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Abstract

The study of sports performances is a topic of paramount importance in sports sciences,

in which the role of data has been always fundamental. The evaluation of athletes’

competition, for example, can be done on the basis of quantitative measurements of

their performances, useful for obtaining the subsequent rankings. If in principle, ac-

cording to this interest, various methods and approaches have been developed by whom

was directly involved in the field, the progress in technology has attracted researches

from other domains to this topic. Mathematicians, engineers, computer scientists, and

statisticians are involved in different aspects of sports science, both in developing tech-

nological tools useful in collecting and using data and in answering to research questions

of various levels of complexity.

The aim of this thesis is to provide statistical tools that can be used in analyzing sports

performances, with a particular reference to the employment of state space models and

time series analysis. The present thesis is composed of four chapters: the first two

provide an overview of the treated topics; the remaining chapters present the main con-

tributions of this work. In particular, the first chapter includes a general discussion of

sports performances analysis. The second chapter presents selected tools and models

useful in the time series analysis. In the third chapter, a Bayesian clustering model is

presented in order to describe the personal best performances of Italian middle distance

athletes. In more detail, the chapter provides a state space matrix model in which

several multivariate trajectories of different athletes have been grouped on the basis of

the trend of their performance and the pattern of missing data observed in the sample,

this last considered as indicator of personal history and attitudes of athletes. The in-

ference is conducted through a Markov Chain Monte Carlo simulation algorithm. The

application on real data shows benefits and limitations of the proposed approach and

it provides indications on which factors are relevant in order to obtain better sports



performances. The fourth chapter describes a model for monitoring the health status

during sports activities. The inference has been conducted using an online Expectation-

Maximization algorithm involving a sequential Monte Carlo approximation of change-

point predicted probabilities. As a byproduct of our model assumptions, the proposed

algorithm processes sequence of time series in a doubly-online framework. While change-

point models identify changes between subsequent activities, the state space formulation

of the model, together with the proposed algorithm, provides the additional benefit of

estimating changepoint probability in real-time.



Sommario

Lo studio delle performance sportive è un argomento di notevole importanza nelle scien-

ze motorie, in cui il ruolo dell’utilizzo dei dati è sempre stato fondamentale. La stessa

valutazione di una gara di uno sportivo, per esempio, viene svolta a partire da misu-

razioni quantitative delle sue performance, sulla base delle quali vengono stilate poi le

classifiche. Se all’inizio, a fronte di questo interesse, vari metodi ed approcci sono stati

sviluppati negli anni da chi era direttamente coinvolto nell’ambito, il progresso della

tecnologia ha avvicinato a questo campo studiosi e ricercatori di altri ambiti di ricerca.

Matematici, ingegneri, informatici e statistici sono coinvolti in vari aspetti di questa

disciplina, che li vede partecipi sia nello sviluppo di strumenti tecnologici utili alla rac-

colta stessa dei dati e al loro utilizzo, che nel rispondere a domande di ricerca con vari

livelli di complessità.

Lo scopo di questa tesi è quello di fornire strumenti statistici utili per le analisi delle

performance sportive, con particolare riferimento all’utilizzo dei modelli state space e

all’analisi di serie storiche. La tesi è composta da quattro capitoli: i primi introdu-

cono in maniera complessiva gli argomenti trattati; i rimanenti, invece, presentano i

principali contributi di questo lavoro. In particolare, il primo capitolo offre una visione

generale delle analisi delle performance sportive, ne discute gli obiettivi e gli strumen-

ti utilizzati, e delinea alcune opportunità di ricerca in campo statistico. Il secondo

capitolo, invece, presenta una selezione di strumenti e modelli per le analisi di serie

storiche. Nel terzo capitolo viene presentato un modello di clustering Bayesiano utile

per descrivere le migliori performance annuali di atleti mezzofondisti italiani. Più nel

dettaglio, il capitolo propone un modello state space matriciale in cui varie traiettorie

multivariate di diversi atleti vengono raggruppate sulla base del trend delle performance

e dei pattern di dati mancanti osservati nel campione, come indici della storia e delle

attitudini personali degli atleti. L’inferenza è condotta mediante un algoritmo di si-

mulazione nella classe dei metodi Markov Chain Monte Carlo. L’applicazione con dati



reali mostra benefici e limitazioni dell’approccio proposto, fornendo indicazioni di quali

siano i fattori rilevanti per ottenere performance sportive migliori. Il quarto capitolo

descrive un modello per il monitoraggio dello stato di salute durante l’attività sportiva.

Il modello proposto unisce la modellazione state space con i modelli per l’identificazione

di changepoint al fine di individuare cambi distribuzionali in una sequenza di attività

sportive. L’inferenza avviene tramite un algoritmo online di Expectation-Maximization

che richiede un’approssimazione delle probabilità di changepoint predette, ottenuta tra-

mite un metodo di approssimazione Monte Carlo sequenziale. Come conseguenza delle

assunzioni fatte sul modello, l’algoritmo proposto processa sequenze di serie storiche in

un contesto doppiamente online. Mentre i modelli di changepoint identificano cambi tra

diverse attività successive, la formulazione state space del modello, unita all’algoritmo

proposto, fornisce il beneficio aggiuntivo di stimare la probabilità di changepoint in

tempo reale.





Dedicato a Faouzi perché il mio dottorato è iniziato in campo.
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Introduction

Overview

Sports performance analysis is a topic with a long history in sports science, but has

received a further boost in recent years thanks to the availability of new technologies

capable of collecting a large amount of data and to the increasing interests of other

fields, such as statistics, mathematics, and computer science. This branch of research is

involved in several aspects of the sports sector. On one side, the interest of the athletes

and their equippes is to have information as accurate as possible on the activities carried

out, on the other side, the interest of the companies that develop these new technologies

is providing new analytical tools —hardware and software— which try to meet the needs

of those who perform the sport professionally, but also try to involve amateurs, fans,

and people that have an economic return from this sector. Sources of data are multiple:

not only data regarding the competitions of athletes are systematically collected by the

official federations, but, increasingly, athletes are monitored by smart devices, cameras,

and other tools that allow to collect and share data regarding their activities, with

the aim, not only to track progress, but also as a valid alternative to expensive and

inaccessible laboratory tests. However, there is a dark side to the high availability and

easy accessibility: data are typically collected in an unstructured manner, without a

declared sampling design, and their volume and complexity require tools that are not

accessible to most. The role of the statistician is clear: to extract knowledge from the

enormous amount of available data using appropriate tools, which are able to respond to

the questions and needs of athletes —and those interested in sports— without neglecting

the intrinsic complexity of the phenomena under consideration. Among the many tools

that can be used in this context, in this research project we explore the use of state space

models, as time dimension is a central aspect in sports data: athletes are monitored

during the time of an activity, from day to day, month to month, and so on. State

space models are indeed a broad class of models used for time series analysis, that

include ARMA models, linear regression models, and structural models involving trend,

3
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periodicity, and cycle components (Durbin and Koopman, 2012). In addition to the

natural advantage of being time series models, they allow for the construction of complex

models where multiple sources of variation are present, including missing values, together

with a unified methodology for offline and online inference through standard filtering

routines and sequential Monte Carlo approaches (Kantas et al., 2015). We use these

models for two distinct purposes: to identify athletes’ careers through a longitudinal

study and to monitor health status during sports activities using wearable and smart

devices.

On the first side, the identification of athletes careers is an important aspect in

performance evaluation, as it allows coaches to plan the future of young athletes with

consistent goals, based on personal attitudes and experiences, to avoid overloads and

early drop-outs. Good planning, along with support during the period of injury, have

been identified among the relevant factors in avoiding drop-out in young athletes (Buss-

mann, 1999; Larsen and Alfermann, 2017). Despite the large availability of data, made

possible by federations systematically collecting athletes’ competitions in public repos-

itories, identifying possible careers in middle distance athletes is a difficult task: drop-

out, as the main source of missing observations, is potentially correlated to performance

(Enoksen, 2011). Moreover, drop-out is not the only source of missing data that cor-

relates with athletic performance: among these, we include injuries, late entry into

competitions, and personal attitude, which implies a different propensity for the type

of race performed (Sandford and Stellingwerff, 2019). We address career identification

as a clustering problem, where clusters, that identify existing careers, depend on ath-

letes’ performances over the years, but also on the patterns of presence or absence of

observations, as well as the drop-in and drop-out phenomena.

On the second side, the use of wearable technologies and sensor data for medical

problems is gaining increasing interest from the statistical community (Huang et al.,

2019; de Chaumaray et al., 2020; Qian et al., 2020). Apps and wearables are indeed

driving the next digital health and fitness revolution, in which intelligent and automatic

real-time control and monitoring tools will become extremely relevant (Statista, 2020a).

It is expected that in the near future, smart watches may be used as medical monitoring

devices, providing support at an individual level to health-care consumers (Free et al.,

2013; Singh et al., 2018) and, more importantly, to users with different levels of health

literacy, communication, and data skills (Siqueira do Prado et al., 2019; Vitabile et al.,

2019). The spectrum of available and potential measurements by smart watches includes

information on movement, heart rate, blood oxygenation and pressure, and glucose

(Garćıa-Guzmán et al., 2021). We focus on identifying variations in the behavior of
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one or more measurements, i.e. changepoints, caused by changes in physical condition

such as physical discomfort, periods of prolonged de-training, or even the malfunction of

measuring devices during running activities. The difficulty in monitoring performances

due to the presence of disturbing factors, such as environmental conditions or other

within-activity sources of variability, is widely accepted, together with the need to make

decisions by evaluating the personal medical history, the long- and short-term training

goals of the athlete, and the time course of training schedules (Pelliccia et al., 2021;

Schneider et al., 2018). We address these issues by using a state space model that

considers the data as a sequence of activities, where each activity is a multivariate time

series representing a part of the training session. Changepoints are identified in a doubly-

online framework: in the between-online setting activities are processed sequentially, and

changepoint identification occurs when a new one is fully observed; in the within-online

setting, data are processed while activities are performed. During a run, information

on the behavior difference between the current and previous activities is translated into

motivational feedback or a potential alert before the end of the activity.

Main contributions of the thesis

The purpose of this research project is to develop innovative methods and models for

the analysis of data collected in sports contexts, with particular reference to individual

sports and athletics. The thesis consists of four chapters. The first chapter aims to

introduce the reader to performance analysis by discussing some existing contributions

in the literature, briefly presenting some datasets (including a new one), and outlining

some research opportunities. The second chapter introduces state space models for the

analysis of vector and matrix time series and the main tools utilized in later chapters,

along with some alternative models present in the literature. The main contributions of

the thesis can be found in the third and fourth chapters. In particular:

Contribution 1: Time series clustering of athletes’ careers under informative

missing data patterns

In the third chapter, we propose a model-based clustering approach with the aim of

identifying the careers of Italian middle-distance runners, born in 1988, represented by

multivariate time series of their performance in the 800, 1500, 5000 meters races in the

period 2006–2019. We address the clustering problem through a hierarchical specifi-

cation. First, we define a matrix state space model whose purpose is to describe the

time evolution of the observed races and at the same time to capture the cross-sectional
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dependence present among the variables. At this stage of the model specification, clus-

tering is achieved through a selection matrix involved in the measurement equation, the

purpose of which is to associate the different athletes with the states that describe the

group dynamics over the years. Second, we consider the presence and absence of vari-

ables as an informative aspect for clustering. We include this information through two

variables: the first one describes the drop-in and drop-out phenomena in the sample;

the second one describes the actual participation in the competitions by the athletes.

In this case, clustering is determined both by the drop-in and drop-out probabilities,

governed by a Markov chain with conditionally constant probabilities, but also by the

different probabilities of the athletes participating in different races. Inference is ob-

tained through a Gibbs sampling algorithm, which is easily derived through the use of

conjugate prior distributions. The identification of the number of groups is discussed,

together with prior specification. Application with real data shows benefits and limita-

tions of the model, which are discussed along with other possible developments.

Contribution 2: Doubly-online changepoint detection for monitoring health

status during sports activities

In the fourth chapter, we provide an online framework for analyzing data recorded by

smart watches during running activities. In particular, we focus on identifying variations

in the behavior of one or more measurements caused by changes in physical condition,

such as physical discomfort, periods of prolonged de-training, or even the malfunction

of measuring devices. Our framework considers data as a sequence of running activities

represented by a multivariate time series of physical and biometric data. We combine

classical changepoint detection models with an unknown number of components with

Gaussian state space models to detect distributional changes between a sequence of

activities. The model considers multiple sources of dependence due to the sequential

nature of subsequent activities, the autocorrelation structure within each activity, and

the contemporaneous dependence between different variables. We provide an online

Expectation-Maximization (EM) algorithm involving a sequential Monte Carlo (SMC)

approximation of changepoint predicted probabilities. As a byproduct of our model

assumptions, our proposed approach processes sequences of multivariate time series in

a doubly-online framework. While classical changepoint models detect changes between

subsequent activities, the state space framework coupled with the online EM algorithm

provides the additional benefit of estimating the real-time probability that a current

activity is a changepoint.



Chapter 1

Sports performance analysis

1.1 Today’s sports performance analysis

For as long as sports have existed, athletes and coaches have been asking themselves:

How can we improve? This question, which goes beyond the simple competitive aspect,

is a key aspect in sports science, so much so that, over the years, coaches and experts

have collected material and experiences to answer this question and disseminate the in-

formation gathered through years of observation and practice in performance analysis.

In this thesis, the terms sports performance analysis refer to the analysis of data that

have been collected in sports contexts and are related the activities carried out by ath-

letes, without any particular reference to the type of data, the specific research question,

or the methodologies used. The data typically collected by athletes include: training

diaries, training schedules, videos and data related to training and competitions, and

results of tests and scientific protocols carried out in the fields and laboratories (see,

among others, Sargent et al., 2014; Müller and Glad, 2014; Coh et al., 2019; Alvero-Cruz

et al., 2020). While interest in analyzing these data has always existed among athletes,

coaches, and federations, with the advent of new technologies, other fields of research

have also become extremely interested in this world, not only because of the associated

challenging scientific problems but also out of pure economic interest. Demonstrations

of these increasing interests are the recent contributions and books in the fields of mathe-

matics (Karlis et al., 2021), engineering (Allen and Goff, 2018), computer science (Tuyls

et al., 2021; Richter et al., 2021; Baca, 2014), and statistics (Santos-Fernandez et al.,

2019; Severini, 2020) as well as those by companies in the private sector, such as Xsens,

Polar and PKvitality, among others (Paulich et al., 2018; Emig and Peltonen, 2020).

This increased interest is supported by a growing availability of data. While athletes

are monitored using the classic methods mentioned above, they are also tracked using

7
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technologically advanced and intelligent devices, which are becoming increasingly more

present in their lives. Athletes are monitored using non-invasive, or minimally invasive,

GPS tracking devices, heart rate monitors, accelerometers, gyroscopes, wearable sleep

and lactate monitoring devices, and so on (Cardinale and Varley, 2017; Villena Gonzales

et al., 2019; Bourdon et al., 2017).

Although it is possible to collect data and extract increasingly precise information on

athletes and, on the basis of the same, improve knowledge, training and racing choices,

there are still open questions discussed in the literature regarding the limitations and

problems with such data, and doubts with respect to their reliability (Halson, 2014;

Bourdon et al., 2017; Vermeulen and Venkata, 2018). We have to make a distinction

between ethical and practical problems of this topic. From the ethical point of view,

Halson et al. (2016) highlight the primary need to not harm athletes and to evaluate the

implications of the choices made on the basis of poor scientific evidence for their safety

and health, which includes their psychological wellbeing (too much information can raise

stress levels). We add to this the need to guarantee the confidentiality of data, not only

to preserve the privacy of athletes but also avoid offering, on the basis of data, unfair

competitive advantages. From the practical perspective, on the contrary, we mention the

difficulties related to both the collection and the use of these data. In the first place, data

are typically collected in an unstructured manner, without a declared sampling design,

and their volume and complexity require tools that are not accessible to most. The

collected data are characterized by different formats, which vary based on the different

companies that provide tools their collection (Mackie, 2016; Frick and Kosmidis, 2017)

and also on the types of data collected (video, GPS route, IMU based motion tracking,

etc.). In addition, nowadays there is no one specific method that is used to collect

data, with athletes using different strategies to do the same, depending on their needs,

uses, and devices, which creates general difficulties with regard to aggregating them. In

conclusion, we highlight an important aspect in sports: athletes interact with a highly

dynamic environment (Pol et al., 2020) composed of coaches, teammates, competitors

as well as training and technological devices. Adequate performance analysis tools can

manage such complexity, and statistics can highly improve research in this field.

1.2 Selected works in statistics

1.2.1 The trackeR package

GPS-enabled tracking devices and heart rate monitors are widely used in several in-

dividual sports, such as running, swimming, and cycling, and during athletic training
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in other field and team sports. The trackeR package by Frick and Kosmidis (2017)

aims to fill the gap between their data collection and their analysis using the R statis-

tical software (R Core Team, 2020). The package offers several routines for both basic

and advance retrospective statistical analysis. These include importing utilities for files

in different formats (.tcx, .db3, and Golden Cheetah’s .JSON files); handling units of

measurements; session-specific summary statistics (time, distance covered, duration, av-

erage speed, average heart rate, etc.); missing values correction and distance correction

using altitude; visualization tools (both for single and multiple sessions); work capac-

ity quantification (Skiba et al., 2015) and distribution and concentration profiles and

smoothing (Kosmidis and Passfield, 2015).

We concentrate on the distribution profile, which is defined by Kosmidis and Passfield

(2015) as the curve {v,Π(v)|v ≥ 0} such that

Π(v) =

∫ T

0

I(v(t) > v)dt,

where T is the total duration of the training session. The distribution profile is a mono-

tone decreasing function that describes the time spent exercising above a threshold for

a given variable V . The negative derivative of the distribution profile is defined by Kos-

midis and Passfield (2015) as the concentration profile, which is useful for determining

the concentrations of time around certain values of the variable under consideration.

The use of the described two functions is motivated in a predictive framework, in which

they are used in place of the standard summary statistics, obtained after preliminary

smoothing operations. Among the advantages of using these functions, there is the

possibility of comparing through a simple expedient (integrating out the time), many

different sessions using a single time-free domain, even when the sessions have different

durations. However, the distribution of the energies over the duration of the session is,

in some cases, important in performance analysis, and it is possible to obtain artificial

examples in which two different types of effort have similar distribution profiles.

1.2.2 Monitoring ultrarunners’ behavior in a 24-hours race

24-hour races are complex competitions and are different from the typical regular races

held in athletics. In these races, the athletes follow a predefined route, and victory is

awarded to those who, within the same day, manage to cover the greatest distance. A

24-hour race requires a strategy that is personal and allows athletes to finish the race

to the best of their ability. During the race, the athletes are allowed not only to decide

how fast they should run but also to slow down or stop when needed in order to finish
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the race in the best possible way. Significant work on pacing strategies has been done

by Abbiss and Laursen (2008), who propose a review of the various strategies that are

employed during competitions. In the same vein, Bartolucci and Murphy (2015) propose

a finite mixture of linear and multinomial logit regressions models to cluster the observed

speed trajectories of athletes over the number of laps completed in a 24-hour race. In

particular, for athlete q and lap l, they consider the following dependence structure:

pθ(Sq = g|zq)pθ(bq,l|Sq = g,xl)pθ(yq,l|Sq = g, bq,l,xl).

Here, xl and zq are vectors of covariates, θ ∈ Rd is a vector with unknown parameters,

Sq ∈ {1, . . . , G} is the latent cluster allocation, bq,l ∈ {0, 1, 2} is the observed variable

that denotes if the athlete is running, walking (or resting), or has left the race dur-

ing lap l (before the end), respectively, and yq,l is the observed speed during lap l, for

l = 1, . . . , Lq, and q = 1, . . . , Q. In the equation, pθ(Sq = g|zq) and pθ(bq,l|Sq = g,xl)

are generalized Bernoulli densities with probabilities parametrized on the basis of multi-

nomial logits. If bq,l = 0, the density pθ(yq,l|Sq = g, bq,l,xl) is the density of a normal

distribution with a cluster-dependent mean and variance shared across individuals; if

bq,l = 1, this density is left unspecified (athlete is resting), or it is degenerate in 0 if

bq,l = 2 (athlete completed the race). The athletes and the laps completed by them

are assumed to be conditionally independent, which allows to obtain a likelihood that

is easily maximized using the EM algorithm. A desirable property of the model is that

it allows to obtain clusters of trajectories, not only based on the speed observed during

various laps, but also based on the different states of the athletes, which provide infor-

mation regarding the phenomenon of drop-out, where the athletes leave the competition

before it ends. For more details on both the model and the application, we refer to the

original article by Bartolucci and Murphy (2015).

1.2.3 Other papers

In addition to the works explained in the previous sections, several contributions in

statistics that deal with problems in sports performance analysis have been proposed in

recent years. Other than the work of Kosmidis and Passfield (2015) and Jacques and

Samardžić (2021), which are briefly discussed in Section 1.3.2, we mention the works by

Haynes et al. (2017), Pradier et al. (2016), Leroy et al. (2018), and Dolmeta et al. (2021).

More specifically, Haynes et al. (2017) develop a computationally efficient nonparametric

approach for changepoint detection, and apply their method to detect changes in heart

rate during one physical activity. Once they have segmented the activity using the



Chapter 1 - Sports performance analysis 11

changepoints identified analyzing the behavior of the heart rate variable, they have

compared the segmentation obtained with the variables speed and altitude, in order to

visually understand how these changes could be driven by changes in these other two

variables. By using a Bayesian non-parametric approach, Pradier et al. (2016) study the

impact of age, gender and environment on the runners’ performances in marathons with

two different aims. First, they derive a grading method that allows for direct comparison

of runners regardless of their age and gender, based not only on top world records, but

also on the performances of all runners. Second, they analyze the running patterns of

the marathoners in time, obtaining information that can be useful for training purposes

and for predicting the finishing time, applying their methods with data of different

marathons. Leroy et al. (2018) solve the problem of early detection of promising young

swimmers by clustering longitudinal data describing their race performances over the

years, using a functional data analysis approach. Finally, Dolmeta et al. (2021) develop

a hierarchical Bayesian GARCH model for functional observations, useful for describing

and predicting the evolution of performances of shot put athletes over time. Their model

provides an accurate description of athletes’ performance trajectories over the years, by

considering both the intra- and inter-seasonal variability present in the measurements.

1.3 Datasets

While a growing number of statistical tools are available for the analysis of sports data,

it is relevant to determine where and how one should collect data that can be used for

the analysis and development of new techniques in the context of sports performance

analysis. Data are collected on the field during training and competitions by athletes

and coaches, official federations, sports science research teams, people interested in the

topic, private or public institutes as well as companies that produce and sell the devices

and services used for athletic monitoring (e.g. Strava, PolarFlow, StatsPerform, etc.).

In this section, we review some datasets and data sources that are freely available for

research.

1.3.1 Official data sources

One of the main resources of data for the performance analysis of various athletes are

official federations. In athletics, for example, different data are collected at the regional,

national, and international levels by the respective federations. Table 1.1 lists the official

websites of athletic federations from Veneto, Italy, Europe, the World, and some other

data providers. On the national site, for instance, it is possible to access athletes’ results

www.strava.com
https://flow.polar.com/start
www.statsperform.com
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Figure 1.1: Performances in the 100 meters by L. M. Jacobs. The red dashed line
represents the world record held by U. Bolt (2009). The solid blue line indicates
the regression line with linear and quadratic terms. The gray band is the ggplot2’s
default confidence band (Wickham, 2016).

over time and certain personal information (sex, age, team membership history, etc.) or

important news related to their career as well as obtain information regarding races and

competitions. The Italian national rankings have been updated annually since 2005 and,

therefore, allow to track the evolution of the best annual performances of each athlete

over time. Through web scraping, it is possible to obtain useful data for performance

analysis both for single athletes and for comparisons between multiple athletes over time

(see Chapter 3).

Figure 1.1 shows an example of a graphical visualization based on the data collected

Table 1.1: Example of data sources and useful links in athletics.

Name Level (role) Links and description

Fidal Veneto Regional (federation) Material and experiences
Fidal National (federation) Results, rankings, and material

European Athletics International (federation) Results and rankings
World Athletics International (federation) Results and rankings

TDS National (private company) Road and cross country races
New York Marathon International (race) Results

https://rb.gy/npdi3p
http://www.fidal.it/calendario.php
http://www.fidal.it/graduatorie.php
https://rb.gy/npdi3p
https://european-athletics.com/historical-data/calendar-results
https://european-athletics.com/historical-data/top-list/season
https://worldathletics.org/competition/calendar-results?offset=300 
https://worldathletics.org/world-rankings/100m/women
https://tds.sport/en
https://results.nyrr.org/home
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by official federations for a single athlete. More specifically, the figure shows the per-

formance progression of L. M. Jacobs, the 2021 Tokyo Olympic champion in the 100

meters race. His performances are plotted over time and colored according to the wind

speed recorded during competitions, where positive wind speed means that the wind

was blowing from behind the athletes. Since parabolic shapes are typically used to de-

scribe an athlete’s career (see, e.g., Haugen et al., 2018), the regression line was added

using a linear regression model with both linear and quadratic terms. In the figure, we

can grasp the possible presence of a relationship between wind and performance, with

a headwind typically slowing the athlete down. However, other relevant information is

present in the official databases and not used in this analysis, such as the lane of the

races, the type of races (final, semifinal, heat, etc.), the place and time of the races as

well as the knowledge of the experts (rules for regular races, training period, athlete’s

history, etc.) and other information (injuries, coach, etc.). Although these analyses are

of interest in the field of sports science, further in-depth analysis of Jacobs’ career is

beyond the scope of this section, the purpose of which is to simply show and discuss

some typical data and data sources in sports performance analysis.

1.3.2 Other datasets

Other data sources come from other scientific research in the field if researchers make

the datasets available. In statistics, R packages are often accompanied by datasets.

The dataset runs in the work of Frick and Kosmidis (2017) is composed of 27 train-

ing sessions of a single male runner during June 2013, with distances ranging between

2.79 km and 22.35 km. The relevant variables included in the dataset are latitude,

longitude, altitude, heart rate, running cadence, distance, and speed and are similar in

characteristics to those presented in the next section. Kosmidis and Passfield (2015)

develop a multiplicative effects model for the identification of the factors that influence

the performance of highly-trained endurance runners and analyze a one-year dataset

composed of the training, laboratory, and field tests carried our by 14 competitive en-

durance male athletes (3469 distinct training sessions). Jacques and Samardžić (2021)

develop an ordinal logistic regression model with functional covariates to analyze 216

one-hour bike sessions recorded by an amateur cyclist during 2019. The relevant vari-

ables included in the study are power, speed, heart rate, altitude, slope, cycling cadence,

and temperature. The package by Mackie (2016) is composed of only a few examples

of cycling data. Similar datasets were collected by Rauter and Fister (2015) and have

been updated the years following the publication of their work. Their latest version is

composed of 15 cyclists (14 male, 1 female), which include 4 cyclists who compete at a
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professional level (Fister et al., 2017). The collection of these datasets typically occurs

through direct contact or through requests from researchers to the users of platforms

and social networks in the field, such as Strava, Garmin Connect, or Polar Flow.

Puchowicz et al. (2018) discuss the use of tracking technologies and portable sensors

for doping detection and identify the critical power (CP) model (Hill, 1993) as a poten-

tial tool for doing this for cyclists. Their proposal uses data collected by one professional

cyclist for a period of 6 years (Pinot and Grappe, 2015). However, their approach is

based on “an added simulated doping effect for selected years”, and no real observations

are available for athletes who doped. Alternative anti-doping methods rely on monitor-

ing athletes’ hematological measurements, such as the use the biological passport (see,

e.g., Sottas et al., 2010; Schütz and Zollinger, 2018; Faiss et al., 2020); but there is no

interest in relating such blood measurements to athletes’ performances.

An additional source of data comes from the companies that are directly involved

in the field. With the goals of creating new hardware and improving user experience,

Strava makes their dataset, which is made up of an ever-growing number of user activ-

ities, available to developers. In April 2021, Xsens organized the Xsens Biomechanics

Challenge, in which teams of engineers, sports scientists, and computer scientists from

around the world challenged each other to solve a case study that is related to the daily

life of a physiotherapist. In the competition, partecipants were required to calculate the

power expressed during 4 different repetitive athletic actions (squat, bench press, ball

kick and ball throw) and evaluate the presence of asymmetries, as well as the variability

and repeatability of the exercises. In brief, data that described the movements of the

body (angles, speeds, etc.) during the performance of the exercises were collected by

an Xsens suit that consisted of 17 wireless sensors placed all over the body. We direct

readers to the company’s website for an overview of their products, as well as to spe-

cialized literature for an overview of their uses in biomechanics (see, e.g., Rana and

Mittal, 2021; Camomilla et al., 2018).

1.3.3 A new dataset with sports activities

The dataset collected for this thesis is currently composed of 5875 sports activities but

is constantly updated with new ones. In total, 24 subjects are currently included in

this dataset, who practice running and athletics at both amateur and competitive levels

(the highest level in Italy is national). Of these, 21 athletes are male, and 3 are female.

Data collection was conducted for scientific purposes, by a social contact after a request

was received by the author through his Strava account, and started on September,

2017. However, not all the participants consented to the publication of sensitive data

https://developers.strava.com/
https://www.xsens.com/
https://www.xsens.com/biomechchallengedkfjsdjvh
https://www.xsens.com/biomechchallengedkfjsdjvh
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Figure 1.2: Example of one activity carried out by an athlete and some of its
measured variables. Speed is obtained as the first difference in the cumulative distance,
since observations for the latter were recored every second. The activity represents
approximately 10 minutes of continuous running. The variables latitude, longitude,
and altitude have been excluded.

in a disaggregated form, which can trace back to their habits and personal details.

The minimum number of activities per subject is 1, while the maximum is 1866, and

these refer to more than 1167 hours and 14100 km of activities. The activities include

running, swimming, biking, walking, and hiking. The devices used are from various

brands and include Garmin, Polar, and Suunto. The activities were downloaded in

various formats, including .gpx, .tcx, .json, and .fit. The routine FitCSVTool.jar

available on Garmin’s site can be used to convert .fit files to .csv. The most common

variables found are UTC time during the activity, latitude, longitude, altitude, heart

rate, cadence, speed, cumulative distance, and temperature. More recent files have

measurements related to vertical oscillation, vertical oscillation ratio, stance contact

time, stance time percentage, and balance during stance contact.

https://developer.garmin.com/fit/overview/
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Figure 1.3: Example of one athlete’s activities that vary in intensity, effort distri-
bution, and duration. Different activities are placed in different columns.

Figure 1.2 shows an example of an approximately 10-minute continuous running

activity performed by an athlete, for which the location variables (latitude, longitude

and altitude) were excluded. In each graph, the x-axis represents time (in seconds),

while the y-axis represents the variable measured in the original unit of measurement

in the file. As we can see, the variables are characterized by different behaviors: some

variables have an approximately constant behavior (stance time, stance time balance,

etc.), while others change in level (speed, cadence), tend to grow (vertical oscillation and

heart rate), or are characterized by moments during which there is greater variability in

the measurements (speed). The possible presence of outlying observations can also be

noted. A clear example of this is observation with value 0 around 400 seconds for the

stance time balance variable. The same anomalous behavior is also present to a more

or less severe degree in the other variables.

However, the activity shown in Figure 1.2 is only one of many performed by a single

athlete. They vary in intensity, effort distribution (there are not only continuous run-

ning activities), duration, and mode of measurement (the measured variables change

if different devices are used, and the interest in monitoring activities may vary based

on the type of activity being performed). To illustrate how the different activities of a

single athlete may differ from each other, Figure 1.3 shows the heart rate and the speed

for 3 distinct activities performed by the same athlete, in which the behavior of the

variables is irregular. Irregularity in observations is a typical feature in certain types



Chapter 1 - Sports performance analysis 17

of training, in which athletes perform activities that alternate between high-intensity

and low-intensity phases. Such irregularities sometimes follow predefined rules (e.g. the

runner has to alternate 30s at high intensity and 30s at low intensity); other times, they

occur randomly. Further, at times workouts can combine some of these components

(Kenneally et al., 2018). A comprehensive view of the entire dataset would require sig-

nificant effort and is outside the scope of this thesis. However, a subset of the collected

activities is used in Chapter 4.

1.4 Research opportunities

Given the increased availability of data collected in a sporting context and the fact that

they vary in regard to form, format, and the way they are collected and used, it is worth

asking what is important in the research in this field and which questions need to be

answered. To address such questions, it is necessary to consider three aspects together:

(a) the needs of those working in the field and the current research questions; (b) the

tools that are available and the goals of the companies involved in the field; (c) the tools

that are available in statistics (and mathematics, engineering, and computer science)

that can help answer these questions. One way to partially respond these needs is to

observe the current trends in scientific research, by either considering the reviews and

perspectives reported in the literature or examining the topics that are proposed and

most discussed at conferences. A complete view of the topic, however, is difficult to

obtain, especially for the aspects related to companies and sports people, who rarely

make their goals and questions explicit to the public.

From the sports science point of view, Bourdon et al. (2017) provide an interesting

“consensus statement”, in which actual (up to 2017; hence, not even actual) training

load monitoring was discussed by experts of the field. They first distinguish between in-

ternal and external load monitoring (Bourdon et al., 2017; Cardinale and Varley, 2017).

Internal monitoring is related to the physiological and psychological response to train-

ing: the typical variables monitored are heart rate, blood lactate, oxygen consumption,

and rate of perceived exertion (Bourdon et al., 2017). External monitoring relates to

the work performed by the athlete and is described by physical variables such as speed,

running cadence, developed power, etc. Among the challenges, Bourdon et al. (2017)

highlight the need for valid and reliable criteria to evaluate athletes’ loads. In addition

to the simpler methods that use the measured variables in their units of measurement,

the use of composite and derived methods is intriguing (Bourdon et al., 2017). This
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context justifies our work proposed in Chapter 4, where we use both internal and exter-

nal load variables within the same framework, in a completely online fashion. Real-time

monitoring is indeed one the challanges discussed by Bourdon et al. (2017) in the section

titled “What is the future of athlete load monitoring?”. Another aspect to be studied

which we include among future research opportunities, involves the definition of a link

between external and internal load monitoring variables based on the data that are ob-

served or between external and internal load monitoring variables and the prescribed

trainings. This would lead to new insights into training prescriptions.

How to prescribe training is an important aspect in sports science (Kasper, 2019).

Training prescription is based on the experience and knowledge of coaches, which are

developed over the years both through studies in the field and through trial and error.

By training prescription, however, we do not only refer to the actual decision regarding

which training to execute and include, but also the evaluation of the athlete’s capabilities

as well, based on their short-, medium-, and long-term goals. Official databases are

growing in number and completeness. New visions can arise through the exploration

of the collected material at any level and for any kind of sport. This is in line with

Chapter 3, in which we try to extract different profiles of athletes on the basis of the

races held over the years, in an attempt to outline the best strategies to follow based

on our results.

Another aspect to consider is related to conferences and workshops. Table 1.2 sum-

marizes the topics of the calls for papers at the IJCAI-AISA-2021 conference. Among

the several conferences and workshops on the topic, this one was reported because its

calls for papers was detailed in reporting several topics in the world of sports analytics

(and sports performance analysis). Other conferences worth mentioning are the MIT

SLOAN analytics conference, AUEB Sports Analytics Workshops, NESSIS, MathSport

International, ISEA, and icSPORTS. The last two are better aligned with a more indus-

trial and engineering vision of sports, rather than a purely statistical one, which allows

an alternative perspective on the topic.

In the next chapter, the focus of our work will be on state space models (both vector-

and matrix-variate). Compared to many other tools, state space models offer certain

advantages: they are general and easily generalizable; they include many models that

are used in time series analysis; they allow the use of a unified strategy for inference

(offline and online); finally, they are interpretable. Among these reasons, we recognize

the relevance of the time component: athletes are monitored during an activity, day

after day, month after month, and year after year. A vector time series is observed if,

for an athlete, multiple variables are monitored over time. Matrix time series, on the

https://sites.google.com/view/ijcai-aisa-2021/call-for-papers?authuser=0
https://www.sloansportsconference.com/
https://www.sloansportsconference.com/
https://aueb-analytics.wixsite.com/sports
http://nessis.org/call.html
http://www.mathsportinternational.com/
http://www.mathsportinternational.com/
https://www.sportsengineering.org/
https://icsports.scitevents.org/
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Table 1.2: Topics included in the IJCAI-AISA-2021 conference as examples of re-
search opportunities. The symbol ⋆ ⋆ ⋆ indicates the existence of a relationship with
the problems addressed in this thesis.

Main topic Sub-topic

Representation learning
and

aggregate statistics
⋆ ⋆ ⋆

Player- and team-level statistics, vectors, and/or
learned embeddings for analysis of in-game situations

Modeling and learning of player/team rankings,
strengths, and weaknesses
Data processing, filtering,

and visualization techniques/demos

Evaluation of actions,
trajectories and strategies,

and learning of optimal policies
⋆ ⋆ ⋆

Value estimation during in-game situations
(e.g., action values for actions and players)

Detection and optimization
of in-game tactics

Reinforcement learning
for sports analytics

Game-theoretic
and

multi-agent aspects

Predictive and prescriptive analysis
of set pieces and in-game play

Learning of coordination
of player and team behaviors

Transfer and imitation
learning of human play
Synergy or “chemistry”
of groups of players

Physical and
human factors

⋆ ⋆ ⋆

Physics-simulation
of real play

Human factors such as
injury and fatigue predictions

Video-based
modeling

Event detection
and activity recognition

Pose
detection

Generative modeling
of video data

other hand, are found in various contexts regardless of whether the observations are

naturally in the matrix form or the matrix form is a technical expedient for analysis.

Multiple sensors measuring the same multiple variables can result in a matrix time

series if the observations from each sensor are placed in different columns. Similarly,

when considering multiple athletes (columns) participating in the same races (rows),

placing athletes in columns allows for a compact notation that can facilitate the analysis.

Chapter 2 provides a selected overview of this topic. In Chapters 3 and 4,more specific

contributions related to performance analysis have been presented.





Chapter 2

Selected results in state space

modeling

The purpose of this chapter is to introduce some of the tools, which are mostly known

in the literature, that are used for analyzing multivariate time series using state space

methods and that have been used in subsequent chapters. Notations introduced follow

the classical treatment employed by Durbin and Koopman (2012), which is mainly

likelihood-oriented. It is important to note, however, that some of these tools are also

used in Bayesian analysis of dynamic linear models, in which our main reference for their

treatment is the book by West and Harrison (1997). Here, we introduce the concept of

the matrix state space and review some of the main proposals for the analysis of matrix-

variate time series. Although this chapter does not provide innovative contributions in

the field of state space modeling, it is useful to present certain key elements that can be

used as building blocks for more advanced techniques in sports performance analysis.

2.1 Vector state space model

In general, the term state space models refers to a general class of models that allows

an unified treatment of a wide range of problems that occur in time series analysis.

From hereafter, the set Y1:T = {y1,y2, . . . ,yT} denotes the time series of T ordered

observations, where T is the total duration of the time series, and yt ∈ RL corresponds

to the L–dimensional vector of observations at time t, for t = 1, . . . , T . The linear

Gaussian state space model defined by Durbin and Koopman (2012) assumes that the

21
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observations over time are driven by the model equations

yt = Ztαt + εt, εt ∼ NL(0,Ht), (2.1)

αt+1 = Ttαt +Rtξt, ξt ∼ NM(0,Qt), (2.2)

with α1 ∼ NK(α̂1|0,P1|0). In the above specification, the first equation is called mea-

surement equation, that connects the observation vector yt to the vector of the latent

states αt ∈ RK . The second equation is called state transition equation, that represents

a first-order autoregressive process, which determines the behavior of the latent states

over time. The elements εt and ξt are assumed to be serially independent and indepen-

dent of each other for all time points. At time t, the matrices Zt, Ht, Tt, Rt, and Qt are

fixed and have a known structure, the dimensions of which are implicitly determined by

the other elements involved in the equations. Further, these matrices eventually depend

on an unknown finite dimensional parameter θ ∈ Θ ⊆ Rd, where d < ∞. Thus, the

measurement equation has the structure of a linear regression model where the coeffi-

cient vector αt varies over time, and the error terms ε1, . . . , εT are independent of each

other but are heteroskedastic, as they depend on the covariance matrices H1, . . . ,HT ,

respectively. The matrix Zt plays the role of the matrix of covariates in the regression

framework; it is a design matrix that depends on the specification of the model being

considered and can also depend on any of the values in Y1:(t−1) = {y1, . . . ,yt−1}. The

state transition equation accounts for the temporal dependence between the different

states and, by extension, between the observations recorded at different time points. The

initial state α1 is assumed to be independent of both ξt and εt, for any t = 1, . . . , T ,

and it depends on the mean α̂1|0 and the covariance matrix P1|0. These elements are

generally assumed to be known; however, if they are not, many alternative solutions to

the issue have been proposed in the literature (see, e.g., Durbin and Koopman, 2012;

Shumway and Stoffer, 2017). The matrix Tt−1 is a square design matrix, called state

transition matrix, that, like Zt, can depend on Y1:(t−1) = {y1, . . . ,yt−1} and is deter-

mined by the model being considered. Finally, the matrix Rt is a selection matrix with

the role of selecting specific elements of ξt. For most of the models, K =M , and Rt is

the identity matrix, such that Rtξt is substituted with ξt, which is an M -dimensional

vector that follows a zero-mean Gaussian distribution with covariance Qt.

The independence of errors ε1, . . . , εT and disturbances ξ1, . . . , ξT , and their Marko-

vian structure, allows for an easy resolution of many of the major problems in time

series analysis. At time t, given the past Y1:(t−1), all elements involved in the model

are assumed to be non-stochastic, except for states, errors, and disturbances. Various
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generalizations have been proposed in the literature, such as the assumption of normal-

ity being dropped or the use of nonlinear relationships between observations and states.

These generalizations are not of interest in this chapter, and we refer to specialist books

for further details (see, e.g., Tsay and Chen, 2018). However, in this form, the model is

general enough to include within this class a wide range of models present in the liter-

ature, including ARMA, local level and local linear trend models, models with periodic

components, linear regression, VAR and dynamic factor models (see, e.g., Durbin and

Koopman, 2012; Shumway and Stoffer, 2017).

2.2 Matrix state space model

Let Yt ∈ RP×Q be the t-th matrix of observations of the matrix time series Y1:T =

{Y1, . . . ,YT}. Similar to the previously defined vector state space, the matrix state

space model is composed of a measurement and a state transition equation

Yt =

J1∑
j=1

Zj,tAtS
⊤
j,t + Et, Et ∼ MNP×Q(0,Ht), (2.3)

At+1 =

J2∑
j=1

Tj,tAtU
⊤
j,t +

J3∑
j=1

Rj,tΞtB
⊤
j,t, Ξt ∼ MNR×S(0,Qt) (2.4)

with A1 ∼ MNF×G(Â1|0,P1|0) independent of both Et and Ξt, for any t = 1, . . . , T .

The error Et and the disturbance Ξt are assumed to be independent of each other and

serially independent, with non-singular covariance matrices Ht and Qt, respectively. In

the equations, notation X ∼ MNB×C(M,Σ) means that the matrix X, of dimensions

B×C, follows a matrix-variate normal distribution with mean M and covariance Σ; X

is defined here as the random variable such that vec(X), that is obtained by stacking

its columns one underneath the other is vec(X) ∼ NBC(vec(M),Σ). For the sake of

generality, note that, under this specification the matrix-variate normal distribution is

not meant to adhere to the definition proposed by Gupta and Nagar (2000), in which

the covariance matrix Σ = ΣC ⊗ΣR is decomposed by a Kronecker product into a row

ΣR and a column ΣC covariance matrices.

The model used in Equations (2.3) and (2.4) has been proposed in engineering liter-

ature, and particularly by Choukroun et al. (2006), who pointed out that any matrix-

variate linear discrete-time stochastic system can be described by the state transition

equation in Equation (2.4). This aspect is motivated by the fact that At+1 can be writ-

ten as the sum of J2 elements, involving a left and right multiplication of At by the state
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transition matrices Tj,t and U⊤
j,t, respectively, for j = 1, . . . , J2, and an additive distur-

bance term, which is represented by
∑J3

j=1 Rj,tΞtB
⊤
j,t. In this way, any scalar element of

At+1 can be written as a linear combination of At plus a scalar disturbance term (see,

Choukroun et al., 2006, for detailed proofs). Differently from Choukroun et al. (2006),

however, the disturbance term
∑J3

j=1 Rj,tΞtB
⊤
j,t is a sum over J3 elements, involving a

left and a right multiplication of Ξt, by Rj,t and B⊤
j,t, respectively, for j = 1, . . . , J3.

This representation is preferred to the one used by Choukroun et al. (2006) because

it allows the matrix model in Equations (2.3) and (2.4) to be more easily linked to

the vector model in Equations (2.1) and (2.2) and prevents the necessity of considering

matrix-variate normal random variables with a singular covariance matrix (Gupta and

Nagar, 2000). For what concern the measurement equation, the matrix of observations

Yt is linked to the matrix of the states At through a sum of J1 terms, involving a left

and right multiplication by Zj,t and S⊤
j,t, respectively, for any j = 1, . . . , J1. In this

way, any scalar element of Yt is a linear combination of elements of At plus a scalar

error term. At time t, the elements Zj,t, Sj,t, Ht, Tj,t, Uj,t, Rj,t Qt, and Bj,t are fixed

and have known structures but may depend on an unknown parameter θ ∈ Θ ⊆ Rd,

with d <∞. Moreover, Zj,t and Sj,t can depend on the past elements Y1:(t−1), and Tj,t

and Uj,t can depend on Y1:t. The matrices Rj,t and Bj,t are selection matrices used to

select specific entries of Ξt. In general, the number of distinct elements involved in the

terms in which a summation is present can be obtained by considering the product of

the number of rows and the number of columns of the left and right matrices involved in

the respective terms, such that J1 = PQFG, J2 = (FG)2, and J3 = FRSG. However,

in many models, these numbers are smaller because they involve simple structures with

fewer elements. Table 2.1 summarizes the dimensions of the elements involved in the

model along with the respective dimensions of the model in the vectorized form, which

will be discussed in the next subsection.

The model that was proposed trivially includes the vector model in Equations (2.1)

and (2.2) as a special case, in which both the observations and the states are vectors.

In addition, it includes, as special cases, some of the latest models proposed in the

literature to analyze time series of matrices, thus providing a unified framework to

treat them. Compared to any other model that considers a vectorized form of Yt,

it permits the construction of interpretable models that preserve the original matrix

form of the observations and, in some cases, a drastic reduction in the size d of the

unknown parameter θ. Section 2.3 reviews the current proposals found in the literature

for analyzing matrix-variate time series.
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Table 2.1: Dimensions of the matrix state space model and its vectorized form.

Equation Matrix form Dimensions Vectorized form Dimensions

Measurement Yt P ×Q yt PQ× 1
Et P ×Q εt PQ× 1
Zj,t P × F Sj,t ⊗ Zj,t PQ× FG
Sj,t Q×G Ht PQ× PQ
Ht PQ× PQ J1 = PQFG 1× 1

State At F ×G αt FG× 1
Ξt R× S ξt RS × 1
Tj,t F × F Uj,t ⊗Tj,t FG× FG
Uj,t G×G Bj,t ⊗Rj,t FG×RS
Rj,t F ×R Qt RS ×RS
Bj,t G× S J2 = (FG)2 1× 1
Qt RS ×RS J3 = FRGS 1× 1

2.2.1 Vectorized form

Let yt = vec(Yt), αt = vec(At), εt = vec(Et), and ξt = vec(Ξt) be the vectors obtained

by stacking the columns of Yt, At, Et, and Ξt, respectively, one underneath the others.

The matrix-variate state space model in Equations (2.3) and (2.4) has an alternative

vectorized representation

yt = Z̃tαt + εt, εt ∼ NPQ(0,Ht),

αt+1 = T̃tαt + R̃tξt, ξt ∼ NRS(0,Qt)

with α1 ∼ NFG(α̂1|0,P1|0). The elements Z̃t =
∑J1

j=1(Sj,t⊗Zj,t), T̃t =
∑J2

j=1(Uj,t⊗Tj,t),

and R̃t =
∑J3

j (Bj,t ⊗ Rj,t) are obtained from Equations (2.3) and (2.4) by simply

using the distributive property over matrix additions and the property that states that,

for compatible matrices A, B, and C⊤, vec(ABC⊤) = (C ⊗ A)vec(B) (Magnus and

Neudecker, 2019).

It is important to note that, through this representation, it is possible to write the

matrix state space model in the vector form presented in Equations (2.1) and (2.2). The

matrix representation allows the construction of interpretable models that preserve the

original matrix form of the data. Deriving the vector representation enables to leverage

a wide range of tools that have already been developed for the latter form and, thus,

available and established for different types of time series analysis, some of which are

reviewed in Section 2.4.
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2.3 Other models for matrix-variate observations

2.3.1 Alternative matrix state space models

Matrix-variate time series analysis has drawn the attention of various research fields over

the years. Some early models in the literature date back to the work by Quintana (1987),

elements of which were later discussed in the book by West and Harrison (1997) and in

more recent work by Carvalho and West (2007) and Wang and West (2009). In addition

to the previously mentioned work of Choukroun et al. (2006), matrix state space models

can be considered a special case of dynamic models for tensor responses, discussed by

Rogers et al. (2013) and Chen et al. (2021b), among others. Of these, we describe

the model of Wang and West (2009), as it is general enough to simultaneously include

the models described in Quintana (1987), West and Harrison (1997), and Carvalho and

West (2007). The description of tensor models is beyond the scope of this section.

Let Y1:T = {Y1, . . . ,YT} be a matrix-variate time series, with Yt ∈ RP×Q. The

dynamic linear model developed by Wang and West (2009) is characterized by the

following equations

Yt = ZtAt + Et, Et ∼ MNP,Q(0,Ht), (2.5)

At+1 = TtAt +Ξt, Ξt ∼ MNF,Q(0,Qt), (2.6)

with A1 ∼ MNF,Q(Â1|0,P1|0). In the equations, Zt = IP ⊗Z0
t where Z0

t is a known row

vector of dimension F0, and Tt = IP ⊗T0
t where T

0
t is a known state transition matrix of

dimensions F0×F0. The covariance matrices are Ht = GC⊗GR, Qt = GC⊗(GR⊗Q0
t ),

and P1|0 = GC ⊗ (GR ⊗ Q0
0), where both GR and GC are covariance matrices whose

structures are associated with two underlying graphs GR, for rows, and GC , for columns,

respectively. Q0
t is an F0 × F0 discount factor. The dimensions of At are F ×Q, where

F = PF0 and Q corresponds to the number of columns in Yt. Under this specification,

each (p, q)–th entry of Yt is described by the same model

ypq,t = Z0
tαpq,t + εpq,t, εpq,t ∼ N1(0, g

R
ppg

C
qq),

αpq,t+1 = T0
tαpq,t + ξpq,t, ξpq,t ∼ NF0(0, g

R
ppg

C
qqQ

0
t ),

for αpq,1 ∼ NF0(α̂pq,1|0, g
R
ppg

C
qqQ

0
0), in which the scalar observation ypq,t is linked to the

dynamic vector of the states through the linear relation Z0
tαpq,t, and the model’s matrices

Z0
t and T0

t are shared across all elements of Yt, finding justification in the context of

exchangeable time series.
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The model is easily ascribable as a special case of the one presented in Equations (2.3)

and (2.4), in which J1 = J2 = J3 = 1. The right matrix S1,t = IQ is the identity matrix,

meaning that each column of Yt has its own column in At and that different columns

of Yt interact with each other only through Et, by means of the column covariance

matrix GC . Similarly, U1,t = IQ. This implies that interactions among columns of At

are determined by the disturbance Ξt−1, by means of the column covariance matrix GC .

The fact that both the errors’ and state disturbances’ matrices are characterized by the

same covariance matrices is a practical solution that finds justification in the context

of the graphical models considered by Wang and West (2009). In general, such strong

assumptions are not required by the model described in Equations (2.3) and (2.4). In

particular, the right matrices of the model are not required to be identities, and the

covariance matrices may differe in principle. In this way, the rows or columns of Yt may

share the rows or columns of At, or, conversely, they may be characterized by multiple

rows or columns of states, respectively.

2.3.2 Matrix-variate regression model

The matrix-variate regression model for the observation Yt ∈ RP×Q with predictor

Xt ∈ RF×G, introduced by Ding and Cook (2018), takes the following form:

Yt = M+ΛXtΓ
⊤ + Et. (2.7)

In this equation, M is a P ×Q dimensional matrix that represents the overall mean, Λ

and Γ are the matrices of the coefficients with dimensions P×F and Q×G, respectively,
andEt is an error term assumed to have mean equal to zero and covarianceΣ = ΣC⊗ΣR.

Further error Et is assumed to be independent of both the observed variable Xt and any

other Es for any t = 1, . . . , T and s ̸= t. Multiple viewpoints are available to interpret

this model. From now on, for simplicity, we consider centered observations in which

M = 0. At first, the model is said to be bi-linear, since it involves a left and right linear

transformation of the predictors matrix through the matrices of the coefficients. For

fixed parameters, the expected value of Yt, given Xt, is ΓXtΛ
⊤, highlighting how Γ and

Λ⊤ reflect the row-wise and column-wise interactions between Yt and Xt, respectively.

The generic (p, q)–th element of Yt is indeed expressed as

ypq,t =
F∑

j=1

G∑
k=1

λpjxjk,tγqk + εpq,t = λp·Xtγ
⊤
q· + εpq,t,
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where λp· and γ⊤
q· denote the p-th row of Λ and the q-th column of Γ⊤. Hence, the

observation ypq,t is determined by the p-th row of Λ and the q-th column Γ⊤, which

correspond to the vectors of the coefficients that collect the effects of Xt on the p-th

row and the q-th column of Yt, respectively. Another way to interpret the model is in

terms of a representation that involves multiple multivariate regression models of rows

and columns of Yt. If Γ = IQ, and Q = G, for example, each column y·q,t of Yt can be

alternatively represented by the same multivariate regression of the form

y·q,t = Λx·q,t + ε·q,t,

for each q = 1, . . . , Q. In this way, Λ reflects how the different rows of Xt interact

to determine different Yt. With Γ = IQ, interactions between columns of Xt are not

present. Similar reasoning applies to Λ when Γ = IP . The matrix Γ⊤ reflects how the

different columns of Xt interact to determine Yt, with rows not interacting between

each other. Under the general specification, however, neither matrix is the identity.

This aspect introduces a third way of interpreting the model in terms of a two-step

adjustment procedure, in which, first, a column adjustment X̃t = XtΓ
⊤ is applied, and

then the same multivariate regression model,

y·q,t = Λx̃·q,t + ε·q,t, (2.8)

is applied to the columns of Yt. In this way, Λ reflects the interactions between the

rows of the column-adjusted variable X̃t. Interchanging the steps would trivially lead

to a similar interpretation, where the roles of the rows and columns are swapped.

Let xt = vec(Xt) and εt = vec(Et). One interesting characteristic of the model is

that its vectorized form,

yt = Bxt + εt,

is a multivariate regression model, in which both the matrix of coefficients B = Γ⊗Λ and

the error’s covariance matrix Σ = ΣC ⊗ΣR have a Kronecker decomposable structure.

Both B and Σ are identifiable. This is not the case with the single components Γ, Λ,

ΣR, and ΣC , which are uniquely defined only up to a proportionality constant. For any

c ̸= 0, B = Γ⊗Λ = (Γ/c)⊗ (cΛ), which highlights that infinite possible combinations

of Γ and Λ lead to the same B. The same can be derived for Σ and any c > 0. To

achieve identifiability, one typical assumption requires Γ and ΣC to have unit Frobenius

norm and positive 1–1 entry (see, Ding and Cook, 2018, for details).
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Another aspect that is interesting to note is related to the number of parameters.

The vectorized form of the model with unstructured coefficients and covariance matrix

is characterized by PFQG+PQ(PQ+1)/2 free parameters, corresponding to the sum

of the number of different entries in a PQ × FG–dimensional matrix, the matrix of

coefficients, and the number of different entries in a PQ× PQ–dimensional covariance

matrix. The same model, under the Kronecker product restrictions, is composed of

PF +QG+P (P +1)/2+Q(Q+1)/2 unknown parameters, which are subject to 3 other

restrictions related to the identifiability constraints (2 on the norms, 1 on the sign). The

reduction of the number of parameters and the easier interpretation of the coefficients’

matrices are achieved at the cost of having a rigid structure imposed between the rows

and columns. In fact, not only does the model impose the same dependency structure

between the columns ofYt and the adjusted columns of X̃t (or viceversa), it also requires

that each column of the error matrix Et is characterized by a covariance proportional to

ΣC (or viceversa–each row has a covariance proportional to ΣR). Other than in specific

cases, such as in Hsu et al. (2021), where the matrix configuration of the observations

is related to the place where the data are collected, this assumption is often found to be

realistic when dealing with matrices of observations (see, e.g., Viroli, 2012; Huang et al.,

2019; Chen et al., 2021a, among others). To further reduce the number of parameters,

Ding and Cook (2018) combine typical sparsity principles with an envelope strategy—a

relatively new approach introduced by Cook et al. (2010)—in which sufficient dimension

reduction techniques are used to gain efficiency in the estimation. Since the purpose of

this section is to describe the existing tools avaiable for the analysis of matrix-variate

observations, we refer to the specialized literature for more details on envelope models

(Cook et al., 2010; Su et al., 2016).

2.3.3 Matrix-variate autoregressive process

The matrix-variate autoregressive process developed by Chen et al. (2021a) for the time

series Y1:T = {Y1, . . . ,YT}, with Yt ∈ RP×Q, is characterized by the following equation

Yt = ΛYt−1Γ
⊤ + Et. (2.9)

The model is called MAR(1), i.e. matrix autoregressive process of order 1, as the

observations matrix Yt is explained by the lagged variable Yt−1 by means of a bilinear

form, that is determined by pre- and post-multiplying Yt−1 by the coefficients matrices

Λ and Γ⊤, respectively, plus the error term Et. The errors terms are assumed to follow

a white noise process with covariance Σ. The typical assumption is that Σ has a
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structure, that is decomposable by a Kronecker product of the form Σ = ΣC ⊗ ΣR,

where ΣR and ΣC are full covariance matrices with dimensions P × P and Q × Q,

respectively. Adopting a MAR(1) process instead of a VAR(1) process constructed with

the vectorized observations has two main advantages: it maintains the original matrix

structure of the observations, ensuring greater interpretability and reduces the number

of parameters. As regards the number of parameters, under the MAR(1) process, the

dimensions of Λ and Γ are P × P and Q × Q, respectively; hence, if an unstructured

version of these matrices is considered, the number of free parameters in the matrices of

the coefficients is (P 2 + Q2), which is much lower than (PQ)2 for the generic VAR(O)

model under the vectorized observations. These parameters must be added to those

related to the covariance matrix Σ, whose number of different entries is P (P + 1)/2

and Q(Q + 1)/2, respectively, if a Kronecker decomposable structure is considered. As

regards interpretability, Chen et al. (2021a) provide multiple viewpoints to understand

the role of the parameter matrices. It is worth noting that the MAR(1) process with a

variance that is decomposed by a Kronecker product can be thought as a special case

of the matrix-variate regression model (previously defined), in which the matrix of the

predictors is Xt = Yt−1. This implies that it can be interpreted in the same way as the

model in Equation (2.7). We refer to the original article by Chen et al. (2021a) for a

detailed discussion on the stationarity and causality of the MAR(1) process.

From the initial specification of the model, certain generalizations have been proposed

to obtain greater flexibility and interpretability and consider particular dependency

structures between the rows and columns. First, the model is easily generalized to the

generic order O by requiringYt to be explained as a sum of the lagged variablesYt−1,. . . ,

Yt−O that are pre- and post-multiplied by the respective matrices of the coefficients Γo

and Λ⊤
o for o = 1, . . . , O. Second, Chen et al. (2021a) extend their model to propose

the multiple lag-one autoregressive model, in which Yt is explained by many terms that

involve bilinear transformations of Yt−1, such as the model

Yt = Λ1Yt−1 +Yt−1Γ
⊤
1 +Λ2Yt−1Γ

⊤
2 + Et,

where Λ1 and Γ⊤
1 capture the rows and columns main effects, while Λ2 and Γ2 cap-

ture two-way interactions. Hsu et al. (2021) consider a MAR(O) process in which the

neighborhood structure present in the observations matrices is exploited in both the

coefficient matrices and the variance of error terms. With regard to the matrices of the

coefficients, the local spatial dependence among the rows and columns is obtained by

requiring a certain banding structure in which entries far away from the diagonal are

imposed to zero. On the other hand, the error terms are characterized by a fixed-rank
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kriging model in which the covariance is Σ = FΩF⊤ + σ2
εIPQ, where F is a matrix of

basis functions, with rank J ≤ PQ and dimensions PQ× J , Ω is a J × J non-negative

definite matrix, and σ2
ε is an unknown coefficient. If the error terms are assumed to be

Gaussian, the presented models can be written in a matrix-variate state space form in

several ways, by means of many linear algebra tricks. A similar result holds for ARIMA

model in the scalar case (Durbin and Koopman, 2012), but are outside the scope of this

thesis.

2.3.4 Matrix-variate dynamic factor models

The matrix-variate dynamic factor model developed by Wang et al. (2019) for the time

series Y1:T = {Y1, . . . ,YT}, with Yt ∈ RP×Q, is characterized by the following equation

Yt = ΛXtΓ
⊤ + Et. (2.10)

In this equation, Xt is the F × G–dimensional matrix with common fundamental fac-

tors, which are unobserved and drive the dynamics and co-movements of Yt, whose

dimensions are much higher than those of Xt (i.e., F ≪ P and G ≪ Q). In general,

the number of rows in the matrix Xt corresponds to the rank of Λ, and its number

of columns corresponds to the rank of Γ (i.e., rank(Λ) = F and rank(Γ) = G). The

elements Λ and Γ are the left and the right factor loading matrices of dimensions P ×F
and Q × G, respectively, and reflects the importance of common fundamental factors.

Other ways to interpret the model, which are similar to those discussed for the MAR(1)

model, are reported in the work of Wang et al. (2019).

One common assumption regarding the factor process is the one proposed by Lam

et al. (2011), where its vectorized representation is assumed to be a weak stationary

process with two finite first moments, independent of the the errors E1:T = {E1, . . . ,ET}.
The noise process E1:T is generally assumed to be white noise, where the generic Et is a

zero-mean matrix of errors with fixed covariance matrix Σ. A typical problem related

to the assumption made regarding the erratic component is that it is identified as a

factor when a weak form of correlation is present. Chen et al. (2020) try to mitigate

this issue by introducing a constrained matrix factor model, in which the loading matrix

Λ = CΛΛ0 and Γ = CΓΓ0 are subject to known constraints that are related to prior

or domain knowledge on the variables and are incorporated in the model through the

constraint matrices CΛ and CΓ. Under this specification, CΛ and CΓ are full column

rank matrices of dimensions P × F0 and Q×G0, while Γ0 and Λ0 are loading matrices

whose dimensions are F0×F and G0×G, respectively. To be meaningful, the dimensions
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of the involved matrices have to be such that F ≤ F0 ≪ P and G ≤ G0 ≪ Q. In

addition, the structure of the constraint matrices is determined by the type of constraints

to be imposed. A simple case would be where the constraint matrices are made up of

selection matrices whose rows are composed of the rows of the identity matrix and

whose role is to select specific rows (or columns) of Λ0XtΓ
⊤
0 . The use of such selection

matrices is discussed in more detail in the next chapter, and we refer to Chen et al.

(2020) for other examples. Additional multifactorial models have been presented in the

literature, in which the measurement equation is determined by an additive combination

of multiple dynamic latent factors. Their treatment is no different from the standard

case seen in Equation (2.10) and is covered in the works of Wang et al. (2019) and Chen

et al. (2020).

If each matrix of errors Et and of disturbances Ξt are assumed to be Gaussian, the

link with the matrix-variate state space model presented in Equations (2.3) and (2.4) is

easy to derive. In particular, Equation (2.10) represents the measurement equation, in

which J1 = 1, the loading matrices Γ and Λ correspond to Z1,t and S1,t, respectively, and

the matrix latent factor Xt represents the matrix of latent states At. The assumption

of weak stationarity can be obtained by first imposing some suitable conditions on the

model in the vectorized form and then deriving the respective matrix form of the state

transition equation.

2.4 Essential toolbox for state space modeling

One of the conveniences of state space models is related to the possibility of treating a

wide range of problems in a unified way through routines known as Kalman recursions.

The derivation of these last is covered in many textbooks (Durbin and Koopman, 2012;

Shumway and Stoffer, 2017), and, here, we report some results that we use in the

following chapters, providing only a brief explanation of their meaning. With regard to

the Kalman filter, Kalman smoother, and lagged Kalman smoother, their derivation is

possible regardless of whether the approach used is classical or Bayesian. The likelihoods

are obtained under the normality assumptions. We further consider the “reduction by

transformation” technique proposed by Jungbacker and Koopman (2008) for the quick

estimation of dynamic factor models and discuss its use with matrix-variate dynamic

factor models.
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2.4.1 Kalman routines

Consider the vector state space in Equations (2.1) and (2.2), where mean α̂1|0, and

covariance P1|0 are assumed to be known. Let α̂t|t = E(αt|Y1:t), Pt|t = Var(αt|Y1:t),

α̂t+1|t = E(αt+1|Y1:t), and Pt+1|t = Var(αt+1|Y1:t). The Kalman filter is an iterative

procedure composed of the following steps

υt = yt − Ztα̂t|t−1 Ft = ZtPt|t−1Z
⊤
t +Ht

α̂t|t = α̂t|t−1 +Pt|t−1Z
⊤
t F

−1
t υt Pt|t = Pt|t−1 −Pt|t−1Z

⊤
t F

−1
t ZtPt|t−1

α̂t+1|t = Ttα̂t|t Pt+1|t = TtPt|tT
⊤
t +RtQtR

⊤
t

for t = 1, . . . , T . The vector υt collects the one-step ahead forecast error of yt given

Y1:(t−1), and it is also called the vector of innovations. The matrix Ft represents its

variance, i.e. Ft = Var(υt|Y1:(t−1)). The element α̂t|t is the vector of filtered states,

where Pt|t is its respective variance. Similarly, α̂t+1|t is the vector of predicted states,

wherePt+1|t represents respective variance. To summarize, the Kalman filter is a forward

procedure that allows to update the knowledge about the states at time t to be updated

once the observations for this time point are available. The filter has no retroactive

action, which means that it does not update the knowledge about the states of previous

time points once the observation at time t is available. One of the main bottlenecks of

the algorithm is the need to invert the L×L–dimensional matrix Ft at each time instant.

Depending on the problem, various alternative approaches can be applied to improve

performance, such as by using the Sherman-Morrison-Woodbury formula, exploiting

the sparsity of some of the matrices involved, or reducing the size of the vector of

observations (Durbin and Koopman, 2012). We discuss the use of the latter approach

in Section 2.4.3.

Let α̂t|T = E(αt|Y1:T ) and Pt|T = Var(αt|Y1:T ). The classical Kalman smoother,

originally developed by Rauch et al. (1965), is an iterative procedure such that

Jt−1 = Pt−1|t−1T
⊤
t P

−1
t|t−1

α̂t−1|T = α̂t−1|t−1 + Jt−1(α̂t|T − α̂t|t−1)

Pt−1|T = Pt−1|t−1 + Jt−1(Pt|T −Pt|t−1)J
⊤
t−1

for t = T, T − 1, . . . , 2. The algorithm is a backward recursion in which the previously

calculated means and variances are adjusted based on all available information. It,

therefore, finds its utility in retrospective analyses, where all available information is

used to analyze the historical course of events. The algorithm requires the inversion of
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the predicted covariance matrices, which are K ×K–dimensional covariance matrices.

We refer to the discussion of Durbin and Koopman (2012) on the alternative algorithms

in which these inversions are avoided. Another algorithm that is used in our tractation

is called lagged-one smoother, which allows to determine Pt−1,t|T = Cov(αt,αt−1|Y1:T )

(Shumway and Stoffer, 2017). Its backward recursion simply computes

Pt−1,t−2|T = Pt−1|t−1J
⊤
t−2 + Jt−1(Pt,t−1|T −TPt−1|t−1)J

⊤
t−2

for t = T, . . . , 2.

2.4.2 Likelihoods

Regardless of whether they are classical or Bayesian, many statistical procedures use

the joint density of the observations as the tool that is at the heart of inference. We first

introduce the concept of augmented likelihood, which is the density of the observations

Y1:T jointly evaluated with the latent states A1:T = {α1, . . . ,αT}, i.e.

pθ(Y1:T ,A1:T ) = pθ(Y1:T |A1:T )pθ(A1:T )

=

[ T∏
t=1

pθ(yt|αt)

][
pθ(α1)

T∏
t=2

pθ(αt|αt−1)

]
.

The dependence on the parameter θ is explicit through the subscript in pθ(·) but has
to be considered as a conditional dependence in the Bayesian setting. The quantity

pθ(Y1:T |A1:T ) is called conditional likelihood, and it represents the density of the obser-

vations provided that the states are given. This quantity is determined by the mea-

surement equation in Equation (2.1) and can be written as a product of T independent

Gaussian densities, evaluated in yt, with mean Ztαt and covariance Ht, for t = 1, . . . , T .

The quantity pθ(A1:T ) is the joint density of the latent states and is determined by the

state transition equation in Equation (2.2). It is a product of T densities with a Marko-

vian structure and depends on how Tt, Rt, and Qt are specified for t = 1, . . . , T .

The likelihood of the observed process is obtained by marginalization and has a set

of alternative representations. Specifically, we refer to the likelihood when considering

pθ(Y1:T ) =

∫
pθ(Y1:T ,A1:T )dA1:T .

It is interesting to note that it can be expressed as

pθ(Y1:T ) = pθ(y1)pθ(y2|Y1) · · · pθ(yT |Y1:(T−1)),
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where

pθ(yt|Y1:(t−1)) =

∫
pθ(yt|αt,Y1:(t−1))pθ(αt|Y1:(t−1))dαt

=

∫
pθ(yt − Ztαt|αt,Y1:(t−1))pθ(αt|Y1:(t−1))dαt = pθ(υt|Y1:(t−1)).

It follows that the likelihood can be also expressed in terms of the innovations as

pθ(Y1:T ) =
T∏
t=1

pθ(υt|Y1:(t−1)) =
T∏
t=1

(2π)−L/2 det(Ft)
−L/2 exp

[
− 1

2
υ⊤

t F
−1
t υt

]
, (2.11)

where υt and Ft are obtained by the Kalman filtering recursion, and its dependence on

θ is determined by the model configuration.

2.4.3 Reduction by transformation technique

Consider, for simplicity, that Zt = Z and Ht = Σ, so the vector state space model can

be expressed as

yt = Zαt + εt, εt ∼ NL(0,Σ), (2.12)

αt+1 = Ttαt +Rtξt, ξt ∼ NM(0,Qt),

with α1 ∼ NK(α̂1|0,P1|0). The reduction by transformation technique, proposed by

Jungbacker and Koopman (2008), aims to reduce the computational complexity of

Kalman filtering when L, the dimension of the vector of observations, is large. This

technique aims to find a non-singular matrix

A =

[
A′

A′′

]
,

such that, if we consider the transformation

y⋆
t = Ayt =

[
A′yt

A′′yt

]
=

[
y′
t

y′′
t

]
,



36 Section 2.4 - Essential toolbox for state space modeling

the resulting model for y⋆
t takes the form

y′
t = A′Zαt + ε′t, (2.13)

y′′
t = ε′′t , (2.14)

αt+1 = Ttαt +Rtξt, (2.15)

with ε′t = A′εt and ε′′t = A′′εt satisfying the relations

E(ε′t) = 0, E(ε′′t ) = 0, Var(ε′t) = Σ′, Var(ε′′t ) = Σ′′, Cov(ε′t, ε
′′
t ) = 0,

for t = 1, . . . , T , Σ′ = A′ΣA′⊤, and Σ′′ = A′′ΣA′′⊤. In the above equations, A is an

L × L block matrix composed of the l × L matrix A′ and the (L − l) × L matrix A′′,

where l is exactly the rank of Z. The relations in the equation of transitions have not

been modified instead. Calculating the matrix A requires that only y′
t is material for

state estimation, that y′′
t is immaterial, and, thus, that Equation (2.14) can be neglected

during state estimation routines.

Jungbacker and Koopman (2008) achieve this goal by providing conditions and lem-

mas for finding such matrices. In practice, suitable matrices A have A′ such that

A′ = (Z†)
⊤Σ−1, where Z† is an L × l with columns that form a basis for the column

space of Z. If Z is not full column rank, then l < K, and Z† can be obtained by the de-

composition Z = Z†C for any full rank l×K matrix C. If Z is a full column rank matrix

instead, then l = K, and Z† = ZC−1 for any non-singular matrix C of dimension l × l.

Finding possible candidates for Z† may be computationally convenient when l ≪ L, as

the matrices of innovations would become l× l–dimensional, and their inversions would

become much more efficient. The authors do not focus on the form of A′′ and, hence,

on that of Σ′′ because it is not used in practice and because its computation requires

intensive computational routines. The only condition they require is that the determi-

nant det(Σ′′) = 1, which is a convenient condition from a practical point of view, albeit

unnecessary, since it simplifies likelihood derivation. Thus, while this approach is used

for estimating states efficiently, it is useful to understand how to compute the likelihood

without any loss of information using the reduced vectors of observations. Jungbacker

and Koopman (2008) show that it is possible to obtain the likelihood exactly without

needing to know A′′. To obtain this result, they first consider the likelihood of the
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observed process, which is

pθ(Y1:T ) = pθ(Y⋆
1:T ) det(A)T

= pθ(Y ′
1:T )pθ(Y ′′

1:T ) det(A)T , (2.16)

where Y ′
1:T = {A′y1, . . . ,A

′yT}, and Y ′′
1:T = {A′′y1, . . . ,A

′′yT}. In the factorization of

Equation (2.16), pθ(Y ′
1:T ) denotes the likelihood of the observed process in the reduced

form, which is obtained by applying the Kalman routines to Equations (2.13) and (2.15).

The quantity pθ(Y ′′
1:T ) is the part of the likelihood that is related to Equation (2.14),

which is immaterial for the state estimation and can be obtained as a product of T

independent normal densities, with zero mean and variance Σ′′ = A′′ΣA′′⊤, whose

determinant is 1. The dependence of pθ(Y ′′
1:T ) on A′′, which is directly involved in

computing Σ′′, is dropped if A′ = Z⊤
† Σ

−1 is considered for any decomposition Z = Z†C

with C full column rank. Therefore, given the generalized least square residuals

et =

[
IL − Z†(Z

⊤
† Σ

−1Z†)
−1Z⊤

†

]
yt,

Jungbacker and Koopman (2008) show that

y′′
t
⊤
(Σ′′)−1y′′

t = et
⊤(Σ)−1et,

leading to

pθ(Y ′′
1:T ) =

T∏
t=1

(2π)−(L−l)/2 exp
[
− 1

2
et

⊤(Σ)−1et
]
.

Finally, the identity

det(A)2 = det(Σ)−1 det(Σ′)

holds, which allows to recover all the elements of the likelihood in Equation (2.16)

without knowing A′′.

As noted in Equation (2.12), the reduction by transformation technique requires

the Z and Σ matrices to be time independent. In cases where these matrices are non-

stochastic, as in Equations (2.1) and (2.2), this technique can be still applied even though

these matrices are time dependent. However, it would require to obtain Z†,t for each

time instant using a suitable decomposition Zt = Z†,tCt for any full column rank matrix

Ct. The convenience of using this technique is, therefore, subordinate to the ability

of beeing able to find those suitable decompositions without the computational burden

being excessive. There is no fixed rule for doing this, and, often, the decomposition is
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closely related to the model under consideration. Let Zt be a generic L×K real matrix

such that 0 < rank(Zt) = l < L. The (thin) singular-value decomposition applies;

hence, Zt can be expressed as Zt = Z′
tΛtZ

′′
t
⊤, where Z′

t and Z′′
t are matrices such that

Z′
t
⊤Z′

t = Il, and Z′′
t
⊤Z′′

t = Il, and Λt is an l× l diagonal matrix with positive eigenvalues

(Magnus and Neudecker, 2019). The decomposition Zt = Z†,tCt can be obtained by

imposing Z†,t = Z′
t and Ct = ΛtZ

′′
t
⊤, where Ct is an l × K full rank matrix. Note,

however, that Jungbacker and Koopman (2008) do not require Z′
†,t to be orthogonal, in

order to obtain a suitable decomposition of Zt. Hence, even simpler decompositions can

be considered, as shown in the following example.

Example with matrix-variate dynamic factor models. Consider the model in

Equation (2.10) under Gaussian assumptions, and assume that Λ and Γ are full column

rank matrices such that rank(Λ) = F and rank(Γ) = G, respectively. The vectorized

form of the measurement equation is given by

yt = (Γ⊗Λ)xt + εt,

where yt = vec(Yt), xt = vec(Xt), and εt = vec(Et). It is clear that

Γ⊗Λ = (ΓIG)⊗ (ΛIF ) = (Γ⊗Λ)(IG ⊗ IF ),

where IG ⊗ IF = IFG is the FG–dimensional identity matrix. Fix Z† = Γ ⊗ Λ and

C = IG ⊗ IF . The reduction by transformation technique can be obtained using

A′ = (Γ⊗Λ)⊤Σ−1 = (Γ⊗Λ)⊤(ΣC ⊗ΣR)−1 =
[
Γ⊤(ΣC)−1

]
⊗
[
Λ⊤(ΣR)−1

]
,

where the last two relations hold if Σ = ΣC ⊗ΣR. In the reduced model, the Kalman

routines are applied to l = FG–dimensional vectors instead of L = NP .

2.5 Discussion

In the present chapter, state space models have been reviewed, with a focus on vector and

matrix state space models and related tools useful for the analysis. In sports performance

analysis, the use of state space models can be varied, as the time component is present

in several aspects of sports activities. For example, an athlete can monitor multiple

variables (weight, weekly miles, minutes of activity, etc.) on a weekly basis: as a result,

a multivariate time series can be observed. Similarly, athletes can monitor themselves
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during a single activity. The data collected during the activity can be represented as

a multivariate time series as well. Matrix time series can also be observed in various

contexts. For example, if the activity is monitored over time and different sensors placed

in different parts of the body measure the same variables, we can obtain a matrix time

series. In this case, variables (e.g., speeds along the 3 dimensions of space) can be

stored in different columns, one for each sensor, which together build a matrix that can

be monitored over time. In the same way, multiple multivariate time series obtained

by the athletes’ self-monitoring can be arranged in a matrix time series. While some

phenomena fits well with a matrix time series, in other contexts their use is a technical

expedient to use models that can represent the data structures in a more compact way.

Models and tools presented here have been employed in Chapter 3 and Chapter 4 at

various points.

In Chapter 3 the vector state space model is used as a building block for a matrix

state space model, and it is helpful for monitoring the performances in multiple races of

different athletes over the years. The derived model can be interpreted in a similar way

of the dynamic factor model proposed by Wang et al. (2019) and Chen et al. (2020),

where a reduced number of states determines the observed behavior of the variables.

Different states are linked to the behavior of each athlete’s observed race, by using a

random selection matrix; this last has the role of selecting, among the reduced number

of states, those that describe the observed behavior of each athlete over time. Selection

matrices are used in Chen et al. (2020) with the aim to constrain the dynamic factor

model based on prior knowledge of their application domain. However, in contrast to

their approach, in our model the involved selection matrix is unknown, thus it is a direct

object of inference.

In Chapter 4 the vector state space model is combined with classical changepoint

models (Chib, 1998; Fearnhead and Liu, 2007; Yildirim et al., 2013). In this case,

a sequence of activities performed by one athlete is observed, and our proposal aims

to detect changes in behavior due to health problems (and other issues) during the

performances. More specifically, each activity is represented by a multivariate time

series, that stores observations of different variables over time. Hence, state space

models are used to describe the behavior of the observed variables within each activity

in time. Changepoint models are used to detect changes between subsequent activities

that modify the behavior of the observed variables. Throughout the chapter, inferential

tools (e.g. Kalman recursions) here presented will be extensively used with the aim to

provide information to the athlete in real-time.





Chapter 3

Time series clustering of athletes’

careers under informative missing

data patterns

3.1 Introduction

Planning the future career of young athletes is a relevant aspect of the work of coaches,

whose role is to guide athletes during training so that they can perform at their best

in competition, so that they can achieve their desired results. Identifying athletes’

capabilities and future possibilities is important for multiple reasons. On one hand, it

allows the training load to be allocated over the years, in a way that is appropriate

for the athlete. Good planning, along with support during injuries, has been identified

as one of the relevant factors that help avoiding drop-out in athletes (Bussmann, 1999;

Larsen and Alfermann, 2017). Moreover, a well-distributed training load not only allows

the athlete to improve the performance, but it also reduces the risk of injury. On the

other hand, good planning is important also from a psychological and emotional point

of view, as it allows athletes to strive for achievable goals and collect successes over

the years. Pleasant emotions (including satisfaction) have been associated to positive

outcomes in, e.g., mental health, performance and engagement (see, e.g., Cece et al.,

2019). In this context, the identification of possible careers for an athlete, in terms of

observed personal performance trajectories over time, is of paramount importance. For

example, identifying the period in which athletes reach their peaks can help prepare the

athletes for the most important events in their career. Similarly, knowing the expected

progress of different athletes over the years can give an indication of whether the training

process has been carried out correctly. The increasing awareness of the impact that a

41
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well-distributed training can have on the development of athletes’ careers had lead to

several analysis of athletes’ trajectories in various sports. Leroy et al. (2018) have

studied young swimmers’ progression using a functional clustering approach; in Boccia

et al. (2017) study, they focused on individual careers of Italian long- and high-jumpers

to figure out which characteristics of young athletes are predictive of high-level results

during their careers. In our work, we focus on the analysis of trajectories collected by

Italian male middle distance runners, born in 1988, in a period ranging from 2006 to

2019. Studies on middle distance runners are few or limited to samples with a small

number of athletes (see, e.g., Weippert et al., 2021).

Among many tools that can be used for this problem, clustering of trajectories allows

the identification of different careers present in the data and, as a consequence, the

various possible observable scenarios of athletes’ careers. Clustering of longitudinal data

has been extensively explored in literature (see, among others, Frühwirth-Schnatter,

2011; Maharaj et al., 2019; Bartolucci and Murphy, 2015). Here we focus on the use of

state space models because they allow the construction of flexible models for multivariate

time series in an intuitive manner and offer a number of well-known tools for inference,

including the treatment of missing data (Durbin and Koopman, 2012). Indeed, unlike

other types of athletes and sports, middle distance runners can compete in different

distances, i.e. in the 800, 1500 and 5000 meters races, as well as in other spurious races

(i.e. the mile, 3000m, etc.). The choice of races in which to compete is subjective and

typically associated with personal attitudes (Mooses et al., 2013). An athlete capable

of developing greater speed and power typically competes in shorter distances, with

respect to those with greater endurance who compete in longer distances. In this way,

not only do we observe different races for each athlete over time, but the absence of a

particular race is informative on the athlete’s attitude. Beyond the variability among

subjects related to the type of races performed, there is also variability in the developing

of athletes’ careers related to both their abilities and histories. If an athlete starts

the career late in life, it is less likely that will reach high levels; similarly, athletes

with unsatisfactory careers are likely to end their careers earlier, with respect to those

satisfied with their performances (Hernandez et al., 2011). These aspects are related

to drop-in and drop-out phenomena, defined as the events where athletes enter and

exit the observed sample, respectively. Specifically, the presence and absence of data is

potentially correlated with observed performances.

In this study we propose a model based clustering method for longitudinal data, in

which missing data inform on the clustering structure. The clustering problem is ad-

dressed through the specification of a matrix state space model, in which multivariate
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time series are clustered on the basis of their observed trend. In this phase, clustering is

achieved via a selection matrix which is involved in the measurement equation. Among

the advantages of this specification, we take in consideration the ability to include with a

compact notation complex dependencies, both temporal and cross-sectional. The inclu-

sion of temporal dynamics that aim to describe missing data patterns is accomplished

by two different processes. First, athlete’s personal history is described by a three

state process, which describe their entry (drop-in) and exit (drop-out) from the sample.

Second, different propensities to participate in competitions are considered based on

the athlete’s personal attitude. The probabilities of both the processes are assumed

to be group dependent. In this way, clustering is not only achieved on the basis of

athletes’ performances, but the presence and absence of data is considered informative

as well. Prior information is included based on qualitative reasoning on the observed

phenomenon, and inference is obtained using a Gibbs sampling algorithm. The practical

example shows benefits and limitations of the proposed approach.

3.1.1 Data collection and missing data

Data refer to annual seasonal best performances of male Italian athletes, born in 1988,

on 5000, 1500 and 800 meters races in a period between 2006 and 2019. Data were

collected from the annual rankings accessible on the website of the Italian athletics fed-

eration (www.fidal.it). For each year considered, all athletes (male, born in 1988)

who participated in at least one of the three competitions considered were selected. In

Italy, at 18 years old, athletes transit from “Allievi” to “Junior” (18-19 years old) cate-

gory, and compete in the national championships in the same distances (i.e. 800, 1500,

and 5000 meters races) in the following categories (“Promesse”, 20–22, and “Senior”,

23+). Athletes that participated to less than 2 races were removed from the sample.

This selection was made in order to not include athletes who participated just in one

middle-distance race in their career for fortuitous reasons other than a true interest in

the discipline. Collected data are shown in Figure 3.1. By considering each graph in

marginally, it is possible to imagine a U-shaped curve that describes the distribution

of sample trajectories, especially for 5000 and 1500 races. However, their shape can be

biased by the presence of selection, missing data, and late entry in the sample.

The drop-ins were identified as the year in which the athletes participate in their first

competition in the period of observation. Drop-out, on the other hand, was defined as

the year following the last race observed. An alternative definition of drop-ins and drop-

outs, different from the one used, can be derived by looking at club registrations over

the years, which are available in the personal page of each athlete. The final number of

www.fidal.it
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Figure 3.1: Trajectories observed in the 5000, 1500, 800 meters races of male Italian
athletes born in the year 1988. Data were retrieved from the website of the Italian
Athletics Federation (www.fidal.it).

athletes considered in the analysis is Q = 369 for P = 3 races and T = 14 years. The

minimum number of observations per athlete is 2, the maximum 36, with mean 6.65.

Minimum career length is 1 year, the maximum 14 years, with mean 5.04 years. In the

sample, there is a strong presence of missing data, and there are differences in their

nature. More specifically, a missing value occurs for athlete q in race p during year t if

the athlete q does not end any official competition in race p during the considered year.

The motivations for observing missing values can be multiple. Athletes can start and

stop competing early in their careers, and thus data are observed only for the first years

and are missing for the last ones. On the contrary, for athletes that start competing late

in their life, data are observed only in the last years. Moreover, one athlete can compete

only in a reduced number of races during one year (e.g. the athlete can compete only

in 800 meters race and not compete in 1500 and 5000 meters races). This lack of data

may be related, for example, to specific technical choices or personal attitudes of the

athletes. Figure 3.2 shows 9 selected examples of missing data patterns that, potentially,

represent 9 distinct classes considered in the analysis (see Section 3.3). As it can be

seen, athletes compete in different races and in different years. In addition, career’s

history can have periods with no competitions held, although the athlete is still active.

3.2 The model

3.2.1 Clustering time series with matrix state space model

Imagine to observe the scalar element ypq,t that denotes the observation of race p for

athlete q during the year t, for p = 1, . . . , P , q = 1, . . . , Q, and t = 1, . . . , T . Imagine

also, in this phase of the explanation, that the complete set of observations is available in

www.fidal.it
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Figure 3.2: Examples of missing data patterns present in the data of 9 selected
athletes. Yellow squares indicate presence of data. The acronyms “E-E”, “E-L” and
“L-U” describe different possible histories of the athletes. More specifically, they
stand for “Early entry-Early exit”, “Early entry-Late exit”, “Early entry-Undefined
exit” characteristics, respectively, and describe the entry and exit of the athletes in
the sample. The numbers, i.e. 800, 1500, 5000, describe the reference race of each
athlete. The matrices have been classified according to subjective knowledge on the
phenomenon (see Section 3.3).

the sense that athletes participate in all P races during the years and that no drop-ins or

drop-outs are observed. We assume that athletes are divided into G different unknown

groups according to the evolutionary trajectories during their careers. Suppose now to

know that athlete q belongs to group g. Its observations over time are then described

by the following dynamic linear model

ypq,t = z⊤p α
(g)
p,t + εpq,t, (3.1)

α
(g)
p,t+1 = Tpα

(g)
p,t + ξ

(g)
p,t , (3.2)

in which α
(g)
p,1 ∼ NFp(α̂

(g)
p,t ,P

(g)
p,1|0), for p = 1, . . . , P , t = 1, . . . , T . In the above spec-

ification, the row vector z⊤p , which is characterized by a known structure, links the

observation ypq,t to the column vector α
(g)
p,t , which describes the group-specific dynamics

of the p–race for all the athletes that belong to group g. These dynamics are determined

by the state transition equation, that describes a first-order autoregressive process with

transition matrix Tp, which is race-specific, known, and shared across all the groups.

In this way, for a generic race p, we require that the latent states of the different groups

are different from each other, but are characterized by the same Markovian dependence

induced by Tp. Moreover, this dependence is not required to be common across differ-

ent races, as Tp may differ from Tp′ for any p ̸= p′. The error terms εpq,1, . . . , εpq,T are
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not specified, but are assumed to be Gaussian with variance σ2
pp,qq, assumed to be race-

and subject-specific. They are assumed to be serially independent and independent of

both the states α
(g)
p,1, . . . ,α

(g)
p,T and the disturbances ξ

(g)
p,1, . . . , ξ

(g)
p,T , for p = 1, . . . , P and

g = 1, . . . , G.

Let y·q,t = (y1q,t, . . . , yPq,t)
⊤, α

(g)
t = (α

(g)⊤
1,t , . . . ,α

(g)⊤
P,t )⊤, ε·q,t = (ε1q,t, . . . , εPq,t)

⊤,

ξ
(g)
t = (ξ

(g)⊤
1,t , . . . , ξ

(g)⊤
P,t )⊤, Z = blkdiag(z⊤1 , . . . , z

⊤
P ), and T = blkdiag(T1, . . . ,TP ).

Equations (3.1) and (3.2) can alternatively be expressed in a vector form, which is

y·q,t = Zα
(g)
t + ε·q,t, (3.3)

α
(g)
t+1 = Tα

(g)
t + ξ

(g)
t , (3.4)

for α
(g)
1 ∼ NF (α̂

(g)
1|0,P

(g)
1|0), where F =

∑P
p=1 Fp denotes the total number of states of each

group. Although these equations represent nothing more than the vector formulation

of the scalar one, they allow to introduce the covariance of the errors Σq and distur-

bances Ψg. If full, they capture contemporaneous correlation between errors and the

disturbances associated with different races. For example, it is possible to think that

an improvement in the performance of one race can be reflected in the improvement

of the performance of the others. However, this improvement can be temporary and

associated with the error term, or related to the trajectory that describes the athlete’s

career. It is important to note, however, that Σq is subject- and Ψg is group-specific.

One typical restriction sets Σq = σ2
qqΣ

R and Ψg = ψ2
ggΨ

R, where σ2
qq and ψ

2
gg denote the

q-th and the g-th diagonal element of ΣC and ΨC , respectively. In this way, different

athletes and different groups would share the same correlation structure of the errors

and disturbances up to subject- and group-specific proportionality constants.

To introduce a third viewpoint useful to interpret the model, we define the following

matrices:

Yt =
[
y·1,t . . . y·Q,t

]
, At =

[
α

(1)
t . . . α

(G)
t

]
, S⊤ =

[
s⊤1· . . . s⊤Q·

]
,

Et =
[
ε·1,t . . . ε·Q,t

]
, Ξt =

[
ξ
(1)
t . . . ξ

(G)
t

]
,

where s⊤q· = (I(Sq = 1), . . . , I(Sq = G))⊤ is an allocation vector, known in this specific

phase of the model’s specification, but object of inference in the later sections. This

vector highlights the group to which the athlete q belongs, in such a way I(Sq = g) = 1

if athlete q belongs to group g, and 0 otherwise. The matrix-variate representation of
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the model

Yt = ZAtS
⊤ + Et, (3.5)

At+1 = TAtU
⊤ +Ξt, (3.6)

with A1 ∼ MNF,G(Â1|0,P1|0), and U = IG, is a special case of the matrix state space

model described in the previous chapter. In this work, also Â1|0 is assumed to be

a matrix-variate normal random variable with known mean and diagonal covariance

matrix P1|0. The matrix S is a selection matrix, with the role of selecting, for each

athlete, the columns of states associated with the group the athlete belongs to, and

silencing the others. The matrices of errors and disturbances are assumed to follow

matrix-normal distribution with covariance matrix Σ and Ψ, respectively. In matrix

state space models, one typical assumption imposes Σ = ΣC ⊗ΣR and Ψ = ΨC ⊗ΨR

(see, e.g., Wang andWest, 2009; Chen et al., 2020). Here, ΣR andΨR are row-covariance

matrices with dimensions P × P and F × F , and measure row-wise dependence of

errors and disturbances, respectively. Conversely, the matrices ΣC and ΨC are column-

covariance matrices with dimensions Q × Q and G × G that measure instead column-

wise dependence of errors and disturbances, respectively. Dependent rows or columns

are characterized by full covariance matrices, while independent row or columns are

characterized by diagonal matrices (Gupta and Nagar, 2000). Thus, the model is general

enough that various forms of dependence can be considered on the basis of different

possible specifications of the covariance matrices. However, with annual-based data

describing the careers of different athletes, we require Z = IP , T = IP , Σ = IQ ⊗ ΣR

and Ψ = blkdiag(Ψ1, . . . ,ΨG), since decomposing Ψ with a Kronecker product may be

too restrictive. We note that this request solves the identifiability problem such that, for

any c > 0 and d > 0, ΣC ⊗ΣR = cΣC ⊗ 1
c
ΣR and ΨC ⊗ΨR = dΨC ⊗ 1

d
ΨR. Imposing

ΣC = IQ is a restriction even stronger than required, but it helps to stabilize the

estimation of the other components of the model given the presence of many missing

data. However, we also note that these restrictions do not solve another problem of

non-identifiability present in the model, known in the literature as label switching. This

problem happens when the posterior distribution presents multiple equal maxima, that

correspond to different ways of swapping the columns of S in the presence of symmetry

between the priors (see, e.g., Malsiner-Walli et al., 2017). This issue is also related to

the priors’ specification and can be solved in the post processing phase, so we leave the

related discussion to later sections.

Moreover, we make a distinction among Y , which denotes the set of observations as if

they were fully observed; Y⋆, corresponding to the set of variables which are effectively
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observed; and Ỹ which corresponds to the completion of Y⋆, i.e. such that Y = Y⋆ ∪ Ỹ
and Y⋆ ∩ Ỹ =Ø. Beyond, we denote with A = {A1, . . . ,AT} the set storing the latent

states of the state space model. These distinctions will be used in Section 3.4, since

they are useful in the estimation of some components of the model.

3.2.2 Missing data inform on clustering structure

The previous section was developed conditional on all data being observed, i.e., that

the athletes run all P races during the years and that drop-ins and drop-outs are not

observed. However, this is not the case for data that describe the career trajectories of

athletes, since the lack of data is part of the career itself. To include these factors as

informative aspect of athletes’ career, we consider two other variables in the model. As

first, we consider

dpq,t =

1 if race p for athlete q is observed at time t,

0 otherwise,

to describe the presence or absence of the observed races for the athletes. Then we

consider the variable d⋆q,t that informs whether the athlete q is in career during year t,

which is

d⋆q,t =


0 if athlete q has never started the career before t (included),

1 if athlete q is in career during t,

2 if athlete q has finished the career in t (included).

The variable d⋆q,t is not decreasing in t, and describes the three possible states of athlete’s

career. Moreover, if d⋆q,t ∈ {0, 2}, then dpq,t = 0 with probability 1, for p = 1, . . . , P ,

meaning that no races are observed since the athlete is not competing. On the contrary,

there might be athletes such that dpq,t = 0, for p = 1, . . . , P , even if d⋆q,t = 1. This

is typical of athletes who, despite being in a career, decide not to compete during one

specific year, but compete in the following years.

The division into three non-concurrent states allows for the introduction of temporal

dynamics within the model of missing data patterns in an easy way. In particular,

let d⋆
q = (d⋆q,1, . . . , d

⋆
q,T ), d·q,t = (d1q,t, . . . , dPq,t)

⊤, and Dq =
[
d·q,1 . . . d·q,T

]
, D =

{D1, . . . ,DQ}, and D⋆ = {d⋆
1, . . . ,d

⋆
Q}. First, we make the following independence
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assumption among different subjects

pθ(D,D⋆|S) =
Q∏

q=1

pθ(Dq,d
⋆
q|Sq). (3.7)

As a second step, we let d⋆
q and Dq be dependent on the group Sq to which the athlete

q belongs, and make the following conditional independence assumption

pθ(Dq,d
⋆
q|Sq) = pθ(Dq|d⋆

q, Sq)pθ(d
⋆
q|Sq)

=
T∏
t=1

[ P∏
p=1

pθ(dpq,t|d⋆q,t, Sq)
]
pθ(d

⋆
q,t|d⋆q,t−1, Sq) (3.8)

where pθ(d
⋆
q,1 = 1|d⋆q,0, Sq = g) = π⋆

1g and pθ(d
⋆
q,1 = 0|d⋆q,0, Sq = g) = 1 − π⋆

1g, with

d⋆q,0 = 0 fixed for q = 1, . . . , Q.

Note that, in the equations, the subscript θ in pθ(A|B) denotes conditional depen-

dence of the form p(A|B, θ), for slight abuse of notation. Table 3.1 provides details

of the probabilities associated with the possible observable case histories. We note

that, for athlete q, the conditional probabilities at time t of transition from state 0 to

state 1—i.e. pθ(d
⋆
q,t = 1|d⋆q,t−1 = 0, Sq = g) = π⋆

1g— or from state 1 to state 2—i.e.

pθ(d
⋆
q,t = 2|d⋆q,t−1 = 1, Sq = g) = π⋆

2g— are group dependent but constant over time.

Similarly, for athlete q, the conditional probabilities at time t of observing a value for

the generic race p—i.e. pθ(dpq,t = 1|d⋆q,t = 1, Sq = g) = πpg— are group-dependent, but

fixed over time. We believe that both assumptions are plausible for the phenomenon

under consideration. In particular, although transitions in the prevalence of the type

of races done in a long career are possible for some athletes (for example, from shorter

to longer races), these transitions are difficult to detect with annual based data—which

are summaries of the entire years. This issue is due by the fact it is enough to compete

in only one race in the distance to be included into the ranking lists. Similarly, the as-

sumption of constant probabilities during years used to describe the presence of missing

values does not contemplate the possibility that athletes would get seriously injured,

and, thus, they would not compete in any race for more than a year. Although there is

no clear indication in the literature about the average duration and severity of an injury

in middle distance athletes (see, e.g., van Gent et al., 2007), we assume here that severe

injuries are present only in low proportions, leaving open possible investigations on this

aspect in the future.
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Table 3.1: Case histories’ probabilities describing possible missing data patterns.

Quantity Conditioning variable Conditioned variable Probability

pθ(d
⋆
q,t|d⋆q,t−1, Sq = g)

0
0 1− π⋆

1g

1 π⋆
1g

2 0

1
0 0
1 1− π⋆

2g

2 π⋆
2g

2
0 0
1 0
2 1

pθ(dpq,t|d⋆q,t, Sq = g)

0
0 1
1 0

1
0 1− πpg
1 πpg

2
0 1
1 0

3.3 Likelihood and prior specification

3.3.1 Likelihood

In order to derive the posterior distribution of the parameters, we present the likelihood

of the observed process first, augmented for both the states A, the missing observa-

tions Ỹ , and S. The augmented likelihood is characterized by the following conditional

independence structure

pθ(Y ,D,D⋆,A,S) = pθ(Y|D,A,S)pθ(D|D⋆,S)pθ(D⋆|S)pθ(S)pθ(A). (3.9)

In the equation, pθ(Y|D,D⋆,A,S) = pθ(Y|D,A,S), and is determined by the measure-

ment Equation (3.5), for which all observations are assumed to be available, and the

prior on A is implicitly determined by the form of the state equation of the state space

in Equation (3.6). However, only Y⋆ = {Y⋆
1 , . . . ,Y⋆

T} is observed, but pθ(Y|D,A,S) can
be obtained by conditioning, noting that

pθ(Y|D,A,S) = pθ(Y⋆|D,A,S)pθ(Ẽ |Y⋆,D,S),
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where Ẽ stores all those entries in E = {E1, . . . ,ET} associated with the observed missing

values. To characterize S, we make the following independence assumption

pθ(S) =

Q∏
q=1

pθ(sq·) =

Q∏
q=1

G∏
g=1

πI(Sq=g)
g , (3.10)

where π = (πg, . . . , πG) is such that πg ∈ (0, 1), for g = 1, . . . , G, and
∑G

g=1 πg = 1.

3.3.2 Prior specification

We assume that the parameter θ factorizes as follow

p(θ) = p(Â1|0)p(Σ
R)p(π)p(Ψ)p(π⋆

1)p(π
⋆
2)

P∏
p=1

p(πp), (3.11)

where π⋆
1 = (π⋆

11, . . . , π
⋆
1G), π

⋆
2 = (π⋆

21, . . . , π
⋆
2G), and πp = (πp1, . . . , πpG) are vectors that

store all the missing data probabilities. It is interesting to observe that their dimensions

depend on the number of groups G, which is fixed. In this work, we fix G = 9, since the

number of different classes is obtained by combining the factors personal attitude and

history, as summarized by the following distinct classes

Attitude =


800 m,

1500 m,

5000 m,

History =


E-E: Early entry/Early exit,

E-L: Early entry/Late exit,

L-U: Late entry/Undefined exit.

In order to include in the model prior information about these classes, the priors on πpg,

π⋆
1g, and π⋆

2g are assumed to be informative Beta distributions, with the mean shifted

toward one or zero depending on the meaning of the parameter, as shown in Figure 3.3.

In substance, a group with athletes specialized in race is characterized by an high prior

probability in the reference race, and lower prior probabilities in the others. A group

with “Early entry” characteristic has high probability of dropping-in. On the contrary,

a group with “Late entry” characteristic has low probability of dropping-in. Similarly, a

group with “Early exit” characteristic has an high prior drop-out probability, differently

from those with “Late exit” characteristic which have low prior probability of dropping-

out, or “Undefined exit” for which we adopt a diffuse prior. Since no prior information

is available on groups’ proportions, π ∼ DirG(1/G, . . . , 1/G). Covariance matrices are

assumed to be diffuse inverse Wishart, which are conjugate under Gaussian likelihood.
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Figure 3.3: Prior probabilities describing missing data patterns. On the left, priors
πpg are represented on the basis of the athlete’s attitude. On the right, priors π⋆

1g

(drop-in) and π⋆
2g (drop-out) are represented considering the athlete’s history. Points

denote the means of the distributions. Colored bands describe 90% pointwise prior
credible interval based on quantiles. The acronyms “E-E”, “E-L” and “L-U” describe
different possible histories of the athletes. More specifically, they stand for “Early
entry-Early exit”, “Early entry-Late exit”, “Early entry-Undefined exit” characteris-
tics, respectively.

More specifically, we assume ΣR ∼ IW3(ν
R
σ ,Σ

R
0 ) for the errors and require

Ψ1 = Ψ2 = Ψ3 = Ψ800, Ψ4 = Ψ5 = Ψ6 = Ψ1500,

Ψ7 = Ψ8 = Ψ9 = Ψ5000,

where Ψj ∼ IW3(νj,Ψ
0
j), for j ∈ {800, 1500, 5000}. The constraints impose that ath-

letes with the same attitude are characterized by the same covariance matrices for the

disturbances, meaning that they share the same correlation structure regardless of their

histories. This assumption allows for improved covariance estimates particularly for

those groups characterized by a lot of missing data (E-E, L-U) by reducing the number

of distinct parameters involved in these covariance matrices. If relaxed, in fact, the

number of distinct parameters is 9 · (3 · 4/2) = 54 with respect to 3 · (3 · 4/2) = 18.

Finally, the prior on Â1|0 is assumed matrix-normal with mean ȳ11
⊤
G and variance

P1|0 = IG ⊗ diag(p2
1,1, . . . , p

2
1,P ), where ȳ1 is the vector storing sample average of ob-

served races at first time instant, and p2
1,p is twice the sample variance of the p–th

observed race at the first time instant. Alternative specifications are possible, including

diffuse and exact initialization (Durbin and Koopman, 2012).
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3.3.3 Two step interpretation of clustering strategy

The goal of our inference procedure is to obtain a sample from the posterior distribution

p(θ,A,S, Ẽ |Y⋆,D,D⋆) ∝ p(θ)pθ(Y|D,A,S)pθ(D|D⋆,S)pθ(D⋆|S)pθ(S)pθ(A), (3.12)

in order to derive a related posterior distribution of some quantity of interest. It is

worth to mention that the posterior Q1,2(S) = p(θ,A,S, Ẽ |Y⋆,D,D⋆) can be expressed

as Q1,2(S) = Q2|1(S)Q1(S), where

Q1(S) = pθ(D|D⋆,S)pθ(D⋆|S)pθ(S)p(π)p(π⋆
1)p(π

⋆
2)

P∏
p=1

p(πp),

Q2|1(S) = p(Â1|0)pθ(A)pθ(Y|D,A,S)p(ΣR)p(Ψ).

We can interpret our clustering strategy as a two-step procedure, in which different ath-

letes are clustered by means of the posterior Q1(S) first, and then Q1(S) is used as a new

prior on S for obtaining a new clustering of athletes, given by Q1,2(S), in light of their

performances. The posterior Q1(S) reflects the grouping structure present in the data

according to the missing data patterns. The prior p(π⋆
1)p(π

⋆
2)
∏P

p=1 p(πp) reflects prior

beliefs about missing data patterns’ dynamics for G = 9 distinct groups. The distinction

into 9 groups derives from qualitative reasoning about the phenomenon under considera-

tion, on the basis of a prior knowledge present in the application domain. In this study,

the 9 groups were obtained by combining two distinct factors, personal attitude and

personal history, which are considered relevant in the determination of performances.

Differences across groups are accounted using p(π⋆
1)p(π

⋆
2)
∏P

p=1 p(πp), that introduces

asymmetries across groups and leads to an asymmetrical posterior. This aspect helps

in the identification of the groups and solves the problem of label switching—which is

present when both likelihood and prior are symmetric (see Malsiner-Walli et al., 2017,

among others)—by weighing in different ways the multiple modes of the posterior.

The information derived from the first step is twofold. On one side, the clustering of

athletes and uncertainty quantification can be obtained on the basis of their attitudes

and histories only. For example, by considering Q1(S), it is possible to obtain a posterior

summary S̃ of S that can be used as an exploratory tool for computing Q2|1(S̃), where

S = S̃ is considered as known. On the other side, it is possible to update the knowledge

about missing data probabilities and group proportions. We note that, while the prior

specification reflects a belief about the missing data behaviors, it is possible that the

posterior no longer reflects these prior beliefs about the groups.
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However, the first step does not provide information about groups’ performances

over time described by the states A, which is of primary interest to understand how

athletes’ careers develop over time. Obtaining a sample of Q1,2(S) allows to obtain this

information, accounting also for uncertainty present in Q1(S). As a side benefit, we

update knowledge on both θ and S, given the whole set of observations (and missing

data patterns), that can be used for posterior analysis. For example, it is possible to

obtain a posterior summary Ŝ of S and compare it with the S̃ previously obtained.

Mismatches between Ŝ and S̃ identify athletes that belong to one group which is based

on personal history and attitude only, but, in light of the observations of the races, have

performances related to another one.

3.4 Inference via Gibbs sampling

Samples from the posterior distribution can be obtained with a Markov Chain Monte

Carlo (MCMC) approach, a standard procedure used in Bayesian analysis (see, e.g.,

Gelman et al., 2014; Robert and Casella, 2004). The use of conjugate priors has made

the derivation straightforward. States estimation can be obtained with a reduced form

of the model using a simulation smoothing technique (Durbin and Koopman, 2002). In

particular, let yt = vec(Yt). We can apply the reduction by transformation technique

described in Section 2.4.3 to the vector form of the model by considering the following

decomposition

(S⊗ Z) = (SIG)⊗ (IPZ) = (S⊗ IP )(IG ⊗ Z),

where S and Z are assumed to be full-column and full-row rank matrices, respectively.

If we consider Z† = (S⊗ IP ), and A′ = Z⊤
† Σ

−1, the state estimation can be applied to

the reduced vector of observations y′
t = A′yt, which has dimensions PG× 1, where PG

is typically such that PG ≪ PQ, leading to larger speed-ups when G ≪ Q. Further

details and other useful steps of the algorithm are reported in Appendix A.

3.4.1 Possible improvements

The algorithm is very sensitive to starting points, and the risk is that during its it-

erations: (a) the algorithm gets stuck in some local mode; (b) some groups remains

without athletes. To avoid the problem (a), it is possible to include in the algorithm a

Metropolis Hastings step in which the columns of S are exchanged. If case (b) happens,
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obtaining samples from the states is problematic, especially if the model involves tran-

sition matrices Tp that imply the use of non-stationary processes (e.g. random walk).

States are indeed simulated conditional on no observed data. The resulting processes

are generally highly variable and far away from the observed data, leading to groups

that remain without athletes for many iterations. This problem, which depends on how

the model is specified, can be solved by considering several approaches.

The first strategy is to start the iterations with good starting points. For example, it

is possible to initialize the matrix S with a posterior summary S̃ obtained from Q1(S),

and then obtain other starting quantities using Q1,2(S̃), where S = S̃ is considered fixed

and known. However, this strategy does not guarantee that, during the iterations, all

the groups are filled with athletes.

The second solution is to adopt a strategy inspired by anchoring (Kunkel and Pe-

ruggia, 2020). In this case, it is necessary to select at least one athlete per group to be

allocated with probability one to a reference group. This strategy requires knowledge of

the groups searched and ensures that the groups do not become empty during the esti-

mation routine by modifying the prior pθ(S) on cluster allocations according to selected

constraints. This is a viable strategy, if one deals with data regarding middle distance

athletes, since there is knowledge about the group to search. The choice of athletes to

anchor for each group can be made prior to the analysis, on the basis of the observed

missing data patterns or after obtaining a sample Q1(S) in a preliminary step. Kunkel

and Peruggia (2020) interpret the anchoring strategy as a data-depending informative

prior on the mixture components. This proposal can be used together with or as an

alternative to the subjective priors described in Section 3.3.

A third strategy, more general and useful in contexts different from clustering of

athletes’ careers, requires modifying the Gibbs sampling algorithm substantially. More

specifically, it is possible to derive a collapsed Gibbs sampler (see, e.g., Liu, 1994) in

which states and missing data probabilities are integrated out during the allocation step.

States can be marginalized out through the use of Kalman filter routines. Probabilities

associated with missing data patterns can be marginalized out using standard calcula-

tions with Bernoulli likelihoods and beta priors. In this way, the impact of simulated

states in groups without observations can be reduced. This is useful, for example, when

over-parametrized mixtures are used, where some groups are expected to remain empty

(see, e.g., Malsiner-Walli et al., 2017; Frühwirth-Schnatter et al., 2020). This strategy

leads to more intensive routines, where efficient exploration of the discrete space of selec-

tion matrices is required. The matrix S can be updated one row at a time, conditional

on the others. Alternative methods update the entire S or proceeding by blocks (Nobile
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and Fearnside, 2007; Titsias and Yau, 2017; Zanella, 2020; Grathwohl et al., 2021). In

Section 3.5 we adopt the first strategy, leaving the investigation of the others to future

research.

3.5 Case study

The analysis were performed by obtaining two samples of size IT = 2000 from the

posterior distributions Q1(S) and Q1,2(S). Burn-in periods of 8000 iterations were con-

sidered. Q1(S) was first obtained, and S̃ was defined considering the MAP (maximum

a posteriori) of cluster allocations, by considering each row of S separately. S̃ was con-

sidered fixed during the first 1000 iterations of the burn-in period of the algorithm for

obtaining Q1,2(S). During iterations, some groups remained without athletes, especially

those with “Early entry/early exit” characteristic in all the attitudes. The algorithm

demonstrated the ability to re-fill the groups despite the high variability present due to

simulating states conditionally on no observations. However, this ability was lacking for

the group with “Early entry/Early exit” characteristic and 5000 meters race attitude

(“5000: E-E” group). This aspect may be related to the difficulty in identifying athletes

with those characteristics, due to their actual low proportion in the sample. The actual

elimination of this group typically requires a formal test, based on some information

criteria (see, e.g., Spiegelhalter et al., 2014) or alternative Bayesian methods for model

selection (see, e.g., George, 2006). In this work, the number of groups is considered fixed

as a result of qualitative reasoning deriving from domain knowledge of the application.

So, the results obtained are valid conditionally on whether we believe the assumptions

we have made. All aspects related to model validation, including the definition of alter-

native prior probabilities or the definition of alternative models in which the number of

groups is unknown, are possible but left for future research (Frühwirth-Schnatter et al.,

2020).

Figure 3.4 shows the posterior distributions of the cluster allocation probabilities

π derived from the obtained samples of Q1(S) and Q1,2(S). For both the samples,

“5000: E-E” group’s probability has a distribution shifted toward zero, in contrast to

the posterior probability of “5000: E-L” and “5000: L-U” groups. This aspect may

indicate a preference to not let young athletes compete in longer distances.

Figure 3.5 shows the posterior probabilities that describe athletes’ attitudes and

histories for the considered groups, obtained by sampling from the distribution Q1,2(S).

Identified groups are characterized by different posterior probabilities, which are updated

with respect to the priors shown in Figure 3.3.
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Figure 3.4: Posterior distributions of the cluster allocation probabilities π. On the
left, the distributions are derived from Q1(S), without considering the performances
of the athletes. On the right, the distributions are obtained from Q1,2(S) considering
athletes’ performances over the years.

Figure 3.5: Posterior probabilities describing different athletes’ attitude and history
for the considered groups, obtained from the distribution Q1,2(S). On the first row,
the probabilities describing athletes’ attitudes are shown. The second row shows the
probabilities describing their histories. Groups were divided according race attitude.
Colored bands denote 90% pointwise posterior credible intervals based on quantiles.
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Figure 3.6: Performances on 800 meters race for groups “800: E-E”, “800: E-L”,
and “800: L-U”. Thicker lines denote posterior medians of the states. Colored bands
denote the respective 90% pointwise posterior credible intervals based on quantiles.
Observed data are represented in the background, according to athletes’ MAP cluster
allocations.

No groups with high drop-out probability were identified, except for group “5000:

E-E” which is often empty, and whose posterior probabilities are not much different

from the prior. In contrast, there are differences between groups in the probabilities

describing athletes’ attitudes. For example, greater differences between “800: E-E” and

“800: E-L” groups are present in the probabilities of their participation in the 1500

meters races, in comparison to the probabilities that describe their histories and other

races. Indeed, “800: E-E” group (which is no longer characterized by an high drop-out

probability) has a much higher probability of competing in 1500 races with respect to

“800: E-L”. Similarly, “1500: E-L” group is characterized by a much lower probability

of competing in all the races with respect to “1500: L-U” group. However, their histories

are different since drop-in probability in “1500: L-U” group is much lower than the one in

“1500: E-L” group. Interestingly, differences across drop-out probabilities of all groups

are less evident, except for “5000: E-E” which is empty in mostly all iterations. This

may indicate that drop-out, in comparison with the other factors, is a less discriminating

one, but also that the model has difficulty in identifying groups with very short careers.

This aspect, which is relevant from an inferential point of view, could be considered as

a possible object of future investigation.

While studying the posterior distributions of parameters allows to characterize the

groups found, understanding whether their characteristics are associated with better

performances is a key aspect of the proposed approach. To do so, one strategy simply

inspects posterior draws of the states. Figure 3.6, for example, shows performances

on 800 meters race for groups “800: E-E”, “800: E-L”, and “800: L-U”. “800: E-E”

and “800: E-L” are characterized by better performances, if compared with “800: L-U”

group. This implies that, in athletes who compete more in the 800 meters race, an higher
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probability of drop-in appears to be associated with better performances. Differences

between “800: E-E” and “800: E-L” are less visible. “800: E-E” group seems slightly

better than “800: E-L”, with improvements continuing until the age of 24. “800: E-L”

is, on the contrary, characterized by performances which are nearly constant over time.

On the basis of pure graphical comparison, it can be said that athletes who compete

more in the 800 meters race improve over time and perform better if they start their

career earlier in age and if they compete with an higher probability in the 1500 meters

race (see Figure 3.5). Other comparisons are possible by considering other races and

other groups. A complete view, however, would require comparing 27 = 9 · 3 different

plots, which are reported in Appendix A.

Since, in the specified model, α
(g)
p,t describes the performance over time of group g in

race p, the variable

δgg
′

p,t = I(α
(g)
p,t < α

(g′)
p,t )

describes whether, during year t, group g is better than group g′ in the considered race,

for g ̸= g′, since, in middle-distance races, a better performance is determined by a

smaller time. An overall performance indicator can be obtained by considering

∆gg′

p =
1

T

T∑
t=1

δgg
′

p,t .

The performance indicator ∆gg′
p indicates whether group g is better than g′ on race p,

as an average of δgg
′

p,t over the entire period of observation. ∆gg′
p is a discrete random

variable with support {0, 1
T
, . . . , T−1

T
, 1}. A value of ∆gg′

p between 0.5 and 1 indicates

that the performance of the g–th group is better than the performance of the g′–th one

in the considered race for more than a half of the period of observation. The closer the

value is to 1, the more were the times the performance was better. On the contrary,

a value of ∆gg′
p between 0 and 0.5 indicates an overall better performance of group g′

with respect to the g–th one on the considered race, with a value near 0 that indicates

stronger evidence on that. Thus, the variable ∆gg′
p can be used for an overall comparison

between groups, as an alternative to the graphical inspections previously explained. To

do so, it is necessary to select a reference group to be used for comparison with the

others. In this study, we use the groups “800: L-U”, “1500: L-U”, and “5000: L-U”

for evaluating the 800, 1500, and 5000 meters races, respectively. Figure 3.7 shows

the posterior distributions of ∆gg′
p for the considered groups and races. Considering

each graph marginally, the results suggest that groups “800: E-E” and “800: E-L” are
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Figure 3.7: Posterior distributions of relative performance indicator ∆gg′
p for 800,

1500, and 5000 meters races, where “800: L-U”, “1500: L-U”, and “5000: L-U” are
used as reference groups, respectively.

overall better than the “800: L-U” one (∆gg′

800 < 0.5 with probability 0.98 and 0.88,

respectively). On the contrary, there is no evidence for saying that group “800: L-U” is

better than the others in 800 meters race. “1500: L-U” group seems to perform better

than all other groups in 1500 meters race, if each distribution is considered marginally.

Looking at the group characteristics in Figure 3.5, this result suggests that, in the 1500

meters race, better results are associated with an higher probability of competing not

only in the reference race, but also in the others, despite the history of the group is

characterized by a low probability of dropping-in. Finally, there is only slight evidence

that the group “1500: E-L” is better than “1500: L-U”. Note that multiple tests and

comparisons were performed for evaluating hypothesis related to Figure 3.7. However,

in order to validate these hypothesis, it is necessary to perform a joint test on them

or possibly think about an appropriate correction. These further developments have to

be considered for future research, together with algorithm improvements explained in

Section 3.4.1.

3.6 Discussion

In this chapter, a model-based clustering method has been proposed for the analysis of

multivariate time series. The clustering is achieved with a matrix state space model used

to describe the athletes’ performances over time. Different performances are linked to

the observed values by means of a selection matrix involved in the measurement equa-

tion. The specific form given to the model permits the inclusion of various types of

dependencies. Temporal dependence is considered through the state equation, which is
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general enough to include within it various models proposed in the literature of time

series analysis (see, e.g., Durbin and Koopman, 2012). Cross-sectional dependence is

included by means of the covariance matrices of errors and disturbances involved in both

the measurement and the state equations. Since missing data patterns may be related to

the observed performances of middle distance athletes, the presence or absence of data

have been modeled using two other processes, describing athletes’ attitudes and histo-

ries. Subjective priors were used to characterized 9 distinct profiles. A Gibbs sampling

algorithm was derived. The real data application suggests that: (a) in the 800 meter

race, late-entry into competition is associated with worse performances; (b) athletes who

are more likely to participate in races other than their reference one have better overall

performances. These results highlight the importance of starting careers at young ages

and also that of versatility in competitions. A sample of athletes, regardless of their

level, was used in the analyses. These results were derived from the analysis of the states,

that have to be interpreted as an “average” behavior in the performances over time in

the various groups. Therefore, these results are valid for common athletes, and not

for specialized and high-level ones. However, in sports science interest is often directed

toward this latter category. The analyses that are performed are typically the result

of sample selection by researchers. An alternative approach in this context combines

quantile regression methods (see, e.g., Koenker, 2005) with our proposal, that allows to

consider different attitudes and histories of the athletes. Combining our approach with

quantile regression allows to focus the attention on specific quantiles of the distribu-

tions, and therefore to identify the best performances (e.g., best 10%) based on all the

observed data, accounting also the eventual presence of selection bias due to unobserved

components (e.g., attitude and history). This should be considered as another possible

future research goal, along with the other technical developments outlined throughout

the chapter. U-shaped curves, which are typically adopted in studying performances of

athletes (Haugen et al., 2018), can be considered, in our model, by adopting the state

space formulation of the regression model (Durbin and Koopman, 2012). This would

simply require Z = Zt to be time dependent and At = A to be constant over time. The

approach adopted is more general and allows to capture various behaviors, as shown in

Section 3.5. Finally, additional interesting aspects that were left out of this work, but

that can be taken in consideration in future investigations, are: extensive simulation

studies, analysis of female athletes, and analysis of other cohorts.





Chapter 4

Doubly-online changepoint

detection for monitoring health

status during sports activities

4.1 Introduction

Running is one of the most popular and practiced sports worldwide, with almost 60

million people having participated in running, jogging, and trail running in 2017 in the

United States (Statista, 2020b). Increasingly more runners use smart watches and de-

vices that record their workouts, allowing for performance analysis and the planning of

future workouts. Worldwide smart watch shipments volume as estimated by Statista

(2020c) were 74 million units in 2018, 97 million units in 2019, 115 million units in 2020,

with an expected growth to over 258 million units by 2025. Apps and wearables are

driving the next digital health and fitness revolution, in which intelligent and automatic

real-time control and monitoring tools will become extremely relevant (Statista, 2020a).

Indeed, it is expected that in the near future, smart watches may be used as medical

monitoring devices, providing support at an individual level to health-care consumers

(Free et al., 2013; Singh et al., 2018) and, more importantly, to users with different

levels of health literacy, communication, and data skills (Siqueira do Prado et al., 2019;

Vitabile et al., 2019). The spectrum of available and potential measurements by smart

watches includes information on movement, heart rate, blood oxygenation and pressure,

and glucose (Garćıa-Guzmán et al., 2021; PKvitality, 2020). Our contribution provides

a modeling framework to analyze, in an online fashion, data recorded from smart de-

vices during running activities. In particular, we focus on identifying variations in the

behavior of one or more measurements caused by changes in physical condition such

63
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as physical discomfort, periods of prolonged de-training, or even the malfunction of

measuring devices (Schneider et al., 2018).

The use of wearable technologies and sensor data for medical problems is gaining

increasing interest from the statistical community, see for example Huang et al. (2019);

de Chaumaray et al. (2020); Qian et al. (2020). The difficulty in monitoring perfor-

mances due to the presence of disturbing factors, such as environmental conditions or

other within-activity sources of variability, is widely accepted; see, for example Schneider

et al. (2018). A valuable contribution to this field was provided by Frick and Kosmidis

(2017), who developed an R (R Core Team, 2020) package that allows for both basic and

advanced retrospective analysis of data collected from smart devices. Unlike previous

works on this type of data, we focus on online inference because it highlights the im-

portant aspect of smart devices related to the monitoring activities as they are carried

out (Bourdon et al., 2017).

Recent literature in sports science and medicine points out the need to make decisions

by evaluating the personal medical history, the long- and short-term training goals of the

athlete, and the time course of training schedules (Pelliccia et al., 2021; Schneider et al.,

2018). We address these issues by utilizing data collected as a sequence of activities,

where each activity represents a part of the training session. The relevant measurements

that we will consider in this study are heart rate (bpm, beats per minute) and speed

(m/s, meters per second), whereas other common variables that can be incorporated

in our proposed methodology are cadence (spm, steps per minute) and the runner’s

geographical position (latitude, longitude, and altitude). Figure 4.1 shows a sample

of the data, consisting of 85 consecutive warm-up activities performed by one athlete

during which the heart rate and speed are monitored over time. For all the activities,

after a sudden increase, the heart rate curves seem to slowly evolve around a trend,

while the speed levels change slowly during the activity.

For one activity, all collected information is represented by a multivariate time series,

with complex dependence structures that make the extraction of the underlying signal

a non-trivial statistical problem. Our inferential framework is doubly-online in the

following sense. First, we identify changepoints in a between-online setting, in which

activities are processed sequentially when a new one is fully observed. This permits to

divide activities into subsequent segments and update the information on the unknown

parameters at the end of each activity. We also consider a within-online setting, which

refers to the online data processing of one activity. During a run, having information on

the behavior difference between the current and the previous activities may be translated

into motivational feedback or a potential alert before the end of the activity. Figure 4.2
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Figure 4.1: A sequence of activities performed by one athlete from our dataset.

shows the within-online setting for data collected by one runner in our dataset. The

red lines are associated to one new activity, monitored by the athlete after five minutes

of running and characterized by high effort, although the speed behavior seems to be

similar to those in the previous activities (shown in gray). Our algorithm provides

an online probabilistic quantification of the changepoint uncertainty by delivering the

posterior probability of a behavioral change occurrence at any time point of the activity.

In the case of Figure 4.2, the runner is interested in the behavior change at minute 5 of

the current activity.

We model the set of observed activities as a multivariate state space model (Durbin

and Koopman, 2012; Shumway and Stoffer, 2017) and we adapt to this framework classi-

cal changepoint modeling, which allows for the online detection of an a priori unknown

set of changepoints between activities, see Chib (1998); Fearnhead and Liu (2007);

Caron et al. (2012); Yildirim et al. (2013). Changepoint detection is a relevant problem

in many fields of science, ranging from industrial process control, health monitoring, cy-

bersecurity, and machine learning (see, e.g., Aminikhanghahi and Cook, 2017; Titsias

et al., 2020; Xie et al., 2021; Haynes et al., 2017).

Our approach differs in that we solve a problem of changepoint signal extraction

in which the double sequential nature—between and within activities—of the data-

generating process is preserved. The key idea is that we leverage the data on the past

history of the athlete as a benchmark for identifying standard behaviors and deviations,

providing relevant information about the performance as new data are collected. In our

application, making online inferences on a sequence of activities before the last one is
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Figure 4.2: An example of the within-online setting. The red dashed lines indicate
the current monitored activity, while gray lines denote previous activities. The vertical
line marks the time at which our algorithm provides the posterior probability that
the current activity is a changepoint.

fully observed is clearly of paramount importance. The literature on the changepoint

detection problem is very large, and alternative approaches have been proposed for high

dimensional frameworks, mostly based on dimensionality reduction techniques (see, e.g.,

Samé and Govaert, 2017; Grundy et al., 2020). Such approaches, although potentially

usable in the between-online setting, in which the observations for identifying change-

points consist of entire activities represented by multiple multivariate time series, are not

directly applicable in the within-online setting, in which there is the need to preserve the

dual sequential nature of the data. We contribute to this literature by proposing a new

state-space-based algorithm for changepoint detection in a sequence of time series by

adopting the online Expectation-Maximization (EM) algorithm developed by Yildirim

et al. (2013). The nature of our problem requires taking into account three sources of

dependence: one that inherits the sequential nature of subsequent activities, one that

considers the autocorrelation structure within each activity, and one that models the

contemporaneous dependence between variables. As a byproduct of our model assump-

tions and the online inferential procedure, our approach processes sequences of data in

a doubly-online framework. While classical changepoint models detect distributional

changes in a sequence of activities (i.e., multivariate time series), our state space model

coupled with the online EM approach provides the additional benefit of estimating the

probability that a single activity is a changepoint during a run.

4.2 The model

For each runner, we observe the data y1:N,1:T , composed of N ordered activities that

are represented by P -dimensional time series at T time points. An activity can be
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thought of as a running session taking place on different days; T defines the duration

of each activity, which is considered, for simplicity, to be equal for all activities, and

P denotes the number of smart device measurements, such as heart rate and speed.

Our interest lies in modeling the data online and identifying changepoints during each

activity, using information on both previous activities and previous recordings during

the current activity. We build our model by first introducing an N -dimensional latent

vector S1:N = (S1, . . . , SN) such that S1 = 1 and Sn − Sn−1 = 1 if a changepoint occurs

at the n-th (n > 2) activity. The vector S1:N = (S1, . . . , SN) divides the activities into

SN contiguous segments, in which activities belonging to different segments are assumed

to be independent of each other. The segments S1:N are modeled using a discrete state

space Markov chain with transition probability p(Sn|Sn−1) = λ if Sn = Sn−1 + 1, for

0 < λ < 1.

Assume that the activity n belongs to segment s. We model its measurements at

time t by a state space representation with measurement equation

yn,t =
[
Z

(S)
θ Z

(A)
θ

] [α(s)
t

αn,t

]
+ ϵn,t, (4.1)

with ϵn,t
iid∼ NP (0,Σθ), and state equation[
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with η
(s)
t

iid∼ NM(0,Ψθ), ηn,t
iid∼ NK(0,∆θ), and α

(s)
1

iid∼ NM(α̂
(S)
1|0 ,P

(S)
1|0 ) independent of

αn,1
iid∼ NK(α̂

(A)
1|0 ,P

(A)
1|0 ). The subscript θ is used throughout to highlight which parts of

the model depend on, or are a function of, an unknown parameter vector θ ∈ Θ, which

is the object of inference in the model. The elements Z
(S)
θ , Z

(A)
θ , T

(S)
θ , and T

(A)
θ are

non-stochastic design matrices with dimensions P ×M , P ×K, M ×M , and K ×K,

respectively. These matrices are shared across different segments and different activities,

and may depend on θ. Their specification is left undefined and depends on the specific

application and behavior of the variables being considered, as it is typical in state space

modeling (see, e.g., Durbin and Koopman, 2012). Coupled with the design matrices,

the covariance matrices Σθ, Ψθ, and ∆θ of dimensions P × P , M ×M , and K × K,

respectively, capture any contemporaneous dependencies between different elements of

the model, such as the entries of the error component ϵn,t of dimensions P × 1 or those

of the disturbance vectors η
(s)
t and ηn,t of dimensions M × 1 and K× 1, respectively. In

general, the covariance matrices are full and unstructured; however, depending on the
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application, they may have a specific structure and involve a small number of elements

of θ.

In the above specification, α
(s)
t are vectors of dimensions M × 1 that denote the

dynamic segment-specific latent features, which are supposed to be independent of any

other α
(s′)
t , for any s ̸= s′. Together with S1:N , the segment-specific latent features α

(s)
t

account for the dependence between subsequent activities. The activity-specific latent

features αn,t are vectors of dimension K×1 that capture temporal dependencies that are

unrelated to the performance of the athlete and describe negligible factors or disturbing

aspects associated with the activities. These vectors are assumed to be independent of

α
(s)
t and any other αn′,t, with n′ ̸= n. With no information on the initial states, we

adopt the diffuse state initialization technique, in which the means and variances are

independent of θ, and the latter are supposed to be large (Durbin and Koopman, 2012).

Condition now on S1:N and assume further that the s-th segment ranges between

the js-th and the ks-th activity, so that its length is ms = ks − js + 1. We model this

segment using the following equations:
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θ





α
(s)
t

αjs,t

αjs+1,t

...

αks,t


+



η
(s)
t

ηjs,t

ηjs+1,t
...

ηks,t


, (4.4)

for ϵjs:ks,t = (ϵ′js,t, ϵ
′
js+1,t, . . . , ϵ

′
ks,t

)′
iid∼ NmsP (0, Ims ⊗ Σθ), η

(s)
t ∼ NM(0,Ψθ), ηjs:ks,t =

(η′
js,t,η

′
js+1,t . . . ,η

′
ks,t

)′
iid∼ NmsK(0, Ims ⊗∆θ) , α

(s)
1 ∼ NM(α̂

(S)
1|0 ,P

(S)
1|0 ), αjs:ks,1 = (α′

js,1,

α′
js+1,1 . . . ,α

′
ks,1

)′∼NmsK(1ms ⊗ α̂
(A)
1|0 , Ims ⊗ P

(A)
1|0 ), independent of each other and with

fixed hyper-parameters.

Let α1:N
1:T = (α1:N,1:T ,α

(1:SN )
1:T ) be a vector storing both the segment-specific and the

activity-specific latent features. It is possible to write the augmented likelihood of the
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model, which has the conditional independence structure

pθ(y1:N,1:T ,α
1:N
1:T , S1:N) = pθ(y1:N,1:T |α1:N

1:T , S1:N)pθ(α
1:N
1:T |S1:N)p(S1:N), (4.5)

where pθ(α
1:N
1:T |S1:N) = pθ(α

(1:SN )
1:T |S1:N)pθ(α1:N,1:T ). Conditional on segments S1:N ,

Equations (4.3) and (4.4) specify a state space model such that both the segment-

specific and activity-specific latent features can be integrated out by means of a Kalman

filter routine. By integrating out these latent features in Equation (4.5) we obtain the

contribution of the s-th segment to the likelihood conditional on S1:N given by

log pθ(yjs:ks,1:T |Sjs:ks) = −1

2

T∑
t=1

(
msP log(2π) + log |Fs,t|+ υ′

js:ks,t(Fs,t)
−1υjs:ks,t

)
,

(4.6)

where both the innovations vectors υjs:ks,t and their respective covariance matrices Fs,t

are outputs of the Kalman filter routine, reviewed in Chapter 2 and Appendix B. Thus,

the likelihood is conditional on the segments, but no longer on the segment- and activity-

specific latent features. The conditional likelihood depends clearly on the unknown pa-

rameter θ through υjs:ks,t and Fs,t, which are functions of the data, the design matrices,

and the covariance matrices involved in the state space model, for which the subscript

θ has been omitted for simplicity of notation. While the model specification above is

intuitively driven by the mechanism that generates the data, it is useful to connect it

with the way Yildirim et al. (2013) specified a model because we will adopt their infer-

ential strategy in the next section. Specifically, instead of S1:N , we can define a latent

vector D1:N = (D1, . . . , DN) such that Dn represents the delay from the last changepoint

defined through the following recursion

Dn|Dn−1 =

Dn−1 + 1 if Sn = Sn−1,

1 if Sn = Sn−1 + 1,

with D1 = 1, and we note the information equivalence between D1:N and S1:N . We can

then express the conditional likelihood of the observed process as

pθ(y1:N,1:T |D1:N) =
N∏

n=1

GD
θ,n(Dn), (4.7)
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where the potentials are defined as

GD
θ,n(Dn) = pθ(yn,1:T |D1:n,y1:(n−1),1:T ) =


pθ(yj:n,1:T |Dn)

pθ(yj:(n−1),1:T |Dn−1)
if Dn = Dn−1 + 1,

pθ(yn,1:T |Dn) if Dn = 1,

with j = n − Dn + 1. Notice that the potential GD
θ,n(Dn) is nothing more than the

individual contribution of activity n to the conditional likelihood of the observed process,

provided that the first n−1 activities have already been observed and the index of the last

changepoint is known by means of Dn. The likelihoods involved in the potentials can be

easily calculated through the use of Kalman filter routines, as in Equation (4.6), in which,

for activity n, the activities to be considered in the respective segment are determined

by Dn. Knowing either D1:N or S1:N is equivalent, while if we consider only the marginal

Dn instead of Sj:n with j = max(1, Sn−Dn+1), we lose the information on the number

of the segment the n-th activity belongs to. We do not consider the random variable Ds
n,

which highlights both the delay with respect to the last changepoint and the segment

to which the activity belongs to. Since our primary interest is the early changepoint

detection, all the provided results rely on an underlying exchangeability assumption

between segment-specific features, which simplifies the mathematical treatment.

The likelihood of the observed process is given by pθ(y1:N,1:T ) = Eθ

[∏N
n=1G

D
θ,n(Dn)

]
where the expectation is taken with respect toD1:N . This likelihood represents the target

to maximize for obtaining an estimate of the unknown parameter θ, which drives the

behavior of the observed process. The parameter θ is involved in the model specification

of both the segments-specific, and the activity-specific temporal dynamics during the

activities.

4.3 Estimation and changepoint detection

4.3.1 From batch to online EM algorithms

Our interest lies in θ̂ = arg max
θ∈Θ

[
pθ(y1:N,1:T )

]
via the EM algorithm introduced by

Dempster et al. (1977). An exact online EM algorithm for linear and Gaussian state

space models was introduced by Elliott et al. (2002). Here, we review and adapt to our

setting the online EM algorithm by Yildirim et al. (2013), involving a Sequential Monte

Carlo (SMC) approximation step, developed for a large class of changepoints models.
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Let θ̂it be the estimate of the maximizer at the it-th iteration of the EM algorithm.

At iteration it+ 1 the expectation step of the offline EM algorithm computes

Q1:N(θ, θ̂it) = Eθ̂it

[
log pθ(y1:N ,α

1:N
1:T , D1:N)|y1:N,1:T

]
(4.8)

= Eθ̂it

[
log p(D1:N) + Eθ̂it

[
log pθ(y1:N ,α

1:N
1:T |D1:N)|D1:N ,y1:N,1:T

]
|y1:N,1:T

]
(4.9)

The expected value in Equation (4.8) is computed with respect to both D1:N and the

latent features α1:N
1:T , considered jointly, and involves the log-density augmented for both

latent variables. Equation (4.9) involves an external and an internal expectation, which

are computed with respect to the random variables D1:N and α1:N
1:T |D1:N , respectively,

given the entire set of data y1:N,1:T . The subscript 1:N in Q1:N(θ, θ̂it) indicates that

all the observations up to activity N are used. Moreover, Q1:N(θ, θ̂it) depends on θ

through the functional form of the augmented likelihood pθ(y1:N ,α
1:N
1:T , D1:N). The true

parameter θ is substituted by its estimate θ̂it when the expected values are computed

at iteration it+ 1. Once this expectation is computed, the maximization step solves

θ̂it+1 = arg max
θ∈Θ

[
Q1:N(θ, θ̂it)

]
= Λ(Q1:N) (4.10)

with Λ : Q1:N → Θ, and Q1:N being the r-dimensional set of sufficient statistics.

The two steps are repeated until a set of stopping rules are satisfied, which allows

to iteratively grow the function Q1:N(θ, θ̂it) and, consequently, the likelihood of the

observed process. The offline EM algorithm requires the ability to compute both the

E-step in Equation (4.8) and the M-step in Equation (4.10) in closed form or through

the use of a finite set of elementary operations, involving the expectation of the set of r

sufficient statistics Q1:N .

To adapt the EM algorithm to the online setting, we define the individual contribution

of activity n to Q1:n(θ,θ
′) as

ιθ′(yn,1:T ) := log p(D1:n)− log p(D1:(n−1))

+ Eθ′
[
log pθ(y1:n,1:T ,α

1:n
1:T |D1:n)|y1:n,1:T , D1:n

]
− Eθ′

[
log pθ(y1:(n−1),1:T ,α

1:(n−1)
1:T |D1:(n−1))|y1:(n−1),1:T , D1:(n−1)

]
,

with ιθ′(y1,1:T ) = I(D1 = 1) + Eθ′
[
log pθ(y1,1:T ,α

1
1:T |D1)|y1,1:T , D1

]
, for any value θ′ ∈

Θ. The expression for ιθ′(yn,1:T ) is nothing else but the difference between the argument

of the external expected value in Equation (4.9) computed using the observations up

to activity n and the same argument calculated using the observations up to activity
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n− 1, in which the expectations are taken with respect to the latent features α1:n
1:T and

α
1:(n−1)
1:T involved in the respective state space models. Although not easy to interpret,

the construction of ιθ′(yn,1:T ) mimics the definition of the conditional likelihood in terms

of the potentials in Equation (4.7) and allows to write the expression of Q1:N(θ,θ
′) as

the expected value with respect to D1:N of a sum of N functionals, i.e. Q1:N(θ,θ
′) =

Eθ′
[∑N

n=1 ιθ′(yn,1:T )|y1:N,1:T

]
, and therefore its sequential evaluation as new activities

are observed.

We adopt the stochastic approximation proposed by Yildirim et al. (2013) based

on a forward smoothing technique, see for example Kantas et al. (2015). By setting

T1(D1,θ) = ιθ(y1,1:T ), and defining

Sn(D1:n,θ
′) : =

n∑
j=1

ιθ′(yj,1:T )

Tn(D1:n,θ
′) : =

∑
D1:(n−1)∈D1:(n−1)

Sn(D1:n,θ
′)pθ(D1:(n−1)|y1:(n−1),1:T , Dn)

=
∑

Dn−1∈Dn−1

[
Tn−1(D1:(n−1),θ

′) + ιθ′(yn,1:T )
]
pθ(Dn−1|y1:(n−1),1:T , Dn),

(4.11)

we are able to evaluate Tn(D1:n,θ
′) sequentially. It can also be shown that

Q1:n(θ,θ
′) =Eθ′

[ n∑
j=1

ιθ′(yj,1:T )|y1:n,1:T

]
=

∑
Dn∈Dn

Tn(D1:n,θ
′)pθ(Dn|y1:n,1:T )

allowing, subject to knowing Tn(D1:n,θ
′) and pθ(Dn|y1:n,1:T ), to also obtain Q1:n(θ,θ

′)

sequentially for any activity n that has been fully observed.

Let γn be a step-size decreasing function such that 0 < γn < 1,
∑∞

n=1 γn = ∞,∑∞
n=1 γ

2
n < ∞. The stochastic approximation of Equation (4.11) proposed by Yildirim

et al. (2013) becomes

Tγ,n(D1:n; θ̂n−1) =
∑

Dn−1∈Dn−1

[
(1− γn)Tγ,n−1(D1:(n−1); θ̂n−2)

+ γnιθ̂n−1
(yn,1:T )

]
pθ̂1:(n−1)

(Dn−1|y1:(n−1),1:T , Dn), (4.12)

which leads to

Qn =
∑

Dn∈Dn

Tγ,n(D1:n; θ̂n−1)pθ̂1:(n−1)
(Dn|y1:n,1:T ),
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which is used for obtaining θ̂n, in substitution of Q1:N in Equation(4.10). The algorithm

requires the ability to compute online the approximations pθ̂1:(n−1)
(Dn−1|y1:(n−1), Dn) and

pθ̂1:(n−1)
(Dn|y1:(n−1),1:T ), obtained here by an SMC approximation, as described in the

next subsection.

4.3.2 SMC approximation of the predicted probabilities

The between-online setting processes the data of the activities sequentially, whenever an

activity has been fully observed. The purpose of the between-online setting is to leverage

existing proposals in the literature for online parameter estimation and changepoint

identification, which is useful both for retrospective performance analysis and as an

analysis tool in the within-online setting. We review here the principles underlying the

algorithm proposed by Yildirim et al. (2013) and derive the computations that lead

to our algorithm for changepoint detection, details of which are given in Appendix B.

Suppose that pθ(Dn−1, |y1:(n−1),1:T ) is known. The quantity

pθ(Dn, |y1:(n−1),1:T ) =
∑

Dn−1∈Dn−1

pθ(Dn, Dn−1|y1:(n−1),1:T )

=
∑

Dn−1∈Dn−1

p(Dn|Dn−1)pθ(Dn−1|y1:(n−1),1:T ) (4.13)

can be used to derive exactly

pθ(Dn−1|Dn,y1:(n−1),1:T ) =
pθ(Dn, Dn−1|y1:(n−1),1:T )∑

D′
n−1∈Dn−1

pθ(Dn, D′
n−1|y1:(n−1),1:T )

=
pθ(Dn|Dn−1)Gθ,n(Dn−1)pθ(Dn−1|y1:(n−2),1:T )∑

D′
n−1∈Dn−1 pθ(Dn|D′

n−1)Gθ,n(D′
n−1)pθ(D

′
n−1|y1:(n−2),1:T )

,

and

pθ(Dn|y1:n,1:T ) =
GD

θ,n(Dn)pθ(Dn|y1:(n−1),1:T )∑
D′

n∈Dn
GD

θ,n(Dn)pθ(D′
n, |y1:(n−1),1:T )

,

where GD
θ,n(Dn) = pθ(yn,1:T |Dn,y1:(n−1),1:T ). It is important to note that, although the

involved quantities can be obtained exactly, computing Equation (4.13) has complexity

O(n), as p(Dn|Dn−1) ̸= 0 for 2(n − 1) combinations of (Dn, Dn−1). Hence, the online

exact computation for a large panel of activities may be impractical in many situations,

as the complexity increases with new activities.

Let ηBn−1(Dn−1) be a particle approximation of pθ(Dn−1|y1:(n−2),1:T ), composed of B
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particles with support DB
n−1 = {d1n−1, . . . , d

B
n−1, d

B
n−1} composed by the particles them-

selves. Consider then the augmented support DB⋆
n of dimension 2B defined as

DB⋆
n = {(1, d1n−1), (d

1
n−1 + 1, d1n−1), . . . , (1, d

B
n−1), (d

B
n−1 + 1, dBn−1)}.

An approximation of pθ(Dn|y1:(n−1),1:T ) can be obtained by sampling B independent

particles from DB⋆
n with weight W (Dn, Dn−1) ∝ p(Dn|Dn−1)G

D
θ,n−1(Dn−1)η

B
n−1(Dn−1),

and then marginalizing with respect to Dn−1. Let DB
(n,n−1) = {(d1n, d1n−1), . . . , (d

B
n , d

B
n−1)}

be the B sampled particles. The approximation of pθ(Dn|y1:(n−1),1:T ) is ηBn (Dn) =∑B
b=1 δDn(d

b
n, d

b
n−1), with support DB

n = {d1n . . . , dBn }, where δDn(d
b
n, d

b
n−1) = 1 if Dn =

dbn, and 0 otherwise. Moreover, pθ(Dn−1|Dn,y1:(n−1),1:T ) is approximated by

pθ̂1:(n−1)
(Dn−1|y1:(n−1),1:T , Dn) =

p(Dn|Dn−1)G
D
θ̂n−1,n−1

(Dn−1)η
B
n−1(Dn−1)∑

D′
n−1∈DB

n−1|n
p(Dn|Dn−1)GD

θ̂n−1,n−1
(D′

n−1)η
B
n−1(Dn−1)

,

and pθ(Dn|y1:n,1:T ) by

pθ̂1:(n−1)
(Dn|y1:n,1:T ) =

∑
Dn−1∈DB

n−1
GD

θ̂n−1,n
(Dn)p(Dn|Dn−1)η

B
n−1(Dn−1)∑

(D′
n,D

′
n−1)∈DB

(n,n−1)
GD

θ̂n−1,n
(D′

n)p(D
′
n|D′

n−1)η
B
n−1(D

′
n−1)

, (4.14)

over the supports DB
(n,n−1) and DB

n , respectively, where the index θ̂1:(n−1) highlights the

fact that the approximations are obtained via a sequence of parameter’s updates.

4.3.2.1 Maximization step and inner expectations

The maximization step in Equation (4.10) that attempts to solve ∂Q1:N (θ,θ′)
∂θ

= 0 requires

the computation of the derivative with respect to the elements Z
(S)
θ , Z

(A)
θ , T

(S)
θ , T

(A)
θ ,

∆θ, Σθ, and Ψθ, before applying the chain rule to obtain the derivative with respect to

θ. These computations involve a finite set of elementary operations and the knowledge

of both the inner and the outer expectations in Equation (4.9). In the online setting,

the SMC approximation allows to compute the outer expectation conditional on the

available data, while the inner expectation can be obtained by considering that, condi-

tioned on S1:n, the model for the s–th segment in Equations (4.3) and (4.4) is a linear

Gaussian state space model.

These quantities can be generally obtained by standard Kalman recursions, such

as the Kalman smoother and the lagged smoother proposed, for example, by Durbin

and Koopman (2012) and Shumway and Stoffer (2017). Indeed, let us condition on
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S1:n or, equivalently, on the sequence of delays D1:n. By the independence assump-

tion between activities of different segments, it can be shown that ιθ(yn,1:T ) depends

only on the activities that belong to the last segment. Let us define Lθ′(yj:n,1:T ) =

Eθ′
[
log pθ(yj:n,1:T ,α

j:n
1:T |Dn)|yj:n,1:T , Dn

]
, with j = max(1, n − Dn + 1). The quantity

ιθ′(yn,1:T ) is exactly

ιθ′(yn,1:T ) =

1− λ+ Lθ′(yj:n,1:T )− Lθ′(yj:(n−1),1:T ) if j = max(1, n−Dn + 1) < n

λ+ Lθ′(yj:n,1:T ) if j = max(1, n−Dn + 1) = n,

where Lθ′(yj:n,1:T ) depends on the expectations Eθ′
[
αj:n

t |Dn,yj:n,1:T

]
,

Eθ′
[
(αj:n

t )(αj:n
t )′|Dn,yj:n,1:T

]
, and Eθ′

[
(αj:n

t+1)(α
j:n
t )′|Dn,yj:n,1:T

]
, which are computed

using the standard Kalman filtering, smoothing, and lagged smoothing routines, re-

viewed in Appendix B (see, e.g., Shumway and Stoffer, 2017; Durbin and Koopman,

2012).

4.3.3 Monitoring new activities in the within-online setting

The ability to monitor the presence of a changepoint during activity n is given by the

need of computing, on the fly, pθ(Dn|yn,1:t,y1:(n−1),1:T ) for any t < T . Note that the

activities y1:(n−1),1:T have already been observed completely, yn,1:t is the n-th activity

that is being observed, and the interest resides in checking whether Dn = 1 or not. This

allows knowledge of the status of the athlete during an activity, while also accounting

for their already observed past. The direct use of the Bayes formula gives

pθ(Dn|yn,1:t,y1:(n−1),1:T ) =
pθ(yn,1:t|Dn,y1:(n−1),1:T )pθ(Dn|y1:(n−1),1:T )∑

D′
n∈Dn pθ(yn,1:t|D′

n,y1:(n−1),1:T )pθ(D′
n|y1:(n−1),1:T )

.

An approximation of the predicted probability pθ(Dn|y1:(n−1),1:T ) is given by the SMC

approach used by our algorithm in the between online setting so that we now consider

the element pθ(yn,1:t|Dn,y1:(n−1),1:T ). We note that

pθ(yn,1:t|Dn,y1:(n−1),1:T ) =


pθ(yn,1:t,yj:(n−1),1:T |Dn)

pθ(yj:(n−1),1:T |Dn)
if Dn > 1

pθ(yn,1:t|Dn) if Dn = 1
(4.15)

where j = max(1, n−Dn+1), can be computed by means of Kalman filters evaluations.

Indeed, if Dn > 1,

pθ(yn,1:t,yj:(n−1),1:T |Dn) = pθ(yj:n,1:t|Dn)pθ(yj:(n−1),(t+1):T |Dn,yj:n,1:t),
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where pθ(yj:n,1:t|Dn) is evaluated by a filtering routine up to time t with data of activities

with indeces that range between j and n, and pθ(yj:(n−1),(t+1):T |Dn,yj:n,1:t) is evaluated

going forward with Kalman filters that treat the element yn,(t+1):T as missing. The need

to evaluate pθ(yj:(n−1),(t+1):T |Dn,yj:n,1:t) at any time point requires the ability to perform

T − t step ahead Kalman filter evaluations, highlighting the potential computational

problem of evaluating the likelihood for long time series (large T ) and early stages

(small t). One simple solution is to approximate Equation (4.15) with

pθ(yn,1:t|Dn,y1:(n−1),1:T ) ∝


pθ(yn,1:t,yj:(n−1),1:(t+k)|Dn)

pθ(yj:(n−1),1:(t+k)|Dn)
if Dn > 1

pθ(yn,1:t|Dn) if Dn = 1
,

with k = min(T − t, k⋆) and k⋆ ≥ 0 known, assuming that

pθ(y1:(n−1),(t+k+1):T |y1:n,1:t,y1:(n−1),(t+1):(t+k), Dn)

pθ(y1:(n−1),(t+k+1):T |y1:(n−1),1:(t+k), Dn)
∝ 1,

for any Dn and k fixed in advance. This means that whenever a new activity is ob-

served, one needs to simply use a finite number of competing Kalman filters with fixed

parameters, where their number is given by the number of different unique particles in

the SMC approximation of pθ(Dn|y1:(n−1),1:T ).

In principle, the role of k⋆ is to go forward with Kalman filters and to evaluate

information that is subsequent to time t but that has already been observed before the

n-th activity. However, choosing a large k⋆ implies the need to proceed with Kalman

filter evaluations even many instants after t. This could be a problem for contexts

in which it is necessary to obtain real-time feedback quickly. A large k⋆ allows to go

very far ahead with Kalman filter evaluations, thereby slowing down the computations.

Setting k⋆ = 0 is a practical choice to avoid slowdowns in computations. It is interesting

to note that although the information regarding observations after t for activities prior

to the n-th are not considered by the Kalman filters, they are used in the derivation of

ηBn (Dn).

4.4 Simulation studies

We investigate here the performance of our proposed changepoint detection algorithm

for the between- and within-online settings via a series of simulated data scenarios.

In particular, we illustrate that beyond changepoint identification, and unlike other

potentially competitive alternatives (see, e.g. Xie et al., 2021), our methodology can
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Figure 4.3: Medians and 90% confidence intervals of sensitivity and specificity with
different thresholds obtained for 20 synthetic examples using our model for T = 60, 120
and 240.

monitor online the probability of a changepoint during the activities. We fixed N =

1000, T = 60, 120, 200, P = 2, S = 50 randomly chosen changepoints and variances

σ2
ϵ = 1, σ2

α = 0.05, σ2
d = 5, and ρ = 0.8. With α

(s)
0 = 02P , Ψ0 =

[
1/3 0.5

0.5 1

]
,

and αn,0 = 0P , we generated the shared states for each segment according to α
(s)
t+1 =

IP ⊗

[
0.95 1

0 0.90

]
α

(s)
t +ξ

(s)
t , ξ

(s)
t ∼ N2P (02P , σ

2
α(IP ⊗ Ψ0)) and the activity-specific

states according to αn,t+1 = ρ ·αn,t +ξn,t, ξn,t ∼ NP (0P , σ
2
dIP ). We then generated the

observations yn,t =
[
IP ⊗

[
1 0

]
IP

] [α(s)
t

αn,t

]
+ϵn,t, ϵn,t ∼ NP (0P , σ

2
ϵ IP ).

We set λ = 0.5 and estimated θ = (σ2
ϵ , σ

2
α, σ

2
d, ρ). In addition, we set k⋆ = 0

since using a small k⋆ is a necessary practical choice when T is large. As k⋆ increases,

the proposed algorithm for the within-online setting becomes infeasible for large T .

Alternative specifications of k⋆ are investigated in Appendix B together with alternative

specifications of λ.

We estimate (i) the changepoints in the between-online setting by utilizing Equation

(4.14) and testing pθ̂1:(n−1)
(Dn = 1|y1:n,1:T ) > δ for some threshold δ and (ii) the prob-

ability of activity n of being a changepoint before it ends in the within-online setting

according to pθ̂1:(n−1)
(Dn = 1|yn,1:t,y1:(n−1),1:T ).

Figure 4.3 depicts the behavior of sensitivity and specificity as the length of the time

series increases, leaving the remaining elements of the models unchanged. We deal with

the usual trade-off between sensitivity and specificity by noting that in our application,

maximizing sensitivity —which is minimizing the number of activities that are wrongly

classified as negative— is more important, as it may indicate possible activity problems.

This is naturally controlled by the threshold δ, see Figure 4.3. It is reassuring that our

algorithm maintains high levels of specificity as δ changes, regardless of the length of

the time series. In contrast, the sensitivity seems to decrease significantly as δ increases,

particularly for T = 60 and T = 120, although it remains stable for T = 240.
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Figure 4.4: Two instantiations of our simulation with different activities and the
respective filtered probabilities of changepoints. Red dashed line: activity that is
being monitored; gray lines: previous activities since the last changepoint.

Figure 4.5: Medians and 90% confidence intervals of sensitivity and specificity eval-
uated for 20 synthetic examples using our model in the within-online setting.

The within-online setting allows to monitor online the probability of an activity

changepoint, providing information on the athlete’s behavior with respect to the past.

Figure 4.4 shows two instantiations of this: the filtered probability

p̂θ̂1:(n−1)
(yn,1:t|Dn,y1:(n−1),1:T ), depicted in the bottom row, is estimated online as new

observations are collected for the two simulated activities (top two rows). Each panel

shows the current (dashed red line) and previous (solid gray) activities since the last

changepoint. In the within-online setting, the changepoint detection is performed by

estimating changepoint probabilities for various values of δ and t in 20 replications

of the experiment. Figure 4.5 depicts the results of the simulation study in terms of

sensitivity and specificity for different values of δ and t. As expected, the sensitivity

drops as δ increases and as t decreases. Since all time series were simulated with initial

values around zero, it is hard to achieve an early (at t = 40) changepoint detection,

although the detection after having observed 2/3 of the time series (at t = 80) seems to

be satisfactory.
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4.5 Case study

We consider a set of 85 warm-up running activities on flat routes consisting of the first

10 minutes of running of a well-trained athlete. The difference between the maximum

and minimum altitude reached during each activity was less than 10 meters, and the

activities were measured every second by a Polar v800 smart watch and a Polar H10 heart

rate monitor. Warm-up activities are extremely relevant in several sports because they

prepare athletes for specific training sessions, influence sports performance, and reduce

the risk of injury. Moreover, they inform on the training status of an athlete just before

the training session so early decisions can be made. In the sports science literature, the

choice of the relevant indicators for monitoring the health status and training loads with

emphasis on the importance of pre-training analysis is well documented, see, for example,

Buchheit (2014). In general, heart rate is the most evaluated variable, as it provides

insights into oxygen consumption and the physical response to the external stimuli of

the exercise (Dong, 2016; Schneider et al., 2018). Heart rate levels during exercise are

also influenced by the intensity at which the exercise is performed, represented by the

speed of running, which is why we have collected data for both heart rate and speed.

Let yhr,n,t be the heart rate in beats per minute and ysp,n,t be the speed, equal to the

difference between the cumulative distances at time t and t−1 for activity n. We specify

a state space model with the measurement equation

[
yhr,n,t

ysp,n,t

]
=

[
1 0 0

0 0 1

]
α
(s)
hr,1,t

α
(s)
hr,2,t

α
(s)
sp,t

+

[
1 0

0 1

][
αhr,n,t

αsp,n,t

]
+

[
υhr,n,t

υsp,n,t

]
,

[
υhr,n,t

υsp,n,t

]
∼ N2(0,Σ),

segment-specific state equations
α
(s)
hr,1,t+1

α
(s)
hr,2,t+1

α
(s)
sp,t+1

 =


1 1 0

0 1 0

0 0 1



α
(s)
hr,1,t

α
(s)
hr,2,t

α
(s)
sp,t

+


ξ
(s)
hr,1,t

ξ
(s)
hr,2,t

ξ
(s)
sp,t

 ,

ξ
(s)
hr,1,t

ξ
(s)
hr,2,t

ξ
(s)
sp,t

 ∼ N3(0,Ψ),

and activity-specific state equations[
αhr,n,t+1

αsp,n,t+1

]
=

[
1 0

0 ρsp

][
αhr,n,t

αsp,n,t

]
+

[
ξhr,n,t

ξsp,n,t

]
,

[
ξhr,n,t

ξsp,n,t

]
∼ N2(0,∆),

with α
(s)
1 = (α

(s)
hr,1,1, α

(s)
hr,2,1, α

(s)
sp,1)

′ ∼ N3((80, 0, 0)
′, diag(100, 1, 100)), αn,1 = (αhr,n,1,

αsp,n,t)
′ ∼ N2(0, 10 · I2), Σ, Ψ, and ∆ are full covariance matrices, and ρsp is an autore-

gressive coefficient.

The segment-specific latent states that describe the physical condition and skills
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Figure 4.6: Segmentation of warm-up activities in the between-online setting for
an athlete. The segmentation of the activities was obtained defining the changepoint
as those activities for which the filtered distribution at the end of the activity is
p̂θ̂1:(n−1)

(Dn|y1:n,1:T ) > 0.5.

of the athlete were chosen to be modeled by a linear trend model that captures the

segment-specific global trends for the heart rate and by a local level model for the

speed. The activity-specific states are modeled by a random walk process for the heart

rate and using an AR(1) process for the speed. Once the variables are de-trended, the

heart rate moves slowly over time, as it does not vary abruptly in healthy conditions,

although speed may do so due to, for example, street obstacles. We set λ = 0.5 and,

following the guidelines of Yildirim et al. (2013), we estimated the parameters of the

model θ = {Σ,Ψ,∆, ρsp} by repeating the EM algorithm 30 times in order to reach

convergence. Figure 4.6 provides four instantiations of our results. We depict segments

in the between-online setting, obtained according to the rule p̂θ̂1:(n−1)
(Dn|y1:n,1:T ) >

0.50. The estimated number of changepoints is 34, of which 19 involve activities with a

single activity segment. This interesting finding highlights the large variability between

successive activities. Of these 19 changepoints, 15 are located in the last 43 activities

and should be attributed not only to changes in the state of the athlete but also to the

presence of systematic measurement errors, probably due to a device problem.

Figure 4.7 shows four instantiations of the within-online setting by presenting heart

rate, speed, and changepoint probability p̂θ̂1:(n−1)
(Dn|y1:n,1:T ) for the monitored activity

(dashed red line) and for all activities subsequent to the previous changepoint (solid

gray lines) for δ = 0.5. In particular, activity 21 was identified as a changepoint because

a sub-optimal behavior was detected due to a higher heart rate (with similar speed

behavior) compared with the previous activities. The changepoint probability is close

to 1 after around 20 seconds of warm-up. Activity 32 is similar to activities 23–31
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Figure 4.7: Selected activities in which the changepoint probability is being moni-
tored. The gray lines in the background represent activities since the last changepoint,
obtained according to the rule p̂θ̂1:(n−1)

(Dn|y1:n,1:T ) > 0.5.

and the changepoint probability is nearly 0 throughout the activity. The bottom left

panel shows activity 33, for which the changepoint probability changes strongly after

two minutes because both the heart rate and the speed tend to be lower than during

other activities, corresponding to athlete putting in less effort. Finally, activity 39 is

characterized by a lower heart rate, although the speed curve seems similar to those in

previous activities; this indicates less effort and an improved state of well-being of the

athlete.

4.6 Discussion

Motivated by the need to develop an online probabilistic inference framework for runners

who collect data using smart devices, we have proposed a new model for changepoint

detection in a doubly-online framework. Our focus lies on the early detection of dis-

tributional changes between a set of repeated running activities. The proposed model
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combines and leverages tools from the classical changepoint model by Yildirim et al.

(2013) and the linear and Gaussian state space model (Durbin and Koopman, 2012;

Shumway and Stoffer, 2017). The former allows the use of an SMC approach with

constant complexity in a between-online framework, while the latter provides the user

with updated information on the activity as new data are observed by means of Kalman

filter routines. We adopted a linear and Gaussian state space model, which is a general

family of models that allows to include many standard modeling specifications used in

time series analysis.

We considered design matrices that are fixed with respect to both t and n and poten-

tially preclude time-dependent and activity-specific covariates. It is probably reason-

able to assume that covariates such as different types of terrain or changes in elevations

could affect heart rate or speed. This limitation can be easily overcome by modify-

ing the Kalman recursions appropriately without a substantial change in the remaining

methodology.

We also assumed that activity-specific elements do not interact with segment-specific

latent states by imposing a block-diagonal structure on both the transition matrix and

the covariance matrix of disturbances in Equation (4.4). One possible generalization

could assume that the block transition matrix in Equation (4.4) is a block matrix in

which the elements outside the diagonal of the first column block are non-zero. This

generalization also requires a modification of the Kalman recursions without a substan-

tial change in the methodology, also allowing for activity-specific states determined by

some segment-specific states, such as, the autoregressive process with segment-specific

coefficients.

The changepoint prior probability λ can be modeled as λθ = λθ,n = λθ(Xn) de-

pending on a set Xn of time-invariant activity-specific covariates. The set Xn may

represent the meteorological condition during the activity or health-related measures

taken prior to the activity, such as heart rate variability in the morning or the number

of hours of sleep. This generalization requires the computation of sufficient statistics

and a maximization step that is dependent on the specification of the link function.

Both developments are generally related to the standard methods used for the binomial

model; see Yildirim et al. (2013) for details.

A particularly appealing possible future development that requires additional method-

ological effort is to consider nonlinear and non-Gaussian state space models. This might

be of interest in contexts in which the use of smart devices allows for the collection of

varied data (Bourdon et al., 2017), violating the common Gaussian assumptions.
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Discussion

The recent development of technology has brought researchers from different scientific

domains into the world of sports performance analysis. Mathematicians, engineers,

computer scientists, and statisticians are involved in different aspects of this field, both

in developing technological tools useful to collect and use data, and to answer to research

questions of different levels of complexity. The present work showed how statistics can

be useful in various aspects related to the development of tools used in sports science.

In fact, the chapters of this thesis reported some of the questions that emerge in sports

performance analysis and showed how state space models can provide an answer in an

exhaustive way. The proposed approaches are varied, and consist in graphical tools for

the visualization of collected data, Bayesian clustering methods to analyze the evolution

of athletes’ careers, and the use of changepoint models to monitor athletes’ health during

activities.

More specifically, the first chapter introduces the main aspects discussed in sports

science and sports performance analysis, reviewing also some recent statistical contri-

butions on the topic, introducing some recent datasets, and detailing research opportu-

nities in this field. In short, research opportunities range from the simple development

of graphical tools to summarize data and perform exploratory data analysis, to the de-

velopment of tools to describe phenomena involving various levels of complexity, related

for example to the size of the problems or to the presence of temporal dependence, but

also to the need of using collected data for monitoring athletes’ performances in a real

time environment.

The second chapter introduces the state space models and reviews some of the cur-

rent proposals for dealing with the analysis of matrix-variate time series. The state

space models are a wide class of models that allows for an unified treatment of several

problems in the analysis of time series. In the chapter, both the vector and the matrix

state space models are described, together with some other models present in the lit-

erature for dealing with matrix of observations, including the matrix-variate regression

model, the matrix-variate autoregressive process, and the matrix-variate dynamic fac-

tor model. The main tools for inference have been introduced, including the Kalman

83
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filter and smoother, useful for both state estimation and likelihood evaluation. The

usefulness and versatility of state space models have been shown in the next chapters,

in which two different models were proposed for clustering athletes’ careers and for early

identifications of behavioural changes of the observed variables during sports activities.

More specifically, Chapter 3 describes a matrix state space model to cluster multi-

variate time series describing the performances over the years in 800, 1500, and 5000

meters races of a cohort of Italian middle-distance athletes. The states describing the

performances of the athletes in different races are linked to the observed values by

means of a selection matrix involved in the measurement equation. Since missing data

patterns may be related to the observed performances of middle distance athletes, the

presence or absence of data have been modeled using two other processes, describing

athletes’ attitudes and histories. Subjective priors were used to characterized 9 distinct

profiles, corresponding to 9 distinct groups expected prior to the analysis. A Gibbs

sampling algorithm was derived, and posterior analysis were carried out for evaluating

the parameters involved in the model. Differences across groups were checked by means

of a relative performance indicator describing whether the performances of a reference

group were better or worse than the others in a given race during the years. Results

suggest that: (a) in the 800 meter race, late-entry into competition is associated with

worse performances; (b) athletes who are more likely to participate in races other than

their reference one have better overall performances. The posterior analysis suggest the

presence of groups different from those specified a priori, with one group left without

athletes. Although relevant from an interpretive perspective, this result requires further

analysis as future development, since it can be influenced both by the effective absence

of athletes in that group, but also by the algorithm used for inference. Further devel-

opments include also the specification of alternative priors, coherent with the available

prior knowledge of the phenomenon, along with an appropriate model’s evaluation and

diagnostic checking of the results.

Chapter 4 describes a new method for changepoint detection in a doubly-online

framework, useful for early detection of distributional changes between a set of repeated

running activities. The model combines and leverages tools from both the classical

changepoint model and the linear state space models, the firsts allowing the use of an

EM algorithm that involves a SMC approach with constant complexity for changepoint

identification in a between-online setting, i.e. every time a new activity is fully observed,

the seconds for monitoring the real time probability of the presence of a changepoint

while a new activity is carried out. The results show the ability of the proposed approach

in alarming the athletes on possible problems much before the end of the activities.

Among the possible developments that can be considered, the inclusion time-dependent
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model matrices and of activity-specific covariates is possible without further method-

ological effort, provided that these elements are non-stochastic. A particularly appealing

possible future development, that requires additional methodological effort, consists of

considering nonlinear and non-Gaussian state space models. This might be of interest

in contexts in which the use of smart devices allows for the collection of varied data,

which is typical in sports performance analysis, as discussed in Chapter 1.

Future directions of research

Future developments that may follow the work presented in this thesis are manifold, in

addition to some technical improvements of the tools proposed and refinement of some

details on the models. The development of new applications using state space models is

surely a starting point for new research activities. In addition to the simplest models,

however, it is possible to combine state space models with other methodologies, such

as the use of quantile regression tools or the generalization of the proposed models for

data far away from Gaussian assumptions, such as counts or data with mixed nature.

Sports scientists are often interested in aspects of distribution that are different from

the central value, such as the top 5% performances of different athletes. Obviously, the

use of statistical tools in sports performance analysis is not limited just to the use of

state space. For example, the use of functional data analysis methods can be useful

for statistical analysis in biomechanics, since, in this context, the observed data are

often smooth curves that can be represented as functions. Injury prediction is a hot

topic in this discipline, since, not only is an aspect related the health prevention of

athletes, but also teams and people who invest in athletes may be interested in this.

If, on one side, training and competition scheduling is something that has always been

meticulously done by coaches and specialists, in recent years automated or data driven

solutions for training are used for both professional and recreational sports. Studying

and defining the relationships between training and competition, based on collected

data, can further boost the development of these technique, especially in environments

in which is possible the interaction of domain experts and technology. The exchange of

ideas between statistics and sports science may open the door to new research directions

in both disciplines.
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Appendix for “Time series

clustering of athletes’ careers under

informative missing data patterns”

Some details on the Gibbs Sampling algorithm

Cluster allocations and cluster probability

The full conditional of matrix S is

p(S|θ,Y ,D,D⋆,A) ∝ pθ(Y|D,A,S)pθ(D|D⋆,S)pθ(D⋆|S)pθ(S).

Given the conditional independence assumptions expressed in Equations (3.7) and (3.10),

together with the diagonal structure of ΣC , the q-th row of S can be updated indepen-

dently of the others according to

Pr(Sq = g|θ,A,Y ,D⋆,D) =
exp

[∑T
t=1(Q

y
qg,t +Qd

qg,t +Qd⋆

qg,t) +QS
qg

]∑G
j=1 exp

[∑T
t=1(Q

y
qj,t +Qd

qj,t +Qd⋆
qj,t) +QS

qj

] ,
where Qy

qg,t, Qd
qg,t, Qd⋆

qg,t, and QS
qg are log-densities obtained by isolating all components

related to subject q and group g in the full conditional.Note that this step requires

the completed data Y to be available, despite the missing values. Their obtaining is

discussed in the next sections. Alternative samplers that marginalize out A, or other

elements involved in the model, such as Ẽ and the probabilities associated to missing

values and cluster allocations, are easily derivable. However, these would lead to inten-

sive procedure, where each row of S is updated conditionally to the others, or where

moves are performed only locally on the neighborhood of S (see Nobile and Fearnside,

2007; Titsias and Yau, 2017; Zanella, 2020). Once S is updated, π is updated according
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to

π|S ∼ DirG(1/G+

Q∑
q=1

I(Sq = 1), . . . , 1/G+

Q∑
q=1

I(Sq = G)).

Missing data probabilities

The full conditional of missing values probabilities are

πpg|D,D⋆,S ∼Be(αpg +N ′
pg, βpg +N ′′

pg),

π⋆
1g|D⋆,S ∼ Be(α⋆

1g +N⋆′
1g, β

⋆
1g +N⋆′′

1g ), π⋆
2g|D⋆,S ∼ Be(α⋆

2g +N⋆′
2g, β

⋆
2g +N⋆′′

2g )

where

N ′
pg =

Q∑
q=1

I(Sq = g)
T∑
t=1

I(dpq,t = 1)I(d⋆q,t = 1),

N ′′
pg =

Q∑
q=1

I(Sq = g)
T∑
t=1

I(dpq,t = 0)I(d⋆q,t = 1),

N⋆′
1g =

Q∑
q=1

I(Sq = g)

[
I(d⋆q,1 = 1) +

T∑
t=1

I(d⋆q,t−1 = 0)I(d⋆q,t = 1)

]
,

N⋆′′
1g =

Q∑
q=1

I(Sq = g)

[
I(d⋆q,1 = 0) +

T∑
t=2

I(d⋆q,t−1 = 0)I(d⋆q,t = 0)

]
,

N⋆′
2g =

Q∑
q=1

I(Sq = g)

[ T∑
t=2

I(d⋆q,t−1 = 1)I(d⋆q,t = 2)

]
,

N⋆′′
2g =

Q∑
q=1

I(Sq = g)

[ T∑
t=2

I(d⋆q,t−1 = 1)I(d⋆q,t = 1)

]
,

are counts that reflect the conditioning structure imposed in Equation (3.8), for g =

1, . . . , G, and p = 1, . . . , P . We note that hyper-parameter αpg, βpg, α
⋆
1g, β

⋆
1g, α

⋆
2g, and

β⋆
2g are group-dependent, and reflect prior beliefs previously explained.

Covariance matrices

Updating steps for covariance matrices are standard updates for inverse Wishart and

inverse gamma priors with Gaussian likelihood, and more specifically are

ΣR|Y ,A,S ∼ IWP

(
ν ′σ,Σ

′), Ψ800|A ∼ IWF

(
ν ′800,Ψ

′
800

)
,

Ψ1500|A ∼ IWF

(
ν ′1500,Ψ

′
1500

)
, Ψ5000|A ∼ IWF

(
ν ′5000,Ψ

′
5000

)
,
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where

νR′
σ = νRσ +QT, ΣR′ = ΣR

0 +
T∑
t=1

(Yt − ZAtS
⊤)(Yt − ZAtS

⊤)⊤,

ν ′800 = ν800 + 3(T − 1), Ψ′
800 = Ψ0

800 +
3∑

g=1

T∑
t=2

(α
(g)
t −Tα

(g)
t−1)(α

(g)
t −Tα

(g)
t−1)

⊤,

ν ′1500 = ν1500 + 3(T − 1), Ψ′
1500 = Ψ0

1500 +
6∑

g=4

T∑
t=2

(α
(g)
t −Tα

(g)
t−1)(α

(g)
t −Tα

(g)
t−1)

⊤,

ν ′5000 = ν5000 + 3(T − 1), Ψ′
5000 = Ψ0

5000 +
9∑

g=7

T∑
t=2

(α
(g)
t −Tα

(g)
t−1)(α

(g)
t −Tα

(g)
t−1)

⊤,

State estimation and missing values To obtain a draw from the full conditional of

the states A, we adopt the simulation smoothing technique by Durbin and Koopman

(2002), after applying the reduction by transformation technique presented in Section

2.4.3. In doing so, we first identify suitable transformations to reduce the vector of

augmented observations yt = vec(Yt), and then introduce the steps required to get a

draw from

p(A|θ,S,Y ,D).

Suppose, for simplicity, that Z is full row-rank and that all groups have athletes, so

that S is full column-rank. We can apply the reduction by transformation technique to

vector form of the model by considering the following decomposition

(S⊗ Z) = (SIG)⊗ (IPZ) = (S⊗ IP )(IG ⊗ Z).

If we consider Z† = (S⊗ IP ), and A′ = Z⊤
† Σ

−1, state estimation can be applied to the

reduced vector of observations y′
t = A′yt which is of dimensions PG × 1, where PG is

typically such that PG≪ PQ, leading to larger speed-ups when G≪ Q.

States are then obtained by considering the model

y′
t = A′(S⊗ Z)αt + ε′t, ε′t ∼ NPG+(0,Σ′), (A.1)

αt+1 = (U⊗T)αt + ξt, ξt ∼ NFG(0,Ψ
C ⊗ΨR), (A.2)

for α1 ∼ NFG(α1|0,P1|0) and Σ′ = A′ΣA′⊤. In particular, we consider the following

steps:

1. Obtain independent samples from ε′1, . . . , ε
′
T , ξ

′
1, . . . , ξ

′
T−1, and α1 from the re-

spective distributions in Equations (A.1) and (A.2);
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2. Use Equations (A.1) and (A.2) with the samples obtained in Step 1 for obtaining

fictional observations ȳ′
1, . . . , ȳ

′
1 and fictional states ᾱ1, . . . , ᾱT ;

3. Transform the vectors of observations as ¯̄y′
t = y′

t − ȳ′
t, for t = 1, . . . , T ;

4. Use ¯̄y′
1, . . . , ¯̄y

′
T to obtain ¯̄α1|T , . . . , ¯̄αT |T by means of a Kalman smoothing recursion

under the model in Equations (A.1) and (A.2);

5. Use α̃t = ¯̄αt|T + ᾱt, for t = 1, . . . , T , as a sample from the full conditional of the

states.

These steps are nothing else than Algorithm 2 in Durbin and Koopman (2002), suitably

modified to obtain single draws from the full conditional p(A|θ,S,Y ,D). In the case Z

or S are not full rank matrices, further reduction can be obtained. Â1|0 is obtained by

simple update of Gaussian prior with Gaussian likelihood and known covariance matrix.

Once A is known, draws from

p(Ẽ |A,S,θ,Y⋆,D,D⋆),

are obtained using simple rules of multivariate Gaussian. In particular, consider y·q,t,

and suppose that athlete q belongs to group g, for which the states α
(g)
t are known. If

all observations were available, then the vector of errors would be ε·q,t = y·q,t − Zα
(g)
t

deterministically. However, missing values are present, so we can consider

ε·q,t =

[
ε⋆·q,t

ε̃·q,t

]
∼ NP

([
0

0

]
,

[
Σ⋆ Σ̃⊤

⋆

Σ̃⋆ Σ̃

])
, (A.3)

and obtain the errors ε̃·q,t associated with missing values by conditioning, according to

ε̃·q,t|θ, sq·, ε⋆·q,t ∼ NP̃

(
− Σ̃⋆Σ

−1
⋆ ε⋆·q,t, Σ̃− Σ̃⋆Σ

−1
⋆ Σ̃⊤

⋆

)
.

Some other details on the results

In Figure A.1 shows the posterior probabilities describing athletes’ attitudes and histo-

ries derived from the sample of Q1(S). The plot can be used for comparison with Figure

3.5. Figures A.2, A.3, and A.4 show performances for the groups on the observed races.

Quantiles are based on the obtained sample and consider the presence of uncertainty

present in S. On the contrary, data are shown based on a posterior summary S, that

does not account for all the uncertainty present. This explains why median performances

are not always centered with the data, and also why some groups have exploding quan-

tiles. In fact, the two groups with anomalous behavior are characterized by iterations in
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Figure A.1: Posterior probabilities describing athletes’ attitudes and histories de-
rived from the sample of Q1(S).

which the group is lacking or has few athletes. This also motivates the method’s ability

to construct trajectories despite appearing to be data-less.



92 Appendix for Chapter 3

Figure A.2: Performances on 800 meters race for the groups. Thicker lines denote
posterior medians of the states. Colored bands denote the respective 90% pointwise
posterior credible intervals. Observed data are represented in the background, accord-
ing to athletes’ MAP cluster allocations.
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Figure A.3: Performances on 1500 meters race for the groups. Thicker lines denote
posterior medians of the states. Colored bands denote the respective 90% pointwise
posterior credible intervals. Observed data are represented in the background, accord-
ing to athletes’ MAP cluster allocations.
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Figure A.4: Performances on 5000 meters race for the groups. Thicker lines denote
posterior medians of the states. Colored bands denote the respective 90% pointwise
posterior credible intervals. Observed data are represented in the background, accord-
ing to athletes’ MAP cluster allocations.
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Proofs and derivations

Writing conditional likelihood in term of potentials. Set j1 = 0 and js+1 = N and

consider then the chain

S1:N = (S1 = 1, . . . ,Sj2 = 1, Sj2+1 = 2, Sj2+1 = 2, . . . , Sj3 = 2, . . . ,

Sjs+1 = s, . . . , Sjs+1 = s).

Note that the knowledge of S1:N is equivalent to know the whole sequence

D1:N = (D1 = 1, . . . ,Dj2 = j2,

Dj2+1 = 1, . . . , Dj3 = j3 − j2, . . . , Djs+1 = 1, . . . , N − js),

and, therefore, pθ(y1:N,1:T |S1:N) = pθ(y1:N,1:T |D1:N), which reduces to

pθ(y1:N,1:T |S1:N) =
s∏

m=1

pθ(y(jm+1):jm+1,1:T |S(jm+1):jm+1),

by leveraging the independence assumption between activities of different segments.

Now, consider the m-th segment, starting at index jm + 1 and ending at index jm+1

having length Djm+1 = jm+1 − jm. Then the joint distribution of the m-th segment

95
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conditional on S1:N becomes

pθ(y(jm+1):jm+1,1:T |S(jm+1):jm+1) = pθ(y(jm+1):jm+1,1:T |Djm+1 = jm+1 − jm). (A.1)

We then note that

pθ(y(jm+1):jm+1,1:T |Djm+1 = jm+1 − jm)

= pθ(y(jm+1),1:T |Djm+1 = 1)×
pθ(y(jm+1):(jm+2),1:T |Djm+2 = 2)

pθ(y(jm+1),1:T |Djm+1 = 1)

×
pθ(y(jm+1):(jm+3),1:T |Djm+3 = 3)

pθ(y(jm+1):(jm+2),1:T |Djm+2 = 2)

× . . .×
pθ(y(jm+1):jm+1,1:T |Djm+1 = jm+1 − jm)

pθ(y(jm+1):(jm+1−1),1:T |Djm+1−1 = jm+1 − jm − 1)
,

where the multiplicands in the previous expression are the potentials, defined as follows:

Gθ,n(Dn) = pθ(yn,1:T |D1:n,y1:(n−1),1:T ) =


pθ(yj:n,1:T |Dn)

pθ(yj:(n−1),1:T |Dn−1)
, if Dn > 1

pθ(yn,1:T |Dn), if Dn = 1.
(A.2)

Plugging the multiplicands in terms of the potentials in equation (A.1), we obtain the

conditional likelihood as a product of N potentials. Remember that if Dn = d, with

d > 1, then Dn−1 with probability 1.

Forward smoothing technique

Here we provide the step by step derivation of the forward smoothing technique (see the

manuscript for definitions and details)

Recursive formula. Recall that

pθ(D1:(n−1)|y1:(n−1),1:T , Dn) = pθ(D1:(n−2), Dn−1|y1:(n−1),1:T , Dn)

= pθ(D1:(n−2)|Dn−1,y1:(n−2),1:T ,yn−1,1:T , Dn)

× pθ(Dn−1|y1:(n−1),1:T , Dn)

= pθ(D1:(n−2)|Dn−1,y1:(n−2),1:T )pθ(Dn−1|y1:(n−1),1:T , Dn),
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and it follows that

Tn(D1:n,θ
′) =

∑
D1:(n−1)∈D1:(n−1)

Sn(D1:n,θ
′)pθ(D1:(n−1)|y1:(n−1),1:T , Dn)

=
∑

Dn−1∈Dn−1

[ ∑
D1:(n−2)∈D1:(n−2)

(Sn−1(D1:(n−1),θ
′) + ιθ′(yn,1:T ))

]
× pθ(D1:(n−2)|Dn−1,y1:(n−2),1:T )pθ(Dn−1|y1:(n−1),1:T , Dn)

=
∑

Dn−1∈Dn−1

[ ∑
D1:(n−2)∈D1:(n−2)

(Sn−1(D1:(n−1),θ
′)pθ(D1:(n−2)|Dn−1,y1:(n−2),1:T )

+
∑

D1:(n−2)∈D1:(n−2)

pθ(D1:(n−2)|Dn−1,y1:(n−2),1:T )ιθ′(yn,1:T )
]
pθ(Dn−1|y1:(n−1),1:T , Dn)

=
∑

Dn−1∈Dn−1

[
Tn−1(D1:(n−1),θ

′) + ιθ′(yn,1:T )
]
pθ(Dn−1|y1:(n−1),1:T , Dn),

since by definition

Tn−1(D1:(n−1),θ
′) =

∑
D1:(n−2)∈D1:(n−2)

(Sn−1(D1:(n−1),θ
′)pθ(D1:(n−2)|Dn−1,y1:(n−2),1:T )

and
∑

D1:(n−2)∈D1:(n−2)
pθ(D1:(n−2)|Dn−1,y1:(n−2),1:T ) = 1.

Expected value through recursion. The expected value over D1:n

Eθ′
[ n∑

j=1

ιθ′(yj,1:T )|y1:n,1:T

]
=

∑
D1:n∈D1:n

n∑
j=1

ιθ′(yj,1:T )pθ(D1:n|y1:n,1:T )

=
∑

Dn∈Dn

∑
D1:(n−1)∈D1:(n−1)

n∑
j=1

ιθ′(yj,1:T )pθ(D1:(n−1)|y1:n,1:T , Dn)pθ(Dn|y1:n,1:T )

=
∑

Dn∈Dn

∑
D1:(n−1)∈D1:(n−1)

Sn(D1:n,θ
′)pθ(D1:(n−1)|y1:n,1:T , Dn)pθ(Dn|y1:n,1:T )

=
∑

Dn∈Dn

Tn(D1:n,θ
′)pθ(Dn|y1:n,1:T ),

where the last expression is obtained by plugging

Tn(D1:n,θ
′) =

∑
D1:(n−1)∈D1:(n−1)

Sn(D1:n,θ
′)pθ(D1:(n−1)|y1:n,1:T , Dn)

and Sn(D1:n,θ
′) =

∑n
j=1 ιθ′(yj,1:T ).
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Sequential Monte Carlo - Filtering recursion

Here we provide the expressions for the filtering recursion, that provides the exact

predicted, filtered and smoothed probabilities that represent the core algorithms of the

SMC technique adopted in the paper approximate the predicted probability. Once

the predicted probabilities are obtained by the SMC approximations, they are simply

plugged into the expressions here derived.

Predicted probability.

pθ(Dn|y1:(n−1),1:T ) =
∑

Dn−1∈Dn−1

pθ(Dn, Dn−1|y1:(n−1),1:T )

=
∑

Dn−1∈Dn−1

pθ(Dn|Dn−1,y1:(n−1),1:T )pθ(Dn−1|y1:(n−1),1:T )

=
∑

Dn−1∈Dn−1

pθ(Dn|Dn−1)pθ(Dn−1|y1:(n−1),1:T ),

where, by the assumptions on the model pθ(Dn|Dn−1,y1:(n−1),1:T ) = pθ(Dn|Dn−1).

Filtered probability. Given the predicted probability pθ(Dn|y1:(n−1),1:T ), the direct

application of the Bayes formula provides a closed form expression for the filtered prob-

ability. Indeed

pθ(Dn|y1:n,1:T ) =
pθ(Dn,yn,1:T |y1:(n−1),1:T )∑

D′
n∈Dn pθ(D′

n,yn,1:T |y1:(n−1),1:T )

=
pθ(yn,1:T |Dn,y1:(n−1),1:T )pθ(Dn|y1:(n−1),1:T )∑

D′
n∈Dn pθ(yn,1:T |D′

n,y1:(n−1),1:T )pθ(D′
n|y1:(n−1),1:T )

=
Gθ,n(Dn)pθ(Dn|y1:(n−1),1:T )∑

D′
n∈Dn Gθ,n(D′

n)pθ(D
′
n|y1:(n−1),1:T )

,

where Gθ,n(Dn) = pθ(yn,1:T |Dn,y1:(n−1),1:T ), by definitions of potential.
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Smoothed probability. The knowledge of the predicted probability

pθ(Dn−1|y1:(n−2),1:T ) allows to compute the smoothed probability

pθ(Dn−1|y1:(n−1),1:T , Dn) =
pθ(Dn−1, Dn|y1:(n−1),1:T )∑

D′
n−1∈Dn−1 pθ(D′

n−1, Dn|y1:(n−1),1:T )

=
pθ(Dn|Dn−1,y1:(n−1),1:T )pθ(Dn−1|y1:(n−1),1:T )∑

D′
n−1∈Dn−1 pθ(Dn|D′

n−1,y1:(n−1),1:T )pθ(D′
n−1|y1:(n−1),1:T )

=
pθ(Dn|Dn−1)pθ(Dn−1|y1:(n−1),1:T )∑

D′
n−1∈Dn−1 pθ(Dn|D′

n−1, )pθ(D
′
n−1|y1:(n−1),1:T )

=
pθ(Dn|Dn−1)Gθ,n−(Dn−1)pθ(Dn−1|y1:(n−2),1:T )∑

D′
n−1∈Dn−1 pθ(Dn|D′

n−1)Gθ,n−1(D′
n−1)pθ(D

′
n−1|y1:(n−2),1:T )

.

Within online setting

Real time probabilities. We should monitor the quantity pθ(Dn|yn,1:t,y1:(n−1),1:T ), for

any t < T . This quantity is exactly

pθ(Dn|yn,1:t,y1:(n−1),1:T ) =
pθ(Dn,yn,1:t|y1:(n−1),1:T )∑

D′
n∈Dn pθ(D′

n,yn,1:t|y1:(n−1),1:T )
(A.3)

=
pθ(yn,1:t|Dn,y1:(n−1),1:T )pθ(Dn|y1:(n−1),1:T )∑

D′
n∈Dn pθ(yn,1:t|D′

n,y1:(n−1),1:T )pθ(D′
n|y1:(n−1),1:T )

. (A.4)

The distribution pθ(Dn|y1:(n−1),1:T ) is obtained by SMC approximations as described in

Algorithm 2. We now focus on the quantity

pθ(yn,1:t|Dn,y1:(n−1),1:T ) =
pθ(yn,1:t,y1:(n−1),1:T |Dn)

pθ(y1:(n−1),1:T |Dn)
,

which becomes

pθ(yn,1:t|Dn,y1:(n−1),1:T ) =
pθ(yn,1:t,y1:(n−1),1:T |Dn)

pθ(y1:(n−1),1:T |Dn)
(A.5)

=
pθ(y1:n,1:t|Dn)

pθ(y1:(n−1),1:t|Dn)

pθ(y1:(n−1),(t+1):T |y1:n,1:t, Dn)

pθ(y1:(n−1),(t+1):T |y1:(n−1),1:t, Dn)
, (A.6)

for Dn > 1. Let us now consider equation (A.5). For each Dn, we need to run twice

the Kalman filter recursion over the entire time domain 1 : T , where, in the numerator

of equation (A.5), the observations yn,(t+1):T are treated as missing values (as they are

not yet observed). Note also that, by the independence assumption between different

segments, just 2 runs of the Kalman filter involving the last Dn activities are used

for deriving the ratio in equation (A.5) (and not all activities). Although not directly

expressed in (A.5), if Dn > 1, this fact can be understood by noting that equation (A.5)
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is

pθ(yn,1:t,y1:(n−1),1:T |Dn)

pθ(y1:(n−1),1:T |Dn)
=
pθ(yn,1:t|y1:(n−1),1:T , Dn)

∏n−1
k=1 Gθ,k(Dk)∏n−1

k=1 Gθ,k(Dk)

=
pθ(yn,1:t|y1:(n−1),1:T , Dn)

∏j−1
k=1Gθ,k(Dk)

∏n−1
k=j Gθ,k(Dk)∏j−1

k=1Gθ,k(Dk)
∏n−1

k=j Gθ,k(Dk)

=
pθ(yn,1:t|y1:(n−1),1:T , Dn)

∏n−1
k=j Gθ,k(Dk)∏n−1

k=j Gθ,k(Dk)

=
pθ(yn,1:t,yj:(n−1),1:T |Dn)

pθ(yj:(n−1),1:T |Dn−1)
,

with j = max(1, n−Dn + 1), and Dn−1 = Dn − 1 with probability 1. Nevertheless, for

large T and small t the computation might be an unfeasible step, as it requires to go

ahaed with Kalman filtering to the end of previous activities. Therefore, we fix k ≥ 0

and equation (A.6) can factorizes as follows:

pθ(y1:n,1:t|Dn)

pθ(y1:(n−1),1:t|Dn)

pθ(y1:(n−1),(t+1):T |y1:n,1:t, Dn)

pθ(y1:(n−1),(t+1):T |y1:(n−1),1:t, Dn)

=
pθ(y1:n,1:t|Dn)

pθ(y1:(n−1),1:t|Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:n,1:t, Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:(n−1),1:t, Dn)

×
pθ(y1:(n−1),(t+k+1):T |y1:n,1:t,y1:(n−1),(t+1):(t+k), Dn)

pθ(y1:(n−1),(t+k+1):T |y1:(n−1),1:(t+k), Dn)

∝ pθ(y1:n,1:t|Dn)

pθ(y1:(n−1),1:t|Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:n,1:t, Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:(n−1),1:t, Dn)
, (A.7)

where we have assumed that

pθ(y1:(n−1),(t+k+1):T |y1:n,1:t,y1:(n−1),(t+1):(t+k), Dn)

pθ(y1:(n−1),(t+k+1):T |y1:(n−1),1:(t+k), Dn)
∝ 1,

for any Dn > 1. It turns out that equation (A.7) becomes

pθ(y1:n,1:t|Dn)

pθ(y1:(n−1),1:t|Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:n,1:t, Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:(n−1),1:t, Dn)

=
pθ(y1:n,1:t|Dn)

pθ(y1:(n−1),1:t|Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:n,1:t, Dn)

pθ(y1:(n−1),(t+1):(t+k)|y1:(n−1),1:t, Dn)
.

For Dn = 1, pθ(yn,1:t|Dn,y1:(n−1),1:T ) = pθ(yn,1:t|Dn) can be obtained by running the

Kalman filter recursion up time t.
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Sufficient statistics for segment-specific state space model

Consider the model for the s-th segment and consider the s-th segment with m =

ks − js + 1 activities that range between js and ks. Denote with

Yt =
[
yjs,t yjs+1,t · · · yks,t

]
, A

(s)
t = α

(s)
t , A

(A)
t =

[
αjs,t · · · αks,t

]
.

The model for the s-th segment has the following completed likelihood

T∏
t=1

[
det(Σ)−

m
2 det(Im)

−P
2

× exp
{
− 1

2
tr
[
Σ−1(Yt − Z(S)A

(s)
t 1⊤

m − Z(A)A
(A)
t )(Yt − Z(S)A

(s)
t 1⊤

m − Z(A)A
(A)
t )⊤

]}]
T−1∏
t=1

det(Ψ)−
1
2 det(1)−

m
2 exp

{
− 1

2
tr
[
Ψ−1(A

(s)
t+1 −T(S)A

(s)
t )(A

(s)
t+1 −T(S)A

(s)
t )⊤

]}
det(P

(S)
1|0 )

− 1
2 det(1)−

m
2 exp

{
− 1

2
tr
[
P

(S)
1|0

−1
(A

(s)
1 − Â

(s)
1|0)(A

(s)
1 − Â

(s)
1|0)

⊤]}
T−1∏
t=1

det(∆)−
1
2 det(1)−

m
2 exp

{
− 1

2
tr
[
∆−1(A

(A)
t+1 −T(A)A

(A)
t )(A

(A)
t+1 −T(A)A

(A)
t )⊤

]}
det(P

(A)
1|0 )

−m
2 det(Im)

− 1
2 exp

{
− 1

2
tr
[
P

(A)
1|0

−1
(A

(A)
1 − Â

(A)
1|0 )(A

(A)
1 − Â

(A)
1|0 )

⊤]}.
We now associate and compute the expectations for obtaining the set of sufficient statis-

tics for Σ, Ψ, ∆, Z(S), Z(A), T(S), T(A), where, for easy of notation, we will drop the

conditioning on Sjs:ks in the expectations.

SS for Σ (SSE). Let us define the following quantities:

SSE =
T∑
t=1

Eθ′
[
(Yt − Z(S)A

(s)
t 1⊤

m − Z(A)A
(A)
t )(Yt − Z(S)A

(s)
t 1⊤

m − Z(A)A
(A)
t )⊤|Y1:T

]
.
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then, for each t = 1, . . . , T , we need to compute the expectations:

1. YtY
⊤
t ;

2. Eθ′
[
−Yt(Z

(S)A
(s)
t 1⊤

m)
⊤|Y1:T

]
= −Yt1mEθ′

[
A

(s)
t |Y1:T

]⊤
Z(S)⊤;

3. Eθ′
[
−YtA

(A)
t

⊤
Z(A)⊤|Y1:T

]
= −YtEθ′

[
A

(A)
t |Y1:T

]⊤
Z(A)⊤;

4. Eθ′
[
− Z(S)A

(s)
t 1⊤

mY
⊤
t |Y1:T

]
= −Z(S)Eθ′

[
A

(s)
t |Y1:T

]
1⊤
mY

⊤
t ;

5. Eθ′
[
Z(S)A

(s)
t 1⊤

m1mA
(s)
t

⊤
Z(S)⊤|Y1:T

]
= m · Z(S)(Vθ′

[
A

(s)
t |Y1:T

]
+ Eθ′

[
A

(s)
t |Y1:T

]
Eθ′

[
A

(s)
t |Y1:T

]⊤
)Z(S)⊤;

6. Eθ′
[
Z(S)A

(s)
t 1⊤

m(A
(A)
t )⊤Z(A)⊤|Y1:T

]
= Z(S)

[ ks∑
j=js

Eθ′
[
α

(s)
t α⊤

j,t|Y1:T

]]
Z(A)⊤

= Z(S)

[ ks∑
j=js

[
Eθ′

[
α

(s)
t |Y1:T

]
Eθ′

[
αj,t|Y1:T

]⊤
+ Covθ′(α

(s)
t ,αj,t)

]]
Z(A)⊤;

7. Eθ′
[
− Z(A)A

(A)
t Y⊤

t |Y1:T

]
= −Z(A)Eθ′

[
A

(A)
t |Y1:T

]
Y⊤

t ;

8. Eθ′
[
Z(A)A

(A)
t (Z(S)A

(s)
t 1⊤

m)
⊤|Y1:T

]
= Z(A)Eθ′

[
A

(A)
t 1mA

(s)
t

⊤
|Y1:T

]
Z(S)⊤

= Z(A)Eθ′
[ ks∑
j=js

αj,tα
(s)
t

⊤
|Y1:T

]
Z(S)⊤

= Z(A)

[ ks∑
j=js

Eθ′
[
αj,t|Y1:T

]
Eθ′

[
α

(s)
t |Y1:T

]⊤
+ Covθ′(αj,t,α

(s)
t |Y1:T )

]
Z(S)⊤;

9. Eθ′
[
Z(A)A

(A)
t A

(A)
t

⊤
Z(A)⊤|Y1:T

]
= Z(A)Eθ′

[
A

(A)
t A

(A)
t

⊤
|Y1:T

]
Z(A)⊤

= Z(A)

[ ks∑
j=js

Eθ′ [αj,tα
⊤
j,t|Y1:T ]

]
Z(A)⊤

= Z(A)

[ ks∑
j=js

Eθ′ [αj,t|Y1:T ]Eθ′ [αj,t|Y1:T ]
⊤ +Vθ′ [αj,t|Y1:T ]

]
Z(A)⊤.

SS for Ψ (SSA). Let us define

SSA =
T−1∑
t=1

Eθ′
[
(A

(s)
t+1 −T(S)A

(s)
t )(A

(s)
t+1 −T(S)A

(s)
t )⊤|Y1:T

]
,
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then, for each t = 1, . . . , T − 1, we need to compute the following expectations:

1. Eθ′
[
A

(s)
t+1A

(s)
t+1

⊤
|Y1:T

]
= Eθ′

[
A

(s)
t+1|Y1:T

]
Eθ′

[
A

(s)
t+1|Y1:T

]⊤
+Varθ′

[
A

(s)
t+1|Y1:T

]
;

2. Eθ′
[
−A

(s)
t+1A

(s)
t

⊤
T(S)⊤|Y1:T

]
= −

[
Eθ′

[
A

(s)
t+1|Y1:T

]
Eθ′

[
A

(s)
t |Y1:T

]⊤
+ Covθ′

[
A

(s)
t+1,A

(s)
t |Y1:T

]]
T(S)⊤;

3. Eθ′
[
−T(S)A

(s)
t A

(s)
t+1|Y1:T

]
= −T(S)

[
Eθ′

[
A

(s)
t |Y1:T

]
Eθ′

[
A

(s)
t+1|Y1:T

]⊤
+ Covθ′

[
A

(s)
t ,A

(s)
t+1|Y1:T

]]
;

4. Eθ′
[
T(S)A

(s)
t A

(s)
t

⊤
T(S)⊤|Y1:T

]
= T(S)

[
Eθ′

[
A

(s)
t |Y1:T

]
Eθ′

[
A

(s)
t |Y1:T

]⊤
+ Covθ′

[
A

(s)
t ,A

(s)
t |Y1:T

]]
T(S)⊤.

SS for ∆ (SSI). Define

SSI =
T−1∑
t=1

Eθ′
[
(A

(A)
t+1 −T(A)A

(A)
t )(A

(A)
t+1 −T(A)A

(A)
t )⊤|Y1:T

]
,

then, for each t = 1, . . . , T − 1, we need to compute the following expectations:

1. Eθ′
[
A

(A)
t+1A

(A)
t+1

⊤
|Y1:T

]
=

ks∑
j=js

[
Eθ′

[
αj,t+1|Y1:T

]
Eθ′

[
αj,t+1|Y1:T

]⊤
+Vθ′

[
αj,t+1|Y1:T

]]
2. Eθ′

[
−A

(A)
t+1A

(A)
t

⊤
T(A)⊤|Y1:T

]
= −

ks∑
j=js

[
Eθ′

[
αj,t+1|Y1:T

]
Eθ′

[
αj,t|Y1:T

]⊤
+ Covθ′

[
αj,t+1,αj,t|Y1:T

]]
T(A)⊤

3. Eθ′
[
−T(A)A

(A)
t A

(A)
t+1

⊤
|Y1:T

]
= −T(A)

ks∑
j=js

[
Eθ′

[
αj,t|Y1:T

]
Eθ′

[
αj,t+1|Y1:T

]⊤
+ Covθ′

[
αj,t,αj,t+1|Y1:T

]]
4. Eθ′

[
T(A)A

(A)
t A

(A)
t

⊤
T(A)⊤|Y1:T

]
= T(A)

ks∑
j=js

[
Eθ′

[
αj,t|Y1:T

]
Eθ′

[
αj,t|Y1:T

]⊤
+Vθ′

[
αj,t|Y1:T

]]
T(A)⊤.
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SS for Z(S) (SSZs num and SSZs den). Let us define

SSZs num =
T∑
t=1

Eθ′
[
−A

(s)
t 1⊤

m(Yt − Z(A)A
(A)
t )⊤|Y1:T

]
SSZs den =

T∑
t=1

Eθ′
[
A

(s)
t 1⊤

m1mA
(s)
t

⊤
|Y1:T

]
,

then, we need to compute the following expectations:

1. Eθ′
[
−A

(s)
t 1⊤

mY
⊤
t |Y1:T

]
= −Eθ′

[
A

(s)
t |Y1:T

]
1⊤
mY

⊤
t

2. Eθ′
[
α

(s)
t 1⊤

mA
(A)
t

⊤
Z(A)⊤|Y1:T

]
=

ks∑
j=js

[
Eθ′

[
α

(s)
t |Y1:T

]
Eθ′

[
αj,t|Y1:T

]⊤
+ Covθ′

[
α

(s)
t ,αj,t|Y1:T

]]
Z(A)⊤

3. Eθ′
[
A

(s)
t 1⊤

m1mA
(s)
t |Y1:T

]
= m ·

[
Eθ′

[
A

(s)
t |Y1:T

]
Eθ′

[
A

(s)
t |Y1:T

]⊤
+Vθ′

[
A

(s)
t |Y1:T

]]
.

SS for Z(A) (SSZi num and SSZi den). Let us define the following quantities

SSZi num =
T∑
t=1

Eθ′
[
−A

(A)
t (Yt − Z(S)A

(s)
t 1⊤)⊤|Y1:T

]
SSZi den =

T∑
t=1

Eθ′
[
A

(A)
t A

(A)
t

⊤
|Y1:T

]
,

then, we need to compute the following expectations:

1. Eθ′
[
−A

(A)
t Y⊤

t |Y1:T

]
= −Eθ′

[
A

(A)
t |Y1:T

]
Y⊤

t

2. Eθ′
[
A

(A)
t 1mA

(s)
t

⊤
Z(S)⊤|Y1:T

]
=

[ ks∑
j=js

[
Eθ′

[
αj,t|Y1:T

]
Eθ′

[
α

(s)
t |Y1:T

]⊤
+ Covθ′

[
αj,t,α

(s)
t |Y1:T

]]]
Z(S)⊤

3. Eθ′
[
A

(A)
t A

(A)
t

⊤
|Y1:T

]
=

ks∑
j=js

[
Eθ′

[
αj,t|Y1:T

]
Eθ′

[
αj,t|Y1:T

]⊤
+Vθ′

[
αj,t|Y1:T

]]
.

SS for T(S) (SSTs num and SSTs den). Let us define

SSTs num =
T−1∑
t=1

Eθ′
[
−A

(S)
t A

(S)
t+1

⊤
|Y1:T

]
SSTs den =

T−1∑
t=1

Eθ′
[
A

(S)
t A

(S)
t

⊤
|Y1:T

]
.
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then we need to compute the following expectations:

1. Eθ′
[
−A

(S)
t A

(S)
t+1

⊤
|Y1:T

]
= −Eθ′

[
α

(s)
t |Y1:T

]
Eθ′

[
α

(s)
t+1|Y1:T

]⊤ − Covθ′
[
α

(s)
t ,α

(s)
t+1|Y1:T

]
2. Eθ′

[
α

(s)
t α

(s)
t

⊤
|Y1:T

]
= Eθ′

[
α

(s)
t |Y1:T

]
Eθ′

[
α

(s)
t |Y1:T

]⊤
+ Covθ′

[
α

(s)
t ,α

(s)
t |Y1:T

]
,

for each t = 1, . . . , T − 1.

SS for T(A) (SSTi num and SSTi den). Let us define

SSTi num =
T−1∑
t=1

Eθ′
[
−A

(A)
t A

(A)
t+1

⊤
|Y1:T

]
SSTs den =

T−1∑
t=1

Eθ′
[
A

(A)
t A

(A)
t

⊤
|Y1:T

]
,

then we need to compute the following expectations

1. Eθ′
[
−A

(A)
t A

(A)
t+1

⊤
|Y1:T

]
= −

ks∑
j=js

[
Eθ′

[
αj,t|Y1:T

]
Eθ′

[
α⊤

j,t+1|Y1:T

]
+ Covθ′

[
αj,t,αj,t+1|Y1:T

]]
2. Eθ′

[
A

(A)
t A

(A)
t

⊤
|Y1:T

]
=

ks∑
j=js

[
Eθ′

[
αj,t|Y1:T

]
Eθ′

[
α⊤

j,t|Y1:T

]
+ Covθ′

[
αj,t,αj,t|Y1:T

]]
,

for each t = 1, . . . , T −1. In all previous equations, the expectations involving the latent

states are provided by the Kalman filter, smoother and lagged smoother recursions

provided by algorithm 1.

Maximization step

Maximization step for simulation studies

In the simulation study it is required to estimate the parameters θ = (σ2
ϵ , σ

2
α, σ

2
d, ρ). The

maximization step, with m time series of length T and of P measurement equations,

σ̂2
ϵ = tr(SSE)/(mTP ), σ̂2

α = tr(SSA(IP ⊗Ψ−1
0 ))/(2P (T − 1))

σ̂2
d = tr(SSI)/(mP (T − 1)), ρ̂ = −tr(SSI num)/tr(SSI den),

where SSE, SSA, SSI, SSI num and SSI den have been calculated in the previous section.
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Maximization step for real data application

In the application it is required to estimate the parameters θ = (Σ,Ψ,∆, ρsp). The

maximization step, with m time series of length T and of P measurements, computes

Σ̂ = SSE/(mT ), Ψ̂ = SSA/(T − 1),

∆̂ = SSI/(m(T − 1)), ρsp = −SSI num[1, 1]/SSI den[1, 1],

where SSE, SSA, SSI, SSI num and SSI den have been calculated in the previous section.

Selection of the tuning parameters

This Section presents additional results concerning the choice of the tuning parameters

(k∗, λ). Specifically, for selected running activities, we provide the changepoint probabili-

ties for different choices of k⋆ = (0, 5, 10, 15, 30, 600) and λ = (0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99).

Results are illustrated in Figure B.1-B.3. The first two figures have been obtained by

running the within online EM algorithm several times, one for each combination of

(k⋆, λ). The main findings outline that, in our setting, the values of (k⋆, λ) do not

highly affect the results in terms of real time detection of a changepoint. The third

figure is obtained by running the between online EM algorithm, by varying the value

of λ. This figure highlights the robustness of our result with respect to the choice of λ.

Indeed, only extreme values of λ change slightly the segmentation of the activities.
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Figure B.1: Changepoint probabilities for different choices of k⋆.
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Figure B.2: Changepoint probabilities for different choice of λ.
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Figure B.3: Changepoint distribution for different choices of λ.
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Algorithms

Result: Smoothed States α̂t|T , Smoothed Variances Pt|T , Smoothed Lagged Covariances
Pt,t−1|T , for t = 1, . . . , T stored in the respective array State, Cov, Cov lag, and
the conditional log-likelihood llik

Input:
data: Y1:T = yjs:ks,1:T ;

StrMatr: Z(S), T(S), Z(A), T(A);
param: Σ, Ψ, ∆;

InitVal: α̂
(S)
1|0 , P

(S)
1|0 , α̂

(A)
1|0 , P

(A)
1|0 ;

Initialization:
m = ks − js + 1; llik = 0; Z =

[
1m ⊗ Z(S) Im ⊗ Z(A)

]
; T = blkdiag(T(S), Im ⊗T(A));

H = Im ⊗Σ; G = blkdiag(Ψ, Im ⊗∆); α̂1|0 = (α̂
(S)
1|0⊤,1⊤m ⊗ α̂

(A)⊤
1|0 )⊤;

P1|0 = blkdiag(P
(S)
1|0 , Im ⊗P

(A)
1|0 );

Kalman Filter:
for t = 1,2, . . . , T do

υt = Yt − Zα̂t|t−1

Ft = ZPt|t−1Z
⊤ +H

Kt = Pt|t−1Z
⊤F−1

t

α̂t|t = α̂t|t−1 +Ktυt

Pt|t = Pt|t−1 −Pt|t−1Z
⊤F−1

t ZPt|t−1

α̂t+1|t = Tα̂t|t−1

Pt+1|t = TPt|t−1T
⊤ +G,

llik = llik− mP

2
log(2π)− 1

2

(
logdet(Ft)− υ⊤

t F
−1
t υt

)
end
Kalman Filter:
for t = T,. . . , 1 do

Jt−1 = Pt−1|t−1T
⊤P−1

t|t−1

α̂t−1|T = α̂t−1|t−1 + Jt−1(α̂t|T − α̂t|t−1)

Pt−1|T = Pt−1|t−1 + Jt−1(Pt|T −Pt|t−1)J
⊤
t−1

end
Lag-one Covariance Smoother:
PT,T−1|T = TPT−1|T−1 −KTZTPT−1|T−1

for t = T,. . . , 2 do
Pt−1,t−2|T = Pt−1|t−1J

⊤
t−2 + Jt−1(Pt,t−1|T −TPt−1|t−1)J

⊤
t−2

end
Algorithm 1: Computing Kalman quantities State, Cov, Cov lag, llik =

KalRec(data, StrMatr, param, InitVal)

The within online EM algorithm is a modification of the between online version, where

the computation of the filtered probabilities in equation (A.8) are modified according

to equation (A.3).
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Result: Filtered probabilities FiltProb and parameters trace tr params

Input: data: Y1:T = y1:N,1:T ; StrMatr: Z
(S), T(S), Z(A), T(A);

param0: θ0, and the function g(·) that links θ with the elements of the of the model (λθ,

Σ, Ψ, ∆, Z(S), T(S), Z(A), T(A)); InitVal: α̂
(S)
1|0 , P

(S)
1|0 , α̂

(A)
1|0 , P

(A)
1|0 ; maximizer: the

function Λ; stepwise: the function γn, n ≥ 1; B: the value B;
EM Algorithm
for n = 1,. . . , N do

E-step:
if n = 1 then

- Initialize θ̂1 = θ0; set T
θ̂1
1 (D1) = ι

θ̂1
(y1,1:T ); set DB

1 = {1, . . . , 1}, and
ηB1 (D1) = 1, for D1 = 1;

if n > 1 then
- Create DB⋆

n = {(1, d1n−1), (d
1
n−1 + 1, d1n−1), . . . , (1, d

B
n−1), (d

B
n−1 + 1, dBn−1)};

- For all (dbn, d
b
n−1) ∈ DB⋆

n compute the weights

W (dbn, d
b
n−1) = p

θ̂n−1
(dbn|dbn−1)G

D
θ̂n−1,n−1

(dbn−1)η
B
n−1(d

b
n−1)

to sample B independent particles and store them in DB
(n,n−1);

- Obtain from DB
(n,n−1) the marginal ηBn (Dn) =

∑B
b=1 δDn(dn, dn−1) with support

DB
n = {d1n, . . . , dBn } and δDn(dn, dn−1) = 1 if Dn = dn, 0 otherwise;

- Compute

p
θ̂1:(n−1)

(Dn|y1:n,1:T ) =

∑
Dn−1∈DB

n−1
GD

θ̂n−1,n
(Dn)pθ̂n−1

(Dn|Dn−1)η
B
n−1(Dn−1)∑

(D′
n,D

′
n−1)∈DB

(n,n−1)
GD

θ̂n−1,n
(D′

n)pθ̂n−1
(D′

n|D′
n−1)η

B
n−1(D

′
n−1)

(A.8)

and

p
θ̂1:(n−1)

(Dn−1|y1:(n−1),1:T , Dn)

=
p
θ̂n−1

(Dn|Dn−1)G
D
θ̂n−1,n−1

(Dn−1)η
B
n−1(Dn−1)∑

D′
n−1∈Dn

n−1
p
θ̂n−1

(Dn|Dn−1)GD
θ̂n−1,n−1

(D′
n−1)η

B
n−1(Dn−1)

;

with supports DB
n and DB

n−1|n respectively ;
- Compute

Tθ̂n−1
γ,n (D1:n) =

∑
Dn−1∈DB

n−1|n

[
(1− γn)T

θ̂n−2

γ,n−1(D1:(n−1)) + γnιθ̂n−1
(yn,1:T )

]
×p

θ̂1:(n−1)
(Dn−1|y1:(n−1),1:T , Dn)

and

Qn =
∑

Dn∈DB
n

Tθ̂n−1
γ,n (D1:n)pθ̂1:(n−1)

(Dn|y1:n,1:T )

M-step
Compute θ̂n = Λ(Qn) and set (λ

θ̂n
,Σ,Ψ,∆,Z(S),T(S),Z(A),T(A)) = g(θ̂n)

end
Algorithm 2: Between-Online changepoints detection FiltProb, tr params =

ONChpntDet(data, StrMatr, param0, InitVal, maximizer, B)
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Anthropometric and physiological determinants of running performance in middle-

and long-distance runners. Kinesiology 45(2), 154–162.



Bibliography 119

Müller, H. and Glad, B. (2014) Technology in athletics. New studies in Athletics 29(3),

7.

Nobile, A. and Fearnside, A. T. (2007) Bayesian finite mixtures with an unknown num-

ber of components: the allocation sampler. Statistics and Computing 17(2), 147–162.

Paulich, M., Schepers, M., Rudigkeit, N. and Bellusci, G. (2018) Xsens mtw awinda:

Miniature wireless inertial-magnetic motion tracker for highly accurate 3d kinematic

applications. Xsens: Enschede, The Netherlands pp. 1–9.
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