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Abstract

Embodied AI, or artificial intelligence that is integrated into physical
bodies, is an increasingly important area of research due to its potential
for creating intelligent agents that can interact with and learn from the
real world. These embodied agents can assist humans in a variety of tasks,
such as manufacturing, healthcare, and search and rescue operations. For
example, industrial robots can be equipped with artificial intelligence to assist
in assembly line tasks, allowing for more efficient and accurate production.
In healthcare, robots can be used to deliver medication and assist with
rehabilitation exercises. In search and rescue operations, robots can be
deployed to dangerous or difficult-to-reach areas to gather information and
provide assistance. This thesis presents several contributions to the field
of Embodied AI, addressing four research questions: (1) how can an agent
exploit common-sense knowledge about the environment, (2) how can an
agent reuse previously acquired knowledge about a specific environment, (3)
how can an agent comply with social rules, and (4) how can an agent acquire
knowledge and common-sense rules.

To address these research questions, the thesis presents a number of works
that provide possible solutions. For example, one work developed a model in
which a shared embedding is injected into a Scene-Memory Transformer to
improve the ability of an agent to exploit common-sense knowledge about the
environment. Another work defined a modular architecture for the Object
Goal Navigation task that allows an agent to reuse previously acquired
knowledge about a specific environment. Another work presented an agent
that is able to navigate cluttered environments while being aware of social
rules and the notion of risk. Finally, a preliminary end-to-end framework
was presented that can simultaneously learn symbols from perceptions and
symbolic functions, which could potentially be applied in an embodied agent
to learn how to map perceptions to symbols and common-sense knowledge
about an environment.

Overall, this thesis makes several important contributions to the field of
Embodied AI, providing insights and solutions to a range of challenges faced
by intelligent agents operating in the physical world.
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Chapter 1

Introduction

The field of artificial intelligence has made great strides in recent years, with
advances in machine learning allowing for the development of intelligent
systems that can perform a wide range of tasks. However, there is still a
significant gap between the abilities of these systems and those of humans,
who possess a rich understanding of the world that allows them to navigate
and interact with the environment in a flexible and intelligent manner. By
leveraging common-sense knowledge, social-rules, and the ability to reuse
previously acquire knowledge, humans have the capability to understand and
reason about the world around them. We are interested in building AI agents
that are capable to mimic such a behaviour. This will allow for creating AI
systems that are better equipped to assist humans in their daily lives, such as
reordering the house, cooking, cleaning, or grabbing specific objects in other
rooms.

1.1 Embodied AI

What is Embodied AI? Embodied AI [58] studies artificial systems that
express intelligent behavior through bodies interacting with their environ-
ments. The first generation of embodied AI researchers focused on robotic
embodiments [129], arguing that robots need to interact with their noisy
environments with a rich set of sensors and effectors, creating high-bandwidth
interaction that breaks the fundamental assumptions of clean inputs, clean
outputs, and static world states required by classical AI approaches [181].
More recent embodied AI research has been empowered by rich simulation
frameworks, often derived from scans of real buildings and models of real
robots, to recreate environments more closely resembling the real world than
those previously available. These environments have enabled both discoveries

1
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Figure 1.1: Passive AI tasks are based on predictions over independent
samples of the world, such as images collected without a closed loop with
a decision-making agent. In contrast, embodied AI tasks include an active
artificial agent, such as a robot, that must perceive and interact with the
environment purposely to achieve its goals, including in unstructured or even
uncooperative settings. Enabled by the progress in computer vision and
robotics, embodied AI represents the next frontier of challenges to study and
benchmark intelligent models and algorithms for the physical world.

about the properties of intelligence [123] and systems which show excellent
sim-to-real transfer [197, 164].

Abstracting away from real or simulated embodiments, embodied AI can
be defined as the study of intelligent agents that can see (or more generally
perceive their environment through vision, audition, or other senses), talk
(i.e. hold a natural language dialog grounded in the environment), listen
(i.e. understand and react to audio input anywhere in a scene.), act (i.e.
navigate their environment and interact with it to accomplish goals), and
reason (i.e. consider the long-term consequences of their actions). Embodied
AI focuses on tasks which break the clean input/output formalism of passive
tasks such as object classification and speech understanding, and require
agents to interact with - and sometimes even modify - their environments over
time (Fig. 1.1). Furthermore, embodied AI environments generally violate
the clean dynamics of structured environments such as games and assembly
lines, and require agents to cope with noisy sensors, effectors, dynamics, and
other agents, which creates unpredictable outcomes.
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Why is Embodiment Important? Embodied AI can be viewed as a
reaction against extreme forms of the mind-body duality in philosophy, which
some perceive to view intelligence as a purely mental phenomenon. The
mind-body problem has faced philosophers and scientists for millennia [50]:
humans are simultaneously “physical agents” with mass, volume, and other
bodily properties, and at the same time “mental agents” that think, perceive,
and reason in a conceptual domain which seems to lack physical embodiment.
Some scholars argue in favor of a strict mind-body duality in which intelli-
gence is a purely mental quality only loosely connected to bodily experience
[143]. Other scholars, across philosophy, psychology, cognitive science, and
artificial intelligence, have challenged this mind-body duality, arguing that
intelligence is intrinsically connected to embodiment in bodily experience and
that separating them has distorting effects on research [25, 127, 169, 112, 143].

The history of research in artificial intelligence has mirrored this debate
over mind and body, focusing first on computational solutions for symbolic
problems which appear hard to humans, a strategy often called GOFAI
("Good Old Fashioned AI", [23, 111]). The computational theory of mind
argued that if intelligence was reasoning operations in the mind, computers
performing similar computations could also be intelligent [130, 148]. Purely
symbolic artificial intelligence were often disconnected from the physical world,
requiring symbolic representations as input, creating problems with grounding
symbols in perception [75, 159] and often leading to brittleness [110, 104, 52].
However, symbolic reasoning problems themselves often proved to be relatively
easy, whereas the physical problems of perceiving the environment or acting
in it were actually the most challenging: what is unconscious for humans often
requires surprising intelligence, often known as Moravec’s Paradox [68, 2].
Some researchers challenged this approach, arguing that for machines to be
intelligent, they must interact with noisy environments via rich sets of sensors
and effectors, creating high-bandwidth interactions that break the assumption
of clean inputs and outputs and discrete states required by classical AI [181];
these ideas were echoed by roboticists already concerned with connecting
sensors and actuators more directly [10, 25, 118]. Much as neural network
concepts hibernated through several AI winters before enjoying a renaissance,
embodied AI ideas have now been revived by new interest from fields such
as computer vision, machine learning and robotics - often in combination
with neural network ideas. New generations of artificial neural networks are
now able to digest raw sensor signals, generate commands to actuators, and
autonomously learn problem representations, linking "classical AI" tasks to
embodied setups.

Thus, embodied AI is more than just the study of agents that are active
and situated in their environments: it is an exploration of the properties
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of intelligence. Embodied AI research has demonstrated that intelligent
systems that perform well at embodied tasks often look different than their
passive counterparts [64] - but, conversely, that highly performing passive
AI tasks can often contribute greatly to embodied systems as components
[156]. Furthermore, the control over embodied agents provided by modern
simulators and deep learning libraries enables ablation studies that reveal
fine-grained details about the properties needed for individual embodied tasks
[123].

What is not Embodied AI? Embodied AI overlaps with many other
fields, including robotics, computer vision, machine learning, and simulation.
However, differences in focus make embodied AI a research area in its own
right.

All robotic systems are embodied; however, not all embodied systems
are robots (e.g., AR glasses), and robotics requires a great deal of work
beyond purely trying to make systems intelligent. Embodied AI also includes
work that explores the properties of intelligence in realistic environments
while abstracting some of the details of low-level control. For example, the
ALFRED [155] benchmark uses simulation to abstract away low-level robotic
manipulation (e.g . moving a gripper to grasp an object) to focus on high-level
task planning. Here, the agent is tasked with completing a natural language
instruction, such as rinse the egg to put it in the microwave, and it can open or
pickup an object by issuing a high-level Open or Pickup action that succeeds
if the agent is looking at the object and is sufficiently close to it. Additionally,
[123] provides an example of studying properties of intelligence, where they
attempt to answer whether mapping is strictly required for a form of robotic
navigation. Conversely, robotics includes work that focuses directly on the
aspects of the real world, such as low-level control, real-time response, or
sensor processing.

Computer vision has contributed greatly to embodied AI research; how-
ever, computer vision is a vast field, much of which is focused purely on
improving performance on passive AI tasks such as classification, segmen-
tation, and image transformation. Conversely, embodied AI research often
explores problems that require other modalities with or without vision, such
as navigation with sound [41] or pure LiDAR images.

Machine learning is one of the most commonly used techniques for building
embodied agents. However, machine learning is a vast field encompassing
primarily passive tasks, and most embodied AI tasks are formulated in such a
way that they are learning agnostic. For example, the iGibson 2020 challenge
[153] allowed training in simulated environments but deployment in holdout
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environments in both real and simulation; nothing required the solutions to
use a learned approach as opposed to a classical navigation stack (though
learned approaches were the ones deployed).

Artificial intelligence is written into the name of embodied AI, but the field
of embodied AI was created to address the perceived limitations of classical
artificial intelligence [129], and much of artificial intelligence is focused on
problems like causal reasoning or automated programming which are hard
enough without introducing the messiness of real embodiments. More recently,
techniques from more traditional artificial intelligence domains like natural
language understanding have been applied to embodied problems with great
success [3].

Simulation and embodied AI are intimately intertwined; while simulations
of real-world systems go far beyond the topics of robotics, and the first gener-
ation of embodied AI focused on robotic embodiments [129], much of modern
embodied AI research has expanded to simulated benchmarks, emulating or
even scanned from real environments, which provide challenging problems for
traditional AI approaches, with or without physical embodiments. Despite
not starting with robots, systems that have resulted from this work have
nevertheless found success in real-world environments [197, 164], providing
hope that simulated benchmarks will prove a fruitful way to develop more
capable real-world intelligent systems.

Why focus on real-world environments? Many researchers are ex-
ploring intelligence in areas such as image recognition or natural language
understanding where at first blush interaction with an environment appears
not to be required. Genuine discoveries about intelligent systems appear to
have been made here, such as the role of convolutions in image processing
and the role of recurrent networks and attention in language processing. So a
reasonable question is, why do we need to focus on interactive and realistic
(if not real-world) environments if we want to understand intelligence?

Focusing on interactive environments is important because each new
modality of intelligence we consider - classification, image processing, natural
language understanding, and so on - has required new architectures for
learning systems [69], [48]. Interacting with an environment over time requires
the techniques of reinforcement learning. Deep reinforcement learning has
made massive strides in creating learning systems for synthetic environments,
including traditional board games, Atari games, and even environments with
simulated physics, such as the Mujoco environments.

However, embodied AI research focuses on environments that are either
more realistic [188] or which require actual deployments in the real world [1,
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153]). This shift in emphasis has two primary reasons. First, many embodied
AI researchers believe that the challenges of realistic environments are critical
for developing systems that can be deployed in the real world. Second, many
embodied AI researchers believe that there are genuine discoveries to be made
about the properties of intelligence needed to handle real-world environments
that can only be made by attempting to solve problems in environments that
are as close to the real world as is feasible at this time.

1.2 Common-Sense Knowledge for EAI.

When dealing with agents operating in indoor environments, common-sense
knowledge has a central role. Common-sense knowledge is a type of knowledge
that is considered essential for understanding and navigating the everyday
world. It includes things like the basic properties of objects, the causes
and effects of events, and the typical ways in which people and animals
behave. When humans move in unknown environments, they largely exploit,
for example, semantic information about object displacement learned from
the experience. Usually, a bed is located in the bedroom, the toilet is in the
bathroom, and the stoves are in the kitchen. In known environments, instead,
humans can efficiently reuse previously acquired knowledge. For example, we
all remember the layout of our best friend’s house, and we don’t need to ask
every time where is the kitchen when we are thirsty. In crowded environments
like offices, humans need to comply with some commonsense social rules, like
avoiding collisions with others when moving or waiting outside a room and
letting the other go out before entering. These examples, taken from innate
human intelligence, immediately pose three research questions explored in
this thesis:

• R1: How can an agent exploit common-sense knowledge about the
environments?

• R2: How can an agent reuse previously acquired knowledge about a
specific environment?

• R3: How can an agent comply with social rules?

• R4: How can an agent acquire knowledge and common-sense rules?

For R1, it is necessary to tackle two sub-questions: (i) Which common-sense
knowledge is more useful for a particular task? (ii) How can an agent to exploit
the knowledge? The choice of common-sense knowledge for an embodied AI
agent is strongly related to the task that the agent will tackle. For example,
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knowledge about the spatial relationships and co-locations of objects and
rooms may be useful for an agent that is tasked with navigating to a specific
location. However, this knowledge may not be as useful for an agent that
is following natural language instructions. There is also a wide range of
common-sense knowledge that can be useful in many scenarios, regardless of
the specific task that the agent is tackling. For example, knowledge about
physical dynamics and motion can be useful for an agent navigating a cluttered
environment and avoiding collisions and obstacles. Concerning (ii), there
are multiple possibilities for using common-sense knowledge effectively in an
embodied AI agent. One option is to use a shared embedding between rooms
and objects or to add an extra term to the reward function that encourages
or penalizes the agent based on its use of common-sense knowledge. Another
option is to use a static data structure, such as a matrix, to encode the
common-sense knowledge in a modular model. Overall, the choice and use of
common-sense knowledge in an embodied AI agent is a complex challenge and
requires careful consideration of the specific task, environment, and context
in which the agent operates.

Addressing R2, i.e., Reusing previously acquired knowledge in a specific
environment, presents multiple challenges. For example, (i) methods for
representing and storing knowledge can be exploited in a structured and
accessible way so that the agent can easily retrieve and use the knowledge
when needed. This could involve using knowledge representation languages or
ontologies to organize the knowledge and using indexing or other techniques
to enable efficient access. Furthermore, the knowledge should be extensi-
ble. (ii) explore ways to integrate previously acquired knowledge with new
observations and experiences so that the agent can update and refine its
knowledge over time. This could involve using techniques such as Bayesian
inference or probabilistic reasoning to combine prior knowledge with new
evidence and update the knowledge considering the environment’s uncertainty
and variability. Another potential study area is transferring knowledge from
one environment to another so the agent can reuse knowledge from similar
environments to improve performance in a new environment. This could
involve studying the transferability of knowledge across different domains and
developing methods for adapting the knowledge to the new environment’s
specific characteristics. Another option is to examine the role of memory and
attention in enabling the agent to reuse its environmental knowledge. This
could involve studying how the agent’s memory and attention mechanisms
can selectively focus on relevant information, retain and retrieve important
knowledge, and optimize these mechanisms to support efficient knowledge
reuse. Instead, in long-horizon problems, where, for example, the agent has
to search a large number of objects in an environment in a given order also
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simpler representations can be exploited. In 4 we will show an agent that
exploits a very simple memory to store and reuse information acquired during
the environment exploration.

To force an embodied AI agent to respect common-sense social rules
auxiliary (i.e., extra heads in a model that are used to refine some features)
tasks that directly model social-rules can be exploited. These tasks require
a combination of sensory perception, data analysis, and decision-making
algorithms. The agent can use sensors, such as cameras and microphones, to
perceive its surroundings and to detect other agents, objects, and obstacles in
the environment. It can then use data analysis algorithms, such as computer
vision and natural language processing, to interpret the sensory data and infer
other agents’ intentions, goals, and behaviors. Based on this information, the
agent can use decision-making algorithms, such as planning and reinforcement
learning, to plan its own actions and movements in a way that complies with
the common-sense social rules of the environment. For example, the agent
could use social rules, such as "don’t bump into other agents" or "don’t block
the path of other agents," to guide its actions and avoid conflicts and violations
of social norms. In addition, the agent can use auxiliary losses to regularize
its decision-making process and to encourage it to learn the common-sense
social rules of the environment. For example, the agent could be penalized
with an auxiliary loss whenever it violates a social rule, such as bumping into
another agent or blocking its path. This can provide a strong incentive for the
agent to adopt the social rules and avoid violating them in the future. Overall,
using auxiliary losses to force an embodied AI agent to respect common-sense
social rules requires a combination of sensory perception, data analysis, and
decision-making algorithms, which can be tailored to the specific needs and
requirements of the agent and its environment. In Chapter 5[29], we will
explore a work where we exploited two different auxiliary tasks that model
the collision danger between the agent and humans.

Finally, concerning R4 not always is common-sense knowledge available
and ready to use in a model. For example, it can be difficult to directly
translate human knowledge into symbolic rules or quantified probabilities.
In such scenarios, it would be useful to learn explicit rules in an end-to-end
fashion. Let’s say there is a problem where an agent needs to find a specific
object in an environment and only the labels of the rooms are available.
One option is to use a pre-trained model to detect the objects, but this can
lead to issues with domain transfer or the general transfer capabilities of
the model. Another option is to use weak supervision on the room type
to understand and learn that the presence of certain objects (e.g. a bed
or a cabinet) increases the probability of being in a specific room (e.g.,
cabinet(x)∧bed(x) =⇒ bedroom(x)). This falls within the domain of Neural
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Symbolic Integration (NeSy), where a neural network is used to produce
symbolic output that the model can then use for symbolic reasoning.

In summary, this introduction has discussed the central role of common-
sense knowledge in agents operating in indoor environments. This knowledge
allows humans to navigate effectively in unknown environments, exploiting
semantic information about object displacement. In known environments,
humans must efficiently reuse previously acquired knowledge. However, in
crowded environments like offices, agents need to follow social rules like
avoiding collisions and waiting outside rooms. These examples raise three
research questions: how can an agent exploit common-sense knowledge about
the environment, how can it reuse previously acquired knowledge, and how
can it comply with social rules in cluttered environments. Finding answers to
these questions is a complex challenge that requires careful consideration of
the specific task, environment, and context in which the agent operates. In
the following chapters will be explored directions to solve these questions.

1.3 Contributions

In the following chapters we discuss all the contributions done in the different
works investigated and here we reported a summary of each contribution:

Exploiting scene-specific features for object goal navigation (R1).
Can the intrinsic relation between an object and the room in which it is
usually located help agents in the Visual Navigation Task? We study this
question in the context of Object Navigation, a problem in which an agent
has to reach an object of a specific class while moving in a complex domestic
environment. In Chapter 2, we will introduce a new reduced dataset that
speeds up the training of navigation models, a notoriously complex task. Our
proposed dataset permits the training of models that do not exploit online-
built maps in reasonable times even without the use of huge computational
resources. Subsequently, we propose a model capable of exploiting the subtle
relationship between the classification of the scenes and the objects contained
in them, highlighting quantitatively that the idea is correct.

Online Learning of Reusable Abstract Models for Object Goal Nav-
igation(R2). In Chapter 3, we present a novel approach to incrementally
learn an Abstract Model of an unknown environment, and show how an
agent can reuse the learned model for tackling the Object Goal Navigation
task. The Abstract Model is a finite state machine in which each state is
an abstraction of a state of the environment, as perceived by the agent in a
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certain position and orientation. The perceptions are high-dimensional sen-
sory data (e.g., RGB-D images), and the abstraction is reached by exploiting
image segmentation and the Taskonomy model bank. The learning of the
Abstract Model is accomplished by executing actions, observing the reached
state, and updating the Abstract Model with the acquired information. The
learned models are memorized by the agent, and they are reused whenever it
recognizes to be in an environment that corresponds to the stored model. We
investigate the effectiveness of the proposed approach for the Object Goal
Navigation task, relying on public benchmarks. Our results show that the
reuse of learned Abstract Models can boost performance on Object Goal
Navigation.

Modular-MON: Modular Multi-Object Navigation (R2). Chapter
4 focuses on the Multi-Object Navigation (MultiON) task, where an agent
needs to navigate to multiple objects in a given sequence. We systematically
investigate the inherent modularity of this task by dividing our approach
into four modules: (a) an object detection module trained to identify objects
from RGB images, (b) a map building module to build a semantic map
of the observed objects, (c) an exploration module enabling the agent to
explore its surroundings, and finally (d) a navigation module to move to
identified target objects. We focus on the navigation and the exploration
modules in this work. We show that we can effectively leverage a PointGoal
navigation model in the MultiON task instead of learning to navigate from
scratch. Our experiments show that a PointGoal agent-based navigation
module outperforms analytical path planning on the MultiON task. We also
compare exploration strategies and surprisingly find that a random exploration
strategy significantly outperforms more advanced exploration methods.

Exploiting Socially-Aware Tasks for Embodied Social Navigation
(R1, R3). Learning how to navigate among humans in an occluded and
spatially constrained indoor environment, is a key ability required to embodied
agent to be integrated into our society. In Chapter 5, we propose an end-to-
end architecture that exploits Socially-Aware Tasks (referred as to Risk and
Social Compass) to inject into a reinforcement learning navigation policy the
ability to infer common-sense social behaviors. To this end, our tasks exploit
the notion of immediate and future dangers of collision. Furthermore, we
propose an evaluation protocol specifically designed for the Social Navigation
Task in simulated environments. This is done to capture fine-grained features
and characteristics of the policy by analyzing the minimal unit of human-robot
spatial interaction, called Encounter. We validate our approach on Gibson4+
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and Habitat-Matterport3D datasets.

Deep Symbolic Learning: Discovering Symbols and Rules from
Perceptions (R4). Neuro-Symbolic (NeSy) integration combines symbolic
reasoning with Neural Networks (NNs) for tasks requiring perception and rea-
soning. Most NeSy systems rely on continuous relaxation of logical knowledge,
and no discrete decisions are made within the model pipeline. Furthermore,
these methods assume that the symbolic rules are given. In Chapter 6, we
propose Deep Symbolic Learning (DSL), a NeSy system that learns NeSy-
functions, i.e. the composition of a (set of) perception functions which map
continuous data to discrete symbols, and a symbolic function over the set of
symbols. DSL learns simultaneously the perception and symbolic functions,
while being trained only on their composition (NeSy-function). The key
novelty of DSL is that it can create internal (interpretable) symbolic represen-
tations and map them to perception inputs within a differentiable NN learning
pipeline. The created symbols are automatically selected to generate symbolic
functions that best explain the data. We provide experimental analysis to
substantiate the efficacy of DSL in simultaneously learning perception and
symbolic functions.
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Chapter 2

Exploiting Scene-Specific Features
for Object Goal Navigation

In this chapter, we aim to address R1 (How can an agent exploit common-
sense knowledge about the environments?). To this end, we present a model
[27] for the Object Goal Navigation task, in which an agent must locate a
specific object within an unknown environment.

To accomplish this task, our model creates a shared embedding between
the goal category (e.g., a bed, a sink) and the features extracted from an
RGB image by a semantic classifier trained to classify the room type (e.g., a
kitchen, a bedroom). By learning this shared representation, the agent can
indirectly learn that certain objects are typically located in certain rooms.
This shared representation is then used to inform the agent’s navigation
decisions alomg with a Scene-Memory Transformer model [62]. We found
that the learned common-sense knowledge increases the agent’s efficiency in
locating the desired object.

2.1 Introduction
1Visual Navigation is a trending topic in the Computer Vision research
community. This growth in interest is undoubtedly due to the important
practical implications that the development of agents capable of moving in
complex environments can have on our society. For example, shortly, we will
be able to ask robotic assistants to perform the most disparate tasks in our
homes. Before we can ask a robot to take something out of the refrigerator,

1T. Campari, P. Eccher, L. Serafini, L. Ballan. "Exploiting scene-specific features
for object goal navigation", European Conference on Computer Vision, Glasgow, 2020,
(ECCVW 2020)

13
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however, we need to make sure that it can find the fridge and get to it while
avoiding the complex tangle of obstacles that a domestic environment can
contain. For this reason, this work focuses on the Object Navigation task,
defined in [6] as the search for objects belonging to a specific class by a
robotic agent. For humans, this is a straightforward task, whatever the object
to be found is. A human can build a mental link between the object and
the room where it is more likely to be found. In this way, a human can
simplify the problem by first searching for the room and then for the required
object inside the room. For example, think of having to look for a sink;
unconsciously, we will first search for the kitchen or bathroom, and then we
will find a sink in them. To implement this intuition, we have developed an
attention-based [170] policy in which we exploit a joint representation that
integrates inside it visual information extracted with a scene classifier and
encoding of the semantic goal to be searched. This representation allows us
to increase performance compared to other models taken into consideration
significantly.

Several works tried to tackle Navigation through Learning models [36, 33].
In particular, [36] leveraged depth images to construct, in an online fashion,
semantic maps of the environment. From these maps, they tried to maximize
the exploration of the scene. To do this, they placed intermediate subgoals in
unexplored areas of the map that the agent was encouraged to reach through
planning. This approach inevitably tends to lengthen the agent’s paths, at
least until the object sought is visible, since wanting to maximize exploration
involves a significant amount of moves by the agent. For the simpler PointGoal
Navigation [6] task, proposed in the "Habitat Challenge 2019"2, it was possible
to observe how a simple model [180] based on LSTM was able to perform better
than competitors based on more complex architectures that exploit maps
creation [73, 35]. This was made possible by the DD-PPO algorithm [180],
a distributed version of the PPO [147] Reinforcement Learning algorithm
capable of parallelizing learning massively. In fact, they used 64 NVIDIA
V100 GPUs for three consecutive days of training. In other words, the model
was trained for about 180 days in a single GPU setting. However, not all
researchers can access those massive hardware resources. For this reason, we
have generated a reduced version of the dataset produced for the "Habitat
Challenge 2020"3 for the Object Navigation task that would allow the training
of Deep Reinforcement Learning models in a few hours. In this way, even
using few computational resources, complex models can be trained, which on
the original dataset would take days.

2https://aihabitat.org/challenge/2019/
3https://aihabitat.org/challenge/2020/

https://aihabitat.org/challenge/2019/
https://aihabitat.org/challenge/2020/
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Furthermore, in [62], it was pointed out that Recurrent Neural Networks
are not recommended in Navigation tasks. These structures usually have
the issue of considering as more critical the recent past and, at the same
time, gradually forgetting the remote past. On the contrary, by exploiting
the principle of attention, described in [170], it is possible to record all the
past observations in a memory from which to extract information on every
single step that the agent has undertaken in the past, improving that highly
penalizing intrinsic aspect in the behavior of the Recurrent Neural Networks.

Summarizing, our contribution is twofold:

• We propose a new reduced dataset for the Object Navigation task
extracted from the one proposed in the "Habitat Challenge 2020",
on which it is possible to test algorithms that would require a lot of
resources for training, and that maintain as far as possible the main
characteristics that the first had;

• An attention-based policy for Object Navigation that can exploit, start-
ing from RGB images only, the intuition mentioned above, namely that
a correlation exists that binds objects to specific rooms.

2.2 Related Works

Visual Navigation is an increasingly central topic within Computer Vision.
However, Visual Navigation involves several different sub-problems. In this
section, we will summarize the most relevant related works to Simulators
and 3D Datasets for Visual Navigation and other different research areas
connected to Visual Navigation.

Simulators and 3D Datasets for Visual Navigation In recent years
a large number of different simulators have been developed. GibsonEnv
[185, 186] and AI2Thor [90] both allow to simulate multi-agent situations
and to interact with objects, for example, lifting them, pushing them, etc.
Matterport3DSimulator [7] can provide the agent with photorealistic images
extracted from Matterport3d [32] and is mainly used for Room2Room Navi-
gation problem. HabitatAI [145], instead, provides support to 3D datasets
such as Gibson, Matterport3D, and Replica [160].

Visual Navigation Also, thanks to the new possibilities offered by these
simulators today, numerous tasks are available, as pointed out in [6]. Common
Navigation tasks are mainly divided into two categories, namely those that
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require active exploration of the environment and those that, on the other
hand, provide tools that can signal, for example, via GPS sensors, the direction
to be taken to reach the required goal.

In Classical Navigation, numerous approaches perform path planning
on explicit maps [86, 30, 99]. More recently, however, approaches based
on Reinforcement Learning have been presented through policies based on
Recurrent Neural Networks [113, 98, 144, 62, 120]. Mirowski et al. [113]
define an approach that jointly learns the goal-driven Reinforcement Learning
problem with auxiliary depth prediction and loop closure classification tasks
by exploiting the A3C algorithm [116]. Mousavian et al. [120] propose a
Deep Reinforcement Learning framework that uses an LSTM-based policy
for Semantic Target Driven Navigation. But LSTMs when they have to
analyze very long data sequences, tend to focus more on the most recent
observations, giving less importance to the first ones that have been seen.
On the contrary, Fang et al. [62] propose Scene Memory Transformer, a
policy based on attention [170] that can exploit even the least recent steps
performed by the agent. In this case, the policy training is conducted with
the Deep Q-Learning algorithm [115]. Starting from the work done in [198],
Sax et al. [146] show that using Mid-Level Vision results in policies that
learn faster and generalize better when compared to learning from scratch.
The Mid-Level model achieved high results in the PointGoal Navigation task.
In [180], a scalable Reinforcement Learning algorithm on multiple GPUs
capable of solving the PointGoal Navigation task almost perfectly has been
presented. This solution, in particular, shows how Visual Navigation is a
complex task that requires an impressive amount of resources. Their training
was conducted on 64 GPUs for three days. Unfortunately, these resources
are not within reach of the scientific community, and training similar models
remain almost prohibitive for most researchers.
Some works have recently been presented for the Target Driven Navigation,
such as [183, 192, 184]. Wu et al. [184] construct a probabilistic graphical
model over the semantic information to explore structural similarities between
the environment. Yang et al. [192], instead, propose a Deep Reinforcement
Learning model that exploits the relationships between objects, encoded
through a Graph Convolutional Network, to incorporate semantic priors
within the policy. Chaplot et al. [36] propose a model for the ObjectGoal
Navigation that constructs, during the exploration, a map with the semantic
information of the scene extracted through a semantic segmentation model;
from the generated map, a long-term goal is selected to maximize exploration,
through a policy trained with Reinforcement Learning, when the searched
object is visible it is set as a new long-term goal. The agent’s actions are
selected through the use of the fast marching algorithm [151].
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2.3 Dataset

Previous works [180] have been able to achieve excellent results on the Point
Navigation task [6], a simpler Navigation problem that doesn’t require Se-
mantic capabilities while using an architecture that didn’t include complex
components such as occupancy maps [43]. However, they leveraged massive
parallelism using hardware resources inaccessible to most institutions. To
cope with our shortage of dedicated GPU resources - we had access to a
single GPU for our experiments - we decided to concentrate on a subset of the
Matterport3D Dataset [32]. We argue that our choice of such a subset still
offers significant results as its statistical indicators are similar to the original
Matterport3D.
The extraction of the subset was done by restricting the problem to 5 out
of 21 objects, choosing Chair, Cushion, Table, Cabinet, Sink. These
objects are among the most frequent in the original set, as is shown in Figure
2.1. We decided to include the Sink object as it is a characterizing element
of the bathroom. This increase the diversity of the domestic environments
represented by our proposed dataset.
Related to the distributions of objects, one of the main issues in evaluating
Object Navigation agents using Matterport3D is the Long Tail Distribu-
tion that limits the number of instances of infrequent objects seen during
training. This, combined with metrics that ignore the precision of single
classes, may undermine the development of agents with truly semantic ca-
pabilities. Furthermore, we decided to extract our new dataset - from here;
we will refer to it as Small MP3D - using 6 out of 56 scenes of the official
Training split. These scenes are r47D5H71a5s, i5noydFURQK, ZMojNkEp431,
jh4fc5c5qoQ, HxpKQynjfin and GdvgFV5R1Z5. For each object in each
scene, we extracted 100 episodes for the training split and 20 for both valida-
tion and test sets. In total, Small MP3D possesses 3000 training episodes and
600 episodes for both validation and test. To ensure the ability to generalize
to unseen scenes, we decided to generate also an Unseen Test and Validation
Set, extracted from the D7N2EKCX4Sj and aayBHfsNo7d scenes, each with 100
episodes (10 episodes for each object class in each scene).

The characteristics of the new dataset are shown in Table 2.1. We report
the average values of Euclidean and Geodesic Distance as well as the number
of Steps required to complete the episodes. Overall, the complexity of the
training split of the proposed reduced dataset is lesser than the original data
as both the Geodesic distance and the required Number of Steps are lower.
However, the complexity of the Unseen Test split is significantly higher, with
30% more required steps on average. We think that this additional complexity
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Figure 2.1: Distribution of objects in the Matterport3D Dataset.

Chair Cushion Table
Euc Geo Steps Euc Geo Steps Euc Geo Steps

Original Train 5.17 6.45 40.05 5.39 7.23 45.56 4.98 6.19 38.82
New Train 3.50 4.00 27.71 5.79 7.23 49.14 3.12 3.85 28.42
Original Val 5.09 7.21 43.32 4.50 6.18 38.77 3.66 5.29 33.83
New Seen Val 3.43 3.89 27.01 6.09 7.58 51.37 2.77 3.42 26.42
New Unseen Val 4.07 5.79 37.15 9.00 12.19 68.40 4.53 5.18 32.95
New Seen Test 3.64 4.15 28.76 6.25 7.61 50.17 3.15 3.79 27.82
New Unseen Test 4.06 5.11 32.75 10.13 12.94 70.50 4.55 5.37 34.45

Cabinet Sink Total Average
Euc Geo Steps Euc Geo Steps Euc Geo Steps

Original Train 5.24 6.84 42.63 6.33 8.54 51.80 5.27 6.78 42.27
New Train 4.02 4.91 34.15 4.94 5.99 39.80 4.27 5.19 35.84
Original Val 5.40 7.46 46.10 6.52 8.83 53.50 4.73 6.65 40.98
New Seen Val 4.02 4.87 34.07 4.62 5.69 38.22 4.19 5.09 35.42
New Unseen Val 5.80 6.76 46.65 7.17 8.87 52.25 6.11 7.76 47.48
New Seen Test 4.37 5.33 36.58 4.96 6.06 40.16 4.47 5.39 36.70
New Unseen Test 8.40 9.58 56.85 8.87 10.93 63.60 7.20 8.79 51.63

Table 2.1: Statistics of our dataset

can guarantee a fair and meaningful benchmark.
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2.4 Method

In this section, we first describe the Problem Setup. Then we introduce our
SMTSC model as shown in Fig. 2.2

2.4.1 Problem Setup

Our interests fall within the task of Object Navigation. In particular, this task
requires finding an occurrence of an object starting from a random position
in the environment.
The set of possible actions is defined as A = { go_forward, turn_left,
turn_right, stop }. The actions are deterministic, that is, apart from
possible collisions with objects in the scene, the agent will move in the
desired direction without deviations due to noisy dynamics. The observation
o = (RGB, p, aprev, goal) ∈ O is the set of features collected by the agent
at each step in the environment and passed to the model. RGB is what the
agent sees from a given position, it is an RGB image extracted with 640x480
size; p is the agent’s position w.r.t. to the starting point, aprev is the action
performed in the previous step and finally goal is the objective object to be
sought.

2.4.2 Model

The proposed model is visible in Figure 2.2, it is composed of two main
parts, a first part in which the features are extracted and brought into a
joint representation and a second module in which the features of the current
observation are added to a memory that keeps track of all past observations
and an attention-based policy network extracts a distribution on possible
actions.

Features Processing Module Starting from an observation o = (RGB, p,
aprev, goal) ∈ O we first define 5 different encoders:

1. γsem_seg(RGB) : R256×256 → R256: encodes RGB observations into a vec-
tor of size 256 by using features extracted from a semantic segmentation
model.

2. γscene_class(RGB) : R256×256 → R128: encodes RGB observations into a
vector of size 128 by using features extracted from a scene classification
model.

3. γgoal(goal): encodes the goal into a vector of size 32
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Figure 2.2: SMTSC model: a) Features processing: all features are processed
and a shared representation is created. This representation is then inserted
into a memory (b) Scene Memory Transformer) from which the action that
the agent will perform is extracted with a Scene Memory Transformer model.

4. γpos(p): encodes the relative position into a vector of size 32

5. γact(aprev): encodes the previous action executed into a vector of size 32

Now we define:

δ(RGB, goal) = FC({γscene_class(RGB), γgoal(goal)}) (2.1)

And:

ϕ(o) = FC({γsem_seg(RGB), γpos(p), γact(aprev), δ(RGB, goal)}) (2.2)

Eq. 2.1 encodes the previously illustrated idea that a goal is intrinsically
associated with a specific room. To do this, starting from the goal through
the γgoal function, a representation of dimension 32 is extracted. In parallel, a
scene classifier is used to extract features starting from the RGB image, these
two modalities are concatenated and a joint representation is created using a
fully connected layer. In this way, we can obtain a representation of the goal
conditioned step by step from the room in which the agent is located, which
is going to add helpful information to the agent to understand how to move
in the environment.
Finally, Eq. 2.2 generates a joint representation between all the modalities
described above. It, therefore, concatenates the representation obtained from
a model for semantic segmentation and the representations of the previous
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Figure 2.3: The structure of the encoder-decoder model based on Multi-Head
Attention, as presented in Fang et al.[62].

action, position, and goal (as defined by Eq. 2.1). This vector is passed to a
fully connected layer which returns a vector of size 256.

Scene Memory Transformer Module This module is based on the one
proposed by [62]. Given a new episode, we build an initially empty memory
where to save the joint representations obtained starting from observation
o = (RGB, p, aprev, goal ) through the application of the ϕ(o) function defined
in the Eq. 2.2. This memory is then passed along with ϕ(o) to an attention-
based encoder-decoder policy [170] which extracts a probability distribution
on the actions. The encoder-decoder structure is shown in Figure 2.3. The
SMT encoder uses a self-attention to encode the M memory, so M is passed
to a MultiHeadAttention with eight heads; therefore, M is both Query and
Key and Value as shown in Eq. 2.3.

M ′ = MultiHeadAttention(M,M) (2.3)

Subsequently, M is passed with the joint representation to the decoding
structure. It always uses the attention mechanism to give a representation
of ϕ(o) conditioned by past observations. Again, attention is implemented
through an 8-head MultiHeadAttention mechanism as shown in Eq. 2.4.

Q = MultiHeadAttention(ϕ(o),M ′) (2.4)

Finally, Q is reduced to the dimensionality of the action space A through a
Linear Layer and a Categorical Distribution on the action space is extracted
from the latter representation, as defined in Eq 2.5.

π(a|o,M) = Categorical(Softmax(FC(Q))) (2.5)
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Implementation and Training Details We implemented all the models
using Python 3.6, and PyTorch [124]. We used the PPO [147] algorithm to
train the model using a 32 GB Tesla V100 GPU. We used a batch size of 64
and Adam Optimizer with a Learning Rate of 1× 10−5. The visual features
are extracted from the images using the Taskonomy networks [198] as done in
[146]. This allows us to have consistent features as Taskonomy networks have
been trained on indoor environments simulated by Gibson [185] and also, the
number of parameters to be trained on the network drops drastically. All the
activation functions within the encoder-decoder structure are ReLU functions,
and the pose vector is encoded as a quadruple (x, y, sin(θ), cos(θ)).

2.5 Experimental Results

In this section an accurate description of the experimental setup will be
provided, the results obtained will then be presented.

2.5.1 Experimental setup

We used the Small MP3D dataset presented in Section 2.3. We decided to
test the SMTSC model on both the seen and unseen test sets. Results on the
seen set will give as a measure of its capacity to memorize environments seen
during training. Conversely, results obtained on the unseen set will quantify
the degree of adaptation to unseen scenes that the agent possess. However,
as the number of training scenes is only six, we don’t expect our agents
to develop strong generalization behaviours. The simulator used for all the
experiments was Habitat, which provides the agent with 640x480 RGB images.
In addition to the images, an odometry system is available that can provide
the x and y coordinates and the orientation of the agent with respect to the
starting point. The simulated robot has a height of 88 cm from the ground
with a radius of 18cm. The camera of the agent with which he acquires the
images is placed 88cm from the ground and allows to capture images with a
79◦ HFOV. Sliding against objects is not allowed, once a collision has been
made the agent must necessarily rotate before being able to proceed again
in the environment. The metrics used to evaluate the proposed models are
3: Success Rate, Success weighted by Path Length (SPL) and distance to
success (DTS), as defined in section 3.4. Apart from the model presented
in Section 2.4, four other different baselines have been tested to assess the
performance of the proposed model.
Random Agent: an agent that performs random actions extracted from a
uniform distribution.
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Model SPL↑ Success↑ DTS↓
Random 0.00 0.00 5.126

Forward-Only 0.009 0.026 5.094
Reactive [146] 0.041 0.126 4.523
LSTM [180] 0.131 0.247 3.199

SMT w/o SC (our) 0.345 0.595 1.562
SMTSC (our) 0.649 0.883 0.403

Table 2.2: Results on the Seen Test Set

Model SPL↑ Success↑ DTS↓
Random 0.00 0.00 7.842

Forward-Only 0.004 0.01 7.922
Reactive [146] 0.001 0.04 7.797
LSTM [180] 0.002 0.04 7.648

SMT w/o SC (our) 0.008 0.04 7.518
SMTSC (our) 0.039 0.080 6.817

Table 2.3: Results on the Unseen Test Set

Forward-Only Agent: an agent who only performs forward actions (with
a 1% probability of calling the stop action). These first two baselines were
placed to demonstrate the non-triviality of the dataset proposed.
Reactive Agent: a policy that extracts semantic segmentation features
through Taskonomy and merges them with position and goal as was done in
[146]. The action to be performed is directly extracted from this representa-
tion, therefore no type of memory is used.
LSTM Agent: the representation is extracted as for the reactive agent,
but in this case, it is passed to an LSTM and the action to be performed
is extracted from its output. The model is pretty similar to the RGB-Only
presented in [180].
SMT without Scene Classification Features (SMT w/o SC): this is the
same model presented in Section 2.4, except for the fact that the goal is coded
only through an embedding layer without exploiting the joint representation
with the features of the Scene Classifier.
The last three models were trained with PPO Reinforcement Learning algo-
rithm.
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2.5.2 Results

In Table 2.2 are shown the results obtained on the test set in seen environments.
The low performance of Random and Forward-Only baselines highlight how
the dataset is not trivial, showing that the object to be found is almost never
in the immediate proximity of the starting point of the episode. Looking
instead at the other baselines based on Reinforcement Learning, we can see
how the two models that use the Scene Memory Transformer are able to
perform much better in almost all metrics. This big difference is probably
attributable to the fact that the SMT can extract crucial information even
from actions performed in a fairly remote past, while for example in the case of
the LSTM this is very difficult, as more recent information tends to supplant
the older ones and this is emphasized especially in very long sequences.
It is also interesting to note that the model that creates a joint representation
between the goal coding and the visual features for the scene classification
performs much better than the SMT w/o SC model. Even in the SPL, we
have an increase of 88%, in the success ratio an increase of 48.4% and finally,
the average DTS has fallen by over a meter.
The behavior observed in the seen test set follows the same trend also in the
case of the unseen test set whose results are visible in Table 2.3. In fact, taking
as a comparison the average geodesic distance of the unseen test set (7.76m),
we can see how the Forward Only and Random agents tend to conclude
their episodes even further away from the starting point. The reactive model
instead certifies its performance in line with the average distance reported
in Table 2.1 for the unseen test set. Finally, the two models that exploit the
SMT are the ones that perform better, even in an unseen environment. In
particular, the proposed model capable of exploiting the joint representation
between visual features and goal coding lowers the average distance from the
goal by almost a meter, and certifies its successes on 8% of the scenes.
In the next section we report some qualitative example of the SMTSC model
on the seen and unseen test sets.

Qualitative Results In Figure 2.4 it is possible to see, in blue, the path
taken by the agent to reach an object of the "cushion" class on the seen test
set. In green you can see the shortest path to the object. The agent has
successfully reached the object sought by stopping less than 0.1m from it. On
the contrary, in Figure 2.5 is shown an example of failure, still on the seen
test set, in which the agent was unable to reach the object sought. The agent,
from his initial position was able to recognize an object of the class sought
and to head towards it, despite not being the closest chair. At the time of
calling the stop action, however, the agent was 7cm beyond the boundary
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Figure 2.4: Successful navigation episode with SMTSC model on seen test
set.

that would have given the episode success. In this case, we can see the strong
penalty given by a metric like the SPL, in fact, in our opinion, this episode
cannot be considered totally wrong.
In Figures 2.6 and 2.7, on the other hand, it is possible to see two examples
extracted from the evaluation of the model on the unseen test set. In the
first image, the was able to take a correct path to a "cabinet". However, the
cabinet that was found wasn’t the nearest so the SPL of this episode was
only 0.57. In the second example, on the other hand, a very long route of
over 14 meters of navigation is presented. The agent here was able to follow
the optimal path for about half of its length, then it reached the maximum
number of actions allowed. This means that it ”wasted” a lot of action to
increase its understanding of the scene.

2.6 Conclusion

We proposed a subset of the dataset developed for the Habitat 2020 ObjectNav
Challenge [145]. This was done to allow the training of models that do not
involve the use of planning associated with the construction of maps within
them with few computational resources (e.g. a single GPU). Furthermore,
we proposed a model capable of exploiting the subtle relationship existing
between objects and the rooms in which they are usually located. This
intuition, combined with the use of a Scene Memory Transformer showed good
results on the proposed dataset. In the future, it would be very interesting
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Figure 2.5: Unsuccessful navigation episode with SMTSC model on seen test
set.

Figure 2.6: Successful navigation episode with SMTSC model on unseen test
set.

to be able to test this model on the complete dataset using the distributed
Reinforcement Learning algorithm DD-PPO [180] and a greater number of
GPUs in order to perform training in a reasonable time.
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Figure 2.7: Unsuccessful navigation episode with SMTSC model on unseen
test set.
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Chapter 3

Online Learning of Reusable
Abstract Models for Object Goal
Navigation

In this chapter, we tackle a modified variant of the Object Goal Navigation
task, where the agent can reuse previously acquired knowledge about a specific
environment (R2). We propose a modular approach [28] for the Object Goal
Navigation task, where an agent interleaves exploration and exploitation
phases. In the exploration phase, the agent acquires new information, which
are stored in an Abstract Model. In the exploitation phase the agent exploits
the information recorded in the Abstract Model to efficiently reach the sought
object goal. The agent is able to reload previously acquired knowledge relevant
to the current environment whenever it recognizes to be in a previously
explored environment. This is defined as the relocation problem.

3.1 Introduction
1In Embodied AI, agent’s intelligence emerges from the interaction with the
environment as the result of sensorimotor activities [157]. While acting in
a real environment, an agent should acquire and effectively represent some
knowledge of its surrounding, obtained through sensors (such as RGB or depth
cameras). However, this knowledge acquisition process is a key challenge. To
this end, two major directions can be followed. On the one hand, knowledge
can be codified in a sub-symbolic model (e.g., a neural network), which

1T. Campari, L. Lamanna, P. Traverso, L. Serafini, L. Ballan. "Online Learning of
Reusable Abstract Models for Object Goal Navigation", Proc. of IEEE/CVF Computer
Vision and Pattern Recognition, New Orleans, 2022 (CVPR 2022)

29
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Figure 3.1: During its navigation in a complex 3D scenario, an agent incre-
mentally acquires knowledge about the environment by storing rich semantic
information in an Abstract Model. For instance, when the robot is in s0,
chair and table are visible; by performing act0, other objects become visible,
thus the Abstract Model is updated to s1. Our work shows how knowledge
can be incrementally learned and effectively reused over time.

is learned, for instance, by designing supervised or reinforcement learning
techniques that can be directly applied to the sensory data [180, 62]. On
the other hand, one can adopt a symbolic/semantic representation of the
environment (e.g., by exploiting a semantically rich relational structure) which
captures the high-level critical aspects of the environment, abstracting away
useless details [97, 149].

In our work, we follow this second approach, in the attempt of obtaining
a more abstract and general knowledge representation that can be, eventually,
reused across time. To this end, an agent, such as a robot navigating in a
complex scenario, will represent the acquired knowledge of the environment in
an Abstract Model that encodes the following key features: (i) some semantic
insights about objects, scene elements, and their relations; e.g., it represents
a specific state such as “the agent is close to a fridge and a table is visible
from that position” (see Fig. 3.1); (ii) the elements of the Abstract Model are
“grounded” to the perceptions; for instance, the agent stores in the Abstract
Model some information of each encountered object, such as its position, the
corresponding visual features, etc.; (iii) the Abstract Model is dynamically
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updated to incorporate the additional information the agent acquires during
its operations; i.e., if a new object is discovered, it should be added to the
model; (iv) the models learned in the past should be reusable by the agent
whenever it recognizes to be in an environment that corresponds to the stored
model. This last property is essential because it is here that we can observe
the maximum utility of the learned Abstract Model.

In this work we specifically focus on the Object Goal Navigation task [19],
in which an agent is asked to go close to an instance of a given object class.
Recent approaches often tackle this problem by constructing environment’s
semantic maps [36, 31] and exploiting SLAM [158, 37]. Instead, we propose to
acquire and store the environment knowledge in an abstract, and semantically
rich, model. Concretely, such a model is represented by a finite automata
whose set of states explicitly describe (at a semantic level) what’s an agent
views, given a pose. Thus, a state corresponds to an agent pose, a set of
object classes (those visible from that pose), and an estimation of the position
of each object. We incrementally learn (online) the Abstract Model by
navigating the environment, similarly to [35, 36]. The information associated
to each abstract state is obtained from the low-level perceptions, acquired
from RGB and RGB-D images processed through segmentation models [83]
and the Taskonomy model bank [198]. The learned Abstract Model is then
stored for future reuse. Therefore, once an agent recognizes that the current
environment is similar to one that it has visited before, the proper Abstract
Model representing the information previously acquired within the visited
environment can be reloaded by the agent, and then updated with the new
observations. To implement this feature, we design a “relocation” mechanism
that allows the agent to match states of different Abstract Models. We
evaluate our approach on the popular Habitat simulator [145], with 3D real
environments from the MatterPort3D dataset [32]. In our experiments we
focus on the Object Goal Navigation task, and we show that the Abstract
Model is helpful to improve the success rate (e.g., avoiding some false positive
detections) and the optimality of the planned path.

Summing up, the contributions of this work are threefold: (i) the proposed
framework allows an agent to incrementally enhance and reuse previously
acquired knowledge, relevant to the current environment; (ii) we integrate
sub-symbolic techniques such as image processing, path planning, global policy
learning, with symbolic reasoning on Abstract Models; (iii) our experimental
analysis shows that learning and reusing Abstract Models is an effective way to
exploit previously acquired knowledge, obtained from noisy observations (e.g.,
from inaccurate semantic segmentations), for the Object Goal Navigation
Task.
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3.2 Related Works

Embodied AI. In recent years, several large scale datasets for Embodied
AI tasks have been presented, such as Matterport3D [32] and Gibson [185].
These datasets contain 3D reconstruction of environments, which enabled
the creation of various photorealistic simulators, such as Habitat [145] or
GibsonEnv [185]. Thanks to the new experimental setup offered by these
environments, nowadays there are numerous exciting tasks, as described in [6].
Some examples are Point Goal [180] (approach a specific point), Object Goal
[19, 31] (approach a specific object), and Vision and Language Navigation
[7, 141] (follow instructions in natural language).

In this context, the most common approaches are based on Reinforcement
Learning models that exploit policies based on RNNs [113, 98, 144, 62, 120, 27].
For example, [113] solves the point goal task by learning a RL policy, using
the A3C algorithm [116] and exploiting auxiliary depth prediction and loop
closure classification. [120] proposes a Deep RL framework which uses an
LSTM-based policy for Object Goal Navigation. [62] proposes Scene Memory
Transformer, an attention-based policy [170] that can exploit the least recent
steps performed by the agent. In this case, the policy training is performed
using the Deep Q-Learning algorithm [115]. Starting from the work done in
[198], [146] shows that Mid-Level Vision produces policies that learn faster
and generalize better w.r.t. learning from scratch, especially for the point
goal navigation task. Previously described approaches require task specific
end-to-end training with RL. In contrast our approach is more general, since
we train a RL policy to maximize the environment exploration, and can be
used to solve different tasks.

Recent works [35, 36, 31] exploit explicit maps constructed from images.
Notably, [35] proposes Active Neural SLAM (ANS) which constructs an ob-
stacle map from depth observations. An RL algorithm is then applied on
such a map, with the objective of learning a global policy that selects a point,
reached via path planning, to maximize the environment exploration. An
extension is then proposed in [36], where the occupancy map is enriched
with semantic information about objects in the scene. The Global Policy,
trained specifically for the Object Goal Navigation task, exploits the semantic
information available in the map. Using semantic maps to store information
about the environment for future reuse, which is our main objective, requires
relocation algorithms, which are not considered in previous approaches. In
our approach, instead of relying on relocation w.r.t. semantic maps, we store
information of previously visited environments in an Abstract Model, where
each state is associated with some visual features sufficient for relocation.
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Finally, [31] proposes a new method to construct semantic maps that ex-
ploit an encoder-decoder model with a Spatial Memory Transformer. The
generated semantic maps are then tested for the Object Goal Navigation
task. Furthermore, they propose also an experiment in which pre-computed
maps are reused in the Object Goal Navigation task. However, this approach
assumes perfect relocation (i.e. the absolute position of the robot is provided).

Learning Abstract Models. Abstract Models learning in planning has
the objective of inducing an Abstract Model that describes actions, starting
from sequences of observations about their execution. [51, 71] propose to learn
action models in a structured language starting from complete observations.
[119] learn action models from noisy and incomplete observations. [202] learn
an action model on a target domain by transfer learning from a set of source
domains and by partial observations. [4] propose a method for learning
action models from either complete or incomplete observations. The work by
[24], provides a framework for learning first-order symbolic representations
from complete information about action execution. In all these approaches,
learning is performed from symbolic observations, and sensory perceptions in
a continuous environment are not considered. In this work, we also tackle the
problem of abstracting the sensory perceptions into a finite set of states.

Alternative approaches learn a discrete Abstract Model from continuous
observations. Causal InfoGAN [94] learns discrete or continuous models from
high dimensional sequential observations. This approach fixes a priori the
size of the discrete domain model. LatPlan [12, 11] takes in input pairs of
high dimensional raw data (e.g., images) corresponding to transitions and
learn an action model. LatPlan is an offline approach, while our approach
instead learns online and without fixing the dimension of the Abstract Model.
The work by [97] proposes an online method to learn Abstract Models by
mapping continuous perceptions to deterministic state transition systems.
With respect to our approach, they requires an input draft Abstract Model,
and do not deal with complex perceptions like RGB-D images.

Our approach shares some similarities with the work on planning by
reinforcement learning [84, 191, 122, 142, 66], since we learn by acting in the
environment. However, these works focus on learning policies and assume the
set of states and the correspondence between continuous observations from
sensors and states are fixed.

Cognitive architectures At the cross border between AI, Robotics and
Cognitive Science, many systems were developed[171, 101, 91]. Systems like
SOAR [96, 95], CRAM [20], or ISAC [87] provide useful architectural elements
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to generalize and distinguish between the type of memories and mechanisms
used. Furthermore, they present insights about different uses of the symbolic
commonsense knowledge. However, in this work, the background knowledge
is not directly injected, but is learned and extended through different episodes
and actions.

3.3 Preliminaries

Abstract Model. The knowledge of the agent about an environment is
represented by a finite state machine in which each states is associated to the
“corresponding” visual features. Formally, a finite state machine is a triple
D = ⟨S,A, δ⟩ where S is a finite set of states, A is the set of actions that
the agent can execute, and δ is a deterministic transition function among
states, i.e, a function δ : S × A → S. Each state s ∈ S is associated to a
triple ⟨Fs, Cs, {Fs,c}c∈Cs⟩ where Fs is a set of numeric features associated to
the state (i.e. a feature vector extracted from the RGB image); Cs is a finite
set of identifiers for the objects visible by the agent in the state s; for all
c ∈ Cs,Fs,c is a set of real features associated to the view of the object c in the
state s (it includes for instance the estimated relative position, the bounding
box and a set of visual features).

Since the agent is aware of different environments, it keeps multiple
Abstract ModelsD(1), . . . , D(n). We don’t assume a one-to-one correspondence
between models and environments, since the agent might associate different
models to the same environment. For example, the agent could erroneously
build two models for the same environment because the second time it enters
in the environment, it does not realize that this has been already visited.

3.4 Object Goal Navigation

In the Object Goal Navigation task [144], an agent is required to go close to
an object of a specific class (such as fridge or bed) – referred as to object goal –
starting from a random position within an unknown and static environment, in
less than 500 actions. A particular instance (“run”) of this task is called episode.
To reach the object goal, the agent is allowed to execute a set of actions (also
called steps): namely, move_forward (by 25cm), turn_left, turn_right (by
30°), stop. At every step, the agent can observe the environment via a set of
sensors providing an RGB-D image and the agent pose ⟨x, y, θ⟩, relative to
the initial one (which is ⟨0, 0, 0⟩). The agent ends an episode by executing
the stop action; if its distance from the closest object goal is less than a
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Figure 3.2: Overview of the proposed architecture for Object Goal Navigation.

threshold (set to 1m), the episode is considered a success, otherwise a failure.
The solution of the task involves multiple challenges. Firstly, the agent must
explore the environment in an effective way by exploiting SLAM techniques
to learn a map of the environment. Then, it has to recognize new objects
in the environment whenever they are into its current view, through object
detection. Finally, it must be able to approach the goal objects, by using
path planning algorithm to decide which actions it has to execute.

In the standard task each episode is indipendent from the other and no
information is transferred across episodes. We call it memory-less setting.
We also introduce (and test in 3) a new setting called with-memory, where the
agent can exploit the knowledge acquired in previous episodes. In particular,
if the agent realizes that is visiting an already visited environment, it can
retrieve and exploit the knowledge previously acquired. We believe that
the with-memory setting is much closer to real scenarios, where an agent
should accumulate and reuse previously accumulated knowledge. Notice
that the with-memory setup introduces new challenges, concerning how and
which previously acquired knowledge can be reused in the current situation
(relocation and aggregation). Furthermore, in the with-memory setup, dealing
with previously acquired noisy knowledge is even more challenging, due to
the errors accumulation.

3.5 Approach

An overview of the main cycle executed at every step by the agent to reach
an object goal G is shown in Figure 3.2. This cycle is composed of three main
phases: 1) Knowledge extraction, 2) Knowledge Modeling, and 3) Reasoning.
The approach extends [35, 36] by allowing the agent to learn Abstract Models
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and reuse them.

Knowledge Extraction. At every iteration the agent perception is com-
posed of the RGB-D image, corresponding to the egocentric view of the agent,
and the agent current relative pose. The Segmentator module [83] extracts
object segmentations from the RGB-D image. The Map Builder module
creates an egocentric map with a classical SLAM approach [73] from the
current depth image and pose. Finally, the State Creator module generates
an abstract state s = ⟨Fs, Cs, {Fs,c}c∈Cs⟩ where: Fs is the set of state features
extracted from the RGB image by the auto-encoder of the Taskonomy model
bank [198]; Cs are the object classes extracted by the Segmentator module; for
all c ∈ Cs,Fs,c contains: the position on the map, the bounding box, and the
distance from the agent of every visible object of type c. The object position
is estimated by adding the depth value of the bounding box centroid to the
agent pose.

Knowledge Modeling. In the Knowledge Modeling phase the environ-
ment map and the current Abstract Model are updated with the knowledge
extracted in the previous phase. Namely: the current map is extended with
the additional information present in the egocentric map, and the state s
extracted by the State Creator is added to the current Abstract Model if not
present. Finally, the transition function is extended with (sprev, a, s), where
sprev is the previous state, and a is the last executed action.

In the with-memory setting, if s matches with a state in a previously
learned Abstract Model, this model is reloaded and merged with the current
one, using the procedure described in Section 3.5.1.

Reasoning. In the Reasoning phase, given the object goal class G, the
agent looks if the current Abstract Model contains a state with an object of
type G (i.e., ∃s ∈ S s.t. G ∈ Cs). In such a case, the agent selects one object
of type G and sets the position of the object as goal point on the map. If
the Abstract Model contains multiple states with objects of type G, then the
agent ranks these objects according to the number of states from which they
are visible, and selects the closest one among the top five. We prefer mostly
seen objects in order to mitigate the errors of the Segmentator. Indeed, the
more points of view from which an object is detected, the less probable that
it is a false positive of the Segmentator. Alternatively, if the Abstract Model
does not contain any state with G (e.g., in exploring a new environment, the
agent might not have seen any object of type G), a goal position is computed
by our Global Policy, based on [35, 36]. Namely, given the current map,
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the policy seeks for a position on the map that maximizes the environment
exploration. Once the target position is set, either by the reasoner or by the
Global Policy, the agent computes a plan with a path planner, based on the
Fast Marching algorithm [151], to reach the target position, and executes
the first action. To compute a plan, all unexplored areas of the map are
considered navigable; this enables the agent to discover new scene elements
and objects, thus enriching both the map and the Abstract Model.

3.5.1 Abstract Model Reuse

In the with-memory setting the Abstract Model learned at each episode is
stored by the agent for future re-use. Therefore, the knowledge of the agent is
constituted by n Abstract Models {D(1), . . . ,D(n)}. When the agent starts a
new episode, it initializes a new Abstract Model D(n+1). At every step of this
episode, the agent looks if its current state s = ⟨Fs, Cs, {Fs,c}c∈Cs⟩ matches a
state in {D(1), . . . ,D(n)}. Matches between states of different Abstract Models
are computed by the cosine distance among the state features Fs. Therefore
the best match is computed as follows:

s∗ = argmin
s(i)∈S(i)

i∈1,...,n

cos_dist(Fs,Fs(i))

where S(i) is the set of states of the i-th model D(i). If cos_dist(s, s∗) is
lower than a given threshold (an hyperparameter of our model), and s∗ is
a state of the i-th Abstract Model, then D(n+1) is merged into D(i) and the
resulting one D(i) is considered as the current Abstract Model. The resulting
model contains all states of the two merged models, and the knowledge is
incrementally enhanced through episodes. After such a merging the agent
does not look for further matching in the current episode.

Notice that the match could not be perfect since the poses of the robot
in the matched states s and s∗ might be slightly different. This matching
difference can propagate to the object positions recorded in the Abstract
Model, thus the agent can rely on wrong information. To prevent these
potential errors, we propose two different strategies: namely hard and soft.
In the hard strategy, we assume that the matching is always perfect and the
agent blindly believes in the matched Abstract Model, i.e., it goes to the goal
object position returned by the Model reasoner without looking for other
goal objects on its path. In the soft strategy, the agent tries to mitigate the
effects of non-perfect matches. To do this, the agent looks for the goal object
in the area around the goal object position given by D. The dimension of the
area around the goal object is proportional to the distance among the agent
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position in the matching state and the goal object one. Moreover, during its
path, it continuously looks for a goal object, possibly terminating the episode
before reaching the area around the goal object position suggested by the
Abstract Model.

3.6 Implementation Details

We used the Habitat Simulator [145] with the Matterport3D dataset [32],
which contains 90 different scenes with a total of 194K RGB-D images. Habitat
allows to simulate the navigation in these 90 different scenes.

The Global Policy, which select the exploration goal, is trained for 10M
steps on the 56 training scenes of Matterport3D (50 as training and 6 as
validation) using the Proximal Policy Optimization (PPO) RL algorithm.
The Global Policy consists of 5 Conv Layers with the ReLU activations and
MaxPooling2D as in [35, 36]. For the Semantic Segmentation, we used the
RedNet model [83] pretrained on the 40 classes of Matterport3D (check [194]
for details about the performance in the OGN task). The features extractor,
which computes Fs from the RGB data, is the encoder of the Taskonomy
model bank [198], and Fs is a vector with dimension 2048. The cosine
distance threshold for states matching is set to 0.3. The SLAM algorithm,
which computes the egocentric map, is based on [73].

In our experiments, we evaluate our approach on the OGN task. Our
aim is to show that the reuse of previously acquired knowledge, in the
form of Abstract Models, can enhance the navigation in existing approaches.
Furthermore, we empirically demonstrate our claims with a limitation and
failure analysis and a qualitative comparison about reusing vs not reusing
previously acquired knowledge.

3.6.1 Evaluation Metrics

The OGN task is evaluated with four standard metrics: the Success Rate, the
Success weighted by Path Length (SPL), the SoftSPL, and the Distance To
Success (DTS).

The Success Rate is defined as the ratio between the successful and the
total number of episodes.

The SPL [6] estimates the efficiency of the agent in reaching the goals,
and it is defined as:

SPL =
1

N

N∑
i=1

Si
l i

max(pi, l i)
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where N is the number of episodes, li is the shortest-path distance from the
agent’s starting position to the closest goal point in an episode i, pi is the
length of the path followed by the agent in the episode i, and Si is a boolean
success indicator of the i-th episode.

The SoftSPL [31] is similar to the SPL, but measures the path optimality
in all the episodes, without penalizing the unsuccessful ones with a zero score;
it is defined as:

SoftSPL =
1

N

N∑
i=1

(
1− dTi

diniti

)
l i

max(pi, l i)

where diniti is the geodesic distance between the initial position of the agent
and the target point, and dTi

is the geodesic distance between the final position
of the agent and the goal point. Both refers to the i-th episode.

Finally, the DTS measures the mean distance from the closest goal point,
mathematically:

DTS =
1

N

N∑
i=0

max(||xi − gi||2 − d, 0)

where ||xi − gi||2 computes the L2 distance for the i-th episode and d is the
success threshold (1m).

3.7 Experiments

3.7.1 Reusing Abstract Models

Here, we report our investigation on different way of reusing knowledge and
their advantages. To this aim we have developed the following four models:

Active Neural SLAM (ANS*): it is our implementation of the ANS model[35]
2. This constitutes our baseline, since it does not exploit any previously
acquired knowledge.

Hard Pre-explored (ANS*+HP): it is the simplest extension of ANS*,
based on our approach (Section 3.5). Firstly, the agent is provided with
an Abstract Model for each environment. Then these Abstract Models

2We checked the coherence of our implementation by running the same experiments
as in [35]; the performance are comparable: namely ANS [35] reports 7.056, 0.321 and
0.119 of DTS, Success, and SPL, respectively; our implementation obtained 6.721, 0.313
and 0.127 on the same metrics.
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are initialized by performing 10000 exploration steps; for every episode
the agent can reuse one of the pre-acquired Abstract Models, using the
Hard strategy.

Soft Pre-explored (ANS*+SP): similar to ANS*+HP, but the agent
reuses the provided Abstract Models by applying the Soft strategy (see
Section 3.5.1).

Soft Incremental (ANS*+SI): this is our “full model”. In the first episode,
the agent is provided with no Abstract Models; then, in the consecutive
steps, the agent can reuse and incrementally extend all the Abstract
Models learned in previous episodes, using the Soft strategy.

The fundamental difference between ANS* / ANS*+SI and ANS*+HP
/ ANS*+SP is that the formers do not take pre-acquired knowledge, while
the latters require such a knowledge. Moreover, ANS*+SI is the only
model in which the agent extends the Abstract Models with the additional
knowledge acquired through episodes. Finally, all the versions but ANS* use
the with-memory setup described in 3.4.

Table 3.1 shows the results of our variants on the validation set of Matter-
port3D, composed of 2195 episodes in 11 environments. This is a standard
benchmark for the OGN task [36, 31]. ANS*+HP achieves higher results
than ANS*, as expected, since ANS*+HP is provided with additional
input knowledge. Furthermore, ANS*+SP obtains better results than
ANS*+HP, due to the fact that the Soft strategy mitigates the errors
introduced by the matching of Abstract Models in different episodes (Section
3.5.1). Remarkably, ANS*+SI outperforms all the other versions, provid-
ing a relative improvement of +8.13% in success and +11.9% in SPL w.r.t.
ANS*+SP. From the results of Table 3.1, we can deduce that the incremental
learning of Abstract Models is more effective than providing the agent with
the pre-acquired input Abstract Models.

Furthermore, the fact that the agent starts in each episode from a different
location allows the ANS*+SI variant to cover spaces inside the environment
that are hardly reachable with a single long pre-exploration. ANS*+SI
is able to relocate the agent in 69.7% of the episodes, confirming that the
method exploited the matching system.

3.7.2 Effects of Knowledge Accumulation

This section aims to investigate how accumulating knowledge in the Abstract
Models affects the agent performance. To do this experiment, we need to
limit the quantity of noise recorded in the Abstract Model (e.g., the false
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Method DTS↓ Success↑ SPL↑ SoftSPL↑
ANS* 6.417 0.240 0.102 0.191

ANS*+HP 6.352 0.251 0.105 0.206
ANS*+SP 6.294 0.258 0.117 0.214
ANS*+SI 6.155 0.279 0.131 0.233

Table 3.1: Results achieved by our variants on the Matterport3D validation
set.

Method DTS↓ Success↑ SPL↑
ANS* 6.721 0.313 0.127

ANS*+SI 6.347 0.354 0.150

Table 3.2: Results obtained on a subset of the validation set of Matterport3D,
containing object classes which are in both MS-COCO and MatterPort3D
datasets (658 episodes across 11 environments).

positives given from the Semantic Segmentator). Hence, we selected a subset
of the Matterport3D validation set on which the Semantic Segmentator is
more stable. This subset was built as in [36] and contains episodes with a
goal object in one of the following classes: chair, sofa, plant, bed, toilet, tv,
table, and sink.

Table 3.2 reports the results obtained with ANS* and ANS*+SI. Our
results show that reusing Abstract Models (ANS*+SI) allows the agent
to take better paths (15% SPL) and brings the agent closer to the goal
object (6.34m DTS) compared to the version without knowledge reusage.
The analysis on the evolution through episodes of the success rate is visible
in Figure 3.3. Here, we plotted in dashed line the average success rate for
each episode across the 11 environments (e.g., point 0 represents the average
success rate across the 11 environments in their first episode). The solid thick
line represents the moving average of the success rate with a window size
of 5. From the figure, it is clear that accumulating knowledge over episodes
consistently enhances the success rate.

3.7.3 Semantic Maps and Abstract Models

Another method to represent knowledge about the environments are Semantic
Maps [31]. Semantic maps are obstacle map enriched with information about
object classes. Here, we compare systems that use Semantic Maps with our
method, and investigate how semantic maps and Abstract Models can be
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Figure 3.3: A plot of the moving average success rate in the ANS*+SI model.
The window size was set to 5.

Method DTS↓ Success↑ SPL↑ SoftSPL↑
SMNet[31] 7.316 0.096 0.057 0.087

SMNet (GT) 5.658 0.312 0.207 0.282
ANS*+SI 6.155 0.279 0.131 0.233

SemExp*+SI 5.785 0.347 0.151 0.274

Table 3.3: Results obtained on the validation set of the Matterport3D dataset
(2195 episodes across 11 environments). Note that SMNet (GT), as explained
in [31], exploits ground truth free space maps extracted directly from the
Habitat API.

suitably combined.
A method for OGN that exploits a precomputed semantic map is SMNet

[31]. In SMNet, the plan to reach an object goal G is obtained by computing
the shortest path to an object of type G. The method makes the simplifying
assumption that the absolute position of the agent is known, therefore re-
location is not needed. [31] also considers a version, called SMNet(GT) that
assumes ground truth free space maps. Another system that exploits semantic
maps is SemExp [36]. SemExp is an evolution of ANS where the base
architecture is the same, but the Global Policy takes semantic maps in input.
Such a policy seeks to directly find the object goal, instead of maximizing the
environment exploration. To understand how semantic maps and Abstract
Models can be combined, we integrate our SI approach on top of SemExp.
This version is called SemExp*+SI. Table 3.3 compares all this different
versions of reusing knowledge. We used the same split used in [31], which is
the validation set of the Matterport3D dataset (2195 episodes across 11 envi-
ronment). Remarkably, ANS*+SI and SemExp*+SI outperform SMNet
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by large margin. Furthermore, the Global Policy exploited in SemExp*+SI
increases all the metrics w.r.t. ANS*+SI counterparts. The higher success
rate of SemExp*+SI w.r.t. ANS*+SI (+6.8%) suggests that the way in
which the environments are explored plays a crucial role in how the Abstract
Models are learned. It’s interesting to notice that SemExp*+SI has simi-
lar performances to SMNet (GT), that exploits pre-computed maps with
ground truth free space.

3.7.4 Limitations and Failure analysis

One of the major limitations in our model comes from the abstraction of
input sensory data. The output of the Semantic Segmentator, as well as
the visual features stored in the memory, could be affected by errors. This
could lead to semantic drift and put a bound on the quality of the knowledge
representation. Furthermore, in the without-memory setup, the Abstract
Model does not provide a significant added value with respect to simpler
representations (such as semantic maps). However, this is not the case in
the with-memory setting, in which the abstraction encoded in the Abstract
Models is a cornerstone for the reuse previously acquired knowledge.

Hereafter, we report a failure analysis aiming at understanding why the
agent fails in the SI setting. In particular, we try to understand quantitatively
how the errors introduced by the Semantic Segmentator affect the reliability
of the Abstract Models. To this end, we randomly sampled 200 failed episodes
in which the Abstract Model was reloaded from the experiment in Table 3.2.
Then we annotated the failures w.r.t. five classes: (i) Last Mile (Navigation
Failure): the agent correctly navigated to an instance of the goal object
but was not able to reach it (DTS < 2m); (ii) Hallucination (Abstract
Model Failure): the agent approached the goal point extracted from the
Abstract Model, but there was no goal object occurrence nearby the suggested
location; (iii) Detection (Sensors Failure): the agent, during its path to
the goal point suggested by the Abstract Model, found a wrong instance of
the goal object and approached it; (iv) Exploration (Abstract Model
Incompleteness): the reloaded Abstract Model has no information about
possible goal object locations, and the agent could not find any instance in
500 steps; (v) Misc: the agent reloaded the Abstract Model but has a generic
failure (e.g., agent is trapped by reconstruction debris at spawn).

Notably, we have two possible failure cases directly linked to the reloaded
Abstract Model: Exploration, where the agent has not enough information
about the environment, and Hallucination, where the agent relies on wrong
information. In Figure 3.4 are reported the statistics about the failed episodes.
We can observe how the Abstract Model generated by SemExp*+SI gave
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Figure 3.4: Barplot of failure cases for ANS*+SI and SemExp*+SI models
on the validation set of Matterport3D.

fewer failures wrt ANS*+SI in the Exploration and Hallucination failures,
highlighting how the different Global Policy affects the creation of the Abstract
Models. Furthermore, the majority of the failures are in Detection for both
models. This also suggests that a better reconstruction of the Semantic
Segmentations can improve a large margin of performance.

3.7.5 Qualitative examples

In Figure 3.5 and 3.6, we report a qualitative comparison among ANS* and
ANS*+SI in the same episode of the scene 2azQ1b91cZZ provided in the
MatterPort3D dataset.

ANS* starts by exploring the environment, but it never encounters an
instance of the Sofa object class. Furthermore, the exploration leads the
agent very far from the nearest sofa, more than 10 meters. This is because
the environment of the scene 2azQ1b91cZZ is very large w.r.t. the average
dimension of other environments, and the agent is likely to take paths towards
areas far from the goal object ones. Therefore, with a limited number of
500 steps, the agent cannot easily find an object when navigating into the
environment for the first time. Figure 3.6, shows the same episode with the
exploitation of the incrementally learned Abstract Model. Particularly, at
step 15, the agent’s state matches a state of the previously learned Abstract
Model that, therefore, is reused. The agent’s coordinates system is rescaled
to match the reused domain one, and the goal point is chosen. Subsequently,
starting from the selected goal object position, is created an exploration area
that the agent must explore to find the goal object. At step 82, the agent
has reached the selected area and consequently approaches the sofa it was
looking for.
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Figure 3.5: A failed episode with the ANS* variant. The agent explored the
environment for 500 steps without finding any Sofa occurrence. Green pixels
on the map are the obstacles, light blue pixels are explored areas, and the
blue point is the goal position.

Figure 3.6: A success with ANS*+SI variant. The agent correctly matched
its current state with one in the domain and used the information stored to
navigate towards a Sofa successfully.
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3.8 Conclusion

This chapter presents a novel approach that allows an agent (i) to incre-
mentally acquire and store knowledge about a set of unknown environments,
and (ii) to reuse the acquired knowledge, represented as an Abstract Model,
when the agent returns to an already visited state. We evaluate the proposed
method on the Object Goal Navigation task. Our experiments show that
reusing Abstract Models is effective. An ablation study on different strategies
to reuse such knowledge confirmed that incremental learning works better
than reusing Abstract Models learned offline. The failure analysis highlights
that reusing Abstract Model does not constitute the major reason of failure,
which is mostly ascribable to the Semantic Segmentation module. The qual-
itative analysis highlights how the effect of reusing Abstract Models affect
the agent’s behaviour. Future works will focus on integrating more semantic
information about the environment (e.g., correlation between room types and
object types which are present in the room) and tackling other Embodied AI
tasks that require reasoning at a symbolic level (e.g., Image Goal Navigation
[201], Embodied QA [56], and Rearrangement [18]).



Chapter 4

Modular Multi-Object Navigation

In this chapter, we continue to explore how it is possible to effectively reuse
previously acquired knowledge for an Embodied AI (R2). Specifically, we
propose an agent that records acquired knowledge in a semantic map and
reuses it in long-horizon tasks. The agent is tested in the context of Multi-
Object Goal Navigation (MultiON), where an agent is provided with n
consecutive goals. The current goal is revealed only when the previous is
reached, thus the agent is not aware of what is specifically useful to record
and reuse. For this reason, MultiON is a great testbed for the efficient reuse
of acquired knowledge. Our agent has a modular architecture, that exploits a
pretrained PointGoal Navigation model, an exploration strategy and a map
to record acquired information.

4.1 Introduction
1Embodied AI is rapidly gaining interest in deploying computer vision sys-
tems into realistic environments to solve interactive tasks. Visual embodied
agents can operate in photo-realistic environments, often scans of real-world
houses, and enact action to meaningfully affect the state of the environ-
ment. Several milestones have lead to tremendous research progress and
increasing performance across tasks. These include fast and high-fidelity
simulators [145, 162, 59], deep reinforcement learning advancements [147, 79],
memory representation [78, 31, 176], self-supervision [44, 77, 150, 125], and
parallel infrastructure [180, 61, 103, 14]. Now that embodied agents are
highly skilled at basic navigation with simplifying assumptions [145, 180, 195],
as a natural next step, more realistic and challenging tasks have been pro-

1S. Raychaudhuri, T. Campari, U. Jain, M. Savva, A. X. Chang. "Modular-MON:
Modular Multi-Object Navigation". Under submission.
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posed [18, 178, 58]. Although embodied agents now have the essential skills to

Figure 4.1: Example 5ON episode on an HM3D dataset scene. The agent
needs to find, in order: red, pink, black, blue, and yellow cylinders. Another
three cylinders are distractors in the scene.

navigate to specific coordinates or point-goals, semantic navigation tasks are
far from being solved. These tasks entail finding objects or areas in the envi-
ronment based on semantic labels or visual goal specification [189, 5, 177, 74],
inherently increasing the task complexity. Other challenges include long-
horizon navigation as investigated through multi-hop semantic navigation
(MultiON) [176]. The objective is to navigate to an (episode-specific) ordered
list of objects. In long-term reasoning tasks like MultiON, agent policies must
efficiently use mapping, exploration, and navigation skills. This is particu-
larly challenging for an agent due to the inherent partial-observability of the
environment, which demands both exploratory skill, for when the object is
not yet visible, and exploitative skill once the object has been located.

However we humans can efficiently plan when given long-horizon tasks.
We can walk around searching for objects and remember them in order to
return at a later point. Drawing from such intuitions, our structure approach
has four modules dedicated to: (a) object detection – to parse objects in the
raw visual of the agent, (b) map building – a semantic map storing observed
objects for easy querying, (c) exploration – to utilize learned priors for efficient
search when an object of interest is yet to be located, and (d) navigation –
to reach an target object that has been located. The first two contribute to
parsing and storing semantic knowledge about the environment, while the
latter two enable efficient embodied navigation.

We conduct all our experiments on MultiON 2.0, a new version of the
MultiON dataset [176] built on top of the large-scale dataset HM3D [135].



4.2. RELATED WORK 49

Compared to MultiON, this new version contains up to 5 target objects (5ON
task) and includes distractors objects, which are helpful to test agents’ ability
to distinguish between different targets. Moreover, we also added another
variant where we add Natural objects instead of cylinders; this modification
should add more realism to the task compared to the cylinders used in
the previous dataset version. Furthermore, this dataset contains 10x more
environments compared to the standard MultiON. This dataset is a step
towards the recent direction taken by the embodied AI community, where
to close the sim2real gap many works are proposing large-scale datasets, like
HM3D or ProcTHOR [59] that can serve as pretraining for robotic agent
deployment.

Our experiments show that having a modular approach with a simple
random exploration policy and a pretrained PointGoal navigation policy
is effective in the complex task of MultiON. In summary, we make the
following contributions: i) we create MultiON 2.0, a new large-scale dataset for
multi-object navigation; ii) we show that a pretrained PointNav outperforms
analytical path planners by a significant margin; and iii) we compare rule-based
exploration strategies and find that a simple random strategy outperforms
more complex methods.

4.2 Related Work

We focus on the MultiON task, a popular Embodied AI task, by proposing
a modular architecture that relies on a pretrained policy on a PointGoal
Navigation task and a simple rule-based exploration strategy. In the following,
we will report the most relevant literature.

Embodied AI Tasks. The availability of large-scale datasets such as
Matterport3D [32], Gibson [185], and Habitat-Matterport3D (HM3D) [135]
along with photo-realistic simulators, such as Habitat [145], GibsonEnv [185],
AI2-THOR [90] etc. have enabled a diverse set of tasks for embodied agents.
These include point-goal navigation [145, 180, 195], where the target is a
single point, object-goal navigation [19, 194, 36, 89], where the target is a
semantic label of an object, and those of instruction following [7, 93, 114, 42],
where the agent needs to follow instructions in natural language. Most
relevant to our work is the task of multi-object navigation (MultiON). It is a
generalized extension of the object-goal navigation task, where the agent must
reach multiple objects in a sequence instead of a single object in object-goal
navigation.
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Modular Navigation in Robotic Vision. A common paradigm in clas-
sical robotics is to divide navigation into mapping (via simultaneous local-
ization and mapping [65]) and path planning (by computing path to goal
locations [86, 151]). Taking inspiration from this vision along with the success
of deep nets, a hybrid approach of neural high-level policies with model
predictive control emerged as a more robust and sample-efficient alternative
for navigation [17, 85]. A similar trend was seen in the aforementioned em-
bodied AI tasks with first wave of approaches being reactive or recurrent
deep net policies that were largely monolithic [73, 88, 145, 39, 82]. Bank-
ing on interpretable structure of neural modular networks [8, 92] in vision,
modular policies for navigation consisting of separately trained modules and
using auxiliary data have shown to be significantly more sample-efficient.
For instance, Chaplot et al. [35] achieved better performance on point-goal
navigation with just 10Mn frames of training instead of 75Mn frames. The
central theme is “why (re-)learn skills that are analytically or heuristically
already solved”. In the embodied AI context participating entries in the very
challenging MultiON 2022 competition [58] are mostly modular, combining
learned and heuristic/rule-based modules to achieve superior performance.

Exploration in Navigation. Exploration has been studied extensively in
both visual navigation and robotics and it is particularly critical for a long-
horizon agent in the context of semantic navigation tasks. A common approach
is to estimate an exploratory waypoint or goal and navigate towards it [17, 137].
To select an exploration goal, traditional methods explore the environment
based on heuristics, such as a frontier [190] point between explored and
unexplored regions. More recent works propose learning-based methods so as
to generalize to unseen environments better. Notable works include learning
end-to-end RL exploration policies from coverage rewards [43, 134, 132] and
intrinsic rewards using inverse dynamics [125, 126]. Modular and geometric
approaches have also maximized coverage on metric maps by using first-person
depth images [35], predicting semantic maps [36], and topologically-structured
maps [37, 74, 177]. Very recently, Luo et al. [107] proposes a simple rule-based
exploration strategy called ‘Stubborn’, which outperforms state-of-the-art
methods in the ObjectNav task. The agent assumes a local grid around it
and selects each of the four corners, in turn, as the exploration goal. This
agent is ‘stubborn’ because it keeps moving towards the goal until it collides.
In this work, we explore a few variants of Stubborn and compare them with
other rule-based methods.
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#Tr #Ep. #Val #Ep. #Test #Ep.

MultiON [176] 61 3.05M 11 1050 18 1050
MultiON 2.0 800 8.00M 30 1050 70 1050

Table 4.1: Comparing dataset statistics. #[Tr, Val, Test] is the number
of scenes respectively in the training, validation, and test splits. #Ep. is the
number of episodes in each split. We created MultiON 2.0, for 1ON to 5ON,
with the same number of episodes.

Transfer Learning in Embodied AI. While transfer learning is studied
extensively across datasets of computer vision, fewer works have investigated
it in the context of Embodied AI. Shen et al. [154] shows that by pre-training
on vision tasks, the agent learns the target task better. Lin et al. [102] shows
that pre-training improves the downstream manipulation task. Some works
[38, 175] focus on a multi-task learning setup that enables sharing knowledge
between multiple tasks. Al-Halah et al. [5] pre-train a source policy on image-
goal navigation and show transfer using pluggable goal encoders for other
definitions of semantic visual navigation. Very few works in the ObjectNav
task have tried to leverage an off-the-shelf PointNav model as their navigation
policy. For example Georgakis et al. [67] uses a pre-trained PointNav model
as their local policy while predicting semantic maps outside the agent field of
view. Similarly, as our navigation policy, we re-use a PointNav policy that
was trained on HM3D scenes [135]. We show that it outperforms analytical
path planners by piggybacking on the near-perfect performance of point-goal
navigation.

4.3 MultiON 2.0 Dataset

With this work, we release MultiON 2.0 – a large-scale dataset for the Multi-
Object Navigation task. In this section, we include details about objects
that are inserted as goals for Multi-Object Navigation. We also include
necessary design choices for procedural generation of episodes and associated
data statistics.

Diversity of objects. To supplement the existing data [176] we include
natural objects beyond synthetic cylindrical goals. Particularly, Wani et al.
[176] inserted eight cylinder-shaped objects of different colors (black, blue,
cyan, green, pink, red, white, and yellow) in the Matterport3D [32] scenes,
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Figure 4.2: Comparing path lengths across tasks. We include boxplots
for (a) average episodes length across {ObjectNav [19], 3ON [176], 3ON 2.0
(ours), and 5ON 2.0 (ours)} datasets; (b) average geodesic distance between
successive objects across different datasets.

each 0.75m in height and 0.05m in radius. We increase the task difficulty by
requiring better visual understanding in agent policies. To this end, along
with a version of the dataset with cylinder objects (CYL-objects), we include
realistic-looking objects that can naturally occur in houses. In line with prior
work, we insert eight objects: backpack, basketball, electric piano, guitar,
rocking horse, teddy bear, toy train, and trolley bag. We choose objects
that are large and visually diverse for them to be detected and identified by
embodied agents. We call this set of objects Natural-objects (NAT-Objects).
In the MultiON 2.0 dataset with NAT-objects, we used the same episodes of
the CYL-object one and only changed the objects placed in the environments.

Procedural Generation of Episodes. Compared to MultiON [176] based
on only 90 scenes, MultiON 2.0 has 10x more environment. This allows the
training of agents on a more differentiated distribution of scenes. Particularly,
we base the episodes for MultiON 2.0 on Habitat-Matterport 3D Research
scenes (HM3D) [135], a large-scale repository of a thousand indoor scenes.
Mainly, for both tracks (CYL-objects and NAT-objects, we selected 800
training, 30 validation, and 70 test scenes. A clear comparison between
MultiON and MultiON 2.0 datasets is in Tab. 4.1. To be compatible and
complementary to prior work in MultiON, the episodes are also generated
by sampling random navigable points as start and goal locations, such that
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Figure 4.3: Modular-MON. We adopt a modular approach to multi-object
navigation. The Object detection module transforms raw RGB to semantic
labels. These are projected onto a top-down semantic map using depth
observations by the Map building module. This serves as input for the
Exploration module to uncover unseen areas of the environment. Finally,
using exploratory or task goals, a low-level policy predicts the action for the
agent to execute.

the locations are on the same floor and a navigable path exists between them.
Next, we randomly sample n (corresponding to the number of goal objects,
e.g., for 3ON we select three objects) objects from the set of NAT-objects
(or cylinders, for the CYL-objects setup) to insert between the start and the
goal. Additionally, we insert m distractor objects to make the task more
challenging2. The presence of distractors enables embodied policies to learn
discriminability of goal objects, making success of random stumbling onto
objects even more rare. The minimum geodesic distance between each pair of
objects is kept at 0.6m in the training split to avoid goals from being cluttered
together. We increase this to 1.3m in the validation and test splits to add
variability to the data distribution. In Fig. 4.2 are shown two boxplots that
analyze the difficulty of the MultiON 2.0 episodes (on the validation set).
Mainly, Fig. 4.2-(a) compares the average episode length between 3ON2.0,
5ON2.0 from MultiON 2.0, and 3ON [176], ObjectNav [19]. Despite smaller
environments in HM3D compared to the ones in Matterport3D (on which
3ON and ObjectNav are based), 3ON2.0 has, on average, ~3x longer episodes
than ObjectNav and is even longer than 3ON (~26m vs. ~23m). 5ON2.0 has
a sequence of five object goals and has the longest average episode length.
Instead, in Fig. 4.2-(b), we measure the average distance between every pair

2We set m = 8− n to make shorter horizon tasks to have more distractors than longer
horizon tasks.
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of objectgoals. Thanks to the constraint imposed between objects, also in
this case, 3ON2.0 has a greater distance than 3ON. Interestingly, 5ON2.0
has slightly closer objects due to the increased number of objectgoal in the
environments. These plots confirm that the episodes in MultiON 2.0 are
more difficult than those in 3ON since the average shortest path to find every
target is longer, and the objects are placed far apart.

4.4 Modular-MON

As we introduce in Sec. 4.1, with Modular-MON, we take a modular approach
to multi-object navigation by employing the following modules: (1) Object
detection, (2) Map building, (3) Exploration and (4) Navigation. These modules
are intuitively weaved together. Modular-MON observes the environment and
builds a semantic map by projecting information about category labels of the
objects (i.e. semantics) in the field of view. If the agent has not yet discovered
the current goal at hand, it will continue to explore and build the semantic map.
Once the current goal has been discovered, Modular-MON plans a path from
its current location to the goal. This process is repeated until the the policy has
found all the goals, at which point the episode terminates. We experiment with
different exploration and navigation strategies to systematically investigate
their contribution to the agent performance. Next, we deep dive into each of
these modules.

Object detection. Operating in high-fidelity simulation allows us to query
semantic labels of the objects from sensors in the Habitat simulator. With
these oracle semantic values, we can better investigate navigation and explo-
ration strategies as a noiseless semantic map is assumed. Importantly, we
experiment with a learned object detection model for a head-on comparison,
where such a privilege is not assumed. To this end, we finetune (pretrained
on MS-COCO) a FasterRCNN [138] architecture to detect the cylinders. Sub-
sequently, we adopt a k-nearest neighbors algorithm to distinguish between
different categories which is quite effective (as seen repeatedly in vision and
robotics [16, 172, 70, 108, 121]). Particularly, we sample the RGB value from
the center of each bounding box and feed it for KNN. If the most frequent
neighbor has a cardinality is above a percentage threshold αKNN, the color
label is determined. For the NAT-objects, instead, we trained the FasterRCNN
for the eight possible objects available in the dataset.

Map building. A cumulative memory representation is key for long-horizon
tasks like multi-object navigation. To build such a representation, we project
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the semantic detections onto a top-down grid map of the environment. The
geometric transformation is done leveraging the depth channel of RGBD
observations. Concretely, we compute point cloud from depth observations
and register them into an allocentric coordinate system using agent poses
use the mapping method in line with prior work [36]. The cumulative top-
down map, therefore, contains semantic labels of the target and as well as
the distractor objects. An intuitive mapping of each grid cell corresponds
to 0.2 meters of the physical environment showed good performance and
within memory budget for neural transforms. This map is used by both the
Exploration module to sample exploration goals and the Navigation module
to plan a path from the agent location to the goal and generate actions.

Exploration. For any policy to train well a tradeoff of exploration/ teaex-
ploitation is imperative. This is particularly crucial for long-horizon tasks,
where the agent has to tackle ambiguity for large intervals where the cur-
rent goal is yet to be discovered. We investigate several simple-yet-effective
exploration strategies, based on success in prior works.

• Random: sample a random exploration goal around the current location
and keep moving towards it until the exploration goal is reached.

• Random w/ threshold : similar to Random with the difference that the
agent moves towards the sampled point for αexp number of steps before
sampling another point. This is especially effective when the exploration
goal is not reachable.

• Stubborn [107]: select an exploration goal in one direction and keep
moving towards it until it runs into obstacles. After an obstacle is hit,
pick another direction and repeat the process.

• Stubborn w/ threshold : this is similar to Stubborn but we limit the
number of steps as we do in Random w/ threshold using the threshold
αexp.

Importantly, when Stubborn exploration is shown to outperform the two
most widely-used exploration strategies – Frontier Based Exploration [190]
and a deep net exploration policy SemExp [36] (study in Luo et al. [107]).
Building on these findings and since our primary objective is to benchmark
the new MultiON 2.0, we defer these additional exploration baselines for
future work. Fig. 4.4 shows how the different methods select exploration
goals.

Navigation. Given a location, either the exploration goal (output of Ex-
ploration module) or the object goal (location of the current goal on the
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semantic map), this module plans a path towards. Particularly, it generate a
sequence of actions to reach the location in a closed loop.

We formulate this a PointNav task and we employ a neural policy archi-
tecture. Concretely, it includes a visual encoder in the form of a ResNet50
backbone [76] (for depth observations), a multi-layer perceptron to trans-
form GPS+Compass coordinated to latent representations, and a LSTM
module [80] to capture state features from previous time steps. The latent
representations from all these are concatenated to and transformed using two
fully-connected layers i.e. the actor and policy heads to give the policy logits
for the policy and state’s value function, respectively. The low-level actions
for interaction with the environment are sampled from the predicted policy
logits.

Beyond the parameterized neural PointNav policy, we also test an analyti-
cal path-planner. BFS Path Planner is an analytical path-planning algorithm,
where the agent plans a path based on the 2D occupancy map from its current
location to the goal location. The agent iteratively searches all its adjacent
grid locations following a breadth-first search until it finds a path to the goal.
The occupancy map of the environment is built following a similar mapping
method as in our Map building module. The agent also builds a collision
map by marking the grid cells where it collides. Furthermore we dilate the
obstacles to keep the agent as far away as possible in order to avoid it getting
stuck to corners and crevices. This is analogous to the pessimistic obstacle
map from [107]. Also, if the agent fails to plan a path, we randomly sample
one of the three actions: {move forward, turn left, turn right} to dislodge
itself of a stuck position.

Implementation Details. The object detection model extracts the pro-
posed bounding boxes from the input RGB, with a score threshold of 0.95.
We set K in the KNN algorithm to 10. We set αKNN to 80% i.e. if 8 of the
10 nearest neighbors is of the same category, we select that as the label. We
find that a the step threshold αexp of 50 works well for exploration. The
same threshold is used for Stubborn w/ threshold. For Stubborn, following
Luo et al. [107], we assume a local grid around the agent and select four
corners of the grid in a clockwise direction as the exploration goals. For BFS
Path Planner, we additionally provide corrections to the collision map to
account for ‘invisible obstacles’ as a result of incomplete navigation meshes
and inaccurate depth observations from the simulator.
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Navigation Module Validation Test

Success Progress SPL PPL Success Progress SPL PPL

OracleReveal PointNav [135] 84 90 37 41 81 85 36 39

OracleSem PointNav [135] 85 89 39 40 81 87 37 39
BFS Path Planner [58] 27 41 19 29 21 44 12 22

Table 4.2: Quantitative results (navigation policies). We find that
the analytical BFS Path Planner path-planner performs considerably worse
than the learned PointNav on the 3ON (cylinders) task. We employ the
best-performing Random w/ threshold across these baselines.

Exploration Module Validation Test

Success Progress SPL PPL Success Progress SPL PPL

OracleSem Random 78 84 35 37 72 80 33 36
Random w/ threshold 85 89 39 40 81 87 37 39
Stubborn [107] 69 77 25 27 66 75 23 26
Stubborn w/ threshold 75 82 35 38 72 80 33 36

Table 4.3: Quantitative results (exploration strategies). We find a
random exploration strategy with a step threshold performs better than the
learned Stubborn [107] exploration strategy (and a step variant). The above
experiments are on 3ON (cylinders) task. For all row entries, we employ the
best-performing PointNav as Navigation module.

4.5 Experiments

We organize this section as follows. First, we include the necessary details
about the multi-object navigation task. Second, we explain the embodied
setup including sensor details for reproducibility. Third, we describe the
standard metrics adopted for evaluating performance of long-horizon naviga-
tion tasks such as multi-object navigation. Fourth, we detail the mapping
methods that we benchmark for multi-object navigation. Fifth, we include the
quantitative results for the baselines. Finally, we include qualitative results
and analysis.

4.5.1 Multi-Object Navigation Task

In MultiON [176] the agent needs to find and navigate to a fixed sequence of
N objects in an unexplored environment. Specifically, the agent has access
to (256 × 256) egocentric RGB image and depth map of the current view,
current agent coordinates relative to its starting point in the episode through
a noiseless GPS+Compass sensor, and the current goal category at a given
time step of the episode. The agent can take one of four actions: move forward
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Validation Test

Success Progress SPL PPL Success Progress SPL PPL

OracleSem 85 89 39 40 81 87 37 39
PredictedSem 31 47 17 19 27 45 15 17

Table 4.4: Quantitative results (OracleSem & PredictedSem). The
PredictedSem agent performs significantly worse than the OracleSem agent,
due to error in the Object Detector. The above set of experiments are on 3ON
(cylinders) folds using the best-performing modules for Navigation (PointNav)
and Exploration (Random w/ threshold).

by 25 cm, turn left by 30°, turn right by 30°, and found. The agent has a
maximum time horizon of 2500 steps to complete the task. Note that this is
longer than standard navigation tasks due to the long-horizon nature of multi-
object navigation. The agent must execute the found action within 1 meter
of each goal for each of the N goals, in the right order, to be successful on
this episode. A single incorrect found action terminates the episode – making
the task very challenging. We use the widely adopted Habitat platform [145]
for our experiments. The agent embodiment is a cylindrical body of 1 meter
radius and 1.5 meter height. We conduct all experiments using the 3ON
cylinders dataset containing 3 goal objects and five distractor objects.

4.5.2 Metrics

In addition to the standard visual navigation metrics such as success (whether
the agent can reach all the targets successfully in the given sequence) and
SPL [6] (Success weighted by inverse Path Length) we use the metrics intro-
duced for the specifically for long-horizon tasks [176] such as multi-object
navigation. These include progress (proportion of objects correctly found in
the episode) and PPL (progress weighted by path length). The SPL and PPL
metrics quantify efficiency of navigation in context of success/progress and
increase if the agent trajectory better matches the optimal trajectory.

4.5.3 Baselines

We use a neural PointNav policy trained using the established distributed
PPO [180] framework for efficient parallelization on HM3D scenes.

A key objective is to investigate the contribution of the different exploration
and navigation approaches using the following mapping baselines.

The OracleReveal agent has access to the top-down oracle map of the
environment directly obtained from the Habitat simulator marked with objects
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(targets and distractors) observed by the agent during exploration. The
ground-truth object locations are directly transformed to grid coordinates to
build this map. Objects once seen remain seen for the length of the episode.

Using egocentric depth observations, the OracleSem agent builds a se-
mantic map of the environment. We get the semantic labels of the objects
(targets and distractors) directly from the Habitat simulator. This agent does
not have access to the ground-truth locations of the objects.

The PredictedSem agent also builds a top-down semantic map following
the same mapping method in OracleSem, but the egocentric semantic labels
are predicted using a pre-trained object detection model.

4.5.4 Results

In Tab. 4.2 we first compare the OracleReveal agent with the OracleSem and
found that the performances are similar. This is intuitive since the semantic
maps in the two methods are similar in essence. In OracleReveal, we obtain
a progressively revealed oracle semantic map directly from the simulator,
while in the OracleSem, we project the semantic labels on to a semantic map
using depth images. Next we show a comparison of the different navigation
choices for our OracleSem agent. We observe that the pretrained PointNav
policy performs significantly better than the analytical path planner in both
validation and test sets. The performance gain is 21% to 81% (a 4× increase)
in success and 44% to 87% (a 2× increase) in progress on the test set. Similar
gains are seen on the SPL and PPL metrics, 12% → 37% and 22% → 39%,
respectively.

In Tab. 4.3, we compare the different exploration strategies for the Ora-
cleSem agent using PointNav as the navigation policy. We find that a simple
random policy with a step threshold outperforms the other exploration meth-
ods. Generally, we observe that the Random variants perform better than the
Stubborn variants. This can be attributed to the fact that Random agents
tend to explore more of the environment than Stubborn (Fig. 4.4), which
tends to explore in smaller local areas. Specifically, in scenes with pockets of
navigable areas connected by narrow corridors, Stubborn agents can tend to
get stuck in a single area, whereas Random agents can cover more space.

We also compare the OracleSem agent with the PredictedSem in Tab. 4.4
and observe a drop in performance. This performance drop can be attributed
to the error in the object detection module in PredictedSem. We report these
numbers based on our experiments with the cylinder objects dataset. For
results on natural objects, please refer to the supplemental.
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3ON Test set

Trained Module Trained On Evaluated On Success Progress SPL PPL

OracleSem PointNav HM3D HM3D 81 87 37 39
MP3D 21 37 11 20

No-Map [176] end-to-end MP3D HM3D 0.4 6 0.2 3
HM3D w/o dist. 1 13 0.5 6
MP3D 10 24 4 14

ObjRecogMap [176] end-to-end MP3D HM3D 0.3 10 0.1 0.3
HM3D w/o dist. 3 18 0.8 6
MP3D 22 40 17 30

ProjNeuralMap [176] end-to-end MP3D HM3D 0.5 9 0.2 4
HM3D w/o dist. 4 19 1 8
MP3D 27 46 18 31

Table 4.5: Transferability. Above experiments show that the Modular-
MON performs better than end-to-end models when transferred (without
finetuning) to unseen environments. We observe that the OracleSem agent
achieves 21% success on the MP3D scenes even when the PointNav, used as
a Navigation module, is trained on HM3D scenes. On the other hand, none
of the end-to-end models, trained on MP3D scenes transfers well to HM3D
scenes.

4.5.5 Transferability of Modular-MON

To investigate the transferability to unseen environments, we evaluate Modular-
MON on the MultiON dataset introduced by Wani et al. [176], based on
Matterport 3D[32] scenes. We evaluate our OracleSem agent on the 3ON test
set from MultiON. Tab. 4.5 shows that the OracleSem method achieves 21%
success and 37% progress on the MP3D scenes even when the PointNav is
trained on HM3D scenes. We found that this gap in performance is mostly
due to the agent getting stuck on floating debris and holes on the floors in
MP3D scenes. On the other hand, the end-to-end models do not transfer well
from MP3D to HM3D. More specifically, we evaluate three models No-Map,
ObjRecogMap and ProjNeuralMap from Wani et al. [176] on the MultiON
2.0 3ON test set based on HM3D scenes. The No-Map does not have access
to any map, while the ObjRecogMap agent builds a map with predicted
semantic categories of objects it sees. The ProjNeuralMap model, on the
other hand, builds a global top-down environment map containing neurally
projected image features. These agents are trained end-to-end with PPO[147]
using a reward for 40 million frames and directly predict an action. We found
that none of the models perform well when transferred to the HM3D scenes.
The best performing model from [176], ProjNeuralMap, achieves 4% success
and 19% progress on the HM3D test set without distractors and 0.5% success
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Validation Test

Success Progress SPL PPL Success Progress SPL PPL

1ON 96 96 36 36 95 95 35 35
3ON 85 89 39 40 81 87 37 39
5ON 68 78 33 36 66 76 32 36

Table 4.6: OracleSem performance on 1ON vs 3ON vs 5ON. We
observe that the agent performance deteriorates with more number of target
objects.

and 9% progress with distractors. These experiments confirm that a modular
approach transfers to unseen environments better than end-to-end approaches
in the MultiON task.

4.5.6 Generalization of Modular-MON on n-ON

The modular approach of Modular-MON allows us to use the same modules
for any n-ON tasks without retraining. This is more efficient and generalizable
compared to end-to-end approaches[176] that need to be retrained every time
we introduce more objects.

To study this, we evaluate the OracleSem agent on 1ON, 3ON, and 5ON
episodes from both the validation and test sets. Although the performance
decreases as we introduce more target objects for the agent to find (Tab. 4.6),
with 1ON being the best and 5ON being the worst, the agent still performs
considerably well across all n-ONs. The agent achieves a progress of 95% on
1ON, 87% on 3ON, and 76% on 5ON test set. Furthermore, the progress
values on 3ON and 5ON are comparable to 86% (95% x 95% x 95%) and 77%
(95% x 95% x 95% x 95% x 95%), respectively, if we were to treat each of the
goals in 3ON and 5ON independently and reset the agent after it finds each
goal. However, following similar calculations, we can see that the success on
3ON (81%) and 5ON (66%) are lower than 86% and 77% respectively. This
can be explained by the fact that we keep the maximum number of steps
fixed at 2500 for 1ON, 3ON, and 5ON, and the task gets even more complex
for the agent in that it needs to find more objects within the same number of
steps.
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Validation Test

Success Progress SPL PPL Success Progress SPL PPL

CYL 31 47 17 19 27 45 15 17
NAT 25 37 14 12 20 30 10 17

Table 4.7: PredictedSem performance on CYL-objects vs NAT-
objects The PredictedSem agent with Nat-objects performs worse than
the one with the CYL-objects. This shows that natural objects with varying
sizes, shapes and colors are harder to detect than cylinder objects with same
sizes and shapes with varying colors. The above set of experiments are on
3ON folds using PointNav as the Navigation and Random w/ threshold as
the Exploration module.

4.5.7 Object Detection on Natural objects

We introduce a set of Natural-objects (NAT-Objects) as part of our large-
scale MultiON 2.0 dataset to increase the task complexity in terms of visual
understanding. The eight natural objects (Fig. 4.5) are selected in a way
that they are of varying sizes (toy train vs electric piano), shapes (guitar
vs. basketball), colors (backpack vs. trolley bag), and at the same time can
be found lying around inside houses. The objective was to transition from
distinctive-looking cylindrical objects (CYL-objects) to more realistic-looking
objects to make the task more interesting and challenging.

We perform experiments with the NAT-objects to study their differences
in visual understanding with the CYL-objects. To this end, we finetune a
FasterRCNN [138], pretrained on MS-COCO, to detect these eight possible
natural objects. Unlike object detection on cylinders, we do not use an
additional KNN to distinguish between colors. Instead, we expect the Faster-
RCNN to learn the different shapes, sizes, and colors of natural objects jointly.
Tab. 4.7 shows a comparison of the PredictedSem agent with CYL-objects and
Nat-objects. The performance on Nat-objects is worse than on CYL-objects,
showing that natural objects with varying sizes, shapes, and colors are harder
to detect than cylinder objects with the same sizes and shapes with varying
colors.

4.5.8 MultiON 2.0 distractors vs. no distractors

Our MultiON 2.0 dataset additionally contains distractor objects in both
CYL and NAT-objects episodes to make the episodes more challenging in
terms of distinguishing between the goals and the distractors.
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Validation Test

Distr. Success Progress SPL PPL Success Progress SPL PPL

X 86 89 41 42 81 90 37 40
✓ 85 89 39 40 81 87 37 39

Table 4.8: Effect of distractors on OracleSem performance. We
observe that the Modular-MON agent performs equally well in the presence
of distractors. This can be attributed to our target location retrieval method
from the semantic map comparing directly with the next goal category.

We thus perform experiments to study the effect of having distractors
for our Modular-MON. We evaluate our OracleSem agent on both validation
and test sets for 3ON with and without distractors. Tab. 4.8 shows that
the Modular-MON performs equally well in the presence of distractors. This
is intuitive since we select the target location on the global map contain-
ing semantic categories of both the targets and the distractors by directly
comparing with the next goal category given as input to the agent.

4.5.9 Qualitative Results and Analysis

Fig. 4.6 shows an rollout of the OracleSem policy with PointNav and Random
w/ threshold. During the first phase of the rollout, we can see that the agent
keeps exploring the environment since it has not yet discovered the first goal.
Once the agent has found and navigated to every goal, the episode terminates
successfully.

Next, we compare the modules for navigation. Analytical path planners
are computationally expensive and need handcrafted rules as compared to
PointNav policy. While the PointNav policy takes in input depth observations
and learns an internal representation of an obstacle map, analytical path
planners require an obstacle map built from the depth observations. This is
backed by our time runs, where found a full validation set run took 12 hours
for PointNav but 48 hours for the BFS Path Planner.

We also find that obstacle map are left incomplete due to inaccurate
depth information or holes in the mesh in the Habitat simulator. To mitigate
this, the analytical path planning methods like BFS Path Planner require an
additional collision map to mark where the agent has collided with obstacles.

Moreover, we analyzed preliminary error modes to infer that agents when
get too close to an obstacle, they get stuck. This entails the need for a more
pessimistic collision map which pads an obstacle to keep agents far away.
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However, if the padding is too large, the agent fails to plan a path efficiently
as it eats into the navigable space. Additionally, prior works [107] and us had
to employ explicit handcrafted rules to get an analytical planner dislodged
if it gets stuck for several steps in the same location. This makes analytical
path planners a less desirable choice in navigation tasks compared to neural
policies.

4.5.10 Qualitative Examples

Fig. 4.7 shows a rollout of the OracleSem agent on one of the episodes from
the 5ON test set. At each step the agent receives the egocentric depth and
semantic observations along with the current goal category as inputs (column
1) and builds a top-down semantic map (column 3) from the egocentric object
categories that it observes using the depth image. The agent switches between
the Exploration and Navigation modes depending on whether it has seen
the current target object. From the example, we see that the agent mostly
explores the environment in the initial phase of the rollout. Once it starts
discovering target objects, it navigates to them sequentially. Once it is able
to successfully find all 5 objects, the episode terminates.

Fig. 4.8 and Fig. 4.9 show rollouts of the PredictedSem agent on the 3ON
test set episodes with CYL and NAT objects respectively. Here the agent
has access to the RGB and depth observations and the current goal category
as inputs (column 1). The agent predicts the egocentric semantic category
of the objects from the RGB image (column 2 shows the bounding box for
the predicted object) and progressively builds a top-down semantic map
(column 4) with the object categories using depth image. These examples also
demonstrate that the agent mostly explores the environment in the first phase
of the episodes, later switching to the Navigation mode once it discovers the
target objects.

Finally, we look at some of the frequently occurring failure cases in Fig. 4.10.
We found that it is sometimes possible for the agent to keep exploring one area
in the house more than the other, leading to some goals not being discovered.
We also found that the PointNav agent, used as our Navigation module, often
fails to generate the found/stop action even when the agent has discovered the
goal. The agent may also run out of the maximum steps quota (2500 steps)
before discovering and navigating to all the goals in the episode. Additionally
the agent may stop at a distance too far away i.e. more than 1 meter from
the goal, which immediately terminates the episode leading to a failure.
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4.6 Conclusion

We carried out a systematic analysis of a modular approach, Modular-MON,
to the multi-object navigation (MultiON) task. To do this, we created a
new large-scale dataset with both synthetic and natural objects placed in
HM3D environments. Using this dataset, we compare various strategies for
navigation and exploration. Our experiments show that deploying a PointGoal
navigation agent in the MultiON task significantly outperforms analytical
path planning. Moreover, a simple random exploration strategy surprisingly
outperforms more complex heuristics. We believe our work offers insight for
more efficient, modular approaches to MultiON in future work and encourages
the Embodied AI community to explore a hybrid combination of transfer
learning and simple heuristic-based methods.
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Figure 4.4: Visualizing exploration strategies. (Top) shows a Stubborn
strategy which selects one of four corners of a local map in a clockwise
direction. (Bottom) shows a Random strategy where the agent randomly sam-
ples exploration goals. We also employ corresponding variants, particularly,
Random w/ threshold and Stubborn w/ threshold that have a step threshold
(see Sec. 4.4).
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Figure 4.5: Natural objects. The set of eight NAT-objects vary in shapes,
sizes and colors and easily blend in the HM3D houses, thus requiring better
visual understanding for the agent.
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Figure 4.6: Qualitative results. Rollouts of our OracleSem with PointNav
and Random w/ threshold show that the agent explores over time (t) and
discovers objects and progressively builds the semantic map using egocentric
depth observations. The goal sequence is (cyan, yellow, and finally pink).
The top-down obstacle map is for visualization only; this agent does not have
access to it. Blue outline indicates that the agent executed the found action.
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Figure 4.7: Qualitative results: 5ON. Rollouts of our OracleSem with
PointNav and Random w/ threshold show that the agent explores over time
(t) and discovers objects and progressively builds the semantic map using
egocentric depth observations. The goal sequence is (black, red, yellow, pink,
and finally green,). The top-down obstacle map is for visualization only;
this agent does not have access to it. Blue outline indicates that the agent
executed the found action. The agent has a 100% Success, 100% Progress,
39% SPL and 39% PPL in this episode.
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Figure 4.8: Qualitative results: CYL objects. Rollouts of our OracleSem
with PointNav and Random w/ threshold show that the agent explores over
time (t) and detects objects (‘Predicted’ column) and progressively builds the
semantic map using egocentric depth observations. The goal sequence is (pink,
blue, and finally green). The top-down obstacle map is for visualization only;
this agent does not have access to it. Blue outline indicates that the agent
executed the found action. The agent has a 100% Success, 100% Progress,
21% SPL and 21% PPL in this episode.
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Figure 4.9: Qualitative results: Natural objects. Rollouts of our Oracle-
Sem with PointNav and Random w/ threshold show that the agent explores
over time (t) and discovers target objects and progressively builds the seman-
tic map using egocentric depth observations. The goal sequence is (backpack
(black), teddy bear (white), and finally trolleybag (cyan)). The top-down
obstacle map is for visualization only; this agent does not have access to it.
Blue outline indicates that the agent executed the found action. The agent
has a 100% Success, 100% Progress, 17% SPL and 17% PPL in this episode.
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Figure 4.10: Failure cases. Most frequent failure cases include (clockwise
from top left) (1) Goal has not been discovered before reaching maximum
steps quota (2500); (2) PointNav fails to generate stop action; (3) Agent stops
too far from the goal (>1meter), leading to termination of the episode; (4)
All goals have been discovered but maximum steps quota has been reached
before navigating to the later goals.
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Chapter 5

Exploiting Socially-Aware Tasks
for Embodied Social Navigation

In this Chapter, we aim to provide a solution for R1 and R3, detailed in
Chapter 1. We are particularly interested in understanding how an agent can
navigate cluttered environments populated by humans. Thus it is fundamental
to avoid every kind of collision with pedestrians. To this end, we developed
an end-to-end approach [29], where the agent learns the concept of immediate
and future danger through the use of specifically designed Socially-aware
auxiliary tasks. The notion of danger was directly derived from common-sense
knowledge (i.e., humans, when facing others, slow down and try to avoid
every possible collision). In addition, we define a fine-grained evaluation setup
to directly evaluate different interactions between humans and the agent. We
tested our approach in the Social Navigation task, where the agent must reach
a specific coordinate in the environment by avoiding collision with humans.

5.1 Introduction
1Navigating safely in a dynamic scenario populated by humans who are
moving in the same environment is necessary for embodied agents such as
home assistants robots. To do so, as depicted in Figure 5.1, the agent should
be able to dynamically and interactively navigate the environment by avoiding
static objects and moving persons.

Recently, the development of photorealistic 3D simulators [145, 153, 90]
has provided the tools to train embodied agents and experiment in large-

1E. Cancelli*, T. Campari*, L. Serafini, A. X. Chang, L. Ballan. "Exploiting Socially-
Aware Tasks for Embodied Social Navigation". Under submission. – * denotes equal
contribution.
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Figure 5.1: Illustration of an agent-person “encounter”. From top-left to
bottom-right: i episode starts; ii the embodied agent/robot sees a person;
iii it moves back to avoid a collision; iv it successfully reaches the goal by
avoiding the person.

scale indoor environments [32, 133, 59]. Thanks to these frameworks, several
tasks, and challenges have been presented [6, 200, 58]. In particular, in the
PointGoal Navigation task (where an agent is required to reach a specific
location in an environment), an agent without any sensor/actuation noise
trained for billions of steps can obtain almost perfect performance [180].
Other approaches [194, 123] obtained impressive results even in the presence
of noise. Another relevant task is Object Goal Navigation, where an agent is
required to find and navigate to a specific object instance. This task requires
both semantic and navigation capabilities; to this end, modular approaches
based on semantic-maps [36, 27, 136], as well as end-to-end models [194, 133]
have been presented lately. High-level semantic understanding is even more
critical in Vision-Language Navigation [174, 141, 199].

However, although challenging and despite encouraging progress, all the
previously mentioned tasks frame navigation in a fundamentally static envi-
ronment. The dynamic element introduced by sentient, moving human beings
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in the scene forces us to rethink how the current models are designed. A good
navigation policy must not be just effective (i.e., able to achieve its goal) and
efficient (i.e., able to achieve the objective through a close-to-optimal path)
but also safe (reaching the destination without harming others). This social
element is included in the Social Navigation Task [186, 128], where an agent
must tackle PointGoal Navigation in simulated, indoor, and crowded environ-
ments. In this scenario, [196] recently introduced a simple but quite effective
model, although the approach can not explicitly encode any social behavior
in its navigation policy. We believe that a clear encoding of human-agent
interactions, as well as social behaviors, are required in complex scenarios
in which the embodied agent cooperates and interacts with humans. In this
way, the agent could prevent collisions or dangerous behaviors and adapt its
path to the dynamic environment in which it is navigating. We encode these
“signals” by introducing two Socially-Aware Tasks, referred as risk and social
compass. These tasks model the present and future danger connected to the
agent’s action.

Additionally, we define an extensive evaluation protocol for the Embodied
Social Navigation task in order to better analyse the performances in case of
human-agent interactions. This is inspired by a similar attempt that has been
recently introduced in robotics [131], consisting in collecting statistics about
specific encounters between humans and a robot (through questionnaires). We
propose an automated procedure for fine-grained human-agent interactions.
To this end, given a specific episode, we extract short sub-sequences of interest
in which a social interaction becomes the predominant factor influencing nav-
igation, called encounters. Each encounter is associated with a corresponding
category based on the type of human-agent interaction occurring, following a
set of predetermined rules. Finally, we also created a dataset for Embodied
Social Navigation to assess our agents in different environments. This dataset
was built on top of HM3D [133].

In summary, the contributions of this work are threefold:

• A novel architecture for embodied social navigation which is based on
Socially-Aware tasks; we prove the effectiveness of the model on two
public datasets.

• A new Encounter-based social evaluation protocol.

• An extended dataset for Embodied Social Navigation based on the
popular HM3D dataset (called HM3D-S).

Socially-Aware Navigation. Socially/Human Aware representations and
models have been studied by several researchers in the field of robotics,
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computer vision and human social behavior analysis [117]. Some works
focused on collision avoidance algorithms that, similarly to earlier models like
ORCA [21] or RVO [168], try to enable collaborative, collision-free navigation
of non-communicating agents in a shared space. Modern approaches employ
Deep Reinforcement Learning (DeepRL) to learn a motion policy that can
produce a safe path to a goal for every agent, by enabling efficient online
prediction of future states of its neighbours [47, 105].

Other works explicitly tackle the problem of motion planning and nav-
igation in environments with dynamic obstacles [9] and/or humans [63, 46,
106, 40]. [46] employs collision avoidance algorithms like CADRL [47] and
introduces common-sense social rules to reduce uncertainty while minimizing
the risk of incurring in the Freezing Robot Problem [166]. [63, 40], instead,
try to model human-agent interaction using techniques like Spatio-temporal
graph [106]. These methods have been widely tested on minimalist simulation
environments that provide complete knowledge and simple obstacles and
often assume collaboration between moving agents. Limited tests have been
conducted on real-world scenarios, but they often require a large set of sensors
for free-space detection, mapping obstacles, and sensing humans [46].

Recently, an increasing amount of works have been focusing on exploiting
egocentric visual data to learn navigation policy to operate in social envi-
ronments with partial information. [163] used depth maps to train an agent
using imitation learning and studied the policy behavior in a set of simulated
interactions. [128], instead, focuses on constrained indoor environments and
uses a combination of a global planner with complete map access and a
low-level RL policy that exploits data from a LIDAR. This approach was
tested on a set of simulations and evaluated using both standard metrics and
domain-specific like Human Collision Rate. However, this approach requires
prior knowledge about the environment where it operates for the path planner
to work.

Embodied Navigation. Embodied Navigation had a surge in the last
years [58]. Mainly, this was possible thanks to large-scale datasets consisting of
3D indoor environments [32, 153, 133], and to simulators that allow researchers
to simulate navigation inside these 3D environments [145, 153, 90]. In this
context were proposed many tasks [6] such as: PointGoal Navigation [180],
ObjectGoal Navigation [19], Embodied Question Answering [179], and Vision
and Language Navigation (VLN) [7, 93]. To tackle these problems, where an
agent operates in static, single-agent environments, modular approaches were
proposed [28, 37, 36, 136], exploiting SLAM, Path Planning and exploration
strategies, and end-to-end RL-trained policies [176, 123, 195, 27, 194], without
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exploiting any explicit map. In this chapter, we will focus on the Social
Navigation Task [186, 128], where the agent has to navigate in environments
with moving humans. This adds new challenges to Visual Navigation since
social capabilities are required to avoid collisions. Modular approaches are
harder to adapt in this context since humans are constantly moving and
therefore harder to track.

In [196], Yokoyama et al. proposed an end-to-end RL-trained policy for
Social Navigation. This model extracts embeddings from the Depth and
the GPS+Compass sensors and feeds them to a GRU, together with the
previous action. However, this model did not exploit any Social information
and was evaluated only using success rate, which is limiting since the agent
is dealing with humans and it is preferable to navigate safely in order to
avoid collisions, even if this means having lower success rate. There have
been some attempts to do a fine-grained evaluation for Social Navigation.
For example, [131] defined an evaluation protocol for social agents based on
human questionnaires. This cannot be easily applied to simulations, where
test sets contain thousands of episodes. In this chapter, we will propose
an automatic evaluation protocol to measure the social capabilities of our
models.

5.2 An evaluation protocol for SocialNav

SocialNavigation Task. In Social Navigation [186, 128, 196], as in Point-
Goal Navigation, the agent aims to reach a target location, but a collision
with a human subject constitutes a failure and will terminate the episode.
An episode e is characterized by the agent trajectory α, the tuple of human
trajectories (pi), and the target goal g.

The agent trajectory α is a sequence of positions and rotations of the agent
from the beginning to the end of the episode tend. Formally, α = {αt}t∈[0,tend]

where αt ∈ SE(2)2 is the 2D translation and rotation of the agent with
respect to the origin at time t.

Similarly, the trajectories of humans in the episode are sequences of
positions and rotations associated with the i-th human. Formally, pi =
{pit}t∈[0,tend] ∀i ∈ P with pit ∈ SE(2). In our simulation, the movement of
each person is constrained by an associated starting point and an endpoint,
with the person moving back and forth between those two points following
the shortest path.

The target goal g ∈ G is specified by the 2D position in world coordinates.

2SE(2) is the 2-dimensional special euclidean group.
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(a) Frontal ap-
proach (b) Intersection (c) Blind corner

(d) Person fol-
lowing

Figure 5.2: A scheme representing the four different classes of encounter.
The dashed line represents the general direction of the agent and the person
involved. The red area represents the agent’s field of view at the beginning of
the encounter.

The agent must at any point in time provide an action (lin_vel, ang_vel) ∈
[−1,+1]2, representing the normalized linear forward velocity and the normal-
ized clockwise rotational angular velocity (where +1 is the maximum velocity
and -1 the maximum backward/counter-clockwise velocity). The stop action
is automatically called when the agent is within 0.2 meters from the target
goal point. The agent has 500 actions (or steps) to reach the target location.
If it collides with a human, the episode terminates immediately.

5.2.1 Evaluation Protocol

Given an episode e, we define an encounter as follows:

Definition 5.2.1. An encounter taking place in episode e between the agent
and a specific pedestrian i ∈ P , is defined as a subsequence of trajectories α
and pi in a given timeframe [t1, t2] ⊆ [0, tend] such that the following conditions
are met:

• Time Constraint: the timeframe [t1, t2] is larger than a threshold
Tmin;

• Spatial Constraint: the geodesic distance between the agent and
person i ∀t ∈ [t1, t2] is less than a threshold Dmax;

• Heading Constraint: person i is in front of the agent for the first Tfront

timesteps. That is, given the agent’s heading angle θat , θa→i
t the angle

of the segment connecting the agent to person i and Θmax a threshold,
|θat − θa→i

t | ≤ Θmax holds ∀t ∈ [t1, t1 + Tfront].
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Encounter classification. To distinguish the encounters between the agent
and a human subject, we devise a heuristic called inclusion rule (IR). The IR
is defined according to the following parameters:

• ∆i
t,∆

a
t represent, respectively, an approximation of the general direction

of the trajectory of the agent and a person i in the timeframe [t1, t]
with t ∈ [t1, t2], where t1, t2 are the start and the end timesteps of an
encounter;

• intersect is a binary value that is 1 if robot and pedestrian paths intersect
and 0 otherwise;

• blind(t) is a time-conditioned binary value indicating whether the agent
can see the person at time step t;

• d_diff(t): difference between the geodesic and the euclidean distance
between the agent and the person.

Subsequently, we defined four categories (inspired by [131]), and their
respective inclusion rule (see Figure 5.2):

• Frontal approach: The robot and the human come from opposite
directions and have trajectories that are roughly parallel. In this con-
text, the agent must deviate slightly to avoid a frontal collision. IR:
(¬ blind(t) ∀t ∈ [t1, t1 + Tview]) ∧ π −∆slack ≤ |∆i

t2
−∆a

t2
| ≤ π +∆slack,

where ∆slack is a slack value (in radians) on the angle π and Tview is the
number of initial timesteps in which the person must be visible by the
agent.

• Intersection: The robot and the human’s trajectory intersect at ap-
proximately 90°. In this situation, an agent may want to stop and
yield to the human or decrease its linear velocity and slightly devi-
ate. IR: (¬ blind(t) ∀t ∈ [t1, t1 + Tview]) ∧ π

2
−∆slack ≤ |∆i

t2
−∆a

t2
| ≤

π
2
+∆slack ∧ intersect.

• Blind Corner: An agent approaches a person from an initially occluded
position, like a corner or a narrow doorway. In situations with limited
visibility like this, the agent should act cautiously to avoid sudden
crashes. IR: (blind(t) ∀t ∈ [t1, t1 + Tblind]) ∧ d_diff(t1) ≤ 0.5 where
Tblind is the number of initial timesteps in which the person must not
be visible by the agent.

• Person following: A person and the agent travel in the same direction.
The agent must maintain a safe distance from the person and a relatively
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Figure 5.3: Pipeline and model overview. Social information is extracted from
Habitat Simulator (left rectangle) and is processed through a Social Feature
extraction procedure (top-right). The policy (bottom-right) uses RGB-D and
GPS+Compass data as input and, during training, is conditioned by the
extracted social features.

low linear velocity. IR: (¬ blind(t) ∀t ∈ [t1, t1 + Tblind]) ∧ |∆i
t2
−∆a

t2
| ≤

∆slack.

Metrics. For each encounter category, we compute the following metrics:

• Encounter Survival Rate (ESR) is the percentage of encounters
(in a specific category) without a human collision (e.g., if in the Blind
Corner encounter the agent collided with a human in the 20% of the
cases, the ESR will be 80%);

• Average Linear-Velocity (ALV) is the average linear velocity of the
agent in an encounter;

• Average Distance (AD) is the average distance of the agent w.r.t.
the human in an encounter.

5.3 Method

Overview. Figure 5.3 shows an outline of our framework. It comprises two
main modules: (i) Social feature extraction, and (ii) Policy architecture. The
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Social feature extraction module refines social information obtained from the
simulator to extract features that describe some aspect of social interactions
(ground truth social features). The Policy architecture extracts from the
RGB-D and the GPS+Compass sensors an embedding that serves as input
for our Socially-Aware tasks. These tasks refine this embedding and create
n embeddings (one per task). These embeddings are then fused together
through state attention. From the state attention output is then sampled an
action. In the following, we will detail the whole architecture.

5.3.1 Policy Architecture

Our policy network comprises the following modules: i) two encoders (the
Visual backbone and the Position Encoder) that create an embedding from
the RGB-D and the GPS+Compass sensors; ii) a Recurrent State Encoder
that accumulates such embedding through a series of recurrent units; iii)
a State Attention module that fuses the outputs of such units through an
attention mechanism to produce the action the robot has to perform.

Each RGB-D frame xt is encoded in a ϕv
t embedding using a CNN (Visual

Backbone) f(·) such that ϕv
t = f(xt). To encode the position and rotation

of the agent αt in a ϕp
t embedding, we used a linear layer g(·) such that

ϕp
t = g(αt). Subsequently, the outputs of these two encoders are concatenated

into the final embedding ϕf
t = ϕv

t ⊕ ϕp
t . To accumulate embeddings over time,

we decided, similarly to what has been done in [195] for PointGoal Navigation,
to implement our state encoder as a stack of parallel recurrent units. Each
unit at each timestep is fed ϕf

t , and it outputs its internal state, called belief.
The key idea of having multiple beliefs is that each recurrent unit focuses

on a specific navigation aspect. The final decision about what action the robot
should take is sampled by weighting each belief according to the situation. For
this reason, all beliefs B are subsequently fused through the State Attention
module to calculate the mean µ⃗t and standard deviation σ⃗t of the normal
distribution from which we sample the action at. More formally, given
{RU (i)}∀i∈B a set of recurrent units, the encoded beliefs ht are defined as
follows:

ht := {h(i)
t }∀i∈B ← {RU (i)(h

(i)
t−1;ϕ

f
t )}∀i∈B (5.1)

The fusion mechanism of the state attention module SA is defined as:

µ⃗t, σ⃗t ← SA(ht, ϕ
f
t ) = FCa(Attention(ht, FCk(ϕ

f
t ), ht)) (5.2)

where Attention(Q,K, V ) 7→ Softmax(QKT
√
dk

)V and FCa and FCk are two
linear layers.
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5.3.2 Socially-Aware Tasks

With multiple beliefs, we can inject different signals in our embeddings, e.g.,
social dynamics occurring in an episode. To this end, during training, we
condition each belief with a unique auxiliary loss jointly optimized with the
action and value ones during the optimization step of the policy network.
This is done by processing each belief with a specific type of Social feature,
through a Regressor network (see Fig. 5.4), that computes our Socially-Aware
tasks predictions. Such tasks consist in the prediction of social features in
[t, t + k], conditioned by the corresponding belief h(i)

t and the sequence of
performed actions {aj}j∈[t,t+k], where k is the number of future frames to
predict. Formally, for a given sequence of social features {sj}j∈[t,t+k], the task
aims to optimize the following auxiliary loss:

L∫ =

∑
j∈[t,t+k] MSE(sj, ŝj)

k
(5.3)

where {ŝj}j∈[t,t+k] = M(h
(i)
t , {aj}j∈[t,t+k]) and M is the regressor network.

We designed two types of social tasks corresponding to two social features:
(i) Risk Estimation, and (ii) Social Compass. Such design has the benefit of
being easily extensible with other, possibly more complex social tasks and to
be also compatible with general purpose self-supervised tasks like the ones
used in [195] (e.g., CPC|A [72] or ID [125, 194]).

To exploit different social features, we extract from the simulator the
relative position of every person w.r.t. the agent. We refer to this data as
Social Information:

SIt
def
=== {δit := (pos(pit)− pos(αt)) ∈ R2}∀i∈P

where the function pos(·) extracts the position from an element of α or pi.

Risk Estimation. Risk Estimation is a Socially-Aware Task designed to
deal with short-range social interactions, to inform the agent about imminent
collision dangers. Given SIt, we define the Risk value as a scalar representing
how close the agent and the nearest person are up to a maximum distance
Dr. This value ranges from 0 (the nearest neighbor is further than Dr meters
away) to 1 (the agent and person are colliding). Formally:

riskt = clamp
(
1− min{||δit||2 | δit ∈ SIt}

Dr

, 0, 1
)

(5.4)

where clamp(·, 0, 1) limits the value to the [0, 1] range.
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Social Compass. Complementary to Risk Estimation, this Socially-Aware
Task deals with the long-distance component of social dynamics. This feature
captures not only social interaction on a larger area with radius Dc > Dr but
also a weak indication of the direction a person may come. Much like humans
can make guesses about people’s whereabouts based on previous observations,
partial knowledge of the environment topology, and a person’s trajectory; we
expect to provide similar knowledge at training time while being easy to infer
at evaluation time.

Such information is represented through a Social Compass. In the compass,
north represents the direction the agent is looking, and the quadrant is
partitioned into a finite number of non-overlapping sectors. Given each
person i ∈ P , θa→i represents the angle of the segment connecting the agent
to that person w.r.t. the north of the compass. These angles are associated
with a specific sector. We compute the risk value for each sector among people
in the same quadrant. Finally, we represent the compass in vectorial form by
unrolling the sequence of sectors from the north going clockwise. Formally if
we have k number of equivalent sectors, the vector compt ∈ Rk is defined as:

compt[j] =
[
clamp

(
1− min{||δit||2 | δit ∈ Θj}

Dc

, 0, 1
)]

with Θj =
{
δit ∈ SIt | θa→i ∈

[2π
k
· j, 2π

k
· (j + 1)

)}
∀j → [0, k − 1]

(5.5)

5.3.3 Implementation details

The visual backbone used in our experiments is a modified version of a ResNet-
18 for RGB-D frames. We use the same implementation used in [196]; this
produces an output embedding of size 512. For the agent’s position encoder,
we use a linear layer with an output size of 32. Our recurrent state encoder is
implemented as a stack of single-layer GRUs with a hidden dimension of 512
each. Regressors for both social tasks are implemented as single-layer GRUs
with hidden size 512. The sequence of actions {ai}i∈[t,t+k] is passed through
an embedding layer and then fed to the input of the GRU. The initial hidden
state is initialized to h

(i)
t , and k is set to 4. See Figure 5.4 for the complete

scheme.
Each model was trained on 3 GPUs Nvidia A5000 with 8 parallel envi-

ronments for each machine using the DD-PPO [180] algorithm. Our reward
function is the following:

rt = −∆d + rslack − βc∧b · (Icoll + ·Iback) + βsucc · Isucc (5.6)
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Figure 5.4: Implementation of a regressor network. Actions at..at+k are used
as input. A linear layer compresses the GRU’s hidden states to obtain the
predicted social features ŝt..ŝt+k. {si}i∈[t,t+k] is the ground truth used by Lf

(from Equation 5.3).

where ∆d is the potential reward based on the geodesic distance to the goal,
rslack is the slack reward, and Icoll, Iback, Isucc represent the indicator functions
respectively of a collision with objects in the environment, the linear velocity
being less than 0 and success. βc∧b and βsucc are coefficients. We used the
same parameters as in [196], that are -0.002 for rslack, 0.02 for βc∧b and 10.0
for βsucc.

5.4 Experiments

Name Sensors Aux Tasks Social Tasks Metrics (Gibson4+) Metrics (HM3D-S)
RGB Depth CPCA GID CPCA/B Risk Compass Success SPL H-Collisions Success SPL H-Collisions

Baseline [196] ✓ 72.65±1.6 47.43±1.2 24.35±1.9 62.76±2.2 36.69±1.1 29.29±2.2

Baseline+RGB [196] ✓ ✓ 74.28±1.8 44.84±0.7 23.78±1.3 61.43±0.5 34.84±0.6 29.23 ± 0.7

Aux tasks [195] ✓ ✓ ✓ ✓ ✓ 73.4±2.0 52.08±1.4 23.40±1.5 63.62±1.6 42.27±1.2 24.79±2.2

Risk only ✓ ✓ ✓ 74.90±1.7 50.25±1.1 22.56±1.2 66.22±1.2 45.26±0.8 24.47±1.7

Compass only ✓ ✓ ✓ 75.08±1.5 50.55±1.0 22.49±1.1 67.32±1.7 45.74±1.0 23.54±1.7

Aux + risk ✓ ✓ ✓ ✓ ✓ ✓ 75.61±1.8 51.43±0.2 21.04±1.4 68.16±0.8 45.64±0.2 22.00±1.6

Aux+compass ✓ ✓ ✓ ✓ ✓ ✓ 75.63±1.2 52.60±1.6 23.17±1.2 67.94±1.4 45.76±1.0 23.78±2.0

Social tasks ✓ ✓ ✓ ✓ 76.6±1.8 52.81±1.2 20.47±0.4 68.35±0.5 45.83±0.5 21.72±1.2

Social + Aux tasks ✓ ✓ ✓ ✓ ✓ ✓ ✓ 77.24±1.1 55.23±1.4 19.50±1.0 70.16±1.1 47.60±1.0 22.09±1.3

Table 5.1: Social Navigation evaluation on Gibson4+ and HM3D-S. For
each model are listed the type of input data it uses (Sensors column) and,
eventually, what kind of self-supervised Aux tasks or Social tasks the model
employs. The metrics reported are Success rate, SPL and Human-Collisions
Rate (H-collisions).
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Datasets and training procedure. We performed our experiments using
Gibson4+ and HM3D-S, a new dataset based on HM3D and adapted for
social navigation 3. Gibson4+ contains 86 high-rated scenes taken from the
original Gibson dataset [185]. For training, we used 64 scenes, while 8 and
14 environments were used for validation and test, respectively. HM3D-S
is a dataset for Embodied Social Navigation that we generated on top of
HM3D [133]. It consists of 900 scenes (800 used for training, 30 for validation,
and 70 for test) with, on average, a larger walkable surface compared to
Gibson4+. We have generated 8M episodes for the training set (10k per
scene), 450 for the validation set (15 episodes per environment), and 490
for the test set (7 episodes per environment). Each episode is obtained by
selecting a starting point and a goal point for the agent from the navigable
area of the environment (such that it exists a navigable path from one to the
other). Pedestrians are included as in [196]; namely, each person is positioned
on a starting point and navigates back and forth to an endpoint with a
random linear velocity between 0.45 and 0.5m/s. On Gibson4+, we trained
each model for ≈ 100M steps of experience (2.5 days training). On HM3D-S,
we fine-tuned our models for ≈ 40M steps (1-day training) starting from
the final checkpoint obtained on Gibson4+. This was done to reduce the
computational cost of each training.

5.4.1 Results

Evaluation Metrics. We used standard evaluation metrics for Point Goal
Navigation such as Success Rate and Success weighted by Path Length (SPL)
to evaluate the efficacy of the policy [6]. To evaluate its safety properties,
we used Human Collision Rate, which is the percentage of episodes that end
with failure by hitting a person. We run all our experiments with five runs to
assess the mean and standard deviation for every metric, as done in [196].

Baseline models. We compared our approach to two baseline models: the
model used by [196] (called Baseline) and a version of our model that only
uses a set of 3 self-supervised auxiliary tasks: 2 CPC|A tasks (respectively
using 2 and 4 steps) and GID (4 steps) (called Aux tasks), starting from the
one provided by [195]. Baseline only uses the depth channel as input. Since we
believe that RGB input is fundamental for people recognition and trajectory
prediction, we also experimented with an adapted version of the model that
uses all the information from RGB-D frames (called Baseline+RGB).

3Dataset, splits, code, and features will be publicly released.
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Socially-aware models and auxiliary tasks. Firstly, to evaluate each
social task contribution, we experimented with single-GRU models equipped
with just one Socially-Aware task at a time (i.e., Risk-only or Compass-
only). Since the tasks deal with two different aspects of social navigation
(short-range and long-range), we then tried to combine them in a two-GRU
model (referred as to Social tasks). Finally, we combined our approaches
with the self-supervised auxiliary tasks presented in [195], which reported
state-of-the-art performance on PointGoal Navigation. We have thoroughly
investigated the benefit of combining them with single social tasks (Aux+Risk
and Aux+compass), as well as combining them all in our final model (So-
cial+Aux tasks). We now discuss our results and highlight the main takeaways.

Performance analysis and comparison to prior work. Table 5.1 re-
ports the social navigation performance (on the test set) for both Gibson4+
and HM3D-S. In both cases, Aux tasks appears as the strongest of our base-
lines (highest SPL and lowest Human-Collision for both datasets), reaching
comparable performances to single social task models while having a higher
SPL. Our initial hypothesis that integrating the Baseline with an RGB signal
could benefit performances was partially supported by the results on Gib-
son4+. However, the trend shifted on HM3D-S. This happens because of the
higher quality of scene reconstruction in Gibson4+ (scenes have been manually
rated and are among the best in the original Gibson dataset). Comparatively,
HM3D-S has more reconstruction errors that, while leaving depth-only policies
unaffected, may impair the performance of RGB-enabled models. Moreover,
we notice that both models that use just one Socially-aware task perform
similarly on Gibson4+ (sub 0.5% of difference between metrics). However,
this changes on HM3D-S, where Compass-only slightly outperforms Risk-only
(+1.1% Success, -0.93% h-collisions). This difference is expected since the
social compass task explicitly aims to deal with long-range social information.
Being HM3D scenes larger in size, the Social Compass role becomes more
important.

Adding self-supervised tasks significantly increases SPL and Success per-
formances (both for single-task and all Social-tasks models). It also appears
to positively affect Human Collision when combined with Risk (-1.52% in
Gibson4+, -2.47% in HM3D-S). We hypothesize that self-supervised tasks,
since they are either action-based contrastive tasks (CPC|A) or tasks that
try to retrieve the inverse dynamics of navigation (GID), help socially-aware
models to have smoother trajectories thanks to a more accurate linear and
angular velocity dialing. This claim will be substantiated by the fine-grained
analysis reported in the next section. Overall, the best results are obtained
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by combining all tasks together in the same model.

5.4.2 Fine-grained evaluation
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Figure 5.5: Confusion matrix obtained from the questionnaire, normalized
for each true label.

Encounter evaluation (human studies) For our fine-grained evaluation
we used a fixed set of hard-coded Inclusion Rules, based on the relationship
between agent and people’s dynamics, to determine to which class an encounter
belongs to. To investigate possible overlaps/ambiguity between classes, we
conducted a survey to collect classification data from 15 human subjects
through a multiple-choice questionnaire.

After explaining each encounter class through an informal definition, each
participant was asked to classify 200 encounters. Each encounter was presented
as a GIF with the target person highlighted in red (for some examples, see
the video file).

Questionnaire results. Since we are mainly interested in per-class ambigu-
ity, we show in Figure 5.5 the confusion matrix with row-wise normalization
(per ground-truth label).
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(d) Person following

Figure 5.6: ALV and AD curves of top models for each encounter class.

On average, the participants can clearly distinguish encounters belong-
ing to Person following, Blind corner and Frontal approach. However, the
intersection class is ambiguous and an encounter belonging to this class can
be sometimes mistaken for either Frontal Approach or Person Following.
This is expected since the main difference between these classes is the angle
between the agent’s and person’s trajectories and the intersection class is in
between the other two. This makes it hard for the naked eye to distinguish an
intersection encounter unless the angle of intersection is very close to π

2
. This

problem could be mitigated by narrowing the ∆slack angle but this causes far
to many intersections to be excluded from any class. We decided to priorities
coverage over disambiguation by choosing ∆slack to be just slightly lower than
π
4
.

We report the results obtained on the Gibson4+ dataset by applying
our evaluation protocol (defined in Section 5.2) to understand better how
each model operates and their attitude towards social interactions. Figure
5.7 summarizes the statistics, in terms of number of encounters and ESR,
collected for each encounter class by different models during 500 randomly
sampled validation episodes.

Policy behavior analysis. Looking at the relationships between the num-
ber of encounters and ESR figures, there seem to be two types of policies: a
first group with a high number of encounters and a high ESR, and a second
group that tends to avoid encounters and has low/medium ESR. Those two
types describe different approaches to social navigation: either risking to
interact to access potentially more efficient routes to the goal or keeping a
safe distance from humans (for example, prioritizing less populated areas,
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Figure 5.7: Number of encounters vs ESR for all the models.

waiting for people to move away before crossing a room).
An example of a policy that avoids encounters is Risk only, which has

one of the lowest ESR for Following (74.11%) and Intersection class (86.85%)
and the lowest number of encounters (188 in total). The opposite is true for
Compass only, which has a high overall ESR for every encounter class and one
of the highest numbers of encounters (279 in total). It is interesting to note
how the two best-performing policies, Social tasks and Social+Aux, adopt each
of these different approaches while remaining comparable in coarse-grained
metrics.

Reacting to sudden danger. A critical ability that a social policy must
possess is the capability to react to immediate and sudden danger in situations
with limited visibility. The class of encounters that better represents this
is the blind corner class. To investigate how our two best models react
compared to the baseline, in Figure 5.8, we plotted the AD and ALV values at
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Figure 5.8: Average Distance (on the left) and Linear Velocity curves (on the
right) for the Blind-Corner class.

a percentage of completion of all blind corner encounters. We can notice how
the ALV curves are not smooth, reflecting uncertainty and high risk. However,
while the baseline needs to brake and backtrack (≈ -0.5 ALV between 20%
and 40% of the episodes), the other models tend to maintain a positive and
proportionate ALV velocity throughout the episode. We can also notice that
the Social+Aux ALV curve is smoother than the one of Social tasks. The
same phenomenon is true for each single socially-aware task model and their
self-supervised task counterpart (see supplementary material). This supports
the claim that self-supervised tasks provide a smoothing effect on action
dynamics under uncertainty.

In Figure 5.6, we show the AD and ALV curves for the Social-tasks and
Social+Aux models.

General class trends. AD curves are shaped similarly across different
classes. However, Person Following has a higher minimum (≈ 1.4m) since
the agent and the person are heading in the same direction and not towards
each other. This means that the agent does not need to slow down and then
accelerate again after avoiding a collision but can maintain a cruising velocity
that allows them to maintain a safe distance. This trend is shown by the
corresponding ALV curves that are not bell-shaped but increase over time
and are always above 0.

Top models comparison. In general, Social+Aux maintains a higher
AD, for most of the time, than Social-tasks in all classes. This reflects the
results obtained on ESR metrics since maintaining a safe distance deals higher
chances of survival.

In turn, in situations where the agent and the person have parallel trajec-
tories (i.e., during Person following and Frontal approach), this policy has a
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lower ALV (in particular for the Frontal encounter, we have a negative ALV
peak, suggesting that this policy generally yields and lets the person move
out of the way). This happens because, in such situations, lower velocity
and yielding is usually a safer strategy. Instead, during Blind corner and
Intersection, a viable option could be accelerating and getting away from
danger as fast as possible.
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Figure 5.9: Comparison of Blind-corner ALV curves with each Socially-Aware
task combination and the respective model with aux tasks added.

Smoothing effect of self-supervised auxiliary tasks. In Figure 5.9, we
compared Blind-corner ALV curves for each policy that uses either single or
a combination of Socially-Aware tasks and the corresponding models with
self-supervised auxiliary tasks. We can notice the smoothing effect in every
instance, even though it is less noticeable for Risk-only. It is particularly
effective on Compass-only, a policy that behaves poorly on Blind-corner
(reflected by the corresponding ESR value) because it considers just the long-
range aspects of social information and not the short-range ones, particularly
useful when dealing with unexpected danger.
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Figure 5.10: Two success cases: a frontal encounter (top) and an intersection
encounter (bottom).

Qualitative results. Figure 5.10 shows two qualitative examples of success-
fully managed encounters in Gibson4+. The first example (on top) depicts a
Frontal encounter. After seeing people (first frame), the agent moves to the
side and yields, letting them move away (second frame). Finally, the agent
can reach the goal (third frame). In the second example (an intersection
encounter), The agent sees a pedestrian (first frame), then it yields, letting
the pedestrian pass (second frame), and finally, it continues on its path.
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5.5 Conclusion

We introduced a model for Embodied Social Navigation based on two Socially-
Aware tasks. Our experiments show that exploiting social signals, alone or
in combination with self-supervised auxiliary tasks, is an effective strategy
in complex and crowded scenarios. Our model can avoid the majority of
encounters by using only Socially-Aware tasks. Furthermore, by combining
Socially-Aware and auxiliary tasks [194], it can prevent human collisions in
almost all the cases, despite a higher number of encounters. However, a major
limitation of our setup, and more broadly of the Embodied Social Navigation
task, resides in the simple movement of pedestrians. In future works we would
like to focus on simulating more natural human behaviors and to experiment
on sim2real domain transfer.
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Chapter 6

Deep Symbolic Learning:
Discovering Symbols and Rules
from Perceptions

In this chapter, we present an end-to-end framework [54] by which an agent
can jointly learn perception and symbolic functions while supervising only the
final output (R4). This is the first architecture able to learn both perception
and symbolic functions in an end-to-end fashion. As stated in Chapter 1,
this kind of architecture could potentially be very useful in Embodied AI to
directly learn symbolic properties about environments during exploration.

6.1 Introduction
1Neuro-Symbolic (NeSy) Systems combine deep neural networks and symbolic
reasoning so that learning and reasoning can occur in a symbiotic fashion.
The fundamental goal of NeSy systems is to incorporate and potentially
learn the symbolic rules while still exploiting neural networks (NNs) for
interpreting perception and guiding exploration in the combinatorial search
space. In general, a NeSy system can be seen as a composition of perception
functions and symbolic functions. Perception functions map perception,
usually represented as real-valued tensors, to symbols, whereas symbolic
functions map symbols to other symbols. The first challenge to any NeSy
system is to reconcile the dichotomy between the intrinsically discrete nature
of symbolic reasoning and the implicit continuity requirement of gradient
descent-based learning methods. Recent works have tried to resolve this

1A. Daniele, T. Campari, S. Malhotra, L. Serafini. "Deep Symbolic Learning: Discov-
ering Symbols and Rules from Perceptions". Under submission.

95
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problem by exploiting different types of continuous relaxations to logical rules.
However, with few exceptions, most such works assume the symbolic functions
to be given a priori, and they use these functions to guide the training of a
perception function, parameterized as a NN. A key challenge to such systems
is the lack of a method capable of performing symbolic manipulations and
meaningfully associating symbols to perception inputs, also known as the
Symbol Grounding Problem [75].

In this chapter, we introduce the concept of NeSy-function, i.e., a compo-
sition of a set of perception and symbolic functions. Moreover, we propose
Deep Symbolic Learning (DSL), a framework that can jointly learn perception
and symbolic functions while supervised only on the NeSy function. This is
done by introducing policy functions, similar to Reinforcement Learning (RL)
[161], within the neural architecture. The policy function chooses internal
symbolic representations to be associated with the perception inputs based on
the confidence values generated by the neural networks. The selected symbols
are then combined to form a unique prediction for the NeSy function, while
their confidences are interpreted under fuzzy logic semantics to estimate the
confidence of such a prediction. Moreover, DSL can learn symbolic functions
by applying the same policy to select their outputs. The key contributions of
DSL are:

• Learning the symbolic and the perception function through supervision
only on the NeSy function. To the best of our knowledge, DSL is
the first NeSy system that can simultaneously learn symbolic and
perception functions in an end-to-end fashion, from supervision only
on their composition. It has been shown that previous such claims
[173] contained some form of label leakage leading to supervision on
the individual perception functions [34], and the system completely
fails (with 0% accuracy on visual-sudoku task) when supervision on the
perception function is removed. Furthermore, later works on this idea
rely on clustering-based pre-processing [165] and do not constitute an
end-to-end system.

• Symbol Grounding Problem (SGP) refers to the problem of associating
symbols to abstract concepts without explicit supervision [75] on this
association. The SGP is considered a major prerequisite for intelligent
agents to perform real-world logical reasoning. Recent works [34] have
also provided extensive empirical evidence on the non-triviality of this
task, even on the simplest of problems. In DSL we can create internal
(interpretable) symbolic representations that are then associated to
perception inputs (e.g., handwritten digits) while getting supervision
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only on higher order operations (e.g., the sum of the digits). Further-
more, unlike previous works [165], DSL does not rely on clustering
based pre-processing. This is important as such pre-processing informs
the system about the number of symbols, whereas DSL can infer the
number of required symbols and create meaningful associations between
symbols and perception inputs.

• Differentiable Discrete Choices. DSL is the first NeSy architecture
that provides a method for making discrete symbolic choices within
an end-to-end differentiable architecture. It achieves this by exploiting
a policy function that given confidence values on an arbitrarily large
set of symbols, is able to discretely choose one of them. Furthermore,
the policy function can be changed to exploit varying strategies for the
choice of symbols.

Finally, we provide extensive empirical verification of the aforementioned
claims by testing DSL on three different tasks. Firstly, we test our system on
the MNIST [100] Sum task [109], with an extension that no prior knowledge is
given on the addition rules (see Example 1). We also test DSL with no prior
information on the number of required internal symbols. DSL is able to select
the required number of symbols and correctly associate them to perception
inputs while learning the summation rules. DSL provides competitive results,
even in comparison to systems that exploit prior knowledge. In the second
experiment (see Example 2), we further generalize the first problem by adding
an additional handwritten image of an elementary operation (+,−,×,÷) to
the two MNIST digits, with the label being the result of the operation on the
digits. DSL is correctly able to learn the perception functions recognising
the digits and the operations, and is able to learn the symbolic rules for each
of the elementary operations. Finally, in the third experiment (see Example
3), we provide a sequence of handwritten digits of 0’s and 1’s, and the task
is to learn the perception functions for recognizing the digits and to learn
the symbolic rule for parity of the sequence. DSL is able to learn both the
perception function for recognizing digits and the symbolic function for parity.

NeSy has emerged as an increasingly exciting field of AI, with several di-
rections [22]. Approaches like Logic Tensor Networks [15] and Semantic-Based
Regularization [60] encode logical knowledge into a differentiable function
based on fuzzy logic semantics, which is then used as a regularization in the
loss function. Semantic Loss [187], also aims at guiding the NN training
through a logic-based differentiable regularization function based on proba-
bilistic semantics, which is obtained by compiling logical knowledge into a
Sentential Decision Diagram (SDD) [55]. In comparison to DSL these ap-
proaches assume that the symbolic function is already given and is not learned
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from data. Furthermore, the symbolic function is only used to guide the
learning of the perception function and does not influence the NN predictions
at test time.

A parallel set of approaches incorporates NN’s as atomic inputs to the
conventional symbolic solvers. DeepProbLog [109], a neural extension to
ProbLog [26], admits neural predicates that provide the output of an NN,
interpreted as probabilities. The system then exploits SDDs enriched with
gradient semirings to provide an end-to-end differentiable system for learning
the NN and the program parameters simultaneously. Recent works have aimed
at providing similar neural extensions to other symbolic solvers. DeepStochLog
[182] and NeurASP [193] provide such extensions to Stochastic Definite Clause
Grammars and Answer Set Programming respectively. In comparison to the
regularization-based approaches, these approaches are able to exploit the
symbolic function at the inference time. However, they also assume the
symbolic function to be given. NeSy methods like NeuroLog [167], ABL
[53] and ABLSim [81] are based on abduction-based learning framework,
where the perception functions have supervision on assigning symbolic labels
to perception data. However, the reasoning framework provides additional
supervision to make the perception output consistent with the knowledge
base i.e., the symbolic function.

Another paradigm of NeSy integration consists of works that aim at
learning the symbolic function, with either no perception component or with
supervision on the perception function. Neural Theorem Prover [140] uses
soft unification to learn symbol embeddings to correctly satisfy logical queries.
Logical Neural Networks [139] is a NeSy system that creates a 1-to-1 mapping
between neurons and elements of a logical formulae. Hence, treating the entire
architecture as a weighted real-valued logic formula. SATNet [173] aims to
learn both the symbolic and perception functions. It does so by encoding
MAXSAT in a semi-definite programming based continuous relaxation, and
integrating it into a larger deep learning system. However, it has been shown
that it can only learn the symbolic function when supervision on perception is
given [34]. [165] extends SATNet to learn perception and symbolic functions,
aiming at resolving the symbol grounding problem in SATNet. This extension
relies on a pre-processing pipeline that uses InfoGAN [45] based latent space
clustering. Besides not being end-to-end, their method assumes that the
number of symbols (i.e., the number of digits in their experiments) is given
apriori. [13] is another approach that exploits latent space clustering for
extracting symbolic concepts. Furthermore, they assume the number of
symbols and the logical rules to be given apriori. In DSL, only an upper
bound needs to be provided on the number of required symbols. If the amount
of symbols provided is higher than the correct one, it learns to ignore the
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additional symbols, mapping the perceptions to only the required number of
symbols.

Most of the NeSy systems in literature have distinct perception and
symbolic components. To the best of our knowledge, none of these systems
can learn both the components from supervision provided only on their
composition. In DSL, we provide an approach that is able to learn both the
symbolic functions and the perception functions separately, from supervision
only on their composition. Furthermore, the symbols required to create the
rules are created internally and are associated to perception within a unique
NN learning pipeline. In comparison to the SOTA NeSy methods, DSL is
the first end-to-end NeSy system to resolve a non-trivial instance of both the
symbol grounding problem and rule learning from perception.

6.2 Background

Notation. We denote sets with math calligraphic font and its elements
with corresponding indexed lower case letter, e.g., S = {si|∀i ∈ N, 0 < i ≤ k},
where k = |S| is the cardinality of the set. Tensors are denoted with capital
bold letters (e.g. G) and the [. . . ] operator is used to index values in a tensor.
For instance, given a matrix G ∈ R10×10, the element G[1, 2] corresponds
to the entry in row 1 and column 2 of G. Similar to python syntax, we
introduce the colon symbol for indexing slices of a tensor. As an example,
G[1, :] corresponds to the vector ⟨G[1, 1], . . . ,G[1, 10]⟩. We use a bar on top
of functions and elements of a set to denote a tuple of functions and elements,
respectively. For instance, s̄ = f̄(x̄) is equivalent to:

(s1, . . . , sn) = (f1(x1), . . . , fn(xn))

Note that the length n of the tuple is omitted from the bar notation since it
will always be clear from the context.

Fuzzy Logic. Fuzzy Logic is a multi-valued generalization of classical logic,
where truth values are reals in the range [0, 1]. In this work, we will only be
dealing with conjunctions, which in fuzzy logic are interpreted using t-norms.
A t-norm t : [0, 1]× [0, 1]→ [0, 1] is a function that, given the truth values t1
and t2 for two logical variables, computes the truth value of their conjunction.
In this chapter, we will exploit Gödel t-norm, which defines the truth value
of a conjunction as the minimum of t1 and t2.
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6.3 Problem Definition

Our approach to NeSy can be abstractly described as the problem of jointly
learning a set of perception and symbolic functions providing supervision only
on their composition. We define X to be the space of possible perception
inputs. Given a finite set S of discrete symbols, a perception functions
f : X → S maps from X to symbolic output in S. We define a symbolic
function, g : Sn → S, that maps an n-tuple of symbols to a single output
symbol. We will also consider g with a typed domain, i.e., given some sets
of symbols S1, ...,Sn and S, g could map from S1 × · · · × Sn to S. Finally,
we define a NeSy functions ϕ : X n → S as a composition of perception
and symbolic functions. In this chapter, we will provide supervision only on
the NeSy-function through a training set Tr of the form Tr =

{(
x̄i, yi

)}m

i=1
,

where yi = ϕ(x̄i) and m is the dimension of the training set. The goal is
learning both the NeSy function and its components. NeSy-functions can
constitute arbitrary compositions of symbolic and perception functions. In
this chapter we consider two such cases, namely Direct Nesy function, and
Recurrent NeSy function.

Definition 6.3.1 (Direct NeSy function). Let g : S1 × · · · × Sn → S be a
symbolic function and fi : X → Si, for i = 1, . . . , n be n perception functions.
A Direct NeSy-function is defined as the composition of g with the fi

ϕ(x1, . . . , xn) = g(f1(x1), . . . , fn(xn)) (6.1)

Example 1 (Direct NeSy-function - Sum task). Let S1 and S be the following
set of symbols: S1 are the integers from 0 to 9 and S is the set of integers
from 0 to 18. Let us have a training set, consisting of tuples (x1, x2, y) where
x1 and x2 are images of handwritten digits and y is the result of adding the
digits x1 and x2. Our goal is to learn the Direct NeSy-function:

ϕ(x1, x2) = g(f(x1), f(x2))

where f is handwritten digit classifiers. Hence, our goal is to learn f and g
with supervision provided only on g(f̄(x̄)).

Example 2 (Direct NeSy-function - Multiop sum task). Let S1, S2, and
S be the following set of symbols: S1 are the digits from 0 to 9, S2 is the
set of symbols with four mathematical operations, {+,−,×,÷} and S is the
set of integers from 0 to 81. Let us have a training set, consisting of tuples
(x1, x2, x3, y) where x1 and x3 are handwritten digits, x2 is a handwritten
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operator and y is the result of applying the operator to x1 and x3. Our goal
is to learn the Direct NeSy-function:

ϕ(x1, x2, x3) = g(f1(x1), f2(x2), f1(x3))

where f1 are handwritten digit classifiers and f2 is a classifier for handwritten
mathematical operations. Again, our goal is to learn f1, f2, and g from
g(f̄(x̄)) with no direct supervision on g and f̄ .

As a second type of composition we will consider Recurrent NeSy functions,
i.e., NeSy functions defined recursively. In general, it is possible to define
complex types of recurrent compositions involving multiple perception and
symbolic functions. In this work we focus on the simplest version of Recurrent
NeSy-function that takes in input a non empty sequence of perceptions and
returns a single output symbol.

Definition 6.3.2 (Simple Recurrent NeSy-function). Let g : S × S → S be
a symbolic function and f : X → S be a perception function. Moreover, it
is given an ordered list of perceptions X = {x(k)}Kk=1, with x(k) ∈ X . We
define X(k) as the sequence of first k elements of X. A Simple Recurrent
NeSy-function ϕ is defined recursively as:

ϕ(X(k)) = g(f(x(k)), ϕ(X(k−1)))

ϕ(X(0)) = s(0) ∈ S

Example 3 (Simple Recurrent NeSy-function). Let S = {s0, s1} be a set
composed of two symbols, representing binary values, and ϕ(X) the Simple
Recurrent NeSy function which represents the parity function, i.e., the function
that returns s0 if the number of s1 in the sequence is even, s1 if it is odd.
ϕ(X) can be expressed in terms of a perception function f and a symbolic
function g using previous definition of Simple Recurrent NeSy function: the
f converts the perceptions in binary values, while the g represents the XOR
operator, with s(0) = s0.

6.3.1 Policy Functions

In this chapter we will exploit the concept of policy functions inspired by
Reinforcement Learning (RL). In RL, an agent has at its disposal a set of
available actions, and at each time frame only one action can be performed.
The goal is to select actions that maximize the expected reward. A strategy
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Figure 6.1: Architecture of Deep Symbolic Learning for the Sum task. Red
arrows represent the backward signal during learning.

for choosing the actions, based on the current state of the system, is called a
policy. In this work we consider two specific policies, namely the greedy and
the ϵ-greedy, and we adapt them to the context of NeSy. In our setting, a
policy selects a symbol instead of an action, and it is defined as a function
π : [0, 1]|S| → S that, given a vector t ∈ [0, 1]|S|, returns a symbol si ∈ S.
Intuitively, t is a vector of confidences returned by a neural network, which
in our framework are interpreted as a vector of fuzzy truth values. Formally,
ti corresponds to the truth value of the proposition (si = s∗), where s∗ is the
correct (unknown) symbol. Moreover, we define the function µ : [0, 1]|S| →
[0, 1] as the function that returns the truth value of the symbol chosen by the
policy.

The greedy policy selects the symbol with highest truth value: π(t) =
argmaxiti. The function µ returns the corresponding truth value: µ(t) =
maxiti. DSL exploit the differentiability of µ to indirectly influence the policy
π, which is not differentiable. In the case of the greedy policy, by decreasing
the highest confidence (µ(t)), we reduce the chances for the current symbol
to be selected again.

ϵ-greedy behaves like the greedy policy with probability 1 − ϵ, while it
chooses a random symbol with probability ϵ. The advantage of ϵ-greedy over
greedy is a better ability to explore the solutions space. In our experiments,
we use ϵ-greedy during training, and greedy policy at test time.
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6.3.2 DSL for Direct NeSy-functions

For sake of presentation, we first assume symbolic functions to be given, and
our goal is to learn the perception functions. We will then extend DSL to
learn also the symbolic function.

We first define the representation of the perception functions fi : X → Si
and the symbolic function g. W.l.o.g., we assume that symbols in any
set Si are represented by integers from 1 to |Si|. The symbolic function
g : S1×· · ·×Sn → S is stored as a |S1|×· · ·×|Sn| tensor G, where G[s1, . . . , sn]
contains the integer representing the symbolic output of g(s̄). Every perception
function fi : X → Si is modelled as π(Ni), where Ni : X → [0, 1]|Si| is an
neural network (NN), and π : [0, 1]|Si| → Si is a policy function. For every
x ∈ X , Ni(x) is an |Si|-dimensional vector t̄i ∈ [0, 1]|Si| whose entries sum to 1.
Intuitively, the lth entry in t̄i represents the predicted truth value associated
with the lth symbol being the output of fi(x). The policy function π makes a
choice and picks a single symbol from Si based on t̄i. In summary, our model
is defined as:

ϕ′(x̄) = G[π(N1(x1)), . . . , π(Nn(xn))]

where ϕ′ is the learned approximation of target function ϕ.

Example 4 (Example 1 continued). We assume the same setup as Example
1, with an addition that fi(xi) is π(Ni(xi)) (with i ∈ 1, 2), as presented above.
Let the prediction of f1 and f2 be the integers 3 and 5 respectively. In this
context, G is a matrix that contains the sum of every possible pair of digits,
so that G[i, j] = i+ j. Therefore, the prediction is: ϕ′(x̄) = G[3, 5] = 8.

6.3.3 Learning the Perception Functions

In example 4, if one of the two internal predictions were wrong, then the
final prediction 8 would be wrong as well. Hence, we define the confidence of
the final prediction to be the same as the confidence of having both internal
symbols correct simultaneously. In other words, we could consider the output
ϕ′(x̄) of the model to be correct if the following formula holds for all perception
input xi: (

π(N1(x1)) = s∗1
)
∧ · · · ∧

(
π(Nn(xn)) = s∗n

)
(6.2)

where s∗i is the (unknown) ground truth symbol associated to perception
xi. We interpret formula in Equation 6.2 using Gödel semantics, where the
conjunctions are interpreted by the min function. We use t∗i to denote the
truth value (or the confidence) given by the NN for the symbol selected by π,
i.e., t∗i = µ(Ni(xi)). Hence, the truth value t∗ associated to the final prediction
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Figure 6.2: Architecture of Deep Symbolic Learning for the simple recurrent
NeSy functions.

ϕ′(x̄) is given as:
t∗ = mini t

∗
i = mini µ(Ni(xi))

To train the model we use the binary cross entropy loss on the confidence
t∗ of the predicted symbol. If it is the right prediction, the confidence should
be increased. In such a case, the ground truth label is set to one. If ϕ′(x̄) is
the wrong prediction, the confidence should be reduced, and the label is set
to zero. In summary, the entire architecture is trained with the following loss
function:

L = −
∑

(x̄,y)∈Tr

l · log(t∗) + (1− l) · log(1− t∗)

where l = 1(ϕ′(x̄) = y), and 1 is the indicator function. The architecture is
summarized in Figure 6.1, where we show an instance of DSL in the context
of Example 1.

6.3.4 DSL for Recurrent NeSy-functions

Simple recurrent NeSy function is recursively defined as:

ϕ′(X(k)) = G[π(N(x(k))), ϕ′(X(k−1))]

ϕ′(X(0)) = π(σ(W0))

where W0 ∈ R|S| is the set of weights associated to the initial output symbol.
Again, we define t∗ = minit

∗
i as the minimum among the truth values of the

internally selected symbols. It is worth noticing the similarity between the
DSL model and the equation 6.3.2. In general, a DSL model can be instantiate
by following the same compositional structure of the NeSy function we want
to learn, applying the policy when a value is expected to be symbolic. The
architecture is presented in Figure 6.2.
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6.3.5 Learning Symbolic Functions

So far we have assumed the symbolic function g to be given. We now lift this
assumption and define a strategy for learning the g. The idea comes from a
simple observation: for each tuple s̄ there exists exactly one output symbol
g(s̄). Note that the mechanism introduced to select a unique symbol from
the NN output can be also used for selecting propositional symbols, i.e. static
symbols that do not depend on the current perceptions. We use the policy
functions on learnable weights, allowing to learn the symbolic rules directly
from the data.

Formally, we define a tensor W ∈ R|S1|×···×|Sn|×|S| as the weight tensor of
G. Note that the tensor shape is the same as G, except for the additional final
dimension, which is used to store the weights for all of the output symbols.
The entry in G corresponding to tuple s̄ is defined as:

G[s̄] = π(σ(W[s̄, :]))

where the softmax function σ and the policy π are applied along the last
dimension of W. The method is summarized by Figure 6.3.

Figure 6.3: Tensor W is used by the policy to generate tensor G. This is done
by applying the policy on the output dimension (vertical axes in the image),
selecting a single output element for each pair of symbols (s1, s2) ∈ S1 × S2.

Since the tensor G is now learned, we need to consider the confidence
associated with the choice of symbols in G. The confidence of the final
prediction is now defined as

t∗ = min(t∗G,mini t
∗
i )

where t∗G is the confidence of the output symbol for the current prediction:

t∗G = µ(σ(W[s̄, :])

with s̄ = π(N̄(x̄)) corresponding to the tuple of predictions made by the
perception functions.
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6.3.6 Gradient Analysis for the Greedy Policy

We analyze the partial derivatives of the loss function with respect to the
truth values t∗i . We consider only a single training sample, and assume that
the policy is the greedy one.

∂L
∂t∗i

= −l ∂ log(t
∗)

∂t∗i
− (1− l)

∂ log(1− t∗)

∂t∗i

= − l

t∗
∂t∗

∂t∗i
+

1− l

1− t∗i

∂t∗

∂t∗i

Now, since t∗ is the minimum of all {t∗j}j , the term ∂t∗

∂t∗i
is 1 if ti is the minimum

value in {t∗j}j and 0 otherwise, reducing the total gradient to the following
equation :

∂L
∂t∗i

=

{
− l

t∗
+ 1−l

1−t∗
i = argminj t

∗
j

0 otherwise

For each sample, only one confidence value t∗i has a gradient different from
zero, meaning that a single perception function is updated. This behavior
is shown in Figure 6.1 by using red arrows to represent the backward signal
generated by the backpropagation algorithm. The signal moves from the loss
to f1, which corresponds to the symbol with lower confidence, and when it
reaches the softmax function (σ), it is spread to the entire network. In DSL,
we have not only interpretable predictions, but gradients are interpretable as
well. Indeed, for each sample, there is a unique perception function fi taking
all the blame (or glory) for a bad (or good) prediction of the entire model ϕ′.

We evaluate our approach on different tasks where a combination of
perception and reasoning is essential. Our goal is to demonstrate that: i) DSL
can learn the NeSy function, while simultaneously learning the two components
f and g, in an end-to-end fashion (MNIST sum); ii) The perception functions
fi learned on a given task are easily transferable to new problems, where the
symbolic function g has to be learned from scratch, with only a few examples
(MNIST Minus - One-Shot Transfer); iii) DSL can learn multiple symbolic
functions at once (MultiOperation MNIST); iv) DSLcan also be generalised
to problems with a recurrent nature (MNIST visual parity).

Evaluation Metrics Our goal is to evaluate DSL’s efficacy for learning
the NeSy function ϕ, the perception functions fi and the symbolic function g.
However, this poses a problem: the symbols associated to perception inputs in
DSL are internally generated and form a permutation invariant representation.
Any permutation of the symbols leads to the same behavior of the model,
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given that the same permutation is applied to the indices of the tensor G.
Hence, to evaluate the model on learning of g and fi, we need to select a
permutation that best explains the model w.r.t the “human” interpretation of
symbols for digits. The problem is highlighted in Figure 6.4(left), where the
confusion matrix of the MNIST digit classifier is introduced. Note that for
each row (digit), only one column (predicted symbol) has a high value. The
same is true for the columns. The network can recognize and distinguish the
various digits, but the internal symbols are randomly assigned. This problem
leads to difficulty in accessing the quality of DSL results, as we cannot easily
interpret the mapping learned by the model. To obviate this problem, we
calculate the permutation of columns of the confusion matrix which produces
the highest diagonal values (Figure 6.4(right)). We then apply the same
permutation on the confusion matrix and G, allowing us to apply the chosen
metrics for both digits (we use F1) and learned G (accuracy on the learned
rules). In all of our experiments, tensor G is perfectly learned, i.e., we have
an accuracy of 100% on the learned rules. For this reason, we will omit this
metric in the next sections.

Figure 6.4: Confusion matrix for the MNIST digits: (left) before the permu-
tation; (right) after permutation.

Implementation Details All the experiments were conducted with a
machine equipped with an NVIDIA GTX 1070, with 8GB RAM. We used the
Cuda toolkit 11.3, Python3.8, and PyTorch1.12.0. For digit classification, we
use the same CNN as [109], which consists of two convolutional layers with
MaxPool, followed by two linear layers. Between one layer and another, we
used the ReLU activation function and, on the final features of the model,
the SoftMax function to extract the truth values of the symbols. We used
MadGrad [57] for optimization, with a learning rate of 0.1. Results are average
over 5 runs. Finally, in all experiments, we used the ϵ-greedy policy with
ϵ = 0.2 during training and the greedy policy during inference.
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Accuracy (%) F1 (%) TE/#E
NAP 97.3± 0.3 - -
DPL 97.2± 0.5 - -
DStL 97.9± 0.1 - -
DSL 98.8± 0.3 97.9± 0.6 1.35s/30
DSL-NB 97.9± 0.3 97.4± 0.5 1.39s/150
DSL-RN 98.8± 0.1 97.8± 0.2 21.65s/150

Table 6.1: Results obtained on the MNIST sum task. TE is the time required
for 1 epoch, and #E the number of epochs of training. The SOTA methods
are NeurASP (NAP), DeepProbLog (DPL), and DeepStochLog (DStL). SOTA
results taken from [182].

MNIST Sum The first experiments are on the MNIST sum task as pre-
sented in Example 1. We are given a dataset consisting of triples (X, Y, Z),
where X and Y are two images of hand-written digits, while Z is the result
of the sum of the two digits, e.g., ( , , 8). The goal is to learn an image
classifier for the digits and the function g which maps digits to their sum.
We implemented three different variants of our approach: DSL is the naive
version of DSL, where the two digits are mapped to symbols by the same per-
ception function, and the correct number of digits is given a priori; DSL-NB
is a version of DSL where we removed the two aforementioned biases: we
use two different neural networks, N1 and N2, to map perceptions to symbols,
and the model is unaware of the right amount of latent symbols, with the
neural network returning confidence on 20 symbols instead of 10; finally, in
DSL-RN we use the same setup of DSL, but with a ResNet9 backbone
instead of the CNN.

In table 1, we show that all variants of DSL have competitive performance
w.r.t the state of the art[193, 182, 109]. Notice that all the SOTA methods
receive a complete knowledge of the symbolic function g, while DSL needs
to learn it, making the task much harder. Another important result is the
accuracy of the DSL-NB method, which proves that DSL can work even with
two perception networks and, most importantly, without knowing the right
amount of internal symbols. Finally, results on DSL-ResNet show that DSL
can work even with more complex perception networks.

MNIST Minus - One-Shot Transfer One of the main advantages of
NeSy frameworks is that the perception functions learned in the presence
of a given knowledge (g in our framework) can be applied to different tasks
without retraining, just by changing the knowledge. For instance, after
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learning to recognize digits from supervision on the addition task, methods
like DeepProblog can be used to predict the difference between two numbers.
However, it is required for a human to create different knowledge bases for
the two tasks. In our framework, the g function is learnable, and the mapping
from perception to symbols does not follow human intuition (see Evaluation
Metrics section). Instead of writing a new knowledge for the Minus task,
we replace the tensor G with a new one and learn it from scratch. In our
experiment, we started from the perception function learned from the Sum
task and used a single sample for each pair of digits to learn the new G. We
obtained an accuracy of 98.1± 0.5 after 300 epochs, each requiring 0.004s.
Note that we did not need to freeze the weights of the f . Since the perception
functions already produce outputs with high confidence, DSL applies changes
mainly on the tensor G.

MNIST MultiOperation We now generalize the MNIST Sum task by
adding additional operators as perception inputs, as described in Example 2.
The perceptions are two images from the MNIST dataset and a third symbol
representing an operation in {+,−,×,÷}. The operation’s images are gener-
ated from the EMNIST dataset [49], from which we extracted the images of
letters A, B, C, and D, representing +, −, ×, and ÷ respectively. In order to
have the same codomain for all operators, we take these additional steps: we
necessitate in the dataset that for any instance with subtraction operator, i.e.,
“−”, the second term of the operation is smaller than the the first; “÷” is in-
terpreted as integer division (e.g. (5÷ 2 = 2)) and it requires the second term
to be greater than 0; “×” is interpreted as the product operation modulo 19.
Notice that the hypothesis space consists of 19400 possible symbolic functions
g. Furthermore, the correct g needs to be identified while simultaneously
learning the NNs for digit and operator recognition.

We trained DSL on this task and obtained an accuracy of 96.9± 0.3, with
an F1 of 97.4± 0.4 on the digits and 98.2± 0.2 on the letters. We trained our
model for 1000 epochs, with an epoch time of 1.29s. These results show that
DSL can learn complex symbolic functions while simultaneously learning to
map multiple perceptions over different domains.

MNIST Visual Parity We instantiate the model introduced in Figure 6.2
for the parity task (see Example 3). The perceptions are images of zeros and
ones from the MNIST dataset, and the neural network is the same CNN used
for the MNIST sum task (with 2 output symbols instead of 10).

Learning the parity function from sequences of bits is a hard problem
for neural networks, which struggle to generalize to long sequences. Indeed,
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it has been shown that conventional deep learning methods can not easily
learn the parity function [152]. Note that, in our setting, the parity function
corresponds to the symbolic function g, and learning the perception function
is an additional sub-task added by us. We use sequences with 4 images during
training and 20 on the test. In 1000 epochs (0.26s per epoch), DSL reaches
an accuracy of 98.7± 0.4, showing great generalization capabilities. Indeed,
as in the other tasks, DSL learned perfectly the function g, which corresponds
to the XOR function. Since the symbolic function always returns the right
prediction, the errors made by the model depend only on the perception
functions. If the perceptions are correctly recognized, the model works no
matter the length of the sequence.

6.4 Limitations

The key limitation of DSL is scalability, as the dimension of the hypothesis
space for the symbolic function g can become both complex and computation-
ally intractable. For instance, in the MultiOperation setting, we tried to run
the same experiments, using the multiplication instead of its module. In this
case, DSL remained stuck in a local minimum, unable to learn the perception
and symbolic functions: the perception network could not distinguish any
digit, mapping all of them to the same symbol. Similar behavior was observed
in the visual parity task, where DSL failed to escape from a local minima
when the sequence length was larger than four.

6.5 Conclusion

We presented Deep Symbolic Learning, a NeSy framework for learning the com-
position of perception and symbolic functions. To the best of our knowledge,
DSL is the first NeSy system that can create and map symbolic representa-
tions to perception while learning the symbolic rules simultaneously. A key
contribution of DSL is the integration of discrete symbolic choices within
an end-to-end differentiable neural architecture. For this, DSL exploits the
notion of policy deriving from RL. DSL can learn the perception and symbolic
functions while performing comparably to SOTA NeSy systems, where com-
plete supervision on the symbolic component is given. In the future, we aim
to extend DSL to problems with a larger combinatorial search space. To this
end, we aim to consider factorized matrix representations for the symbolic
function g, and its weight matrix W . Furthermore, we aim to generalize DSL
to more complex perception inputs involving text, audio, and vision.
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Conclusion

This thesis makes several contributions to Embodied AI. We started with four
different research questions (R1: How can an agent exploit common-sense
knowledge about the environments? R2: How can an agent reuse previously
acquired knowledge about a specific environment? R3: How can an agent
comply with social rules? R4: How can an agent acquire knowledge and
common-sense rules? ), and we gave a possible solution to the questions
through different works.

• In Chapter 2, we forced the agent to learn (and use) relations taken
from common-sense knowledge (R1), in particular, the subtle relation
between objects and rooms. To this end, we developed a model where
a shared embedding is injected into a Scene-Memory Transformer. We
evaluated our approach on the Matterport3D dataset and on a reduced
version designed to cope with the high computing demand required by
embodied agents. Our evaluation confirmed that the shared embedding
systematically improves performance over baseline methods.

• In Chapter 3 and 4, we provided two possible solutions on how to reuse
previously acquired knowledge about a specific environment (R2). In
particular, in Chapter 3, we defined a modular architecture for the
Object Goal Navigation task that takes advantage of the acquired
knowledge, stored in an abstract model, to relocate the agent across
different episodes and to localize the nearest occurrence of the goal object.
We evaluated our method on Matterport3D with the Habitat simulator,
and we found that this is effective. In Chapter 4, instead, we tackled a
long-horizon task, MultiON, always with a modular architecture. This
time, we recorded the acquired information in a semantic map. We
evaluated our approach on the HM3D dataset, and we found that for
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long-horizon tasks, storing knowledge in a map is sufficient to achieve
good performance.

• In Chapter 5, we presented an agent that exploits common-sense knowl-
edge (R1), by means of two Socially-Aware auxiliary tasks, and can
navigate cluttered environments while being aware of the notion of risk
(R3). We evaluated our agent on Matterport3D and HM3D. We found
that the method is effective under the standard evaluation metrics for
Embodied Social Navigation metrics. Furthermore, we conducted a
fine-grained analysis to better understand the agent’s performance when
an encounter with a human happens. In this experiment, our model is
more aware of human presence and can avoid dangerous encounters.

• In Chapter 6, we presented an end-to-end framework that can simulta-
neously learn symbols from perceptions and symbolic functions. This is
a preliminary work, but in the future a similar approach can be applied
also in an Embodied agent, to directly learn how to map perceptions to
symbols and to learn common-sense knowledge about an environment.

Future work may focus on reducing the gap between simulation and real-
world performance for trained agents. It can be challenging to transfer policies
learned in simulation to a real robot, so one potential direction is to conduct
experiments in both simulation and the real world to improve transferability.
Another possibility is to develop a general agent that can receive and execute
instructions in natural language. This agent would be able to handle a wide
range of tasks, such as the example given: "Go to the kitchen, grab a Coke
from the fridge, and bring it to me." To accomplish this, the instruction could
be transformed into an interpretable plan that the agent can understand,
such as:

• Go to <room> (in this case, the kitchen)

• Find <object> (the Coke)

• Grab <object>

• Go to <coordinate> (initial coordinate)

This plan involves several different capabilities that have been addressed in
previous work, including Embodied Social Navigation ("Go to <coordinate>")
and Object Goal Navigation ("Find <object>"). Tools like ChatGPT could
convert natural language instructions into a plan like the example above. By
developing a general agent with this type of functionality, it may be possible
to solve a vast array of tasks.
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This research activity has led to several publications in international confer-
ences. These are summarized below.

A.1 International Conferences and Workshops

1. T. Campari, P. Eccher, L. Serafini, L. Ballan. "Exploiting scene-
specific features for object goal navigation", European Conference on
Computer Vision, Glasgow, 2020, (ECCVW 2020)

2. T. Campari, L. Lamanna, P. Traverso, L. Serafini, L. Ballan. "Online
Learning of Reusable Abstract Models for Object Goal Navigation",
Proc. of IEEE/CVF Computer Vision and Pattern Recognition, New
Orleans, 2022 (CVPR 2022)

A.2 ArXiv Papers

1. M. Deitke, D. Batra, Y. Bisk, T. Campari, A. X. Chang, D. S. Chaplot,
C. Chen, C. Pérez D’Arpino, K. Ehsani, A. Farhadi, Li Fei-Fei, A.
Francis, C. Gan, K. Grauman, D. Hall, W. Han, U. Jain, A. Kembhavi,
J. Krantz, S. Lee, C. Li, S. Majumder, O. Maksymets, R. Martín-Martín,
R. Mottaghi, S. Raychaudhuri, M. Roberts, S. Savarese, M. Savva, M.
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Thomason, A. Toshev, J. Truong, L. Weihs, J. Wu. "Retrospectives on
the embodied ai workshop"

133



134 APPENDIX A. PUBLICATIONS

A.3 Under Submission

1. E. Cancelli*, T. Campari*, L. Serafini, A. X. Chang, L. Ballan. "Ex-
ploiting Socially-Aware Tasks for Embodied Social Navigation". Under
submission.1

2. S. Raychaudhuri, T. Campari, U. Jain, M. Savva, A. X. Chang.
"Modular-MON: Modular Multi-Object Navigation". Under submission.

3. A. Daniele, T. Campari, S. Malhotra, L. Serafini. "Deep Symbolic
Learning: Discovering Symbols and Rules from Perceptions". Under
submission.

A.4 Extra

1. 3rd place at the MultiON Challenge 2021 @ Embodied AI Workshop
(CVPR2021).

2. Visiting student at Simon Fraser University with A. X. Chang (2022).

3. Challenge organizer @ Embodied AI Workshop (CVPR2022)

4. Supervision of Master’s students on their thesis.

1* denotes equal contributions.


	Introduction
	Embodied AI
	Common-Sense Knowledge for EAI.
	Contributions

	Exploiting Scene-Specific Features for Object Goal Navigation
	Introduction
	Related Works
	Dataset
	Method
	Problem Setup
	Model

	Experimental Results
	Experimental setup
	Results

	Conclusion

	Online Learning of Reusable Abstract Models for Object Goal Navigation
	Introduction
	Related Works
	Preliminaries
	Object Goal Navigation
	Approach
	Abstract Model Reuse

	Implementation Details
	Evaluation Metrics

	Experiments
	Reusing Abstract Models
	Effects of Knowledge Accumulation
	Semantic Maps and Abstract Models
	Limitations and Failure analysis
	Qualitative examples

	Conclusion

	Modular Multi-Object Navigation
	Introduction
	Related Work
	MultiON 2.0 Dataset
	Modular-MON
	Experiments
	Multi-Object Navigation Task
	Metrics
	Baselines
	Results
	Transferability of Modular-MON
	Generalization of Modular-MON on n-ON
	Object Detection on Natural objects
	MultiON 2.0 distractors vs. no distractors
	Qualitative Results and Analysis
	Qualitative Examples

	Conclusion

	Exploiting Socially-Aware Tasks for Embodied Social Navigation
	Introduction
	An evaluation protocol for SocialNav
	Evaluation Protocol

	Method
	Policy Architecture
	Socially-Aware Tasks
	Implementation details

	Experiments
	Results
	Fine-grained evaluation

	Conclusion

	Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions
	Introduction
	Background
	Problem Definition
	Policy Functions
	DSL for Direct NeSy-functions
	Learning the Perception Functions
	DSL for Recurrent NeSy-functions
	Learning Symbolic Functions
	Gradient Analysis for the Greedy Policy

	Limitations
	Conclusion

	Conclusion
	Publications
	International Conferences and Workshops
	ArXiv Papers
	Under Submission
	Extra


