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A B S T R A C T   

Synthetic alumino-silicate glasses may yield inorganic polymers, through activation with alkali hydroxide so-
lutions. In this framework, we formulated a glass prepared by the melting of red mud from bauxite refinement, 
combined with coal combustion fly ash, discarded pharmaceutical glass and a minor addition of sodium car-
bonate. The activation with 6 M NaOH aqueous solution allowed for the manufacturing of highly porous foams, 
by gas generation at the early stages of gelation. These foams featured an extensive formation of zeolite at cell 
walls which, combined with the presence of magnetite formed upon cooling of the melt, favoured the application 
of the foams as sorbents for dye removal from contaminated water. The powders prepared by crushing the highly 
porous foams showed an excellent water purification ability documented by efficient removal of methylene blue 
used as a model contaminant. The specific iron oxide polymorph facilitated both magnetic recovery of dispersed 
powders and photocatalytic destruction of the dye under UV irradiation.   

1. Introduction 

Sustainable management of hazardous inorganic waste from various 
industrial operations relies on a delicate balance between stabilization 
costs and benefits [1]. Vitrification is generally recognized as a key 
strategy for the stabilization of pollutants in a highly chemically stable 
matrix, but it is capital and energy intensive. The obtainment of glassy 
wasteforms to be disposed in landfills is not typically justified for in-
dustrial waste, contrary to the nuclear waste, for which permanent 
immobilization of radioactive ions in the glass structure has an absolute 
priority over the cost and energy consumption. 

Vitrification studies on industrial waste, starting from the 1960’s, 
have been accompanied by ‘valorization’ efforts. Waste-derived glasses 
are thus not considered as a final product, but can be utilized as a 
feedstock for new glass-ceramic products, especially construction ma-
terials, in the form of foams (for thermal insulation) or dense tiles (for 
the replacement of natural stones, such as marble and granite) [1]. The 
main challenge is the generation of an additional revenue from the new 
products, as an adequate compensation for the cost of vitrification. Such 
compensations is hardly achieved, if the products do not possess an 
intrinsic value (expressed by excellent mechanical and/or functional 
properties) compared to products from conventional feedstock. In 

addition, the new product implies remarkable additional transformation 
costs [1]. 

When transformed into new construction materials, waste-derived 
glasses typically undergo a second thermal treatment which, despite 
several optimizations (e.g long nucleation and crystal growth treat-
ments, on bulk glass pieces replaced by fast sinter-crystallization of 
waste glass powders [1]), may impair the sustainability. The perspective 
of a ‘cold’ transformation, typical for alkali-activated materials [2], is 
then undoubtedly attractive as the means of reduction of transformation 
costs. 

The conversion of waste glasses into glass-ceramics may be simpli-
fied by the adoption of a reference chemical composition, such as that of 
famous ‘Slagsitalls’, from CaO–Al2O3–SiO2 glasses. Such standardization 
is helpful, since the particular formulation leads to a specified phase 
assemblage, favouring mechanical properties and chemical durability of 
the final products [1,3]. Glasses in the same compositional range may be 
obtained from a mixture of different wastes. Variations in the chemical 
composition of one constituent may be compensated by modifying the 
relative balance of the others [1]. 

To be considered for cold transformation, waste-derived glasses, the 
contents of oxides (alkali oxides, CaO, Al2O3 and SiO2) must differ from 
those in Slagsitalls, i.e. match those of ‘reactive’ synthetic alumino- 
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silicate glasses. These are prepared by melting the batches based mainly 
on feldspars and clays, and can be transformed by alkali activation into 
stable inorganic polymers with a zeolite-like, alkali alumino-silicate 
hydrate gel structure [4–6]. Previous investigations have already indi-
cated the possibility to synthesize a ‘reactive’ alumino-silicate glass from 
a mixture of wastes, comprising red mud from bauxite refinement, coal 
combustion fly ash and the glass from dismantled pharmaceutical vials 
[7]. 

Similarly to ‘reactive’ glasses, alumino-silicate waste may be also 
alkali activated and transformed into stable inorganic polymers with a 
zeolite-like, alkali alumino-silicate hydrate gel structure [8]. However, 
the transportation of inorganic waste, especially if it contains hazardous 
pollutants, is complicated and restricted by national and regional reg-
ulations. On the contrary, inert vitrified materials may be transported 
easily. In addition, the formation of inorganic polymers by condensation 
reactions at nearly room temperature requires a preliminary dissolution 
step in the solutions comprising only alkali hydroxides, instead of syn-
thetic alkali silicates and aluminates [4–7]. 

Due to the high iron content resulting from the use of the red mud, 
the batch mentioned above did not yield homogeneous glass, and 
magnetite crystals (Fe3O4) separated upon cooling of the melt. Despite 
these inhomogeneities, almost no leaching of heavy metals from the 
waste-derived material was observed. After activation with 8 M NaOH 
aqueous solution a fine glass powder sieved below 75 μm formed a gel, 
eventually yielding a chemically stable cementitious material [7]. 
Although comparing well with ‘lightweight concrete’ (in terms density 
of 1.75 g/cm3, bending strength of ~8 MPa, compressive strength of 
~12 MPa), this material could not be considered as a final product. The 
magnetic functionality or the development of zeolite crystals in the gel 
were not fully exploited. 

The present investigation offers a different perspective, yielding a 
product useable on multiple levels. First, the activating solution was 
modified to favour both zeolite formation and development of highly 
porous bodies by direct foaming of waste glass suspensions at an early 
stage of gelation. Second, powders from the crushing of foams were 
reused, suspended in methylene blue aqueous solutions, and tested as 
sorbents for the specific organic dye, which was then subjected to 
photocatalytic degradation under UV irradiation. The magnetic func-
tionality was utilized for separating the sorbent from water. 

2. Experimental procedure 

According to the procedure described in our previous paper [5], a 
waste-derived glass was prepared by melting a mixture of red mud (RM), 
coal combustion fly ash (FA), pharmaceutical boro-alumino-silicate 
glass (BSG), and sodium carbonate at the weight ratios 
RM1/FA/BSG/Na2CO3 = 18/58/13/11. The batch was melted in a 
platinum crucible placed in a superkanthal (MoSi2) furnace for 2 h at 
1500 ◦C. The melt was then quenched, by pouring on a cold steel plate. 
Chemical composition of the glass was determined by X-ray fluorescence 
(XRF, Table 1). 

After cooling, the glass was hand crushed and dry ball milled (Pul-
verisette 6, Fritsch GmbH, Idar-Oberstein, Germany), to obtain a fine 
powder (<75 μm). The powder was placed in cylindrical polystyrene 
containers, at the 70–30 wt solid-liquid ratio and activated in alkaline 
solutions (4–10 M NaOH) under continuous mechanical stirring (300 
rpm) for 90 min. After alkali activation, the suspension of partially 
dissolved glass powder was cast in closed polystyrene cylindrical moulds 
and cured at 75 οC for 2 h. 

To prepare foams, sodium perborate monohydrate (SPB, 
NaBO3⋅H2O, 1 wt% related to the glass content; Sigma Aldrich) or so-
dium dodecyl sulfate (SDS, CH3(CH2)11SO4Na, 1 wt% related to the glass 
content; Sigma Aldrich) were added to selected mixtures of partially 
dissolved fine powders and vigorously stirred for 10 min. The suspen-
sions were then levelled out, the containers were covered by a lid and 
cured for 7 days at 40 ◦C. 

Selected samples were characterized by infrared spectroscopy (FTIR 
2000, PerkinElmer, Waltham, MA, USA), X-ray powder diffraction 
(XRD; Bruker D8 Advance, Karlsruhe Germany-CuKα radiation 0.15418 
nm), helium pycnometry (Micromeritics AccuPyc 1330, Norcross, GA), 
optical stereomicroscopy (Carl Zeiss Microscopy, New York, USA), 
scanning electron microscopy (FEI Quanta 200 ESEM, Eindhoven, The 
Netherlands), and field-emission scanning electron microscopy (FE- 
SEM, Zeiss Sigma HD) operating at 3 kV, using a secondary electron 
detector. The phase identification from X-ray diffraction patterns was 
performed using the HighScore Plus (v. 3.0.4, PANanalytical B.V, 
Almelo, The Netherlands) supported by the PDF4+ 2014 database. The 
specific surface area, the total pore volume, and the pore size of the 
samples were evaluated by N2 physisorption at − 196 ◦C (ASAP 2010, 
Micromeritics, Norcross GA, USA). 

Foamed samples were cut into approximately 12 mm × 12 mm x 12 
mm cubic blocks, which were subjected to a compression test, using an 
universal testing machine (Quasar 25, Galdabini S.p.a., Cardano al 
Campo, Italy), operating at a cross-head speed of 1 mm/min. Each data 
point is the average of five independent measurements. 

Residues from the crushing of foams were hand milled, sieved below 
75 μm, and tested as sorbents for methylene blue dye. The powders (50 
mg) were introduced in beakers containing 10 mL of a dye solution (100 
mg/L), under magnetic stirring, and left in dark for 60 min. The sus-
pensions were then UV irradiated (Hg lamp, λ = 366 nm, power = 125 
W, Helios Italquartz S.R.L., Milan, Italy). The kinetics and concentration 
change of dye were recorded after removing the powders from suspen-
sions with the use of a permanent magnet. The residues were filtered 
through a cellulose filter (0.22 μm), and a change of the absorption 
maximum of methylene blue at 660 nm was quantified with the use of a 
UV–Vis spectrophotometer (Jasco V570 spectrophotometer). Additional 
tests were performed also at lower amounts of powder (10 mg, 30 mg). 

3. Results and discussion 

Previous alkali activation studies, with the use of a 8 M NaOH so-
lution, had led to the formation of a gel containing zeolite phases, such 
as sodium aluminium silicate hydrate (zeolite Y, Na1.84Al2-

Si4O11.92⋅7H2O, PDF#38–0238) and calcium aluminium silicate hydrate 
(cowlesite, CaAl2Si3O10⋅6H2O, PDF#46–1405) [7]. The formation of 
these phases was found to be influenced by the concentration of the 
activation solution, as illustrated in Fig. 1. 

A ‘heavier’ activation (10 M NaOH) favoured formation of an 
amorphous gel, as documented by the lower signal-to-background ratio 
of the diffraction pattern, and the presence of two broader diffraction 
maxima at 2θ~15◦ and 2θ~25◦. Diffraction lines attributed to magnetite 
(Fe3O4, PDF#82–1533) were also present. These diffraction maxima 
(along with the minor ones) indicate the replacement of the zeolites 
mentioned above with a Na-based zeolite with a higher Al/Si ratio 
(1.08Na2O⋅Al2O3⋅1.68SiO2⋅1.8H2O, PDF#31–1271). A ‘lighter’ activa-
tion (4 M NaOH) did not cause any marked change of the diffraction 
pattern, compared to the as-prepared starting material. The only 

Table 1 
Chemical composition of starting waste and of the waste-derived glass.   

Red mud 
(RM1) 

Fly Ash 
(FA) 

Pharmaceutical glass 
(BSG) 

Waste-derived 
glass 

SiO2 5.2 49.4 72.0 45.2 
Al2O3 15 22.7 7.0 19.5 
Fe2O3 52.9 7.4 – 15.3 
Na2O 2.4 0.9 6.0 8.5 
K2O 0.6 1.4 2.0 2.3 
CaO 11.7 8.9 1.0 4.0 
MgO 0.6 2.0 – 1.4 
B2O3 – – 12.0 1.2 
TiO2 – – – – 
Others 5.1 6.1 – 4.1  
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difference was the shift of the hump centered at 2θ = 20–40◦ to higher 
2θ values, characteristic for sodium alumino-silicate hydrated 
(N–A–S–H-type) gel [5]. The formation of zeolite Y was maximized after 
the activation with 6 M NaOH solution. 

Infrared spectroscopy study of the material activated with 6 M NaOH 
solution provided additional structural information (Fig. 2). The vibra-
tion modes between 900 cm− 1 and 1200 cm− 1 are assigned to asym-
metric stretching vibrations of T-O bonds. Their positions are influenced 
by the amount of Al substituted in the tetrahedral (T) sites connected 
with the bridging oxygen atoms and the number of bridging vs. non- 
bridging oxygens. Deviation from a pure SiO2 network leads to the 
observed shift to lower wavenumbers, as a result of the decreased 
bonding energy after the substitution [13]. The absorption at 650 cm− 1 

could be assigned to symmetric stretching vibrations of T-O bonds [7]. 
However, the origin of an intense peak centered at lower wawenumber; 
470 cm− 1 remain unclear. The absorption at low wavenumbers; 600 and 
470 cm− 1 may be attributed to the magnetite phase (marked by letter M 
in Fig. 2) [7]. The bands between 1600 cm− 1 and 1500 cm− 1 are related 
to the stretching vibration of carbonate groups, whereas the band at 
1685 cm− 1 is assigned to the stretching and bending vibrations of H–OH 
bonds. The peaks at 1400 and 1250 cm− 1 could be attributed to CO2 
absorbed from the atmosphere, as previously observed for pure 
Na-zeolites [7]. 

Besides maximizing the formation of zeolite Y, uniform expansion 
was observed in the slurries activated by 6 M NaOH as a result of the 
addition of hydrated sodium perborate, as illustrated by the optical 
stereomicroscopy image in Fig. 3a. For its low cost and simplicity, the 
use of perborate was inspired by the preparation of highly porous geo-
polymers reported by Abdollahnejad at al [9]. Due to their characteristic 
low temperature decomposition, accompanied with the release of oxy-
gen and water, perborates are widely used in the formulation of de-
tergents and disinfectants, and in wood treatment [10]. The 
combination of the perborate with a surfactant tested in this study was 
based on a previous experience with the reduction of surface tension of 
geopolymer-yielding slurries, which prevented the coalescence of gas 
bubbles created as the result of addition of the foaming agent [11,12]. As 
pointed out by Budi [14], sodium perborate does not just dissolve in 
water, but interacts with it forming H2O2, 
(NaBO3+H2O→NaPO2+H2O2), which in alkaline environment de-
composes, yielding water and oxygen. 

Scanning electron microscopy revealed a ‘hierarchical’ porous 
structure. The cell walls were not compact, as it could be inferred from 
low magnification images (Fig. 3b), but were coated with numerous 
zeolite crystals (Fig. 3c), exhibiting a layer-like structure. Such struc-
tures are considered beneficial for the catalytic and adsorptive perfor-
mance and are typically obtained from engineered formulations under 
optimized crystallization conditions [15]. 

As shown in Table 2, the foams were permeable, as documented by 
the almost completely open porosity. The abundant overall porosity 
(>80 vol%) and the characteristic nanoporosity of zeolites led to a high 
specific surface area of 83 m2/g. The crushing strength was well below 1 
MPa, but it should be noted that it remained close to the lower values 
exhibited by denser commercial cellular materials such as insulating 
concrete (compressive strength ranging from 0.5 to 8.2 MPa, with 
density ranging from 0.9 to 1.4 g/cm3 vol%) [16]. Such highly porous 
foams may find additional use in various engineering applications, such 
as sound and thermal insulations [17]. 

A suggested application for the developed foams is the filtration of 
contaminated waters. This is supported by the reports on specific use of 
geopolymers and geopolymer-zeolite composites in dye removal [17, 
18]. The prepared foams can be used directly immersed in solutions 
[19]. However, this way the magnetism of the material cannot be 
exploited. This functionality offers an interesting ‘end-of-life’ option of 
powdered residues from mechanical testing, milled and sieved below 
150 μm. 

Granules prepared by sieving the powder (Fig. 3d) and still con-
taining zeolite crystals formed during the activation were suspended in 
an aqueous solution of methylene blue and UV irradiated (Fig. 4). 

Fig. 5a shows the absorbance spectrum of an aqueous solution of 
methylene blue (100 mg/L). The absorbance maximum at 660 nm was 

Fig. 1. Diffraction analysis of waste-derived alkali-activated materials.  

Fig. 2. FTIR spectra of the waste-derived material before and after activation 
(6 M NaOH). 
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considered as a reference for the initial concentration of the dye (C0). 
The sensitivity to UV degradation of the specific organic species was 
documented by the decrease of absorbance after 30 min irradiation (a 
reduction of ~20% of the intensity of absorbance peak; C/C0 = 0.78). 
The granules acted as an effective agent for dye removal even without 
UV irradiation. The granules were added to the solution. After 30 min 
exposure, the granules were magnetically separated: a significant 
reduction of methylene blue concentration was observed. In analogy 
with other alkali-activated materials, the methylene blue molecules 
were ‘trapped’ (adsorbed) by the granules. 

In the following experiment, the adsorption and UV irradiation were 
combined: the absorbance spectrum of the methylene blue solution 

Fig. 3. Microstructure details of cellular body from direct foaming of suspension of waste-derived glass: a) low magnification stereomicroscopy image; b,c) scanning 
electron microscopy images at higher magnifications; d) after methylene blue degradation test. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 2 
Physical and mechanical properties of foams from alkali activation (6 M 
NaOH) of waste-derived glass.  

Property 6 M NaOH activated foam 

Density (g/cm3) 0.42 ± 0.02 
Total porosity (vol%) 82.1 ± 0.5 
Open porosity (vol%) 81.5 ± 0.5 
BET SSA (m2/g) 83 ± 1 
Crushing strength (MPa) 0.36 ± 0.04  

Fig. 4. Scheme of adsorption/irradiation and recovery.  
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containing suspended granules and exposed to UV irradiation revealed 
an almost complete removal of the dye. The dye removal could be also 
enhanced by the presence of magnetite, which is known to act as a 
photocatalyst in the specific field of dye degration [20]. 

The substantial dye removal efficiency was confirmed by repeating 
the adsorption/irradiation experiment for five times. After recovery, the 
activity of the powder remained almost completely preserved. Fig. 5b 
illustrates the change of ‘efficiency’ of dye removal, estimated by the 
equation: 

Efficiency=
Co − C30minUV+powder,cycle n

Co − C30minUV+powder,cycle 1
⋅100%  

where Co is the initial concentration of the dye solution and C30 min is the 
concentration of dye solution after 30 min irradiation time. Nearly 90% 
of the initial performance was still preserved after 5 adsorption/recov-
ery cycles. 

Fig. 6 illustrates the relationship between the relative concentration 
of methylene blue solution and the exposition time under ultraviolet 
light. To evaluate the influence of the catalyst, different amounts of 
powder were mixed with the MB dye solution. The dye reduction rate 
increased with increasing concentration of the powder; the maximum 
extent of dye degradation efficiency >90% was achieved after 30 min of 
exposure if 50 mg of the powder was added. Only ~80% of the dye was 
removed with 10 mg powder addition. This indicates that the degra-
dation is selective and depends on the amount of the catalyst. The 
increasing extent of degradation with 50 mg sample can be attributed to 
the increasing number of active surface sites which produce more rad-
icals, accelerating the degradation rate. 

The results of methylene blue degradation confirm the data from the 
literature [20–23]. The adopted waste-derived glass can be considered 
as a model for the preparation of components with complex function-
alities. Future efforts will be dedicated to the exploration of new waste 
mixtures and new manufacturing technologies, including direct ink 
writing of pastes at early stages of gelation. 

4. Conclusions 

A waste-derived glass is an interesting precursor which, when acti-
vated by NaOH solutions, yields semi-crystalline inorganic gels, 
featuring Ca- and Na-based zeolites. The formation of zeolites is optimal 
after the activation in an alkaline solution of specified molarity (6 M 
NaOH). If small amounts of suitable additives (sodium perborate mon-
ohydrate or sodium dodecyl sulfate) are used, a substantial foaming of 
the activated suspensions of waste-derived glass is achieved. Powders 
prepared by crushing the foams act as efficient sorbents for the removal 
of organic dyes from water. The sorption and dye removal capacity of 
the powder remains almost unaffected even after five sorption/irradia-
tion cycles. The magnetic functionality attributed to the presence of 
magnetite crystallizations from glass forming melt, allows for an easy 

separation of powders from the solution, with no need for 
centrifugation. 
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Fig. 5. a) Optical spectra reflecting the concentration of methylene blue in solution; b) Evolution of dye removal efficiency with the number of adsorption cycles.  

Fig. 6. Photocatalytic degradation of methylene blue solution under different 
catalytic conditions. 
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