𝜚 ¤𝜚 = 𝑥𝑝𝑥 + 𝑦𝑝𝑦 throughout the
numerical integration and every time such quantity changes in sign from
a negative to a positive value forward in time (conversely from a positive
to a negative value backward in time), we record a section crossing. Then
we reőne the step size and localize the intersection (𝑥(𝑡∗), 𝑦(𝑡∗), 𝑝𝑥(𝑡∗),
𝑝𝑦(𝑡∗)) on Σ in such a way that ¤𝜚(𝑡∗) = 0. Notice that this method permits
to discard aphelion passages and really hit Σ from the same direction;
variants, like just marking any change in sign coupled with ¥𝜚(𝑡∗) > 0
(𝜚(𝑡∗) = 𝜚𝑝), would create issues especially in the vicinity of Jupiter or in
case of time reversal.

(iii) By rotating (𝑥(𝑡∗), 𝑦(𝑡∗), 𝑝𝑥(𝑡∗), 𝑝𝑦(𝑡∗)) of ℓ𝐽(𝑡∗) = 𝑡∗ to obtain (𝑋(𝑡∗), 𝑌(𝑡∗),
¤𝑋(𝑡∗), ¤𝑌(𝑡∗)) and back-transforming to corresponding orbital elements, we
calculate (𝜑1(𝑡∗), 𝜑2(𝑡∗), 𝐼1(𝑡∗), 𝐼2(𝑡∗)) ∈ Σ from (5.2).

Examples of Poincaré sections constructed as above are reported in Fig. 5.2
(details in the caption).
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Figure 5.2: Poincaré sections Σ of the Sun-Jupiter planar CR3BP for increasing

𝐸𝐽 . The plots represent consecutive iterations of 𝛹 over a total integration time

of 1000𝑇𝐽 (𝑇𝐽 = 2𝜋). Top left panel: 𝐸𝐽 = 𝐸𝐽𝐿1
. Top right panel: 𝐸𝐽 = 𝐸𝐽𝐿3

.

In both panels we use 𝑎 = 𝐼22/(1 − 𝜇𝐽) in place of 𝐼1 to have an approximate

distance measure of the width of the forbidden regionR2 \𝒜(𝐸𝐽) located in the
center of the diagrams (see ğ1.3.3, Fig. 1.9). On the right, we can recognize the
birth of the Lagrangian point 𝐿3 exactly on the cusp of the eight-shaped curve.

Bottom panel: (𝜑1, 𝐼1) section for 𝐸𝐽 = −1.49 > 𝐸𝐽𝐿4
(the motion is permitted

everywhere on Σ).

We can now readily őnd the őxed points of 𝛹 , i.e. the periodic orbits of
period equal to the return time to Σ. Nevertheless, we may be interested in
őnding periodic orbits associated with longer periods, say corresponding to
two or more returns on Σ, but this does not alter the general argument that
follows upon a simple redeőnition of the Poincaré map as𝛹 𝑛 , |𝑛 | ≥ 2, like (1.2).

This, for instance, will be the case of 𝑃𝐿1, 𝑃𝐿2 with 𝑛 = 2 for high values of 𝐸𝐽
and in proximity of the planet (with possible intervention of the regularization).

We want to solve (𝜑̄1, 0, 𝐼1, 𝐼2(𝐸𝐽)) = 𝛹 (𝜑̄1, 0, 𝐼1, 𝐼2(𝐸𝐽)), i.e.

{
𝜑̄1 = 𝛹1(𝜑̄1, 𝐼1)
𝐼1 = 𝛹3(𝜑̄1, 𝐼1)

, (5.5)

𝛹 = (𝛹1, 0,𝛹3, 𝐼2(𝐸𝐽)). Deőne 𝐹1(𝜑1, 𝐼1) ≔ 𝛹1(𝜑1, 𝐼1) − 𝜑1, 𝐹2(𝜑1, 𝐼1) ≔
𝛹3(𝜑1, 𝐼1)− 𝐼1. The problem turns into looking for the zeroes of 𝐹 = (𝐹1, 𝐹2). By
means of a multivariate Newton-Raphson’s method, starting with a łgoodž1

1Technically, in the basin of attraction of the targeted őxed point and away from the critical
points of 𝐹. See the beginning of ğ5.2.2 for a couple of strategies on the identiőcation of a
successful initial guess in a concrete case.



5.2. Heteroclinic dynamics at co-orbital resonance 121

seed (𝜑(0)
1
, 𝐼
(0)
1
) the algorithm reads

(
𝜑
(𝑘+1)
1

𝐼
(𝑘+1)
1

)
=
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1

𝐼
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1

)
−
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1
) 𝜕𝐹1

𝜕𝐼1
(𝜑(𝑘)

1
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(𝑘)
1
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𝜕𝐹2

𝜕𝜑1
(𝜑(𝑘)

1
, 𝐼
(𝑘)
1
) 𝜕𝐹2

𝜕𝐼1
(𝜑(𝑘)

1
, 𝐼
(𝑘)
1
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−1 (
𝐹1(𝜑(𝑘)1

, 𝐼
(𝑘)
1
)

𝐹2(𝜑(𝑘)1
, 𝐼
(𝑘)
1
)

)
, (5.6)

which has to be iterated for 𝑘 ≥ 1 until the convergence is reached (typically
based on a desired tolerance on the residual). Note that, by Remark 1.2.3, the Ja-

cobian matrix𝐷(𝛹1,𝛹3)(𝜑(𝑘)1
, 𝐼
(𝑘)
1
) computed at every iterative step is symplectic

(determinant equal to 1). As regards the computation of partial derivatives of
𝐹1, 𝐹2, we rely on a central discrete őnite difference approximation:

𝐹1(𝜑1 + ℎ, 𝐼1) − 𝐹1(𝜑1 − ℎ, 𝐼1)
2ℎ

=
𝜕𝐹1

𝜕𝜑1
(𝜑1, 𝐼1) + 𝒪(ℎ2) (5.7)

and analogously for the rest. The error committed depends on the small incre-
ment ℎ > 0 (opportunely tuned as explained in Remark 5.2.2).
Finally, once we have reached (𝜑̄1, 𝐼1), we compute the eigenvalues of the lin-

earization 𝐷𝛹 (𝜑̄1, 0, 𝐼1, 𝐼2(𝐸𝐽)) and, thanks to Proposition 1.1.2, we immedi-
ately have the Floquet multipliers of the monodromy matrix associated to the
periodic orbit. For equilibrium points (or periodic orbits stemming from them)
of hyperbolic character (like the collinear Lagrangian points, see ğ1.3.3) we then
have the expanding/contracting direction on the plane (𝜑1, 𝐼1) along which we
can propagate the stable/unstable corresponding invariant manifolds. By The-
orem 1.1.3, we commence with a linear approximation of the manifolds near
the equilibrium point and subsequently iterate the Poincaré map to produce
their global structure on Σ.

Remark 5.2.2. In practical computations, we select ℎ in order to minimize the
bound of the quadratic error out of the Taylor expansion in (5.7) coupled with
the round-off coming from working with a őnite precision arithmetic. This is
a standard approach in numerical analysis. Assume ℎ is an inőnite precision

real number. Denote by ℱ̃ the ŕoating point representation of a quantity ℱ
with machine precision 𝜖, namely ℱ̃ = ℱ (1 + 𝛿ℱ ), with |𝛿ℱ | ≤ 𝜖. Setting the
left-hand side of (5.7) equal to ℱ , we have

|ℱ − ℱ̃ | =
����𝐹1(𝜑1 − ℎ, 𝐼1)𝛿𝐹1(𝜑1−ℎ,𝐼1) − 𝐹1(𝜑1 + ℎ, 𝐼1)𝛿𝐹1(𝜑1+ℎ,𝐼1)

2ℎ

���� ≤ 𝐶𝜖ℎ ,

with 𝐶 ≔ max𝜙∈[𝜑1−ℎ,𝜑1+ℎ] 𝐹1(𝜙, 𝐼1). Therefore we can estimate the total error
as ���� 𝜕𝐹1

𝜕𝜑1
− ℱ̃

���� =
���� 𝜕𝐹1

𝜕𝜑1
− ℱ + ℱ − ℱ̃

���� ≤ 𝐶′ℎ2 + 𝐶𝜖
ℎ
, (5.8)

in which 𝐶′ is another constant related to 𝜕3𝐹1/𝜕𝜑3
1

coming from the truncation
error. The optimal ℎmin is found as the solution of

d

dℎ

(
𝐶′ℎ2 + 𝐶𝜖

ℎ

)
= 0 ,
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that is ℎmin ≈ 3
√
𝜖. For double precision calculations 𝜖 ∼ 10−16, thus ℎmin ∼ 10−5.

5.2.2 The stable manifold of 𝑷𝑳3

For the motives stated at the end of ğ5.1, it is worth investigating the geometric
features of 𝑊 𝑠(𝑃𝐿3) ∩ Σ. We accomplish so by implementing the procedure
exposed in the previous subsection, and also using the FLI method discussed
in Chapter 4. We also complement the őgures with a representation of𝑊 𝑠(𝑃𝐿3)
overlapped to the pericentric short-period FLI cartography on the (𝑎, 𝑒) plane
reported in Fig. 4.1 (bottom panel).

For a given𝐸𝐽 ≳ 𝐸𝐽𝐿3
, the seed (𝜑(0)

1
, 𝐼
(0)
1
) for (5.6) is computed using standard

techniques for partially hyperbolic Lagrangian points:

• As already seen, taking advantage of the existence of Lyapunov orbits for

continuous values in a small right neighborhood of 𝐸𝐽𝐿3
, we start with the

equilibrium point 𝐿3 (which lies on Σ, cf. Fig. 5.2) and use the datum as
initial guess for the algorithm when the energy is slightly increased, say

𝐸𝐽𝐿3
+ 𝛿, 𝛿 ≈ 10−4. We repeat the reasoning up to 𝐸𝐽 , possibly tuning 𝛿 in

order to achieve convergence every time.

• Especially when the above process is not accurate enough to keep going
on, we perform the linearization around the last candidate we have found.
We reduce ourselves to the center space, calculate the initial conditions
for the linearized orbit and use them as new seed for the algorithm in the
non-linear problem. Such conditions produce an orbit close enough to
𝑃𝐿3, but we can even further reőne our guess with the aid of the shooting
method for boundary value problems to improve its closeness and resume
with the iterations.

• Having managed to get a pair of őxed points corresponding to two values
of the Jacobi integral, we can pass to the recursion for the next increment

𝐸𝐽+𝛿 using as guess the extrapolation from the previous computed values
(𝜑̄1, 𝐼1) for lower energies. In this way we build up the characteristic curves
𝜑̄1 = 𝜑̄1(𝐸𝐽), 𝐼1 = 𝐼1(𝐸𝐽). An example of such functions is shown in Fig.
5.3.

In Fig. 5.4 (top panels) we can appreciate the complexity of the manifold
as it approaches the őxed point. The repeated folds and lobes (the so-called
homoclinic tangle) are a consequence of Proposition 1.2.1 for Hamiltonian sys-
tems, besides the fact that the manifold spreads throughout the phase space
without self-intersections (see ğ1.1.4). In the FLI chart we can also retrieve more
information on the global structure of 𝑊 𝑠 , as well as regarding other regimes
of motion, e.g. the domain of quasi-satellite objects, in deep blue on the left
side (and right side by periodicity) of the plot.

Let us consider now the points of 𝑊 𝑠(𝑃𝐿3) ∩ Σ computed as above for sev-

eral values of 𝐸𝐽 . We retain those points belonging also to the pericentric (𝑎, 𝑒)
section in the orbital elements’ space of Chapter 4 (which are also characterized
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Figure 5.3: Characteristic curves of 𝑃𝐿3 as functions of the Jacobi integral. Here

𝐸𝐽 ∈ [−1.5003768,−1.1995236], with −1.5003768 ≳ 𝐸𝐽𝐿3
. Left panel: 𝜑̄1(𝐸𝐽).

Right panel: 𝐼1(𝐸𝐽).

Figure 5.4: Representations of 𝑊 𝑠(𝑃𝐿3) in the Sun-Jupiter-asteroid system on

the (𝜑1, 𝐼1) and (𝑎, 𝑒) planes. Top left panel: 𝐸𝐽 = −1.4926626, |𝑛 | = 14
(backward) iterations of the Poincaré map 𝛹 . Top right panel: short-time FLI
map (integration time 𝑡 = 50𝑇𝐽) over a 500 × 500 (𝜑1(0), 𝐼1(0)) grid of initial

conditions for 𝐸𝐽 = −1.4849484. Bottom panel: points of 𝑊 𝑠(𝑃𝐿3) (red dots)

for 40 values of 𝐸𝐽 in the same range of Fig. 5.3 (black thin iso-lines) lying on
the pericentric FLI cartography of bottom panel of Fig. 4.1.
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Figure 5.5: Poincaré section Σ of the heteroclinic connections between𝑊 𝑠(𝑃𝐿3)
and 𝑊𝑢(𝑃𝐿1), 𝑊𝑢(𝑃𝐿2) in the surroundings of 𝐿4/𝐿5 for 𝐸𝐽 = −1.4989 > 𝐸𝐽𝐿4

.
Color code: blue for 𝑊 𝑠

𝐿4
(𝑃𝐿3), red for 𝑊 𝑠

𝐿5
(𝑃𝐿3), magenta for 𝑊𝑢(𝑃𝐿1), green

for 𝑊𝑢(𝑃𝐿2) and corresponding dotted periodic orbits (except 𝑃𝐿3 in white),
with circled labels. The black curves represent the local phase portrait around
the equilateral Lagrangian points.

by 𝑔(0) = 𝜋). The result emerges in the bottom panel of Fig. 5.4: the points are

placed on the level curves 𝐸𝐽 = 𝐸𝐽 and some of them tend to vaguely distribute
along the łarches of chaosž mentioned in ğ4.3. Such evidence leads us to infer
that these structures are actually due to the interplay of many invariant sets (the
stable manifolds of several unstable periodic orbits, including 𝑊 𝑠(𝑃𝐿3)) that
can dynamically communicate in a non-trivial manner throughout the Solar
System. With this in hand, we discuss relevant heteroclinic points of 𝑊 𝑠(𝑃𝐿3)
in relation to Trojan dynamics.

5.2.3 The asymmetric distribution of heteroclinic intersections

If we keep iterating the Poincaré map producing 𝑊 𝑠(𝑃𝐿3), the lobes of the
manifold arrive at a particular conőguration consisting in rays associated to
high-order resonances (Fig. 5.5). The rays are subject to intersect unstable
manifolds of other unstable periodic orbits, like the prominent ones 𝑊𝑢(𝑃𝐿1),
𝑊𝑢(𝑃𝐿2). The collocation and number of these connections on Σ close to 𝑃𝐿3

govern the heteroclinic dynamics nearby the co-orbital 𝐿4/𝐿5 regions.
Referring to Fig. 5.5, we discern two opposite subsets denoted by 𝑊 𝑠

𝐿4
(𝑃𝐿3),

𝑊 𝑠
𝐿5
(𝑃𝐿3) ⊂ 𝑊 𝑠(𝑃𝐿3) s.t. 𝑊 𝑠

𝐿4
|Σ and 𝑊 𝑠

𝐿5
(𝑃𝐿3)|Σ meet at (𝜑̄1𝑃𝐿3

, 𝐼1𝑃𝐿3
) and their

local counterparts 𝑊 𝑠
𝐿4 ,loc

, 𝑊 𝑠
𝐿5 ,loc

extend towards respectively 𝐿4, 𝐿5 for back-

ward times (blue and red dots in the őgure). The key observation is the
following: the visible intersections between 𝑊 𝑠

𝐿4
(blue rays in the lower part)

and 𝑊𝑢(𝑃𝐿1) ∪𝑊𝑢(𝑃𝐿2) (łinterruptedž magenta and green lines) are asym-



5.2. Heteroclinic dynamics at co-orbital resonance 125

metrically positioned when compared to the intersections between 𝑊 𝑠
𝐿5

(red

rays in the upper part) and and 𝑊𝑢(𝑃𝐿1) ∪𝑊𝑢(𝑃𝐿2). This behavior affects
the respective number of such connections too and persists independently on

𝐸𝐽 > 𝐸𝐽𝐿4
.

We now examine whether manifold-driven particles coming far from Jupiter
(say along𝑊𝑢(𝑃𝐿2)) have different probability of being transported around the
𝐿4 1 : 1 region rather than 𝐿5, due to the above mentioned asymmetric web of
heteroclinic connections with𝑊 𝑠(𝑃𝐿3).

Figure 5.6-5.7 show the stable invariant manifolds 𝑊 𝑠(𝑃𝐿3) for 𝐸𝐽 larger
than in Fig 5.5. Looking at the topmost left panel of Fig. 5.6, we already note
that for higher values of the Jacobi integral

• the 𝑊 𝑠(𝑃𝐿3) rays arise earlier in the propagation (for instance the points
of 𝑊 𝑠

𝐿4
in blue remain in the upper part of the coordinate plane during

the whole propagation stopped at time ≈ 14𝑇𝐽);

• the areas corresponding to the co-orbital resonance shrink together with
a slight downward displacement (recognizable on the 𝐼1 axis);

• other stability islands composed by invariant tori appear. This helps in ex-
cluding uninteresting parts of Σ to the manifold-guided initial conditions
to run.

Passing to the right panel, at time 𝑡 = 0 we consider a small neighborhood
of initial conditions 𝒟 ⊂ Σ centered at (𝜑̄1𝑃𝐿2

, 𝐼1𝑃𝐿2
) (green square). Then we

produce the images𝛹 𝑡(𝒟) for integers 𝑡 = 1, . . . , 100, leading to the subsequent
plots of Fig. 5.6 continuing in Fig. 5.7 obtained for the number of iterations 𝑡 in-
dicated. Initially, 𝒟 stretches approximately following𝑊𝑢(𝑃𝐿2) (diagrams for
𝑡 = 2, 5, 10), then tend to distribute evenly outside the stable islands (diagrams
for 𝑡 = 15, 20) until they escape (diagrams for 𝑡 = 50, 100). For each section,
we report on the right the statistics of the current objects entering pre-assigned
ellipses (cyan colored) centered at 𝐿4, 𝐿5 and enclosing the corresponding local
phase portrait. Remarkably, at the beginning 𝐿4 entirely dominates over 𝐿5, in
the sense that out of the total number of particles approaching the two circled
regions, the ŕow transfers particles only inside the one of 𝐿4 before starting to
equalize the distributions for longer times.

We now reőne the choice of initial conditions to make the above experiments
more meaningful, as a scenario of particles coming from outside the co-orbital
resonance, in order to mimic a temporary trapping of the Trojan particles to
the 𝐿4/𝐿5 regions. To this end, instead of taking 𝒟 directly on Σ, we consider
orbits with initial conditions far from Jupiter, taken transverse to the stable tube
manifold of the Lyapunov orbit 𝑃𝐿2. Such particles reach the 𝐿2 bottleneck in
the positive sense of time, and then can approach the 𝐿4/𝐿5 neighborhood and
remain there for őnite times.
Speciőcally, we carry out these two steps:

(i) exploiting its intrinsic instability, we backward integrate the 𝑃𝐿2 orbit up
to 10𝑇𝐽 (≈ 100 y), time at which more or less the semi-major axis stabilizes
(up to 8-10 AU);
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(ii) we extract 10000 initial data transverse and sufficiently close to𝑊 𝑠(𝑃𝐿2) in
Cartesian variables as 𝑥𝑃𝐿2(−10𝑇𝐽)+𝜀, 𝑦𝑃𝐿2(−10𝑇𝐽), 𝑝𝑥𝑃𝐿2

(−10𝑇𝐽)by varying

𝜀 ∈ [−10−3, 10−3] plus 𝑝𝑦𝑃𝐿2
(−10𝑇𝐽) given by the constraint 𝐸𝐽 = 𝐸𝐽 .

If we re-perform now the Poincaré map iterations, the situation does not sub-
stantially change (Fig. 5.8): the dominance of 𝐿4 for the transported bodies
establishes at 𝑡 = 7, slightly delayed with respect to the set𝒟.

It is worth mentioning the short time scale needed for these objects to visit
the portion of Σ at interest before escaping: roughly of the order of 1000 y
(since on average the sample orbits take one Jupiter’s period to return to Σ, that
is ∼ 10 y in physical units).

5.3 Non-stationary case: Jupiter’s migration

The short time span, the prevailing character of 𝐿4 as opposed to 𝐿5, as the
entry point of temporary captures, and, őnally, the enlargement of the 𝐿4/𝐿5

zones as 𝐸𝐽 decreases are the three key ingredients for the formulation of a
possible asymmetric trapping mechanism discussed in the present section.

We have seen that orbits with initial conditions in the proximity of (albeit
not exactly on) the stable tube manifold of 𝑃𝐿2 can be rapidly transferred from
a region far from Jupiter (e.g. intersecting the orbit of Saturn) all the way
through the 𝐿2 bottleneck, eventually reaching one of the domains around 𝐿4

or 𝐿5 through the tube manifolds of the point 𝐿3. We have seen also that the
entry probability is not symmetric as regards 𝐿4 and 𝐿5. We now examine the
consequences of assuming, in addition to the above, that during the phase of
inŕow of particles to the Trojan region Jupiter simultaneously migrates (as e.g.
in the Nice model, see Fig. 5.9 (schematic)).

5.3.1 Extension of the model

A natural adjustment to the Hamiltonian (1.74) to take into account the mi-
gratory motion, consists in passing to physical units and working with a time-
dependent planar CR3BP in which we insert a law 𝑎𝐽 = 𝑎𝐽(𝑡) mimicking the
migration phase. For the purposes of the present study, we adopt a simple
model for the migration law (see, e.g., [47]):

𝑎𝐽(𝑡) = 𝑎𝐽 ,0𝑒
−𝑡/𝑇 , 𝑡 ∈ [0, 𝑡mig] , (5.9)

with 𝑎𝐽 ,0 > 𝑎𝐽(𝑡mig) the initial value determined on the basis of, say, the present
semi-major axis 𝑎𝐽(𝑡mig) (= 5.2044 AU) and the migration rate time 𝑇.

We then consider the Hamiltonian

ℋmig(𝑥, 𝑦, 𝑝𝑥 , 𝑝𝑦 , 𝑡) =
𝑝2
𝑥 + 𝑝2

𝑦

2
− 𝑛𝐽(𝑡)(𝑥𝑝𝑦 − 𝑦𝑝𝑥) −

𝒢𝑚⊙√
(𝑥 + 𝜇𝐽𝑎𝐽(𝑡))2 + 𝑦2

−
𝒢𝑚𝐽√

(𝑥 − (1 − 𝜇𝐽)𝑎𝐽(𝑡))2 + 𝑦2
, (5.10)
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Figure 5.6: Poincaré map iterations of a neighborhood of 𝑃𝐿2 (green dots)

for 𝐸𝐽 = −1.4464 (larger than the value of Fig. 5.5). For visual clarity, the
diagrams are shifted by −𝜋 in the angular coordinate (𝜑1 ∈ [−𝜋,𝜋]). Topmost
left panel: Manifold rays and stability islands. Topmost right panel: initial
square-shaped neighborhood𝒟 of 𝑃𝐿2 (discretized as 300×300 sample points)
and 𝐿4/𝐿5 reference ellipses. Aligned bottom panels: Evolution of 𝛹 𝑡(𝒟)
for the alongside speciőed number of returns 𝑡 (symbol⟳) together with the
corresponding percentage histogram (on the right) representing𝑁𝐿4/(𝑁𝐿4+𝑁𝐿5)
and 𝑁𝐿5/(𝑁𝐿4 + 𝑁𝐿5); 𝑁𝐿𝑖 , 𝑖 = 4, 5, being the counted number of points inside
the 𝐿𝑖 ellipse at the present iteration. The sequence of images continues in Fig.
5.7.
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Figure 5.7: Continuation of the Poincaré map iterations of Fig. 5.6.
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Figure 5.8: Poincaré section as in Fig. 5.6-5.7 after 7 returns ⟳ for initial
data close and transverse to 𝑊 𝑠(𝑃𝐿2) (mapped to the green elongated sets
resembling branches of𝑊𝑢(𝑃𝐿2)).
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𝑛𝐽 ≈ 2𝑛𝐽/5

Figure 5.9: Sketch of the Trojan dynamics during the giant planets’ migration
phase. 𝐽 and 𝑆 stand for Jupiter and Saturn respectively.
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where 𝑚⊙ is the solar mass and the mean motion of Jupiter is set equal to

𝑛𝐽(𝑡) =
√
𝒢(𝑚⊙ + 𝑚𝐽)𝑎𝐽(𝑡)−3/2.

We have the following.

Proposition 5.3.1. For any 𝑡 ∈ [0, 𝑡mig] and 𝑝𝑥 , 𝑝𝑦 ∈ R, the Hamiltonian (5.10) with
(5.9) is a strictly decreasing function of time in the strip (𝑥, 𝑦) ∈]−𝜇𝐽𝑎𝐽 , (1−𝜇𝐽)𝑎𝐽[×R.

Proof. Computing the total time derivative ofℋmig yields

dℋmig

d𝑡
=
𝜕ℋmig

𝜕𝑡
= − ¤𝑛𝐽(𝑥𝑝𝑦 − 𝑦𝑝𝑥) +

𝒢𝑚⊙(𝑥 + 𝜇𝐽𝑎𝐽)𝜇𝐽 ¤𝑎𝐽
((𝑥 + 𝜇𝐽𝑎𝐽)2 + 𝑦2)3/2

−
𝒢𝑚𝐽(𝑥 − (1 − 𝜇𝐽)𝑎𝐽)(1 − 𝜇𝐽) ¤𝑎𝐽
((𝑥 − (1 − 𝜇𝐽)𝑎𝐽)2 + 𝑦2)3/2

.

Since ¤𝑎𝐽 = −𝑎𝐽 ,0𝑒−𝑡/𝑇/𝑇 < 0, the angular momentum (𝑥𝑝𝑦 − 𝑦𝑝𝑥) = 𝐺 > 0 and

¤𝑛𝐽 = −
3

2

√
𝒢(𝑚⊙ + 𝑚𝐽)𝑎−5/2

𝐽
¤𝑎𝐽 > 0 ,

we have that always − ¤𝑛𝐽(𝑥𝑝𝑦 − 𝑦𝑝𝑥) < 0. Hence, for −𝜇𝐽𝑎𝐽 < 𝑥 < (1 − 𝜇𝐽)𝑎𝐽 the

remaining two quantities of ¤ℋmig are negative. □

5.3.2 Trapping of particles at 𝑳4/𝑳5

In light of Proposition 5.3.1, at 𝑡 = 𝑡mig in neighborhoods of 𝐿4, 𝐿5 the Hamilto-
nianℋmig is lower than its value at 𝑡 = 0. This is a necessary condition to have
the same outcome for the current Jacobi integral of the system, since ∀𝑡

𝐸𝐽 =
ℋmig

𝑛2
𝐽
𝑎2
𝐽

=
ℋmig

𝒢(𝑚⊙ + 𝑚𝐽)
𝑎𝐽 , (5.11)

and one easily realizes that a necessary condition for ¤𝐸𝐽 < 0 is ¤ℋmig < 0.

We are interested in selecting appropriate initial conditions that lead to ¤𝐸𝐽 < 0
over time. For such initial conditions, we have 𝐸𝐽(𝑡mig) < 𝐸𝐽(0), implying an
enlargement of the stable 𝐿4/𝐿5 Trojan regions (in view of what discussed in
5.2.3). Then, assuming an adiabatic capture scenario [103], incoming objects to
the 𝐿4/𝐿5 region can be trapped. A schematic illustration of such a scenario
is provided in Fig. 5.10: the image is obtained as a superposition of the plot
in Fig. 5.6 for 2 Poincaré map iterations and the local phase portrait on Σ

computed separately for a lower value of 𝐸𝐽 . We can see that now the ŕow of
particles (green) can hypothetically access the 𝐿4 region and be captured in the
resonance.

Fig. 5.11 shows the results of a numerical (non-schematic) evolution of the
trajectories under the Jupiter-migrating Hamiltonian model (5.10). We consider
the same 𝑁 = 10000 transverse initial conditions in a tubular neighborhood of
𝑊 𝑠(𝑃𝐿2) of Fig. 5.8 described at the end of ğ5.2.3. Then we propagate their
ŕow according to (5.10) for two values of the migration rate 𝑇 and migration
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Figure 5.10: Illustration of a hypothetical proposed trapping mechanism in the
Trojan regions (details in the text). The two separated sections are computed

for 𝐸𝐽 = −1.4948 (rays and invariant curves) and 𝐸𝐽 = −1.4464 (green ŕow from
Fig. 5.6).

time 𝑡mig. As a last step, we count the number of particles 𝑁𝐿4 , 𝑁𝐿5 inside
corresponding moving łresonant-likež rectangles

(𝜆 − 𝜆𝐽 , 𝑎) ∈ ℛ×]𝑎𝐽(1 −
√
𝜇𝐽), 𝑎𝐽(1 +

√
𝜇𝐽)[ ,

with ℛ =]𝜋/6,𝜋/2[ for 𝐿4 and ℛ =]3𝜋/2, 11𝜋/6[ for 𝐿5, at every time step
(expressed as a fraction of Jupiter’s initial period). Remarkably, we always
observe the persistence of a preferential inŕow from 𝐿4 at the very beginning
of the simulation, as found in absence of migration. However, we also observe
the persistence of the asymmetries for a time up to 350 y, with most trapped
particles migrating to 𝐿5 at the time 𝑡1 ≈ 150𝑦, and a statically signiőcant
residual returning preferentially at 𝐿4 at the time 𝑡2 ≈ 300 y.
Comparing with Fig. 5.6-5.7, we see that with Jupiter migrating we reach to
prolong the time scales for which signiőcant 𝐿4/𝐿5 asymmetries are observed
in the temporarily trapped particles by about an order of magnitude. Scenarios
with more detailed migration models 𝑎𝐽(𝑡), as well as more realistic initial
conditions for the particles, are under investigation.
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Figure 5.11: Temporary number of bodies inside the 𝐿4/𝐿5 resonant-like do-
main during Jupiter’s migration (blue and red respectively). The data inside
the two regions are sampled at every Δ𝑡 = 𝑇𝐽(0)/1000 ≈ 0.01 y in both cases.
Top panel: statistic with 𝑇 = 105 y for 𝑡mig = 5000 y. Bottom panel: statistic

with 𝑇 = 104 y for 𝑡mig = 1000 y (in the plot, 𝑡1 = 139 y, 𝑡2 = 294 y).



6
Summary of new results and

perspectives

A summary of what was accomplished in the present thesis is the following.
In Chapter 2 we obtained the regularized (locally to either the primary or

the secondary) KS Hamiltonian of the ER3BP in a similar (albeit not equal)
manner as in the CR3BP, namely by extending the (already) augmented phase
space and arriving at a projection of the solutions in terms of the redundant
variables equivalent to a symplectic reduction of the phase space through the
bilinear form constraint. This was carried out starting from the Lagrangian
setting, which allows a simpler mathematical derivation and compensates for
the lack of an immediate regularizing canonical transformation. Eventually, we
conducted numerical experiments demonstrating the efficiency of the method
in a neighborhood of the collision singularity.

In Chapter 3 we developed the formal aspects of a relegation-free closed
form method, which relies on the use of a łbook-keepingž parameter to simul-
taneously account for all small quantities of the problem as they appear not only
in the Hamiltonian and Lie generating functions, but also in the closed-form
version of all formulas involved in the Poisson algebra between the Delaunay
canonical variables of the problem. A rigorous demonstration of the consis-
tency of the method was then given through three propositions, which also
estabilish the explicit formulas for the implementation of one iterative step
of the closed-form normalization algorithm. Successively, we gave numerical
examples of the implementation and precision of the algorithm in the spatial
elliptic, as well as in the planar circular R3BP, examining, also numerically, the
method’s convergence properties. The effect of choosing different truncation
orders (in powers of the mass parameter 𝜇 or in the multipole expansion) was
discussed, along with several simpliőcations to the normalization procedure
which hold in the circular case. The essentially asymptotic character of the se-
ries was established through numerical examples, showing the existence of an
optimal number of normalization steps, after which the size of the remainder
becomes the minimum possible.

In Chapter 4 we analyzed a key aspect of the above presented method, that is
the possibility to exploit the behavior of the size of the remainder as a function

133
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of the number of normalizing steps in order to obtain a clear separation of two
well-distinct domains, as also identiőed by purely numerical (FLI cartography)
means: speciőcally one, called the domain of secular motions, corresponding to
the domain where the harmonics in the Hamiltonian associated with resonant
combinations of the fast angles (anomalies) of the problem produce no dynam-
ical effect on the orbits visible at the level of the FLI cartography. From the
semi-analytical point of view, this turns to be the domain where a non-resonant
construction as the one proposed in the previous chapter produces no (nearly-)
resonant divisors up to the optimal normalization step. As a consequence,
only the angles associated with the motions of the perihelion and of the line of
nodes survive in the őnal normal form. We showed numerically how to use the
information on the size of the normal form remainder in order to determine
semi-analytically the border of the domain of secular motions in the case of
the Sun-Jupiter system. We gave evidence that this border is well distinct from
the border of the domains deőned either by the Hill stability or by the peri-
helion crossing criterion. In addition, using an empiric method based on the
maximum acceptable semi-major axis’ variation at every integration step, we
also provided a characterization of the fractal boundary below the pericenter
crossing curve resulting from the long-term FLI map.

Finally, in Chapter 5, we examined numerically a case far from the domain
of secular motions, namely the heteroclinic dynamics between the stable mani-
folds of the family of horizontal Lyapunov orbits around the Lagrangian point
𝐿3 with the unstable manifolds emanating from the family of horizontal Lya-
punov orbits around the Lagrangian collinear point 𝐿1 and 𝐿2. We discussed
possible correlations between the resulting asymmetric distribution of the het-
eroclinic connections between the opposite branches of the 𝑃𝐿3 stable manifold
with the unstable manifolds of 𝑃𝐿1 and 𝑃𝐿2 with the 𝐿4/𝐿5 asymmetry problem
of the Trojan asteroids. In particular, we őnd that distant bodies entering from
the 𝐿2 bottleneck are transferred primarily towards the 𝐿4 co-orbital region
rather than 𝐿5. This phenomenon persists in a more realistic model in which
Jupiter migrates, where, in addition, the times for which statistically important
differences between the 𝐿4/𝐿5 number of temporarily captured particles are
observed are prolonged.

The above results open some possibilities for future developments and
extensions:

(i) in Chapter 2, the application of the KS regularization to the more general
RNBP, in particular regarding its numerical performances making use of
other iterative schemes (e.g. Taylor-based or symplectic methods);

(ii) in Chapter 3, a straightforward extension of the algorithm that accounts
for speciőc mean-motion resonances, to address for example high-dimen-
sional phenomena like orbital diffusion in asteroid dynamics. Note that
the most severe convergence issues with the relegation algorithm also
occur close to low-order mean-motion resonances, thus it would be of
interest to compare the present method with the relegation method in
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such cases. Another interesting application of the method would con-
cern the regimes of the so-called Lunar problem or comet problem [66], in
which one can arrange the Hamiltonian function in such a way that the
Keplerian term and the term related to the (őctitious) action conjugate
to the eccentric anomaly of the primaries appear at different orders (and
this prevents the occurrence of resonances, see [54, 80ś82]);

(iii) in Chapter 4, the convergence properties of the above algorithm with a
higher order multipole expansion, especially in the vicinity of Jupiter;

(iv) in Chapter 5, an accurate veriőcation of the theory constructed following
the conclusive steps therein listed, particularly with numerical experi-
ments starting with large sets of initial particles (so to allow the deőnition
of 𝐿4/𝐿5 entrance probabilities) stepwise suitably modiőed in order to
simulate a constant ŕow of new material coming from the outside of the
system.

As a őnal conclusion, the above and other examples demonstrate that the
dynamics of the R3BP, although extremely classical and old as a topic, still
exhibits prospects for a variety of new results, as well as an arena for the
development of new methods of interest, not only mathematical but also as
regards important open problems in the general area of Celestial Mechanics.
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A
Derivation of the 𝒇 -dependent

elliptic restricted three-body

problem Hamiltonian in the

rotating-pulsating frame

Contrary to the CR3BP, in the ER3BP the primary and the secondary rotate non-
uniformly around their common center of mass and have constantly varying
relative distance. Consider then the equivalent frame 𝑂𝑥𝑦𝑧 of the synodic
frame in ğ1.3.3 that at the same time and for any instant

(i) pulsates in order to rescale lengths by a factor 1/𝜚( 𝑓 (𝑡)), where

𝜚( 𝑓 ) =
1 − 𝑒2

1

1 + 𝑒1 cos 𝑓
(A.1)

obtained by (1.54) according to units and notations of ğ2.3.1,

(ii) rotates by 𝑓 (𝑡), thus with non-constant angular speed ¤𝑓 ,

in such a way that 𝒫0 and 𝒫1 appear at rest and their inter-distance 𝒫0𝒫1 is
equal to 1, thus the name rotating-pulsating reference frame.
The two prescriptions translate mathematically in the application of a rotation
matrix ℛ( 𝑓 ) ∈ 𝑆𝑂(3) and the scaling factor 𝜚( 𝑓 ) to a vector 𝑟 = (𝑥, 𝑦, 𝑧) ∈ R3 in
𝑂𝑥𝑦𝑧 to retrieve a barycentric vector 𝑅 = (𝑋,𝑌, 𝑍) ∈ R3 in the inertial frame
𝑂𝑋𝑌𝑍:

𝑅 = 𝜚( 𝑓 )ℛ( 𝑓 )𝑟 , (A.2)

where

ℛ( 𝑓 ) = ©­
«
cos 𝑓 − sin 𝑓 0
sin 𝑓 cos 𝑓 0

0 0 1

ª®
¬
, (A.3)

thereby 𝒫0(−𝜇, 0, 0), 𝒫1(1 − 𝜇, 0, 0) in the new frame.
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A.1 Time-dependent Lagrangian

This section is devoted to sum up the main calculations resulting from the
application of (A.2) to the Lagrangian

𝐿𝐼(𝑅, ¤𝑅) =
1

2



 ¤𝑅

2 + 1 − 𝜇
∥𝑅 − 𝑅0∥

+ 𝜇

∥𝑅 − 𝑅1∥
(A.4)

being 𝑅0, 𝑅1 inertial locations of 𝒫0, 𝒫1 respectively, whose orbital plane coin-
cide with the 𝑋-𝑌 plane.

Proposition A.1.1. The Lagrange’s function (A.4) in the rotating-pulsating reference
frame takes the form

𝐿𝑅𝑃(𝑥, 𝑦, 𝑧, ¤𝑥, ¤𝑦, ¤𝑧, 𝑡) =
1

2
𝜚2( ¤𝑥2 + ¤𝑦2 + ¤𝑧2) +

√
1 − 𝑒2

1
(𝑥 ¤𝑦 − ¤𝑥𝑦) − 1

𝜚
𝒰(𝑥, 𝑦, 𝑧, 𝑡) ,

(A.5)
where

𝒰(𝑥, 𝑦, 𝑧, 𝑡) =𝒱(𝑥, 𝑦, 𝑧) − 1

2
(𝑥2+ 𝑦2− 𝑧2𝑒1 cos 𝑓 ) , 𝒱(𝑥, 𝑦, 𝑧) = −1 − 𝜇

𝑑0
− 𝜇

𝑑1
,

(A.6)
is the scaled effective potential, in which 𝑑0, 𝑑1 are expressed by (1.75).

The proof of the statement consists in some algebra; before going through the
main steps, there is a couple of relationships of the Kepler’s problem which are
needed next, especially the former will be necessary later to pass from 𝑡 to 𝑓 as
new independent variable.

Lemma A.1.1. The time derivative of the true anomaly 𝑓 and the second time derivative
of the mutual distance 𝜚 for the motion of the primaries in the ER3BP satisfy respectively

¤𝑓 =

√
1 − 𝑒2

1

𝜚2
, (A.7)

¥𝜚 =
1 − 𝑒2

1

𝜚3
− 1

𝜚2
. (A.8)

Proof. Setting 𝑓 = 0 and 𝑓 = 𝜋 in (1.54) for the radii of pericenter 𝜚𝑝 and
apocenter 𝜚 𝑎 respectively and combining with 𝜚𝑝 + 𝜚 𝑎 = 2𝑎1 = 2, it gives,
recalling that 𝒢(𝑚0 + 𝑚1) = 𝑎1 = 1,

ℳ𝑍 =

√
1 − 𝑒2

1
,

for ℳ𝑍 from (1.51); equivalently this descends immediately from the 𝐺 De-
launay element’s expression in (3.3) with ∥ℳ∥ = ℳ𝑍 due to the choice of
the inertial frame. From the expression of the angular momentum in polar
coordinates

𝑀𝑍 = 𝜚2 ¤𝑓
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(A.7) follows.
About the second equality, by twice differentiation of 𝜚 = 𝜚(𝑡) and applying
the chain rule we end up with (the superscript indicates differentiation with
respect to the argument)

¤𝜚 = 𝜚′( 𝑓 ) ¤𝑓 , ¥𝜚 = 𝜚′′( 𝑓 ) ¤𝑓 2 + 𝜚′( 𝑓 ) ¥𝑓 .

Now replacing (A.7)

¥𝜚 = 𝜚′′
1 − 𝑒2

1

𝜚4
+ 𝜚′ d

d𝑡

©­­
«

√
1 − 𝑒2

1

𝜚2

ª®®
¬

= 𝜚′′
1 − 𝑒2

1

𝜚4
− (𝜚′)2

2
√

1 − 𝑒2
1

𝜚3

√
1 − 𝑒2

1

𝜚2

=
1 − 𝑒2

1

𝜚4

(
𝜚′′ − 2(𝜚′)2

𝜚

)
,

let us explicit 𝜚′ and 𝜚′′ in terms of 𝜚 :

𝜚′ =
(1 − 𝑒2

1
)𝑒1 sin 𝑓

(1 + 𝑒1 cos 𝑓 )2 =
𝜚𝑒1 sin 𝑓

1 + 𝑒1 cos 𝑓
,

𝜚′′ =
(1 − 𝑒2

1
)𝑒1 cos 𝑓 (1 + 𝑒1 cos 𝑓 ) + 2𝑒1 sin 𝑓 (1 − 𝑒2

1
)𝑒1 sin 𝑓

(1 + 𝑒1 cos 𝑓 )3

=
(1 − 𝑒2

1
)(𝑒1 cos 𝑓 + 𝑒2

1
cos2 𝑓 + 2𝑒2

1
sin2 𝑓 )

(1 + 𝑒1 cos 𝑓 )3

=
𝜚𝑒1(𝑒1 + cos 𝑓 + 𝑒1 sin2 𝑓 )

(1 + 𝑒1 cos 𝑓 )2 .

Coming back to ¥𝜚 , after the substitution

¥𝜚 =
1 − 𝑒2

1

𝜚3

(
𝑒2
1
+ 𝑒1 cos 𝑓 + 𝑒2

1
sin2 𝑓

(1 + 𝑒1 cos 𝑓 )2 −
2𝑒2

1
sin2 𝑓

(1 + 𝑒1 cos 𝑓 )2

)
=
(1 − 𝑒2

1
)𝑒1 cos 𝑓

𝜚3(1 + 𝑒1 cos 𝑓 )

=
𝑒1 cos 𝑓

𝜚2
,

we are left with, from (1.54),

𝑒1 cos 𝑓 =
1 − 𝑒2

1

𝜚
− 1 =⇒ ¥𝜚 =

1 − 𝑒2
1

𝜚3
− 1

𝜚2
.

□

At this point the proof of Proposition A.1.1 is ready to be exposed.
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Proof of Proposition A.1.1. Consider the Lagrangian (A.4) and perform the trans-
formation (A.2) term by term.

• Kinetic energy contribution:

¤𝑋2 + ¤𝑌2 + ¤𝑍2 = ¤𝑅 · ¤𝑅 =
d

d𝑡
(𝜚( 𝑓 )ℛ( 𝑓 )𝑟) · d

d𝑡
(𝜚( 𝑓 )ℛ( 𝑓 )𝑟) ,

from which

 ¤𝑅

2
= (𝜚′ ¤𝑓ℛ𝑟 + 𝜚 ¤𝑓ℛ′𝑟 + 𝜚ℛ¤𝑟) · (𝜚′ ¤𝑓ℛ𝑟 + 𝜚 ¤𝑓ℛ′𝑟 + 𝜚ℛ¤𝑟)
= (𝜚′)2 ¤𝑓 2ℛ𝑟 ·ℛ𝑟 + 𝜚2 ¤𝑓 2ℛ′𝑟 ·ℛ′𝑟 + 𝜚2ℛ¤𝑟 ·ℛ¤𝑟 + 2𝜚′𝜚 ¤𝑓 2ℛ𝑟 ·ℛ′𝑟
+ 2𝜚′𝜚 ¤𝑓ℛ𝑟 ·ℛ¤𝑟 + 2 ¤𝑓 𝜚2ℛ′𝑟 ·ℛ𝑟

and

ℛ′( 𝑓 ) = ©­
«
− sin 𝑓 − cos 𝑓 0
cos 𝑓 − sin 𝑓 0

0 0 0

ª®
¬

is a skew-symmetric matrix which is no more orthogonal; however

(ℛ′)𝑇ℛ′ = ©­
«
1 0 0
0 1 0
0 0 0

ª®
¬
,

so handling each dot product separately using the equalities

ℛ𝑟 ·ℛ𝑟 = ∥𝑟∥2 ℛ′𝑟 ·ℛ′𝑟 = 𝑥2 + 𝑦2

ℛ¤𝑟 ·ℛ¤𝑟 = ∥ ¤𝑟∥2 ℛ𝑟 ·ℛ¤𝑟 = 𝑟 · ¤𝑟
ℛ𝑟 ·ℛ′𝑟 = 0 ℛ′𝑟 ·ℛ¤𝑟 = 𝑥 ¤𝑦 − ¤𝑥𝑦

,

it turns out that, upon simpliőcations and rearrangements,



 ¤𝑅

2
= ¤𝑓 2((𝜚′)2 ∥𝑟∥2 + 𝜚2(𝑥2 + 𝑦2)) + 𝜚2 ∥ ¤𝑟∥2 + 2𝜚′𝜚 ¤𝑓 𝑟 · ¤𝑟

+ 2 ¤𝑓 𝜚2(𝑥 ¤𝑦 − ¤𝑥𝑦) .

• Potential energy contribution:

− 1 − 𝜇
∥𝑅 − 𝑅0∥

− 𝜇

∥𝑅 − 𝑅1∥
= − 1 − 𝜇
∥𝜚ℛ(𝑟 − 𝑟0)∥

− 𝜇

∥𝜚ℛ(𝑟 − 𝑟1)∥

= −1 − 𝜇
𝜚𝑑0

− 𝜇

𝜚𝑑1
,

𝑟0, 𝑟1 corresponding vectors in 𝑂𝑥𝑦𝑧 of 𝑅0, 𝑅1.

Assembling the two parts, the transformed Lagrangian reads

𝐿𝑅𝑃 =
1

2
( ¤𝑓 2((𝜚′)2 ∥𝑟∥2 + 𝜚2(𝑥2 + 𝑦2)) + 𝜚2 ∥ ¤𝑟∥2

+ 2𝜚′𝜚 ¤𝑓 𝑟 · ¤𝑟 + 2 ¤𝑓 𝜚2(𝑥 ¤𝑦 − ¤𝑥𝑦)) − 1

𝜚
𝒱 ,
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that yet can be considerably simpliőed using Lemma A.1.1 and the identity

d

d𝑡
(𝜚 ¤𝜚 ∥𝑟∥2) = ¤𝜚2 ∥𝑟∥2 + 𝜚 ¥𝜚 ∥𝑟∥2 + 2𝜚 ¤𝜚𝑟 · ¤𝑟 .

This can be cleverly inserted in the expression above of 𝐿𝑅𝑃 , since

¤𝑓 2(𝜚′)2 ∥𝑟∥2 + 2𝜚𝜚′ ¤𝑓 𝑟 · ¤𝑟 = d

d𝑡
(𝜚 ¤𝜚 ∥𝑟∥2) − 𝜚 ¥𝜚 ∥𝑟∥2 ,

therefore by substitution

𝐿𝑅𝑃 =
1

2
(𝜚2 ∥ ¤𝑟∥2 + 2 ¤𝑓 𝜚2(𝑥 ¤𝑦 − ¤𝑥𝑦) + ¤𝑓 2𝜚2(𝑥2 + 𝑦2) − 𝜚 ¥𝜚 ∥𝑟∥2)

+ d

d𝑡

(
1

2
𝜚 ¤𝜚 ∥𝑟∥2

)
− 1

𝜚
𝒱 .

Now, using (A.7) and (A.8),

¤𝑓 2𝜚2 − 𝜚 ¥𝜚 =
1

𝜚

and again (A.7) for ¤𝑓 one derives

𝐿𝑅𝑃 =
1

2

(
𝜚2 ∥ ¤𝑟∥2 + 2

√
1 − 𝑒2

1
(𝑥 ¤𝑦 − ¤𝑥𝑦) + 1

𝜚
(𝑥2 + 𝑦2) − 1

𝜚
𝑒1𝑧

2 cos 𝑓

)
− 1

𝜚
𝒱 ,

in which the term d(1/2𝜚 ¤𝜚 ∥𝑟∥2)/d𝑡 can be discarded by gauge transformation
invariance of Lagrangians; so upon rearrangements

𝐿𝑅𝑃(𝑥, 𝑦, 𝑧, ¤𝑥, ¤𝑦, ¤𝑧, 𝑡) =
1

2
𝜚2( ¤𝑥2 + ¤𝑦2 + ¤𝑧2) +

√
1 − 𝑒2(𝑥 ¤𝑦 − ¤𝑥𝑦)

+ 1

𝜚

(
1

2
(𝑥2 + 𝑦2 − 𝑧2𝑒1 cos 𝑓 ) + 1 − 𝜇

𝑑0
+ 𝜇

𝑑1

)
.

□

The consequent equations of motion produced by (A.5) can be written as




2𝜚 ¤𝜚 ¤𝑥 + 𝜚2 ¥𝑥 − 2
√

1 − 𝑒2
1
¤𝑦 + 1

𝜚

𝜕𝒰
𝜕𝑥

= 0

2𝜚 ¤𝜚 ¤𝑦 + 𝜚2 ¥𝑥 + 2
√

1 − 𝑒2
1
¤𝑥 + 1

𝜚

𝜕𝒰
𝜕𝑦

= 0

2𝜚 ¤𝜚 ¤𝑧 + 𝜚2 ¥𝑧 + 1

𝜚

𝜕𝒰
𝜕𝑧

= 0

. (A.9)

It is quite straightforward to realize that the equilibrium points of this system
are situated exactly at the same positions as in the circular problem, since after
setting ¤𝑥 = ¤𝑦 = ¤𝑧 = ¥𝑥 = ¥𝑦 = ¥𝑧 = 0 one is left with

∇𝒰 =

(
𝜕𝒰
𝜕𝑥

,
𝜕𝒰
𝜕𝑦

,
𝜕𝒰
𝜕𝑧

)
= 0 ,
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admitting the same known őve equilibrium conőgurations which do not de-
pend on 𝑒1. The study of their stability is not nevertheless the same, especially
because of the dependence of the linearizing coefficients on the eccentricity (see
e.g. [13]). In particular, a numerical procedure based on Floquet theory (see
[21]) provides the domain of the linear stability in the parameter plane (𝜇, 𝑒1)
for the equilateral equilibria:

• at 𝜇 = 0.028 there is linear instability for any value of 𝑒1;

• at 𝜇 = 0.038 there is instability also for 𝑒1 = 0, while 𝑒1 can have a
stabilizing effect up to 𝜇 = 0.047.

The collinear points are always unstable, as in the circular case, for any value
of (𝜇, 𝑒1). Lastly, as regards the existence and stability of periodic orbits in the
ER3BP, the problem is yet to be fully explored. Families of periodic motions
similar to those of the CR3BP have been found around the collinear points [76].
In [19] and references therein contained the reader can őnd a good summary
of the main contributions existing in the literature on this subject.

A.2 The true anomaly as independent variable

Owing to the fact that ¤𝑓 > 0 ∀𝑡 ∈ R by (A.7), the dependence 𝑓 = 𝑓 (𝑡) is
invertible and thus 𝑓 can be made as new independent variable in (A.5) to
őnally get (2.3). We achieve this task by operating on the equations (A.9).

Proposition A.2.1. The Lagrange’s equations (A.9) with 𝑓 as independent variable
read




𝑥′′ = 2𝑦′ − 1

1 + 𝑒1 cos 𝑓

(
𝜕𝒱
𝜕𝑥
− 𝑥

)

𝑦′′ = −2𝑥′ − 1

1 + 𝑒1 cos 𝑓

(
𝜕𝒱
𝜕𝑥
− 𝑦

)

𝑧′′ = − 1

1 + 𝑒1 cos 𝑓

(
𝜕𝒱
𝜕𝑧
+ 𝑧𝑒1 cos 𝑓

) . (A.10)

where the superscript indicates differentiation w.r.t. 𝑓 .

Proof. Starting from the equations in vector form

𝜚2¥𝑟 + 2𝜚 ¤𝜚 ¤𝑟 − 2
√

1 − 𝑒2
1
( ¤𝑦,− ¤𝑥, 0) + 1

𝜚
(∇𝒰 − (𝑥, 𝑦,−𝑧𝑒1 cos 𝑓 )) = 0 ,

consider 𝑟(𝑡) = 𝑟( 𝑓 (𝑡)). Then

¤𝑟 = ¤𝑓 𝑟′ , ¥𝑟 = ¤𝑓 2𝑟′′ + ¥𝑓 𝑟′ ,

and replacing back

𝜚2 ¤𝑓 2𝑟′′+(𝜚2 ¥𝑓 +2𝜚 ¤𝜚 ¤𝑓 )𝑟′−2
√

1 − 𝑒2
1
¤𝑓 (𝑦′,−𝑥′, 0)+ 1

𝜚
(∇𝒰 −(𝑥, 𝑦,−𝑧𝑒1 cos 𝑓 )) = 0 .
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Recognize now that 𝜚2 ¥𝑓 +2𝜚 ¤𝜚 ¤𝑓 = d(𝜚2 ¤𝑓 )/d𝑡 = 0, as 𝜚2 ¤𝑓 is the magnitude of the
𝒫0-𝒫1 angular momentum, and with the help of (A.7) and (A.1) one arrives at

𝑟′′ − 2( ¤𝑦,− ¤𝑥, 0) + 1

1 + 𝑒1 cos 𝑓
(∇𝒰 − (𝑥, 𝑦,−𝑧𝑒1 cos 𝑓 )) = 0 ,

which is equivalent to the system (A.10). □

The related Lagrangian (2.3) is thereby easily deduced, as well as the Hamilto-
nian (2.2) via Legendre transform after introducing the momenta

𝑝𝑥 =
𝜕𝐿

𝜕𝑥′
= 𝑥′ − 𝑦 , 𝑝𝑦 =

𝜕𝐿

𝜕𝑦′
= 𝑦′ + 𝑥 , 𝑝𝑧 =

𝜕𝐿

𝜕𝑧′
= 𝑧′ .
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B
Disturbing function for

external orbits in the restricted

three-body problem in terms of

the orbital elements

The perturbing partℋ1 of Hamiltonian (3.17) can be written as an explicit series
rearranging the substitutions (3.15), (3.16) and (1.56) for (3.2) in (3.13):

ℋ1 = −𝒢𝑚0(1 + 𝑒 cos 𝑓 )
𝑎(1 − 𝑒2)

[
1 +

∞∑
𝑙=1

(
𝜇𝑙 +

(
𝑎1(1 + 𝑒 cos 𝑓 )
𝑎2(1 − 𝑒2)2

) 𝑙 (
−1/2
𝑙

)
×

(
(1 − 𝜇)𝑙−1

(
𝑎1(1 − 𝜇)(𝑒1 cos𝐸1 − 1)2(1 + 𝑒 cos 𝑓 ) − 2𝑎(1 − 𝑒2) ×(√

1 − 𝑒2
1

sin𝐸1(cos ℎ cos 𝑖 sin( 𝑓 + 𝑔) + cos( 𝑓 + 𝑔) sin ℎ) + (cos𝐸1 − 𝑒1) ×

(cos( 𝑓 + 𝑔) cos ℎ − cos 𝑖 sin( 𝑓 + 𝑔) sin ℎ)
)) 𝑙
+ 𝜇𝑙−1

(
𝑎1𝜇(𝑒1 cos𝐸1 − 1)2 ×

(1 + 𝑒 cos 𝑓 ) + 2𝑎(1 − 𝑒2)
(√

1 − 𝑒2
1

sin𝐸1(cos ℎ cos 𝑖 sin( 𝑓 + 𝑔)

+cos( 𝑓 + 𝑔) sin ℎ)+(cos𝐸1− 𝑒1)(cos( 𝑓 + 𝑔) cos ℎ−cos 𝑖 sin( 𝑓 + 𝑔) sin ℎ)
)) 𝑙))]

.

(B.1)

Now, passing to Hamiltonian (3.19) making use of (3.18) in (B.1), expanding in
𝛿𝐿 and simplifying, we end up with terms of the form

ℋ1 =

∞∑
𝑙 , 𝑗=0

(−1)𝑗
(𝑗 + 1)𝒢2𝑚2

0(1 + 𝑒 cos 𝑓 )
(𝑒2 − 1)𝐿 𝑗+2

∗
𝜇𝑙𝛿𝐿 𝑗 + 𝒪

((
∥𝑟1∥
∥𝑅∥

)2
)
, (B.2)

up to őrst order multipole expansion.
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C
Computation of Poisson

bracket’s intermediate

derivatives

Derivatives (3.31)ś(3.43) are computed combining adequately deőnitions (3.3),
the polar relationship (3.15), including its alternative expression involving the
eccentric anomaly 𝐸 given by (1.56), ∥𝑟1∥ again via (1.56), Kepler’s equation
(1.57) for ℓ and 𝑀1 and the trigonometric equalities (1.55).
Equation (3.31) comes from ∥𝑅∥ (𝐸) and ∥𝑅∥ ( 𝑓 ) by total differentiation with
respect to ℓ :

d

dℓ
∥𝑅∥ (1.56)

=
𝜕 ∥𝑅∥
𝜕𝐸

𝜕𝐸

𝜕ℓ
=

𝑎𝑒 sin𝐸

1 − 𝑒 cos𝐸

(3.15)
=

𝜕 ∥𝑅∥
𝜕 𝑓

𝜕 𝑓

𝜕ℓ
=

𝑎𝜂2𝑒 sin 𝑓

(1 + 𝑒 cos 𝑓 )2
𝜕 𝑓

𝜕ℓ
,

since 𝑎, 𝑒 do not depend on ℓ , where 𝜕𝐸/𝜕ℓ is deduced from (1.57) making use
of the derivative of inverse functions (𝜕ℓ/𝜕𝐸 ≠ 0 is ensured). Thus the result
by (1.55).
Equations (3.32), (3.33) are straightforward to obtain by ordinary differentiation
and the inverse derivative once again of d𝑀1/d𝐸1 ≠ 0 from (1.57) for 𝑀1:

d𝐸1

d𝑀1
=

1

1 − 𝑒1 cos𝐸1
=

𝑎1

∥𝑟1∥
.

Solving for 𝑒 in (3.3) and partially differentiating, we immediately have (3.35)
and (3.38), from which (3.36), (3.39) as

𝜕𝜂

𝜕𝛿𝐿
= − 𝑒

𝜂

𝜕𝑒

𝜕𝛿𝐿
= −𝜂

𝐿
,

𝜕𝜂

𝜕𝐺
= − 𝑒

𝜂

𝜕𝑒

𝜕𝐺
=

1

𝐿
.

The true anomaly derivatives with respect to the actions are slightly more
elaborated. Employing (1.55),

− sin 𝑓
𝜕 𝑓

𝜕𝛿𝐿
=

𝜕

𝜕𝛿𝐿
cos 𝑓 =

𝜕

𝜕𝑒

(
cos𝐸 − 𝑒

1 − 𝑒 cos𝐸

)
𝜕𝑒

𝜕𝛿𝐿
+ 𝜕

𝜕𝐸

(
cos𝐸 − 𝑒

1 − 𝑒 cos𝐸

)
𝜕𝐸

𝜕𝛿𝐿
,
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that leads upon simpliőcations to

𝜕 𝑓

𝜕𝛿𝐿
=

sin 𝑓

𝑒𝐿
+ 1 + 𝑒 cos 𝑓

𝜂

𝜕𝐸

𝜕𝛿𝐿
;

őnally we explicit 𝜕𝐸/𝜕𝛿𝐿 exploiting the corresponding Kepler equation (1.57)
and the inter-independence ℓ , 𝛿𝐿 by conjugacy:

0 =
d

d𝛿𝐿
(𝐸 − 𝑒 sin𝐸) = 𝜕𝐸

𝜕𝛿𝐿
− 𝜕𝑒

𝜕𝛿𝐿
sin𝐸 − 𝑒 cos𝐸

𝜕𝐸

𝜕𝛿𝐿
=⇒ 𝜕𝐸

𝜕𝛿𝐿
=
𝜂 sin 𝑓

𝑒𝐿
,

thereby (3.34).
The relation for 𝜕 𝑓 /𝜕𝐺 is found precisely in the same manner, so one őnds out

𝜕 𝑓

𝜕𝐺
= −sin 𝑓

𝜂𝑒𝐿
+ 1 + 𝑒 cos 𝑓

𝜂

𝜕𝐸

𝜕𝐺
,

𝜕𝐸

𝜕𝐺
= −sin 𝑓

𝑒𝐿
,

that is (3.37).
Finally, derivatives (3.40), (3.42) involving 𝜄𝑐 = cos 𝑖 easily follow again by
partial differentiation in (3.3) with respect to 𝐺 and 𝐻 respectively; while for
those containing 𝜄𝑠 = sin 𝑖we can rely, for example, to the identity sin2 𝑖+cos2 𝑖 =
1:

0 = 2 sin 𝑖
𝜕𝜄𝑠
𝜕𝐺
+ 2 cos 𝑖

𝜕𝜄𝑐
𝜕𝐺

and consequently (3.41) provided sin 𝑖 ≠ 0, as well as (3.43) repeating the same
argument with the variable 𝐻.



D
Example of normalization for a

𝝁2 quadrupole expansion

Consider the following toy model Hamiltonian with 𝑘𝜇 = 𝑘mp = 𝜈 = 2, 𝜈1 = 1,
according to conventions introduced in ğ3.2.4:

ℋ(0) = 𝒵0 +ℛ(0)2,2 +ℛ
(0)
2,3 +ℛ

(0)
2,4
,

where

ℛ
(0)
2,2 = 𝜎2

(
−

3𝑎3
1
𝒢4𝜇𝑚4

0 𝜄
2
𝑐 cos (2 (𝐸1 − 𝑓 − 𝑔 − ℎ))

16𝐿6
∗ ∥𝑟1∥

−
3𝑎3

1
𝒢4𝜇𝑚4

0 𝜄
2
𝑐 cos (2 (𝐸1 + 𝑓 + 𝑔 − ℎ))

16𝐿6
∗ ∥𝑟1∥

−
3𝑎3

1
𝒢4𝜇𝑚4

0 𝜄𝑐 cos (2 (𝐸1 − 𝑓 − 𝑔 − ℎ))
8𝐿6
∗ ∥𝑟1∥

+
3𝑎3

1
𝒢4𝜇𝑚4

0 𝜄𝑐 cos (2 (𝐸1 + 𝑓 + 𝑔 − ℎ))
8𝐿6
∗ ∥𝑟1∥

+
3𝑎3

1
𝒢4𝜇𝑚4

0 𝜄
2
𝑐 cos (2 (𝐸1 − ℎ))

8𝐿6
∗ ∥𝑟1∥

+
3𝑎3

1
𝒢4𝜇𝑚4

0 𝜄
2
𝑐 cos(2( 𝑓 + 𝑔))

8𝐿6
∗ ∥𝑟1∥

−
3𝑎3

1
𝒢4𝜇𝑚4

0 𝜄
2
𝑐

8𝐿6
∗ ∥𝑟1∥

−
3𝑎3

1
𝒢4𝜇𝑚4

0 cos (2 (𝐸1 − 𝑓 − 𝑔 − ℎ))
16𝐿6

∗ ∥𝑟1∥

−
3𝑎3

1
𝒢4𝜇𝑚4

0 cos (2 (𝐸1 + 𝑓 + 𝑔 − ℎ))
16𝐿6

∗ ∥𝑟1∥
−

3𝑎3
1
𝒢4𝜇𝑚4

0 cos (2 (𝐸1 − ℎ))
8𝐿6
∗ ∥𝑟1∥

−
3𝑎3

1
𝒢4𝜇𝑚4

0 cos(2( 𝑓 + 𝑔))
8𝐿6
∗ ∥𝑟1∥

+
𝑎3

1
𝒢4𝜇𝑚4

0

8𝐿6
∗ ∥𝑟1∥

−
3𝑎1𝛿𝐿2𝒢2𝑚2

0

2𝐿4∗ ∥𝑟1∥
−
𝑎1𝒢2𝜇𝑚2

0

𝐿2∗ ∥𝑟1∥

)
.
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The őrst step 𝑗 = 1 of the method aims to normalize ℛ
(0)
2,2 via (3.70) solved by

𝜒
(1)
2 = 𝜎3

(
3𝒢4𝜇𝑎2

1
𝜄2𝑐𝜙1𝑛

2
∗𝑚

4
0

8𝑛1𝐿
6
∗
(
𝑛2

1
− 𝑛2∗

) − 𝒢4𝜇𝑎2
1
𝜙1𝑛

2
∗𝑚

4
0

8𝑛1𝐿
6
∗
(
𝑛2

1
− 𝑛2∗

)
−

3𝒢4𝜇𝑎2
1
𝑛1𝜄2𝑐𝜙1𝑚

4
0

8𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) +
𝒢4𝜇𝑎2

1
𝑛1𝜙1𝑚

4
0

8𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) + 𝒢2𝜇𝜙1𝑛
2
∗𝑚

2
0

𝑛1𝐿
2∗
(
𝑛2

1
− 𝑛2∗

)
+

3𝒢2𝛿𝐿2𝜙1𝑛
2
∗𝑚

2
0

2𝑛1𝐿
4∗
(
𝑛2

1
− 𝑛2∗

) − 𝒢2𝜇𝑛1𝜙1𝑚
2
0

𝐿2∗
(
𝑛2

1
− 𝑛2∗

) − 3𝒢2𝛿𝐿2𝑛1𝜙1𝑚
2
0

2𝐿4∗
(
𝑛2

1
− 𝑛2∗

)
)

+ 𝜎2

(
−

3𝒢4𝜇 sin (2 (𝐸1 − ℎ)) 𝑎2
1
𝜄2𝑐𝑛

2
∗𝑚

4
0

16𝑛1𝐿
6
∗
(
𝑛2

1
− 𝑛2∗

) +
3𝒢4𝜇 sin (2 (𝐸1 − ℎ)) 𝑎2

1
𝑛2
∗𝑚

4
0

16𝑛1𝐿
6
∗
(
𝑛2

1
− 𝑛2∗

)
+

3𝒢4𝜇 sin(2( 𝑓 + 𝑔))𝑎2
1
𝑛∗𝑚4

0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) −
3𝒢4𝜇 sin (2 (− 𝑓 − 𝑔 − ℎ + 𝐸1)) 𝑎2

1
𝑛∗𝑚4

0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
+

3𝒢4𝜇 sin (2 ( 𝑓 + 𝑔 − ℎ + 𝐸1)) 𝑎2
1
𝑛∗𝑚4

0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) −
3𝒢4𝜇 sin(2( 𝑓 + 𝑔))𝑎2

1
𝜄2𝑐𝑛∗𝑚

4
0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
−

3𝒢4𝜇 sin (2 (− 𝑓 − 𝑔 − ℎ + 𝐸1)) 𝑎2
1
𝜄2𝑐𝑛∗𝑚

4
0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) +
3𝒢4𝜇 sin (2 ( 𝑓 + 𝑔 − ℎ + 𝐸1)) 𝑎2

1
𝜄2𝑐𝑛∗𝑚

4
0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
−

3𝒢4𝜇 sin (2 (− 𝑓 − 𝑔 − ℎ + 𝐸1)) 𝑎2
1
𝜄𝑐𝑛∗𝑚4

0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) −
3𝒢4𝜇 sin (2 ( 𝑓 + 𝑔 − ℎ + 𝐸1)) 𝑎2

1
𝜄𝑐𝑛∗𝑚4

0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
+

3𝒢4𝜇 sin (2 (𝐸1 − ℎ)) 𝑎2
1
𝑛1𝜄2𝑐𝑚

4
0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) −
3𝒢4𝜇 sin (2 (− 𝑓 − 𝑔 − ℎ + 𝐸1)) 𝑎2

1
𝑛1𝜄2𝑐𝑚

4
0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
−

3𝒢4𝜇 sin (2 ( 𝑓 + 𝑔 − ℎ + 𝐸1)) 𝑎2
1
𝑛1𝜄2𝑐𝑚

4
0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) −
3𝒢4𝜇 sin (2 (𝐸1 − ℎ)) 𝑎2

1
𝑛1𝑚

4
0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
−

3𝒢4𝜇 sin (2 (− 𝑓 − 𝑔 − ℎ + 𝐸1)) 𝑎2
1
𝑛1𝑚

4
0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) −
3𝒢4𝜇 sin (2 ( 𝑓 + 𝑔 − ℎ + 𝐸1)) 𝑎2

1
𝑛1𝑚

4
0

32𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
−

3𝒢4𝜇 sin (2 (− 𝑓 − 𝑔 − ℎ + 𝐸1)) 𝑎2
1
𝑛1𝜄𝑐𝑚

4
0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

) +
3𝒢4𝜇 sin (2 ( 𝑓 + 𝑔 − ℎ + 𝐸1)) 𝑎2

1
𝑛1𝜄𝑐𝑚

4
0

16𝐿6
∗
(
𝑛2

1
− 𝑛2∗

)
−

3𝒢4𝜇 sin(2( 𝑓 + 𝑔))𝑎2
1
𝑛2

1
𝑚4

0

16𝐿6
∗𝑛∗

(
𝑛2

1
− 𝑛2∗

) +
3𝒢4𝜇 sin(2( 𝑓 + 𝑔))𝑎2

1
𝑛2

1
𝜄2𝑐𝑚

4
0

16𝐿6
∗𝑛∗

(
𝑛2

1
− 𝑛2∗

)
)
,

so that the new truncated Hamiltonian becomes

ℋ(1) = 𝒵0 +𝒵(1)2 +ℛ
(1)
3,3 +ℛ

(1)
3,4
,

with

𝒵
(1)
2 = 𝜎2

(
−

3𝑎2
1
𝒢4𝜇𝑚4

0 𝜄
2
𝑐

8𝐿6
∗

+
𝑎2

1
𝒢4𝜇𝑚4

0

8𝐿6
∗
−

3𝛿𝐿2𝒢2𝑚2
0

2𝐿4∗
−
𝒢2𝜇𝑚2

0

𝐿2∗

)



151

and

ℛ
(1)
3,3 = 𝜎3

(
−

3𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3
1
𝜄2𝑐𝑛∗𝑚

4
0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

−
3𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄2𝑐𝑛∗𝑚

4
0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑛∗𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑛∗𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

−
3𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄𝑐𝑛∗𝑚4

0

4𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

−
3𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄𝑐𝑛∗𝑚4

0

4𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑛∗𝑚4

0

8 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑛∗𝑚4

0

8 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

−
3𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝑛∗𝑚4

0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

−
3𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝑛∗𝑚4

0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝑛∗𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 𝐸1) 𝑎3

1
𝑒1𝑛∗𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 − 2𝑛∗)

+
3𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄2𝑐𝑛∗𝑚

4
0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

+
3𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄2𝑐𝑛∗𝑚

4
0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

−
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑛∗𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

−
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 3𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑛∗𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

−
3𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄𝑐𝑛∗𝑚4

0

4𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

−
3𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄𝑐𝑛∗𝑚4

0

4𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑛∗𝑚4

0

8 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 3𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑛∗𝑚4

0

8 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

+
3𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝑛∗𝑚4

0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

+
3𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝑛∗𝑚4

0

8𝜂3 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

−
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 𝐸1) 𝑎3

1
𝑒1𝑛∗𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

−
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 3𝐸1) 𝑎3

1
𝑒1𝑛∗𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗ (2𝑛1 + 2𝑛∗)

−
9𝑒𝒢4𝜇 cos( 𝑓 )𝑎3

1
𝜄2𝑐𝑚

4
0

8 ∥𝑟1∥ 𝐿6
∗

+
9𝑒𝒢4𝜇 cos( 𝑓 + 2𝑔)𝑎3

1
𝜄2𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

−
3𝑒𝒢4𝜇 cos( 𝑓 + 2𝑔)𝑎3

1
𝜄2𝑐𝑚

4
0

8𝜂3 ∥𝑟1∥ 𝐿6
∗

+
9𝑒𝒢4𝜇 cos(3 𝑓 + 2𝑔)𝑎3

1
𝜄2𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

−
3𝑒𝒢4𝜇 cos(3 𝑓 + 2𝑔)𝑎3

1
𝜄2𝑐𝑚

4
0

8𝜂3 ∥𝑟1∥ 𝐿6
∗

+
9𝑒𝒢4𝜇 cos ( 𝑓 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄2𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

+
9𝑒𝒢4𝜇 cos ( 𝑓 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄2𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

−
3𝒢4𝜇 cos (2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗



152 D. EXAMPLE OF NORMALIZ. FOR A 𝜇2 QUADRUPOLE EXPANSION

−
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

8 ∥𝑟1∥ 𝐿6
∗

−
15𝒢4𝜇 cos (2ℎ − 𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
15𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

+
9𝒢4𝜇 cos (𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

8 ∥𝑟1∥ 𝐿6
∗

−
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

8 ∥𝑟1∥ 𝐿6
∗

+
15𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 3𝐸1) 𝑎3

1
𝑒1𝜄2𝑐𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
9𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
9𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
15𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

−
15𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

−
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 3𝐸1) 𝑎3

1
𝑒1𝜄𝑐𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
3𝑒𝒢4𝜇 cos( 𝑓 )𝑎3

1
𝑚4

0

8 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos( 𝑓 + 2𝑔)𝑎3

1
𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗

+
3𝑒𝒢4𝜇 cos( 𝑓 + 2𝑔)𝑎3

1
𝑚4

0

8𝜂3 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos(3 𝑓 + 2𝑔)𝑎3

1
𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗

+
3𝑒𝒢4𝜇 cos(3 𝑓 + 2𝑔)𝑎3

1
𝑚4

0

8𝜂3 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos ( 𝑓 + 2ℎ − 2𝐸1) 𝑎3

1
𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝑚4

0

32 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 + 2ℎ − 2𝐸1) 𝑎3

1
𝑚4

0

32 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos ( 𝑓 − 2ℎ + 2𝐸1) 𝑎3

1
𝑚4

0

16 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos ( 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝑚4

0

32 ∥𝑟1∥ 𝐿6
∗

−
9𝑒𝒢4𝜇 cos (3 𝑓 + 2𝑔 − 2ℎ + 2𝐸1) 𝑎3

1
𝑚4

0

32 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 3𝐸1) 𝑎3

1
𝑒1𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 𝐸1) 𝑎3

1
𝑒1𝑚

4
0

8 ∥𝑟1∥ 𝐿6
∗

+
15𝒢4𝜇 cos (2ℎ − 𝐸1) 𝑎3

1
𝑒1𝑚

4
0

16 ∥𝑟1∥ 𝐿6
∗

+
15𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 2ℎ − 𝐸1) 𝑎3

1
𝑒1𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

−
3𝒢4𝜇 cos (𝐸1) 𝑎3

1
𝑒1𝑚

4
0

8 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 + 𝐸1) 𝑎3

1
𝑒1𝑚

4
0

8 ∥𝑟1∥ 𝐿6
∗

+
15𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 𝐸1) 𝑎3

1
𝑒1𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

+
3𝒢4𝜇 cos (2 𝑓 + 2𝑔 − 2ℎ + 3𝐸1) 𝑎3

1
𝑒1𝑚

4
0

32 ∥𝑟1∥ 𝐿6
∗

−
𝑒𝒢2𝜇 cos( 𝑓 )𝑎1𝑚

2
0

∥𝑟1∥ 𝐿2∗

+
𝒢2𝜇 cos (𝐸1) 𝑎1𝑒1𝑚

2
0

∥𝑟1∥ 𝐿2∗
+

3𝒢2𝛿𝐿2 cos (𝐸1) 𝑎1𝑒1𝑚
2
0

2 ∥𝑟1∥ 𝐿4∗

)
.
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Next, we move on with the second and last iteration 𝑗 = 2 targeted to ℛ
(1)
3,3:

ℋ(2) = 𝒵0 +𝒵(1)2 +𝒵
(2)
3 +ℛ

(2)
4,4
,

in which 𝜒
(2)
3 is omitted for brevity and

𝒵
(2)
3 = 0

as expected, being ℛ
(1)
3,3 solely made up of harmonics containing fast angles.
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E
Normalization algorithm as

pseudo-code

1: function TrigPol(𝐹) ⊲ Write 𝐹 as trigonometric polynomial ℱ
2: return ℱ
3: end function

4: function Coefficient(𝐹, 𝑥, 𝑁) ⊲ Extract coefficient 𝐹𝑁 of 𝑥𝑁 from 𝐹
5: return 𝐹𝑁
6: end function

7: function Expand(𝐹, 𝑥, 𝑥0, 𝑁) ⊲ Give power expansion ℱ𝑁 of 𝐹 w.r.t. 𝑥
8: return ℱ𝑁 around 𝑥0 up to (𝑥 − 𝑥0)𝑁
9: end function

Require: 𝐹 =
∑
𝑛(·)𝜖𝑛 as ℱ in cosines only

10: procedure Chi(𝐹, 𝜖, 𝑁 , 𝑁1) ⊲ Compute 𝜒(·)
𝑁

from 𝐹 with b.-k. 𝜖

11: 𝐹norm = 𝐹 − (𝐹← 1/∥𝑟1∥ 𝑙 = 0) (𝜖𝑁1 for 𝜙1)
12: 𝐹norm = TrigPol(Coefficient(𝐹norm, 𝜖, 𝑁)𝜖𝑁 )

13: 𝜒
(·)
𝑁

= 0

14: for 𝒯 = (·) ∥𝑟1∥−𝜆 ∈ 𝐹norm do
15: if 𝒯 depends explicitly on 𝑓 ∨ 𝐸1 then

16: 𝒯
𝜒
(·)
𝑁

= ∥𝑟1∥1−𝜆TrigPol(𝒯 ∥𝑟1∥𝜆 /𝑎1)← cos(·) = sin(·)/(𝑠1𝑛∗+𝑠4𝑛1)
17: else
18: 𝒯

𝜒
(·)
𝑁

= 𝜖𝑁1𝜙1/𝑛1TrigPol(𝒯 ∥𝑟1∥𝜆 /𝑎1)
∑𝜆
𝑙=1 𝑎

1−𝑙
1 ∥𝑟1∥ 𝑙−𝜆

19: end if
20: 𝜒

(·)
𝑁
← 𝜒

(·)
𝑁
+ 𝒯

𝜒
(·)
𝑁

21: end for
22: return 𝜒

(·)
𝑁

23: end procedure
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Require: 𝐹1, 𝐹2 =
∑
𝑛(·)𝜖𝑛

24: procedure Poisson(𝐹1, 𝐹2, 𝜖, 𝜏, 𝑁1) ⊲ Compute {𝐹1, 𝐹2} up to 𝜖𝜏 terms
25: ℰ1 = {𝑛 : 𝐹1 =

∑
𝑛(·)𝜖𝑛 , (·) ≠ 0}

26: ℰ2 = {𝑛 : 𝐹2 =
∑
𝑛(·)𝜖𝑛 , (·) ≠ 0}

27: for 𝑗1 ∈ ℰ1 do
28: for 𝑗2 ∈ ℰ2 & 𝑗2 ≤ 𝜏 − 𝑗1 do
29: {𝐹1, 𝐹2} = 0
30: 𝐹1𝑗1

= Coefficient(𝐹1, 𝜖, 𝑗1)
31: 𝐹2𝑗2

= Coefficient(𝐹2, 𝜖, 𝑗2)

32: Compute {𝐹1𝑗1
𝜖 𝑗1 , 𝐹2𝑗2

𝜖 𝑗2} by BK and 1/∥𝑟1∥ dep. eqns. in ğ3.2.3

33: {𝐹1, 𝐹2} ← {𝐹1, 𝐹2} + {𝐹1𝑗1
𝜖 𝑗1 , 𝐹2𝑗2

𝜖 𝑗2}
34: end for
35: end for
36: for all 𝑛 > 𝜏 do
37: {𝐹1, 𝐹2} ← (·)𝜖𝑛 = 0
38: end for
39: {𝐹1, 𝐹2} = TrigPol({𝐹1, 𝐹2})
40: return {𝐹1, 𝐹2}
41: end procedure

Require: 𝐹1, 𝐹2 =
∑
𝑛(·)𝜖𝑛

42: procedure ExpLie(𝐹1, 𝐹2, 𝜖, 𝜏, 𝑁1) ⊲ Compute exp (ℒ𝐹2) 𝐹1 up to 𝜖𝜏 terms
43: {𝐹1, 𝐹2} = Poisson(𝐹1, 𝐹2, 𝜖, 𝜏, 𝑁1)
44: exp (ℒ𝐹2) 𝐹1 = 𝐹1 + {𝐹1, 𝐹2}
45: for 𝑗 ← 2 to 𝜏 do
46: {𝐹1, 𝐹2} = Poisson({𝐹1, 𝐹2}, 𝐹2← 𝜙1 = 𝑒1 sin𝐸1, 𝜖, 𝜏, 𝑁1)/𝑗
47: exp (ℒ𝐹2) 𝐹1 = exp (ℒ𝐹2) 𝐹1 + {𝐹1, 𝐹2}
48: 𝑗 ← 𝑗 + 1
49: end for
50: for all 𝑛 > 𝜏 do
51: exp (ℒ𝐹2) 𝐹1← (·)𝜖𝑛 = 0
52: end for
53: exp (ℒ𝐹2) 𝐹1 = TrigPol(exp (ℒ𝐹2) 𝐹1)
54: return exp (ℒ𝐹2) 𝐹1

55: end procedure

Require: 𝜇 < 1; 𝑛1, 𝑎1 > 0,𝒢𝑚0 > 0; 𝑎∗ > 0; 𝑒∗ ∈]0, 1[, 𝑒1 ∈ [0, 1[, 𝑒∗ <
1 − 𝑎1(1 + 𝑒1)/𝑎∗; 𝑘𝜇 > 1; 𝑘mp ≥ 1

56: procedure MethodR3BP(𝜇, 𝑛1, 𝑎1, 𝑒1,𝒢𝑚0, 𝑎∗, 𝑒∗, 𝑘𝜇, 𝑘mp) ⊲ Main routine
57: ℋ ← 𝜌 ∥𝑟1∥ /∥𝑅∥ , 𝜌𝑟1 · 𝑅/∥𝑅∥2 , 𝜇𝜎 from Equation (3.9)
58: ℋ = Expand(Expand(ℋ , 𝜌, 0, 𝑘mp), 𝜎, 0, 𝑘𝜇)
59: 𝜈 = ⌈log10 𝜇/log10 𝑒∗⌉, 𝜈1 = ⌈log10 𝑒1/log10 𝑒∗⌉
60: ℋ ← 𝜌 = 1, 𝜎 = 𝜎𝜈

61: ℋ ← Eqs. (3.14), (3.15), (3.16), 𝑒 = 𝑒𝜎, 𝑒1 = 𝑒1𝜎𝜈1 ,
√

1 − 𝑒2
𝑙
= 𝜂𝑙 , 𝑙 = -, 1

62: ℋ ← 𝑎 = (𝐿∗ + 𝛿𝐿𝜎𝜈)2/(𝒢𝑚0)
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63: ℋ = Expand(ℋ , 𝛿𝐿, 0, 𝑘𝜇) and Poisson structure in ğ3.2.3
64: ℋ0← 𝜎 = 𝜎−𝜈

65: ℋ ← −(𝒢𝑚0)2/(2𝐿2
∗ ) = 0, (𝒢𝑚0)2/𝐿3

∗ = 𝑛∗
66: 𝒵0 = 𝑛∗𝛿𝐿 + 𝑛1𝐽1
67: ℋ = TrigPol((ℋ −𝒵0)𝑎1(1 − 𝜎𝜈1𝑒1 cos𝐸1)/∥𝑟1∥ +𝒵0)
68: for all 𝑛 > 𝜈𝑘𝜇 do
69: ℋ ← (·)𝜎𝑛 = 0
70: end for
71: ℋ(0) = ℋ
72: if 𝜈 ≠ 1 then
73: 𝒥 = {1, . . . , 𝜈(𝑘𝜇 − 1)}
74: else
75: 𝒥 = {1, 2, II, 3, . . . , 𝜈(𝑘𝜇 − 1)}
76: end if
77: for 𝑗 ∈ 𝒥 do

78: 𝜒
(𝑗)
𝜈+𝑗−1

= Chi(ℋ(𝑗−1), 𝜎, 𝜈 + 𝑗 − 1, 𝜈1)

79: ℋ(𝑗) = ExpLie(ℋ(𝑗−1), 𝜒
(𝑗)
𝜈+𝑗−1

, 𝜎, 𝜈𝑘𝜇 − 1 + 𝜈1, 𝜈1)← 𝜙1 = 𝑒1 sin𝐸1

80: ℋ(𝑗) = TrigPol(ℋ(𝑗))
81: 𝑗 ← 𝑗 + 1
82: end for
83: return ℋ(𝜈(𝑘𝜇−1))

84: end procedure
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