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Abstract. We study the curvature flow of planar nonconvex lens-shaped domains,
considered as special symmetric networks with two triple junctions. We show that the
evolving domain becomes convex in finite time; then it shrinks homothetically to a point,
as proved in [22]. Our theorem is the analog of the result of Grayson [13] for curvature flow
of closed planar embedded curves.

1. Introduction

Mean curvature flow of partitions, in particular of planar networks, has been con-
sidered by various authors, see for instance [20], [5], [6], [8], [19], [10], [21]. Such a geometric
flow is a generalization of mean curvature flow, when more than two phases are present.
The main di‰culties are due to the presence of multiple junctions, typically triple points
in the planar case.

In this paper we consider the curvature flow of a lens-shaped network, that is, of a
particular planar network symmetric with respect to the first coordinate axis, and having
there two triple junctions. If the bounded region enclosed by the network is convex, it is
proved in [22] that the evolution remains convex and shrinks to a point in finite time, while
its shape approaches a unique profile gh, corresponding to a homothetically shrinking solu-
tion (see [22], Figure 1). This is the precise analog of the well-known result of Gage and
Hamilton [11], which shows that a closed convex planar curve evolving by curvature
shrinks to a point in finite time, approaching a circle. This result has been generalized by
Grayson [13] who showed that a closed nonconvex initial embedded curve has no singular-
ities before the extinction, it becomes convex and eventually shrinks to a point. A di¤erent
proof of Grayson’s theorem was given by Huisken in [17].

Our aim is to study the long time curvature evolution of a general (not necessarily
convex) lens-shaped network. We will show that such a network becomes convex in finite
time and eventually shrinks homothetically to a point, as described in [22]. Our result is,
therefore, the analog of the result of Grayson, but in the context of curvature flow of
networks. Our proof is based on the classification of all possible singularities, in analogy
to the proof given in [17] for curvature flow of curves. We point out that in the evolution



considered here we are able to overcome the technical di‰culties which prevented in [19]
the complete analysis of type II singularities.

The main result of the present paper, which is a consequence of Theorems 3.1, 4.2
and 5.1, reads as follows:

Theorem 1.1. Assume that the initial curve g : ½0; 1� ! R2 satisfies the regularity and

compatibility conditions listed in assumption (A) (Section 2.2) and is embedded (hypothesis

(2.11)). Then there exist T A ð0;þyÞ and a solution g A C2;1
�
½0; 1� � ½0;TÞ

�
of the evolution

problem (2.1) expressing the curvature flow of a symmetric network with two triple junctions,
such that

L
�
gðtÞ
�
eC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT � tÞ

p
; t A ½0;TÞ;

kkgðtÞkLyð½0;1�Þ e
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðT � tÞ
p ; t A ½0;TÞ;

where L
�
gðtÞ
�

and kgðtÞ denote the length and the curvature of gðtÞ respectively, and C is an

absolute positive constant. Moreover, there exists t A ½0;TÞ such that the region E
�
gðtÞ
�

enclosed by the corresponding network is uniformly convex for all t A ½t;TÞ, and T is the

extinction time of the evolution, i.e.

lim
t!T �

L
�
gðtÞ
�
¼ lim

t!T �

��E�gðtÞ��� ¼ 0:

Finally, a suitable rescaled and translated version of gðtÞ converges in C2ð½0; 1�;R2Þ to gh as

t ! T�.

We note that to prove Theorem 1.1 the only result needed from [22] is the uniqueness
of gh.

In the last section of the paper we exhibit two examples of singularities appearing
before the extinction time. In Example 1 we show the formation of a singularity, starting
from a suitable immersed initial datum g (see Figure 5); in this case the Ly-norm of the
curvature of gðtÞ blows up at t ¼ T , and T is smaller than the extinction time. In Example
2, starting from an embedded double-bubble shaped g as in Figure 6 (hence with di¤erent
Neumann boundary conditions with respect to the ones in Theorem 1.1) we show that the
singularity appears at t ¼ T before the extinction time, due to the collision of the two triple
junctions.

We conclude this introduction by mentioning that a general analysis of curvature flow
of planar networks has been recently announced by Tom Ilmanen [18].

2. Notation

Given T > 0 and a map g ¼ ðg1; g2Þ : ½0; 1� � ½0;TÞ ! R2, for t A ½0;TÞ we set
gðtÞ : ½0; 1� ! R2, gðtÞðxÞ :¼ gðx; tÞ. If g A C2;1

�
½0; 1� � ½0;TÞ;R2

�
, we introduce the follow-

ing notation:
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� L
�
gðtÞ
�
:¼
Ð1
0

jgxðx; tÞj dx is the length of gðtÞ, where gx denotes the derivative with
respect to x.

� s A IðtÞ :¼
�
0;L

�
gðtÞ
��

is the (time dependent) arclength parameter of gðtÞ, and

qs :¼
qx

jgxj
denotes the derivative with respect to s.

� tgðtÞ ¼ tðtÞ ¼
�
t1ðtÞ; t2ðtÞ

�
:¼ gsðtÞ is the unit tangent vector to gðtÞ, and

tðtÞðxÞ :¼ tðx; tÞ.

� ngðtÞ ¼ nðtÞ :¼
�
�t2ðtÞ; t1ðtÞ

�
is the normal vector to gðtÞ obtained by rotating tðtÞ

counterclockwise of p=2, and nðtÞðxÞ :¼ nðx; tÞ.

� kgðtÞ :¼ htsðtÞ; nðtÞi ¼ gxxðtÞ
jgxðtÞj

2
; nðtÞ

* +
is the curvature of gðtÞ, and

kgðx; tÞ :¼ kgðtÞðxÞ:

� gt :¼ qtg denotes the derivative of g with respect to t.

We denote by jEj the Lebesgue measure of a measurable set E LR2.

2.1. The geometric evolution equation. We are concerned with the following geomet-
ric evolution problem:

gt ¼
gxx

jgxj
2

in ð0; 1Þ � ð0;TÞ;

g2ð0; tÞ ¼ g2ð1; tÞ ¼ 0; t A ð0;TÞ;

tð0; tÞ ¼ 1

2
;

ffiffiffi
3

p

2

 !
; t A ð0;TÞ;

tð1; tÞ ¼ 1

2
;�

ffiffiffi
3

p

2

 !
; t A ð0;TÞ;

gð0Þ ¼ g in ð0; 1Þ;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2:1Þ

where the initial curve g ¼ ðg1; g2Þ A C2ð½0; 1�;R2Þ satisfies

jgxðxÞj3 0; x A ½0; 1�;ð2:2Þ

and the compatibility conditions

g2ð0Þ ¼ g2ð1Þ ¼ 0;
gxð0Þ
jgxð0Þj

¼ 1

2
;

ffiffiffi
3

p

2

 !
;

gxð1Þ
jgxð1Þj

¼ 1

2
;�

ffiffiffi
3

p

2

 !
:ð2:3Þ
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System (2.1) corresponds to motion by curvature (first equation) of a planar curve
with the extremal points gð0; tÞ, gð1; tÞ sliding on the first coordinate axis (second equa-
tion), and satisfying the following Neumann boundary conditions (third and fourth equa-
tion):

angle between e1 and tðtÞ ¼ p=3 at gð0; tÞ ¼
�
g1ð0; tÞ; 0

�
;

�p=3 at gð1; tÞ ¼
�
g1ð1; tÞ; 0

�
;

�
ð2:4Þ

where e1 :¼ ð1; 0Þ.

2.2. Definitions of gsp and l. For t A ½0;TÞ we define the ‘‘specular’’ curve
gsp :¼ ðg1;�g2Þ. The corresponding network mentioned in the Introduction is the one
formed by gð½0; 1�; tÞW gspð½0; 1�; tÞ and by the two horizontal half lines

�
�y; g1ð0; tÞ

�
and�

g1ð1; tÞ;þy
�

lying on the first coordinate axis.

In the following, we let the function lg ¼ l : ½0; 1� � ½0;TÞ ! R be such that

gt ¼ ltþ kn:ð2:5Þ

Note that

l ¼ hgt; ti ¼ gxx

jgxj
2
; t

* +
:ð2:6Þ

Formally di¤erentiating in time the boundary conditions in (2.1) (second equation) and
using (2.5) we have at ð0; tÞ and ð1; tÞ the relation 0 ¼ qtg2 ¼ lt2 þ kgn2, which gives

kgð0; tÞ ¼ �
ffiffiffi
3

p
lð0; tÞ; kgð1; tÞ ¼

ffiffiffi
3

p
lð1; tÞ;ð2:7Þ

where we make use of the third and fourth equations in (2.1). Moreover, recalling from
[19], formula (2.4), that tt ¼ ðqskg þ lkgÞn, we find

qskgð0; tÞ þ lð0; tÞkgð0; tÞ ¼ qskgð1; tÞ þ lð1; tÞkgð1; tÞ ¼ 0:ð2:8Þ

Notice that (2.8) and (2.7) imply

qskgð0; tÞ ¼ �lð0; tÞkgð0; tÞ ¼
kgð0; tÞ2ffiffiffi

3
p f 0;

qskgð1; tÞ ¼ �lð1; tÞkgð1; tÞ ¼ � kgð1; tÞ2ffiffiffi
3

p e 0

ð2:9Þ

for all t A ð0;TÞ. In particular, the function kgðtÞ can never attain its maximum at x ¼ 0
unless kgð0; tÞ ¼ qskgð0; tÞ ¼ 0; similarly kgðtÞ can never attain its maximum at x ¼ 1 unless
kgð1; tÞ ¼ qskgð1; tÞ ¼ 0.

From now on we will always make the following assumption (A) on g:
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(A) g A C2ð½0; 1�;R2Þ satisfies (2.2), (2.3) and the second order compatibility condi-
tions

hgxxð0Þ; nð0Þi ¼ �
ffiffiffi
3

p
hgxxð0Þ; tð0Þi; hgxxð1Þ; nð1Þi ¼ �

ffiffiffi
3

p
hgxxð1Þ; tð1Þi;ð2:10Þ

where

t ¼ gx

jgxj
¼ ðt1; t2Þ and n :¼ ð�t2; t1Þ:

Note that under the sole assumption (A) the set gð½0; 1�; tÞ may have self-intersections,
see Figure 1.

Definition 2.1. We will refer to the embedded case, provided

g is injective and g2ðxÞ > 0 for all x A ð0; 1Þ:ð2:11Þ

In the embedded case gð½0; 1�Þ is not necessarily a graph with respect to the first coor-
dinate axis. However, we can speak of the connected bounded plane region EðgÞ in between
gð½0; 1�Þ and gspð½0; 1�Þ, see Figure 2.

We will refer to the convex case, provided

gðð0; 1ÞÞ is the graph of a positive concave function:

Figure 1. An immersed initial datum g satisfying assumption (A).

Figure 2. An embedded initial datum g, with its specular one (dotted curve) and the region EðgÞ enclosed be-

tween the two curves. The points ð0; 0Þ and ð1; 0Þ are the two triple junctions, if one imagines to add to the curves

the horizontal half lines on the left of ð0; 0Þ and on the right of ð1; 0Þ.
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The convex case is in particular embedded, and has been studied in [22], where it is proven
that gðtÞ remains concave. Therefore, the plane region E

�
gðtÞ
�

between gð½0; 1�; tÞ and
gspð½0; 1�; tÞ is still well defined, it is a convex lens-shaped domain evolving by curvature,
and having the two singular points gð0; tÞ, gð1; tÞ in its boundary.

Remark 2.2. With our convention, in the convex case kgðtÞ is negative, since gðtÞ is
parametrized in such a way that E

�
gðtÞ
�

lies locally on the right of gðtÞ.

2.3. The homothetically shrinking solution gh. In [7], [22] it is proven that there exists
a unique embedding gh A Cyð½0; 1�;R2Þ which satisfies

gh
2 ð0Þ ¼ gh

2 ð1Þ ¼ 0;
gh

x ð0Þ
jgh

x ð0Þj
¼ 1

2
;

ffiffiffi
3

p

2

 !
;

gh
x ð1Þ

jgh
x ð1Þj

¼ 1

2
;�

ffiffiffi
3

p

2

 !
;

which gives raise to a homothetically shrinking curvature evolution, namely

kgh þ hgh; nghi ¼ 0 in ð0; 1Þ:ð2:12Þ

Moreover

inf
x A ð0;1Þ

kghðxÞ > 0:

3. Immersed initial data

In the next theorem gð½0; 1�; tÞ is allowed to have self-intersections.

Theorem 3.1. Assume that g satisfies (A). Then problem (2.1) has a unique solution

g A Cy
�
½0; 1� � ð0;TÞ;R2

�
XC2;1

�
½0; 1� � ½0;TÞ;R2

�
;

defined on a maximal time interval ½0;TÞ, and T < þy. Moreover

lim sup
t!T �

kkgðtÞkL2ð½0;1�Þ ¼ þy:ð3:1Þ

Proof. All assertions but T < þy follow from [19], Theorems 3.1, 3.18 and Re-
mark 3.24. Let us show that T < þy. Take an initial open convex bounded lens-shaped
domain EðhÞ with

EðhÞI gð½0; 1�Þ;

whose boundary is given by hð½0; 1�ÞW hspð½0; 1�Þ, where h : ½0; 1� ! R2 gives raise to a
homothetically shrinking curvature evolution h : ½0; 1� � ½0; t�Þ ! R2, t� < þy, with the
same boundary conditions as g, i.e.,

h2ð0; tÞ ¼ h2ð1; tÞ ¼ 0;
hxð0; tÞ
jhxð0; tÞj

¼ 1

2
;

ffiffiffi
3

p

2

 !
;

hxð1; tÞ
jhxð1; tÞj

¼ 1

2
;�

ffiffiffi
3

p

2

 !
;ð3:2Þ

see Figure 3 and Section 2.3.
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We claim that the following comparison principle holds:

E
�
hðtÞ

�
I gð½0; 1�; tÞ;ð3:3Þ

for all times t A ½0; tKÞ, where tK :¼ minðt�;TÞ.

Since the proof of this comparison result di¤ers slightly from the standard compari-
son proof for curvature flow, we indicate here the main steps. Define

dðtÞ :¼ dist
�
qE
�
hðtÞ

�
; gð½0; 1�; tÞ

�
; t A ½0; tKÞ:

To prove (3.3), it is enough to show that

lim
h!0þ

dðt þ hÞ � dðtÞ
h

f 0; t A ð0; tKÞ:ð3:4Þ

For any ðx; x; tÞ A ½0; 1�2 � ½0;TÞ set

uðx; x; tÞ :¼ jhðx; tÞ � gðx; tÞj; vðx; x; tÞ :¼ jhspðx; tÞ � gðx; tÞj:

It is well-known (see for instance [14]) that

lim
h!0þ

dðt þ hÞ � dðtÞ
h

¼ min
�
UðtÞ;VðtÞ

�
where

UðtÞ :¼ min
qu

qt
ðx; x; tÞ : ðx; xÞ A ½0; 1� � ½0; 1�; dðtÞ ¼ uðx; x; tÞ

� �
;

VðtÞ :¼ min
qv

qt
ðy; h; tÞ : ðy; hÞ A ½0; 1� � ½0; 1�; dðtÞ ¼ vðy; h; tÞ

� �
:

Given t A ð0; tKÞ, we denote by xt; x t A ½0; 1� two parameters for which either

dðtÞ ¼ uðxt; x t; tÞ; or dðtÞ ¼ vðxt; x t; tÞ.

Figure 3. The inner curve is gðtÞ, the outer curve is hðtÞW h spðtÞ,
bounding the self-similar shrinking convex set E

�
hðtÞ

�
.
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Without loss of generality, we assume dðtÞ ¼ uðxt; x t; tÞ, and we set

qt :¼ hðxt; tÞ; pt :¼ gðx t; tÞ;

see Figure 3. Note that

qt B fhð0; tÞ; hð1; tÞg:ð3:5Þ

Indeed if by contradiction we have for instance qt ¼ hð0; tÞ then, in view of the Neumann
boundary conditions in (2.1) and (3.2), the distance between pt and a point q on qE

�
hðtÞ

�
would decrease when q moves from qt sliding slightly either on hð½0; 1�; tÞ or on hspð½0; 1�; tÞ.

We now distinguish two cases.

Case 1. pt B fgð0; tÞ; gð1; tÞg, see Figure 3. In this case, thanks to (3.5), we are re-
duced to the standard situation of curvature flow (see for instance [3]), and (3.4) follows:

Case 2. pt A fgð0; tÞ; gð1; tÞg. Without loss of generality, we can assume that

pt ¼ gð1; tÞ, and that the second component of qt is positive. Let nt :¼ qt � pt

jqt � ptj . Then it is

not di‰cult to see that nt equals the unit normal to qE
�
hðtÞ

�
at qt pointing out of E

�
hðtÞ

�
.

Let K :¼ fðcos y; sin yÞ : y A ½0; p=6�g. If nt A qK then again (3.4) follows in a standard way.
On the other hand, we cannot have nt ¼ ðcos y t; sin y tÞ with y t A ½0; p=6Þ, since this contra-
dicts the Neumann boundary conditions in (3.2) and the convexity of hðtÞ.

The proof of (3.3) is concluded, and in particular T e t�. r

Note that the smoothness of g implies that kkgðtÞkLyð½0;1�Þ is finite for all t A ½0;TÞ. On
the other hand, from (3.1) we deduce that

lim sup
t!T �

kkgðtÞkLyð½0;1�Þ ¼ þy:ð3:6Þ

Proposition 3.2. There exists a constant c > 0 independent of g such that

L
�
gðtÞ
�
e cLðgÞ; t A ½0;TÞ:ð3:7Þ

Proof. Since gtð0; tÞ and gtð1; tÞ are horizontal, it follows from (2.6) that
lð0; tÞ ¼ qtg1ð0; tÞ=2, and lð1; tÞ ¼ qtg1ð1; tÞ=2. Observing (see [19], Proposition 3.2) that
the time-derivative of the measure ds is given by

ðls � k2
g Þ ds;ð3:8Þ

we have

d

dt
L
�
gðtÞ
�
¼ ljx¼1

x¼0 �
Ð

IðtÞ
k2
gðtÞ ds ¼ 1

2

�
qtg1ð1; tÞ � qtg1ð0; tÞ

�
�
Ð

IðtÞ
k2
gðtÞ dsð3:9Þ

e
1

2

�
qtg1ð1; tÞ � qtg1ð0; tÞ

�
:

24 Bellettini and Novaga, Curvature evolution of nonconvex lens-shaped domains



Hence

L
�
gðtÞ
�
eLðgÞ � 1

2

�
g1ð1; 0Þ � g1ð0; 0Þ

�
þ 1

2

�
g1ð1; tÞ � g1ð0; tÞ

�
:ð3:10Þ

Therefore, to conclude the proof it is enough to show that g1ð1; tÞ � g1ð0; tÞ is bounded by
cLðgÞ, where c > 0 is an absolute constant independent of g. This assertion can be proved
by a comparison argument as in the proof of Theorem 3.1: taking a lens-shaped convex
domain as in Theorem 3.1, it follows that the horizontal length g1ð1; tÞ � g1ð0; tÞ cannot
be larger than the corresponding horizontal length of E

�
hðtÞ

�
, which can be bounded by

an absolute constant times LðgÞ. r

Following [16] and recalling (3.6), we say that:

� g develops a type I singularity at t ¼ T if there exists C > 0 such that

kkgðtÞkLyð½0;1�Þ e
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðT � tÞ
p ; t A ½0;TÞ:ð3:11Þ

� g develops a type II singularity at t ¼ T if

lim sup
t!T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT � tÞ

p
kkgðtÞkLyð½0;1�Þ ¼ þy:

Before passing to the next result, we recall from [19], equation (2.6), that the evolu-
tion equation for k reads as follows:

qtkg ¼ qsskg þ lqskg þ k3
g :ð3:12Þ

Note that this equation, being local, is valid under the sole assumption (A).

The next observation is used to prove Proposition 3.4, which in turn will be used to
prove Theorem 5.1.

Remark 3.3. The solution g of (2.1) is analytic in ð0; 1Þ � ð0;TÞ; in particular, for a
given t A ð0;TÞ, the set

zðtÞ :¼ fx A ½0; 1� : kgðtÞðxÞ ¼ 0g

is finite.

Proposition 3.4. For any t A ½0;TÞ we have

d

dt

Ð
IðtÞ

jkgðtÞj ds ¼ �2
P

x A zðtÞ
jqskgðx; tÞje 0:ð3:13Þ
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Proof. Using Remark 3.3, (3.8) and (3.12) we compute

d

dt

Ð
IðtÞ

jkgðtÞj ds ¼
Ð

IðtÞ

kg

jkgj
qtkg þ ðls � k2

g Þjkgj
	 


dsð3:14Þ

¼
Ð

IðtÞ

kg

jkgj
qsskg þ ðljkgjÞs

	 

ds:

Integrating by parts we have

Ð
IðtÞ

kg

jkgj
qsskg ds ¼ kg

jkgj
qskgjx¼1

x¼0 �
Ð

IðtÞ

kg

jkgj

� �
s

qskg ds:ð3:15Þ

Moreover

Ð
IðtÞ

kg

jkgj

� �
s

qskg ds ¼ 2
P

x A zðtÞ
jqskgðx; tÞj:ð3:16Þ

Hence from (3.14), (3.15) and (3.16) we deduce

d

dt

Ð
IðtÞ

jkgðtÞj ds ¼ �2
P

x A zðtÞ
jqskgðx; tÞj þ

kg

jkgj
ðqskg þ lkgÞjx¼1

x¼0ð3:17Þ

¼ �2
P

x A zðtÞ
jqskgðx; tÞje 0: r

4. Embedded nonconvex initial data: type I singularities

In this section, as well as in Section 5, we consider the embedded case. We begin to
show that embeddedness is a property which is preserved by the evolution.

Proposition 4.1. Assume that g satisfies (A) and (2.11). Then:

(i) For any t A ½0;TÞ

gðtÞ is injective and g2ðx; tÞ > 0 for all x A ð0; 1Þ:ð4:1Þ

(ii) For any t A ½0;TÞ

��E�gðtÞ��� ¼ � 4p

3
t þ jEðgÞj:ð4:2Þ

Proof. Let d :¼ supft A ½0;TÞ : gðtÞ is injective for t A ½0; dÞg. By (2.11) and the
smoothness of the evolution it follows that d > 0. Given ðx; y; tÞ A ½0; 1�2 � ½0; dÞ with
x < y, let Sðx; y; tÞ be the relatively open segment connecting gðx; tÞ with gðy; tÞ. Provided
Sðx; y; tÞX gð½x; y�; tÞ ¼ j, we let Agðx; y; tÞ be the subset of R2 bounded by gð½x; y�; tÞ and
Sðx; y; tÞ.
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Given x; y A ½0; 1� and t A ½0; dÞ, let also Sðx; y; tÞ be the relatively open segment
connecting gðx; tÞ with gspðy; tÞ. Provided Sðx; y; tÞX qE

�
gðtÞ
�
¼ j, we have that either

E
�
gðtÞ
�
nSðx; y; tÞ is the union of two connected regions, or

�
R2nE

�
gðtÞ
��
nSðx; y; tÞ is the

union of two connected regions. We denote by A
g
minðx; y; tÞ the region of minimal area

among these two regions.

We define the function gg : ½0; dÞ ! ½0;þyÞ as follows: For t A ½0; dÞ,

ggðtÞ :¼ min
�
Q

g
1ðtÞ;Q

g
2ðtÞ
�
;ð4:3Þ

where

Q
g
1ðtÞ :¼ inf

x;y A ½0;1�;x<y;Sðx;y; tÞXgð½x;y�; tÞ¼j

jgðx; tÞ � gðy; tÞj2

jAgðx; y; tÞj ;ð4:4Þ

Q
g
2ðtÞ :¼ inf

x;y A ½0;1�;Sðx;y; tÞXqEðgðtÞÞ¼j

jgspðx; tÞ � gðy; tÞj2

jAg
minðx; y; tÞj :ð4:5Þ

Note that gg is invariant under rescalings of g, i.e.,

Q > 0 ) gQgðtÞ ¼ ggðtÞ; t A ½0; dÞ:ð4:6Þ

By assumption (2.11) it follows that

ggð0Þ > 0:ð4:7Þ

From [19], Proposition 4.4 it follows that gg is increasing in every time subinterval of ½0; dÞ
where it is strictly less than 4

ffiffiffi
3

p
. In particular (4.7) implies

ggðtÞfmin
�
ggð0Þ; 4

ffiffiffi
3

p �
; t A ½0; dÞ:ð4:8Þ

From (4.8) it follows that d ¼ T , and (i) is proved.

Finally

1

2

d

dt

��E�gðtÞ��� ¼ Ð
IðtÞ

kgðtÞ ds ¼ � 2

3
p;ð4:9Þ

which gives (4.2). r

4.1. Type I singularities. As usual in the blow-up analysis of type I singularities, let
us define the parameter t as

tðtÞ :¼ T � e�2t; t A � 1

2
log T ;þy

	 �
:

Given a point p ¼ ðp1; p2Þ A R2 set also

~ggpðtÞ :¼
g
�
tðtÞ
�
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�
T � tðtÞ

�q ; t A � 1

2
log T ;þy

	 �
:
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We let ~IIðtÞ :¼
�
0;L

�
~ggðtÞ
��

,

~ttðtÞ :¼ ~ggsðtÞ; ~nnðtÞ :¼
�
�~tt2ðtÞ; ~tt1ðtÞ

�
¼ n~ggðtÞ; k~ggðtÞ :¼

~ggxxðtÞ
j~ggxðtÞj

2
; ~nnðtÞ

* +
;ð4:10Þ

~kkðx; tÞ ¼ k~ggðtÞðxÞ, and

~llðtÞ :¼ ~ggxxðtÞ
j~ggxðtÞj

2
; ~ttðtÞ

* +
:ð4:11Þ

Notice that ~gg satisfies the forced curvature flow equation

~ggt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
T � tðtÞ

�q
gt þ ~gg ¼ ~kk~nnþ ~ll~ttþ ~gg;ð4:12Þ

coupled with the boundary conditions ~gg2ð0Þ ¼ ~gg2ð1Þ ¼
�p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�
T � tðtÞ

�q , and the usual Neu-
mann boundary conditions

~ggxð0Þ
j~ggxð0Þj

¼ 1

2
;

ffiffiffi
3

p

2

 !
;

~ggxð1Þ
j~ggxð1Þj

¼ 1

2
;�

ffiffiffi
3

p

2

 !
:ð4:13Þ

As a consequence, by a direct computation (see [19], Formulae (2.7), (65), (66)) and using
(4.12) we get

~kkt ¼ ~kkss þ ~ll~kks þ ð~kk2 � 1Þ~kk;

~llt ¼ ~llss � ~ll~lls � 2~kk~kks þ ð~kk2 � 1Þ~ll:
ð4:14Þ

Therefore, letting ~ww :¼ ~kk2 þ ~ll2, we find

~wwt ¼ ~wwss � ~ll~wws þ 2ð~kk2 � 1Þ~ww � 2ð~kk2
s þ ~ll2

s Þð4:15Þ

e ~wwss � ~ll~wws þ 2ð~kk2 � 1Þ~ww:

In this section we prove the following result, whose mainly follows the lines in [19]
(given for one triple junction only), except for the arguments in Step 8.

Theorem 4.2. Assume that g satisfies (A) and (2.11). If g develops a type I singularity

at t ¼ T , then

T ¼ 3jEðgÞj
4p

; lim
t!T �

��E�gðtÞ��� ¼ 0;ð4:16Þ

and

lim
t!T �

L
�
gðtÞ
�
¼ 0;ð4:17Þ

so that T is the extinction time of the evolution. Moreover:
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� There exists tc A ð0;TÞ such that gðtÞ is uniformly convex in ½0; 1� for any t A ½tc;TÞ.

� There exists p A R2 such that

lim
t!þy

k~ggpðtÞ � ghkC2ð½0;1�;R2Þ ¼ 0:ð4:18Þ

Proof. Let us assume that (3.11) holds. From [19], Theorem 6.23, it follows that, if
we assume (2.11) and if in addition inf

t A ½0;TÞ
L
�
gðtÞ
�
> 0, then g cannot develop type I singu-

larities at t ¼ T . Therefore

lim inf
t!T �

L
�
gðtÞ
�
¼ 0:ð4:19Þ

Using (4.19) and the fact that t A ½0;TÞ !
��E�gðtÞ��� is decreasing (see Proposition 4.1(ii))

it follows that lim
t!T �

��E�gðtÞ��� ¼ 0. In particular, from (4.2) we have T e
3jEðgÞj

4p
, and the

equality holds if and only if lim
t!T �

��E�gðtÞ��� ¼ 0. To prove (4.17), we observe that, as in the

proof of Proposition 3.2 and since the constant c in that statement is independent of g,
given a; b A ð0;TÞ with a < b, we have L

�
gðbÞ

�
e cL

�
gðaÞ

�
, with c > 0 independent of a

and b. This observation, coupled with (4.19), proves (4.17).

From (4.17) and recalling the comparison argument used in the proof of Theorem
3.1, we deduce that for any x A ½0; 1� there exists the limit lim

t!T �
gðx; tÞ A R2. Moreover, by

(4.17) such a limit is independent of x. We can therefore define

p :¼ lim
t!T �

gðx; tÞ A R2:ð4:20Þ

Set

~gg :¼ ~ggp:

Recalling the notation in (4.10), thanks to (3.11)

j~kkðx; tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
T � tðtÞ

�q ��kg�x; tðtÞ���eC; t A � 1

2
log T ;þy

	 �
; x A ½0; 1�:ð4:21Þ

We now divide the proof of the theorem into seven steps.

Step 1. We have

~ggð0; tÞ; ~ggð1; tÞ A B2Cffiffi
3

p ðpÞ; t A � 1

2
log T ;þy

	 �
;ð4:22Þ

where B2Cffiffi
3

p ðpÞ is the ball of radius
2Cffiffiffi

3
p centered at p.
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Indeed, since �kgð0; sÞ ¼
ffiffiffi
3

p

2
jgtð0; sÞj for any s A ð0;TÞ, using (4.21) we have

j~ggð0; tÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
T � tðtÞ

�q ���� ÐT
tðtÞ

gtð0; sÞ ds

����
e

2ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
T � tðtÞ

�q ÐT
tðtÞ

jkgð0; sÞj ds

e
2Cffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�
T � tðtÞ

�q ÐT
tðtÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT � sÞ

p ds ¼ 2Cffiffiffi
3

p :

Since the same estimate holds for j~ggð1; tÞj, Step 1 is proved.

Step 2. We have

��E�~ggðtÞ��� ¼ 4p

3
; t A � 1

2
log T ;þy

	 �
:ð4:23Þ

Indeed, from (4.2) and (4.16) it follows that
��E�gðtÞ��� ¼ 4p

3
ðT � tÞ, and therefore

(4.23) follows from the definition of ~gg.

Without loss of generality, from now on we assume p ¼ ð0; 0Þ. We recall the so-called
rescaled monotonicity formula (see [16], [19], Proposition 6.7):

d

dt

Ð
~IIðtÞ

e�
j~ggðtÞj2

2 ds ¼ �
Ð
~IIðtÞ

e�
j~ggðtÞj2

2 jk~ggðtÞ þ h~ggðtÞ; n~ggðtÞij2 ds ¼: � f ðtÞe 0:ð4:24Þ

Integrating (4.24) on � 1

2
log T ;þy

	 �
we get

Ðþy

�1
2

log T

f ðtÞ dt ¼
Ð

~IIð�1
2

log TÞ
e�

j~ggð�1
2

log TÞj2

2 ds ¼ 1ffiffiffiffiffi
2T

p
Ð

Ið0Þ
e�

jgð0Þj2
4T ds < þy:

As a consequence, the nonnegative function f belongs to L1

 
� 1

2
log T ;þy

	 �!
. Since

Pþy

j¼1

1

j
¼ þy, we then have that for any sequence ftngH � 1

2
log T ;þy

� �
converging to

þy, there exist a subsequence ftnj
g and times rj A ½tnj

; tnj
þ 1=j� such that

lim
j!þy

f ðrjÞ ¼ 0:ð4:25Þ

Assume now that

sup
t A ½�1

2
log T ;þyÞ

L
�
~ggðtÞ
�
< þy:ð4:26Þ

Step 3. Weak convergence to gy in W 2;y along a subsequence frjkg.
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From (4.21) and assumption (4.26) we have that

sup
j

�
L
�
~ggðrjÞ

�
þ kk~ggðrjÞkLyð½0;1�Þ

�
< þy:

It follows that there exist a subsequence frjkg and a map

gy A W 2;yð½0; 1�;R2Þ;ð4:27Þ

such that ~ggðrjkÞ converges to gy weakly in W 2;yð½0; 1�;R2Þ as k ! þy. In particular

lim
k!þy

k~ggðrjk
Þ � gykC1ð½0;1�;R2Þ ¼ 0;ð4:28Þ

and

lim
k!þy

~ggxxðrjkÞ ¼ gyxx weakly in L2ð½0; 1�;R2Þ:ð4:29Þ

Hence from Steps 1, 2, and 3 and (4.26) it follows that:

(i) gyð0Þ; gyð1Þ A B2Cffiffi
3

p ð0Þ, and gyð0Þ, gyð1Þ belong to the first coordinate axis.

(ii)
gyx ð0Þ
jgyx ð0Þj ¼

1

2
;

ffiffiffi
3

p

2

 !
,
gyx ð1Þ
jgyx ð1Þj ¼

1

2
;�

ffiffiffi
3

p

2

 !
.

(iii) jEðgyÞj ¼ 2p

3
.

(iv) LðgyÞ < þy.

Moreover, as a consequence of (iii), and respectively of (ii), (iv) and (4.27), we have:

(v) LðgyÞ > 0.

(vi) kgy is not identically zero.

Step 4. We have:

(vii) gy2 ðxÞ > 0 for any x A ð0; 1Þ.

(viii) gy is injective.

Indeed, from (4.6) and (4.8) we have

g~ggðtÞ ¼ gg
�
tðtÞ
�
fmin

�
ggð0Þ; 4

ffiffiffi
3

p �
; t A � 1

2
log T ;þy

	 �
:ð4:30Þ
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Moreover, since g~ggðtÞ is defined as an infimum, it is upper semicontinuous, in the sense that

lim
k!þy

k~ggðrjkÞ � gykC1ð½0;1�;R2Þ ¼ 0 ) ggy f lim sup
k!þy

g~ggðrjkÞ;ð4:31Þ

where ggy is (the constant) defined as in (4.3), where we substitute gð�; tÞ with gyð�Þ on the
right-hand side of (4.4). From (4.30) and (4.31) it follows that ggy fmin

�
ggð0Þ; 4

ffiffiffi
3

p �
, and

this implies (vii) and (viii).

As a consequence of (ii) and (viii) we have:

(ix) gyð0Þ3 gyð1Þ.

Step 5. We have

kgy þ hgy; ngyi ¼ 0 a:e: in ½0; 1�:ð4:32Þ

Indeed, from Fatou’s Lemma and (4.25) we have

Ð1
0

lim inf
j!þy

½e�
j~ggðrj Þj2

2 jk~ggðrjÞ þ h~ggðrjÞ; n~ggðrjÞij
2j~ggxðrjÞj� dxe lim

j!þy
f ðrjÞ ¼ 0:ð4:33Þ

On the other hand, by (4.28) and (4.29), the left-hand side of (4.33) equals

ÐLðgyÞ

0

e�
jgyj2

2 jkgy þ hgy; ngyij2 ds;ð4:34Þ

and (4.32) follows.

By elliptic regularity [12] it follows that kgy A C0ð½0; 1�Þ, hence gy A C2ð½0; 1�;R2Þ,
and (4.32) is valid everywhere in classical sense in ½0; 1�. Recalling Section 2.3, we deduce
by uniqueness that

gy ¼ gh:ð4:35Þ

Note that from (4.35) it follows that gy is independent of the subsequence f jkg, hence
(4.28) is valid for the whole sequence frjg, i.e.

lim
j!þy

k~ggðrjÞ � gykC1ð½0;1�;R2Þ ¼ 0:ð4:36Þ

Step 6. We have

lim
j!þy

k~ggðtnj
Þ � ghkC1ð½0;1�;R2Þ ¼ 0:ð4:37Þ

From Step 3 applied to the sequence f~ggðtnj
Þg in place of f~ggðrjÞg, it follows that there exist a

map

~ggy A W 2;yð½0; 1�;R2Þ;
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and a subsequence fnjhg such that

lim
h!þy

k~ggðtnjh
Þ � ~ggykC1ð½0;1�;R2Þ ¼ 0;ð4:38Þ

and such that ~ggy satisfies properties (i)–(ix) listed in Steps 3 and 4.

In order to show (4.37), it is enough to prove that

~ggy ¼ gh:ð4:39Þ

Using (4.38), (4.36) and the inequality

k~ggy � ghkC0ð½0;1�;R2Þ e k~ggy � ~ggðtnjh
ÞkC0ð½0;1�;R2Þ þ k~ggðtnjh

Þ � ~ggðrjhÞkC0ð½0;1�;R2Þ

þ k~ggðrjhÞ � ghkC0ð½0;1�;R2Þ;

to prove (4.39) it is su‰cient to show that

lim
j!þy

k~ggðrjÞ � ~ggðtnj
ÞkC0ð½0;1�;R2Þ ¼ 0:ð4:40Þ

In order to prove (4.40), we recall that ~kkðx; tÞ is uniformly bounded for all ðx; tÞ by (4.21)

and, as a consequence, ~llðx; tÞ is also uniformly bounded by (4.14) and (4.15) as in [19],
p. 264. Hence, using also (4.12) and (4.24),

k~ggðrjÞ � ~ggðtnj
ÞkC0ð½0;1�;R2Þ e

Ðrj

tnj

Ð1
0

j~ggtj dxe
Ðrj

tnj

Ð1
0

ðj~kkj þ j~llj þ j~ggjÞ dx

eCjrj � tnj
je C

j
;

which gives (4.40) and proves Step 6.

From (4.37) and [19], Proposition 6.16, we have the improved convergence

lim
j!þy

k~ggðtnj
Þ � ghkC2ð½0;1�;R2Þ ¼ 0:ð4:41Þ

Since the sequence ftng is arbitrary we deduce

lim
t!þy

k~ggðtÞ � ghkC2ð½0;1�;R2Þ ¼ 0:ð4:42Þ

Eventually, we observe that, since gy2 is uniformly concave in ½0; 1� (see Section
2.3), from (4.41) we deduce that gðtcÞ becomes uniformly convex for some tc A ð0;TÞ.
From the results proved in [22], Lemma 3.3, it follows that gðtÞ remains uniformly con-
vex in ½tc;TÞ (this last assertion also follows from (3.12) and (2.8) using the maximum
principle).
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Step 7. Assume now that (4.26) does not hold, that is, there exists a sequence ftng
converging to þy such that

lim
n!þy

L
�
~ggðtnÞ

�
¼ þy:ð4:43Þ

Reasoning as in Step 1, there exist a subsequence ftnj
g and times rj A ½tnj

; tnj
þ 1=j� such that

(4.25) holds. Moreover from (4.21) and rj � tnj
e 1=j, and from (3.9) and (4.43) we obtain

lim
j!þy

L
�
~ggðrjÞ

�
¼ þy:ð4:44Þ

If we parametrize ~ggðrjÞ by arclength on
�
0;L

�
~ggðrjÞ

��
, and we pass to the limit as in Step 3

as j ! þy, we get that there exists a subsequence frjkg such that f~ggðrjkÞg converges weakly
in W 2;2

loc

�
½0;þyÞ;R2

�
(so that (4.28) and (4.29) hold with C1

loc

�
½0;þyÞ;R2

�
in place of

C1ð½0; 1�;R2Þ and L2
loc

�
½0;þyÞ;R2

�
in place of L2ð½0; 1�;R2Þ respectively) to a curve gy of

infinite length which, arguing as in Steps 4 and 5, has the following properties:

(a) gy2 ð0Þ ¼ 0, gy2 ðsÞ > 0 for any s A ð0;þyÞ.

(b) gys ð0Þ ¼ 1

2
;

ffiffiffi
3

p

2

 !
.

(c) gy is injective (by using (4.30)).

(d) gy solves (4.32) almost everywhere in ½0;þyÞ.

By elliptic regularity gy A Cy
�
½0;þyÞ;R2

�
and solves (4.32) in classical sense. Then by the

results in [7] and [22] it follows that gyð½0;þyÞ is contained in a curve of Abresch–Langer
[1]. In view of the Neumann condition (b) and the properties of the curves of Abresch–
Langer, it then follows that

gyðsÞ ¼ s

2
;

ffiffiffi
3

p
s

2

 !
; s A ½0;þyÞ:

Similarly, if we parametrize ~ggðrjÞ by arclength on
�
�L
�
~ggðrjÞ

�
; 0
�
, we find a subsequence

f~ggðrjkl
Þg of f~ggðrjkÞg converging to a curve gy A Cy

�
ð�y; 0�;R2

�
of infinite length satisfying

(a), (c), (d), gys ð0Þ ¼ 1

2
;�

ffiffiffi
3

p

2

 !
, and contained in a curve of Abresch–Langer. Hence

necessarily

gyðsÞ ¼ s

2
;�

ffiffiffi
3

p
s

2

 !
; s A ð�y; 0�:

We now reach a contradiction since, being the convergence of f~ggðrjkl
Þg in C1

loc, it follows
that ~ggðrjkl

Þ is not injective for l su‰ciently large. Indeed, provided l A N is such that

k~ggðs; rjkl
Þ � gyðsÞkC1ð½0;1�;R2Þ þ

~gg�L�~ggðrjkl
Þ
�
� s; rjkl

�
� ~ggyð�sÞkC1ð½0;1�;R2Þ e

1

2
;
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recalling the boundary conditions in (4.13), we have that there exist s1; s2 A ½0; 1� such that

~ggðs1; rjkl
Þ ¼ ~gg

�
L
�
~ggðrjkl

Þ
�
� s2; rjkl

�
:

Hence (4.26) necessarily holds, and the proof of the theorem is complete. r

5. Embedded non-convex initial data: type II singularities

This section is devoted to the proof of the following result:

Theorem 5.1. Assume that g satisfies (A) and (2.11). Then g cannot develop type II
singularities at t ¼ T .

Proof. Let us assume by contradiction that g develops a type II singularity at t ¼ T .
We employ a rescaling procedure originally due to R. Hamilton (see [2]). Let us choose
as in [19], Section 7.1, a sequence fðxn; tnÞgH ½0; 1� � ½0;TÞ satisfying the following prop-
erties:

� tn A ½0;T � 1=nÞ and tn < tnþ1 for any n A N.

� Letting

mn :¼ jkgðxn; tnÞj; n A N;

we have 0 < mn < mnþ1 and lim
n!þy

mn ¼ þy.

�

lim
n!þy

mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 1=n � tn

p
¼ þy;ð5:1Þ

and for any n A N

mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 1=n � tn

p
¼ max

t A ½0;T�1=n�
ðkkgðtÞkLyð½0;1�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 1=n � t

p
Þ:ð5:2Þ

Note that the maximum in (5.2) is attained in ½0;T � 1=nÞ by (5.1). Note also that

lim
n!þy

�m2
ntn ¼ �y; lim

n!þy
m2

nðT � tnÞ ¼ þy:ð5:3Þ

Let us define the parameter t as

tðtÞ :¼ tn þ t=m2
n ; t A

�
�m2

ntn; m
2
nðT � tnÞ

�
;

and the curves gn as

gnðx; tÞ :¼ mn

�
g
�
x; tðtÞ

�
� gðxn; tnÞ

�
; x A ½0; 1�; t A

�
�m2

ntn; m
2
nðT � tnÞ

�
:
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We have

gnðxn; 0Þ ¼ ð0; 0Þ; jkgn
ðxn; 0Þj ¼ 1; n A N:ð5:4Þ

From (5.2) it follows as in [19], Section 7, that for every e;o > 0 there exists n A N such
that

kkgnðtÞkLyð½0;1�Þe 1 þ e; nf n; t A ½�m2
ntn;o�:ð5:5Þ

We now divide the proof of the theorem into nine steps.

Step 1. We have

lim
n!þy

L
�
gnðtÞ

�
¼ þy; t A R:ð5:6Þ

Indeed, this is obvious if T is not the extinction time, since in that case inf
t A ½0;TÞ

L
�
gðtÞ
�
> 0. If

T is the extinction time, namely 0 ¼ lim
t!T �

L
�
gðtÞ
�
¼ lim

t!T �

��E�gðtÞ���, by the isoperimetric

inequality and taking into account that g satisfies (2.3), it follows that there exists an

absolute constant c > 0 such that L
�
gðtÞ
�
f c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��E�gðtÞ���q
for all t A ½0;TÞ. Hence, to prove

(5.6) it is enough to show that

lim
n!þy

��E�gnðtÞ
��� ¼ þy; t A R:ð5:7Þ

Recalling (4.2), we have

��E�gnðtÞ
��� ¼ m2

n

��E�g�tðtÞ���� ¼ 4

3
pm2

n

�
T � tðtÞ

�
; t A

�
�m2

ntn; m
2
nðT � tnÞ

�
:

In particular
��E�gnð0Þ

��� ¼ ð4=3Þpm2
nðT � tnÞ, hence lim

n!þy

��E�gnð0Þ
��� ¼ þy by (5.3). Then

Step 1 follows, since
��E�gnðtÞ

��� ¼ ��E�gnð0Þ
���� ð4=3Þpt for any t A

�
�m2

ntn; m
2
nðT � tnÞ

�
.

Before passing to the next step we need some preparation. Given

t A
�
�m2

ntn; m
2
nðT � tnÞ

�
;

we now reparametrize the curves gnðtÞ by arclength and, performing a suitable translation
in the parameter space, we obtain curves

ĝgnðtÞ : ½anðtÞ; bnðtÞ� ! R2;

with anðtÞe 0e bnðtÞ, and bnðtÞ � anðtÞ ¼ L
�
gnðtÞ

�
.

Thanks to (5.6), we have

lim
n!þy

�
bnðtÞ � anðtÞ

�
¼ þy; t A R:ð5:8Þ
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Without loss of generality we assume

ĝgnð0; 0Þ ¼ gnðxn; 0Þ ¼ ð0; 0Þ:ð5:9Þ

We can also assume that there exists a subsequence fnjg such that

lim
j!þy

anj
ð0Þ ¼: ay A ½�y; 0�; lim

j!þy
bnj

ð0Þ ¼: by A ½0;þy�:ð5:10Þ

Note that by (5.8) we have that if ay A ð�y; 0� (resp. by A ½0;þyÞ) then by ¼ þy (resp.
ay ¼ �y).

We now choose the starting point of the reparametrization (still keeping the notation
ĝgn) as follows: If by ¼ þy we set anj

ðtÞ :¼ anj
ð0Þ for any t A R; if by A ½0;þyÞ we set

bnj
ðtÞ :¼ bnj

ð0Þ for any t A R. Hence in both cases

lim
j!þy

anj
ðtÞ ¼: ay; lim

j!þy
bnj

ðtÞ ¼: by; t A R:ð5:11Þ

If ay A ð�y; 0� (resp. by A ½0;þyÞ) we set Iy :¼ ½ay;þyÞ (resp. Iy :¼ ð�y; by�); if
jayj ¼ by ¼ þy we set Iy :¼ R. Observe that 0 A Iy.

Exploiting also (5.9), the proof of the next step is the same as in [19], Proposition 7.1,
using also (5.8), (5.5) and (5.4).

Step 2. The sequence fĝgnj
g admits a subsequence fĝgnjh

g converging in

C2
locðIy � R;R2Þ to an embedded curvature evolution gy A CyðIy � R;R2Þ with

L
�
gyðtÞ

�
¼ þy; t A R;ð5:12Þ

gyð0; 0Þ ¼ ð0; 0Þ;

kkgykLyðIy�RÞ ¼ 1 ¼ jkgyð0; 0Þj:

Moreover:

� If Iy ¼ ½ay;þyÞ then gysðay; tÞ ¼ ð1=2;
ffiffiffi
3

p
=2Þ for all t A R, and

gy2ðs; tÞf gy2ðay; tÞ; s A Iy; t A R:

� If Iy ¼ ð�y; by� then gysðby; tÞ ¼ ð1=2;�
ffiffiffi
3

p
=2Þ for all t A R, and

gy2ðs; tÞf gy2ðby; tÞ; s A Iy; t A R:

Note that the C2
locðIy � R;R2Þ-convergence can be improved to Cy

locðIy � R;R2Þ
[11], since the curves ĝgn evolve by curvature and have a uniform Ly-bound on their
curvature.

Step 3. For all t A R we have kgyðs; tÞ3 0 for all s A Iy.

37Bellettini and Novaga, Curvature evolution of nonconvex lens-shaped domains



We follow [2], Theorem 7.7. Write for simplicity

JhðtÞ :¼ ½anjh
ðtÞ; bnjh

ðtÞ�; k̂khðs; tÞ ¼ kĝgnjh

ðs; tÞ; zhðtÞ :¼ fs A JhðtÞ : k̂khðs; tÞ ¼ 0g:

For all M > 0, recalling (3.13), we have

�2
ÐM

�M

P
s A zhðtÞ

jqsk̂khj dt ¼
ÐM

�M

d

dt

Ð
JhðtÞ

jk̂khj ds dtð5:13Þ

¼
Ð

JhðMÞ
jk̂khðs;MÞj ds �

Ð
Jhð�MÞ

jk̂khðs;�MÞj ds:

Using the invariance of
Ð

IðtÞ
jkgð�; tÞj ds under rescalings and writing

gh :¼ gnjh
; th :¼ tnjh

; mh :¼ mnjh
;

from (5.13) we then obtain

�2
ÐM

�M

P
s A zhðtÞ

jqsk̂khj dtð5:14Þ

¼
Ð

I
�

thþM

m2
h

�jkgh
ðs; th þ M=m2

hÞj ds �
Ð

I
�

th�M

m2
h

�jkgh
ðs; th � M=m2

hÞj ds:

In view of Proposition 3.4 the function t !
Ð

IðtÞ
jkgðtÞj ds is nonincreasing, hence it admits a

finite limit as t ! T�. In particular,

lim
h!þy

Ð
I
�

thþM

m2
h

�jkgh
ðs; th þ M=m2

hÞj ds ¼ lim
h!þy

Ð
I
�

th�M

m2
h

�jkgh
ðs; th � M=m2

hÞj ds:

It then follows from (5.14) that

lim
h!þy

ÐM
�M

P
s A zhðtÞ

jqsk̂khj dt ¼ 0:ð5:15Þ

From (5.15) and Fatou’s Lemma we deduce that

0 ¼ lim inf
h!þy

P
s A zhðtÞ

jqsk̂khðs; tÞj for a:e: t A ½�M;M�:ð5:16Þ

Since (5.16) holds for any M > 0, and all quantities involved are continuous with respect to
t, we obtain

0 ¼ lim inf
h!þy

P
s A zhðtÞ

jqsk̂khðs; tÞj; t A R:ð5:17Þ

On the other hand, the C2
locðIy � R;R2Þ-convergence of ĝgh to gy given in Step 2 implies

that

lim inf
h!þy

P
s A zhðtÞ

jqsk̂khðs; tÞjf
P

s A Iy:kgy ðs; tÞ¼0

jqskgyðs; tÞj; t A R:ð5:18Þ
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Since the right-hand side of (5.18) is nonnegative, from (5.17) we deduce

0 ¼
P

s A Iy:kgy ðs; tÞ¼0

jqskgyðs; tÞj; t A R:

It follows that for any t A R we have

fs A Iy : kgyðs; tÞ ¼ 0; qskgyðs; tÞ3 0g ¼ j:

On the other hand, gy evolves by curvature (see Step 2), and therefore, from the results of
[4], if there exists ðs; tÞ A Iy � R such that kgyðs; tÞ ¼ 0 and qskgyðs; tÞ ¼ 0, then gyð�; tÞ is
linear, hence gyð� ; �Þ is linear. Since this is in contradiction with (5.12), the proof of Step 3
is concluded.

Step 4. Iy 3R.

Indeed, assume by contradiction that Iy ¼ R. From Step 3, reasoning as in [2],
pp. 512–513, it follows that gy is the so-called grim reaper. For the grim reaper the func-
tion Q

gy
1 : R ! ð0;þyÞ defined on the right-hand side of (4.4) (with ½0; 1� replaced by Iy)

is identically zero. On the other hand, from (4.6) and arguing as in Step 4 of the proof
of Theorem 4.2 we have that gĝgh

:
�
�m2

hth; m
2
hðT � thÞ

�
! ð0;þyÞ is bounded from below

by a positive constant uniformly with respect to h A N. Recall now that the sequence fĝghg
converges in C2

locðIy � R;R2Þ to gy and that we have (similarly to the inequality in (4.31))

Q
gy
1 ðtÞf lim sup

h!þy
Q

ĝgh

1 ðtÞf lim sup
h!þy

gĝgh
ðtÞ; t A R:ð5:19Þ

Then (5.19) is in contradiction with Q
gy
1 1 0, and the proof of Step 4 is concluded.

Thanks to Step 3 we can consider only two cases: either kgyðs; tÞ < 0 for any
ðs; tÞ A Iy � R, or kgyðs; tÞ > 0 for any ðs; tÞ A Iy � R. Let us first assume

kgyðs; tÞ < 0; ðs; tÞ A Iy � R:ð5:20Þ

Recalling our conventions (see Remark 2.2), inequality (5.20) implies that gyð�; tÞ is a con-
vex curve.

From Step 4 we have that either ay is finite or by is finite. We assume that
ay A ð�y; 0�, the case by A ½0;þyÞ being analogous. Therefore we have

Iy ¼ ½ay;þyÞ:

Observe that from (5.11) we have

gy2ðay; tÞ ¼ gy2ðay; 0Þ; t A R:ð5:21Þ

Recall also (see Step 2) that

qsgyðay; tÞ ¼ 1

2
;

ffiffiffi
3

p

2

 !
; t A R:ð5:22Þ
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Step 5. We have

Ð
Iy

kgyðs; tÞ ds A ½�p=3; 0Þ; t A R:ð5:23Þ

Indeed, if by contradiction there exists t A R such that the left-hand side of (5.23) is less than
�p=3, then thanks to (5.20) and the Neumann boundary condition (5.22), the curve gyð�; tÞ
has another intersection (di¤erent from gyðay; 0Þ) with the horizontal axis l passing from
gyðay; 0Þ. This implies Q

gy
2 1 0, where Q

gy
2 is defined as in (4.4) (with ½0; 1� replaced by

Iy, and g
sp
y is now the specular of gy with respect to l). This leads to a contradiction, as

in Step 4.

In particular, the convex curve gyð�; tÞ can be written as the graph of a strictly con-
cave smooth function y ¼ yðx; tÞ, where ðx; tÞ A

�
gy1ðay; tÞ;þy

�
� R.

Let yðx; tÞ :¼ tan�1
�

yxðx; tÞ
�
A ð0; p=3� be the angle that the tangent vector to gyð�; tÞ

makes with the first coordinate axis.

Step 6. We have

qtkgyðs; tÞe 0; ðs; tÞ A Iy � R:ð5:24Þ

Write for simplicity

kgy ¼ k:ð5:25Þ

Recalling that gy evolves by curvature, the evolution of k in the ðy; tÞ-coordinates reads as
follows (see [11]):

qtk ¼ k2kyy þ k3:ð5:26Þ

Let t1 A R and define h :¼ kþ 2ðt� t1Þqtk. We have hðy; t1Þ < 0 for any y A ð0; p=3�, and

ht ¼ k2hyy þ k2 þ 2qtk

k

� �
h:ð5:27Þ

Moreover, from qs ¼ kqy and (2.8) we have that h satisfies the boundary condition

hy
p

3
; t

� �
¼ 1ffiffiffi

3
p h

p

3
; t

� �
; t A R:ð5:28Þ

We now observe that the remaining Dirichlet boundary condition for h reads as

hð0; tÞ ¼ 0; t A R:ð5:29Þ

Indeed, from (5.20) and (5.23) and the Lipschitz continuity of k in s, which is uniform with
respect to t (this follows from (5.12) and the interior regularity estimates in [9]), we have

lim
y!0þ

kðy; tÞ ¼ 0; t A R:ð5:30Þ
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Using again [9] we deduce

lim
y!0þ

kyðy; tÞ ¼ lim
y!0þ

kyyðy; tÞ ¼ 0; t A R:ð5:31Þ

Then (5.29) follows from (5.30) and (5.31).

By (5.27), (5.28), (5.29) and the maximum principle it then follows hðy; tÞe 0 for all
y A ð0; p=3� and tf t1, hence

qtke� k

2ðt� t1Þ
; t > t1;

which implies (5.24), by letting t1 ! �y.

Step 7. We have

qtkgyðs; tÞ ¼ 0; ðs; tÞ A Iy � R:ð5:32Þ

Let us adopt the notation in (5.25), and define ZðtÞ :¼
Ðp=3

0

qt
�
logð�kÞ

�
dy. Notice that

Z f 0 since qtke 0 by Step 6 and k < 0 by (5.20). Step 7 will be proved if we show that

Z 1 0:ð5:33Þ

Following [2], Section 8, we compute

ktt ¼ ðk2kyy þ k3Þt ¼ k2ðkyyt þ ktÞ þ 2
ðktÞ2

k
:ð5:34Þ

Using (5.34) and integrating by parts we get

Z 0ðtÞ ¼
Ðp=3

0

qt
kt

k

� �
dyð5:35Þ

¼
Ðp=3

0

ktt

k
dy�

Ðp=3

0

ktðk2kyy þ k3Þ
k2

dy

¼
Ðp=3

0

kðkyyt þ ktÞ þ 2
ðktÞ2

k2
dy�

Ðp=3

0

ktðk2kyy þ k3Þ
k2

dy

¼
Ðp=3

0

kkyyt � ktkyy þ 2
ðktÞ2

k2
dy

¼ kðp=3; tÞkytðp=3; tÞ � kyðp=3; tÞktðp=3; tÞ þ 2
Ðp=3

0

ðktÞ2

k2
dy:
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We now observe that from ks ¼ kky and from (2.9) we have

kyðp=3; tÞ ¼ kðp=3; tÞffiffiffi
3

p ; t A R:

Di¤erentiating this relation with respect to t we obtain

kðp=3; tÞkytðp=3; tÞ ¼ kyðp=3; tÞktðp=3; tÞ; t A R:ð5:36Þ

From (5.35), (5.36) and the Schwarz inequality we deduce

Z 0ðtÞ ¼ 2
Ðp=3

0

ðktÞ2

k2
dy ¼ 2

Ðp=3

0

�
qt
�
logð�kÞ

��2
dyf

6Z2ðtÞ
p

:

Assume now that Zðt1Þ > 0 for some t1 A R. It follows that ZðtÞfZðt1Þ > 0 for all tf t1,
which implies

Zðt1Þe
1

1

Zðt2Þ
þ 6

p
ðt2 � t1Þ

e
p

6ðt2 � t1Þ

for all t2 f t1. Letting t2 ! þy we get Zðt1Þe 0, a contradiction. Hence (5.33) follows,
and the proof of Step 7 is concluded.

Step 8. Assume now that

kgyðs; tÞ > 0; ðs; tÞ A Iy � R:ð5:37Þ

Reasoning as in Step 5 we have

Ð
Iy

kgyðs; tÞ ds A ð0; 2p=3�; t A R:ð5:38Þ

Note that in this case the image of gyð�; tÞ is not necessarily a graph, but still the function y

is well-defined, thanks to (5.37), and takes values in ½p=3; pÞ. Reasoning as in Steps 6 and 7,
using the boundary conditions (5.28) and

hð0; tÞ ¼ p; t A R;

and the choice ZðtÞ :¼
Ðp

p=3

qtðlogkÞ dy, we deduce that (5.32) is still valid.

Step 9. gy is one of the two specific pieces of the grim reaper depicted in Figure 4.

Figure 4. Two pieces of the grim reaper, with the given p=3-Neumann boundary condition.
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From Step 7 and (5.26) we have qyykgy þ kgy ¼ 0. By direct integration and using
(5.22), it follows that gy is a one-parameter family of pieces of grim reapers (the parameter
being for instance the horizontal velocity of translation), see Figure 4. As in Step 5, we have
Q

gy
2 1 0, which gives a contradiction. This shows that g cannot develop type II singular-

ities, and concludes the proof of the theorem. r

6. Examples

In the first example we show a graph-like initial datum g which develops a type II
singularity: di¤erently from Section 5 (see (2.11)), in this case g2 changes sign.

6.1. Example 1. For x A ½0; 1� let gðxÞ :¼
�
x; f ðxÞ

�
where f is a smooth function the

graph of which satisfies the Neumann boundary conditions (2.4) at x ¼ 0 and x ¼ 1, with
the property that there exist x1; x2 A ð0; 1Þ, x1 < x2, such that f > 0 on ð0; x1ÞW ðx2; 1Þ, and
f < 0 on ðx1; x2Þ (see Figure 5). Set

Ðx1

0

f ðxÞ dx ¼: e > 0;
Ðx2

x1

f ðxÞ dx ¼: �c < 0:

Then the image of gðtÞ can be written as the graph, over a smoothly variable interval
½aðtÞ; bðtÞ�, of a smooth function f ð�; tÞ : ½aðtÞ; bðtÞ� ! R, for t A ½0;TÞ, which solves the
problem

ft ¼
fxx

1 þ ð fxÞ2
in
�
aðtÞ; bðtÞ

�
� ð0;TÞ;

f
�
aðtÞ; t

�
¼ f

�
bðtÞ; t

�
¼ 0; t A ð0;TÞ;

fx

�
aðtÞ; t

�
¼

ffiffiffi
3

p
; t A ð0;TÞ;

fx

�
bðtÞ; t

�
¼ �

ffiffiffi
3

p
; t A ð0;TÞ;

að0Þ ¼ 0;

bð0Þ ¼ 1;

f ð�; 0Þ ¼ f ð�Þ in ð0; 1Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð6:1Þ

where, for notational simplicity, we still denote by x the first variable in R2.

Figure 5. Example 1: The initial datum (left) and its evolution (right), which develops a type II singularity before

the extinction.
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By the maximum principle for fx (see [22]) the functions f ð�; tÞ are Lipschitz continu-
ous, with a Lipschitz constant which is uniform with respect to t A ½0;TÞ. By the smooth-
ness of the flow, there exist ts A ð0;T � and two continuous functions x1; x2 : ½0; tsÞ ! R,
with aðtÞ < x1ðtÞ < x2ðtÞ < 1 for any t A ½0; tsÞ, such that xið0Þ ¼ xi, i ¼ 1; 2, f ð�; tÞ > 0 on�
aðtÞ; x1ðtÞ

�
W
�
x2ðtÞ; 1

�
, and f ð�; tÞ < 0 on

�
x1ðtÞ; x2ðtÞ

�
. Define, for any t A ð0; tsÞ, the

nonnegative functions

VþðtÞ :¼
Ðx1ðtÞ

aðtÞ
f ðx; tÞ dx; V�ðtÞ :¼ �

Ðx2ðtÞ

x1ðtÞ
f ðx; tÞ dx:

By a direct computation, we get

d

dt
VþðtÞe� p

3
;

d

dt
V�ðtÞf�p;

so that

VþðtÞe e� p

3
t; V �ðtÞf c � pt; t A ð0; tsÞ:ð6:2Þ

Observe that if there exists t A ð0; ts� such that Vþ > 0 in ½0; tÞ, V þðtÞ ¼ 0 (hence
aðtÞ ¼ x1ðtÞ) and V� > 0 in ½0; t �, then t is a singularity time due to the boundary condi-
tions (and t is not the extinction time). Hence, from (6.2) it follows that if e is small enough,
i.e. c � 3e > 0, a singularity occurs before the extinction of the evolution. It follows that
ts ¼ T e 3e=p.

Reasoning as in Theorem 4.2, we can exclude that gðtÞ develops type I singularities at
t ¼ T : indeed, developing a type I singularity at t ¼ T would imply a nontrivial homothetic
solution obtained as a blow up, which (thanks to the boundary conditions) is unique, and
would correspond to the extinction at t ¼ T , which contradicts lim inf

t!T �
V�ðtÞ > 0. It follows

that gðtÞ develops a type II singularity at t ¼ T . Arguing as in the proof of Theorem 5.1, a
suitable rescaled and translated version of gðtÞ converges either to a grim reaper or to a
piece of the grim reaper with a boundary point. In fact, we can rule out the first possibility,
since the grim reaper cannot be written as the graph of a Lipschitz function. We conclude
that if � < c=3, a type II singularity (the blow-up of which is as in Figure 4) must occur
before the extinction time.

In the next example we show a singularity due to collision of the boundary points,
happening before the extinction time.

6.2. Example 2. Let us consider an evolution similar to (2.1), where we substitute
the boundary conditions on tð0; tÞ and tð1; tÞ with

tð0; tÞ ¼ � 1

2
;

ffiffiffi
3

p

2

 !
; tð1; tÞ ¼ � 1

2
;�

ffiffiffi
3

p

2

 !
;ð6:3Þ

so that the angle between e1 and tðtÞ equals 2p=3 at gð0; tÞ ¼
�
g1ð0; tÞ; 0

�
, and equals �2p=3

at gð1; tÞ ¼
�
g1ð1; tÞ; 0

�
.
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We still assume that g is smooth and embedded, with g2 > 0 in ð0; 1Þ as in Sections 4
and 5 (see Figure 6). At the singular time t ¼ T either (3.1) holds or the curvature stays
bounded but there is a collision of the boundary points, i.e.

lim inf
t!T �

jg1ð1; tÞ � g1ð0; tÞj ¼ 0:ð6:4Þ

Notice that this is impossible for the solutions of (2.1), due to the boundary conditions.

Since Theorem 4.2 applies also to this situation, we can exclude the formation of type I
singularities before the extinction time. Moreover, since g is embedded and g2 is positive in
ð0; 1Þ, we can also exclude type II singularities, reasoning exactly as in Section 5.

Assume now that T is the extinction time of the evolution, and that the evolution
develops a type I singularity at t ¼ T . By the analysis in Section 4, it follows that the
evolution converges, after rescaling, to a homothetic solution. However there are no such
solutions compatible with the boundary conditions (6.3), see [7], [15]. Hence T is not the
extinction time of the evolution and (6.4) necessarily holds. A collision of the boundary
points occurs as t ! T�, while the curvature remains bounded.
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