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PAPER

Interactions among breed, farm intensiveness and cow productivity on
predicted enteric methane emissions at the population level

Gustavo Mart�ınez-Mar�ına , Stefano Schiavona , Franco Tagliapietraa , Alessio Cecchinatoa ,
Hugo Toledo-Alvaradob and Giovanni Bittantea

aDepartment of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova (Padua), Legnaro,
Italy; bDepartment of Genetics and Biostatistics, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of
Mexico, Mexico City, M�exico

ABSTRACT
The milk Fourier-transform infra-red spectrometry (FTIRS) can be used to predict the enteric
methane emissions (EME) at population level. In this study, the variability in FTIRS predicted
EME traits due to the breed of cow, farm, the production level of individual cows within herds,
and their interactions were evaluated. A dataset obtained from milk recordings, which covered
four breeds (Holstein, Brown Swiss, Simmental and Alpine Grey), 6,430 herds, 115,819 cows, and
1,759,706 test-day milk/spectra records was used. The herds were stratified into 5 production
levels considering their average daily milk energy production; individual cows within herd were
similarly stratified considering their individual production levels. The EME traits were predicted
directly from milk FTIR spectra or indirectly from six informative milk FA predicted from milk
spectra. The statistical model included, separately for each trait and method, breed, herd inten-
siveness level, cow production level, and their interactions, year, month, parity, and lactation
stage. The direct and indirect methods yielded similar results in predicting CH4 yield per kg of
DMI and CH4 intensity per kg of fat-protein corrected milk. The indirect method was reliable in
predicting daily EME production per cow, the indirect one did not. EME was affected by the
breed x herd production intensiveness interaction, and to a lesser degree, by the breed x cow
production level interaction. A better understanding of the complex interactions influencing
EME in dairy herds was achieved. This would be useful for the genetic improvement, the envir-
onmental certification of farms, and for setting prices in milk payment schemes.

HIGHLIGHTS

� Causes of variation of the FTIR predicted EME were studied at population level using data
from 6,430 herds and 1,759,706 milk spectra records

� Reliable daily EME estimates were achieved from 6 six informative fatty acids predicted from
milk spectra

� EME was influenced by the interaction breed� level of herd intensiveness and, to a lesser
extent, by the individual production level
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Introduction

International treaties aimed at reducing the rate of

increase in global warming over the coming decades

have been signed by the majority of the world’s coun-

tries. The major interventions concern reducing

dependency on fossil fuels, increasing the soil/forest

carbon sink, and limiting CH4 emissions from domestic

ruminants and landfill (Moumen et al. 2016). Enteric

CH4 emissions (EME) are the main source of green-

house gases from agriculture. The livestock sectors of

several countries are currently reducing their yearly
EME, and are actively contributing to contrast global
climate warming by increasing production efficiency
through genetic improvement, better nutrition and
management practices, and improved animal health
and welfare.

The gold standard method for EME quantification
remains the calculation of material and energy balan-
ces using respiration chambers (Hristov et al. 2018),
but it is not feasible at the population or large nucleus
levels (de Haas et al. 2017). Proxies of daily CH4
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emissions are based on analyses of exhaled gases
sampled around the nostrils of animals as they access
automatic feeding stations or automatic milking par-
lours (Difford et al. 2020). Other proxies of CH4 emis-
sions are based on the milk fatty acid (FA) profiles,
considering their relationships with rumen fermenta-
tion (van Engelen et al. 2015; van Gastelen and
Dijkstra 2016; Bougouin et al. 2019). Both methodolo-
gies were used in large surveys carried out on com-
mercial farms, although they are expensive and
labour intensive.

Predictive equations obtained from selected inform-
ative milk FA analysed using gas chromatography (van
Lingen et al. 2014) and used on commercial dairy
farms (1,158 cows from 85 farms) yielded results that
matched expectations with regards to the effects of
dairy system, parity and lactation stage (Bittante et al.
2018), and the selected FA used and the EME traits
obtained were heritable (Bittante and Cecchinato
2020). Among the equations published the two pro-
posed by van Lingen et al. (2014) for predicting CH4

yield (g CH4/DMI) and CH4 intensity (g CH4/kg CM, fat
and protein corrected milk), were obtained from a
meta-analysis that encompassed 30 different diets
(eight experiments in two countries) comprising not
only different feedstuffs and different forage:concen-
trate ratios, but also certain fat supplements some-
times used in commercial dairy farms.

To reduce costs and labor, and extend the possibil-
ity of EME prediction to population level, equations
based on Fourier-transform infra-red (FTIR) spectra of
milk were proposed (Negussie et al. 2017). The results
were variable (Lassen et al. 2012; van Gastelen and
Dijkstra 2016; Vanlierde et al. 2016) and raised debates
over their scientific and practical value (Shetty et al.
2017; Wang and Bovenhuis 2019).

FTIRS predictions of EME were used in large surveys
to quantify the effects of individual herds and of the
parity and lactation stage of individual cows, and were
found to have a genetic basis. FTIR spectrometry pro-
duced satisfactory results to predict the informative
FA needed to use van Lingen et al.’s (2014) equations
for EME prediction (indirect approach: milk spectra !
milk FA ! EME) (Bittante and Cipolat-Gotet 2018). A
direct approach, where EME was predicted directly
from milk spectra was also proposed, and both direct
and indirect predictions were found to have a genetic
background (Bittante et al. 2020).

However, FTIR predictions of EME have not yet
been studied at the population level with different
breeds reared in herds under different dairy farming
systems, and with animals stratified for different

potential milk yields. A scientific question concerns
the effect of daily milk yield on EME traits. It is import-
ant to understand whether differences in average milk
yield among different herds and differences in milk
yield among different cows within herd affect EME
traits; whether these two effects are of the same mag-
nitude, direction and pattern, and whether the differ-
ences are similar across different breeds or if there is
some interaction. Aim of this research was to study
FTIRS predictions of informative FA and EME traits at
the population level based on a large dataset of milk
infra-red spectra obtained during routine milk record-
ing operations and to compare different dairy and
dual-purpose breeds across different herd intensive-
ness and cow productivity levels.

Material and methods

The experimental design

The study was based on a dataset obtained from the
milk recording systems of Italian dairy populations and
did not include any direct handling of animals to take
measurements or samples, and did not require author-
isation by the University Ethical Committee. It drew on
the entire historical database of milk recording and
artificial insemination outcomes of the Breeders
Federation of Alto Adige/S€udtirol (Bolzano, Italy) in the
northeastern Italy. This database was used in previous
studies on the relationships between milk FTIR spectra
and the fertility of dairy cows (Toledo-Alvarado et al.
2017, 2018a, 2018b, 2021), and on the prediction of
the cheese-making ability and urea content of milk at
the population level (Bittante et al. 2021;
Bittante 2022).

Milk recording data and editing

We extracted all the data from cows of the four most
common breeds in the province: two specialised dairy
breeds, Holstein and Brown Swiss; and two dual-pur-
pose breeds, Simmental and Alpine Grey. Multi-breed
herds, i.e. with cows of two or more breeds, about
one third of total, were treated as two or more single-
breed herds.

A total of 1,898,994 test-day records were extracted.
Only herds with more than five cows, and cows with
more than five records were retained. After editing,
6,430 herds, 115,819 cows, 291,129 lactations and
1,759,706 test days/milk spectra remained for data
analyses. Parity orders were grouped into first (95,049),
second (74,976), third (55,780), fourth (33,578), and
fifth and subsequent (31,746).
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Test day milk recording data included daily milk
yield. A milk sample with preservative added was
transported to the laboratory for composition analysis.

FTIR spectra of milk samples

The milk samples collected were analysed with a
MilkoScanTM FTþ 6000 (Foss A/S) on the basis of their
FTIR spectra. The instrument and its operations are
validated and certified according to ISO 9622:2013/IDF
141:2013 (ISO 2013) recently updated to ISO
21543:2020/IDF 201:2020 (ISO 2013, 2020; Nierm€oller
and Holroyd 2019). The complete spectrum of every
milk sample analysed was stored in the experimental
database. A total of 1,060 absorbance values were
recorded for each milk sample covering the infra-red
wavenumbers ranging from 5,000/cm (corresponding
to a wavelength of 2.0 lm) in the near-infra-red sub-
division of the infra-red area, through the mid-infra-
red to wave number 930/cm (corresponding to a
wavelength of 10.8 lm) in the far infra-red subdivision.

EME traits and informative FA

For indirect prediction of the EME traits we used the
equations developed by van Lingen et al. (2014).

Methane yield per unit of dry matter intake:

CH4=DMI g=kgð Þ ¼ 23:39 þ 9:74� 16

: 0iso– 1:06� 18

: 1t10þ t11 – 1:75� 18 : 2c9, c12

where 16:0iso is iso-palmitic acid, 18:t10,þt11 is the
sum of the isooleic and vaccenic acids, and 18:2c9,c12
is the a-linoleic acid of milk, all expressed as % of the
sum of all milk FAs.

Methane intensity per unit of fat-protein corrected
milk produced:

CH4=CM g=kgð Þ ¼ 21:13 – 1:38� 4

: 0 þ 8:53� 16 : 0iso– 0:22� 18

: 1c9 – 0:59� 18 : 1t10þ t11

where 4:0 is butyric acid, and 18:1c9 is oleic acid, all
expressed as % of the sum of all milk FAs.

In addition, daily CH4 production per cow was
obtained from CH4 intensity.

Daily CH4 production per cow:

dCH4 g=dð Þ ¼ CH4=CM � dMY

where dMY is the daily production of milk per cow
corrected for fat and protein.

FTIR spectrometry of informative FAs and
EME traits

Two datasets of EME traits predicted using the equa-
tions developed by Bittante and Cipolat-Gotet (2018)
were compiled:

� Methane yield, CH4 intensity, and daily CH4 produc-
tion were indirectly predicted (Indirect-IR) from the
FTIR-predicted informative FA and the daily milk
yields measured during milk recording using the
aforementioned equations;

� Methane yield, CH4intensity, and daily CH4 produc-
tion were directly predicted (Direct-IR) from FTIR
spectra using prediction equations of previous
papers (Bittante and Cipolat-Gotet, 2018).

Prior to data analysis, each single wavenumber of
the spectra was centred and standardised to a null
mean and a unit sample variance. Mahalanobis distan-
ces were calculated using the Mahalanobis function in
the R software (R Core Team 2015; R Foundation for
Statistical Computing, Vienna, Austria). The spectra
were centred to a null mean and standardised to a
unit sample variance. The spectra were not subjected
to any other mathematical pre-treatment.

Separate models were fitted for all the EME traits
and for the informative FA. A Bayesian model (the
BayesB model) was implemented in the BGLR package
of the R software (P�erez and De Los Campos 2014).
Details of the chemometric procedure used are
described in Ferragina et al. (2015), while details of
the development of the FTIR equations for predicting
informative FA and EME traits are described in Bittante
and Cipolat-Gotet (2018). The accuracy of the predic-
tion equations was assessed by a training-test-
ing procedure.

Accuracy of the FTIR prediction equations

A random training data set (80% of the total records)
was used to build the equation, and a testing data set
(20% of the total) was used as validation; the proced-
ure was repeated 10 times for each trait. The coeffi-
cients of correlation between the measured and
predicted traits (r) and the root mean square error of
cross-validation (RMSECV) of the predicted traits
(Bittante and Cipolat-Gotet 2018) were:

Informative FA for indirectly predicting EME traits:

� 4:0 butyric acid, r¼ 0.69; RMSECV ¼ 0.66%;
� 16:0iso iso-palmitic acid, r¼ 0.55; RMSECV ¼ 0.08%;
� 18:1t10 isooleic acid, r¼ 0.65; RMSECV ¼ 0.07%;
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� 18:1t11 vaccenic acid, r¼ 0.66; RMSECV ¼ 0.28%;
� 18:1c9 oleic acid, r¼ 0.82; RMSECV ¼ 1.85%;
� 18:2c9,c12 linoleic acid, r¼ 0.70; RMSECV ¼ 0.44%;

Directly predicted EME traits:

� CH4/DMI, CH4 yield (g/kg DM), r¼ 0.70; RMSECV ¼
1.18 g/kg;

� CH4/CM, CH4 intensity (g/kg CM), r¼ 0.75; RMSECV
¼ 1.17 g/kg;

� dCH4, daily CH4 production (g/d/cow), r¼ 0.60;
RMSECV ¼ 86.0 g/d.

Stratification of herd intensiveness and cow
productivity levels

Within breed, the herd average amount of milk energy
produced daily by lactating cows was used as an indi-
cator trait of herd ‘intensiveness level’. This is because
it represents the cow’s net energy requirement for
milk production as well as the animal’s major – and
more variable – metabolic load. Unlike daily milk yield,
energy output does not include the weight of water
and ashes, but does include fat, protein and lactose in
terms of their energy content. The herds were strati-
fied into 5 categories of herd intensiveness level (HL)
determined according to the average daily milk
energy output (dMEO, MJ/d) yielded by all the lactat-
ing cows in the herd, as described in detail in a previ-
ous study using the same dataset (Bittante et al.
2021). Briefly, the net energy content (NEL) of milk
was estimated by applying the following equation,
recommended by NRC (2001):

NEL Mcal=kgð Þ ¼ 0:0929 � fat,% þ 0:0547

� protein,% þ 0:0395

� lactose,%

where NEL is the energy content of one kg milk.
The least squares means (LSM) of the dMEO of

each herd were calculated separately for each breed
after correcting the data for parity, class of days in
milk, and year-season. The herd solutions were used
to classify them into five dMEO levels: HL-1, herds <

�1.5r; HL-2, �1.5r to �0.5r; HL-3, �0.5r to þ0.5r;
HL-4, þ0.5r to þ1.5r; HL-5, > þ1.5r; where r is the
standard deviation of the herds’ LSM of dMEO
within breed.

Similarly, within each breed and herd, the average
milk energy produced daily by individual lactating
cows was used as an indicator trait of the animal’s
‘productivity level’, i.e. the metabolic effort it requires
for milk production. The model included the effects of

parity, class of days in milk, and year-season. The milk
production levels of the cows (CL) were stratified into
five classes (CL-A to CL-E) according to the solutions
of individual cows within HL.

The number of herds, cows and spectra available
by breed, HL and CL are shown in Figure 1.

Statistical analysis

The informative FA and EME traits were analysed using
the following linear model:

yijklmnop ¼ lþ Pi þ Dj þ Yk þ Ml þ HLm þ CLn þ Bo

þ HLm � Bo þ CLn � Bo þ eijklmnop ,

where yijklmnop is the response on the trait (FA and
EME traits); m is the general mean; Pi is the parity
order (i¼ 1st, 2nd, 3rd, 4th or � 5th); Dj is the cat-
egory of DIM (j¼ 12 groups of 30 days each, with the
last category open, max DIM ¼ 450 d); Yk is the effect
of Year (k ¼ years 2010 to 2017); Ml is the effect of
month (l ¼ January to December); HLl is the Herd
Level class (l¼ 1 to 5); CLn is the Cow Level class
(n¼ 1 to 5); Bo is the effect of breed (o¼Holstein,
Brown Swiss, Simmental, and Alpine Grey); HLm � Bo is
the effect of the interaction between Herd Level l and
breed o; CLn � Bo is the effect of the interaction
between Cow Level n and breed o; and eijklmnop is the
random residual � NIID ð0,r2

eÞ: The models were fit-
ted using the lm and aov functions in R. Details of the
statistical models are given in a previous study on the
same dataset (Bittante et al. 2021).

Results and discussion

Main sources of variation in milk yield and
informative milk FA used for indirect EME
predictions

The results of the analysis of variance carried out on
the daily milk yield and the six FTIR-predicted inform-
ative FA included in the equations used for indirect
prediction of EME traits are given in Table 1. Due to
the very large amount of records, all the effects
included in the statistical model were highly signifi-
cant for every trait (p< 0.001). The relative importance
of the various factors for each trait can be assessed
from the size of the F-values. In accordance with the
aims of this study, only the effects of breed, HL, CL,
and their interactions are reported and discussed.

The average daily milk yield (23.2 ± 7.4 kg/d) is
lower than, but with a similar variability to the values
(24.5 ± 7.9 kg/d) reported in previous research by
Bittante and Cipolat-Gotet (2018) on direct and
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indirect FTIR predictions of EME traits, and in Lingen
et al.’s (2014) research on fatty acid prediction of EME
traits (28.9 ± 6.4 kg/d). The major source of variation in
daily milk yield was breed of cow and HL, followed by
CL and stage of lactation.

While oleic and linoleic acid are almost always
included in the FA profiles of bovine milk, the other

informative FA are found only when detailed FA pro-
files are analysed. The average values and SDs of the
six FTIR-predicted informative FA considered here are
similar to those found in previous research on detailed
FA profiles of bovine milk analysed by gas chromatog-
raphy (Heck et al. 2009; Pegolo et al. 2016). It should
be noted that it is usually only the major milk FA that

Figure 1. Number of herds, cows and spectra collected by breed, herd intensiveness level class (HL) and cow production level
class (CL). Five classes of daily milk energy output (dMEO, MJ/d) for each factor: HL-1 and CL-A <-1.5r; HL-2 and CL-B -1.5r to
-0.5r; HL-3 and CL-C -0.5r to þ0.5r; HL-4 and CL-Dþ 0.5r to þ1.5r; HL-5 and CL-E >þ1.5r.
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are predicted by FTIR, as those present in milk in small
amounts generally have exhibit a modest level of pre-
diction accuracy (Eskildsen et al. 2014; Ferrand-Calmels
et al. 2014; Rovere et al. 2021).

The most important sources of variation in inform-
ative FA and in daily milk yield had different rankings.
In neither case was breed of cow among the most
important factors, despite being always significant.
This is consistent with the results of previous analyses
of milk FA, which revealed minor differences in the
profiles across different breeds, with the exception of
Jersey breed, not included here (Maurice-Van
Eijndhoven et al. 2011; Vanbergue et al. 2017; Poulsen
et al. 2012). Similar modest differences were found
using FTIR predictions (Soyeurt et al. 2006; Maurice-
Van Eijndhoven et al. 2013; Gottardo et al. 2017).

Stage of lactation was the most important source
of variation for almost all the FA considered, except
for the two 18:1t isomers (t10 and t11), which were
more affected by parity (important also for oleic and
iso-palmitic acids). The two 18:1t isomers and linoleic
acid were also greatly affected by HL. The variation

due to CL was less important than that due to HL
(except in the case of butyric acid). The interactions
between breed and both HL and CL, although less
important than the main factors, were always highly
significant. The LSMs of the major effects of breed of
cow, HL and CL are therefore not shown in the fig-
ures, whereas the LSMs of the interactions are shown
and discussed in the relevant chapters.

Main sources of variation in EME traits

The results of the analysis of variance carried out on
the EME traits predicted directly by FTIR spectra
(Direct-IR) and indirectly through prediction of the
informative FA(Indirect-IR) are given in Table 2. Also,
for EME traits, due to the large amount of data avail-
able, all the effects included in the statistical model
were highly significant (p< 0.001) for every trait. In
accordance with the aims of this study, only the
effects of breed of cow, HL, CL, and their interactions
are shown and discussed.

Table 1. Analysis of variance of milk yield and of the predicted informative fatty acids content: F-values of the factors included
in the model of analysis (all the effects are highly significant for p< 0.001).

Trait DF
Milk yield,

kg/d

Predicted informative fatty acids, %:

4:0 16:0iso 18:1t10 18:1t11 18:1c9 18:2c9c12
Mean – 23.20 3.40 0.32 0.29 1.21 18.13 2.02
SD – 7.40 0.59 0.06 0.11 0.43 2.54 0.44
Year of calving 7 19,078 3,952 2,799 790 809 2,709 3,104
Month of the year 11 1,061 308 593 659 355 784 560
Parity 4 41,237 687 6,558 3,568 5,891 6,497 2,438
Stage of lactation 11 130,812 29,666 17,690 895 3,982 26,647 8,661
Breed 3 372,766 966 433 240 1,147 176 159
Herd level 4 246,646 554 4,110 1,135 5,283 3,967 8,064
Cow level 4 131,360 1,222 933 300 3,708 2,723 357
Herd level by breed 12 214 153 268 262 519 60 427
Cow level by breed 12 170 46 27 51 54 27 28
RMSE 1,759,637 4.0 0.54 0.05 0.10 0.41 2.23 0.41

DF: degrees of freedom; SD: standard deviation.

Table 2. Analysis of variance of the enteric CH4 yield, intensity and production predicted directly from milk FTIR spectra or
through prediction of informative fatty acids: F-values of the factors included in the model of analysis (all the effects are highly
significant for p< 0.001).

Trait DF

CH4 yield, g/kg DMI: CH4 intensity, g/kg milk: Daily CH4 production, g/d:

Direct-IR Indirect-IR Direct-IR Indirect-IR Direct-IR Indirect-IR

Mean – 21.3 21.3 14.2 14.2 357 333
SD – 1.3 1.1 1.3 1.2 77 100
Year of calving 7 5,030 2,957 6,830 6,266 6,249 10,575
Month of the year 11 145 196 91 360 1,193 726
Parity 4 1,917 2,148 1,944 3,515 9,051 43,591
Stage of lactation 11 19,233 18,016 46,397 65,960 17,553 39,948
Breed 3 1,108 918 1,168 1,442 686 343,342
Herd level 4 3,537 4,506 196 114 6,378 278,162
Cow level 4 368 148 25 21 4,350 139,400
Herd level by breed 12 614 158 64 97 677 405
Cow level by breed 12 34 18 11 31 57 323
RMSE 1,759,637 1.2 1 1 1 70 58

DF: degrees of freedom; SD: standard deviation.
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The means and SDs of Direct-IR and Indirect-IR CH4

yield were very similar, as were those of Direct-IR and
Indirect-IR CH4 intensity. Note that all these predic-
tions were based on FTIR spectra information, the dif-
ference being that in the case of Indirect-IR the
spectra were used to predict the informative FA that,
in turn, were used to estimate the EME traits. The
mean values of these two traits (CH4 yield and inten-
sity) in both versions (Direct-IR and Indirect-IR) were
very similar but the SDs were lower than those of the
population used for calibrating the FTIR equations
(21.3 ± 1.6 g/kg DMI, and 14.2 ± 1.8 g/kg CM; Bittante
and Cipolat-Gotet 2018), and those used for defining
the equations based on FA (van Lingen et al. 2014).

Methane yield and intensity were both particularly
affected by stage of lactation, but also by year of calv-
ing and HL.

The results for daily CH4 production differ from the
previously cited EME traits because the Direct-IR and
Indirect-IR predictions yielded very different results
and were affected by different sources of variability. It
is worth noting that while the Direct-IR daily CH4 pro-
duction was predicted directly and solely from FTIR
spectra, the reference values used for calibrating the
prediction equation were obtained by multiplying the
daily milk yield by the CH4 intensity per kg of fat-pro-
tein corrected milk of each cow (Bittante and Cipolat-
Gotet 2018). Chemometric methods are required to
extrapolate from the milk FTIR spectra (which consti-
tute substantially qualitative information) the amount
of milk produced daily by the cows and the amount
of CH4 released into the atmosphere per kg of milk.
Using FTIR spectrometry to predict quantitative infor-
mation is expected to be difficult, which explains the
fact that Direct-IR CH4 production was the EME trait
prediction with the lowest correlation with the refer-
ence data (r¼ 0.60).

Indirect-IR daily CH4 production was, in contrast,
obtained from the cows’ daily milk yield measured
during milk recording (quantitative information),
whereas FTIR spectra alone were used to predict CH4

intensity per kg of corrected milk (r¼ 0.75) (qualitative
information).

This explains the very different means and SDs
obtained for Direct-IR and Indirect-IR daily CH4 pro-
duction and for the ANOVA. That the ranking of the
major sources of variation for Indirect-IR CH4 produc-
tion is much more similar to daily milk yield (Table 1)
than to the other EME traits (Table 2) was expected.
Breed was the most important factor affecting
Indirect-IR CH4 production (and daily milk yield), fol-
lowed by HL then CL.

Effects of herd intensiveness level and cow
productivity levels by breed of cow on informative
milk FA

In our database, breed of cow was the most important
source of variability in milk yield, which ranged on
average from 26.8 kg/d in the Holstein cows to
15.6 kg/d in the Alpine Grey cows, with Brown Swiss
and Simmental intermediate (Figure 2). Note that this
study was carried out in an Alpine region, where there
is a variety of dairy farming systems, ranging from the
very traditional to the modern (Schiavon et al. 2019;
Berton et al. 2020). The differences in the average milk
yields of the various breeds therefore reflect not only
different genetic backgrounds but also different farm-
ing systems. Previous research on the same area
which compared six breeds of cow reared in mixed
herds (Stocco et al. 2018) found a difference within
herd between Holstein and Alpine Grey cows of
8.0 kg/d, as opposed to the 11.2 kg/d found here
across herds. However, the variability among farms
was also very large within breed, which is why we
included HL in the statistical model. Note that this is a
within-breed classification factor and that it is not cor-
rected for the different environmental conditions in
which the different breeds are raised. To make the sig-
nificance of the HL within breed clearer, we plotted all
the LSMs of the investigated traits (y axis) against the
actual daily milk yield of each breed and the Herd or
CLs (Figure 3).

The first plot in Figure 3 reports the 20 LSMs of the
milk fat content (in %) of each of the four breeds and
at each of the five HLs. Here, milk fat serves to com-
pare the pattern of total lipid content of the milk with
the proportion of the informative FA in the same fat.
Large differences between the four breeds in terms of
milk fat content were evident (compare the medians,

Figure 2. Average daily milk production by breed of cows
(kg/d).
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i.e. the third value of each curve). All breeds exhibited
similar but not identical patterns of increasing HL. All
patterns increased curvilinearly with small differences
between the first three HLs and increasingly large dif-
ferences moving to the fourth and especially the fifth
HLs. The increase from first to fifth HL was greater for
the Holstein breed than for the Brown Swiss, with the
two dual-purpose breeds intermediate (the interaction
between breed and HL was highly significant, data not
shown). No overlap in the relationships between milk
fat content and daily milk yield in the different breeds

was found. However, the Alpine Greys and Holsteins
had a common trajectory, which could be interpreted
as the difference in fat content of these two breeds
being dependent mainly on their different milk yields.
Simmental, and especially Brown Swiss cows had dif-
ferent parallel trajectories.

The effect of CL within breed had similarities with
the HL effect, but also some differences (second plot
of Figure 3). The rankings and the median values of
the four breeds were obviously the same, as the two
plots are based on the same dataset. The increase in

Figure 3. Milk fat, butyric acid (4:0) and iso-palmitic acid (16:0 iso), in % of total fatty acids (LSM±CI), by breed, herd intensive-
ness class level or cow production class level plotted against actual cow yield (kg/d).
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milk fat with increasing CL was, in this case, almost
linear and the difference between the first and last
classes of each breed was smaller than for HL. The
fact that both HL and CL were favourably associated
with the increase in milk fat content was because
these classes were based not simply on milk yield, but
on the daily output of net energy. So, the classes rep-
resent an estimation of the ability of the cows (herds)
to produce valuable nutrients, and not simply water
excretion, and also quantify the cows’ metabolic bur-
den for lactation.

The informative FA exhibited patterns that were
very different from each other and also from total milk
fat content. The butyric acid content of milk fat
(Figure 3, 3rd and 4th plots) increased curvilinearly for
all breeds at the CL and for Holsteins and Brown Swiss
at the HL, but in an opposite pattern to that of milk
fat, increasing rapidly from the lower to the central
classes then much less so to the higher classes. The
curves in part overlap because the average butyric
acid content differed significantly in the four breeds,
although the differences were not relevant. Note that
butyric acid was included in the equation for estimat-
ing CH4 intensity per kg milk with a negative sign
(van Lingen et al. 2014), which means that the
increase in this fatty acid with increasing Herd and
CLs results in a favourable effect of herd intensiveness
and cow production, reducing the EME of lactating
cows per kg of milk produced.

Iso-palmitic acid (Figure 3rd, 5th and 6th plots), in
contrast, decreased with increasing Herd and CLs. The
median values of the breeds were similar, but the
decrease was much greater at the HL than at the CL,
and in Holsteins and Simmentals than in Brown Swiss
and Alpine Greys. Note that iso-palmitic acid is the
only one of the six informative FA with positive corre-
lations with both CH4 yield and intensity (van Lingen
et al. 2014). This means that the decrease in the pro-
portion of iso-palmitic acid in milk at increasing Herd
and CLs along with the increase in butyric acid leads
to a decrease in CH4 emitted per unit of DMI and per
unit of milk produced. A positive association between
iso-palmitic acid in milk and EME was also found by
Rico et al. (2016), and positive associations between
palmitic acid and EME were found by several other
authors (Chilliard et al. 2009; Dijkstra et al. 2011), as
was the case for many saturated FA and especially
those derived by mammary de novo synthesis
(Chilliard et al. 2009).

Isooleic acid (18:1 trans10) increased with HL,
steeply in the case of Alpine Grey herds, moderately
in Brown Swiss and Simmental herds, and very

modestly and curvilinearly in Holstein herds (1st and
2nd plots in Figure 4). The effect of CL on this fatty
acid was smaller and almost the opposite (decreasing,
especially in Holsteins and Simmentals). This milk fatty
acid was also correlated with a decreased CH4 yield
and intensity (van Lingen et al. 2014), like several
other isomers of oleic acid (Chilliard et al. 2009;
Mohammed et al. 2011). It is worth noting that isoo-
leic acid had a favourable effect on the carbon foot-
print at increasing levels of dairy farm intensiveness,
but an unfavourable effect at increasing cow produc-
tion levels within farm (Figure 4, 1st and 2nd plots).

Vaccenic acids exhibited very different patterns
among the HLs (Figure 4, 3rd plot), with the extremes
represented by the small linear increase in Alpine Grey
herds and the strong curvilinear decrease in Holstein
herds. The effect of CL (Figure 4, 4th plot), on the
other hand, was very similar in the four breeds with
relevant linear decreases in all cases. The negative
association between vaccenic acid and EME traits (van
Lingen et al. 2014) was also reported by other authors
(Dijkstra et al. 2011; Mohammed et al. 2011; van
Gastelen et al. 2018). In addition, the variation in vac-
cenic acid contributed to an unfavourable effect on
EME at increasing HL and CLs.

The major fatty acid considered, 18:1 cis9 (oleic
acid), decreased at increasing Herd and CLs (more in
the former and less in the latter case) (Figure 4, 5th
and 6th plots). Linoleic acid exhibited an almost
opposite pattern to oleic acid, with a strong curvilinear
increase for HL and much smaller curvilinear increases
for CL (Figure 4, 7th and 8th plots). As both FA were
found to have a negative relationship with the EME of
dairy cows (van Lingen et al. 2014), they had opposite
effects on CH4 emission: oleic acid unfavourable and
linoleic acid favourable at increasing HL and CL.
Several authors have found oleic acid to have a tem-
pering effect on EME, whereas the effect of linoleic
acid was less consistent and was found to be nega-
tively (Mohammed et al. 2011) and positively (van
Gastelen et al. 2018) correlated with the EME of
dairy cows.

The complexity of the interactions between breed,
farm intensiveness level and cow productivity, and the
different weights assigned to the informative FA in
the equations for estimating CH4 yield and CH4 inten-
sity may have the potential to capture the differences
in feeding regimes, metabolic burdens and the man-
agement and environmental conditions of cows and
herds. At least in part, the greater differences
observed for increasing HL, compared to CL, would be
likely due to different feeding practices applied to
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different breeds and different farms within breeds in
terms of forage to concentrate ratio and feed ingre-
dients, that could modify the rumen fermentations
towards different proportion of volatile fatty acids.

Effects of herd intensiveness level and cow
productivity level by breed of cow on EME traits

EME traits, whether derived directly or indirectly from
informative FA and milk FTIR spectra, were also

characterised by different patterns in different breeds
at increasing HL and CL. The effects on EME of interac-
tions between the cow’s genotype and farming sys-
tems were observed in previous studies (Ross
et al. 2014).

The effect of HL on CH4 yield was always curvilin-
ear, decreasing particularly at higher HLs, and stronger
in Holstein (and Simmental) than in the other breeds
(Figure 5). Comparing the two methods of estimating
EME, Direct-IR (EME predicted from milk FTIR spectra)

Figure 4. Milk isooleic acid (18:1 trans10), vaccenic (18:1 trans11), oleic (18:1 cis9), and linoleic acid (18:2 cis9,cis12), in % of total
fatty acids (LSM±CI), by breed, herd intensiveness class level or cow production class level plotted against actual cow yield
(kg/d).
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and Indirect-IR (EME predicted from informative FA
predicted from milk FTIR spectra), we find they had
similar curved shapes, similar rankings of breeds, but
the HL effect had a broader range in the former case
than in the latter. The effect of CL on CH4 yield was
much less evident than the effect of HL, and the dif-
ference between the two methods of EME prediction
was modest. It is evident that the variation in dMEO
(daily milk net energy output; MJ/d) of the different
herds reflected above all differences in the composi-
tions of the diets and DMI.

At the CL, the animals belong to the same herd
and were often fed the same diets (especially if total
mixed rations are used). In this case, the only differen-
ces arise from the different DMI of cows of different
productivity levels and from feed selection behaviour.
Bear in mind that stratification of the cows was based
on the average output of their entire productive life
and therefore did not reflect differences in different

lactation stages. In more traditional farms, an amount
of concentrate was provided in the milking parlour or,
in the case of tie stalls, at the manger (sometimes
using automatic feeders). In any case, the same com-
pound feed was generally provided to all animals and
the average difference between individual cows over
the entire lactation period was moderate.

Regarding CH4 intensity per kg of fat-protein cor-
rected milk, the prediction methods yielded similar
patterns with respect to the interaction between the
HL and CL and the breed of cow (Figure 6). The
Alpine Greys had the highest average values and the
greatest decrease in CH4 intensity at increasing Herd
and CLs. In contrast, Holsteins had the lowest emis-
sions and were the least affected by HL and CL. The
Simmental and Brown Swiss herds and cows were
intermediate with respect to the other breeds.

Lastly, the results for daily CH4 production (Figure
7) clearly show the inability of the Direct-IR method to

Figure 5. Predicted enteric CH4 yield (LSM±CI, CH4/DMI, g/kg dry matter intake) predicted directly from milk FTIR spectra or
indirectly from predictive informative milk fatty acids by breed, herd intensiveness class level or cow production class level plotted
against actual cow yield (kg/d).
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capture the expected increase in CH4 emissions with
increasing HL and CL, and hence the need for further
information in addition to the milk FTIR spectra (van
Gastelen and Dijkstra 2016). In fact, the patterns were
flat and there was overlap among the different breeds.
In the case of the Indirect-IR method, there was a
strong linear relation between milk yield and CH4

emission. The lines of the four breeds were substan-
tially on the same trajectory. The median values of the
different breeds were very different, in accordance
with their different average milk yields. It appeared
that at the same actual milk yield the CH4 emissions
of Holstein herds and cows were slightly lower than
those of the other breeds. This was in accordance
with the lower CH4 intensity per kg corrected milk
(Figure 6), but also with the lower average energy
content of Holstein milk. These results could be useful
for better understanding the determinants and

complex interactions resulting in CH4 emissions in
commercial dairy herds.

How could FTIR EME predictions be used to
mitigate the dairy sector’s carbon footprint?

The availability of a tool for rapidly and cheaply pre-
dicting EME traits of dairy cows at the population level
has a threefold potential:

i. First, spectra of individual milk samples taken
during milk recording can be used for the genetic
improvement of dairy populations.

ii. Second, spectra of bulk milk samples collected by
dairy cooperatives from member farms for milk
payment schemes can be used to determine pos-
sible premiums/penalties on the price of the milk

Figure 6. Predicted enteric CH4 intensity (LSM±CI, g/kg of corrected milk) predicted directly from milk FTIR spectra or indirectly
from predictive informative milk fatty acids by breed, herd intensiveness class level or cow production class level plotted against
actual cow yield (kg/d).
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in accordance with the environmental impact of
each farm.

iii. Third, almost all the milk produced for commer-
cial purposes could be certified using predictions
obtained from FTIR spectra of individual or bulk
milk samples.

In all cases, an initial problem concerns the selec-
tion of the most useful EME trait to attain the desired
target at the dairy chain level. At the commercial level,
the objective would be to certify and apply penalties
according to the amount of CH4 [or better, the global
temperature potential to consider other greenhouse
gases and the short lifetime of methane in the atmos-
phere (Mazzetto et al. 2022] emitted for every kg of
milk (or dairy product) produced. The most useful trait
in these cases is CH4 intensity.

Genetic improvement is a matter of debate (Knapp
et al. 2014; Hristov et al. 2018; Beauchemin et al.
2020). The majority of publications in this area are
concerned with daily CH4 production (Negussie et al.

2018). As genetic improvement concerns the animal,
the objective should be to minimise the cow’s
daily EME.

The use of FTIR spectrometry to develop prediction
equations for estimating daily CH4 production from
selected informative milk FA was investigated by
Kandel et al. (2015) using a procedure similar to the
one used in this study. They estimated daily CH4 pro-
duction from the detailed fatty acid profiles obtained
from 602 milk samples analysed by gas chromatog-
raphy, to which they applied four of the equations
developed by Chilliard et al. (2009) based on a study
(8 cows, 4 diets, 32 balances) exploring the correla-
tions between milk fatty acid profiles obtained by gas
chromatography and daily CH4 production predicted
using sulphur hexafluoride as tracer. They then
regressed the predicted daily CH4 outputs on the FTIR
spectra of the same milk samples to obtain four FTIR-
based prediction equations. In the next step they
applied these (Direct-IR) equations to a population
database of 604,028 milk spectra (70,872 cows), then

Figure 7. Predicted daily enteric CH4 production (LSM±CI, dCH4, g/d) predicted directly from milk FTIR spectra or indirectly from
predictive informative milk fatty acids by breed, herd intensiveness class level or cow production class level plotted against actual
cow yield (kg/d).
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estimated the genetic parameters of the predicted
EME traits. They concluded that ‘the study showed the
feasibility of using MIR spectrometry results to predict
fatty acid-derived CH4 indicator traits developed in the
literature’, and that ‘the estimated genetic parameters
of these traits suggested a potential phenotypic and
genetic variability of the daily quantity of CH4 eructed
by Holstein dairy cows’. In a later research using the
same database (Kandel et al. 2017), they found that
the phenotypic and genetic correlations between FTIR-
predicted daily CH4 production and daily production
of milk, fat and protein were generally modest and
sometimes negative. This contradicts the frequent
observation that higher daily milk yields go hand-in-
hand with higher nutrient requirements and feed
intake, hence greater CH4 production (von Soosten
et al. 2020). The positive aspect of increasing daily
milk yield is that CH4 production tends to increase
less than proportionally, hence the CH4 intensity per
kg of milk is expected to decrease. This means that
the selection objective of dairy cow populations
should not be to reduce daily CH4 production per ani-
mal (correlating with lower milk yields, and the rearing
of more cows), but rather to reduce CH4 intensity,
mainly by increasing production efficiency.

It is also important that when planning a strategy
for mitigating the environmental impact of a given
sector a holistic approach should be taken, as one
action aimed at reducing a source of greenhouse gas
could cause an increase in other emissions or a wor-
sening of other impact categories (Gerber et al. 2013;
Lynch 2019). Moreover, even when considering EME
alone, it is essential to evaluate the correlations with
fertility, longevity, and other welfare and health traits
of the cows, as it has been shown that variations in
these traits may have a more important effect on the
sector’s EME than the variation expected from the
genetic improvement of production traits (Van
Middelaar et al. 2015; Llonch et al. 2017; von Soosten
et al. 2020; Beauchemin et al. 2020).

Conclusions

The enteric CH4 emissions of dairy cows predicted at
the population level from milk FTIR spectra and
informative fatty acid proportions vary according to
the predicted EME trait considered, the methodology
used, the breed of cow, herd intensiveness, the prod-
uctivity of individual cows within herd, and their inter-
actions. Direct-IR (milk FTIR spectra ! EME) and
Indirect-IR (milk FTIR spectra ! informative milk FA !
EME) yield similar results when used to predict CH4

yield per kg of DMI and CH4 intensity per kg of fat-
protein corrected milk. However, Direct-IR was found
to be unreliable for predicting daily CH4 production in
g/d, which could be more accurately estimated by
multiplying the recorded daily corrected milk yield by
the CH4 intensity per kg milk. Different breeds were
differently affected by the level of herd intensiveness
and, to a lesser degree, by the individual cow’s pro-
duction level. These results offer a better understand-
ing of the determinants and complex interactions that
give rise to the CH4 emissions of commercial dairy
herds, and could be useful for the genetic improve-
ment of dairy cows, environmental certification of
farms, and perhaps also for determining new milk pay-
ment schemes.
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