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A B S T R A C T   

Predicting extreme weather events in a short time period and their developing in localized areas is a challenge. 
The nowcasting of severe and extreme weather events is an issue for air traffic management and control because 
it affects aviation safety, and determines delays and diversions. This work is part of a larger study devoted to 
nowcasting rain and wind speed in the area of Malpensa airport by merging different datasets. We use as 
reference the weather station of Novara to develop a nowcasting machine learning model which could be 
reusable in other locations. In this location we have the availability of ground-based weather sensors, a Global 
Navigation Satellite System (GNSS) receiver, a C-band radar and lightning detectors. Our analysis shows that the 
Long Short-Term Memory Encoder Decoder (LSTM E/D) approach is well suited for the nowcasting of meteo-
rological variables. The predictions are based on 4 different datasets configurations providing rain and wind 
speed nowcast for 1 h with a time step of 10 min. The results are very promising with the extreme wind speed 
probability of detection higher than 90%, the false alarms lower than 2%, and a good performance in extreme 
rain detection for the first 30 min. The configuration using just weather stations and GNSS data in input provides 
excellent performances and should be preferred to the other ones, since it refers to the pre-convective envi-
ronment, and thus can be adaptable to any weather conditions.   

1. Introduction 

1.1. Severe weather patterns 

Monitoring and predicting extreme atmospheric events is very 
challenging, especially when they develop locally in a short time range. 
Despite the enhancement in remote sensing due to the use of satellite 
measurements and improvements in model parameterizations, there are 
still large uncertainties on the knowledge of the dynamical processes of 
deep convective systems and severe weather events. 

Severe and extreme weather events cause many deaths, injuries and 
damages every year, accounting for the major economic damages in 
several countries (Pielke Jr et al., 2003; Emanuel, 2005), and they are 
one of the major risks for aviation safety. The number and the intensity 
of such phenomena increased in the last decades in some areas of the 
globe including Europe (Hov et al., 2013; Rädler et al., 2018; Rädler 
et al., 2019). 

Related to the increase in the frequency of such events, in recent 
years, there has been a growing interest in the study of natural disasters. 

The loss related to natural catastrophes worldwide increased by a factor 
of about three within the last 4 decades (Hoeppe, 2016). These phe-
nomena are mainly associated with weather-related events, e.g., storms 
and floods. There is some justification in assuming that changes in the 
atmosphere, which include a widespread increase of water vapor con-
tent in the lowest layers of the troposphere (Rädler et al., 2018), are 
playing a relevant role (Hoeppe, 2016). Several studies have been per-
formed in this field, leading to interesting considerations regarding the 
spatial and temporal evolution of intense meteorological phenomena 
and assessing possible future scenarios by the end of the 21th century 
(Rädler et al., 2019). In this context, our study focuses on the develop-
ment of an efficient nowcasting model for extreme rainfall and extreme 
wind speed in the area of Milano Malpensa airport with the future 
objective of creating a supporting tool for aviation managers. 

Heavy rainfalls show significant trends over Europe (Van den Bes-
selaar et al., 2013; Maraun, 2013), and usually result in impactful floods. 
Daily and sub-daily heavy precipitation is indeed one of the most sig-
nificant hazards (Scoccimarro et al., 2015), and rainfall events are 
projected to intensify with climate change (Ban et al., 2015; Stott, 2016). 
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Heavy precipitations are often connected with the lightning formation. 
According to the literature, the simulation of the number of lightning 
events is higher in central and southern Europe, specifically across high 
altitude, mountainous regions, and this is in accordance with what has 
been observed by the lightning detection networks (Rädler et al., 2018). 
Another interesting aspect in the projections is that they show an in-
crease in some parts of Central and Eastern Europe of the wind shear in 
unstable situations, probably related to specific conditions of air mass 
displacement (van Delden, 2001). It is now clear that the determination 
of descriptive and predictive algorithms for the atmospheric behavior 
(Bonafoni et al., 2019; Laviola et al., 2020; Mascitelli et al., 2020) is 
crucial in an area such as Europe, which is strongly affected by severe 
weather phenomena. 

Europe has a large and dense coverage of meteorological sensors 
including weather stations, lightning detectors, ground-based Global 
Navigation Satellite System (GNSS) receivers and radars. However, the 
management of all the networks is scattered within a number of different 
agencies and it is extremely difficult to collect all the needed datasets at 
European level to perform a climatological study aimed at identifying 
sensitive areas. 

We select northern Italy as a hotspot for our analyses for three 
different reasons:  

- it is an area with a high frequency of extreme weather events with 
positive trends in the last decades (Rädler et al., 2019);  

- there is a relatively easy access to meteorological data;  
- it is of high interest for aviation purposes for the presence of two 

large airports (Milano Malpensa and Bergamo Orio al Serio). 

1.2. Severe weather forecast 

The atmospheric Water Vapor (WV) plays a key role in the storm 
development; Trenberth (2012) shows that a small increase of WV is 
amplified in weather systems, promoting more intense extreme events. 
Eighty-five percent of strong convection (overshooting the tropopause) 
comes from small systems with a short lifetime (Liu and Zipser, 2005) 
and due to this reason, it is hard to be detected and monitored. Several 
studies have shown the capabilities of ground-based GNSS for studying 
and predicting severe weather events (Adams et al., 2017; Sapucci et al., 
2019; Mascitelli et al., 2020). The GNSS measurements allow the esti-
mation of the atmospheric Integrated WV (IWV), which is the engine of 
the convection (Bonafoni et al., 2019). Moreover, there is evidence that 
an abrupt increase in the total lightning discharge rate (Williams et al., 
1999) often precedes severe weather occurrences on the ground (Wil-
liams et al., 1999; Darden et al., 2010) with a lag time of a few minutes 
to nearly one hour (Wu et al., 2018). 

The idea of this work is to combine the capabilities of a dense 
network of weather stations and ground-based GNSS receivers with the 
radar and lightning detectors (D’Adderio et al., 2020) for nowcasting 
extreme rainfall and extreme wind speed with high temporal and spatial 
resolution to support the aviation management (Solazzo et al., 2020). 
Airports are bottlenecks in the Air Traffic Management (ATM) network 
and are especially impacted by thunderstorms in their vicinity (Gultepe 
et al., 2019). The importance of severe weather nowcasting for aviation 
and the performances and limitations of an operational Numerical 
Weather Prediction (NWP) model have already been shown by the 
German Weather Service (James et al., 2018). Bonelli and Marcacci 
(2008) developed a thunderstorm tracking algorithm in northern Italy 
based on radar and lightning data; Kohn et al. (2011) developed an al-
gorithm based only on lightning data to nowcast thunderstorm in the 
Mediterranean with promising results but with the outlook to include 
additional dataset types and increase the period of availability. Recently 
it has been demonstrated that the machine learning Long Short-Term 
Memory (LSTM) techniques provides significant results for forecasting 
(Tekin et al., 2021) and nowcasting purposes (Shi et al., 2017; Ayzel 
et al., 2020) providing better results than the well-known and complex 

Weather and Research Forecasting (WRF) model, with potential for 
efficient and accurate weather forecasting up to 12 h (Hewage et al., 
2021). A tentative development of LSTM model and deep generative 
model to nowcast precipitation has been recently done by using only 
radar reflectivity as input (Klocek et al., 2021; Ravuri et al., 2021) and 
combining radar and weather stations data together (Zhang et al., 
2021). Machine learning also provided excellent performances in pre-
dicting wind speed (Khosravi et al., 2018). Cramer et al. (2017) evalu-
ated the performances of different machine learning algorithms to 
predict the rainfall in 42 cities with different climatological character-
istics; Benevides et al. (2019) were the first ones to develop a machine 
algorithm including weather stations data together with GNSS WV. 

With this work we pose the basis to develop a rainfall and wind speed 
nowcasting model including different input data in a localized area. The 
model is run for several stations around the airport with the objective to 
create a polygon highlighting the highest risk for the aviation. The re-
sults presented in this paper are used to define the highest temporal 
resolution we can achieve and to choose the better model and configu-
ration which can be applied to the other stations. 

2. Data 

2.1. Data collection and pre-processing 

For this study, 4 different types of data are gathered: weather station, 
GNSS, radar and lightning data. Each type of data is crucial for the 
development of the method. The weather station data define the envi-
ronmental conditions useful to study the convection, the GNSS data give 
more detailed insights on the WV in the atmosphere, the radar data 
provide information on the existence of different types of precipitation 
processes, and the lightning data denote the existence of extreme pre-
cipitation events. 

This study is part of the ALARM project (Soler, 2021) targeting 
Milano Malpensa airport from an aviation safety perspective. In this 
paper we focus on a specific location, Novara, close to Malpensa airport, 
because it is the only location of the hotspot area for which we have the 
availability of all the aforementioned datasets. The data acquisition was 
not possible for all variables in the same period so we report the details 
of data availability in Table 1, and the map of the different locations 
involved in Fig. 1. 

2.1.1. Weather station data 
The weather data of interest are pressure, temperature, relative hu-

midity, rain, wind speed and wind direction. They are provided, on 
demand, by the regional agency for environmental protection of Pie-
monte (http://www.arpa.piemonte.it/) with a temporal resolution of 
10 min (Table 1). All the parameters (except rain) are provided as 
averaged values, while rain is the accumulated value over the 10-min 
time period. Not all the sensors are exactly collocated and some data 
were corrupted, so we needed to merge the data of different stations, 
considering similar environmental/climatological conditions and the 
same height above mean sea level (Fig. 1). For these reasons, we set a 
maximum distance between the stations not larger than 20 km and we 
converted the pressure and temperature according to the height. The 
closest wind sensor to Novara is in Cameri (5 km from Novara) and the 
closest pressure sensor is in Arconate (20 km from Novara and 15 km 
from Cameri). The pressure data from Arconate (elevation 182 m) is 
adjusted to the elevation of Novara station (151 m) by using the baro-
metric formula as in Berberan-Santos et al. (1997). All the outliers of 
each parameter were removed. 

2.1.2. GNSS data 
We use the Zenith Total Delay (ZTD) time series provided, just for the 

purpose of the project by the Geomatics Research & Development s.r.l. 
(GReD) (Lagasio et al., 2019), with a temporal resolution of 30 s. We 
average the data with 10-min sampling to make them consistent with the 
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meteorological data temporal resolution and we remove all the outliers. 

2.1.3. Radar data 
The radar is located in Monte Lema (Canton of Ticino, Switzerland) 

at an altitude of 1630 m, about 70 km north of Novara and it covers the 
entire Lombardy and Piedmont regions. It is a C-band radar with a fixed 
elevation angle (tilt) sequence of 20 tilts per 5-min period (Joss et al., 
1998). We use the coordinates, area, velocity, average and maximum 
reflectivity of the convective cell with a temporal resolution of 5 min 
coming from the Thunderstorms Radar Tracking (TRT) algorithm (Nisi 
et al., 2018). The TRT uses a threshold of 36 dBZ to select the convection 
and separates each single storm and cell from nearby storms using the 
Max Echo product. We therefore have, for a given time period, the 
reflectivity information only above this threshold. To make this data 
consistent with the other datasets, we resample the radar data with a 10- 
min sampling. The measurement corresponding to a convective cell is 
assigned to a station if the convective cell is collocated with the station 

itself. To achieve the 10-min sampling from the initial 5-min one, the 
maximum value of the respective variable of interest is picked. The TRT 
products were provided just for the purpose of the project by Meteowiss. 

2.1.4. Lightning data 
The lightning data are provided just for the purpose of the project by 

the Earth Networks Total Lightning Network (ENTLN) (Liu and Heck-
man, 2012). There are 2 LF-VHF stations in the proximity of Milano 
Malpensa. Fig. 1 shows the coverage of those data in relation to Novara 
location. The area covered is of about 20 × 30 km2. The available in-
formation is the time, location, number of lightnings related to the 
covered area and time period, intensity, type of lightning and the 
average height of intra cloud lightning. The type of lightning, based on 
the available information, can either be intra-cloud (lightning that 
happens completely inside the cloud) or cloud-to-ground (lightning that 
occurs between the cloud and the ground). 

Table 1 
List of variables used in this study. The availability of radar reflectivity only refers to severe events with reflectivity higher than 36 dBz.  

Variable Availability Unit Station type Location Lat (o) Lon (o) Elevation (m) Period 

Temperature 100% oC weather Novara 45.44 8.63 151 2010–2020 
Pressure 98.85% mb weather Arconate 45.54 8.84 182 2010–2019 
Rain 100% mm weather Novara 45.44 8.63 151 2010–2020 
Wind direction 94.49% o weather Cameri 45.54 8.69 173 2010–2020 
Wind speed 99.38% m/s weather Cameri 45.54 8.69 173 2010–2020 
Humidity 99.86% % weather Novara 45.44 8.63 151 2010–2020 
ZTD 99.07% m GNSS Novara 45.44 8.61 219 2011–2020 
Average Reflectivity 100% dBZ radar – – – – 2012–2019 
Maximum Reflectivity 100% dBZ radar – – – – 2012–2019 
# of Lightning 100%  lightning     2015–2019 
Type of Lightning 100%  lightning     2015–2019 
Lightning height 100% m lightning     2015–2019  

Fig. 1. Map of the locations of Novara, Malpensa airport, weather and GNSS stations and the wide area of lightning stations’ coverage.  
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2.1.5. Overview of the input dataset 
The meteorological data consist of a continuous time series of 12 

parameters (Table 1), Our model needs continuous time series so all the 
possible gaps must be filled and cannot be removed to preserve the time 
order of the samples. We filled the gaps using the random regression 
imputation method as explained in Section 3.3.1, double checking that 
the standard deviation of the distribution did not significantly change 
compared to the original dataset distribution (Kang, 2013). 

As an example, Fig. 2 shows the time series from 2012 to 2020 of the 
weather station data, GNSS and radar data (lightning are not reported 
since provided as a binary information). To give an idea of how these 
data look like during an extreme event, we also report (Table 2) the 
absolute values for the extreme rain event on 15 May 2015 at 14:40. 

2.2. Definition of extremes 

The occurrence of an extreme weather event can be defined if its 
intensity exceeds a specified threshold. Such a threshold can be either 
connected to an absolute value or to a relative one such as a percentile 
value of a given set of data over a period of time. In the literature, there 
are different indices used to characterize the extremes (Myhre et al., 
2019; Grazzini et al., 2020; Laurila et al., 2021). In this study extreme 
rainfall or wind speeds are defined as events in which the accumulated 
rain or mean wind speed exceeds the 95th percentile with respect to the 
reference. We define as reference the dataset created by using 14 sta-
tions (Bergamo, Biella, Busto Arsizio, Cavaria, Como, Gozzano, Luino, 
Milano, Molteno, Novara, Pavia, Lonate Pozzolo, Varese and Verbania) 
located within a radius of about 50 km from Malpensa airport for a 
period of 11 years (2010− 2020). Only events with the accumulated rain 

or average wind speed value larger than 0 were accounted by extracting 
the percentile values of rainfall or wind speed. According to these rules, 
the threshold for extreme rainfall is computed as 1.6 mm of accumulated 
rain in 10 min (corresponding to a rain rate of 9.6 mm/h), and the 
threshold for the average wind speed is set to 5.7 m/s. The extremes 
from radar are already selected by the TRT algorithms according to the 
aforementioned threshold of 36 dBZ. 

The threshold used to define extreme rainfall is also confirmed by the 
International Civil Aviation Organization (ICAO) draft Document 9837 - 
Manual on Automatic Observing Systems at Aerodromes (Chapter 6, 
6.2.1.2) and the World Meteorological Organization (WMO) No. 8 
(Annex to Chapter 14) reporting a value of 10 mm/h, which is very 
similar to our threshold of 9.6 mm/h. However, the extreme wind speed 
value is not available in the above-mentioned documents but the Ca-
nadian Avalanche Association defines strong wind speed higher than 
11.11 m/s (Roeger et al., 2003) and WMO Volume 1 reports as reference 
the Beaufort scale setting the threshold of strong winds at 10.8 m/s. 
After a discussion with the ALARM project ATM stakeholders, we agreed 
that 10 m/s could be the best reference for our analyses. 

3. Theory and methods 

3.1. Methods 

Weather is a continuous, data-intensive, multi-dimensional, complex 
dynamic, and non-linear process of the Earth’s atmospheric system 
(Maqsood et al., 2003), and these properties make weather forecasting a 
challenging task in atmospheric science. Meteorologists and atmo-
spheric scientists developed several methodologies and approaches 

Fig. 2. Time series inputs of the nowcasting model from 2012 to 2020.  
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based on physical and numerical simulations to predict the weather 
(Powers et al., 2017). Nevertheless, the developed models have a 
number of limitations, mainly, the incomplete understanding of the 
climate system, the imperfect ability to transform the acquired knowl-
edge into accurate mathematical equations and the limited power of 
computers (Legates, 2002). Due to the learning ability from historical 
data of Artificial Neural Networks (ANNs) and machine learning ap-
proaches (Bochenek and Ustrnul, 2022), the field gained attention in the 
artificial intelligence community and data-driven approaches in weather 
forecasting started to be used. To understand the complex dynamics of 
convective cells in the atmosphere, temporal relationships must be 
considered to detect when we have heavy rainfalls, which is one of the 
meteorological conditions characterizing the convection. Forecasting a 
feature variable for multiple time steps in the future using typical neural 
networks is crucial to capture temporal dependencies. Thus, the so- 
called Recurrent Neural Networks (RNNs) are usually used for this 
purpose due to their adaptive nature with time-series data. Predictive 
models have recently been replaced by RNN-based approaches (Hong, 
2008). The advent of deep learning techniques on feature representa-
tions and prediction tasks (Liu et al., 2014) increased the model per-
formance. The ability to consider not only the initial atmospheric state 
prior to the prediction (single past value), but also the sequence of those 
events leading to the actual state, should provide more predictive power. 
In our framework, we are interested to nowcast rain and wind speed as 
target features related to convection development. For a target feature 
like the rain that is hard to be predicted, a well built and tested fore-
casting algorithm must be provided with careful attention to the pre- 
processing and post-processing steps corresponding to the prediction 
task. To accomplish this goal, we investigate, evaluate and compare 
three neural network-based models: a shallow and deep ANN as a 
baseline forecasting model, a Long Short-Term Memory (LSTM) model, 
and an Encoder-Decoder LSTM-based model (E/D LSTM). 

3.1.1. ANNs 
The concept of ANNs was first introduced by Mcculloch and Pitts 

(1943) as a computational model for biological neural networks. Such 
architectures provide a methodology for solving many types of non- 
linear problems that are difficult to be solved by traditional tech-
niques. Most meteorological processes often exhibit temporal and 
spatial variability, with non-linear relationship between the different 
parameters. The ANNs have the capability to extract the existing rela-
tionship between the inputs and outputs of a process, without the 
physics being explicitly provided and that is why these algorithms are 
called data-driven models and are well suited for nowcasting tasks. 

A single-layered ANN, with a single output, is known as the per-
ceptron. Multi-Layer Perceptrons (MLPs) are the most commonly used 
architecture for ANNs. The composition of MLPs contains layers of 
neurons with an input layer, an output layer, and a hidden layer (at least 
one). The layers of the ANN are interlinked with each other by devel-
oping a multi-layered architecture, and this makes the model essentially 
complex for the ANN processing. Details on the ANN structure and ar-
chitecture are reported in Appendix A. 

3.1.2. Long Short-Term Memory (LSTM) Cell 
The LSTM is a special kind of an RNN that is capable of learning the 

long-term temporal dependencies in sequential data more accurately 
than conventional RNNs and is powerful for modeling long-range de-
pendencies (Ibrahim et al., 2020). A basic LSTM network of two-layered 
LSTM with fully connected hidden layers of 100 neurons already showed 
good performance in a Sequence to Sequence Weather forecasting 
(Zaytar and El Amrani, 2016). The LSTM networks are usually used as 
the baseline for weather long and short-term forecasting applications (Al 
Sadeque and Bui, 2020) getting incremental results such as the stacked 
LSTMs for temporal forecasting (Zaytar and El Amrani, 2016) and the 
spatio-temporal stacked LSTMs (Karevan and Suykens, 2018). 

The main criterion of the LSTM network is the memory unit ht, also 
called an internal unit, which can memorize the temporal state. Given a 
sequential input x = {x1, x2, …, xt, xt + 1, …, xn}, where n is the total 
number of samples, a LSTM cell can process x by using its memory unit, 
and in contrast to a conventional RNN, the LSTM cell is shaped by the 
addition or removal of information through three controlling gates: 
input gate it, output gate ot, and forget gate ft. Thanks to these gates, the 
LSTM overcomes the vanishing gradient problem unlike RNNs (Ibrahim 
et al., 2020). Moreover, it allows it to better handle long input sequences 
by updating and controlling the flow of the information in the block 
using these gates according to the equations (Ibrahim et al., 2020): 

ft = σg
(
wf xt + uf ht− 1 + bf

)
(1)  

it = σg(wixt + uiht− 1 + bi) (2)  

ot = σg(woxt + uoht− 1 + bo) (3)  

ct = ft ⊗ ct− 1 + it ⊗ σh(wcxt + ucht− 1 + bc) (4)  

ht = ot ⊗ σh(ct) (5)  

where xt is the current passed input, ht is the current hidden state, w, u 
and b stand for the weight matrices and biases, the nonlinear functions 
σg(.) 

(
σg(x) = 1

1+e− x

)
and σh(.) (tanh) are the sigmoid and hyperbolic 

tangent functions and ⊗ denotes element-wise multiplication. Eqs. (1), 
(2) and (3) establish gate activations, Eq. (4) determines the new cell 
state ct, where the ‘memories’ are stored or deleted, and Eq. (5) is the 
final output. The memory unit ht defined in Eq. (5) refers to the hidden 
state vectors of the LSTM layer shown in Fig. 4. Each LSTM unit has a 
hidden state, where ht-1 represents the hidden state of the previous 
timestep and ht is the hidden state of the current timestep. With the 
mechanism of the three gates, each LSTM unit computes the cell states 
represented by ct-1 and ct for the previous and current time steps, 
respectively. The hidden state is known as short term memory and the 
cell state is known as long term memory of each LSTM unit in the LSTM 
layer. 

3.1.3. LSTM encoder-decoder 
A simple baseline LSTM network is sufficient to make single pre-

dictions based on the state of the atmosphere leading up to that time (i.e. 
1 lead time step); however, our goal is to nowcast multiple lead time 
steps into the future and to provide predictions of the target features 1 h 
ahead with a time sampling of 10 min. We can accomplish this objective 
using dense LSTM networks at the expense of reduced model perfor-
mance. We want a neural network architecture that can readily provide 

Table 2 
Example of nowcasting model input dataset for an extreme rainfall event.  

Date Time Wind Direction [◦] Wind Speed [m/s] Temp. [◦C] Press. [mbar] Rel. Hum. [%] Rain [mm/10 m] ZTD [mm] Avg dBz Max dBz 

15/05/2015 14:40 349.00 6.40 13.07 986.85 91.67 7.60 2.35 47.87 57.00 
15/05/2015 14:50 351.00 6.40 12.63 987.05 92.33 5.20 2.35 47.72 57.00 
15/05/2015 15:00 343.00 7.60 12.20 987.25 93.00 3.60 2.35 0.00 0.00 
15/05/2015 15:10 347.00 5.80 12.07 987.45 93.67 1.80 2.36 44.27 56.00 
15/05/2015 15:20 349.00 5.60 11.93 987.55 94.33 0.60 2.37 42.05 54.50 
15/05/2015 15:30 358.00 6.20 11.80 987.75 95.00 2.40 2.36 42.38 53.50  
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accurate predictions arbitrarily far into the future. We can relate such a 
technique to a vector-based sequence to sequence learning problem, and 
implement E/D structure with more than one RNN/LSTM cell (Fig. 3). 
The E/D RNN/LSTM-based architecture (Sutskever et al., 2014) has 
become popular after its success in displacing classical phrase-based 
statistical machine translation systems for state-of-the-art results. In 
machine translation, the key idea is to encode the source sentence as a 
fixed-length vector and then use the decoder to generate a translation. In 
our work, we use the E/D LSTM approach for time series prediction 
instead of word translation. Deep stacked LSTMs can be applied to time 
series data as a sequence to sequence based encoder-decoder model. This 
takes a sequence of features as input (input sequence of n time steps), 
and outputs a target sequence (output sequence of multiple m time 
steps) as a continuation to the input target sequence. The dimensions n 
and m are not always equal; in our case, we have previous information 
about the past 2 h (n = 12) and we predict 1 h in the future (m = 6) as 
shown in Fig. 3. 

The model for every recurrent node follows a standard LSTM struc-
ture with the gates to control the states of the memory cell. The addi-
tional tasks which compose the E/D structure are: the Repeat Vector 
layer, which repeats the final output vector from the encoding layer as a 
constant input to each timestep of the decoder, and the time Distributed 
Dense layer, which applies the same Dense (fully-connected) operation 
to every timestep of a 3D tensor. 

3.2. Experiments 

3.2.1. Feature representation and preparation 
In this work, we have a multivariate driving series (13 weather 

features) from different sources: 6 features for weather stations (rain, 
relative humidity, pressure, temperature, wind speed and wind 

direction), 1 feature for GNSS (ZTD), 4 features for lightning (number of 
lightnings, cloud-to-cloud, cloud-to-ground, intra-average-height), and 
2 features for radar (average and maximum dBZ). As explained previ-
ously, all the features are sampled at a 10-min rate. Since we aim to 
study the impact of each type of data source, as well as the significance 
of the availability of datasets (Table 1), on the prediction of extreme 
rains and extreme winds, the priority is given to the temporal infor-
mation of the data with two changing factors: input configuration (i.e. 
what input features are fed to the model) and the time slot of available 
data. Google Colab and Jupyter Notebooks were selected as platforms 
for building and managing the datasets before and during the training. 

A number of pre-processing steps are done on the raw data:  

- Filling the missing feature values per data source. The time series of 
each feature is relatively long (availability between 4 years and 3 
months, and 9 years) with some short temporal gaps. For our pur-
poses, we decided to fill the lightning feature by adding zeros at the 
time steps in which the lightning is not present. We used the same 
filling method for the radar feature in all the instances where we did 
not have any reflectivity information (where reflectivity was lower 
than 36 dBZ). Finally, we use straight-forward interpolation or ma-
chine learning regression methods to fill the gaps of weather pa-
rameters, radar and GNSS. Among the tested methods, the Stochastic 
Random Regression (SRR) (Enders, 2010) has shown to provide more 
consistent values than the linear/average interpolation. The SRR 
relies on the use of the function ‘random imputation’ which replaces 
missing values with some random observed values of the variable 
and it is repeated iteratively for all the variables containing missing 
values. In this way, they can serve as parameters in the linear 
regression model in order to estimate other variable values. 

Fig. 3. Encoder-decoder LSTM-based model diagram.  
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- Wind speed and direction (available in degrees) features were 
reformulated into a wind vector of x and y components because the 
distribution of wind vectors is simpler for the model to be correctly 
interpreted. With the wind speed and wind direction, we can obtain 
the component vector winds, u and v, as follows: 

u = ws* cos(θ) (6)  

v = ws* sin(θ) (7)  

where ws represents the wind speed information and θ is the wind di-
rection in radians. 

- The time is also an additional feature (besides other weather pa-
rameters) to improve the performance of the model because it pro-
vides information on the periodicity of the parameter, so we generate 
time signals (day sin, day cos, year sin, year cos), deriving a sine 
transform and cosine transform of the date-time, adding 4 new fea-
tures to the dataset. 

Our models perform best when the inputs and outputs are stationary. 
By definition, a time series is non-stationary when its observations 
depend on time, because, in this case, the statistics (mean and variance) 
also change with the time. This is a challenging problem for machine 
learning techniques since they cannot guarantee the development of 
reliable prediction models with not stationary features (Livieris et al., 
2021). Thus, we devote some time to study the stationarity for each 
feature set using the commonly used Dickey-Fuller and Kwiatkowski- 
Phillips-Schmidt-Shin (KPSS) statistical tests (Gagniuc, 2017). Based 
on these tests, the stationary features are rain, day sine and day cosine, 
while relative humidity, temperature, pressure, wind vector compo-
nents, ZTD, lightning, and radar are non-stationary or weakly stationary. 
It is possible to transform the non-stationary features into stationary 
features by computing the differences between the original features and 
the same features lagged by a specified period (Livieris et al., 2021): 

difference(t) = observation(t) − observation(t − T) (8)  

where T = 1 lag period. In our specific case, T is the seasonality of the 
features which is the frequency repeating the pattern. 

The stationary features are given in input to the model unchanged, 
the non-stationary features are first transformed in differences (sta-
tionary) and then given in input to the model in this form. When the 
model provides the outputs, the rain is provided in the right format 
(because it is stationary) while the wind is provided in difference of wind 
vector components format, so we must get the original value inverting 
the Eq. (8) and then recompute the wind speed from Eq. (6) and Eq. (7). 

3.2.2. Model preparation 
When the time series of features are pre-processed and prepared, we 

need to transform them into a format correctly interpreted by the model. 
The transformation process consists of 3 stages:  

1) Data split. The chosen weather data is divided into three selected 
datasets corresponding to the train, validation and test sets (70%, 
20%, 10%, respectively).  

2) Scaling. All the data are rescaled to values between 0 and 1 using 
Min-Max normalization defined as: 

xnorm =
x − min(x)

max(x) − min(x)
(9)  

where x is the feature variable to rescale. The normalization is per-
formed on each feature separately.  

3) Supervised problem. The time series dataset is composed by all the 
meteorological features mentioned in the dataset section. For the 

forecasting machine learning model we transform the time series 
data into two subsets: the input observations of the previous 2 h (X) 
and the target observations of the next 1 h (Y). This is achieved using 
a window generator capable of:  
- Generating windows with input and target features from the time 

series data, specifying the targets we want to predict;  
- Splitting windows into pairs, input feature windows and target 

feature windows;  
- Creating batches of window pairs for each of test, training, and 

validation datasets;  
- Creating the input feature vector with input width of 12 time-steps 

(lag observations);  
- Defining the targets to be predicted as the rain, the x and y wind 

components of the generated wind vector with target width of 6 
time-steps in the future;  

- Shifting the parameter by 6 time-steps. 

The windows generated are validated by using a split function and 
we compute X, and Y matrices for each of the training, test, and vali-
dation dataset as shown in Fig. 4. 

X and Y are represented in the form of 3D tensors for the input 
feature and target/output feature, respectively:  

- X ∈ Rm×l×n, each sample observation Xj = {X1,X2,…,X12} and each 
Xi = {x1,x2,…,xn} with j = (1,2,…,m) and i = (1,2,…, l = 12), 
where m is the total number of samples, l is the past time steps, and n 
is the total number of input features and its variable depending on 
the input configurations.  

- Y ∈ Rm×ĺ×3, each sample observation Yj = {Y1,Y2,…,Y6} and each 
Yi = {y1,y2,y3} with j = (1,2,…,m) and i = (1,2,…, ĺ = 6), where m 
is the total number of samples, ́l is the future time steps for 3 target 
features of the rain and wind vector components. 

3.2.3. Model post-processing 
When the nowcast is obtained, the output is post-processed following 

the steps below:  

- The nowcasting is performed by using the differenced test data (Eq. 
(8));  

- The nowcasts are denormalized to return them into their original 
scale;  

- The difference values are inverted to the original test data. 

After these three steps, the wind speed values are consistent with the 
observations; however, the rain values are largely underestimated 
because most of the rain values are zero or close to zero. This issue is not 
new and there are several approaches towards eliminating it, including 
artificial neural networks, machine learning and statistical methods 
(Hemri et al., 2014; Jeon et al., 2016; Li et al., 2019). To improve the 
nowcasting of the rain, we therefore apply a post-processing procedure, 
which is described in Section 4.2. 

3.2.4. Model training and evaluation 
We trained the three models, MLP network as a forecasting baseline, 

baseline LSTM, and E/D LSTM architectures, by using the settings pro-
vided in Table 3. As a loss function, we use the Mean-Square Error 
(MSE), and as evaluation metrics, we use MSE, Mean Absolute Per-
centage Error (MAPE), and Mean Absolute Error (MAE), to compare the 
accuracy level and the performance of each model architecture trained: 

MSE =
1
N

ΣN
i=1(yi − ŷi)

2 (10)  

MAPE =
100%

N
ΣN

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (11)  
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MAE =
1
N

ΣN
i=1|yi − ŷi| (12)  

where N is the number of samples, yi is the ith true observation, and ŷi is 
the ith predicted observation. 

In order to choose the best parameter setting with the lowest vali-
dation error, we use the early stopping technique, which allows us to 
select the model associated with the parameter setting with minimum 
validation error (Fathi and Maleki Shoja, 2018). The evaluation is per-
formed in both the training and validation datasets. We conduct three 
experiments for each of the 3 model architectures independently, using 
the diagnostic approach defined by Brownlee (2014), and each experi-
mental scenario is run 5 times because the random initial conditions for 
an LSTM network can be very different any time a configuration is 
trained. The comparison of the models is based on the training and 
validation dataset of all the features (weather station parameters, GNSS 
ZTD, radar dBZ and lightning parameters). To compare the experiments, 
we use the Root-Mean-Square Error (RMSE) as a metric, which is defined 
as: RMSE =

̅̅̅̅̅̅̅̅̅̅
MSE

√
. Each model is then evaluated at the end of each 

epoch, and the RMSE scores are saved. We ran three different models 
(Table 4) with the same input/output configuration to evaluate their 
performances and choose the best model to be kept for the future 
analysis. We used all the parameters (weather stations, GNSS, radar, and 
lightning) as input, and rain and wind speed as output. All the metrics 
(MSE, MAPE, MAE) show that the E/D LSTM method converges more 
rapidly and to lower values than to the other models. In Table 4 we 
report the RMSE for the training and validation datasets, where we can 

see that the best performances are given by E/D LSTM model except for 
the rain validation dataset; however, the RMSE for the E/D LSTM (0.182 
mm) is really close to the lowest value of the LSTM (0.179 mm). For 
these reasons, we will show all the results obtained with the E/D LSTM 
model. 

The optimization of the E/D LSTM model is done on the training and 
validation datasets, where 10% of training data serves as a validation 
set, and the validation dataset is used for each hyperparameter in order 
to choose the optimal value. The test dataset is used as new data to 
evaluate the optimal configuration and generalize the model configu-
ration (Tibshirani and Friedman, 2017). A diagnostic approach is used to 
investigate the running performances by computing the RMSE over time 
(epochs) and assessing possible improvements. The other hyper-
parameters are investigated using a box and whisker plot (Appendix B) 
of the computed error scores of the validation set on each target 
(Brownlee, 2017). The tuning, using box plots, is a tradeoff of average 
performance and variability of that performance, with an ideal result 
having a low mean error with low variability, meaning that it is good 
and reproducible. In Table 5 we report in bold the hyperparameters used 
in this analysis. 

Fig. 4. Input/Output data flow of each observation.  

Table 3 
Model Setting for the training, and 5 repeated experiments on each network 
architecture.  

Epochs 150 training iterations 
Batch size 256 
Optimization technique Adaptive moment estimation (Adam) optimizer with a 

learning rate = 0.01 
Network weight 

initialization 
“glorot” or “xavier” uniform initialization 

Dense layers Activations = “relu” 
number of neuron = 32 

LSTM layers Activations: hyperbolic tangent (tanh) function 
Shuffle = False (order is respected for time series 
forecasting purpose) 
lstm units = 32 

Regularization type Dropout = 0.15 (15%)  

Table 4 
Average RMSE for rain and wind speed nowcasting with three different tested 
models after optimization: MLP, LSTM and E/D LSTM on Novara station data (all 
features).  

Model architecture Rain Train Rain Val Wind Train Wind Val 

MLP 0.150 0.193 0.134 0.140 
LSTM 0.135 0.179 0.092 0.096 
E/D LSTM 0.129 0.182 0.078 0.081  

Table 5 
Optimized Hyperparameters of the E/D LSTM model.  

Optimized Hyperparameters of the E/D LSTM model hyperparameters using the same 
diagnostic approach 

Number of training epochs {100, 110, 150, 200, 500} 
Dropout {10%, 15%, 20%} 
Batch size {64, 128, 256} 
Number of neurons for Dense layers {32, 64, 128, 256} 
Number of LSTM units for LSTM layers {18, 32, 64, 128}  
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3.2.5. Nowcasting performance assessment 
To assess the performance of the nowcasting model, we use 3 

different metrics commonly used in the relevant literature (Zhang et al., 
2021). These metrics are defined based on the True Positive (TP), False 
Positive (FP) True Negative (TN), and False Negative (FN), which denote 
the successfulness of a nowcasting model in relation to an observed 
event. An event can either refer to a rain/wind event (an instance of non- 
zero rain/wind value) or to a rain/wind extreme event (an instance of 
rain/wind value above the extreme threshold). Table 6 shows the rela-
tionship between observed and nowcasted events. We define: 

- TP as the number of observed events that were successfully now-
casted by the model;  

- FP as the number of non-observed events that were nowcasted by the 
model;  

- FN as the number of observed events that were not predicted;  
- TN the number of non-observed events that were correctly not 

predicted. 

Based on Table 6, we can define the assessment metrics, which are 
categorical statistics with values in the range 0–1, but we prefer to report 
them in percentage (therefore multiplied by a factor of 100):  

- The Probability of Detection (POD) is the percentage of observed 
events that were successfully nowcasted. Therefore, the closer the 
value is to 100, the better it is. 

POD =
TP

TP + FN
• 100    

- The False Alarm Rate (FAR) is the percentage of nowcasted events 
which did not happen in reality. The closer this value is to 0, the 
better it is. 

FAR =
FP

TP + FP
• 100   

- The Critical Success Index (CSI) is the percentage of correctly pre-
dicted events to the total number of positive events nowcasted or 
needed. The best score for this metric is 100 and the worst is 0. 

CSI =
TP

TP + FP + FN
• 100   

4. Results 

We run the E/D LSTM model with 4 different configurations:  

- Version 1 (v1) configuration includes the weather station data (WS) 
and the GNSS data (GNSS) with an availability of 9 years 
(2012− 2020);  

- Version 2 (v2) configuration includes the WS, the GNSS and the 
lightning data (LIGH) with an availability of 4 years and 3 months 
(2015–2019);  

- Version 3 (v3) configuration includes the WS, the GNSS and the radar 
data (RADAR) with an availability of 8 years (2012–2019);  

- Version 4 (v4) configuration includes the WS, the GNSS, the RADAR 
data and the LIGH with an availability of 4 years and 3 months 
(2015–2019). 

The performances of the model depend on the input features used 
and on the length of the training dataset, so a real comparison between 
the configurations can be obtained only considering a common period of 
data availability. Table 7 reports the RMSE obtained with the E/D LSTM 
with the 4 configurations (within the respective period available) and 
Table 8 reports the RMSE for the same configurations, but training the 
model in the common period of 4 years and 3 months. The comparison of 
Table 7 with Table 8 shows that the shortest data availability does not 
impact much on the model performances, in fact the RMSE for the rain 
training in v1 (v3) is even lower when we decrease the period from 9 (8) 
to 4.25 years, the rain test RMSE increases by 11% (7%), the wind 
training RMSE increases by 6% (improves) and the wind test RMSE in-
creases by 8% (improves). In general, the performances to nowcast the 
rain are steady when changing the input configuration but we lower the 
RMSE by 12% when we add the RADAR and LIGH to the WS and GNSS. 

Ideally, a larger dataset should improve a machine learning model 
performance, but just in case the dataset well represents all the possible 
combinations and variability of the inputs. In our case, the 4.25-year 
dataset is more homogeneous than the 9-year one with a smaller vari-
ability of the input parameters, thus the model provides better perfor-
mances with a smaller dataset available. 

4.1. Wind speed nowcasting 

The nowcasting of wind speed performs very well providing wind 
speeds with an RMSE of 0.081 m/s (Table 7-8), with 100% POD and just 
4.3% FAR in all configurations at all time-steps (Table 9). When we focus 
on the extreme wind speeds (exceeding 5.7 m/s) (Table 10), the lowest 
CSI is achieved with v1 at 10-min nowcasting with 83.2% POD and just 
1.3% FAR, then the CSI increases with the lead time steps of the now-
casting and with the addition of features to the model input. It is 
interesting to notice that the improvement of the CSI is due to higher 
values of the POD, while the FAR are always lower than 1.8%. All the CSI 
for nowcasting wind speeds between 30 min to 1 h are higher than 90% 
reaching the best performance of 95.8%. When we focus on the extreme 
wind speeds according to ATM stakeholders’ requirements (exceeding 
10 m/s) (Table 11), the lowest CSI is achieved with v1 at 10-min now-
casting with 83.3% POD and 0% FAR, then the CSI increases with the 
lead time steps apart from the 60 min lead time, where under all con-
figurations there is a drop of CSI due to the fact that FAR increases. It is 
interesting to notice that the improvement of the CSI from 10 to 50 min 
lead time is due to higher values of the POD, while the FAR are always 
0%. However, we should note that by setting the extreme wind speed to 
10 m/s, we are statistically closer to the 99th percentile of the non-zero 

Table 6 
Performance definition according to the correct/false observation/nowcast.  

Event 
Nowcast 

Event observed 

Yes No  

Yes TP FP Nowcast Yes (TP 
+ FP) 

No FN TN Nowcast No (FN 
+ TN)  

Observation Yes (TP 
+ FN) 

Observation No (FP 
+ TN)   

Table 7 
Average RMSE for rain and wind speed nowcasting with 4 input configurations 
of the total features available within the time slots provided by the WS, GNSS, 
RADAR and LIGH.  

Input Configuration Period Rain 
Train 

Rain 
Test 

Wind 
Train 

Wind 
Test 

(v1) WS + GNSS 9 years 0.157 0.105 0.084 0.085 
(v2) WS + GNSS+LIGH 4.25 

years 
0.133 0.117 0.086 0.089 

(v3) WS + GNSS+RADAR 8 years 0.146 0.110 0.086 0.088 
(v4) WS +

GNSS+RADAR+LIGH 
4.25 
years 

0.129 0.118 0.078 0.081  
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wind speed data instead of the 95th percentile. In the observation 
dataset, 190 events overpass the wind speed threshold of 5.7 m/s while 
just 12 events overpass the threshold of 10 m/s. In the nowcasted data 
with threshold 10 m/s, the number of extreme events varies between 10 
and 14 with the lead time. 

Fig. 5 resumes the CSI of the wind speed nowcasting model for the 4 
different configurations and with different data availability or selection 
(extremes). In Fig. 6, the left panel shows the comparison between the 
observed extreme winds and the nowcasted winds in v4 at 10 and 60 
min; the right panel shows the corresponding scatter plot, where it is 
clear that the correlation is higher for the 60 min (1) than for the 10 min 
(0.97). 

4.2. Rain nowcasting 

Fig. 7 shows the observed rain values (gray) and the corresponding 
nowcasting (green). It is clear that the nowcasting has a trend similar to 
the observations, but there is a bias between the two, which depends on 
the intensity of the rain. The similarity on the trends decreases with the 
lead time step, higher at 10 min (correlation 0.95) and lower at 60 min 
(correlation 0.63) as shown in Table 12. For this reason, we decide to 
apply a post-processing algorithm to improve the results (Fig. 7, orange 

line). It is important to note that we are not interested only in correcting 
the nowcasting outcomes, but also in using the correction technique as a 
tool to correct the future predictions, therefore, we use the observed 
data only to make our algorithm learn and extract corrective parame-
ters. The technique is applied to all the instances of common non-zero 
observed and nowcasted. The nowcasted data are split into groups 
based on their percentile’s magnitude (Wang et al., 2016; Li et al., 2019) 
with a separation step of 5% from 0 to 95 and 2% from 95 to 100 in order 
to catch the biggest possible level of detail for the rarest events. As a next 
step, a linear regression is implemented between the nowcasted data and 
the difference between the observed and nowcasted data (error). The 
slope and intercept are used to retrieve the corrected value in each group 
by using the equation: 

nci = ni + ni • si + ici (13)  

where nc is the nowcasted corrected value, n is the original nowcasted 
value, s is the slope, ic is the intercept and i refers to the respective 
percentile group. 

The performance of the rain nowcasting is reduced compared to the 
wind speed as we could expect from the literature (Khosravi et al., 2018; 
Zhang et al., 2021). From the nowcasts, we find that the model un-
derestimates the rainfall values (Fig. 7) because the number of training 
samples is small for higher rain values and so the neural network is more 
biased towards the prediction of lower values. This is addressed as a 
general problem with the unbalanced dataset in deep learning-based 
techniques (Wang et al., 2016). All of the three developed models, 
however, estimate the wind speed accurately from past rain data used in 
the input configurations. Therefore, the RMSE for the rain nowcasting is 
0.118 mm (Table 7-8). The performance improves when we decrease the 
period of v1 availability from 9 years (Table 13) to 4.25 (Table 14), 
while it is the opposite for v3. The best performances are provided by the 
v4 with 77.1% CSI at 10 min corresponding to 89.5% POD and 15.2% 
FAR, but also the configuration v1 is surprisingly providing high 

Table 8 
Average RMSE for rain and wind speed nowcasting of the 4 input configurations 
within the common time slot available when all features are available (4 years 
and 3 months).  

Input Configuration Rain 
Train 

Rain 
Test 

Wind 
Train 

Wind 
Test 

(v1) WS + GNSS 0.136 0.118 0.089 0.092 
(v2) WS + GNSS+LIGH 0.133 0.117 0.086 0.089 
(v3) WS + GNSS+RADAR 0.134 0.118 0.083 0.085 
(v4) WS +

GNSS+RADAR+LIGH 
0.129 0.118 0.078 0.081  

Table 9 
Model performances for nowcasting wind speed using all the data available from each source.   

(v1) (v2) (v3) (v4)  

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI 

All data 100 4.9 95.1 100 4.3 95.7 100 4.7 95.3 100 4.3 95.7 
common data 100 4.3 95.7 100 4.3 95.7 100 4.3 95.7 100 4.3 95.7  

Table 10 
Model performances for nowcasting extreme wind speed using the common period of availability and 5.7 m/s as threshold.   

(v1) (v2) (v3) (v4)  

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI 

10 m 83.2 1.3 82.3 84.4 1.8 83.1 85.8 0.6 85.3 86.3 1.8 85.0 
20 m 92.1 1.7 90.7 89.6 1.1 88.7 90.5 1.7 89.1 91.1 1.7 89.6 
30 m 94.7 1.6 93.3 93.2 0.6 92.7 94.7 0.6 94.2 94.2 0.6 93.7 
40 m 95.3 1.1 94.3 93.8 0.6 93.3 95.3 0.5 94.8 95.3 0.5 94.8 
50 m 96.8 1.1 95.8 92.7 0.6 92.2 96.3 1.1 95.3 95.8 1.1 94.8 
60 m 94.7 1.6 93.3 93.2 1.1 92.3 95.8 2.2 93.8 94.2 0.6 93.7  

Table 11 
Model performances for nowcasting extreme wind speed using the common period of availability and 10 m/s as threshold.   

(v1) (v2) (v3) (v4)  

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI 

10 m 83.3 0.0 83.3 83.3 0.0 83.3 100.0 0.0 100.0 100.0 0.0 100.0 
20 m 83.3 0.0 83.3 91.7 0.0 91.7 91.7 0.0 91.7 91.7 0.0 91.7 
30 m 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 
40 m 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 
50 m 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 
60 m 100.0 14.3 85.7 100.0 7.7 92.3 100.0 7.7 92.3 100.0 7.7 92.3  
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performance at all the lead time steps with CSI ranging from 72.5% at a 
10-min time step to 75.5% at a 50-min time step. However, the v1 
provides much less FAR than the v4 and similar values of CSI (Table 14). 

The nowcasting of extremes (Table 15) provides high values of POD 
at 10- and 20-min time steps but also the FAR have high values bringing 
to a non-performant CSI for lead times larger than 30 min. The best 
performance for the detection of the rain extremes is achieved by using 
the simplest configuration v1 including just the weather stations and the 
GNSS ZTD. In general, we can say that the radar and lightning data 
contribute to improve the POD in rain nowcasting but they also largely 
increase the FAR especially when we focus on extreme events. 

Fig. 8 resumes the CSI of the rain nowcasting model for the 4 
different configurations and with different data availability or selection 
(extremes). 

5. Discussion and conclusions 

The machine learning techniques for meteorological purposes have 
recently been applied with good results. The assimilation of weather 
radar data to 4-DVAR in WRF has shown an improvement of 30% in 
short-lived precipitation nowcasting (Thiruvengadam et al., 2020), and, 
in general, the assimilation of new and different types of datasets con-
tributes to better severe weather nowcasting (Kohn et al., 2011; 
Benevides et al., 2019; Zhang et al., 2021). The use of machine learning 
techniques has also improved the nowcasting performances. There have 
been several attempts to provide inputs to machine learning models over 
a long time series of different datasets, which led to increased perfor-
mances in rainfall prediction (Benevides et al., 2019: Ayzel et al., 2020; 
Hewage et al., 2021). In this work, we use the standard weather stations 
data, radar and lightning data already widely presented in the literature 

Fig. 5. Percentage Critical Success Index (CSI) of the wind speed nowcasting model for different configurations and datasets availability.  

Fig. 6. Observed extreme winds (blue) and the nowcasted winds (orange) in v4 at 10 (top) and 60 (bottom) minutes. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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(Franch et al., 2020; Klocek et al., 2021; Zhang et al., 2021) to feed the 
LSTM model in order to optimize it. We also want to highlight the 
relevance that GNSS data have recently shown for nowcasting applica-
tions (Benevides et al., 2019; Łoś et al., 2020; Guo et al., 2021). The final 
objective of this study is to create a reliable end-to-end nowcasting 
model using a LSTM-based model able to nowcast extreme rain and 
extreme wind speed of weather phenomena quickly developing at small 
spatial scale near airports. For this reason, we focus on the Malpensa 

airport area, chosen as a hotspot of the project ALARM, around which 
we have the availability of 14 weather stations, 8 GNSS stations and the 
radar reflectivity. The model has been first tested on a single location, 
Novara, because additionally to the weather station, GNSS and radar, we 
also have the availability of lightning detectors. The model tested and 
optimized in Novara will be applied to the entire area of Malpensa and, 
later, to another hotspot of the project, Brussels Zaventem airport. The 
number of extreme wind speed events, with extreme threshold defined 

Fig. 7. Observed extreme rain (gray), the nowcast rain (green) and corrected nowcast (orange) in v1 at 10 (top), 30 (middle) and 60 (bottom) minutes. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 12 
RMSE and correlation (Corr) between the observations and the rain post-processed nowcasting.   

WS + GNSS WS + GNSS+LIGH WS + GNSS+RADAR WS + GNSS+RADAR+LIGH  

RMSE Corr RMSE Corr RMSE Corr RMSE Corr 

10 m 0.31 0.95 0.57 0.95 0.32 0.93 0.42 0.91 
20 m 0.40 0.90 0.67 0.88 0.41 0.87 0.58 0.79 
30 m 0.46 0.81 0.77 0.69 0.47 0.80 0.67 0.64 
40 m 0.50 0.72 0.83 0.44 0.51 0.73 0.71 0.51 
50 m 0.52 0.66 0.69 0.45 0.53 0.69 0.73 0.39 
60 m 0.54 0.63 0.61 0.44 0.55 0.68 0.73 0.36  

Table 13 
Model performances for nowcasting rain using all the data available from each source.   

(v1) (v2) (v3) (v4)  

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI 

10 m 62.5 3.3 61.2 60.0 15.4 54.0 72.3 7.0 68.6 89.5 15.2 77.1 
20 m 68.0 6.6 64.9 61.0 17.3 54.1 74.9 6.4 71.3 87.5 14.8 76.0 
30 m 69.8 8.5 65.6 63.4 16.9 56.1 74.4 6.0 71.0 85.4 14.8 74.3 
40 m 70.3 9.6 65.4 64.5 16.1 57.3 72.9 5.2 70.1 84.4 13.5 74.6 
50 m 70.5 10.3 65.3 63.6 16.1 56.6 72.1 4.8 69.6 83.7 12.8 74.6 
60 m 70.4 10.8 64.9 62.8 16.3 56.0 71.3 4.9 68.7 82.5 13.1 73.3  
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by the stakeholders (10 m/s), is not statistically significant (just 10–14 
cases depending on the lead time); however, it is an important 
achievement for the scope of the project because it shows that the model 
is able to nowcast rare events strongly impacting the aviation and 
providing a real contribution to the ATM. This work shows that the al-
gorithm has excellent performances, a relevant statistic will be obtained 
in the near future studies applying the model to the 14 stations around 
Milano Malpensa. 

The E/D LSTM model has been chosen within the different tested 

ones since it provided the best performances in our case. The perfor-
mances of the model are very good with a RMSE of 0.118 mm for the rain 
nowcasting and a RMSE between 0.081 and 0.092 m/s for the wind 
speed. However, while the detection for the extreme wind absolute 
value is highly stable, providing CSI higher than 80% with the 10-min 
lead time and higher than 90% with the lead time between 20 and 60 
min, the model to nowcast the extreme rain absolute value has still some 
issues which must be solved applying post-processing corrections. 

We want to highlight that radar reflectivity and lightnings are the 

Table 14 
Model performances for nowcasting rain using the common period of availability.   

(v1) (v2) (v3) (v4)  

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI 

10 m 77.2 7.8 72.5 60.0 15.4 54.0 51.0 10.7 48.0 89.5 15.2 77.1 
20 m 79.0 9.1 73.2 61.0 17.3 54.1 53.0 10.4 49.9 87.5 14.8 76.0 
30 m 79.0 8.6 73.6 63.4 16.9 56.1 52.4 11.6 49.1 85.4 14.8 74.3 
40 m 78.7 6.9 74.4 64.5 16.1 57.3 52.6 9.3 49.9 84.4 13.5 74.6 
50 m 78.5 4.8 75.5 63.6 16.1 56.6 52.6 8.2 50.3 83.7 12.8 74.6 
60 m 77.8 4.7 74.9 62.8 16.3 56.0 52.8 7.9 50.5 82.5 13.1 73.3  

Table 15 
Model performances for nowcasting extreme rain using the common period of availability.   

(v1) (v2) (v3) (v4)  

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI 

10 m 87.5 12.5 77.8 87.5 6.7 82.4 87.5 6.7 82.4 87.5 26.3 66.7 
20 m 81.3 7.1 76.5 75.0 25.0 60.0 93.8 21.1 75.0 81.3 35.0 56.5 
30 m 87.5 12.5 77.8 68.8 21.4 57.9 75.0 7.7 70.6 68.8 35.3 50.0 
40 m 87.5 50.0 46.7 50.0 20.0 44.4 81.3 7.1 76.5 62.5 37.5 45.5 
50 m 75.0 55.6 38.7 37.5 33.3 31.6 75.0 60.0 35.3 37.5 40.0 30.0 
60 m 75.0 36.8 52.2 6.3 50.0 5.9 62.5 63.0 30.3 25.0 50.0 20.0  

Fig. 8. Percentage Critical Success Index (CSI) of the rain nowcasting model for different configurations and datasets availability.  
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“signature” of severe weather already well developed, and they can be 
used to understand if the phenomena are going to intensify or weaken. 
The weather stations data and the GNSS ZTD can be used for the same 
purpose, but also and specially to understand if severe weather is going 
to form or not. In this regard, the capabilities of the v1 model configu-
ration can be considered more relevant. The configuration WS + GNSS 
“captures” the quickly developing events since it is sensitive to the pre- 
convection environment, while the radar and lightning data provide 
information just when the severe event is already developed, as 
explained in Sections 2.1.3 and 2.1.4. This is clear from Table 10 (the 
common period for extreme events), where the performance of v3 
remarkably increases. The combined use of different datasets does not 
always lead to better performances. In our specific case, we must 
consider that the addition of lightning and radar means a shorter time 
period of availability but also a more homogeneous dataset. 

Our results in some cases show performances improving with the 
lead time. This is true for the wind speed in general (even though the 
FAR are present just for the 60-min lead time), but not for the rain where 
the performances increase with the lead time only using the whole 
dataset available with configurations v1 and v2. In case of extreme rain 
with the common data period availability, all the configurations show 
decreasing performances with lead time. 

The reasons for this behavior can mainly be three: 

- The model is not optimized according to the POD/FAR/CSI perfor-
mances, but according to the RMSE, which always decreases with the 
lead time;  

- We nowcast two parameters at the same time (rain and wind speed), 
and we must find a balance in the optimization of the model, which is 
not the best if they are considered individually;  

- There is no connection between the thresholds which we decided to 
use for determining the POD and FAR and the nowcasting model. 

With this study, we pose the basis to create a future operational 

product for the ATM. The model developed and optimized for Novara 
will be run in other 13 stations around Milano Malpensa to create a 
polygon showing to the air traffic controllers what area is at risk in the 
next one hour. 
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Appendix A. Appendix 

In an ANN, the processing part is performed in the hidden layer which executes two operational functions: summation function and transfer 
function, also known as an activation function. This process is summed together on each hidden neuron and it is denoted as (Ibrahim et al., 2020): 

hj = fh

(
∑p

i=1
wijxi + bj

)

(14)  

where hj, bj are respectively the output and bias vectors of the jth hidden neuron/node in the hidden layer, wij is the connection weight from the ith 

input node xi to the jth hidden node, fh(.) is the activation function in the hidden layer, and p is the number of input nodes. Therefore, the future target 
feature can be predicted in the output layer as (Ibrahim et al., 2020): 

ŷk = fo

(
∑m

j=1
vjkhj + bk

)

(15)  

where ŷk, bk are respectively the output and bias vectors of the kth output neuron in the output layer, wj is the connection weight from the jth hidden 
node to the output node, fo(.) is the activation function for the output layer, and m is the total number of samples. The bias parameter is used to 
regulate the output of the neuron in association with the weighted sum of the inputs. 

Fig. A1 shows the block diagram of the simple ANN-based nowcasting model chosen as a forecasting baseline in our study. Each sample of our 
dataset is a 2D matrix composed of the past observations for each input feature. As an output, each sample is a 2D matrix composed of the future time 
steps for each target feature. 
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Fig. A1. ANN processing scheme.  

Appendix B. Appendix 

We have several hyperparameters to tune for both meteorological targets: rain and wind speed. Any experiment is summarized by the minimum, 
first quartile, median, third quartile, and maximum. In Figs. B1 and B2, the box plot rectangle encloses the median value, with an end at each quartile. 
Together with the box, the whiskers show how big is the range between the minimum and the maximum and the circles show the outliers. Larger 
ranges indicate wider distribution and more scattered score errors among the experimental runs. Larger boxes mean more variable data. When the 
medians are similar, a smaller box shows better performances. 

The number of neurons affects the learning capacity of the network. Generally, more neurons are able to learn more from the problem at the cost of 
longer training time. 

The rain validation dataset (Fig. B1) shows the lowest variability with 32 neurons and the lowest median with 256 neurons. The presence of 
outliers is clear with 64 and 128 neurons. 

The wind speed validation dataset (Fig. B2) shows the lowest variability and lowest extremes with 32 neurons; however, the lowest median is 
achieved with 128 neurons but with the highest variability.
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Fig. B1. Box plot for RMSE of the rain validation dataset, reporting the median (green), the first and third quartiles (extremes of the blue rectangle), minimum and 
maximum (black), and outliers (circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. B2. Box plot for RMSE of the wind speed validation dataset, reporting the median (green), the first and third quartiles (extremes of the blue rectangle), minimum 
and maximum (black), and outliers (circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Hov, Ø., Cubasch, U., Fischer, E., Höppe, P., Iversen, T., Gunnar Kvamstø, N., 
Kundzewicz, W.Z., Rezacova, D., Rios, D., Duarte Santos, F., Schädler, B., 2013. 
Extreme Weather Events in Europe: Preparing for Climate Change Adaptation. 
Norwegian Meteorological Institute. 

Ibrahim, M., Alsheikh, A., Al-Hindawi, Q., Al-Dahidi, S., ElMoaqet, H., 2020. Short-Time 
Wind Speed Forecast Using Artificial Learning-Based Algorithms, Computational 
Intelligence and Neuroscience, 2020. Article ID 8439719. https://doi.org/10.1155/ 
2020/8439719. 

James, P.M., Reichert, B.K., Heizenreder, D., 2018. NowCastMIX: automatic integrated 
warnings for severe convection on nowcasting time scales at the German weather 
service. Weather Forecast. 33 (5), 1413–1433. https://doi.org/10.1175/WAF-D-18- 
0038.1. 

Jeon, S., Paciorek, C.J., Wehner, M.F., 2016. Quantile-based bias correction and 
uncertainty quantification of extreme event attribution statements. Weather Clim. 
Extrem. 12, 24–32. https://doi.org/10.1016/j.wace.2016.02.001. 
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