
DIPARTIMENTO
DI INGEGNERIA
DELL'INFORMAZIONE

On Fundamental Trade-Offs and
Architecture Design in Networked

Control Systems
Is the More Always the Better?

Ph.D. candidate
Luca Ballotta

Advisor
prof. Luca Schenato

Director & Coordinator
prof. Andrea Neviani

Ph.D. School in
Information Engineering

.
Department of

Information Engineering
University of Padova

2022

ii

Abstract

It can be legitimately said that Networked Control Systems represent one of the biggest
breakthroughs in engineering over the latest decades. Stemming from the intertwining
among control, computer engineering, and telecommunications, these powerful systems
received the legacy of classical communication and computer networks, but leveled it
up by virtue of autonomy of each involved unit. Nowadays, examples of Networked
Control Systems are smart power grids, smart homes and buildings, Industry 4.0 and
Industrial Internet of Things, and smart agriculture, to mention a few. Even more
futuristic applications, such as networks of autonomous vehicles or search-and-rescue
robotic teams, are predicted to be available on the market in a matter of time.

Despite the exponential growth of such systems both in industrial applications and in
research, one main reason why the current development is somewhat refrained on several
aspects is that designing a Networked Control System is challenging in nature. In fact, not
only blending different engineering fields raises novel issues, but also the interdependence
of individual subsystems makes it hard to design control and, in general, decision-making
procedures at local level, whereas design at global level is not only undesired but sometimes
even unfeasible. To mention just one example of design complexity, while it is well known
that the optimal Linear Quadratic controller for a single system can be found by solving
a (relatively simple) algebraic matrix equation, it is also known that solving the same
problem for a distributed controller is NP hard.

Because engineered systems must work in real life, the lack of strong theoretical
results is typically replaced with ad-hoc and heuristic methods, that try to take the
best of both worlds of human experience and available mathematical tools. While such
solutions have already yielded impressive applications, relying on intuition might not
always be the best strategy, and theoretical advancement is needed to unleash the full
potential of Networked Control Systems. For example, recently introduced Multi-Agent
Reinforcement Learning, even though it has proved powerful in some scenarios, still
leaves open room for improvement before it can be safely deployed in the real world.

This thesis investigates, and possibly questions, the role that conventional wisdom
plays in design of Networked Control Systems. Specifically, the aim is to explore some
situations where common design beliefs might not match the real nature of the system to
be designed, possibly causing loss in performance. Three conventions will be examined:
more sensors improve estimation; more communication links increase control performance;
more collaboration enhances cooperative tasks. While such conventions seem indeed
reasonable, results exposed in this thesis show that it is not always so because of nontrivial
performance trade-offs: in fact, more sensors may hinder estimation under computational

iv Abstract

delays; more communication links may degrade control performance under communication
delays; more collaboration may be dangerous under misbehaving agents.

Even though results mostly focus on analysis, and practical indications for synthesis
are still preliminary, the aim, and the hope, of this piece of research is to offer formally
solid insights and high-level guidelines that can improve standard design techniques,
possibly paving the way to novel research directions towards high-performing Networked
Control Systems in the real world.

Contents

Abstract iv

1 Introduction 1
1.1 Literature Review . 2

1.1.1 Sensing design . 2
1.1.2 Controller Architecture Design . 7
1.1.3 Resilient Control . 10

1.2 Novel Contribution . 15
1.2.1 Sensing design . 17
1.2.2 Controller Architecture Design . 18
1.2.3 Resilient Consensus . 20

1.3 Organization of the Thesis . 22

2 Sensing Design under Computation Latency 25
2.1 System Model and Problem Formulation 29

2.1.1 Anatomy of a Processing Network 29
2.1.2 Optimal Estimation in Processing Networks 31

2.2 Continuous-Time Analysis . 35
2.2.1 Sensitivity of Optimal Processing 38
2.2.2 Homogeneous Network: Performance vs. Number of Sensors 39

2.3 Latency-Aware Sensing Design . 40
2.3.1 Computation of Expected Steady-State Error Covariance 40
2.3.2 Algorithms for Sensing Design . 45

2.4 Numerical Simulations . 49
2.5 Conclusion . 52

3 Controller Architecture Design under Communication Latency 53
3.1 Problem Setup . 58
3.2 Continuous-Time Agent Dynamics . 60

3.2.1 Single Integrator Model . 60
3.2.2 Double Integrator Model . 62

3.3 Discrete-Time Agent Dynamics . 63
3.3.1 Single Integrator Model . 64
3.3.2 Double Integrator Model . 65

3.4 Control Design . 66

vi Contents

3.4.1 General Symmetric Network Topology 68
3.5 The Centralized-Distributed Trade-Off . 69

3.5.1 Ring Topology: Analytical Insight Into the Trade-Off 71
3.6 Conclusion . 72

4 Resilient Consensus 73
4.1 Setup and Problem Formulation . 76

4.1.1 Malicious Agents . 78
4.2 Resilient Average Consensus . 79

4.2.1 The Consensus Problem and Game Theoretic Models 79
4.2.2 Full Competition vs. Full Collaboration 80
4.2.3 The Truth Lies in the Middle . 80
4.2.4 FJ Dynamics vs. Attack Aggressiveness 82

4.3 Numerical Experiments . 83
4.3.1 Competition-Collaboration Trade-off: Analytical Insight 87

4.4 The Role of Communication Network . 88
4.4.1 Performance Metrics . 89
4.4.2 Network Connectivity vs. Resilience 90

4.5 Comparison with Existing Literature . 93
4.6 Conclusion . 96

5 Conclusion 99

A Proofs of Chapter 2 103
A.1 Proof of Theorem 2.2.3 . 103
A.2 Alternative Processing Models . 104
A.3 Proof of Proposition 2.2.6 . 105
A.4 Sensor Fusion with Kalman Filter in Information Form and Packet Loss . 106
A.5 Proof of Theorem 2.3.3 . 107

B Proofs of Chapter 3 109
B.1 Proof of Corollary 3.2.2 . 109
B.2 Proof of Proposition 3.2.3 . 110
B.3 Reduced Model of Continuous-Time Double Integrators 112
B.4 Stability Conditions for Discrete-Time Systems 112
B.5 Variance Computation for Discrete-Time Systems 114
B.6 Proof of Proposition 3.4.1 . 119

vii

C Proofs of Chapter 4 123
C.1 Useful Lemmas . 123
C.2 Proof of Proposition 4.2.3 . 123
C.3 Proof of Theorem 4.2.5 . 125
C.4 Computation of Matrix Γ . 127
C.5 Proof of Proposition 4.2.10 . 128
C.6 Proof of Proposition 4.2.11 . 129
C.7 Proof of Proposition 4.2.12 . 129

References 152

viii Contents

1
Introduction

The advent of Networked Control Systems has revolutionized a plethora of existing control
application domains, and given rise to others that would have been impossible with
classical control tools. In particular, development of wireless communication protocols
tailored to industrial applications has yielded novel distributed paradigms, such as Edge
and Fog Computing, the Internet of Things, distributed Federated Learning, and Industry
4.0, that can tame unprecedented challenges and provide new kinds of applications at all
scales, from single users navigating urban traffic to electrical energy city-wide harvesting.

Examples of such systems are several: from classical Wireless Sensor Networks (WSNs)
to the "smart" domains, such as smart houses, smart buildings, smart agriculture, smart
grids, to more futuristic applications such as fleets of autonomous cars for efficient traffic
management, formations of drones for coordinated delivery of goods, or teams of robots
for collaborative exploration or search-and-rescue missions in hazardous environments.

This distributed paradigm has now been around for a while, and new developments
keep popping both in research laboratories and in industry. As a matter of fact, while
applications do get to work in real life, theory is still limited in several topics, and
designers of real systems often need to rely on heuristics-based building blocks to fill
those gaps that are not covered by rigorous theoretical tools. This happens because
Networked Control Systems may be extremely challenging to deal with from a formal
standpoint: from information flow corrupted by limitations of wireless channel, to
dynamical couplings affecting architecture of distributed controllers, to local information
processing amplified by network propagation, the interconnected nature of such systems
introduces unprecedented difficulties in both modeling, analysis, and synthesis.

Hence, in spite of the already huge amount of research involving multifold facets of
Networked Control Systems, there is still need for theoretical development to fill those
gaps, possibly correcting current design approaches in systems whose actual behavior
may not adhere to human intuition.

2 Introduction

The more sensors,
the better?

The more communi-
cation, the better?

The more collabora-
tion, the better?

Figure 1.1: This thesis challenges widespread conventions adopted in design of Networked
Control Systems. When configuring sensors, it is assumed that increasing sensing capabilities
improves monitoring performance. As for distributed controller architecture, deploying more
communication links is regarded as beneficial to closed-loop performance. In cooperative tasks,
collaborative protocols are preferred to enhance information exchange across agents. While
such heuristic guidelines might hold true, the research developed in this thesis shows that in
some cases structural limitations imposed by Networked Control Systems may in fact produce
nontrivial performance trade-offs. Taking this into account is important for effective design: if
the latter is driven by misleading intuition, performance of the system can drastically degrade.

1.1 Literature Review

In this section, I survey classical and state-of-the-art research that has been pursued
to tackle challenges arising with Networked Control Systems. I focus on three broad
domains, which are loosely related and can be approached independently of one another.

In Section 1.1.1, I go through results in distributed sensing design, ranging from
standard sensor selection and scheduling to the more recent challenges in Edge Computing,
which are related to hardware limitations of compute-equipped network nodes.

In Section 1.1.2, I overview research in design of decentralized and distributed
controller architecture, where a crucial role is played by communication constraints, in
particular those pertaining to wireless channel.

Finally, in Section 1.1.3 I give an overview of collaborative strategies aimed to enhance
cooperation among agents within the network, and conversely techniques to tackle the
presence of misbehaving agents that can disrupt cooperative tasks.

1.1.1 Sensing design

Design of sensing apparatus has always been at the core of control systems. Indeed,
feedback is one of the most basic and important concepts in both theory and applica-
tions, whereby physical information about the system to be controlled and, possibly, its
surrounding environment, needs to be supplied to apply suitable control actions.

Here, a basic and widespread convention is that the more sensors are the better :
because these measure a signal of interest, the tendency is to use as many sensors as

1.1 Literature Review 3

possible so as to provide the control pipeline with rich information about the signal to
be monitored or controlled. More in general, it is usually desired to push on the sensing
both in number and capabilities (such as local data processing) of sensors.

In the following, I expose both classical challenges dating back to traditional control
theory and new ones introduced the enhanced structure of Networked Control Systems,
together with current available solutions. I first give an overview of the sensor selection
problem, then present strategies for efficient sensor scheduling, and finally I review more
recent trends on distributed computation enabled by "smart sensors".

Sensor Selection

One of the most classical problems is sensor selection: given a set of available sensors,
to decide which of those are to be chosen based on constraints. The latter are usually
expressed as a budget, that may encode economical restrictions, battery limitations,
sensor placement feasibility (e.g., maximal weight allowed on autonomous platforms), or
other kinds of constrains. Because of those, selecting all sensors is typically not possible,
which leads to optimization problems prone to combinatorial explosion. It is worth noting
that this class of problems (and others presented in the following) falls under the broad
umbrella of resource allocation, which roughly speaking includes those problems where a
limited amount of resources needs to be chosen from the full set of available resources,
and can be traced back to fields such as economics and logistics.

Despite hardness of selection, control and optimization literature is rich in both
methodological and ad-hoc strategies that exploit structural properties of the system
at hand to circumvent its combinatorial nature. For example, one notable feature that
arises in some cases (for example, when constraints can be expressed as a matroid), is
submodularity, which enjoys the diminishing-return property. In words, this ensures that
selecting the single best sensor to be added to a given set yields larger improvement if
such given set is smaller, and can be exploited to analytically bound performance of
greedy (computational efficient) selection algorithms.

A far-from-exhaustive list of methodological approaches is given by [47], [69], [77],
[93], [96], [140], [181], [182], [199]. For example, reference [96] uses an LMI approach to
compute sensor and actuator requirements from performance specifications; work [69]
develops a randomized approach to sensor selection aimed to minimize estimation error
variance; paper [47] focuses on strategies to monitor nonlinear models; authors in [182]
study submodularity property of sensor selection and propose greedy algorithms with
suboptimality guarantees.

On the other hand, works tailored to specific scenarios and applications are [7],

4 Introduction

[32], [33], [44], [85], [97], [116], [148], [170]. For example, work [33] tackles selection of
vision sensors in resource-constrained robot navigation; paper [85] focuses on underwater
monitoring; reference [44] deals with economical constraints involving sets of available
cheap and expensive sensors.

It is worth noting that sensor selection in Networked Control Systems comes with
old and new problems alike: for example, wireless communication between sensors and
controller may be taken into account, as well as the very network structure and how this
intertwines with the environment. Tailored approaches to a few of such issues deal with
underwater sensor networks [85] or mobility scenarios [33], [170]. A fairly recent trend is
co-design of sensing, communication, and control. In particular, not only sensor selection
is subject to budget constraints, but the used cost function is task driven and addresses
specific control and/or communication requirements. Examples of such trend are [191],
[200], where authors study sensor selection within the LQG framework, or [222], [223],
that deal with hardware and control co-design of autonomous mobile platforms.

Sensor Scheduling

A topic closely related to sensor selection, which also pertains to the resource allocation
umbrella, is sensor scheduling: given a shared communication channel and a set of
transmitting sensors, decide which of those get to send their updates overtime. In this
case, the limited budget is typically caused by wireless channel constraints, whereby
both general-purpose protocols, such as standard Wi-Fi, and industrial protocols can
handle only a limited number of simultaneous transmissions to avoid collisions due to
interference. Also, even in modern protocols for massive local networks, such as 5G, the
need for scheduling can arise if multiple users spatially close-by need to be allotted on
the same frequency.

Classical device scheduling, born way before Networked Control Systems, was explored
by the telecommunication community and mostly focused on purely communication-
motivated quantities to be optimized, such as latency or throughput. However, the
introduction of controlled applications has caused a shift in perspective, whereby variables
more suitable to control performance are to be taken into account. One major example
in this regard is represented by Age of Information (AoI), which is defined as the time
elapsed from generation (e.g., sampling) of a received state update. Even though such
a quantity is typically a proxy to actual control-theoretic cost functions, it has been
proven effective to design compute-efficient scheduling policies with direct relation to
control performance. Among the vast body of literature dealing with AoI, relevant works
are [80], [189], [190], [197], [215], [228], whereas approaches tailored to estimation- and

1.1 Literature Review 5

control-theoretic performance are studied in [26], [36], [89], [90], [142], [184], [196], which
also address non-linear functions of AoI to better deal with control frameworks. A notable
property that often arises from AoI-based scheduling are threshold-based policies: in
words, this means that a sensors should transmit if and only if its latest update is older
than a certain threshold. This feature is attractive in that it enables effective scheduling
policies at low computational cost.

Besides AoI-driven approaches, strategies more closely related to estimation- and
control-theoretic cost functions have been explored. Here, the challenge is that the
dynamical program arising from the problem formulation can be hardly addressed from
the analytical standpoint, one major obstacle being the partial ordering of error covariance
matrices which rules out several mathematical tools for design and often limits achievable
results to (partial) analysis of the optimal policy. In this regard, recent works are [57], [75],
[95], [115], [146], [210], [227], where both heuristic, randomized, and exact approaches
are used to analyze estimation-optimal scheduling in a Networked Control System.

Computation Design

Since the birth of Networked Control Systems, spreading computational tasks across
the network has been crucial to scale up capability of globally achievable goals as
compared to classical control applications. However, recent developments in hardware
and computational power onboard small devices, such as microcontrollers and embedded
GPUs, have induced renewed interest in this topic from both research and industrial
perspective. In fact, the possibility of performing compute-sophisticated tasks across
the whole Networked Control System raises both new targets and novel issues. On
the one hand, pushing computation on network nodes can alleviate burden of massive
workstations and servers, resulting in increased efficiency and easier scalability. Along
this line, the recent trends of Edge and Fog Computing have caused great excitement
within the research community, with the promise of further enhancing new paradigms of
the Internet of Things, Industry 4.0, and Federated Learning, through "smart" devices
at the network edge that can autonomously execute tasks with minimal centralized
or distributed coordination. Such trend is attractive also in multi-robot applications,
whereby robots are becoming more and more sophisticated by means of both enhanced
hardware capabilities and impressive software developments, such as ultra-compression of
huge Machine-Learning models (TinyML [209]). More in general, deployment of Machine
Learning on lightweight and energy-constrained devices is regarded with renovated
attention in several application domains [28], [39], [52], [104], [126], [206].

On the other hand, data processing hardware available on edge devices is still limited,

6 Introduction

naturally giving rise to a trade-off between resources and performance. As regards
dynamical systems, one serious constraint is computation latency, which becomes crucial
especially with so-called time-critical systems that need fresh information supply to be
properly controlled. For example, an autonomous vehicle needs timely position and
velocity updates to be correctly steered towards the desired spatial trajectory: too old
information may be misleading and induce useless, if not dangerous, control actions. This
entails a nontrivial latency-accuracy trade-off, whereby data processing improves accuracy
of collected measurements at the cost of non-negligible delay. Further, in a scenario where
information exchange occurs among hardware-constrained devices, for example within a
network of smart sensors (e.g., UAVs or smart cameras for remote surveillance), such
computational limitations may also affect communication. Indeed, data processing often
entails data compression, such as visual feature extraction for autonomous navigation. In
this case, processed data are delivered more quickly than raw measurements, introducing
additional complexity in the design, referred to as computation-communication trade-off.

While such delay issue is conceptually related to the Age of Information, the physical
data sampling and processing mechanism is different from data packet transportation,
possibly requiring alternative models and problem formulations. However, most work puts
little attention on the connection between computational delays and control performance,
focusing on minimization of latency or energy consumption [81], [106], [113], [163], [188].
For instance, reference [198] studies delays of different devices to find an optimal network
processing policy; work [188] characterizes delays occurring in a network with cloud fog
offloading, with case study on computation of the Fast Fourier Transform; report [73]
investigates multimedia data processing under different architectures. Generally speaking,
optimization of local data processing is hardly addressed, whereas the common trend is
exploiting computational capabilities of sensors and edge devices while trying to decrease
latency by means of available hardware or software (network protocol) resources.

In contrast to the latter, a very recent paradigm emerged in edge applications
is computation offloading. In this framework, rather than putting the emphasis on
computational capabilities of limited-resource devices, the followed approach is leveraging
communication, and especially new protocols enabling low-latency transmissions (e.g.,
5G), to move computation from edge devices to cloud servers [40], [111], [134]. A
notable application of this paradigm is cloud robotics, which allows robots to offload
compute-demanding tasks in order to save time and energy and to also get accurate
results (e.g., from huge neural network used for perception inference) [42], [64], [137].
Here, a similar trade-off to the one observed above emerges: indeed, transmission of raw
data from edge to cloud may induce channel congestion, especially if large data (such as

1.1 Literature Review 7

those provided by vision sensors or lidars) are communicated. To deal with this issue,
current approaches typically leverage learning-based methods to learn effective offloading
policies [42], even though some works try to get analytical insight through statistical and
information-theoretic tools [64].

1.1.2 Controller Architecture Design

The complex and spread out structure of Networked Control Systems has urged since
their birth for a paradigm shift in design of controller architecture: from classical
centralized control, with a single unit in charge of mastering the whole controlled plant,
to decentralized and distributed control, whereby individual network nodes can perform
decision-making based on local information. This choice has indeed paid off, by endowing
a Networked Control System with nice scalability properties, as well as increasing its
robustness to failure of individual agents, making maintenance easier and cheaper, and,
crucially, decreasing the overall communication overhead at global level. Indeed, such a
paradigm change is not only desired but necessary to many applications, where a single
controller or, equivalently, all-to-all communication would be infeasible due to network
congestion and limited bandwidth.

When options are given to design the communication and controller architecture,
suitably choosing which links are to be deployed may dramatically impact performance.
While in some cases standard network topologies are preferred or forced, such as star
sensor networks, in other cases more freedom is given, leading to design challenges
encoded by complex optimization problems. In the following, I first put the reader into
context communication-wise by giving an overview of seminal and recent studies on
control with communication constraints. These should clarify why the latter represents a
crucial limitations to control performance, and motivate the design of optimal distributed
architectures to clear communication occupancy. Next, I overview architecture design
strategies, which can be classified under two broad categories: design of structured
controllers and optimization of controller architecture.

Control with Communication Constraints

Typical issues pertaining to Networked Control Systems, and especially those using
wireless data transmission, are non-idealities of communication channels, such as packet
loss, transportation delays, and unreliability.

To tame these issues, research efforts in control theory have mainly focused on design
of estimation and control in the presence of constrained communication channel, or, more
in general, limited information (so-called "rational inattention"). Pioneering work in

8 Introduction

this regard is represented by [31], [136], [192], which combine control- and information-
theoretic tools to investigate the relation between communication rate, stabilizability,
and performance, revealing fundamental limitations on the ability to control a dynamical
system with respect to the minimal amount of information that needs to be fed as
input to a feedback-based controller. In particular, seminal work [168], [175] deals
with Kalman filtering subject to packet loss, finding minimal rate constraints needed to
ensure boundedness of estimation error variance. More recent works [43], [147], [171]
investigate the relation among sensors, communication channel, and control within the
LQG framework, while [98] addresses nonlinear systems where both sensor and actuator
links are subject to packet drop.

Structured Controller

To tame constrained channel resources and relax network-level communication require-
ments, it is only natural to adopt distributed and decentralized controller architectures.
In practice, rather than a single central unit that collects all sensory feedback and
computes all control commands, each network node decides on its own actions based
on locally available information. Specifically, we talk about decentralized control when
no communication among nodes is involved, and about distributed control when such
local information is constructed from both the node’s own measurements and other data
exchanged with close-by nodes (i.e., neighbors induced by the communication network
topology). Intuitively, if dynamical couplings are either naturally present (such as among
LC oscillators in electrical grids) or desired to induce specific network-wide behaviors
(such as in consensus problems), removing communication links also reduces available
feedback information and hence degrades the control, inducing the classical trade-off
between controller complexity and performance [78]. This general consideration motivates
the conventional wisdom that the more communication is the better : the amount of
exchanged information increases with the number of links deployed across the network,
so that denser communication is regarded as necessary to improve performance.

The more straightforward way to design distributed controllers is to fix a communica-
tion topology beforehand and subsequently choose controller parameters, such as feedback
gains. This is typically expressed as an optimization problem with a suitable control-
theoretic cost function (e.g., H2 norm or LQR cost) and constraints on the controller
structure, for instance by setting to zero some elements of the feedback gain matrix. This
approach is sometimes required, for example when the communication network already
exists and/or cannot be easily modified. Early examples of this kind of design are found
for linear formations, with classical application to vehicular platoons [37], [38], [108].

1.1 Literature Review 9

Here, the possible architectures are typically limited to nearest-neighbor interaction or
leader-follower strategies, which nonetheless induce interesting optimization structures,
and relate to important concepts such as string stability [187] and coherence [20].

Examples of applications within this piece of literature are nearly countless, ranging
from wireless sensor networks, to multi-robot systems, to satellite networks, to vehicular
platoons, to power grids and oscillator networks.

From the methodological standpoint, a large body of works exploits structural proper-
ties of the control task or system model at hand to derive some analytical characterization
of the optimal controller. For instance, references [8], [9], [54], [130] study properties
of spatially invariant systems, whereby optimal controller and estimator (which are
dual to each other) can be characterized in a fairly precise way. As for other examples,
work [162] proposes a general framework for design of structured controller; paper [10]
investigates sparse architectures within the LQR framework; reference [76] proposes
a controller design with time-varying links through stochastic failures. An interesting
research trend is represented by study of Networked Control Systems where feedback
delays are explicitly taken into account and embedded in the dynamics. A few such
example are given in [48], [135], [231], [232], where authors explore conditions for stability
in consensus networks with different delays and topologies. Finally, papers [55], [56], [107]
propose efficient algorithms to design optimal and near-optimal structured controllers by
suitably reformulating an H2-norm minimization problem.

Finally, a very recent trend comes from Machine Learning. Here, design techniques
use data-driven approaches structurally tailored to distributed systems, such as recently
developed Graph Neural Network, to learn controller parameters that minimize a control-
theoretic loss function [61], [62], [120].

Architecture Optimization

Apart from practical issues associated with complex, nonconvex optimization prob-
lems [55], carving on stone the controller architecture a priori has the disadvantage that
several design possibilities are discarded in the first place, possibly including options
which would provide higher performance than the chosen one.

As so, a second approach that has pretty soon followed design of control parameters is
optimization of the controller architecture, intended as choosing the very communication
links to be deployed. This paradigm raises both potential advantages and increased
complexity: on the one hand, more architecture options entail more degrees of freedom,
and potentially better performance; on the other hand, the resulting control design prob-
lem becomes combinatorial in the controller structure, easily making its computational

10 Introduction

complexity intractable even for small networks.
Specifically, the optimization problem is usually expressed as minimization of a

performance metric subject to a maximum cardinality (number of nonzero elements)
of the feedback gain matrix, which would require to evaluate all possible controller
architectures complying with the constraint. To overcome combinatorial explosion,
typical methods in the literature approximate the cardinality constraint with a convex
one by resorting to suitable matrix norms (ℓ1- or ℓ2-norm), and then possibly tackle the
relaxed version of the problem where the constraint is embedded into the cost function
as a soft penalty on controller complexity. Examples of this approach, which mostly
focus on designing efficient algorithms that exploit the problem structure, are [53], [71],
[78], [109], [211], [230]. For example, work [109] exploits separability of the relaxed cost
function and proposes an ADMM approach, while [71] designs a proximal gradient-based
optimization algorithm for a convex class of architecture design problems.

Besides this kind of approaches, another group of works tackles the design from
different perspectives, putting emphasis on communication and latency, even though from
a qualitative or heuristic standpoint. In particular, seminal works [121], [122] propose
the Regularization for Design, addressing optimization of individual controller elements
such as actuators, sensor, and communication links by minimizing appropriate atomic
norms, while [6] investigates communication locality and its relation to control design
within the novel System Level Synthesis framework.

Finally, another approach leverages tools from game theory, which have recently
experienced renewed interest within the control community. This line of work leverages
cooperative game theory, and specifically coalitional games, to find efficient "coalitions"
(sets) of links with respect to LQR-like performance metrics [114], [119], [132], [133].

1.1.3 Resilient Control

In the previous sections, I have reviewed issues arising in Networked Control Systems
because of "feasibility" constraints, related to, e.g., monetary budget, physical limitations
of communications channel, or complexity of optimization problems associated with the
control design. While all such constraints almost purely depend on physical aspects
of the system at hand, and ultimately affect control performance, the interconnected
structure of Networked Control Systems generates a novel kind of problem, which not
only impacts efficiency but also safety and security aspects.

A key principle of the Networked Control System paradigm is that complex goals can
be achieved by leveraging coordination and cooperation among the agents composing the
system, while each of those is in charge of a relatively simple local task. The probably

1.1 Literature Review 11

most notorious example of cooperative task is the consensus problem, which consists
in driving all agents towards a common value. This task is a fundamental tool in a
number of scenarios and applications, ranging from distributed estimation to distributed
optimization, to rendez-vouz within multi-robot teams, to synchronization of electrical
devices, to distributed Federated Learning, to name a few. Hence, one of the warhorses
of research on Networked Control Systems is to develop strategies that can make inter-
agent collaboration effective. For example, the consensus problem has been completely
characterized and can be solved by the consensus protocol [212], which requires only
a few mild assumptions on the network topology. More in general, distributed control
techniques attempt to exploit inter-agent collaboration in order to enhance achievement
of the global task at hand.

However, autonomy of network agents from sensing, decision-making, and actuation
standpoints on the one hand, and interdependence among nodes caused by the networked
structure on the other hand, raise the critical concern of "failures", namely, arbitrary
and uncontrolled behavior which can first emerge at individual agents and subsequently
propagate, disrupting tasks at global scale. Notably, this problem can be easily tamed
in classical control systems, while the distributed nature of Networked Control Systems
makes it harder to both prevent, detect, and contrast local failures, and the risk of noting
a problem when it has already spread across the network might be critical.

Interestingly, while the control community found itself in urgency to find suitable
countermeasures, computer science and telecommunications communities had already
faced issues such as cyber-attacks or cascading software bugs, for instance after the advent
of the World Wide Web. Differently from old-fashioned computer networks, Networked
Control Systems present different characteristics that require suitable solutions. In
particular, the physical component is almost negligible in computer networks, but is
extremely relevant in, e.g., power grids or vehicular platoons. Broadly speaking, agent
failures may be classified into two categories. The first kind of failures is caused by
spontaneous hardware damages or software bugs in network components, which induce
cascade effects and impact functioning of neighboring agents. The second type of failure,
usually referred to as (cyber-)attacks, is caused by infiltration of adversaries from the
outside of the network, that intentionally hack the system. According to the addressed
class of failures, different models are used in the literature, that go from fairly simple
and dumb misbehavior to sophisticated and unpredictable attacks.

In the rest of this section, I will overview both analytical works that study when a
network is robust or resilient and methodological approaches aimed to enhance resiliency
of networked control protocols.

12 Introduction

Resilience and Robustness Analysis

A large portion of the literature focuses on conditions under which a Networked Control
System is robust or resilient to local faults, due to either unintentional or malicious
hacking. Given the abundance of related papers in this field, my aim here is just to give
a gist of what is available on the table.

Many works study the topology of Networked Control Systems, which clearly represent
a fundamental aspect that affects local interactions among network nodes and governs the
overall system behavior at global scale. For example, classical work [159] investigates how
consensus can be achieved with time-varying interactions; study [176] focuses on modeling
road networks impacted by link failures; papers [202], [203] characterize conditions for
consensus in undirected and directed graphs under faulty communications; reference [153]
is concerned with detectability of node failures; paper [27] focuses on robustness to
perturbations in graphs.

A second relevant body of works attempts to characterize effectiveness of different
classes of attacks, to reveal fundamental limitations of, e.g., distributed control or
estimation methods. In particular, several attack models have been proposed and
analytically investigated: seminal work [110] introduces false data injection, which spoofs
static estimators; paper [193] investigates stealthy deception attacks against control
actions; the line of work [128], [129] studies replay attacks, which repeat temporal
sequences of sensor readings overtime; reference [4] is concerned with deception attacks
in networks; the book [112, Chapter 6] introduces the concept of Byzantine attack, a
widely used model to address powerful adversaries.

Other branches of the literature address resilience under manifold perspectives. To
name a few, paper [3] considers performance and robustness of distributed control
protocols under multiplicative noise, while the works [179], [185] analyze limitations of
distributed optimization strategies in the presence of Byzantine and malicious attacks;

It goes without saying that analytical studies need to be complemented by suitable
design and synthesis strategies in order for real systems to work. If the literature on
robustness and resilience analysis of Networked Control Systems is huge, not less is the
amount of works proposing techniques, methods, and algorithms to tame local failures
and achieve network-level resilience. However, an exhaustive exposition of the literature
in this field would be massive and is not within the scope of this thesis. Instead, being
part of the proposed results focused on the problem of resilient consensus, the next
paragraph describes in detail this narrow but relevant branch of the literature, which is
then expanded into the more general problem of distributed optimization.

1.1 Literature Review 13

Resilient Consensus

The consensus problem is one of the most fundamental tools in distributed control,
whereby the lack of global knowledge is replaced by suitable information processing
protocols aimed to enable network-wide coordination from local interactions. In its basic
form, the consensus protocol is an update rule as simple as effective, that ensures global
alignment among local variables of all participating agents under mild technical conditions.
In particular, average consensus, i.e., where the consensus value is the average of initial
values of agent variables, is needed in many applications, from distributed estimation to
gathering in multi-robot systems. However, the consensus protocol is fragile, in that a
single misbehaving agent can steer the rest of the network towards any configuration,
arbitrarily far from the desired one. Hence, many techniques have been proposed to
robustify the update rule of standard consensus. In particular, resilient consensus is
defined as a configuration such that "normal" agents (i.e., that do not misbehave) reach a
consensus with each other in the face of misleading interactions with unknown adversaries,
while possibly remaining inside a suitable safe region, a standard convention being the
convex hull of initial agent conditions.

One of the first approaches, and yet probably the most important and used, is Mean
Subsequence Reduced (MSR), presented in foundational work [88]. Essentially, this is
a filtering technique that discards some of the received data based on their value: the
largest and smallest such data are not used in the local update, ensuring that the agent
will not drift towards very large (or very small) values. Seminal work [94], building on
this simple rule, proposed two fundamental contributions: the first is algorithmic and
consists in an improvement of MSR yielding the now state-of-the-art Weighted Mean
Subsequence Reduced (W-MSR), whereby incoming values are not only filtered but also
re-weighted at every iteration; the second, and probably most important, contribution is
a formal study of theoretical guarantees associated with W-MSR, that give necessary and
sufficient conditions for reaching resilient consensus. In words, if the underlying network
topology has added structure in the form of a property called r-robustness, where r

is a suitably large integer describing the ability of the network topology to internally
spread information, then resilient consensus is guaranteed when the number of attackers
is smaller than a threshold that depends on r. This fundamental result raises however
two important concerns, which are in fact two sides of the same coin. The first is that
r-robustness is a property that depends on the network graph elements (nodes and edges)
in a combinatorial fashion: in practice, checking if it holds for given r would require
and exhaustive search that quickly explodes with the size of the network, making such
a verification intractable for large-scale systems. This raises the second issue, that is,

14 Introduction

evaluating how many (simultaneous) attacks the network is prone to: indeed, this number
depends on the maximum parameter r for which r-robustness holds, forcing a designer
to guess as the best replacement to ignorance of such r.

Even though theoretical guarantees of W-MSR are bound to such considerations, a
huge body of research works and actual implementations certifies the practical effectiveness
of this technique. In fact, many approaches to resilient consensus build on W-MSR
and apply minor modifications to specialize it to narrower domains. To mention a
few such cases, article [49] studies resilient control for double integrators; paper [207]
addresses mobile adversaries that can change their attack location; work [201] focuses
on a leader-follower framework; reference [174] targets nonlinear systems with state
constraints.

While W-MSR is one of the most celebrated resilient consensus technique in the
literature, other approaches have been proposed. More or less in the same year, authors
of [145] proposed a system-theoretic approach to consensus under misbehaving agents,
characterizing the case when some control inputs are not identifiable and providing a
detection procedure. From a different viewpoint, paper [125] introduced the idea of
"trust" to characterize agents that do not fail, and which can be used as "anchors" at
network-level for a distributed update rule. The concept of trust has been recently given
new resonance in different flavors: works [22], [218] design adaptive protocol local weights
based on trust scores associated with transmissions and enabled by physical channels
of information, such as directional signal profiles of wireless messages; authors in [1]
study algorithmic robustness enabled by trusted agents; paper [224] proposes dynamically
switching update rule for continuous-time double integrators.

Finally, other approaches attempt to reach a slightly different goal, endowed with
more intrinsically robust properties compared to average consensus. A typical case is
consensus to the median value, which is structurally more robust to generic "outliers"
than average consensus. One of the first studies to propose this approach is given in [225],
which analyzes its convergence properties under different attack models, whereas this
idea is further developed in related works [58], [165], [173], [220].

Resilient Distributed Optimization

As seen in the previous section, literature about resilient consensus is quite vast. The
reason is that in most cases some form of consensus either is required by the application
or underlies the main control task, hence making the consensus step robust is essential
even if it is not the ultimate goal.

Nevertheless, a body of literature has been focusing also on other control tasks, one

1.2 Novel Contribution 15

of the most important ones being distributed optimization. Here, agents in the network
need to solve an optimization problem only partially known to each of them, so that
both coordination and optimization techniques are required. Early work [186] addresses
this problem by analyzing the consensus protocol and assuming additive disturbances in
misbehaving agent’s updates, showing that normal agents can compute any function of
the initial conditions if some connectivity properties hold. Note that this strictly relates
to observability of a dynamical system. Other approaches use W-MSR as a building block
to obtain resilient distributed optimization protocols. Examples are [180], [185], which
address different attack modes and capabilities and show both suboptimality guarantees
and fundamental limitations of such approach.

With this research direction rapidly growing over the latest years, several strategies
and techniques have been arising for generic distributed optimization and control tasks.
To mention a few examples, paper [219] exploits trust scores to dynamically adapt
optimization protocol weights; work [41] proposes trust-based algorithms for mobile
networks, with focus on traffic systems; article [86] studies to what extent an attacker
can learn a controlled system to subtly damaging it, and provide conditions under which
the controller can proactively detect and mitigate the attack; the data-driven approach
in [127] proposes to use Graph Neural Network combined with suitable Gaussian filtering
to identify trustworthy communications; survey [150] recaps strategies, and proposes new
problems, to broadly scoped resilience in control multi-robot systems.

Finally, a different perspective is offered by game theory. Here, rather than dealing
directly with an optimization problem, researchers investigate optimal strategies for both
attacking and attacked agents in a game-like fashion, to evaluate how dangerous an
attack could be and possible worst-case countermeasures. Examples of this line of work
are [11], which addresses uncertain attacker behavior; paper [74], that studies the effect
of random and stubborn agents in stochastic learning games; works [99], [101], that deal
with optimal strategies when attacks are formulated as zero-sum games, possibly with
more information available on the attacker side.

1.2 Novel Contribution

The literature review in Section 1.1 highlights that, even though long-standing research
effort have been devoted to optimal design strategies for Networked Control Systems,
some aspects are difficult to analyze and heuristics-based solutions and techniques are
often used to support challenging design aspects.

The original contribution in this thesis is threefold and attempts to tackle such

16 Introduction

Table 1.1: Outline of established literature and novel contribution proposed in the thesis.

Chapter 1 Chapter 2 Chapter 3

State of
the art

Sensor selection
Sensor scheduling
Edge Computing

Computation offloading

Structured controller
Performance vs. complexity
Regularization for Design

Mean Subsequence Reduced
Trust/trusted nodes

Non-cooperative games

Trade-off Latency vs. accuracy Distributed vs. centralized
architecture Competition vs. collaboration

Idea and
result

Estimation performance
is optimized by nontrivial

local processing and
number of sensors

Closed-loop control
performance is optimized by

nontrivial distributed
architecture

Enforcing some competition
among agents can

enhance resilience in
collaborative tasks

challenges from a more quantitative perspective. The core, unifying idea proposed and
investigated in the following is that effective design of Networked Control Systems must
take into account the presence of nontrivial trade-offs, which may depend on system
dynamics, on available resources, and on the task at hand. Even though the specific
trade-off may vary according to the scenario, it is important to note that I do not deal
with trade-offs between performance and resources, which is typical of both literature and
practical design concerns: on the contrary, and this is key for all results, I am interested
in trade-offs of performance over resources: namely, to find an allocation of available
resources that maximizes performance of a control task. While this goal can be trivially
solved in some cases, the previous literature review shows that rigorous solutions are not
always available, and intuition is easily followed in state-of-the-art design methodologies.

At this point, it is important to correctly set the reader’s expectations: because the
main goal of the thesis is to investigate the fundamental nature and design trade-offs
arising from the structure of a Networked Control System, some realism is sacrificed in
favor of modeling assumptions that allow to achieve meaningful analytical results and
hence intuition about system behavior and features of an optimal design. Nonetheless, I
believe that this approach is necessary in order to start digging into partially uncovered
and shady facets of this class of systems, whereby future developments will progressively
embed realistic model assumptions and refine the preliminary results presented here. It
is also important to bear in mind that the scenarios investigated in the following require
careful attention to performance trade-offs generated by involved resources: clearly, other
situations may be characterized by far more trivial behaviors and optimal design choices.

Table 1.1 outlines the topics explored in the next chapters, summarizing available
literature, key trade-offs which inspired research in those topics, and novel contributions
proposed to advance the state of the art with respect to conventional design methods. In
the following, I elaborate on and describe in detail the contents of Table 1.1.

1.2 Novel Contribution 17

Local computation processed
data

raw
measurements

Number of sensors

Es
tim

at
io

n
er

ro
r

va
ria

nc
e

one sensor all sensors

Figure 1.2: Under nontrivial computation latency, monitoring tasks for time-critical applica-
tion exhibit a performance trade-off: in this thesis, I show that the estimation error variance
has a nontrivial point of minimum with respect to both local processing at nodes (left) and

number of deployed sensors (right). See Figures 2.6 and 2.11 and Fig. 2.8 for details.

1.2.1 Sensing design

As showed in Section 1.1.1, design of sensors and data processing is grounded in two
main conventions: first, as many sensors as possible should be placed to provide a rich
description of the signal of interest; second, local processing should be preferred not
to overload few network nodes. However, these heuristics do not take into account
the trade-off between computation latency and accuracy of both local processing on-
board smart sensors and data fusion and aggregation of sensory data at network servers.
The latter aspect may be particularly critical if smart sensors send data to a resource-
constrained common node (e.g., microcontroller or edge server) that processes all sensory
measurements. For example, self-driving cars are forecast to carry many sensors supplying
tons of environmental data online, which need to be suitably analyzed to ensure efficient
and safe driving.

The first contribution of this thesis targets optimal sensing design for time-critical
dynamical systems in the presence of computation and communication constraints: in
particular, the latter impact the computation-communication trade-off argued in Sec-
tion 1.1.1. Towards this goal, I follow a route along three milestones.

The first is mathematical models for latency-accuracy and computation-communication
trade-offs that are used to rigorously formulate a sensing design problem that explicitly
takes into account computation and communication latency and data accuracy affecting
overall system performance. In particular, I focus on optimal estimation of a linear
time-invariant system, whose performance is characterized by the covariance matrix of the
estimation error. This is essentially the first work that addresses these elements together
with system dynamics into an optimal design, whereas classical sensor selection and

18 Introduction

co-design hardly considers accuracy-dependent processing delays, and works on networks
of computational-constrained devices do not usually address effects on dynamics and
control performance.

The second milestone consists in rigorous analysis and design for a simple class of
systems, namely continuous-time sensor networks composed of identical sensors. While
this model is extremely simplified, it allows to achieve relevant analytical insight by
virtue of formal results, that somehow reverse common design conventions: that is, (i)
there exists an optimal amount of sensors which need not be the maximum, and (ii)
there exists an optimal, nontrivial amount of local data processing at sensors. Fig. 1.2
visualizes these findings where performance metric is the steady-state error variance of
an optimal estimator.

Finally, more generic systems, such as discrete-time dynamics with heterogeneous
sensors (possibly multi-rate), are addressed to both reinforce and investigate consistency
of analytical insight achieved previously. In particular, being the problem at hand
combinatorial in nature, I propose greedy algorithms to decide both on the subset of
available sensors to be used and on the amount of local data processing performed
by each chosen sensor. Importantly, these algorithms leverage formal results obtained
with the simple class of systems mentioned at the second milestone to tackle the much
more challenging problem with heterogeneous sensors. The numerical results obtained
in simulation are consistent with the analytical ones, corroborating the intuition that
accounting for computation and communication latency in time-critical systems can
crucially affect the sensing design, and in particular may disrupt classical heuristic
conventions.

1.2.2 Controller Architecture Design

Finding efficient controllers with distributed architecture is a hard problem in general,
and only in few special cases admits a convex formulation which ensures that the optimal
controller can be efficiently computed [78]. Even in such special cases, communication
non-idealities are usually not quantitatively addressed, and design methods proposed in
the literature (see Section 1.1.2) use heuristic penalty terms to trade controller complexity
for control performance. The intuition is that reducing the former, in particular by
selecting only a few communication links, can enhance feasibility in a broad sense, for
instance by dropping communication overhead or cost of deploying and maintaining links,
at the cost of degrading performance, that benefits from dense information exchange.

However, one key problem is that the performance metric used for design, e.g., H2-
norm of the system, does not include any non-idealities of the dynamics, leaving the system

1.2 Novel Contribution 19

Number of linksdecentralized
controller

centralized
controller

Figure 1.3: When communication latency increases with the total number of interconnections,
a fundamental trade-off affecting closed-loop performance arises: in this thesis, I show that

the optimal controller architecture is in general distributed. See Fig. 3.1 for details.

designer with the challenging task of suitably tuning regularization hyperparameters
or other knobs whose physical interpretation is hard if not impossible. On the other
hand, incorporating realistic dynamics in the computation of such cost functions is highly
nontrivial, making the resulting trade-off lean towards simplified models that can be used
for practical numerical design.

The second contribution of this thesis is an attempt to explore the other side of the
wall, namely, to see what happens and to which extent the design can be pushed when
computing the exact cost function with non-idealities in the dynamics. Specifically, the
focus is on communication delays caused by wireless channel, with the key assumption
that more communication links cause longer delays across the whole network. Before
summarizing the main results, it is worth mentioning that studies on distributed controllers
affected by communication or feedback latency have been extensively done. However,
most of these consider structured controllers and focus on computing efficient control
parameters without optimizing the architecture. For examples, works [48], [135], [231],
[232] address consensus for systems with input delays, while [38], [63], [158], [177], [221]
is concerned with stability and performance in more general control problems. On the
other hand, the narrow body of work [204], [205] addresses the presence of architecture-
dependent communication delays for deterministic consensus dynamics: while the spirit of
those works is conceptually related to the aim of this thesis, both modeling assumptions,
setup, and results are different.

Under the assumption that communication delays increase with the overall number
of links, a fundamental performance trade-off for mean-square consensus in undirected

20 Introduction

graphs can be shown: there exists an optimal amount of communication links that
minimizes the consensus error variance, which is in general smaller than the maximum
amount of links (all-to-all communication). Fig. 1.3 illustrates this result, where the cost
induced by closed-loop control on the y-axis is plotted against the total number of links
within the network. This behavior is in sharp contrast with the widespread convention
that increasing the number of links improves control performance. In particular, a
near-optimal design allows to analytically prove that the consensus error variance can
be decomposed into two additive monotone costs: one is decreasing with the number
of network links and reflects the benefit of dense information flow on nominal control
performance; the other is increasing and encodes the negative contribution of delays on
controlled dynamics, and crucially bends the overall cost into a non-decreasing curve
with a nontrivial point of minimum. Also, convexity of the resulting optimal control
design problem is exploited to numerically show that the same is true also for the optimal
controller, reinforcing the analytical findings.

1.2.3 Resilient Consensus

As shown in Section 1.1.3, standard approaches in resilient consensus and resilient control
literature are essentially based on filtering the received messages and trying to guess,
and possibly actively detect, which neighbors are to be trusted and which ones are more
likely to be misbehaving. This paradigm is indeed intuitive and resembles what a human
would most likely do in practice if they had to make rational decisions with information
which may be partially wrong. On the other hand, collaborative and cooperative tasks
benefit from enhancing collaboration among normally behaving agents. Hence, a classical
trade-off arises that tries to strike a balance between the amount of information that
is trusted and used in local updates and the amount of information that is discarded
because potentially dangerous. However, as explained in Section 1.1.3, optimally solving
this trad-off is far from trivial, and design problems may easily arise in that strong
theoretical guarantees are usually hard to obtain.

More in general, a point to make about the literature in the field of resilient Networked
Control Systems is that designed methods are typically tailored to specific scenarios, or
built as ad-hoc strategies for particular applications. This paradigm is surely effective,
but methodologies and ideas might need to be re-elaborated depending on the task, which
could be avoided if a high-level design framework were available. This thesis proposes a
small step towards a possible unifying resilient approach, through a novel viewpoint which
is inspired by the theory of non-cooperative games. The basic idea is that, in the presence
of (unknown) adversaries, normally behaving agents should partially collaborate with

1.2 Novel Contribution 21

A
v

er
ag

e
co

n
se

n
su

s
er

ro
r

full
competition

full
collaboration

Agent interactions

Figure 1.4: In the presence of unknown adversaries, a collaborative task can benefit from
competition enforced among agents. In this thesis, I show that the cost associated with resilient
average consensus exhibits a nontrivial point of minimum, which corresponds to a specific

degree of "competitiveness" in the update rule. See Fig. 4.1 and 4.7 for details.

their neighbors, to work together towards the predefined global goal, but also partially
be selfish, in order not to be deviated far off the nominal behavior that would ensure
to reach the goal under ideal conditions (i.e., no attacks). In the following, I will refer
to such two contrasting attitudes as "collaboration" and "competition", respectively. To
draw a pictorial parallel, if an agent following a filtering-like algorithm can be compared
to a spy trying to guess which collaborators are traitors to dump, within the proposed
framework an agent would resemble a spy keeping in touch with all their potentially
untrustworthy collaborators, but only partially trusting each of them. Intuitively, this
approach raises a performance trade-off: on the one hand, trusting neighbors too much
may yield poor performance, because adversaries can easily induce misleading actions;
on the other hand, if an agent does not trust others at all, any task requiring network
cooperation will fail by definition. This is pictorially depicted in Fig. 1.4, which shows
that the optimal strategy to minimize the cost of a global task (here, average consensus)
features a specific level of competition among agents. Hence, an effective local rule should
be able to optimally trade collaboration for competition, which may be nontrivial in the
presence of misbehaving agents.

While I believe that the proposed framework has the potential to be used in various
scenarios, the research work developed in this thesis is preliminary and explores a
competition-based approach within the narrow domain of resilient average consensus. In
particular, the third contribution that I propose is a suitable model to formally quantify
competition and collaboration in agent’s updates, which is analyzed it in order to derive

22 Introduction

performance bounds for resilient consensus. In particular, I use the celebrated Friedkin-
Johnsen model as an alternative update protocol, where the presence of a real-valued
tunable parameter allows to smoothly transition from pure collaboration, which coincides
with standard consensus dynamics, to pure competition, which reduces to agents not
moving from their initial condition. The proposed result, confirmed by both analytical and
numerical results, is that the optimal parametrization that minimizes average consensus
error corresponds to a hybrid strategy, whereby each normally behaving agent trusts
its neighbors only partially, as shown in Fig. 1.4. Given the analytical focus, design
of an efficient parameter in the update rule under the realistic scenario where attacks
are unknown has not been considered yet. However, the performed analysis provides
important insight that can be exploited in follow-up work on design aspects. Besides,
I perform some comparisons with state-of-the-art W-MSR [94] and recently presented
SABA [50] in simulation, showing that the proposed approach can perform better when
r-robustness properties do not hold. Moreover, a preliminary heuristic investigation is
devoted to the impact of communication network topology on performance of resilient
consensus with the proposed protocol, whereby I show that both dense connectivity and
degree balance (assuming undirected networks) are beneficial for resilience.

1.3 Organization of the Thesis

Along the lines of this Introduction, the thesis is organized in a modular structure that
addresses each explored topic separately, as depicted in Fig. 1.5.

In Chapter 2, I present a novel sensing design in the presence of computation and
communication constraints. In particular, I propose a model for a network of smart
sensors transmitting data to a base station in Section 2.1, expose analytical results for a
simple class of systems in Section 2.2, design greedy selection algorithms for the general

Chapter 1

Introduction

Plug in lamp
Chapter 4

Resilient
consensus

Chapter 3

Controller
architecture

Chapter 2

Distributed
sensing

Chapter 5

Conclusion

Figure 1.5: Flowchart of chapters in the thesis.

1.3 Organization of the Thesis 23

case in Section 2.3, and showcase numerical experiments in Section 2.4.
The material exposed in Chapter 2 is presented in the following papers:

[19] L. Ballotta, L. Schenato, and L. Carlone, “From sensor to processing networks: Optimal
estimation with computation and communication latency,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 11 024–11 031, 2020, 21st IFAC World Congress;

[18] L. Ballotta, L. Schenato, and L. Carlone, “Computation-communication trade-offs and
sensor selection in real-time estimation for processing networks,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 4, pp. 2952–2965, 2020.

In Chapter 3, I present results on design of distributed controllers in the presence
of communication latency. More in detail, I show how to compute stability conditions
and cost function for the considered optimal control design problem with continuous-
and discrete-time dynamics in Section 3.2 and Section 3.3, respectively, analyze the
optimization problem associated with the control design in Section 3.4, and illustrate
analytical and numerical results Section 3.5.

The material exposed in Chapter 3 is presented in the following papers:

[15] L. Ballotta, M. R. Jovanović, and L. Schenato, “Optimal network topology of multi-
agent systems subject to computation and communication latency,” in Proc. Mediterranean Conf.
Control Autom., 2021, pp. 249–254;

[14] L. Ballotta, M. R. Jovanović, and L. Schenato, “Can decentralized control outperform
centralized? The role of communication latency,” arXiv e-prints, no. arXiv:2109.00359, Jul. 2022,
(submitted to IEEE Control Netw. Syst.).

In Chapter 4, I expose a novel approach to resilient consensus based on the Friedkin-
Johnsen model. Specifically, I motivate and explain the model in Section 4.1, present
analytical and numerical results respectively in Section 4.2 and Section 4.3, heuristically
investigate impact of the communication graph in Section 4.4, and perform comparative
simulations with other methods in the literature in Section 4.5.

The material exposed in Chapter 4 is presented in the following papers:

[13] L. Ballotta, G. Como, J. S. Shamma, et al., “Competition-based resilience in distributed
quadratic optimization,” in Proc. IEEE CDC, (to appear), 2022;

[12] L. Ballotta, G. Como, J. S. Shamma, et al., “Can competition outperform collaboration?
The role of malicious agents,” arXiv e-prints, no. arXiv:2207.01346, Jul. 2022, (submitted to
IEEE Trans. Autom. Control).

Conclusions and potential avenues for future research are finally drawn in Chapter 5.

24 Introduction

2
Sensing Design under Computation Latency

Over the last decade, Networked Control Systems have been steadily integrating with
the novel paradigms of Edge and Fog Computing. The latter aim to push computational
tasks towards the edge of the network, both to boost fast decision-making on-board
network nodes (e.g., smart sensors or autonomous robots) and to alleviate computational
burden of central workstations and cloud servers. This paradigm shift is enabled by
two key factors. On the one hand, deployment of increasingly powerful communication
protocols, such as 5G, carries the promise of further enhancing communication capabilities
and scale of network systems, which may host thousands, if not millions, of densely
distributed devices featuring low-latency and ultra-reliable communication. On the other
hand, advances in electronics, such as embedded GPU-CPU systems and dedicated
hardware for embedded systems, have started to enable sophisticated computation and
decision-making tasks on-board small devices, which can (partially or totally) share the
workload of central severs.

As a matter of fact, most edge and lightweight devices operating in Networked
Control Systems are still limited compared to hardware capabilities of powerful cloud or
edge servers. In particular, so-called "smart sensing", which refers to both sensing and
data processing capabilities on-board network nodes, is typically affected by constrained
hardware resources which entail a latency-accuracy trade-off : while raw measurements
are immediately available for monitoring or control tasks (up to acquisition time needed
to physically collect sensory data), locally processing data on smart sensors takes non-
negligible time, so that refined measurements can be used after additional processing delay
from acquisition. More in general, I consider nodes executing anytime algorithms [229],
i.e., routines whose performance (quality of output values) improves with runtime, such
as typical optimization algorithms whose final precision improves with the number of
iterations. Classical applications of this class of algorithms can be found, for example, in
real-time control, optimization, or combinatorial problems such as the well-known Travel

26 Sensing Design under Computation Latency

Figure 2.1: Randomized Tour Improve-
ment is a classical greedy algorithm which
approximates the optimal tour for the
traveling salesman problem, shortening an
initial route. Adapted from [229, Fig. 3].

Figure 2.2: YOLO and RetinaNet are
Neural Networks that can trade runtime
for classification accuracy (errors on y-axis
are computed as the inverse of mAP-50

scores). Adapted from [157, Fig. 3].

Salesman Problem Fig. 2.1. Anytime algorithms are popular in real-time control, computer
vision, and robotic applications: for instance, papers [5], [157] study resource-aware
Neural Networks whose complexity (proportional to accuracy) can be traded for inference
time, as depicted in Fig. 2.2; work [91] adapts image-processing filters to real-time
tasks by varying their kernels; reference [160] proposes a learning-based adaptive image
compression; and paper [83] studies a planning algorithm that asymptotically converges
to the optimal solution. Moreover, the concurrent availability of both efficient wireless
connections and low-power processing hardware raises a computation-communication
trade-off. In particular, data processing typically also entails some form of compression,
so that it is nontrivial whether a node should send raw data, with negligible local
computation but higher communication delay, or process the data locally, obtaining more
accurate and compact information to be transmitted in short time. Typical examples
are found in vision-based tasks: for instance, geometric perception algorithms used by
robots can compress raw camera frames or 3D point clouds to low-dimensional feature
vectors [70], which can be quickly transferred over a communication channel as opposed
to heavy multimedia data.

Such computation and communication latency affecting sensory data may critically
impact performance of a control application. In order to ground the discussion, we
consider the case where a set of smart sensors samples a time-critical signal of interest
and transmit collected information to a base station over a wireless channel. To stress the
computational task deferred to network nodes, in the following we refer to this specific
class of systems as processing networks. Figure 2.3 provides an example of this scenario
in the realm of multi-robot applications: it depicts a network of drones collecting visual

27

Node 2

Node 1
Node 3

Node 4

Wireless

channel

Central

station

Figure 2.3: Example of processing network: drones track a moving vehicle in the presence of
computation and communication constraints. Each drone can preprocess the acquired images

before transmitting to a central station.

data of a truck on the road (e.g., through a camera image stream) and transmitting
them to a fusion station (on the bottom right), which is in charge of tracking the vehicle
overtime. Importantly, smart sensors may have heterogeneous resources: for instance,
the two hexarotors (nodes 2 and 4) might have powerful onboard GPU-CPU systems,
while the quadrotors (1 and 3) may feature limited processing hardware. This presence of
heterogeneous sensory and computational resources across the network raises a challenging
design problem, as optimally allocating such resources is nontrivial. For example, some
sensors might prefer sending raw data and incur larger communication delays, while
other might process the collected measurements on-board. These choices will impact the
quality of the truck state estimate: larger computational and communication delays will
introduce more uncertainty, hindering the tracking task. In particular, overlong delays
affecting data from one of the drones might induce misleading control commands by the
base station, whose imprecise estimate of the truck state may cause the drone to steer
trajectory and lose sight of it.

Figure 2.4 schematically shows the base station receiving outdated information. As
discussed in the following, such delayed and heterogeneous data reception induces a
challenging sensing design problem, which is the main matter of investigation of this
chapter.

I develop the proposed contribution along three main axes.
First, I introduce a mathematical model for a processing network, where nodes (smart

sensors) can perform local computation prior to communicate data to the base station
(Section 2.1). I consider smart sensors in charge of observing the state of a dynamical
system in the presence of communication and computational delays, which give rise
to latency-accuracy and computation-communication trade-offs discussed above. In

28 Sensing Design under Computation Latency

Sensor 1
τ̃1

Central station

Sensor 2
τ̃2k0 k − τ̃2 k − τ̃1 k

(a) Homogeneous sensors (single rate).
Time τ̃i corresponds to delays caused by
computation and communication.

Sensor 1
τ̃1 r1

Central station

Sensor 2
τ̃2 r2

× × × × ×
k0 k − τ̃2 k − τ̃1 k

(b) Multi-rate sensors. Crosses on the
bottom axis indicate states sampled by
sensor 1 but not by sensor 2.

Figure 2.4: Delayed data processing and transmission by two sensors in a processing network.

particular, the constrained nature of local processing is capture by using a computation-
dependent measurement noise at each sensor, which is exploited to achieve analytical
intuition on the optimal system design, as explained next. In this thesis, I report the
model first develop in [18], while an alternative model tailored to sensors with limited
storage and time-varying acquisition rate and local data processing is proposed in [16],
[17].

Second, I use the proposed model to compute the amount of processing at each node
in the simple case of a homogeneous network (all nodes carry the same computation)
monitoring a continuous-time scalar linear system (Section 2.2), and prove that the optimal
delay (i.e., the allocated computational resources) can be analytically characterized. Also,
it is possible to show that sending raw data is in general suboptimal under computation
and communication latency. Furthermore, in the presence of computational delays at
the base station – contrarily to conventional wisdom –, using more sensors might hinder
estimation performance (intuitively: processing data from each sensor induces some
computational delay, which adds up and introduces extra uncertainty in the estimation).

Finally, I consider a more realistic heterogeneous network monitoring a discrete-time
multivariate linear system. Since using all sensors is not necessarily an optimal choice,
I consider an extended problem formulation that both selects an optimal subset of
sensors and decides the optimal processing at each selected sensor. Along the way to the
proposed solution approach, I first show how to compute an estimation-theoretic cost
function to be optimized by the processing network, possibly including multi-rate sensors
(see Fig. 2.4b). Then, leveraging the formal analysis on homogeneous networks, I propose
greedy algorithms to select sensors and allocate data processing. Numerical results
(Section 2.4) show that (i) the proposed algorithms can indeed compute near-optimal
policies, (ii) using all sensors is in general suboptimal, and (iii) the proposed policy can
largely improve the network performance as opposed to cases that neglect the impact of
delay contributions. Conclusions and discussion on future research directions are given

2.1 System Model and Problem Formulation 29

in Section 2.5.

2.1 System Model and Problem Formulation

A processing network is a set of interconnected nodes that collect sensory data and leverage
computation embedded on-board to locally process the data before communicating them
to a central fusion center, also referred to as base station in the following.1 For the
sake of this work, I consider the case where the base station is tasked with obtaining an
accurate estimate of the state of a time-varying phenomenon measured by networked
nodes, in the presence of communication and computation latencies.

2.1.1 Anatomy of a Processing Network

Dynamical system. The monitored dynamical phenomenon is modeled through the
following discrete-time linear time-invariant (LTI) stochastic system,

xk+1 = Axk + wk, (2.1)

where xk ∈ Rn is the to-be-estimated state of the system at time k, A ∈ Rn×n is the state
matrix encoding the natural evolution of the state, and wk ∼ N (0, Q) is i.i.d. zero-mean
Gaussian white noise with covariance matrix Q, which captures model uncertainties.

Smart sensors. The processing network includes a set of smart sensors (nodes) to
collect measurements of the system state xk. Each sensor is identified by label i ∈ V,
V .= {1, . . . , |V|}. After acquiring raw data, nodes may refine them via local processing.
For instance, in the control application depicted in Fig. 2.3, each drone is a smart sensor
that can process raw images to get more precise or high-level local measurements of
the monitored system (position and velocity of the tracked vehicle). According to the
available time and computational resources, a sensor may either run one of different tools
deployed on-board (e.g., one of the Neural Networks compared in Fig. 2.2) or adopt a
specific instantiation of an available anytime procedure (e.g., choosing the number of
visual features to extract [70]) to obtain refined measurements. The data produced by
all nodes in the network (possibly after local processing) are modeled as

zk(Tp) = Cxk + vk(Tp), zk(Tp) =


z

(1)
k (τp,1)

...

z
(|V|)
k (τp,|V|)

 , (2.2)

1We often refer to the nodes as smart sensors to stress their sensing and computational capabilities.

30 Sensing Design under Computation Latency

where z
(i)
k ∈ Rmi is the measurement collected at time k by the i-th node (starting

from an initial time k0 ≤ k), τp,i is the processing delay associated with that node, C

describes the state-to-output sensor transformation, and vk ∼ N (0, R) is i.i.d. zero-mean
Gaussian noise.2 The set Tp

.= {τp,i}i∈V collects all the processing delays, and vector
zk stacks the measurements collected by all nodes. As expressed by (2.2), we model a
sensory measurement z

(i)
k as dependent on processing delays τp,i, which affect accuracy of

processed data, through measurement noises v
(i)
k . In order to capture the anytime nature

of local node processing discussed above, we model the covariance matrix (intensity)
R(Tp) of the noise vk as a decreasing function of the delays τp,i: that is, the more time a
node spends on local processing, the more accurate the output measurements are. In
general, nodes with more powerful hardware induce a faster decrease of the uncertainty
R, since they can quickly process a larger amount of sensory data. The noise model is
formalized in Section 2.2.

Communication network. The nodes transmit processed data to the base station for
sensor fusion. To account for channel unreliability, we associate with the measurement
transmitted from the ith node at time k the binary random variable γ

(i)
k ∼ B(λi), which

denotes successful reception at the base station. Specifically, 1 − λi is the packet-loss
probability associated with each transmitted measurement from the ith node, which we
assume constant for the sake of simplicity. Further, we assume that γ

(i)
k and γ

(j)
ℓ are

uncorrelated if k ̸= ℓ or i ̸= j. Finite capacity is modeled as upper bound on the number
of data packets per unit time, which induces a maximum number of nodes transmitting
simultaneously.

Given limited bandwidth, data transmission induces a communication delay τc,i

(potentially different for each node i). We consider two possible models for τc,i, which is
expressed as a function of processing delay τp,i to quantify the computation-communication
trade-off.

Constant τc,i. The transmitted number of packets is fixed and does not depend on the
amount of processing, but may increase with the dimension of the transmitted data.

Decreasing τc,i. If nodes compress the measurements, a longer processing yields fewer
packets to transmit. In this case, nodes with more computational resources induce
a higher compression rate, leading to a faster decrease of τc,i.

Finally, the total delay to process and send data from the ith node to the base station
is τ̃i

.= τp,i + τc,i (see Fig. 2.4).
2Raw data generated by the ith node are associated with the minimum value of τp,i.

2.1 System Model and Problem Formulation 31

Processing network

Sensors
processing
delay τp,i

Dynamical System
xk+1 = Axk + wk

Channel
communication

delay τc,i

Base station
fusion

delay τf,i

xk
z

(i)
k−τp,i

...

z
(i)
k−τp,i−τc,i x̂k−τtot

Figure 2.5: Block diagram of the processing network with processing, communication and
fusion delays.

Base station. The central base station is in charge of fusing all received sensor data to
compute a state estimate. Such centralized processing adds extra latency, referred to as
fusion delay τf,tot, which is the sum of all delays τf,i, i ∈ V, required to process the data
stream from each node i.

Akin communication, we model fusion delay τf,i as either constant or decreasing with
processing delay τp,i. The second model is related to the computation-communication
trade-off: intuitively, the more processing is done at nodes, the less effort is needed for
fusion, which receives more compact and lighter information. In particular, in the former
case, fusion delays depends only on computational resources at the base station, while in
the latter case they might also depend on the amount of data compression performed by
nodes.

Figure 2.5 provides an overview of the processing network with the different latency
contributions – due to node processing, communication, and centralized fusion. As high-
lighted in the figure, raw data goes through a number of operations, each inducing some
delay. Therefore, the state estimate computed at time k will not include measurements
acquired at time k, but only partially outdated measurements collected at times earlier
than k through such delays. This is formalized in the following definition, that explicitly
describes which data are actually available for real-time estimation at each time.

Definition 2.1.1. The processed dataset at time k is

Zk

(
Tp

) .=
{

z
(i)
ℓi

(τp,i) : ℓi∈ [k0, k−τ̃i−τf,tot], γ
(i)
ℓi

=1
}

i∈V
. (2.3)

In words, the processed dataset includes all correctly received measurements except
the most recent ones collected during communication and data processing, i.e., during
the latest τp,i + τc,i + τf,tot timestamps.

2.1.2 Optimal Estimation in Processing Networks

In this section I first motivate the interest in optimizing the amount of processing at
each node and the need to select a subset of nodes. Then, I provide a suitable metric to

32 Sensing Design under Computation Latency

measure estimation performance. Finally, these elements are put together to formulate
the problem of optimal estimation in processing networks (Prob. 2.1.2).

Processing selection. While sensory data might be received and fused with some
(computation and communication) delay, a time-critical system needs a real-time, accurate
state estimate at current time k. This entails fusing sensor information Zk(Tp) (partially
outdated, due to the computation and communication delays) with the open-loop system
prediction in (2.1). These delays create a nontrivial trade-off: is it best to transmit
raw sensor data and incur larger communication and fusion delays, or to perform more
processing at the edge and transmit more refined (less noisy and more compressed)
information? For instance, consider again Fig. 2.3 where robots compute local estimates
from images. Consider the case in which local estimates of the truck state are computed
using local features extracted from camera images, as common in geometric computer
vision [70]. Each extracted feature both enhances node-side accuracy and possibly reduces
transmission and fusion latency. However, feature extraction entails some processing
latency at the edge. A trade-off emerges: on the one hand, many features cause a delayed
prediction; on the other hand, few provide poor accuracy. An optimal estimation policy
has to decide the processing at each node in a way to maximize the final estimation
accuracy.

Sensor selection. In addition to delays caused by local processing at nodes and
communication channel, the fusion latency at the base station increases with the number
of sensors transmitting data, by definition. As a consequence, the length of open-loop
prediction required to compensate for the fusion delay increases with the number of
nodes, hence adding more sensors does not necessarily improve performance. Therefore,
in order to maximize the estimation accuracy, the network can also decide to use only a
subset of available sensors S ⊆ V (below we refer to those as active nodes), such that the
state estimate is computed using only data from those sensors, Zk

(
S, T S

p

)
⊆ Zk

(
Tp

)
,

where T S
p denotes the set of processing delays associated with active nodes.

Performance metric. In a state estimation problem, the performance can be mea-
sured as the Mean Squared Error (MSE) of a estimates, i.e., Var

(
xk − x̂k(T S

p)
)
, where

x̂k

(
T S

p

) .= g
(
Zk

(
S, T S

p

))
is the state estimate from an optimal estimator that uses

the reduced processed dataset Zk

(
S, T S

p

)
. For linear systems with Gaussian noise, the

Kalman filter is typically used, being the optimal MSE estimator. However, the optimal
filter comes with the nuisance of time variance and dependence on the specific packet
arrivals, and convergence analysis is not feasible (cf. [167], [175]). To overcome this
problem, in the following I resort to the (suboptimal) filter with constant gains (i.e.,

2.1 System Model and Problem Formulation 33

not depending on the arrival-sequence instance), and address the steady-state expected
performance.

Problem formulation. Given the previous definitions, the problem of Optimal Estima-
tion in Processing Networkcan be formalized as follows.

Problem 2.1.2 (Optimal Estimation in Processing Network). Given system (2.1) with
available sensor set V and measurement model (2.2), find the optimal sensor subset S
(the active sensors) and processing delays T S

p that minimize the steady-state expected
estimation error variance:

arg min
S ⊆ V

T S
p = {τp,i}i∈S ∈ N|S|

Tr
(
P∞|∞−τtot

(
T S

p

))
, (2.4)

where the total delay τtot is defined as

τtot
.= min

i∈S
τ̃i︸ ︷︷ ︸

.= τ̃min

+
∑
i∈S

τf,i︸ ︷︷ ︸
.=τf,tot

(2.5)

and the steady-state expected error covariance is given by

P∞|∞−τtot

(
T S

p

) .= lim
k→+∞

E
[
Var

(
xk − x̂k

(
T S

p

))]
, (2.6)

where the expectation is taken with respect to the sequence {γ(i)
k ∀k ≥ k0,∀i ∈ S}.3 The

delay τtot accounts for the fact that, because of delays, the steady-state estimate relies
on partially outdated measurements: τ̃min is the time it takes to receive all processed
data from the sensors (including the freshest data collected in Zk(S, T S

p)), while τf,tot is
the time it takes to fuse them at the base station.

Remark 2.1.3 (Parallel data collection vs. sequential fusion). The delay τ̃min is computed
as the minimum over the active sensors, as these work in “parallel”, while the fusion
delay τf,tot is additive, because in general the fusion center processes all data sequentially.
Therefore, the latter is more sensitive to variations of computational delays. Besides,
the fusion delay increases with the number of sensors, possibly limiting the network
scalability.

3Packet-loss probabilities are assumed to be small enough so as that the steady-state estimator with
constant gains exists.

34 Sensing Design under Computation Latency

Remark 2.1.4 (Comparison with sensor selection). The problem formulation (2.4) differs
from standard sensor selection, where each sensor comes with a cost and one aims at
maximizing performance under cost constraints [77], [96], [200]. In particular, the focus
here is purely on performance which is subject to latency-accuracy and communication-
computation trade-off, binding the sensor selection to that of suitable processing delays.
Therefore, in our setup, rather than associating a cost to sensors as resources, the penalty
in using a sensor is captured by the amount of computation and delay it induces at the
fusion station.

Remark 2.1.5 (LQG control and sensing co-design). The optimal-estimation problem (2.4)
readily extends to the co-design of sensing and LQG control. The latter is defined as the
following dynamical program,

minimize
{uk}k≥k0

S,T S
p

E

 ∞∑
k=k0

(
xT

k Qxk + uT
k Ruk

) (2.7a)

subject to xk+1 = Axk + Buk + wk, (2.7b)

where (2.7b) is the controlled system dynamics with control input uk at time k. Indeed,
it can be shown (see e.g., [200]) that the above problem is equivalent to the following
cascade,

S∗, T S,∗
p = arg min

S, T S
p

Tr
(
M∞P∞|∞−τtot

(
T S

p

))
, (2.8a)

u∗
k = −

(
B⊤StB + Rt

)−1
B⊤StAx̂t

(
T S,∗

p

)
, (2.8b)

where

M∞ = A⊤S∞B
(
B⊤S∞B + R

)−1
B⊤S∞A, (2.9a)

S∞ = Q + A⊤
(
BR−1B⊤ + S−1

∞

)−1
A. (2.9b)

In particular, the cost function in (2.8a) is equivalent to the one in (2.4) up to the
constant matrix coefficient M∞, which simply weighs the components of the estimation
error covariance according to the control task. Hence, even though I focus on optimal
estimation for the sake of simplicity, analytical results and selection algorithms presented
in this chapter can be readily extended to the LQG optimal control scenario.

From now on, I will write τi = τp,i and T = T S
p for the sake of readability. Before

designing algorithms to solve Problem 2.1.2, I perform an exact analysis on its continuous-
time counterpart, which can be analytically solved when the set of sensors is fixed and

2.2 Continuous-Time Analysis 35

homogeneous. Such simplified approach provides useful insights on the cost function
in (2.4), which are used to tackle the more general case in Section 2.3.

2.2 Continuous-Time Analysis

In this section I consider a continuous-time scalar system monitored by a homogeneous
network, composed of V independent sensors featuring identical local processing and
delays. To achieve analytical insight, in the following I solve the reduced version of
Problem 2.1.2 where only processing delays τ are optimized and the sensor set is fixed.
The need for selection is motivated in Section 2.2.2 with a numerical example. Also,
dealing with a continuous stream of sensory data, infinite channel capacity and reliable
communication is first assumed. Such assumptions are relaxed in Section 2.3.2 where
more realistic discrete-time dynamics and multivariate system state are addressed. The
material presented in this section is developed in detail in [19].

Consider the following continuous-time scalar system,

dxt = axtdt + dwt dwt ∼ N (0, σ2
wdt), (2.10)

and the homogeneous-network model

zt(τ) = 1V c xt + vt(τ) vt(τ) ∼ N
(
0, IV σ2

v(τ)
)

, (2.11)

where a describes the state dynamics, wt is the process noise, and σ2
w is its variance.

Vector 1V ∈ RV stack all ones, and c and σ2
v(τ) are scalars modeling the noisy state-output

transformation of each sensor. The vector zt(τ) ∈ RV collects all the measurements
from the V sensors and vt(τ) is the overall measurement noise, with covariance matrix
IV σ2

v(τ).
The anytime nature of local processing at each node, qualitatively discussed in the

previous section, is formally captured by modeling the measurement noise covariance
σ2

v(τ) as a decreasing function of the processing delay τ . Motivated by the estimation
error variance of Least Squares, which is inversely proportional to the number of collected
samples at each node, the following model is used,

σ2
v(τ) = b

τ
b > 0. (2.12)

The coefficient b depends on the node parameters: on the one hand, nodes with large
computational resources improve quickly their output accuracy, yielding a small b; on the
other hand, if the collected raw data are heavy (e.g., images), refining them takes more

36 Sensing Design under Computation Latency

time, inducing a larger b. Communication and fusion delays τc(τ), τf(τ) are defined as

constant :

τc(τ) ≡ τc

τf(τ) ≡ τf

(2.13a) τ -varying :

τc(τ) = c
τ

τf(τ) = f
τ

, (2.13b)

where the delays are either fixed constants τc, τf as in (2.13a), or they are inversely
proportional to the processing delay (with given coefficients c and f), as in (2.13b).
Parameters τc, τf , c and f are assumed positive and known. Roughly speaking, both
communication and fusion compression coefficients c and f increase with the dimension
of the raw measurements. Conversely, sensors with more computational resources can
compress faster and induce smaller coefficients.

Remark 2.2.1. While the models in (2.13b) are mainly used for mathematical convenience,
in a real setup the compression functions might be learned or estimated from data,
e.g., [160].

In a homogeneous network, the total delay simplifies to (cf. (2.5) in the case that all
nodes are active and have the same delays)

τtot = τ + τc(τ) + τf(τ)V. (2.14)

Importantly, the total fusion delay depends linearly on the sensor amount V . In such setup,
Problem 2.1.2 simplifies to the following formulation, which focuses on the computation
of the optimal processing delay (equal for all sensors).

Problem 2.2.2 (Optimal Estimation in Continuous-time Processing Network). Given
system (2.10) with V identical sensors and measurement model (2.11), find the optimal
processing delay τ that minimizes the steady-state expected estimation error variance,

arg min
τ∈R+

p∞|∞−τtot(τ). (2.15)

It turns out that 2.2.2 has a unique analytical solution, as formalized next.

Theorem 2.2.3 (Optimal processing for continuous-time homogeneous network). Con-
sider the LTI system (2.10)–(2.11) with measurement noise variance σ2

v(τ) as per (2.12),
communication and fusion delays τc(τ), τf(τ) as per (2.13a) or (2.13b) and initial condi-
tion xt0 ∼ N (µ0, p0). Assume x̂t(τ) is the Kalman-filter estimate at time t given mea-
surements collected until time t− τtot. Then, the steady-state error variance p∞|∞−τtot(τ)

2.2 Continuous-Time Analysis 37

Figure 2.6: Representation of variance p∞|∞−τtot (τ).

is
p∞|∞−τtot(τ) = e2aτtotp∞(τ)︸ ︷︷ ︸

.=f(τ)

+ σ2
w

2a

(
e2aτtot − 1

)
︸ ︷︷ ︸

.=q(τ)

(2.16)

where

p∞(τ) = b̃

τ

a +
√

a2 + σ2
w

b̃
τ

 b̃
.= b

V c2 (2.17)

with limits

lim
τ→0+

p∞|∞−τtot(τ)= lim
τ→+∞

p∞|∞−τtot(τ)=


+∞, a ≥ 0
σ2

w

2|a| , a < 0
(2.18)

and has a unique global minimum at τopt > 0. Finally, when the delays τc(τ) and τf(τ)
are constant, as per (2.13a), τopt satisfies

σ2
w

b̃
τ3

opt = −a2τ2
opt + 1

4 . (2.19)

Proof. See Appendix A.1.

The proof exploits quasi-convexity of the expected variance p∞|∞−τtot(τ). Figure 2.6
illustrates the cost function with the two models for communication and fusion delays
(black for constant and red for τ -varying) for an asymptotically stable system; for the
former, the contributions due to estimation f(τ) and to process noise q(τ) as given
in (2.16) are shown as dashed and dotted lines, respectively. The solid curves cross, the
red one being lower for τ > 1, suggesting that compressing data at fixed rate is convenient

38 Sensing Design under Computation Latency

if the processing delay is kept below a certain threshold.
Equation 2.19 allows for a closed-form computation of τopt if model (2.13a) holds.

In general, being the variance p∞|∞−τtot(τ) quasi-convex, a numerical solution can be
computed efficiently. Optimal processing with alternative models for σ2

v(τ) is discussed
in Appendix A.2.

Example 2.2.4 (Brownian systems). One interesting case arises when the system (2.10)
describes a Brownian motion,

dxt = dwt. (2.20)

In this situation, the optimal delay has a simple closed-form expression.

Corollary 2.2.5 (Brownian motion). Given system (2.20) and (2.11) and hypotheses as
per Theorem 2.2.3, the steady-state expected error variance has the following expression,

p∞|∞−τtot(τ) =

√
b̃σ2

w

τ︸ ︷︷ ︸
f(τ)

+ σ2
wτ︸︷︷︸

q(τ)

, (2.21)

admitting the unique global minimum

τB
opt = 3

√
b̃

4σ2
w

. (2.22)

The cubic root in (2.22) strongly reduces the parametric sensitivity of τB
opt, which

may intuitively help under model uncertainty.

2.2.1 Sensitivity of Optimal Processing

Based on (2.19), with constant delays (2.13a) the behavior of the optimal delay τopt can
be analyzed as a function of the system parameters. In particular, σ2

w and b̃ do not act
independently, so it is more interesting to focus on their ratio ρ

.= σ2
w/̃b.

Proposition 2.2.6. Let τopt be the solution of (2.19) with τc(τ), τf(τ) as per (2.13a);
then, τopt is strictly decreasing with ρ and a2.

Proof. See Appendix A.3.

On the one hand, Proposition 2.2.6 states that it is more convenient to reduce the
processing for “unpredictable systems”, characterized by fast dynamics or large process
noise. On the other hand, if the sensor noise is large, it is better to further refine
measurements, which explains why τopt grows with b. Also, since the parameter b̃ is

2.2 Continuous-Time Analysis 39

Figure 2.7: Optimal delay τopt as a
function of ρ (a2 = 1) and a2 (ρ = 1).

1 2 3 4 5 6 7 8 9 10
2.2

2.4

2.6

2.8

3

3.2

3.4

Number of sensors s

p ∞
|∞
−

τ t
ot

W/ fusion delay
W/o fusion delay

Figure 2.8: Variance p∞|∞−τtot (s) with fixed
delays and varying number of sensors.

inversely proportional to the number of sensors V , then τopt also decreases with V : the
more data are provided, the less processing is needed to extract accurate information.
Figure 2.7 shows the typical behavior of τopt with respect to the system parameters.

Remark 2.2.7. (Insights from continuous-time scalar case) The analysis on continuous-
time homogeneous networks yields two important insights. Firstly, the cost function is
quasi-convex. This is exploited in Section 2.3.2 to design a descent strategy optimizing
the processing delays of a given sensor subset. Secondly, using all sensors is not necessarily
an optimal strategy, and – in the presence of fusion delays – using a proper subset of the
available sensors leads to optimal estimation performance. This justifies the selection in
Problem 2.1.2 and motivates design of the proposed greedy sensor selection.

2.2.2 Homogeneous Network: Performance vs. Number of Sensors

According to (2.14), the total delay τtot depends linearly on the sensor amount V , being
the fusion delay additive with respect to sensors (cf. Remark 2.1.3). Therefore, if
p∞|∞−τtot is seen as a function of the number of sensors s ∈ {1, . . . , V } (with delays τ ,
τc(τ) and τf(τ) fixed), then p∞|∞−τtot(s) has the same structure of p∞|∞−τtot(τ) when
communication and fusion delays are constant, and can be minimized analogously (on
discrete domain).

Figure 2.8 shows the expected estimation error variance as a function of the sensor
amount. The red marks shows that the error decreases monotonically with the number of
sensors in the absence of fusion delays. However, in the realistic case with non-negligible
fusion delays (black marks), using more sensors might increase variance and hinder
performance.

40 Sensing Design under Computation Latency

2.3 Latency-Aware Sensing Design

This section addresses the general discrete-time, multidimensional formulation in Prob-
lem 2.1.2. In discrete time, delays are expressed in time steps with respect to a sampling
period ∆ associated with discretization of the continuous-time system which produces
dynamics (2.1).

Problem 2.1.2 cannot be solved analytically, due to its combinatorial nature. Also,
the cost Tr

(
P∞|∞−τtot(T)

)
cannot be computed in closed form in general, since it derives

from the solution of a Riccati equation. To make things even more complicated, given a
sensor subset, the structure of the cost function depends on how the delays are sorted.

To circumvent these issues, I propose greedy selection algorithms. This is done in
two steps. In Section 2.3.1, I describe a procedure (based on [166]) to compute the cost
function in (2.4) (and in particular the steady-state expected covariance P∞|∞−τtot(T))
for a given set of sensors and given processing delays. Then, algorithms to select sensors
and to compute the optimal processing are presented in Section 2.3.2.

2.3.1 Computation of Expected Steady-State Error Covariance

This section shows how to compute the steady-state expected covariance for a given
choice of the active sensors S ⊆ V and given processing delays. For notational conve-
nience and without loss of generality, active sensors are labeled as S = {1, 2, . . . , s},
with corresponding processing delays τ1, τ2, . . . , τs. Finally, active sensors are sorted as
discussed below.

Assumption 2.3.1 (Sensor sorting). Sensors in S are labeled according to τ̃i−1 ≤ τ̃i,

for i = 2, ..., s (cf. Fig. 2.4).

Assumption 2.3.1 states that, if i < j, the fusion station receives data from the ith
sensor before than data from the jth sensor, and therefore sensor i transmits fresher
information.

We now provide a procedure which, given sensor delays and parameters, computes the
steady-state expected covariance P∞|∞−τtot(T) (and hence the cost Tr

(
P∞|∞−τtot(T)

)
in (2.4)), and is exploited by the first algorithm in Section 2.3.2 to assess the performance of
sensor subsets. The following is not a closed-form – but rather an iterative – computation.
I first outline the procedure and then provide an illustration of the procedure with s = 3
active sensors using Fig. 2.9.

We start by expanding the matrices that describe the measurement model (2.2) as

C =
[
CT

1 . . . CT
s

]T
, R(T) = diag(R1(τ1), ..., Rs(τs)), (2.23)

2.3 Latency-Aware Sensing Design 41

where we assume independent sensors with state-output matrix Ci and covariance
Ri(τi) = bi/τiImi (cf. (2.12)).

Before introducing the key result in Theorem 2.3.3 below, it is helpful to introduce
some definitions associated with the Kalman filter with constant gains (cf. [167], [175]),
which are used to state the theorem.

Definition 2.3.2. We define the following operations associated with the Kalman filter
with constant gains and acting on the extended state estimate covariance matrix P .

Multi-step prediction with τ > 0 steps:

Pτ (P) .= P ◦ ... ◦ P︸ ︷︷ ︸
τ times

(P), P(P) .= APAT + Q. (2.24)

Measurement update with data acquired at time k − τf,tot − δ:

U (P, Tδ) .=
(
P −1 + Γ̃(Tδ)

)−1
. (2.25)

for any delay δ, where the information matrix of the processed data when the Kalman
gains are constant is4

Γ̃(Tδ) =
∑

i∈S(δ)
λi

Γi − Γi

(
P −1

1− λi
+ Γi

)−1

Γi

 . (2.26)

In the previous expression, Γi = CT
i (Ri(τi))−1Ci is the information matrix of the ith

sensor and 1− λi is its packet-loss probability (for details about the derivation of Γ̃ with
packet loss, see Appendix A.4). Recall that the update is restricted to the sensors from
which measurements have been received by time k− τf,tot. Formally, this set of processed
sensors is

S(δ) .= {i ∈ S : τ̃i ≤ δ} , (2.27)

and their processing delays are in Tδ
.= {τi}i∈S(δ).

One-step KF iteration with data acquired at time k − τf,tot − δ:

I (P, Tδ) .= P ◦ U (P, Tδ) . (2.28)

4All updates use the Kalman filter in information form to handle the fusion more easily. This is also
useful if sensor measurements have infinite variance at some locations. Having independent sensors yields
a nice expression for Γ̃, where each contribution is visible and disjoint from the others.

42 Sensing Design under Computation Latency

k− τf,tot −τ̃3 k
τf,tot

Sensor 1
τ̃1

Sensor 2
τ̃2

Sensor 3
τ̃3

Processed
dataset

∗∗
∗


∗∗


∗


∗


Figure 2.9: Estimation at time k. Solid and dashed arrows show acquired and received (by
central station) data, respectively. Colored stars represent sensor data which are available in

the processed dataset.

Multi-step KF iteration with data acquired in the time interval [k−τf,tot−δi +1, k−
τf,tot − δj] for any delays δi > δj :

Iδi−δj

(
P, Tδi−1

) .= I
(
... I

(
P, Tδi−1

)
, ..., Tδj

)
, (2.29)

where the one-step KF iterations may involve different subsets of active sensors, according
to their delays.

Then the following result can be obtained.

Theorem 2.3.3. Using the terminology and notation in 2.3.2, the cost function in (2.4)
is given by the trace of

P∞|∞−τtot(T) = Pτpred
(
I τ̃s−τ̃1

(
P∞ (T) , Tτ̃s−1

))
, (2.30)

where:

• τpred
.= τ̃1 − 1 + τf,tot is the length of the multi-step prediction;

• τ̃s − τ̃1 is the time between oldest and newest processed data;

• P∞(T) solves the ARE where all active sensors are considered, i.e.,

P∞(T) = I
(
P∞(T), Tτ̃s

)
. (2.31)

Proof. See Appendix A.5.

Algorithm 1 implements (2.30): line 1 solves the ARE (2.31); loop 3–5 computes
the multi-step KF iterations, with jth iteration involving the subset {1, ..., s− j}; line 6

2.3 Latency-Aware Sensing Design 43

computes the multi-step prediction. This procedure yields the desired steady-state
expected covariance P∞|∞−τtot(T).

Algorithm 1 computeCovariance subroutine
Input: System (A, Q), state-output matrix Ci, noise covariance Ri(·), communication

and fusion delays τc,i, τf,i for each active sensor i ∈ S, processing delays T .
Output: Expected error covariance P∞|∞−τtot(T).

1: Compute solution P∞(T) of ARE with all sensors;
2: P ← P∞(T);
3: for sensor amount i← s− 1 down to 1 do
4: multi-step KF iteration: P ← I τ̃i+1−τ̃i

(
P, Tτ̃i

)
;

5: end for
6: multi-step prediction: P∞|∞−τtot(T)← Pτpred(P);
7: return P∞|∞−τtot(T).

Figure 2.9 illustrates the procedure with s = 3 active sensors. At time k − τf,tot,
the fusion station initiates the computation to produce an estimate at time k. When
performing the fusion, the station has access to the data from all sensors collected until
time k − τf,tot − τ̃3. However, due to the computation and communication delays, it will
only have access to a subset of the sensor data after k − τf,tot − τ̃3. In particular, sensor
3 has the largest processing-and-communication delay τ̃3, and the data it collects after
time k − τf,tot − τ̃3 will only be received at the fusion station after time k − τf,tot. The
insight of Algorithm 1 is simple: this procedure computes the expected covariance until
time k − τf,tot − τ̃3 (when all sensors are available), and then it collects the sporadic
measurements collected after k− τf,tot− τ̃3 which arrived at the fusion station before time
k− τf,tot (i.e., the ones from sensor 1 and 2 in the figure). In particular, accounting for all
measurements collected until time k − τf,tot − τ̃3 leads to the steady-state expected error
covariance P∞(T) satisfying (2.31), while the subsequent measurements are captured
by (2.30). In Fig. 2.9, sensor 3 only provides one measurement, and the following four
estimates use sensors 1 and 2. Afterwards, also sensor 2 becomes outdated and the last
measurement updates only involve sensor 1. After the processed dataset has been used,
the current-state estimate is retrieved with an open-loop prediction compensating for the
remaining delay (in this case induced by sensor 1 and fusion). In the figure, the sensor
contribution to the state estimates overtime is highlighted with the matrix in the bottom
row: at first, all sensor data are available (full bottom-left matrix), then some sensors
become outdated, until no more sensor measurement is received and the state estimate
must be propagated in open loop (empty bottom-right matrix).

Remark 2.3.4 (Cost computation with state augmentation). Equation 2.30 can be equiv-

44 Sensing Design under Computation Latency

Sensor 1
τ̃1 r1

Sensor 2
τ̃2 r2

Sensor 3
τ̃3 r3

Tr
(
P∞|∞−τtot

)
τf,tot T

k

Figure 2.10: T -periodic cost with three multi-rate sensors. Solid arrows: sensor acquisitions;
dashed arrows: data reception at central station.

alently written in a more compact way, by considering the augmented system with
τ̃s + τf,tot consecutive states and C and R having nonzero blocks according to processed
data. The cost Tr

(
P∞|∞−τtot (T)

)
would be retrieved by computing the steady-state

expected covariance of the augmented-state-estimate error, and cropping the bottom-right
block. However, this is numerically inefficient and does not exploit the specific structure
of the problem.

Remark 2.3.5 (Adaptive selection). Algorithm 1 can be modified for an adaptive design,
e.g., to deal with the case when the system parameters change overtime, or if it is desired
to schedule different sensors over time. The time-varying counterpart of Problem 2.1.2
(where the estimation error covariance is evaluated over a finite time horizon instead of
steady state, as done in [200]) might be solved iteratively over suitable horizons, in an
MPC-like fashion. In particular, line 1 can be substituted with online KF iterations (2.28)
from time k0 to k − τf,tot − τ̃s, including all sensors in the updates with measurements.
An alternative adaptive design based on Reinforcement Learning is proposed in [16], [17].

Remark 2.3.6 (Multi-rate networks). Algorithm 1 can also deal with systems where nodes
have heterogeneous acquisition times ri (see Fig. 2.4b). This case is quite natural in
processing networks: for example, the drones in Fig. 2.3 may carry cameras with different
frame rates. The corresponding information matrix for the ith sensor can be easily
modeled in the setup adopted above as a time-varying matrix,

Γi(τi, k) .=

C⊤
i (Ri(τi))−1Ci, if k0 = k mod ri

0n×n, otherwise,
(2.32)

which can be readily used in Algorithm 1. Figure 2.10 shows a qualitative behavior of
the cost with three multi-rate sensors.

2.3 Latency-Aware Sensing Design 45

Figure 2.11: Cost function for a homogeneous network. The original continuous-time system
has poles σ(A) = {−1, −0.1} and Q = 10I2.

Example 2.3.7 (Homogeneous network). After presenting a procedure to compute the cost
function in the discrete-time case, this can be tested in the simple case of a homogeneous
network with a single processing delay for all sensors, without addressing sensor selection.
This allows establishing a connection with the formal setup in Section 2.2. The numerical
simulations in Fig. 2.11 exhibit a quasi-convex behavior, similarly to the continuous-time
counterparts in Fig. 2.6. This motivates the exploration of greedy “descend” methods
that attempt to iteratively minimize the cost function.5

2.3.2 Algorithms for Sensing Design

Since Problem 2.1.2 cannot be solved analytically, it is tackled via a two-step greedy
approach relying on the insights highlighted in Remark 2.2.7. On the one hand, motivated
by the need of choosing an optimal sensor subset, the algorithm iteratively selects one
sensor at a time, until the expected performance cannot be further improved. On the
other hand, leveraging the intuition of a quasi-convex cost, the delays of each tentative
subset are optimized via a dedicated subroutine. The next paragraph shows how the
latter optimizes the delays for a given sensor set, and then I present the full iterative
procedure.

5In the homogeneous case, a single processing delay needs to be computed, and the optimal one can
be easily found by a brute-force search. However, the ultimate goal in Problem 2.1.2 is to tackle the
general case of heterogeneous networks, where the optimization variable has high dimension.

46 Sensing Design under Computation Latency

Sensor-wise Descent for Selection of Processing Delays

A sensor-wise descent subroutine is used to compute near-optimal computational delays
T ∗ for a given active set S. The algorithm optimizes one delay τi at a time, by minimizing
the one-dimensional problem associated with sensor i, with all other delays fixed. Algo-
rithm 2 shows the subroutine steps. The to-be-returned delays and cost are initialized
with the input delays TI and the trace of the expected error covariance computed with
TI , respectively (lines 1–2).6 The outer loop between lines 3–16 optimizes the delay
T ∗[i] = τi with a one-dimensional descent. For each delay, an exploratory iteration is first
used to set the sign of the unitary stepsize α, according to the descent direction (line 4–9).
Once α is chosen, the inner loop (lines 11–13) refines the processing delay: the descent
direction is explored until a local minimum is found (condition 14). The best achieved
delay is restored and saved in line 15. Figure 2.12 shows the cost function with three
sensors: it looks quasi-convex, consistently with homogeneous networks. Figure 2.13
illustrates an execution of the Algorithm 2, which highlights its sensor-wise nature.

Algorithm 2 sensorWiseDescent subroutine
Input: System (A, Q), state-output matrix Ci, noise covariance Ri(·), communication

and fusion delays τc,i, τf,i for each active sensor i ∈ S, initial delays TI .
Output: Near-optimal delay set T ∗, cost Tr

(
P∞|∞−τtot(T ∗)

)
.

1: pmin ← Tr (computeCovariance(A, Q,S, TI));
2: T ∗ ← TI ;
3: for each i ∈ S do
4: Stepsize α← −1 ; // default: delay τi is decreased
5: T ∗[i]← T ∗[i] + α;
6: pcurr ← Tr (computeCovariance(A, Q,S, T ∗));
7: if pmin ≤ pcurr then
8: α← +1; // delay τi is increased
9: end if

10: repeat
11: pmin ← pcurr;
12: T ∗[i]← T ∗[i] + α;
13: pcurr ← Tr (computeCovariance(A, Q,S, T ∗));
14: until pmin ≤ pcurr
15: T ∗[i]← T ∗[i]− α;
16: end for
17: return T ∗, pmin.

6The initial delays TI are provided by the sensor selection algorithm exposed next.

2.3 Latency-Aware Sensing Design 47

1.
73
9

1.745

1.745

1.
74
5

1.75

1.
75

1.75

1.75 1.7
6

1.76

1.
76

1.76

1.781.78

1.78

1.81.8

1.8

2

Figure 2.12: Cost-function levels with
constant τc,i, τf,i (τ3 is fixed).

Figure 2.13: Visualization of
sensorWiseDescent on cost func-
tion in Fig. 2.12 (τ3 goes from 64 to 52):
iterations go from darker to lighter marks.

Sensor Selection

This section presents the main procedure to solve Problem 2.1.2. A greedy algorithm
iteratively selects one sensor at a time, as long as the cost can be decreased. For each
tentative subset, processing delays are optimized as described in the previous paragraph.

Algorithm 3 shows the pseudo-code of the overall procedure. First, each available
sensor i is considered in isolation and its optimal processing delay τopt,i and corresponding
variance are found via brute-force search (line 1). The to-be-returned sensor and delay
subsets S∗, T ∗ and the minimum cost pmin are initialized with the sensor achieving
the minimum variance (lines 2–4). The outer loop 5–21 adds one sensor at a time to
the selection S∗, stopping when the cost hits a local minimum (no other sensor can
be added to further reduce the cost) or all available sensors have been selected. The
inner loop 7–16, given the current selection S∗, builds the tentative subsets Scurr (line 8)
by adding excluded sensors (toTry) one at a time. The near-optimal delays Tcurr for
the tentative set are initialized with the best delays obtained so far for the sensors
in Scurr (line 9), i.e., with the current near-optimal delays T ∗ for the already-selected
sensors, and with the single-sensor optimal delay for the tentative sensor: intuitively,
a “small” difference between subsets yields “small” differences between optimal delays.
The sensor-wise descent is in charge of computing the near-optimal delays and cost
for each subset (line 10). When a tentative subset hits a new minimum (line 11), the
sensor toTry becomes toSelect (line 12), i.e., it is the best candidate to be added to
the selected subset. The temporary variable T ∗

curr allows not to overwrite the delays
used to initialize sensorWiseDescent. When all available sensors have been tried, the
one toSelect (if any) and the new near-optimal delays are stored in the to-be-returned
variables (lines 17–20).

48 Sensing Design under Computation Latency

Algorithm 3 Sensor selection
Input: System (A, Q), state-output matrix Ci, noise covariance Ri(·), communication

and fusion delays τc,i, τf,i for each available sensor i ∈ V.
Output: Near-optimal sensor set S∗ and delay set T ∗.

1: Compute optimal delays τopt,i for one-sensor subsets {i};
2: S∗ ← one-sensor subset achieving minimum cost;
3: T ∗ ← {optimal delay τopt,S∗ for S∗};
4: pmin ← minimum cost achieved by S∗;
5: repeat
6: toSelect ← ∅;
7: for each sensor toTry ∈ V\S∗ do
8: Scurr ← S∗ ∪ {toTry};
9: Tcurr ← T ∗ ∪

{
τopt,toTry

}
;

10: [Tcurr, pcurr]← sensorWiseDescent (A, Q,Scurr, Tcurr);
11: if pmin > pcurr then
12: toSelect ← toTry;
13: pmin ← pcurr;
14: T ∗

curr ← Tcurr;
15: end if
16: end for
17: if ∃ toSelect then
18: S∗ ← S∗ ∪ {toSelect};
19: T ∗ ← T ∗

curr;
20: end if
21: until pmin ≤ pcurr or s = |V|
22: return S∗, T ∗.

2.4 Numerical Simulations 49

Remark 2.3.8 (Non-detectable subsystems). Some costs for single-sensor subsets in line 1
may be infinite if pairs (A, Ci) are not detectable. If this holds for some sensors, these
can be discarded from initialization. Otherwise, the latter may be replaced by the greedy
selection of the minimum-cardinality, minimum-cost sensor subset ensuring detectability.

Remark 2.3.9 (Finite channel capacity). The channel capacity can be handled by adding
a termination condition in line 21 to stop the algorithm when the selected sensors
"fill" the channel. A threshold s̄ < |V| may be fixed a priori to select at most s ≤ s̄

sensors (in this case, the structure of the algorithm ensures that the greedy-best s̄-
sensor subset is selected), or the bandwidth utilization of each selected sensor may
be traced online during execution. As mentioned in Section 1.1.1, typical works in
the telecommunication literature tackle limited channel capacity from a scheduling
perspective. A unifying framework which merges these two approaches is possible, even
though it leads to an intractable problem in general. Paper [195] extends the present work
towards that direction, studying co-design of sensor local processing and communication
scheduling when sensors observing decoupled dynamical system. Also, Algorithm 3
might be iteratively run over a finite time horizon if sensors need to be scheduled (cf.
Remark 2.3.5).

Remark 2.3.10 (User-driven selection). If the task needs specific sensory data (such as
images or infra-red), Algorithm 3 can be customized accordingly, e.g., forcing the initial
subset (lines 2–4) to include the corresponding sensors.

2.4 Numerical Simulations

Inspired by Fig. 2.3, the proposed numerical experiments simulate a drone network
in charge of tracking position and velocity of a ground vehicle. The system state
x = [x ẋ y ẏ]T , x and y being spatial coordinates, has dynamics given by (2.1) with

A = I2 ⊗
[
1 ∆
0 1

]
Q =

[
σ2

x 0
0 σ2

y

]
⊗
[

∆2/4 ∆3/2

∆3/2 ∆2

]
, (2.33)

where σ2
x = σ2

y = 0.1 convey the inaccuracy given by approximating the actual vehicle
motion with constant speed, and the sampling time is set as ∆ = 1ms.

The available set V is composed of six heterogeneous smart sensors:

• sensor 1 models a drone equipped with a powerful GPU-CPU processing hardware
and a high-resolution camera working at 60fps, with a sparse matrix Ci ∈ R4×100 with
density coefficient 0.3 (command sprand in Matlab);

50 Sensing Design under Computation Latency

Table 2.1: Parameters used in simulation for each sensor (sensor ID in parenthesis).

Parameter bi ci fi ri

Powerful drone (1) 5× 10−3 2500 1250 15
Lightweight drone (2, 3) 7.5× 10−2 110 55 30
Event camera (4, 5, 6) 3.4 2 1 10

Figure 2.14: Optimal and greedy costs
with different models. Numerical values
(actual): {1.84, 1.94, 2.17, 3.32}×10−5.

Figure 2.15: Greedy-selection and all-
sensor costs with increasing set size. Fu-
sion delays become crucial with large sets.

• sensors 2 and 3 model drones with low-resolution cameras working at 30fps, with
sparse matrices Ci ∈ R4×20;

• sensors 4, 5 and 6 model event cameras collecting events at 100Hz, which output noisy
estimates of the position.

Table 2.1 collects the parameters used in the simulation, assuming wireless connection
working at 25 Mbps, which is needed to ensure real-time performance of the high-resolution
camera. Also, packet-loss probability 1− λ = 0.25 is assumed for all sensors. The choice
of parameters is based on the real-world experiments described in [123], and assume
varying communication and fusion delays according to model (2.13b). For instance,
drone 2 is assumed equipped with modest computational capabilities: with a 30ms-long
processing delay, this sensor can estimate the vehicle position with an error standard
deviation of 5cm. On the other hand, its low-quality camera provides images which take
little time to be compressed/delivered via wireless. For instance, transmitting raw images
(i.e., with minimum processing τ2 = 1ms) takes 110ms. Also, modest computational
resources are assumed at the fusion center, which takes half of the communication time
to process data from each sensor. The processing delays range from 10ms to 290ms, only
considering multiples of 20 to make the comparative brute-force search feasible.

Figure 2.14 shows the optimal cost (left) and the one achieved by the algorithm

2.4 Numerical Simulations 51

Table 2.2: Sensors and delays: optimal and greedy selection.

Sensor 1 2 3 4 5 6
True optimum ⧸ 30ms 30ms ⧸ ⧸ ⧸

Greedy
All delays ⧸ 50ms 50ms ⧸ ⧸ ⧸
W/o fusion 50ms 30ms 30ms ⧸ ⧸ ⧸
W/o comm. 30ms ⧸ ⧸ ⧸ ⧸ ⧸

Table 2.3: Number of available sensors |V| vs. sensors selected by Algorithm 3 |S|.

Number of sensors
Available 6 12 24 48 96
Greedy w/ all delays 2 2 3 5 5
Greedy w/o fusion delays 3 6 3 48 96

considering either the full model or only some delays. In particular, red bars show
the actual cost (computed with all delays), while green bars represent the performance
estimated by computeCovariance, which is an underestimate when the used model lacks
either communication or fusion delays. The optimal cost is computed via brute-force
search and is only used for benchmarking, since this strategy does not scale in the size
of the network. The greedy selection yields a suboptimality gap of about 5.4% when
all delays are considered, 18% when neglecting fusion delays, and 80% when neglecting
communication delays. This translates into a larger tracking error: for instance, using
only sensors 1 raises to 4m/s the optimal error on velocity, which is 3m/s. Selecting more
sensors than necessary impacts also other aspects, e.g., energy consumption.

Considering all delays, the proposed algorithm selects the optimal sensor subset
and near-optimal processing delays (Table 2.2). According to intuition, the optimal
choice features the same delay for both the selected sensor (sensors 2 and 3), being these
(almost) identical. The powerful drone (sensor 1) is discarded because of its burdening
impact on communication and fusion latency: this also explains the large variance when
communication delays are neglected, as in this case sensor 1 is erroneously considered
the best choice. The event cameras are excluded because of their large processing noise,
not balanced by their fast acquisition rate and small communication and fusion delays.

If we consider a larger number of available sensors, accounting for the fusion delays
becomes even more important. Figure 2.15 shows the performance obtained by greedy
selection with increasing set size, together with the near-optimal cost when all sensors
are selected (averaging 20 iterations of sensorWiseDescent with random initial delays).
For each increment in set size, the added sensors have different delay parameters either
for communication (coefficient ci) or for computation (coefficients bi and fi), which range
from 0.9 to 0.1 times of the original parameters in Table 2.1. One may think about these

52 Sensing Design under Computation Latency

variations as different choices for the sensor hardware or better channel state/device
position. We see the impact of better-performing sensors in the sets with 12 and 24
sensors, where the costs obtained when neglecting some delays are in the range of the
ones in Fig. 2.14. However, from 6 to 96 sensors, the gaps between the proposed approach
(green bars) and alternatives that do not account for communication and fusion delays
steadily increases, which is particularly evident with 48 and 96 sensors. Also, given the
availability of better-performing sensors when increasing the sensor set, the near-optimal
costs decrease. Table 2.3 reports the number of sensors selected by Algorithm 3: it
is evident that neglecting fusion delays leads to an unnecessarily large set of sensors
in general, while the proposed approach enhances performance (as highlighted in the
previous figures) while also using a smaller selection.

2.5 Conclusion

In this chapter, the problem of optimal estimation in a processing network in the presence
of communication and computational delays has been investigated as motivation to
explore sensing design under resource constraints. In particular, anytime local processing
at sensor nodes has been modeled with a noise covariance decreasing with the amount
of computation, which induces a nontrivial trade-off between accuracy and latency. For
homogeneous networks monitoring a continuous-time scalar system, it is possible to prove
that the processing delay can be analytically optimized, and that transmitting raw data
is typically a suboptimal policy. For the general case of heterogeneous networks with
discrete-time dynamics, the problem of jointly finding the optimal amount of processing
at sensors and selecting the most informative sensors is tackled with greedy algorithms,
which leverage insight provided by analytical results about the continuous-time scenario.
Numerical simulations show the effectiveness of selection algorithms, corroborating the
idea that the proposed model and latency-aware optimization problem leads to more
accurate estimates. This is achieved by selection of an efficient subset of nodes providing
high performance, whereas including all sensors is shown to perform poorly, as opposed
to conventional wisdom that all sensors should be selected under no budget constraints.

This preliminary work opens several avenues of research. First, it is desirable to obtain
suboptimality bounds on the proposed algorithms, or to design more effective selection
strategies. Second, the system model can be made more realistic by introducing non-
ideal communication (unreliability, random delays), nonlinear dynamics, or parameter
uncertainty. Finally, it would be interesting to consider a fully distributed setup, where
estimation is solved by local exchange of information, without a central fusion station.

3
Controller Architecture Design under

Communication Latency

The previous chapter deals with a crucial source of latency affecting dynamics of a
Networked Control System, namely computation latency caused by constrained hardware
resources at network nodes. This is indeed a key factor to be accounted for if estimation
or control tasks heavily rely on distributing computation across the network. In that
case, the graph topology underlying information exchange was fixed, and I put most
emphasis on designing local information processing for performance maximization within
a resource-allocation framework, where resource constraints were implicitly defined by
latency-accuracy and computation-communication trade-offs.

Another challenging issue, arising especially in large-scale wireless Networked Control
Systems, is the latency due to constraints of communication channels, such as limited
bandwidth, message retransmissions caused by interference, or packet loss due to channel
erasure. While this aspect is partially addressed in Chapter 2, this chapter tackles it from
a different standpoint, which is design of the network topology underlying inter-node
communications. In fact, in a control framework, such communications actually define
which feedback information is made available to each node from its neighbors, inducing an
equivalence between communication network and architecture of a distributed controller.
Crucially, this also means that transmitted information can be used by a local controller
only after some communication delay, which draws a parallel with the estimation with
delayed updates addressed in the previous chapter. Indeed, if the information transmitted
from a neighbor directly enters a feedback loop, the controller can compute a control
action only with outdated measurements, which can critically impact performance, among
other aspects. In particular, if feedforward information such as a reference trajectory
is not available, the lack of timely feedback measurements will prevent a controller to
optimally track a desired signal, or more in general to follow a target behavior.

54 Controller Architecture Design under Communication Latency

When communication constraints are given, control-related research has been moving
towards three main assets.

One of these, at the intersection between control and telecommunications, studies
stability and performance of controlled systems by specifically addressing features of
communication channel such as delays and unreliability (see details in Section 1.1.2). This
line of research, grounded in early works dating back to the first generation of network
systems, puts emphasis on design of controller parameters and communication protocol,
but typically does not address the network topology and just focuses on conditions of
peer-to-peer communication links.

While this first research direction addresses wireless channel from a more precise
and comprehensive viewpoint, other approaches within the control community just
consider communication as a nuisance in a mostly qualitative fashion, focusing on aspects
more strictly related to control and optimization. The second main asset of research is
concerned with structured distributed architectures where communication constraints
enter local feedback loops in form of input delays. To fix ideas, this means that the
standard state update equation for a controlled system with state xk and feedback control
input uk = −Kxk,

xk+1 = (A−BK)xk + wk, (3.1)

becomes the following delayed (or retarded) system with delay τ ,

xk+1 = Axk −BKxk−τ + wk, (3.2)

which is more difficult to design because the presence of a time lag in (3.2) excites
new modes as compared to (3.1). Indeed, it can be shown that a naive design of the
feedback gain matrix K can make dynamics (3.2) unstable even if the nominal (i.e.,
without considering delays) closed-loop matrix A−BK is Schur, considerably restricting
admissible design choices (see more details in Section 3.3.1).

In fact, a large body of work on delay systems focuses on stability: works [158], [183] are
concerned with finite-time delay-dependent stability of discrete-time systems; paper [25]
finds sufficient conditions for uniform stability of linear delay systems; article [135]
characterizes stability and consensus conditions with homogeneous and heterogeneous
feedback delays; references [38], [141] analyze consensus and error compensation for
vehicular platoons. Another line of work deals with maximizing performance for structured
controllers: for instance, the body of works [48], [65], [124] study H2-norm minimization
for time-delay network systems; paper [177] proposes a cyber-physical architecture with
LQR for wide-area power systems; study [131] develops a procedure for time-varying

55

dead-time compensation by adapting the Filtered Smith Predictor.

Both these research approaches assume the network topology (controller architecture)
be given, and purely focus on designing efficient control law or parameters in order
to enforce either stability or effective performance. Conversely, a more recent trend
is optimizing the controller architecture. Broadly speaking, the idea is that a careful
design of the information flow across the network and among nodes can crucially impact
global performance, given that it is required to keep low complexity of the controller
(equivalently, small number of communication links). The latter requirement is useful in
order not to overload shared communication channels, which happens for example with
time-slotted protocols working with few carrier frequencies, and also allows a designer to
drop maintenance costs and enable easier scalability. From a control-theoretic perspective,
this typically turns into optimization problems where the to-be-optimized variable is the
feedback gain matrix K (note that feedforward control inputs are local and do not need
information sharing among nodes) and the constraint is given by an upper bound on the
zero norm of K, which in words enforces a maximum number of communication links
that can be deployed and used for distributed feedback. This is clearly a combinatorial
problem that scales poorly with the size of the network, and hence is usually relaxed
by considering convex relaxations or heuristics with low computational complexity. For
example, this can be achieved by turning the constraint into a penalty term that is
embedded into the cost function to trade performance for controller complexity, as done
in works [6], [10], [51], [105], [109], [122].

However, one main drawback of this strategy is that latency is usually neglected in
order to keep the optimization problem at an acceptable computational complexity, with
penalty terms on the controller feedback gains that heuristically approximate exact impact
of latency. In fact, while the fully connected architecture is avoided because of practical
limitations, it is usually regarded as a theoretical upper bound for performance [78].
Hence, if delays affecting system dynamics are comparable with the time scale of state
evolution, control performance might be seriously affected. In particular, it is still
unclear how network connectivity affects the closed-loop performance in the presence
of architecture-dependent communication latency. When the total available bandwidth
does not increase with the size of the network [63], or when multi-hop communication is
used for information exchange between low-power devices [204], the number of active
communication links may affect such latency in non-negligible way. In this case, it
is important that the control design takes into account increase in delays when new
communication links are introduced. To the best of our knowledge, the only works where
architecture-dependent delays are used to compute the performance metric are [204],

56 Controller Architecture Design under Communication Latency

[205], where however the authors limit the scope of their study to deterministic evolutions
of single integrators on regular lattices with delays due to asynchronous transmissions
with a time-slotted protocol.

Given what is available in the literature today, the aim in this chapter is to bridge the
two domains of delay-aware control and architecture design by quantifying how the latter
affects performance under architecture-dependent communication delays. In order to do
that, two key challenges are addressed. The first is about optimal performance, whereby
stability is a prerequisite to control design needed to provide a bounded cost function. As
discussed above, stability conditions may get much more challenging when delays enter
the dynamics with respect to the nominal, delay-free case. Hence, stability conditions are
derived that are instrumental to an optimal control design problem. The second point is
identification of the optimal controller architecture under delays, which allows to quantify
fundamental performance trade-offs. Towards this goal, to circumvent the discrete nature
of graphs, I work along through two stages: first, each architecture is parametrized with
a coefficient n which characterizes both number of links and delay associated with that
architecture, and the optimal controller is computed for given n. Then, the optimal
performance obtained for architectures with different values of n is compared, which
allows to fairly establish which architectures provide the best closed-loop performance.
In contrast to [204], [205], we examine mean-square performance of stochastically forced
networks, study generic delay functions, and address optimal design of feedback gains for
different controller architectures.

To make this study effective, I utilize undirected graphs with single- and double-
integrator agent dynamics, and examine fundamental performance limitations in net-
worked systems with architecture-dependent communication delays. In particular, sym-
metric feedback matrix gains induce convexity of a minimum-variance control design
problem with respect to the feedback gains, which allows to solve optimization problems
efficiently up to numerical precision. I exploit this fact to demonstrate that the choice
of controller architecture has profound impact on network performance in the presence
of delays: in particular, when the delays increase fast enough with the number of links,
sparse topologies can outperform highly connected ones.

A crucial fact which used to corroborate the investigated performance trade-off on
the number of communication links is the following: it can be show that the steady-state
variance of a stochastically forced network, denoted by Jtot(n), can be written as the
sum of two monotone functions of the number of neighbors n (Fig. 3.1),

Jtot(n) = Jnetwork(n) + Jlatency(n). (3.3)

57

Figure 3.1: Steady-state variance Jtot(n) versus number of neighbors. The variance is the
sum of two costs: Jnetwork(n) represents impact of control architecture, while Jlatency(n) is due

to the delays affecting the dynamics.

Here, Jnetwork(n) quantifies impact of control architecture and Jlatency(n) determines
influence of communication latency on network performance. While Jnetwork(n) decreases
with n and is minimized by a fully-connected centralized architecture, Jlatency(n) increases
with n. This demonstrates the presence of a fundamental trade-off: on the one hand,
feedback control takes advantage of dense topologies that enhance information sharing
but, on the other hand, many communication links induce long delays which have negative
effect on performance. While (3.3) can be derived analytically for ring topology with
continuous-time, single-integrator dynamics, computational experiments show that a
similar centralized-distributed trade-off can be observed for general undirected topologies
and with double-integrator and discrete-time agent dynamics. Furthermore, in some
cases, decentralized architecture with nearest neighbor information exchange provides
optimal performance, in stark contrast with the conventional wisdom that increasing the
information flow across the network is always beneficial for performance.

This chapter is organized as follows. Section 3.1 presents the models used for
communication and controller architecture and the formulation of the minimum-variance
control design problem. While ring topology are first used to achieve analytical insight,
it can be shown that the proposed framework is also suitable for general undirected
topologies (Section 3.4.1). In Section 3.2 and Section 3.3, I derive conditions for mean-
square stability and compute the steady-state variance of continuous-time stochastically
forced systems with continuous- and discrete-time systems, respectively, which are
used to set up the optimal control design problem. In Section 3.4, I prove that the
control design problem is convex, which is used to carry out a fair comparison among
different controller architectures and to reinforce validity of numerical experiments.

58 Controller Architecture Design under Communication Latency

In Section 3.5, I present the main result of this chapter: by numerically computing
the optimal controller gains, I show that the closed-loop performance can be optimized
by sparse architectures, disrupting the common assumption that more communication
links ensure higher performance. Furthermore, I derive analytical expression (3.3) for
continuous-time single-integrator dynamics, which demonstrates that the minimizer is in
general nontrivial. Concluding remarks are provided in Section 3.6.

3.1 Problem Setup

Consider an undirected network with N agents in which the state of the ith agent at
time t is given by x̄i(t) ∈ R with the control input ui(t) ∈ R. For notational convenience,
in the following I use the aggregate state of the system x̄(t) and the aggregate control
input u(t), which respectively stack states and control inputs of each subsystem x̄i(t)
and ui(t).

Problem Statement. The agents aim to reach consensus towards a common state
trajectory. The ith component of the vector x(t) .= Ωx̄(t) represents the mismatch
between the state of agent i and the average network state at time t [20], where

Ω .= IN −
1N1

⊤
N

N
(3.4)

and 1N ∈ RN is the vector of all ones, such that Ω1N = 0.

Ring Topology. To start with, I focusing on ring topology to obtain analytical insights
about optimal control design and fundamental performance trade-offs in the presence
of communication delays. This owes to the fact that eigenvalues of a circulant matrix
can be obtained in closed form a functions of the matrix element, a fact that will be
exploited later in the analysis performed in Section 3.5.1. While some notation is tailored
to such topology (e.g., see equations (3.5) and (3.7)), in Section 3.4.1 I discuss extension
of the optimal control design to generic undirected networks and complement these
developments with computational experiments in Section 3.5, which indeed proves the
proposed approach pretty general as for scope of network topology.

Assumption 3.1.1 (Communication model). Data are exchanged through a shared
wireless channel in a symmetric fashion. Agent i receives state measurements from n

pairs of agents, where both agents in each such pair are at equal distance ℓ from i. In
what follows, without loss of generality, I assume that such n agent pairs coincide with
the 2n closest agents in ring topology, and that each pair is at distance ℓ = 1, . . . , n < N/2.
For example, n = 1 corresponds to nearest-neighbor interaction and n = ⌊(N−1)/2⌋ to

3.1 Problem Setup 59

all-to-all communication. All measurements are received with delay τn
.= f(n) where f(·)

is a positive increasing sequence.

Remark 3.1.2 (Architecture parametrization). Parameter n will play a crucial role through-
out our discussion. In particular, it is used to (i) evaluate the optimal performance that
can be attained for a given budget of communication links, and to (ii) compare optimal
performance of different control architectures. In the first part of the paper, I consider
circular formations and n represents how many neighbor pairs communicate with each
agent. For general undirected networks, n determines the number of communication
hops for each agent. In general, the parameter n characterizes sparsity of a controller
architecture: sparse controllers correspond to small n whereas highly connected ones
correspond to large n.

Feedback Control. Agent i uses the received information to compute the state
mismatches yi,ℓ±(t) relative to its neighbors,

yi,ℓ±(t) =

x̄i(t)− x̄i±ℓ(t), 0 < i± ℓ ≤ N

x̄i(t)− x̄i±ℓ∓N (t), otherwise,
(3.5)

and the proportional control input is given by

uP,i(t) = −
n∑

ℓ=1
kℓ

(
yi,ℓ+(t− τn) + yi,ℓ−(t− τn)

)
, (3.6)

where measurements are delayed according to Assumption 3.1.1. The proportional input
can be compactly written as uP (t) = −Kx̄(t− τn) = −Kx(t− τn). With ring topology,
the feedback gain matrix is determined by

K = circ
(

n∑
ℓ=1

kℓ,−k1, . . . ,−kn, 0, . . . , 0,−kn, . . . ,−k1

)
, (3.7)

where circ (a1, . . . , an) denotes the circulant matrix in Rn×n with elements a1, . . . , an in
the first row.

For networks with double integrator agents, the control input ui(t) may also include
a derivative term,

ui(t) = ηuP,i(t)− η
dx̄i(t)

dt
= ηuP,i(t)− η

dxi(t)
dt

. (3.8)

The derivative term in (3.8) is delay free because it only requires measurements coming
from the agent itself, which I assume to be available instantaneously. On the contrary,

60 Controller Architecture Design under Communication Latency

communication delays are explicitly written in (3.6) because they are comparable with
the time evolution of the state x̄(t).

Problem 3.1.3. Design the feedback gains in order to minimize the steady-state variance
of the consensus error,

P control: arg min
K

σ2(K), (3.9a)

PD control: arg min
η,K

σ2(η, K), (3.9b)

where
σ2 .= lim

t→+∞
E
[
∥x(t)∥2

]
(3.10)

and without loss of generality I assume E [x(·)] ≡ E [x(0)] = 0.

3.2 Continuous-Time Agent Dynamics

In this section, I examine continuous-time networks with single- (Section 3.2.1) and
double-integrator (Section 3.2.2) agent dynamics, derive conditions for mean-square
stability, and compute the steady-state variance of a stochastically forced system. These
developments are instrumental for the formulation of the control design problem which
is used to compare different control architectures. In the optimal control problem, the
steady-state variance determines the objective function and stability conditions represent
feasibility constraints. Note that all results in this section hold for generic undirected
topologies.

3.2.1 Single Integrator Model

The dynamics of the ith agent are described by the first-order differential equation driven
by standard Brownian noise w̄i(·),

dx̄i(t) = uP,i(t)dt + dw̄i(t). (3.11)

The network error dynamics are

dx(t) = −Kx(t− τn)dt + dw(t), (3.12)

where the process noise is given by dw(t) ∼ N
(
0, ΩΩ⊤dt

)
. Exploiting symmetry of the

matrix K, the change of variables x(t) = T x̃(t), with K = TΛT ⊤, is employed to obtain

3.2 Continuous-time agent dynamics 61

N decoupled scalar subsystems with state x̃j(t), j = 1, . . . , N ,

dx̃j(t) = −λj x̃j(t− τn)dt + dw̃j(t), (3.13)

where λj is the jth eigenvalue of K. The subsystem corresponding to λ1 = 0 has trivial
dynamics, i.e., dx̃1(t) ≡ 0, where the initial condition is x̃1(0) = 0 by construction. For
j ̸= 1, subsystem (3.13) is a single integrator driven by standard Brownian noise.

Stability Analysis. Mean-square stability of scalar stochastic differential equations of
the form (3.13) has been addressed in the literature. The classical result in [92] allows to
characterize consensus stability for the multi-agent formation.

Proposition 3.2.1 (Stability of CT single integrators). The network error x(t) is
mean-square stable if and only if

λj ∈
(

0,
π

2τn

)
, j = 2, . . . , N. (3.14)

In this case, x(t) is a Gaussian process and its steady-state variance is determined by

σ2(K) =
N∑

j=2
σ2

I (λj) , σ2
I (λj) = 1 + sin(λjτn)

2λj cos(λjτn) , (3.15)

where σ2
I (λj) is the variance of the trivial solution of (3.13).

Sketch of Proof. In view of the decoupling, stability of (3.12) amounts to stability of
all subsystems (3.13), j = 1, . . . , N , with the variances of x(t) and x̃(t) being equal.
Condition (3.14) and expression (3.15) were derived in [92].

While the variance of delay-free systems is bounded for any positive eigenvalues
λ2, . . . , λN , the presence of delay constrains a stabilizing control according to (3.14). In
fact, longer delays τn induce smaller upper bounds on the eigenvalues.

The following corollary will turn useful in the control design in Section 3.4.

Corollary 3.2.2. Let λ satisfy (3.14). Then the function σ2
I (λ) is strictly convex and

the minimizer λ∗ is determined by

λ∗ = β∗

τn
, β∗ = cos β∗. (3.16)

Proof. See Appendix B.1.

62 Controller Architecture Design under Communication Latency

3.2.2 Double Integrator Model

I now examine networks in which each agent obeys a second-order dynamics with the
PD control input (3.8),

d2x̄i(t)
dt2 = ui(t) + dw̄i(t)

dt
. (3.17)

For simplicity, we normalize the delay by rescaling (3.17),

x̄i(·)← x̄i(τn ·), η ← τnη, kℓ ← τnkℓ, w̄i(·)← τnw̄i(·). (3.18)

Stacking the agent errors and their derivatives in the formation vector, the error dynamics
can be decoupled as before, yielding

d2x̃j(t)
dt2 = −η

dx̃j(t)
dt

− ηλj x̃j(t− 1) + dw̃j(t)
dt

. (3.19)

Stability Analysis. The following result characterizes which controller parameters yield
mean-square stability.

Proposition 3.2.3 (Stability of CT double integrators). The network error x(t) is
mean-square stable if

λj ∈
(

0,
β

sin β

)
, η = β tan β, β ∈

(
0,

π

2

)
, j = 2, . . . , N. (3.20)

Condition (3.20) can be equivalently written as

(η, λj) ∈ S .=
{

(η, λj) ∈ R2
+ : λj < ϕ(η)

}
, j = 2, . . . , N, (3.21)

where the implicit function ϕ(·) is concave increasing and

ϕ(0) = 1, lim
η→+∞

ϕ(η) = π

2 . (3.22)

If ∃j ̸= 1 : (η, λj) /∈ S, the system is mean-square unstable.

Proof. See Appendix B.2.

Similar to the single-integrator case, 3.2.3 states that the presence of delay requires
more restrictive conditions than positive gains. In words, the system is stable if the
instantaneous component of the control input in (3.8) is sufficiently “strong” compared to
the delayed one. The steady-state variance of x̃j(t) for j ̸= 1 can be computed using [208,

3.3 Discrete-Time Agent Dynamics 63

Figure 3.2: Level curves of the steady-state variance for the continuous-time double integra-
tor (3.19) and points of minimum with fixed derivative gain.

Section 4],
σ2

II (η, λj) = 1
2π

∫ +∞

−∞

dω

| − ω2 + jηω + ηλje−jw|2
, (3.23)

and σ2 = σ2(η, K) = ∑N
j=2 σ2

II (η, λj). A graphical illustration of the level curves of
σ2

II (η, λj) is provided in Fig. 3.2.

Model Approximation. When the feedback gain η is sufficiently high, separation of
time scales allows us to approximate (3.19) with the first-order dynamics,

dx̃j(t) = −λj x̃j(t− 1)dt + dn(t), (3.24)

where the variance of Brownian motion n(t) is inversely proportional to η. In words,
when the damping is high enough, the derivative of x̃j(t) converges to zero much faster
than x̃j(t), which represents the dominant component of the dynamics. The detailed
derivation of (3.24) is provided in B.3. Utility of this approximation is illustrated
in Fig. 3.2: with fixed η̄, the point of minimum of the corresponding 1D variance curve,
i.e., arg minλj

σ2
II (η̄, λj) (solid black line), approaches the minimizer λ∗ of the single

integrator model (dashed black, see 3.2.2) with increase of η̄. It can also be noted that
the variance decreases with η.

3.3 Discrete-Time Agent Dynamics

I now turn to discrete-time agent dynamics, which is more realistic in the context of
wireless communication. With discrete-time dynamics, time instants are denote by
{k}k∈N

.= {kT}k∈N, T being the sampling time. Similarly, delays are re-defined as the
number of delay steps τn

.= ⌈τn/Ts⌉.

64 Controller Architecture Design under Communication Latency

0 5 10 15 200

1

π

2

τn

λ
j
τ n

Continuous-time (3.14)
Discrete-time (3.28)

Figure 3.3: Stability regions of decoupled sin-
gle integrators in continuous (dashed rectangle)

and discrete time (solid vertical lines).
Figure 3.4: Steady-state variance
for decoupled discrete-time single in-

tegrators.

3.3.1 Single Integrator Model

The discrete-time versions of the agent dynamics considered in Section 3.2 are given by

x̄i(k + 1) = x̄i(k) + uP,i(k) + w̄i(k), (3.25)

with uP,i(k) defined in (3.6). The global error dynamics can be written as

x(k + 1) = x(k)−Kx(k − τn) + w(k), (3.26)

and the corresponding error dynamics can be mapped into decoupled subsystems similarly
to what showed in Section 3.2.1, by exploiting symmetry of K and using the change of
basis induced by its eigenvectors. The resulting subsystems obey the following equation,

x̃(k + 1) = x̃(k)− λx̃(k − τn) + w̃(k). (3.27)

Stability Analysis. The decoupled subsystems (3.27) are asymptotically stable if and
only if all the roots of their associated characteristic polynomials lie inside the unit circle
in the complex plane.

In general, given a delay τn, stability conditions with respect to the control gains can
be derived in the form of polynomial inequalities through the Jury criterion. However, in
this case, stability can be explicitly expressed by the following simple condition.

Proposition 3.3.1 (Stability of DC single integrators). The network error x(t) is
mean-square stable if and only if

λj ∈
(

0, 2 sin
(

π

2
1

2τn + 1

))
, j = 2, . . . , N. (3.28)

3.3 Discrete-Time Agent Dynamics 65

Figure 3.5: Steady-state variance of decoupled discrete-time double integrators.

Proof. See Appendix B.4.

The upper bound in (3.28) approaches its continuous-time counterpart (3.14) from
below as the delay steps tend to infinity (see Fig. 3.3). Indeed, given the same absolute
delay, a finer sampling yields more delay steps. and thus at the limit the discretized
dynamics converges to the continuous-time one. and retrieves the same constraint. In
general, condition (3.28) is tighter than (3.14). On the other hand, the asymptotic
behavior of the threshold gain suggests that the gap between continuous-time and
discretized systems only matters when the delay is comparable with the sampling time,
while, when the former gets too long, the loss of feedback information neglects the
dynamics discretization.

Performance Evaluation. With fixed parameters, the steady-state variance of each
decoupled subsystem can be computed numerically via the Wiener–Khintchine formula.
Also, for any given value of τn, a closed-form expression of the variance can be obtained
via moment matching through a recursive formula, reported in B.5 to make this exposition
compact. Figure 3.5 shows the typical profiles of the variance function for decoupled
subsystems with single-integrator dynamics. In this case, convexity of the variance
function σ2(λi) can be checked by studying the second derivative of the decoupled
subsystems, which can be done by suitable software tools applied to the analytical
expression in B.5.

3.3.2 Double Integrator Model

The discrete-time versions of the agent dynamics considered in Section 3.2 are given by

x̄i(k + 1) = x̄i(k) + z̄i(k)

z̄i(k + 1) = (1− η)z̄i(k) + ηuP,i(k) + w̄i(k).
(3.29)

66 Controller Architecture Design under Communication Latency

In this case, the error dynamics can be decoupled into the following scalar subsystems,

x̃(k + 1) = x̃(k) + z̃(k)

z̃(k + 1) = (1− η)z̃(k)− ηλx̃(k − τn) + w̃(k).
(3.30)

Stability Analysis and Performance Evaluation. Under dynamics (3.30), analytical
stability conditions analogous to the ones in Proposition 3.3.1 are hard to obtain. Hence,
I resort to standard application of the Jury stability criterion to obtain feasibility
constraints for the optimal control design problem. Given their polynomial structure,
those unfortunately prevent the optimization problem to be convex in this case, however,
numerical results shown in Section 3.5 are consistent with both the centralized-distributed
trade-off hypothesis and with other simulations with convex formulations.

The steady-state variance can be instead explicitly computed through a recursive
formula as for single integrators. Details are provided in Appendix B.5.

3.4 Control Design

Single Integrator Model. For systems (3.12)–(3.25), Problem 3.1.3 amounts to

k∗
1, . . . , k∗

n = arg min
{kℓ}n

ℓ=1

σ2(K), (3.31)

and parameterization (3.13) allows to rewrite it as

k∗
1, . . . , k∗

n = arg min
{kℓ}n

ℓ=1

N∑
j=2

σ2
I (λj) , (3.32)

with stability condition given by (3.14). Linear dependence of the eigenvalues of K on
the feedback gains [66] and 3.2.2 guarantee convexity of optimization problem (3.32).
Thus, the optimal feedback gains can be computed efficiently.

To make analytical progress and gain intuition, I also consider the following approxi-
mation of (3.32),

k̃∗
1, . . . , k̃∗

n = arg min
{kℓ}n

ℓ=1

N∑
j=2

(λj − λ∗)2 , (3.33)

which squeezes the spectrum of K about the "optimal" eigenvalue λ∗. The variance σ2
I (·)

can be approximated with a quadratic function around its minimum because it is strictly
convex, differentiable in the stability region, and it blows up at the boundaries {0, π/2},

3.4 Control Design 67

Figure 3.6: Exact variance function (3.15) and its quadratic approximation.

see Fig. 3.6.

Proposition 3.4.1 (Near-optimal proportional control). The solution of problem (3.33)
is determined by

k̃∗
ℓ ≡ k̃∗ .= λ∗

2n + 1 .

Proof. See Appendix B.6.

Proposition 3.4.1 shows that spatially-constant feedback gains provide good per-
formance even when spatially-varying feedback gains are allowed. According to Corol-
lary 3.2.2, the suboptimal gain k̃∗ decreases with the delay τn and with the number of
agents involved in the feedback loops, thereby reflecting benefits of communication.

Double Integrator Model. For continuous-time models, approximation (3.24) and Fig. 3.2
show that, for sufficiently large η, the variance of the double-integrator subsystem (3.19)
has structure similar to the single integrator, i.e., σ2

II (η, λj) ≈ cσ2
I (λj) for some “small"

c > 0. This suggests that the control design (3.9b) can be approximated as follows,

η̃∗, arg min
{kℓ}n

ℓ=1

N∑
j=2

σ2
I (λj) , (3.34)

where η̃∗ is chosen beforehand so that the time-scale separation argument provides a
reasonable approximation (3.24). In particular, the optimization problem for proportional
feedback gains in (3.34) coincides with the control design for single integrators (3.32),
with the exception that the stability condition is now given by λj < ϕ(η̃∗), j = 2, . . . , N

(see (3.21)).

Remark 3.4.2 (Convexity enables comparison). Convexity of the optimal control design
problems (3.32)–(3.34) enables both efficient numerical computations of the optimal

68 Controller Architecture Design under Communication Latency

feedback gains for given n and fair comparison of the best achievable performance for
different values of n.

Remark 3.4.3 (Gain scaling). The optimal feedback gains {k∗
ℓ}nℓ=1 and η̃∗ are to be scaled

by 1/τn according to (3.18).

Remark 3.4.4 (Optimal design for double integrators). Local minimizer of the original
problem approximated by (3.34) can be solved using the gradient-based method pro-
posed in [65]. However, this approach has no guarantees of global optimality, and its
computational complexity is impractical for large-scale systems. In contrast, convex
approximation (3.34) draws a parallel to the optimal design for the single-integrator
model and provides insight into a centralized-distributed trade-off.

For discrete-time models, both cost function and feasibility region can be computed
analytically as discussed in Equation 3.3.1. Hence, the optimization problem can be
numerically solved. Given that the lack convexity prevents to use theoretical results
for optimality guarantees, this last case remains an heuristic validation of the trade-off
in hypothesis, which is however strongly supported by numerical experiments showed
in Section 3.5.

3.4.1 General Symmetric Network Topology

Even though we utilized ring topology to derive analytical results (see Section 3.5.1), the
control design can be extended to general undirected networks with symmetric feedback
gain matrices K. For the single integrator model, this reads

K∗ = arg min
K

σ2(K). (3.35)

The steady-state network error variance σ2(K) is a convex function if and only if σ2
I (λj) is

convex [46], which holds at least for single integrators and for the first-order approximation
of continuous-time double integrators. The optimal gains can then be found numerically
via gradient-based methods, where gradients of the eigenvalues can be computed using
analytical [138], [149] or numerical [60] methods. On the other hand, the derivative
feedback gain in σ2

II (η, λj) prevents us from establishing convexity for second-order
systems in general. However, if σ2

II (η, λj) is convex in each coordinate1, the design
problem can be solved by alternatively optimizing proportional and derivative gains
and the centralized-distributed trade-off can be studied irrespective of the particular
topology.

1This can be checked for discrete-time double integrators through their analytical expression.

3.5 The Centralized-Distributed Trade-off 69

(a) Continuous-time single integrator. (b) Continuous-time double integrator.

(c) Discrete-time single integrator. (d) Discrete-time double integrator.

Figure 3.7: Optimal and suboptimal steady-state scalar variances with linear delay increase
for different agent dynamics.

3.5 The Centralized-Distributed Trade-Off

In the previous sections I formulated the optimal control problem for a given controller
architecture (i.e., the number of links) parametrized by n and showed how to compute
minimum-variance objective function and the corresponding constraints. In this section,
I present the main result: the optimal control problem is solved for each n, and the best
achievable closed-loop performance are compared with different control architectures.2

In particular, for delays that increase linearly with n, i.e., f(n) ∝ n, it is possible to see
that distributed controllers with few communication links outperform controllers with
larger number of communication links.

Figure 3.7a shows the steady-state variances obtained with single-integrator dynam-
ics (3.31) and the quadratic approximation (3.33) for ring topology with N = 50 nodes.
The best performance is achieved for a sparse architecture with n = 2 in which each
agent communicates with the two closest pairs of neighboring nodes. This should be
compared and contrasted to nearest-neighbor and all-to-all communication topologies
which induce higher closed-loop variances. Thus, the advantage of introducing additional

2Recall that small (large) values of n mean sparse (dense) architectures.

70 Controller Architecture Design under Communication Latency

Figure 3.8: Network topology and its optimal closed-loop variance.

communication links diminishes beyond a certain threshold because of communication
delays.

Figure 3.7b shows that the use of approximation (3.34) with η̃∗ = 70 identifies nearest-
neighbor information exchange as the near-optimal architecture for a double-integrator
model with ring topology. This can be explained by noting that the variance of the
process noise n(t) in the reduced model (3.24) is proportional to 1/η and thereby to τn,
according to (3.18), making the variance scale with the delay.

Figures 3.7c–3.7d show the results obtained by solving the optimal control problem for
discrete-time dynamics. The oscillations about the minimum in Fig. 3.7d are compatible
with the investigated centralized-distributed trade-off (3.3): in general, the sum of
two monotone functions does not have a unique local minimum. Interestingly, double
integrators with continuous- (Fig. 3.7b) ad discrete-time (Fig. 3.7d) dynamics exhibits
very different trade-off curves, whereby performance monotonically deteriorates for the
former and oscillates for the latter. While a clear interpretation is difficult because there
is no explicit expression of the variance as a function of n, one possible explanation might
be found in the first-order approximation used to compute gains in the continuous-time
case.

Finally, Fig. 3.8 shows the optimization results for a random graph topology with
discrete-time single integrator agents. Here, n denotes the number of communication
hops in the "original" network, shown in Fig. 3.8: as n increases, each agent can first
communicate with its nearest neighbors, then with its neighbors’ neighbors, and so on.
For a control architecture that utilizes different feedback gains for each communication
link (i.e., we only require K = K⊤) it can be seen that, in this case, two communication
hops provide optimal closed-loop performance.

Additional computational experiments performed with different rates f(·) show that
the optimal number of links increases for slower rates: for example, the optimal number
of links is larger for f(n) =

√
n than for f(n) = n.

3.5 The Centralized-Distributed Trade-off 71

3.5.1 Ring Topology: Analytical Insight Into the Trade-Off

For a ring topology with continuous-time single-integrator agent dynamics, a centralized-
distributed trade-off can be explicitly quantified. By utilizing Proposition 3.4.1 to
compute the feedback gains, the objective function can be factorized as

σ2 = f(n)︸ ︷︷ ︸
J̃latency(n)

·
N∑

j=2
C̃∗

j (n)
︸ ︷︷ ︸
J̃network(n)

, (3.36)

where σ2
I (λ̃∗

j) = C̃∗
j (n)τn and C̃∗

j (n) only depends on n and can be computed exactly.
Indeed, when the feedback gains are given by (3.33), the eigenvalues of K have expression
(cf. [66])

λ̃∗
j = 2k̃∗

(
n−

n∑
ℓ=1

cos
(2π(j − 1)ℓ

N

))
, (3.37)

which can be compactly written as λ̃∗
j = gj(n)k̃∗. Writing the feedback gains as k̃∗ =

α̃∗(n)λ∗, it holds λ̃∗
j = c̃∗

j (n)λ∗ with c̃∗
j (n) .= gj(n)α̃∗(n). Interestingly, the decomposition

λ̃∗
j = c̃∗

j (n)λ∗ can be interpreted as a decoupling of the impact of network (expressed by
c̃∗

j (n)) and latency (given by λ∗) effects on the control design. Then, each subsystem (3.13)
has variance

σ2
I

(
λ̃∗

j

)
=

1 + sin(λ̃∗
jτn)

2λ̃∗
j cos(λ̃∗

jτn)
(i)=

1 + sin(c̃∗
j (n)β∗)

2c̃∗
j (n)β∗ cos(c̃∗

j (n)β∗)τn = C̃∗
j (n)τn, (3.38)

where (3.16) is used in (i).

By inspection, it can be seen that J̃network(n) is a decreasing function of n and that
J̃latency(n) is determined by f(n). Furthermore, when f(·) is sublinear, expression (3.36)
can be equivalently written in form (3.3),

σ2 = f(n) ·
N∑

j=2

(
C̃∗

j (n)− C∗
)

︸ ︷︷ ︸
Jnetwork(n)

+ (N − 1)C∗f(n)︸ ︷︷ ︸
Jlatency(n)

, (3.39)

where σ2
I (λ∗) = C∗τn is the optimal variance according to (3.15) and Corollary 3.2.2.

Indeed, the summation decreases with superlinear rate, so that Jnetwork(n) is a decreasing
sequence. The terms in Jnetwork(n), each associated with a decoupled subsystem (3.13),
illustrate benefits of communication: as n increases, the eigenvalues of K have more
degrees of freedom and can squeeze more tightly about λ∗, reducing performance gaps

72 Controller Architecture Design under Communication Latency

between subsystems and theoretical optimum. Also, it can be noted that Jnetwork(n)
vanishes when the controller architecture turns fully connected.

Even though analogous expressions could not be obtained for other dynamics, the
curves in Fig. 3.7 exhibit trade-offs which are consistent with the above analysis.

3.6 Conclusion

In this chapter, I have studied a minimum-variance optimal control design problem on
undirected networks with both continuous- and discrete-time agent dynamics in the
presence of communication delays. When feedback delays increase with the number of
communication links, convexity of the optimization problem proves the existence of a
fundamental performance trade-off: distributed control architectures can offer superior
performance to centralized ones that utilize all-to-all information exchange. This is due
to two contrasting components of the cost function (steady-state variance) that behave
differently as communication links are deployed. On the one hand, the information used to
feed local control input loops becomes richer with more links, which pushes performance
to initially improve with the number of links. On the other hand, delays in feedback
dynamics induced by communication also increase with the number of links, inducing
performance degradation if those are added beyond a certain threshold. This latter
behavior in is sharp contrast with conventional results in literature and also with common
design choices, which build on the assumption that the more communication is better.
Overall, such twofold nature of the system dynamics yields a nontrivial performance
trade-off on the number of links, which is in general optimized by a distributed controller
architecture.

Given the preliminary results in this chapter, the hope is to pave the way to a new
body of research which will enable control design with a deeper understanding of the
fundamental behavior and limitations of large-scale wireless network systems. Future
work will focus on extending the results found here to other classes of control problems
which include more complex system dynamics and communication models, more realistic
information about structure of delays in a distributed scenario, as well as different cost
functions.

4
Resilient Consensus

The design trade-offs faced in the previous chapters have most to do with feasibility
aspects, that arise from limitations of individual devices (such as resource-constrained
sensors) or of peer-to-peer communications (such as feedback delays) that involve the
networked nature of a Networked Control System as a secondary element.

In this chapter, I steer to a different kind of problems arising in Networked Control
Systems, that are due precisely to their interconnected structure. Indeed, while the latter
brings numerous benefits, interdependence of networked subsystems at dynamics level is
a concern if nodes cannot be guaranteed to always evolve as expected or designed. In
particular, a major drawback is represented by misbehaving nodes, whose uncontrolled
behavior can seriously affect their neighbors and possibly the rest of the system. For
example, malicious agents can locally intrude from any point in the system and cause
damage at global scale. Such aspect of cybersecurity in Networked Control Systems
has come under the spotlight for a few years now. For example, Department of Energy
secretary has recently stated that enemies of the United States can shut down the U.S.
power grid, and it is known that hacking groups around the world have high technological
sophistication [156]. Another emblematic case is represented by cyberattacks that hit
the Italian health care infrastructures during the COVID-19, disrupting services for
weeks [30]. Other concerns are due to accidental failures spreading from single source
nodes. Cascading failure damages have notable examples, from city-wide electricity
blackouts to denial of service of web applications. Furthermore, as new frontiers through
massively connected devices in Networked Control Systems are breached, thanks to
powerful communication protocols such as 5G, this problem will only gain in importance.

The above problems have been extensively addressed in the literature, with a large
body of work investigating techniques to overcome fragility in application domains, such
as smart grids [72], [155], [217]; cascading failures [68], [152], [154]; denial of service [35],
[214], multi-robot systems [2], [150], [216]; attack detection within Cloud Computing

74 Resilient Consensus

and Internet of Things [35], [214]; distributed estimation [169]. From a methodological
perspective, related literature in control and optimization mostly focuses on robustness
of distributed algorithms and control protocols to a fraction of misbehaving agents.
Specifically, the framework of resilient consensus aims to enforce consensus of normally
behaving agents in the face of unknown adversaries. The classical consensus problem is a
cornerstone in control and optimization. Indeed, it has been deeply studied in the past
two decades [212] and underlies a plethora of application domains. In particular, average
consensus is a fundamental tool in distributed estimation [169] and optimization [172],
[213], management of power grids [87], distributed Federated Learning [29], [164], to
mention a few. Unfortunately, standard consensus dynamics is extremely sensitive to
the behavior of individual nodes, so that misbehaving agents can arbitrarily deviate the
system trajectory, for example forcing all other agents to reach an inefficient or dangerous
consensus. To tame this issue, the most common approaches rely on the filtering strategy
"Weighted Mean Subsequence Reduced" (W-MSR), whereby agents opportunistically
discard suspicious messages from local updates [94]. A review of resilient consensus, and
more generic resilient distributed optimization and control, techniques investigated in
the literature is provided in Section 1.1.3.

Despite the success of MSR-based strategies, a critical point is dependence of theoret-
ical guarantees on r-robustness of the underlying graph, a sufficient property ensuring
that agents reach resilient consensus provided that r is large enough. In words, this
parameter r characterizes the ability of the network topology to spread information:
a large r means that each node is well connected with all other nodes in the network,
so that it can both transmit information to, and receive information from, nodes far
away with just a few hops. A critical limitation of W-MSR and related protocols is that
characterizing the steady-state behavior of agents is difficult if some minimal r-robustness
is not verified. Indeed, even though algorithms might work in practice, comprehensive
theoretical guarantees are missing. What is more, some applications may require more
conservative approaches, pushing less on performance but with solid safety guarantees,
as commonly required by industrial safety protocols. Also, while in some cases agents
may just agree on a common value, other tasks critically require average consensus to
succeed.

In view of the discussion above, I depart from classical filtering strategies and seek a
technique that can offer theoretical guarantees in a broader sense – while ensuring some
resilience. Towards this goal, I set the stage with two key moves. First, I replace the hard
constraint of achieving consensus with the cost of a distributed optimization problem.
This allows to relax requirements on the system, in that enforcing consensus is in general

75

Figure 4.1: Competition vs. collaboration in distributed quadratic optimization. The global
cost etot is the sum of two contributions, that reflect two contrasting attitudes of normally
behaving agents: edeception is caused by trusting (erroneously) adversarial agents, which yields
a drift from nominal average consensus, while econsensus is due to inter-agent competition, in
an attempt to mitigate potential attacks from neighbors, but doing so prevents agents to reach
consensus. The tunable parameter λ ∈ [0, 1] allows normal agents to shift smoothly from full
collaboration, where they trust equally all agents in the network, to full competition, where
they trust only themselves, inducing a richer range of behaviors at local and global scale.

much more restrictive than finding "small" values of a cost function. Second, I draw
inspiration from game theory to design an alternative update protocol at nodes. Even
though distributed control protocols and games may seem contrasting approaches, they
share manifold features which have been explored in the literature [23], [45], [79], [103],
[118], [132], [151]. In particular, the starting point in this chapter is paper [117], where
the authors discuss the relationship between potential games and consensus dynamics.
Stepping forward, I propose an update rule based on the celebrated Friedkin-Johnsen (FJ)
dynamics [59] to enhance resilience in the presence of misbehaving agents. One key feature
of the FJ model is a tunable parameter λ ∈ [0, 1] which allows to smoothly transition from
full collaboration, where each normally behaving agent puts equal trust in all agents in
the network (including itself), leading to standard average consensus, to full competition,
whereby agents do not trust each other, namely they regard all other agents as adversaries.
Such an approach allows to study resilience and performance trade-offs arising from
different choices of agents that may trust their neighbors or not, a choice that turns out
to be crucial if adversaries are present. In fact, a fundamental competition-collaboration
trade-off can be observed: in general, the optimal choice to achieve resilience is a hybrid
strategy that makes agents trust neighbors only partially, as illustrated in Fig. 4.1. In
particular, the global cost function (solid blue) is the sum of two conflicting contributions,
representing respectively deception due to collaboration with malicious agents (dashed
red) and inefficiency caused by competition against agent’s neighbors (dashed-dotted

76 Resilient Consensus

yellow). To achieve analytical intuition, I discuss such competition-collaboration trade-off
using tools drawn from opinion dynamics, in particular social power and FJ model, that
shed light on the role of malicious agents and parametrization of agent dynamics on
optimization performance.

After characterizing the proposed competition-based protocol, I shift attention to the
network topology, in order to assess how the latter impacts performance of regular agents
with respect the considered task. In particular, I use regular and quasi-regular graphs
to numerically show that network connectivity can mitigate malicious attacks and how
performance varies when the topology gets sparser. In fact, it can be heuristically observed
that not only high connectivity, but also degree balance among agents is beneficial to
tame unknown adversaries, which could intuitively exploit highly connected hubs to
disrupt the optimization at network level.

This chapter is organized as follows. Average consensus for distributed optimization
is first motivated in Section 4.1, and a specific class of adversaries (malicious agents)
is described in Section 4.1.1. In Section 4.2, I propose the competition-based protocol
to strengthen resilience of regular agents. In particular, I describe the link with game
theory in Section 4.2.1 and analytically characterize the cost function and its minimizer
in Sections 4.2.2–4.2.4. To reinforce formal arguments, numerical tests on the theoretical
performance of the proposed protocol are performed in Section 4.3. Further, some insights
to interpret the competition-collaboration trade-off from a formal standpoint are given
in Section 4.3.1, where the result pictorially shown in Fig. 4.1 is deeply analyzed. Then,
impact of communication topology on performance is explored in Section 4.4. To assess
effectiveness of the proposed approach, I perform simulations on large-scale systems
in Section 4.5, showing that the FJ dynamics with suitably chosen parameter λ can
provide superior performance to classical MSR-based methods if r-robustness sufficient
conditions are not verified. I conclude by addressing open questions and compelling
avenues for future research in Section 4.6.

4.1 Setup and Problem Formulation

Consider a Networked Control System composed of N agents in the set V = {1, . . . , N}.
The state of agent i ∈ V is denoted by xi ∈ R, and all states are stacked in the column
vector x ∈ RN . Initially, each agent i carries local information encoded by prior θi ∈ R.

Assumption 4.1.1. Priors are distributed as random variables with zero mean and
covariance matrix Σ = Σ⊤ ∈ RN×N , Σ ≻ 0, where Σii = σ2

i > 0 ∀i ∈ V and Σij =
σij ∀i ̸= j.

4.1 Setup and Problem Formulation 77

Within the network, some agents behave according to the control task at hand, while
others cannot be controlled and behave arbitrarily. The former are called regular and
the latter malicious agents. Clearly, the identity of malicious agents is assumed to be
unknown to regular agents, so that a straightforward selection of trustworthy messages is
not possible. Malicious agents cannot be involved in any cooperative task though their
uncontrolled nature, hence the global cost function is based on the interaction among
regular agents only. In particular, each regular agent i needs to minimize the mismatch
flocal involving priors of regular agents,

flocal(xi)
.=
∑
j∈R

(xi − θj)2 , i ∈ R, (4.1)

where R ⊆ V is the subset collecting all regular agents. By straightforward calculations,
(4.1) can be rewritten as

flocal(xi) = R
(
xi − θ̄R

)2
−R2θ̄2 + R

∑
j∈R

θ2
j

= R
(
xi − θ̄R

)2
+ const,

(4.2)

where R
.= |R| and θ̄R is the average of priors {θi}i∈R.

The distributed optimization task is then given by

min
x

f(x), f(x) .= 1
R

∑
i∈R

flocal(xi)

=
∑
i∈R

(
xi − θ̄R

)2
+ const,

(4.3)

which is clearly solved if and only if all regular agents reach average consensus among
them, i.e., xi = θ̄R for all i ∈ R.

However, because of network connectivity, such desired alignment may be hindered
by malicious agents behaving arbitrarily. Hence, the aim is to design a local update rule
for regular agents so as to minimize the expected average consensus error (or simply,
consensus error), defined as

eR
.= E

[∑
i∈R

(
xi − θ̄R

)2
]

, (4.4)

where the expectation is taken with respect to (w.r.t.) the distribution of priors {θi}i∈V .

78 Resilient Consensus

4.1.1 Malicious Agents

Malicious agents follow state trajectories with potentially no relation to the optimization
task (4.3), and broadcast potentially misleading information to their neighbors. The
subsets of malicious agents is denoted by M with cardinality M

.= |M|. Clearly,
V =M∪R and M∩R = ∅. To address a disruptive behavior induced by attacks, the
priors of malicious agents are modeled as outliers with respect to the distribution of
priors in Assumption 4.1.1, and they are assumed constant overtime.

Assumption 4.1.2 (Priors of malicious agents). The actual prior of malicious agent
m ∈M is θ̃m = θm + vm, where vm ∼ (0, dm) is exogenous noise that quantifies attack
aggressiveness. For regular agent i ∈ R, it holds vi ≡ 0 and θ̃i = θi. Exogenous noises
are uncorrelated among themselves and with nominal priors, i.e., E [vmvn] = 0∀m ∈M,
n ∈ M, m ̸= n, and E [vmθi] = 0 ∀m ∈ M, i ∈ V. Actual priors and noises are stacked
in the vectors θ̃ ∈ RN and v ∈ RN , respectively.

Assumption 4.1.3 (Behavior of malicious agents). Malicious agents keep their state
constant overtime and equal to their corrupted prior, i.e., xm(k) ≡ θ̃m ∀m ∈ M.
Accordingly, the rows in the matrix W corresponding to malicious agents have all
off-diagonal elements equal to 0, with 1 on the diagonal.

The covariance matrices of noises and actual priors are denoted by V
.= E

[
vv⊤

]
and

Σ̃ .= E
[
θ̃θ̃⊤

]
= Σ + V , respectively. Without loss of generality, agents are re-labeled

as R = {1, . . . , R} and M = {R + 1, . . . , N}, so that matrix V can be conveniently
partitioned as

V =

 0 0
0 VM

 , VM
.= diag (dR+1, . . . , dN) , (4.5)

and, accordingly,

Σ =

 Σ11 Σ12

Σ⊤
12 Σ22

 , Σ̃ =

 Σ̃11 Σ̃12

Σ̃⊤
12 Σ̃22

 , (4.6)

with Σ11, Σ̃11 ∈ RR×R and Σ22, Σ̃22 ∈ RM×M .

Remark 4.1.4 (Behavior of malicious agents). Assumption 4.1.3 is consistent with a
portion of the resilient consensus literature, where algorithms are tested against constant
or drifting malicious agents that keep pulling their neighbors far off nominal average
consensus [22], [50], [207], [218]. On the other hand, attackers may behave intelligently
to avoid being detected, which needs to be contrasted by suitable strategies [99], [101].
This scenario goes beyond the scope of this thesis and its study is left to future work.

4.2 Resilient Average Consensus 79

4.2 Resilient Average Consensus

4.2.1 The Consensus Problem and Game Theoretic Models

Classical consensus is fragile to misbehaving agents [94], hence alternative strategies are
needed to minimize (4.4).

To this aim, I consider a game-theoretic interpretation of (4.1)–(4.3). In particu-
lar, assume that each regular agent needs to maximize the following utility (cognitive
dissonance),

ui(xi) = −λi (xi − θi)2 − (1− λi)
∑
j∈V

Pij (xi − xj)2 , (4.7)

where λi ∈ [0, 1] and Pij > 0 weighs information exchange between i and j, with Pij = 0
if i and j do not communicate. In words, utility (4.7) makes the ith agent anchor to its
prior proportionally to parameter λi. Interestingly, for λi = 0, we retrieve the utility
function used in [117], where the authors analyze the classical consensus protocol from
a game-theoretic perspective. In this case, agents have no incentive in retaining prior
information, while the opposite is true as soon as λi > 0 in (4.7). Greedily maximizing
utility (4.7) at step k + 1 yields the celebrated Friedrick-Johnsen (FJ) dynamics [59],

xi(k + 1) = λiθi + (1− λi)
∑
j∈V

Wijxj(k), (4.8)

where Wij is obtained by normalizing Pij w.r.t. agent i. In the following, I set λi ≡ λ,
which yields a scalar variable for the addressed optimization problem.

The rest of this chapter is mostly devoted to exploring performance of update rule (4.8)
w.r.t. the optimization task (4.3) with initial condition xi(0) of agent i given by its prior
θ̃i. The intuition behind using the above rule is that priors of regular agents are likely to
be closer to the nominal average consensus θ̄R than priors of attackers, and thus regular
agents may prefer to act a bit selfishly rather than be misled by malicious neighbors. In
the following, the FJ dynamics with λ = 0 (standard consensus) is referred to as full
collaboration, and the case λ = 1 as full competition. Tuning the parameter λ within the
interval [0, 1] originates a nontrivial communication-computation trade-off : should an
agent fully collaborate, fully compete, or choose a hybrid strategy and trust neighbors
only partially? Such performance trade-off in the presence of malicious agents is the
main matter under investigation of this chapter.

Assumption 4.2.1 (Network topology and weights). Weights Wij in update (4.8)
define an irreducible doubly-stochastic communication matrix W . In view of the local
optimization tasks (4.1), there are no self-loops, i.e., Wii = 0∀ i ∈ V.

80 Resilient Consensus

Remark 4.2.2 (Heterogeneous λi). While I focus on the case with all parameters λi equal
in the interest of a simpler analysis, it can be easily observed that the qualitative behavior
of the system is the same even with heterogeneous λi. Design of different λi’s to improve
performance even further is nonetheless an important topic, whose investigation is left to
future work.

4.2.2 Full Competition vs. Full Collaboration

A first remarkable result is that, in this scenario, letting λ = 1 in (4.8) – which is
equivalent to a totally unbalanced dynamics enforcing full competition among agents –
may outperform the standard consensus protocol if noises are sufficiently intense.

Proposition 4.2.3 (Full competition vs. full collaboration). In the presence of malicious
agents, FJ dynamics (4.8) with λ = 1 yields smaller error than with λ = 0 if and only if

∑
m∈M

dm ≥
M2

R
Tr (Σ11)− 2M2

R2 B (Σ11) + 2M

R
B (Σ12)− B (Σ22) , (4.9)

where B (A) denotes summation of all elements of matrix A.

Proof. See Appendix C.2.

In words, Proposition 4.2.3 implies that, if noise variances of malicious agents are
sufficiently large compared to the cross-correlations among regular and malicious agents
(elements of Σ12), a trivial fully competitive approach (agents keep priors constant
overtime) yields better performance than the standard consensus protocol. Intuitively,
the latter is still able to drive regular agents to a meaningful value when attacks are mild
(small variance dm), while the full-competitive strategy takes over as soon as attacks
become sufficiently aggressive (large dm) so that the drift error experienced by the
consensus dynamics is larger than if agents just froze their priors.

With i.i.d. priors and noises, the following corollary readily follows.

Corollary 4.2.4. If Σ = I and dm = d ∀m ∈M, condition (4.9) becomes

d > M

(
1− 2

R

)
− 1. (4.10)

4.2.3 The Truth Lies in the Middle

After assessing that a competition-based approach may be more resilient than standard
consensus protocol, I now wish to characterize the "competitiveness" of the optimal strat-
egy. In particular, this section aims to analytically characterize the optimal parameter,

4.2 Resilient Average Consensus 81

denoted by
λ∗ .= arg min

λ
eR. (4.11)

Such optimal parameter always exists. Indeed, if (1− λ)W is Schur (i.e., λ > 0), the FJ
dynamics induces the steady state

x = Lθ̃, L
.= (I − (1− λ)W)−1 λ. (4.12)

Matrix L can be interpreted as a generalization of the consensus matrix, and depends
on both weights in W and parameter λ. In particular, L has a continuous extension at
λ = 0 given by limλ→0+ L = W

.= limk→+∞ W k [144]. In words, this means that, as λ

approaches zero, the steady state achieved by the FJ dynamics tends to the one obtained
by the consensus protocol. Indeed, this is intuitive by looking at update rule (4.8).

Clearly, the continuous extension of L also implies a corresponding continuous exten-
sion of eR at λ = 0. Hence, extended continuity of eR in [0, 1] and Weierstrass theorem
ensure existence of a global minimum within the interval [0, 1].

The next result characterizes the case when the optimal resilient strategy is nontrivial,
meaning that regular agents should partially trust their neighbors in order to minimize
error (4.4). Intuitively, this happens if some minimal interaction can do better than full
competition (which translates into Σ being “non-degenerate" is a suitable sense), and
if attacks are sufficiently aggressive (i.e., variances of noises are large enough) so that
the consensus protocol yields poor performance, analogously to what remarked about
Proposition 4.2.3.

Theorem 4.2.5 (Nontrivial communication-computation trade-off). Let Γ .= limλ→0+
dL
dλ

with block partition

Γ =

 Γ1 Γ2

0 0

 , Γ1 ∈ RR×R, (4.13)

and let CR
.= 1R1

⊤
R

R , CRM
.= 1R1

⊤
M

M . Then, the optimal parameter λ∗ belongs to the open
interval (0, 1) if there exists one regular agent i ∈ R such that σ2

i > σij ∀j ̸= i and

∑
m∈M

αmdm > Tr
(
−Σ11Γ⊤

1 CR − Σ12Γ⊤
2 CR + Σ⊤

12Γ⊤
1 CRM + Σ22Γ⊤

2 CRM

)
, (4.14)

where αm ≥ 0 is the negative scalar product between the mth columns of Γ2 and CRM .

Proof. See Appendix C.3.

Corollary 4.2.6. If Σ is diagonal, then λ∗ ∈ (0, 1).

82 Resilient Consensus

Remark 4.2.7 (Explicit condition for λ∗ > 0). Explicitly checking when condition (4.14)
holds is hard, because it involves the spectrum of W . However, numerical tests show
that indeed such a condition is always satisfied in meaningful cases.

Remark 4.2.8 (Optimal parameter with zero noise). Theorem 4.2.5 implies that λ∗ may
be positive even when noise variances are zero. This is actually consistent with intuition:
not only attackers steer regular agents far off from the nominal average consensus value
(whereby dm quantifies intensity of such deception), but also they behave against the
prescribed update rule, ruling out full collaboration as an effective strategy – unless
cross-correlations between priors of regular and malicious agents are way larger than
other cross-correlations, see condition (4.14).

Remark 4.2.9 (Optimal strategy with general matrices). It is worth mentioning that,
even though it is assumed no self-loops in the original matrix W to be consistent with
the optimization tasks, Theorem 4.2.5 can be generalized to arbitrary doubly-stochastic
matrices W . Further, numerical experiments show that all above result also holds for
row-stochastic matrices W .

4.2.4 FJ Dynamics vs. Attack Aggressiveness

This section studies how performance varies with attack intensity, as quantified by the
variances of noises vm.

The first result is intuitive: more aggressive attacks (with larger noise variances)
induce larger error for any λ.

Proposition 4.2.10 (Performance vs. attacks aggressiveness). Error eR(d1, . . . , dM) is
strictly increasing with dm, m ∈M.

Proof. See Appendix C.5.

The next result characterizes what happens to the optimal parameter λ∗. Intuitively,
the more the nominal (prescribed) system behavior is disrupted by attacks, the more
regular agents benefit from being competitive rather than collaborating with (potential)
malicious neighbors. Formally speaking, this requires λ∗ to grow proportionally to the
noise intensities dm. However, such a claim is hard to prove analytically because of the
structure of the cost function. In particular, studying its second derivative is complicated
by the fact that the function eR is expressed as the trace of a non-positive semidefinite
matrix (in fact, not even symmetric), and similarly, uniqueness of the root of its first
derivative cannot be proved, in general. In the face of such analytical difficulties, the next
results contributes towards this intuition, which is numerically confirmed in Section 4.3.

4.3 Numerical Experiments 83

Proposition 4.2.11 (Optimal strategy vs. attack aggressiveness). Let λcr(d1, . . . , dM)
a critical point of eR(d1, . . . , dM), then λcr(d1, . . . , dM) is strictly increasing with dm,
m ∈M.

Proof. See Appendix C.6.

Proposition 4.2.11 implies that all points of local minimum are strictly increasing
with noise variances dm. An immediate consequence is that, if there is a unique critical
point for one choice of {dm}m∈M, then such a point is λ∗, is unique for any choice of
{dm}m∈M, and is strictly increasing with any dm. In words, more aggressive attacks force
regular agents to progressively become more competitive, in order not to be deceived by
malicious agents that can draw them away from nominal average consensus. The next
proposition refines this result, describing the limit behavior with "extreme" attacks.

Proposition 4.2.12 (Optimal strategy with extreme attacks). Let λcr(d1, . . . , dM) a
critical point of eR(d1, . . . , dM), then limdm→+∞ λcr(d1, . . . , dM) = 1, m ∈M.

Proof. See Appendix C.7.

According to intuition, the (trivial) optimal strategy for regular agents is to fully
compete against each other when adversarial attacks turn too disruptive. However,
numerical simulations in the next section show that λ∗ is significantly smaller than 1 in
practical scenarios.

4.3 Numerical Experiments

This section, presents numerical experiments on the consensus error eR aimed to achieving
intuition about the behavior of FJ dynamics under different topologies and attack

0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

70

80

(a) Average consensus error (4.4)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Optimal λ as a function of d.

Figure 4.2: FJ dynamics consensus error with 3-regular graph, exponential decay of prior
covariances, and one malicious agent. The arrow on the left box shows how the error curve

varies as the outlier noise intensity d increases.

84 Resilient Consensus

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

140

(a) Average consensus error (4.4)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Optimal λ as a function of d.

Figure 4.3: FJ dynamics consensus error with 3-regular graph, diagonal prior covariance
matrix, and one malicious agent.

scenarios, and to drawing insight about effective choices of the parameter λ.
In Fig. 4.2, I consider a 3-regular communication graph with 100 agents and (nominal)

uniform weights Wij = 1/3. Matrix Σ is chosen such that, for each agent i, the cross-
covariances obey an exponential decay, σij = 10−0.2d(i,j), d(i, j) being the length of a
shortest path between i and j, with σ2

i ≡ 1. Further, I randomly select one malicious
agent and vary the noise intensity d within the range [0, 100].

Figure 4.2a shows the error curve as d increases. All curves exhibit a unique point of
minimum λ∗, plotted in Fig. 4.2b. Further, both error curve and point of minimum are
increasing with the noise intensity d, according to Propositions 4.2.10–4.2.11, showing
that competition level needs to increase with d.

Figure 4.3 shows the same experiment but with a diagonal covariance matrix Σ. The
monotonic behavior of eR and λ∗ observed above still holds. Further, note that the error
curve has a convex shape. In fact, even though it was not possible to prove it formally,
all tests performed with diagonal covariance matrices resulted in strictly convex error
functions.1

Next, I study what happens when increasing the number of malicious agents M . To
better visualize changes in the behavior of the system, the set R is set to be a network
composed of R = 100 regular agents, and malicious agents are progressively added across
the network in a scattered fashion. Figure 4.4 shows the error curve when 10 such
agents are progressively introduced. In particular, in this example, malicious agents are
introduced so as to affect different portions of the network, which allows λ∗ to have
relatively low values, see Fig. 4.4b. Conversely, in the opposite scenario, some regular
agents may be forced to almost freeze their priors (large λ) to not drive the error too large.
Figure 4.5 shows two cases where the added malicious agents are connected to the same

1This was checked by means of suitable symbolic software.

4.3 Numerical Experiments 85

0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

140

160

(a) Average consensus error (4.4)

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

(b) Optimal λ as a function of M .

Figure 4.4: FJ dynamics consensus error with 3-regular graph, diagonal prior covariance
matrix, and d = 10. The arrow on the left box shows how the error varies as the number of

malicious nodes M increases (with R = 100).

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Exponential prior covariances.

1 2 3 4 5 6
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(b) Diagonal prior covariance matrix.

Figure 4.5: Optimal λ as a function of M with d = 10. Each pair of malicious agents affects
one regular agent (e.g., the first two belong to Ni, i ∈ R).

86 Resilient Consensus

0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

70

80

(a) Average consensus error (4.4)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Optimal λ as a function of d.

Figure 4.6: FJ dynamics consensus error with (3, 4)-degree communication graph, exponential
decay of prior covariances, and one malicious agent.

regular agents. In particular, each consecutive couple is added to the neighborhood of
one regular agent (e.g., the first two malicious agents added to the network are neighbors
of agent 1 ∈ R). In this case, λ∗ increases faster than Fig. 4.4b, because the regular
agents affected by multiple malicious need to keep their error small: in other words, they
need to aggressively compete (inducing large value of λ) because of their misbehaving
neighbors. Interestingly, λ∗ grows faster when priors of regular agents are correlated
(Fig. 4.5a), which can be explained because such agents can trust that their states may
be similar to each other even before starting dynamical updates, and competing is less
risky than collaborating.

Finally, it is interesting to notice that the error behavior observed above is also present
when W is just row-stochastic, thus yielding nonzero consensus error even without external
attacks. Figure 4.6 shows consensus error and λ∗ when each node in the graph has degree
3 or 4 and W has uniform weights.

Many other numerical tests performed with different graphs, prior distributions, and
choice of the malicious agents, show the same monotonic and quasi-convex behavior of the
error function. This reinforces and extends the scope of the formal analysis, showing that
indeed the collaboration-competition trade-off naturally emerges as a resilient mechanism
in Networked Control Systems.

Remark 4.3.1 (Value of optimal λ). A remarkable feature of the FJ dynamics, that can
be observed from the above numerical experiments, is that the optimal value of λ is
relatively small, within the range [0.1, 0.2] for many relevant scenarios. In fact, λ∗ reaches
0.3 in Fig. 4.2 when the noise variance of the malicious agent is two order of magnitude
larger than the variance of priors. This translates into the practical advantage that
adding a little competition is sufficient to achieve substantial performance improvement
compared to the standard consensus protocol, which may be attractive to achieve good

4.3 Numerical Experiments 87

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

0.01 0.02 0.03

0.3
0.4
0.5
0.6
0.7

Figure 4.7: Consensus error and its two contributions in (4.15).

level of resilience without forcing too conservative local agent updates.

4.3.1 Competition-Collaboration Trade-off: Analytical Insight

As mentioned earlier, the consensus error function eR is hard to parse and an exhaustive
analysis seems not possible.

Yet, some intuition can be achieved from an exact decomposition of eR, which is
analyzed in this section. To keep notation light, a single malicious agent, i.e., M = {m},
and diagonal covariance matrix Σ are assumed. In this case, the consensus error can be
expanded as follows (cf. (C.6) in Appendix C.3),

eR =
(
σ2

m + d
) ∥∥L−m

m

∥∥2︸ ︷︷ ︸
.=eR,deception

+
∑
i∈R

σ2
i

∥∥∥∥L−m
i − 1

R

∥∥∥∥2

︸ ︷︷ ︸
.=eR,consensus

, (4.15)

where Li ∈ RN is the ith column of L and L−m
i ∈ RR is obtained from Li by removing its

mth row (corresponding to the malicious agent). The error curves are shown in Fig. 4.7.
Equation (4.15) allows for an intuitive interpretation of the error, which leverages the
notion of social power [34], [194].

In opinion dynamics, the social power is used to quantify how much each agent’s
opinion affects the opinion of all agents. In particular, when opinions evolve according to
the FJ dynamics, the element Lij quantifies the influence of agent j on agent i: as Lij

increases, agent i is more affected by agent j’s initial opinion. The overall social power
of agent j is a symmetric and increasing function of all elements {Lij}i∈V .2

Borrowing such concepts from opinion dynamics allows to interpret the two contri-
butions highlighted in (4.15). The first contribution, eR,deception, quantifies the impact

2For example, [34], [194] use the arithmetic mean of {Lij}i∈V .

88 Resilient Consensus

of the malicious agent on regular agents. The "social power" of m, as quantified by
the vector L−m

m , depends on the communication matrix W and on the parameter λ. In
particular, each coordinate of L−m

m decreases with λ, intuitively meaning that influence
of the malicious agent diminishes as regular agents anchor more tightly to their priors,
and becomes exactly zero when λ = 1, namely, when regular agents have no iterations
with their neighbors (see Appendix C.4 for formal analysis).

The second contribution eR,consensus measures "democracy" among regular agents,
i.e., it is proportional to the mismatch between how much each regular agent affects the
others and the ideal value 1/R, which means that each agent affects all others equally.
This cost is zero if and only if the submatrix of L corresponding to interactions among
regular agents is the consensus matrix: this can happen only if they do not interact
with the malicious agent [144], in which case, the vector L−m

m is zero (attacks have no
effect). In this special case, eR,consensus is zero at λ = 0 and increases monotonically as
the network shifts from a democratic system, where agents fully collaborate (λ = 0), to a
disconnected system where agents fully compete (λ = 1). Conversely, when malicious
agents affect regular ones, eR,consensus is U-shaped. For small λ, the malicious agent
rules the dynamics, and interactions among regular agents are negligible. As λ increases,
regular agents start collaborating and their interactions become more relevant, making
eR,consensus decrease. However, as λ grows further, agents compete too aggressively,
shifting away from democratic system. In practice, numerical tests show that the point
of minimum of eR,consensus is small (zoomed box in Fig. 4.7), meaning that the malicious
agent barely affects error due to competition.

Overall, the error has two concurrent causes that generate a phase transition: the
collaboration with the malicious agent is critical with small λ, while for large λ the
error is mainly due to agents competing against each other, rejecting possibly useful
shared information. Indeed, this analysis matches intuition from (4.8), where λ measures
conservatism in agent updates.

4.4 The Role of Communication Network

In the previous sections, I discussed the benefits of using a competition-based approach
(FJ dynamics) to tame malicious agents. I now shift attention to the communication
network, in order to achieve intuition about resilient topologies. Section 4.4.1 introduces
a second performance metric which is used to evaluate resilience to attacks. Then,
in Section 4.4.2, I observe how performance varies with connectivity.

4.4 The Role of Communication Network 89

4.4.1 Performance Metrics

Besides consensus error, it is also interesting to assess energy spent to conduct attacks.
For the sake of simplicity, I assume again a single malicious agent, M = {m}. Define the
following block partition of W ,

W =

 WR Wm

0 1

 , WR ∈ RR×R, (4.16)

where WR corresponds to interactions among regular agents in R and Wm to neighbors
of the malicious agent. Using (4.16), (4.8) can be rewritten as

xR(k + 1) = AxR(k) + Bxm(k) + v̄

A
.= (1− λ)WR, B

.= (1− λ)Wm, v̄
.= λθR.

(4.17)

I interpret (4.17) as a controlled system where the state xR stacks all states of regular
agents, and the malicious agent can command the control input xm(k). The controllability
Gramian in K steps WK , defined as

WK =
K−1∑
k=0

AkBB⊤
(
A⊤
)k

, (4.18)

can be used to quantify the control effort: indeed, the trace of WK (controllability index)
is inversely related to the control energy spent in K steps (averaged over the reachable
subspace), as shown in the literature [67], [139], [178]. Intuitively, a small controllability
index means that the malicious agent consumes a lot of energy to steer xR to some
reachable configuration, which may be desired to drain out adversarial resources and
possibly hamper the attack.

Notably, the controllability index can be equivalently written as

Tr (WK) = (1− λ)2
K−1∑
k=0

∥∥∥∥(1− λ)kW k
RWm

∥∥∥∥2
, (4.19)

which resembles the deception error component eR,deception in (4.15),

eR,deception ∝

∥∥∥∥∥∥∥
∞∑

k=0
(1− λ)k

k−1∑
j=0

W j
RWm

∥∥∥∥∥∥∥
2

. (4.20)

Both Tr (WK) and eR,deception are decreasing with λ (i.e., the more competition, the

90 Resilient Consensus

Figure 4.8: Average consensus error (left) and controllability index (right) for regular graphs.
Each point is obtained by averaging over 1000 random graphs.

better), and depend on the vectors W k
RWm that describe how an attack spreads in k steps.

The discount factor (1− λ)k makes the tail of the series in (4.20) negligible, enhancing
similarity between those two metrics.

Remark 4.4.1 (Power of adversary). The controllability Gramian addresses richer attack
strategies than Assumption 4.1.3, letting the malicious agent drive regular agents to any
configuration in the reachable subspace via a suitable trajectory xm(k).

4.4.2 Network Connectivity vs. Resilience

We look at the following worst-case optimization problems,

min
W

max
m∈V

eR, (4.21)

min
W

max
m∈V

Tr (WK) . (4.22)

The internal maximization (worst case) selects the agent that either causes the largest
consensus error (4.21) or makes the smallest control effort (4.22), with K being the
reachability index. The external minimization addresses the network design.

In the following, rather than solving (4.21)–(4.22), I examine performance of some
simple, but significant, classes of graphs. In particular, I aim to achieve intuition about
some core properties of the network, such as connectivity and balance of node degrees. A
broader optimization study is deferred to future work. As a first step, I consider regular
graphs with 100 nodes and uniform weights. Note that regular graphs are commonly
found in applications [24], [82], [143], [216], [226]. To assess the role played by connectivity,
I evaluate the worst-case performance of ∆-regular graphs, ∆ ∈ {3, . . . , 10}, by averaging
maxm∈V eR (for (4.21)) and maxm∈V Tr (WK) (for (4.22)) over 1000 random graphs. The
"worst" malicious agent is found via brute force. Results are shown in Fig. 4.8.

A first insight is that increasing the graph connectivity mitigates attacks with respect

4.4 The Role of Communication Network 91

to both metrics. Intuitively, this is because high degree induces many interactions among
regular agents that the malicious agent cannot directly control.

In a real system, the number of communication links is subject to practical constraints.
To study how performance varies when the total amount of communication links is limited,
I consider almost-regular graphs, namely, where nodes have degree either ∆ or ∆− 1 for
some fixed ∆. Intuitively, almost-regular graphs correspond to "middle-ways" between ∆-
and (∆− 1)-regular graphs, that, looking at Fig. 4.8, could be ideally placed between
two consecutive ticks (degrees) ∆ and ∆− 1 on the x-axis.3

Hence, given a ∆-regular graph as starting point, I progressively prune edges and
observe performance variations. More specifically, I iteratively remove one edge at a time
so as to minimize performance degradation at each removal. This corresponds to the
following simplification of (4.21)–(4.22),

min
e∈E

max
m∈V

eR(E \ {e}), (4.23)

min
e∈E

max
m∈V

Tr (WK(E \ {e})) , (4.24)

where E is the set of edges defining the communication network (i.e., the support of W),
and W always has uniform weights (before and after removal of each edge). To keep the
graph almost regular, it suffices to impose that at most one edge be removed per node
in minimization problems (4.23)–(4.24). This additional constraint is also motivated by
numerical tests showing that, in non-regular graphs, the "worst" malicious agent exploits
a highly connected hub to spread damage more quickly.

Figures 4.9–4.10 show performances obtained starting from a 4-regular graph with 50
nodes (100 edges in total, corresponding to the rightmost point in the plots) and gradually
pruning edges according to the above discussion (proceeding leftwards on the x-axis).
Also, performances with a 3-regular graphs obtained by removing perfect matchings
from the initial 4-regular graphs are shown for comparison.4 Remarkably, performance
degrades (almost) monotonically for both indices as edges are removed. This may be
explained by a combination of lower connectivity and degree unbalance, which allows
the adversarial to exploit highly connected agents to make more damage against lowly
connected regular agents.

3Note that an almost-regular graph implies a row-stochastic matrix W .
4A matching is a set of edges that do not share nodes. A maximum matching is a matching of maximal

cardinality, and a perfect matching is a maximum matching such that each node is incident to one edge
(total coverage). Note that our greedy edge removal may not be able to remove exactly one edge for each
node in the graph, because of the enforced constraint that keeps the resulting graphs almost regular.
Indeed, some leftmost points on the x-axes of Figs. 4.9–4.10 have no corresponding makers on the blue
curve.

92 Resilient Consensus

Figure 4.9: Consensus error (left) and controllability index (right) with greedy edge removal
for different topologies starting from a 4-regular graph, with λ = 0.7. In the plots, edge removal
iterations (blue diamonds) proceed from right (initially, all 100 edges are present) towards left.
At each iteration, one edge is removed so as to minimize performance degradation according
to (4.23)–(4.24) while enforcing that no node has fewer than three neighbors (i.e., degree is
either three or four for each node). At the last iteration (leftmost diamonds), most or all nodes
have degree three, with possibly a few nodes left with degree four (because of the enforced
degree-balance constraint). The red squares show the performance metrics for a 3-regular
graph obtained by removing a perfect matching (set of edges) from the initial 4-regular graph.

Figure 4.10: Consensus error (left) and controllability index (right) with greedy edge removal
starting from a 4-regular graph (100 edges), with λ = 0.2.

4.5 Comparison with Existing Literature 93

Interestingly, while the consensus error increases quite smoothly as more edges are
removed, the controllability index exhibits sharp "jumps". This is especially evident with
large λ, as Fig. 4.9 shows. Such behavior suggests the presence of critical subsets of edges,
and may give indication about which links should be primarily kept or may be removed.

Further, in almost all tests performed with different values of λ and random graphs,
the 3-regular graph obtained by removing a perfect matching yielded a performance
improvement compared to the last edge removal (leftmost point on blue curve). This
shows that increasing connectivity may not be beneficial if it entails a loss in balance:
in Fig. 4.9, the 3-regular graph reduces the controllability index by 22% w.r.t. the
last graph obtained by greedily pruning edges (0.34 against 0.45), which has a single
node with degree 4 and all others with degree 3, and has comparable performance with
graphs having most nodes with degree 4. This suggests a phase transition in the network
design, whereby it is not convenient to add edges until a certain degree balance is met.
However, as shown in Fig. 4.10, a regular graph of degree ∆− 1 obtained by removing a
perfect matching (which is not related to performance metrics) from a ∆-regular graph
may yield much worse performance than even the more unbalanced graph obtained by
greedy pruning edges. This gives further insight: removing edges arbitrarily may perform
substantially worse compared to a careful removal strategy.

4.5 Comparison with Existing Literature

In this section, I test our proposed protocol and compare its performance with other
approaches in the literature.

Many techniques have been proposed to mitigate malicious attacks in optimization
and consensus. However, they usually focus on reaching generic consensus, possibly
while keeping the states of regular agents within a safe region (usually defined by initial
conditions), and do not consider robustness with respect to average consensus, which
here is key to the distributed optimization task, as argued in Section 4.1. Indeed, most
resilient consensus strategies aim to get the agents agree on, e.g., a common position (as
robot rendez-vouz) with some level of resilience, not necessarily tying consensus to initial
conditions.

I compare two strategies: Weighted Mean Subsequence Reduced (W-MSR) [94] and
Secure Accepting and Broadcasting Algorithm (SABA) [50]. As noted in the introduction,
many resilient algorithms consist in adaptations of W-MSR to various scenarios, and their
core behavior and guarantees are the same. W-MSR suffers from two main limitations
related to r-robustness, which is the cornerstone of all theoretical results. First, while

94 Resilient Consensus

(a) Communication network with 100
agents (two malicious agents).

(b) Consensus error (4.4) and network
cost (4.3) of regular agents.

Figure 4.11: Comparison among standard consensus, FJ, W-MSR [94], and SABA [50] with
3-regular communication graph and two adversaries.

sufficient conditions for resilient consensus are clear, often there is no clue about necessary
conditions. This translates into unknown behavior when robustness requirements are
not met. While r-robustness has proved a good characterization for update rules based
on W-MSR, such fact raises practical limitations. On the one hand, the communication
network may be fixed but not robust enough. On the other hand, checking r-robustness is
computationally intractable for large-scale graphs [185]. Thus, in some cases, for example
with sparse architectures, more conservative behaviors with provable performance bounds
may be preferred. Also, W-MSR requires to estimate the number of malicious agents
affecting the network. This may also be an issue: if the estimate is too low, regular agents
may be deceived and average consensus disrupted, whereas, if it is too high, the algorithm
may be too conservative, possibly preventing convergence to consensus. Further, agent
failures could happen in a time-varying fashion and make the algorithm fail at times,
yielding poor overall performance. SABA needs not estimate the number of malicious
agents, but stores all received values in a buffer and processes them with a voting strategy.
However, this design may impose impractical memory requirements, and further, the
authors show that their algorithm is still subject to r-robustness conditions.

In the next simulations, I consider sparse communication graphs, whose low connec-
tivity hampers W-MRS and SABA, and matrices W with homogeneous weights. For
each scenario, the parameter λ∗ is chosen by finely sampling the interval (0, 1) and
picking λ minimizing the theoretical error function eR (4.4). As performance metric, I
consider the expected cost of the distributed optimization task, which equals eR up to
an additive constant (see (4.3)). Nominal priors are drawn as θi ∼ N (0, 0.1), i ∈ V, and
each malicious agent m is assigned actual prior θ̃m = θm + k, k ∈ [2, 4], which is kept
constant according to Assumption 4.1.3.

4.5 Comparison with Existing Literature 95

(a) Communication network with 100
agents (six malicious agents).

(b) Consensus error (4.4) and network
cost (4.3) of regular agents.

Figure 4.12: Comparison among standard consensus, FJ, W-MSR [94], and SABA [50] with
4-regular communication graph and six adversaries.

Figure 4.11 illustrates a network composed of 100 agents interacting through a 3-
regular graph (Fig. 4.11a) with two malicious agents (red triangles). It is worth noting
that r-robustness of 3-regular graphs is not sufficient to tolerate malicious agents, and
therefore theoretical guarantees of MSR-based approaches do not hold. W-MRS is
implemented assuming that each regular agent communicates with at most one adversary,
because larger values make updates trivial, i.e., xi(k) ≡ xi(0). Such limitations allow FJ
dynamics to outperform both algorithms, as shown by Fig. 4.11b.

In the second experiment, I use a denser regular network with degree four attacked by
six malicious agents (Fig. 4.12a). Some of the latter communicate with the same regular
agent (e.g., the two in the bottom-right portion of the graph), making this scenario
more challenging. While both SABA and W-MSR still perform poorly (Fig. 4.12b),
FJ dynamics can mitigate attacks by increasing the value of λ∗, as already suggested
by Fig. 4.5.

Finally, in Fig. 4.13 I consider a network where nodes have degree three or four
(Fig. 4.13a), with W being a row-stochastic matrix with uniform weights. In this case,
one may question whether a doubly-stochastic matrix could improve performance of the
standard consensus protocol, in light of its optimality under nominal conditions. However,
in the presence of malicious agents, it is easy to show that standard consensus converges
to the centroid of the states of the latter regardless of weights in W (cf. Assumption 4.1.3
and (C.3) in Appendix). Conversely, Fig. 4.13b, shows that FJ dynamics is a robust
strategy against misbehaving agents even though it cannot retrieve the optimal solution
under nominal conditions.

Remark 4.5.1 (Benefits of FJ dynamics). The above experiments highlight some advan-
tages of the proposed approach. Firstly, the presence of a tunable parameter makes

96 Resilient Consensus

(a) Communication network with 100
agents (four malicious agents).

FJ LF SABA
0

50

100

(b) Consensus error (4.4) and network
cost (4.3) of regular agents.

Figure 4.13: Comparison among standard consensus, FJ, W-MSR [94], and SABA [50] with
(3, 4)-degree communication graph and four adversaries.

the algorithm flexible, as it can smoothly adapt to different attack intensities while
still providing decent performance bounds. Further, while the optimal parameterization
requires exact knowledge of the adversary, which may not be reasonably assumed, yet
the proposed approach proves pretty robust to the choice of a specific λ, as the plots
in Section 4.3 show. This also works with row-stochastic matrices, as shown in Fig. 4.13b,
enabling simple weighting rules to be implemented locally. In contrast, in other ap-
proaches the cost function may be highly sensitive to some design parameters, e.g., the
estimated number of malicious agents in W-MSR. Further, most results in literature do
not describe system behavior when resilient consensus is not guaranteed. In fact, they
usually either ensure that agent’s states remain inside the safety region (which in practice
may not be better than setting λ = 1 in the proposed FJ dynamics-based approach), or
let agents reach consensus but potentially be steered far away from initial conditions [22].
Finally, computational complexity and memory requirements are minimal, which may be
desirable for resource-constrained devices or time-critical applications.

4.6 Conclusion

This chapter proposes a competition-based update protocol based on Friedkin-Johnsen
dynamics to mitigate adversarial attacks disrupting a quadratic distributed optimization
task. Performance of the proposed approach and optimal parametrization are character-
ized by formal results and numerical experiments, and numerical simulations performed
on sparse communication graphs show that the former can outperform state-of-the-art re-
silient consensus techniques. Further, the competition-collaboration trade-off is discussed
with analytical arguments that are insightful in understanding the overall behavior of the

4.6 Conclusion 97

system and the interaction among regular and malicious agents. Finally, I have addressed
design of the communication network and explored how to improve performance with
respect to regular graphs and link budget, looking at both global cost of the optimization
problem and energy spent by the attacker.

This opens several avenues for future research. Firstly, it is desirable to address an
effective design of parameters λi’s in the realistic case where knowledge about the attack
is scarce. This may also involve online reweighing of protocol parameters, in the realm of
recent work where the authors that build on the concept of trust [22], [218].

Secondly, the more general and challenging scenario of distributed optimization ought
to be extensively studied. In this case, the standard approach is to alternate local descent
steps to consensus updates to steer all agents towards a common solution [213]. Here,
the additional descent steps may critically impact performance even if consensus steps
are made resilient.

A third research avenue involves zero-sum games [100], [102] to alternatively model
the system dynamics. In particular, asymmetric zero-sum games let one player have more
knowledge than other, which may be a suitable model for worst-case attacks. In this
case, a research challenge is determining the optimal game strategies for both players,
ultimately to derive effective algorithms in the presence of intelligent adversaries.

Finally, it is interesting to deeply investigate optimization of communication topology.
While graph robustness to node or edge failures has been addressed in various domains [27],
[159], [176], [203], the novel element given by competitive dynamics calls for studying
that from a different perspective, as heuristically motivated in Section 4.4. Also, in the
spirit of a game-theoretic approach, a comparison between classical centrality measures
and maximum-damage attacker nodes may be drawn to get insights about which agents
deserve higher attention.

98 Resilient Consensus

5
Conclusion

Throughout this thesis, I have addressed and tackled several fundamental performance
trade-offs arising in Networked Control Systems as a consequence of intrinsic limitations
of single nodes, of communication channels connecting them, or of the very interconnected
structure that underlies the dynamical dependencies of the system.

The first chapter addresses computation and communication latency associated with
local processing of data collected at the network nodes (referred to as smart sensors),
and investigates an optimal estimation problem attempting to optimally select a subset
of available sensors and to choose, for each of those, an optimal local processing strategy
(quantified by computational delay and accuracy of output data). The main conclusion
stemming from analysis and application of heuristic selection algorithms is apparently
counterintuitive: in contrast to widespread conventions in sensing design for control,
robotics, and Edge Computing applications, it is optimal to both select only a fraction of
all available sensors and to let nodes locally process acquired data for a limited amount
of time. This is due to computational inefficiency both to locally process measurements
at nodes and to gather and post-process all sensory data at a central base station.

The second chapter investigates the challenge of choosing the optimal architecture of
a distributed controller. This design problem is indeed NP-hard due to its combinatorial
nature, which can prevent to find both an effective design and useful intuition about the
optimal design. In particular, I consider the case when communication latency affecting
inter-node transmissions in non-negligible: in this case, the nominal dynamics of the
system change, as local control loops are closed with outdated feedback information that
makes considerably more complicated analysis and synthesis. What is more, and crucially
affects the controller design, such communication latency is modeled as an increasing
function of the overall number of links, namely, of the controller architecture complexity.
Hence, an optimal control design problem must take into account the fact that increasing
controller complexity not only enhances information share which is beneficial for feedback,

100 Conclusion

1 2 3 4 5 6 7 8 9 10
2.2

2.4

2.6

2.8

3

3.2

3.4

Number of sensors s

p ∞
|∞
−

τ t
ot

W/ fusion delay
W/o fusion delay

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

0.01 0.02 0.03

0.3
0.4
0.5
0.6
0.7

Figure 5.1: Fundamental performance trade-offs investigated throughout this thesis.

but also makes communication delays longer, weakening the ability of a controller to
stabilize the system. To achieve intuition towards the optimal controller design in this
scenario, I consider a number of options for the controller architecture, ranging from
dense architectures providing long delays to sparse architectures inducing low delays.
For each of these, I solve an associated optimal control design problem, which minimizes
the steady-state variance of a stochastically forced dynamical system. The fundamental
result, which emerges both from an analytical study and from numerical experiments
involving several kinds of dynamics, is that the optimal controller architecture is in general
distributed, and may even be the sparsest possible if communication delays increase
sufficiently fast. This is in stark contrast with the common belief according to which the
optimal controller features the centralized architecture (or all-to-all interactions).

Finally, the third chapter consider aspect related to both performance, safety and
security, and tackles the presence of agents that can misbehave, namely they do not obey
the prescribed update protocol. The most common approach in this case is to force,
locally at each node, a filtering of incoming messages sent by neighbors, in order to not
deviate too much from the desired behavior. Here, the problem is tackled under a different
perspective, that lends itself to a compelling game-theoretic interpretation. Specifically,
each agent is allowed to partially trust neighbors, accepting and suitably weighing the
information received from them, and to partially retain local information, which serves
as an anchor to mitigate the negative effect of interactions with misbehaving agents. The
results presented, from both formal and numerical standpoints, corroborate the validity of
that approach, showing the presence of a fundamental performance trade-off: the optimal
resilient update rule makes each agent choose an specific value of "competitiveness", that
varies with the amount and intensity of attacks. This approach, which is here presented
with essentially preliminary and analytical results, has the potential to breach a new
frontier in the design of resilient control strategies, possibly overcoming fundamental
theoretical limitations that arise with standard filtering techniques.

101

Table 5.1: Potential follow-up research avenues inspired by the proposed results.

Distributed sensing Controller architecture Resilient networks

Outlook
Realistic latency models

Distributed decision-making
Adaptive resource allocation

Realistic dynamics and
communication delays
Complex control tasks
Integration with other

control paradigms (e.g., SLS)

Competition vs. collaboration
in other control tasks

Network topology design
Game-theoretic approaches

Table 5.1 exposes some future work directions that may be pursued to improve and
expand the research developed throughout the thesis. Overall, the crucial point that
ought to be further explored is the presence of performance trade-offs determined by
allocation of network resources: even though in some cases the optimal choice is obvious,
the findings presented in this thesis show that indeed in other situations such trade-offs
are far from trivial. This suggests that carefully considering non-idealities arising within
Networked Control Systems (such as latency or agent misbehavior) is key in order to
achieve correct insight about the actual system behavior, which can subsequently play a
role in guiding the control design. Ultimately, the results exposed in the previous chapters
aim to encourage future research that broadly explores the relationship between available
network resources and performance of control tasks towards effective resource allocation
and design methods. This means replacing the quantities on the x-axis in Fig. 5.1 with
other features of Networked Control Systems – communication bandwidth, hardware and
software resources of processing units, mobility, device weight and dimension – and the
quantities on the y-axis with related performance metrics – convergence rate, mean-square
error, safety, robustness.

Beware of performance trade-offs in Networked Control Systems!

102 Conclusion

A
Proofs of Chapter 2

A.1 Proof of Theorem 2.2.3

The steady-state error variance for the outdated estimate x̂t−τtot(τ) is the solution of the
continuous-time ARE where all sensors are considered:

2ap∞(τ)− σ2
w + τ

b̃
p2

∞(τ) = 0 (A.1)

An open-loop prediction of length τtot then computes the current-time estimate x̂t(τ).
The error associated with the prediction has dynamics

dx̃s(τ) = ax̃s(τ)ds + dws, t− τtot ≤ s ≤ t (A.2)

The error at time t is then given by integrating (A.2) with initial condition x̃t−τtot(τ):

x̃t(τ) = eaτtot x̃t−τtot(τ) + w̄(τtot) (A.3)

where w̄(τtot) is the stochastic integral of ws in the interval [t− τtot, t]. The steady-state
error variance is then

p∞|∞−τtot(τ) (i)= var(eaτtot x̃t−τtot(τ)) + var(w̄(τtot)) =

= e2aτtotp∞(τ) + σ2
w

2a

(
e2aτtot − 1

) (A.4)

where (i) is motivated by uncorrelated terms. Indeed, x̃t−τtot ∈ span{xt0 , ws, vs : t0 ≤ s ≤
t− τtot}, while w̄(τtot) ∈ span{ws : t− τtot ≤ s ≤ t}, whose intersection has zero measure.
The variance p∞|∞−τtot(τ) is quasi-convex with both constant and τ -varying communica-
tion and fusion delays. This can be proved, e.g., with a graphical analysis. In virtue of
both this fact and limits (2.18), the point of minimum τopt exists unique and is strictly

104 Proofs of Chapter 2

positive.
With constant delays τc(τ), τf(τ), standard computations show that τopt must sat-
isfy (2.19).

A.2 Alternative Processing Models

We consider two alternative models to the measurement noise covariance (2.12). These
involve a coefficient γ that can be understood as the convergence rate of an anytime
algorithm.

Corollary A.2.1 (Non-ideal processing). Given system (2.10)–(2.11) and hypotheses as
per Theorem 2.2.3 with

σ2
v(τ) = b

τγ
, γ > 0, (A.5)

the steady-state error variance p∞|∞−τtot(τ) has a unique global minimum τopt > 0.

Proof. It can be seen that limits (2.18) still hold and p∞|∞−τtot(τ) is strictly quasi-convex
on R+ (e.g., via graphical analysis) with both models (2.13a)–(2.13b).

The second model comes into play with anytime algorithms with exponential conver-
gence, as the ones shown in [161].

Corollary A.2.2 (Exponential-convergence anytime algorithms). Given system (2.10)–
(2.11) and hypotheses as per Theorem 2.2.3 with

σ2
v(τ) = be−γτ , γ > 0, (A.6)

the steady-state error variance p∞|∞−τtot(τ) has a unique global minimum τopt > 0:

• with constant delays as per (2.13a), if and only if

γ > 2
√

σ2
w

b̃
+ a2. (A.7)

• with τ -varying delays as per (2.13b), always.

Proof. We address the two cases separately.

A.3 Proof of Proposition 2.2.6 105

Constant delays. With model (2.13a), τopt can be computed in closed form by setting
p′

∞|∞−τtot
(τ) = 0. This has the unique solution

τopt = 1
γ

[
ln
(

γ2

4 − a2
)

+ ln
(

b̃

σ2
w

)]
, (A.8)

which is strictly positive if and only if (A.7) holds.

τ -varying delays. With model (2.13b), p∞|∞−τtot(τ) is quasi-convex (easily verifiable,
e.g., via graphical analysis) for any γ.

A.3 Proof of Proposition 2.2.6

For convenience, we recall the statement of the implicit function theorem, which is used
in the proof.

Theorem A.3.1 (Implicit function). Let F be a continuously differentiable function on
some open D ⊂ R2. Assume that there exists a point (x̄, ȳ) ∈ D such that:

• F (x̄, ȳ) = 0;

• ∂F
∂y (x̄, ȳ) ̸= 0.

Then, there exist two positive constant a, b and a function f : Ix̄ := (x̄ − a, x̄ + a) 7→
Jȳ := (ȳ − b, ȳ + b) such that

F (x, y) = 0 ⇐⇒ y = f(x) ∀x ∈ Ix̄, ∀y ∈ Jȳ.

Moreover, f ∈ C1(Ix̄) and

f ′(x) = −Fx(x, f(x))
Fy(x, f(x)) ∀x ∈ Ix̄, (A.9)

where Fx(x, f(x)) = ∂F
∂x (x, f(x)).

Consider now (2.19), which we rewrite as:

ρτ3
opt + a2τ2

opt −
1
4 = 0. (A.10)

106 Proofs of Chapter 2

We can see the left-hand term in the previous equation as a parametric function of two
positive-valued variables, namely

F : R+ × R+ → R, (π, τ) 7→ F (π, τ) = ρτ3 + a2τ2 − 1
4 , (A.11)

where π, which is either ρ or a2, is a variable, and the other coefficient is a parameter.
Given a solution (π̄, τ̄opt) of (A.10), it holds:

• F (π̄, τ̄opt) = 0, by construction;

• Fτ (ρ̄, τ̄opt) = 3ρ̄τ̄2
opt + 2a2τ̄opt > 0, as ρ̄, τopt > 0;

• Fτ (ā2, τ̄opt) = 3ρτ̄2
opt + 2ā2τ̄opt > 0, as ρ, τopt > 0.

Then Theorem A.3.1 applies and there exists a function τ(π) such that F (π, τopt) =
0 ⇐⇒ τopt = τ(π), with π in some open neighborhood of π̄. Since we did not pose
constraints on π̄, such a function is defined on the positive real line. We can then compute
the first derivative of τ(π) according to (A.9).

π = ρ The first derivative of τ(π) = τ(ρ) is

τ ′(ρ) = −Fρ(ρ, τ(ρ))
Fτ (ρ, τ(ρ)) = − τ(ρ)2

3ρτ(ρ) + 2a2 < 0. (A.12)

π = a2 The first derivative of τ(π) = τ(a2) is

τ ′(a2) = −Fa2(a2, τ(a2))
Fτ (a2, τ(a2)) = − τ(a2)

3ρτ(a2) + 2a2 < 0. (A.13)

Hence, τopt is strictly decreasing with both ρ and a2.

A.4 Sensor Fusion with Kalman Filter in Information Form
and Packet Loss

In the following, we drop the dependencies on processing delays for the sake of exposition.
According to [167], when the correct reception of a measurement from ith sensor is a
binary random variable with success probability λi, the optimal steady-state estimator
with constant gains has the following dynamics for the expected error covariance:

P = APA⊤ + Q−APC⊤
λ

(
CλPC⊤

λ + Pλ + Rλ

)−1
CλPA⊤, (A.14)

A.5 Proof of Theorem 2.3.3 107

with
Cλ =

[
λ1C⊤

1 . . . λsC⊤
s

]⊤
Pλ = diag

(
λ1(1− λ1)C1PC⊤

1 , ..., λs (1− λs) CsPC⊤
s

)
Rλ = diag (λ1R1, ..., λsRs) ,

(A.15)

where diag(·) denotes a block-diagonal matrix with variables as diagonal blocks, and
S = {1, ...s} is the set of sensors involved in the update with measurements. Exploiting
the matrix inversion lemma, (A.14) can be rewritten as follows,

P = A
(
P −1 + Γ̃

)−1
A⊤ + Q, (A.16)

where the modified information matrix is

Γ̃ = C⊤
λ (Pλ + Rλ)−1 Cλ. (A.17)

Finally, we get

Γ̃ =
∑
i∈S

λ2
i C⊤

i

(
λi(1− λi)CiPC⊤

i + λiRi

)−1
Ci

=
∑
i∈S

λ2
i C⊤

i

[
λi(1− λi)

(
CiPC⊤

i + Ri

1− λi

)]−1
Ci

(i)=
∑
i∈S

λiC
⊤
i

[
R−1

i − (1− λi)R−1
i Ci

(
P −1 + (1− λi) C⊤

i R−1
i Ci

)−1
C⊤

i R−1
i

]
Ci

=
∑
i∈S

λi

[
C⊤

i R−1
i Ci − (1− λi) C⊤

i R−1
i Ci

(
P −1 + (1− λi) C⊤

i R−1
i Ci

)−1
C⊤

i R−1
i Ci

]
(ii)=
∑
i∈S

λi

[
Γi − (1− λi) Γi

(
P −1 + (1− λi) Γi

)−1
Γi

]
,

(A.18)
where (i) follows from the matrix inversion lemma, and (ii) from the definition of Γi.

A.5 Proof of Theorem 2.3.3

According to [166, Section 3], the estimation starts from the most recent state for which
the maximum information possible is available. The former has timestamp k− τ̃s − τf,tot,
being τ̃s the delay gathered by the most-delayed-sensor data when they are received at
the central station. The expected error covariance for such estimate converges to the
solution of the ARE (2.31) where all sensors are considered, that is, at steady state the

108 Proofs of Chapter 2

following holds,

Pk−τf,tot−τ̃s|k−1−τf,tot−τ̃s
(T) = Pk−τf,tot−τ̃s+1|k−τf,tot−τ̃s

(T) = P∞(T). (A.19)

When computing the state estimates of more recent times, only data from some sensors
are available for fusion. In particular, the measurement update for the estimate of the
state with delay δ + τf,tot can only use sensors in S(δ),

Pk−τf,tot−δ|k−τf,tot−δ (T) = U
(
Pk−τf,tot−δ|k−τf,tot−δ−1 (T) , Tδ

)
. (A.20)

According to Assumption 2.3.1, the multi-step KF iteration processing data in the interval
[k − τf,tot − τ̃i+1 + 2, k − τf,tot − τ̃i + 1] involves the sensor subset S(τ̃i) = {1, ..., i}. The
resulting expected error covariance for such iteration is, according to (2.29),

Pk−τf,tot−τ̃i+1|k−τf,tot−τ̃i
(T) = I τ̃i+1−τ̃i

(
Pk−τf,tot−τ̃i+1+1|k−τf,tot−τ̃i+1 (T) , Tτ̃i

)
. (A.21)

The multi-step KF iteration involving all the processed dataset (2.1.1) is written as
I τ̃s−τ̃1

(
P∞ (T) , Tτ̃s−1

)
: starting from P∞ (T), it computes Pk−τf,tot−τ̃1+1|k−τf,tot−τ̃1(T)

through the multi-step KF iterations (A.21), each involving one sensor less than the
previous one. The multi-step prediction Pτpred(·) eventually computes the estimate of
the current state, where the remaining delay is τpred = τf,tot + τ̃1 − 1.

B
Proofs of Chapter 3

In the following, τn is replaced with τ for the sake of readability.

B.1 Proof of Corollary 3.2.2

Convexity of steady-state variance. Because the value of τ does not impact convexity,
let τ = 1. The second derivative of σ2

I (λ) is

d2σ2
I (λ)
λ

= (1 + 2 sin λ + λ cos λ− cos(2λ))λ2 cos2 λ

λ4 cos4 λ

+ (λ− cos λ + λ sin λ− sin λ cos λ)(−2λ cos2 λ + 2λ2 cos λ sin λ)
λ4 cos4 λ

, (B.1)

which is positive if and only if

λ3 cos3 λ + 2λ cos3 λ + 2λ3 cos λ sin λ + 2λ cos3 λ sin λ+

+ 2λ3 cos λ sin2 λ− 2λ2 cos2 λ sin λ− 2λ2 cos2 λ > 0. (B.2)

The constraint (3.14) ensures that λ, cos λ and sin λ are positive. I now consider the
three possible cases for λ and show that the two negative monomials in (B.2) are always
outbalanced by the positive ones.

Case λ > 1:

2λ3 cos λ sin2 λ > 2λ2 cos2 λ sin λ, (B.3)

2λ3 cos λ sin λ > 2λ2 cos2 λ. (B.4)

110 Proofs of Chapter 3

Case cos λ < λ ≤ 1:

2λ3 cos λ sin λ > 2λ2 cos2 λ sin λ, (B.5)

2λ3 cos λ sin2 λ + 2λ cos3 λ ≥ 2λ3 cos λ > 2λ2 cos2 λ. (B.6)

Case λ ≤ cos λ:

2λ cos3 λ sin λ ≥ 2λ2 cos2 λ sin λ, (B.7)

2λ cos λ3 ≥ 2λ2 cos2 λ. (B.8)

Point of minimum. Uniqueness of λ∗ follows from strict convexity. The derivative of
the variance σ2

I (λ) is

dσ2
I (λ)
dλ

= τλ− cos(τλ) + τλ sin(τλ)− cos(τλ) sin(τλ)
2λ2 cos2(τλ) , (B.9)

which is equal to zero if and only if

(1 + sin(τλ))(τλ− cos(τλ)) = 0. (B.10)

The stability constraint (3.14) makes (B.10) equivalent to τλ = cos(τλ). Applying the
change of variable β ← τλ, the resulting equation admits a unique solution β∗ in (0, π/2).

B.2 Proof of Proposition 3.2.3

The error dynamics equation with agent model (3.17) reads

dx(t) = (A0x(t) + A1x(t− 1)) dt + Bdw̄(t),

A0 =
[
0 I

0 −ηI

]
, A1 =

[
0 0
−ηK 0

]
, B =

[
0
I

]
,

(B.11)

with w̄(t) standard N -dimensional Brownian motion. The decoupling (3.19) is obtained
from (B.11) through the change of basis x(t) = (T ⊗I2)x̃(t). Rewriting (3.19) as a double

B.2 Proof of Proposition 3.2.3 111

integrator in state-space form with state s̃j(·) yields

ds̃j(t) = (F0s̃j(t) + F1j s̃j(t− 1)) dt + Gdw̄j(t),

F0 =
[
0 1
0 −η

]
, F1j =

[
0 0
−ηλj 0

]
, G =

[
0
1

]
,

(B.12)

Stability of (B.11) is equivalent to that of (B.12) for all j. In the following, the subscript
j is dropped for the sake of readability. For positive eigenvalues λ, (B.12) is mean-square
asymptotically stable if α0 < 0 and unstable if α0 > 0 [208], where the spectral abscissa
is defined as

α0
.= sup {ℜ(z) : z ∈ C, h(z) = 0} , (B.13)

and the characteristic polynomial of (B.12) is

h(z) .= det
(
zI − F0 − F1e−z) = z2 + ηz + ηλe−z. (B.14)

A sufficient and necessary condition for all roots of h(z) to lie in the open left-hand
half-plane is derived in [21].

Theorem B.2.1 ([21], Theorem 2.1). Let the 2-vectors v(b) =
(
pb, q − b2) , w(b) =

(cos b, sin b), b ≥ 0, be given. If r > 0, a necessary and sufficient condition for all roots
of the equation h(z) = (z2 + pz + q)ez + r = 0 to have negative real part is that the
orthogonality condition v(b) · w(b) = 0, with b ∈ ∪∞

k=0(2kπ, (2k + 1)π), implies |v(b)| > r.

From Theorem B.2.1, (B.12) is asymptotically stable if the following implication holds
for b ∈ ∪∞

k=0(2kπ, (2k + 1)π),

ηb cos b− b2 sin b = 0 =⇒ η2b2 + b4 > η2λ2. (B.15)

In view of b ≥ 0 and sin b ≥ 0, (B.15) leads to (3.20) after standard algebraic manipu-
lations, where b is replaced with β = min b ∈ (0, π/2). The inequality can be rewritten
as

λ <
β

sin β
.= ϕ(η), (B.16)

where the definition of ϕ(·) follows from the implicit function theorem applied to F (η, β) .=
β tan β − η, which states that F (η, β) = 0 if and only if β = φ(η) and

φ′(η) = cos2 (φ(η))
φ(η) + sin (φ(η)) cos (φ(η)) . (B.17)

Tedious but straightforward calculations on the first and second derivatives show that

112 Proofs of Chapter 3

ϕ(η) is concave increasing for any η > 0. The limits at 0 and +∞ can be easily computed
by noting that

β0
.= φ(0) = 0, β∞

.= lim
η→+∞

φ(η) = π

2 . (B.18)

B.3 Reduced Model of Continuous-Time Double Integrators

Consider (B.12) with state s̃(t) = [x̃(t), z̃(t)]⊤. Assuming that the feedback gain η is
large, the variable z̃(t) evolves faster than x̃(t). Then, by separation of time scales [84],
the dynamics of z̃(t) can be approximated by letting x̃(t− 1) ≡ x0 be constant overtime,

dz̃(t) = (−ηz̃(t)− ηλx0) dt + dw(t). (B.19)

Equation B.19 defines a standard Ornstein–Uhlenbeck process,

z̃(t) ∼ N
(

e−ηt(z̃(0) + λx0)− λx0,
1
2η

(
1− e−2ηt

))
. (B.20)

In view of the time-scale separation, (B.20) holds (with x̃(t− 1) constant) till z̃(t) settles
at steady state,

lim
t→+∞

z̃(t) = z̃∞ ∼ N
(
−λx0,

1
2η

)
. (B.21)

Using (B.21), the dynamics of x̃(t) can be approximated by assuming that z̃(t) reaches
the steady state instantaneously,

dx̃(t) ≈ z̃∞dt = −λx̃(t− 1)dt + dn(t), (B.22)

where the diffusion is embedded into the Brownian noise n(t) with variance proportional
to 1/η. In particular, as η → +∞, z̃∞

a.s.−−→ −λx0 and (B.22) tends to deterministic
dynamics.

B.4 Stability Conditions for Discrete-Time Systems

General Case. The characteristic polynomial h(z) of single-integrator decoupled
subsystem (3.27) is obtained by applying the lag operator z such that x̃(k)h(z) = w̃(k),

h(z) = z − 1 + λz−τ . (B.23)

B.4 stability conditions for discrete-time systems 113

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

τθ

(τ + 1)θ

λ

Real part

Im
ag

in
ar

y
pa

rt

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

τθ

(τ + 1)θ

λ

Real part

Im
ag

in
ar

y
pa

rt

Figure B.1: Two solutions of (B.26) with sin(τθ) > 0 (left) and sin(τθ) < 0 (right).

Similarly, the characteristic polynomial of double-integrator decoupled subsystem (3.30)
is

h(z) = z − 2 + η + (1− η)z−1 + ηλz−τ−1. (B.24)

For positive λ, stability of (3.27)–(3.30) can be assessed via the Jury stability criterion,
which provides necessary and sufficient conditions for the roots of (B.23) and (B.24) to
lie inside the unit circle in the form of inequalities involving the coefficients of h(z). Being
the latter polynomial in η and λ, the Jury criterion yields Θ(Nτ) polynomial inequalities
in the feedback gains, which can be computed, e.g., through symbolic software tools.

Proof of Proposition 3.3.1. Equation B.23 can be studied as a root locus by varying
the gain λ. In particular, λ = 0 yields a multiple root at z∗

1 = 0 and a simple root at
z∗

2 = 1. Negative values of λ are discarded as they push the latter root outside the unit
circle. As λ increases, the branches leave the unit ball along their asymptotes. The
admissible values for λ are upper bounded by a threshold gain λth beyond which some
roots leave the unit ball. In particular, stability is determined by the minimum gain for
which at least one root lies exactly on the unit circle, i.e., z = ejθ for some phase θ, and

ej(τ+1)θ − ejτθ + λ = 0. (B.25)

Equation B.25 can be equivalently written as the systemcos((τ + 1)θ)− cos(τθ) + λ = 0

sin((τ + 1)θ) = sin(τθ).
(B.26)

Fig. B.1 depicts two solutions of system (B.26). being the case sin(τθ) < 0 analogous
to the case sin(τθ) > 0, this proof focuses on latter without loss of generality. Further,
the solution (τ + 1)θ = τθ can be discarded from the discussion, because it implies
λ = 0 and thus prevents asymptotic stability. From elementary trigonometric arguments

114 Proofs of Chapter 3

(c.f. Fig. B.1), the second equation in (B.26) implies

τθ + θ

2 = π

2 + 2kπ −→ θ = π + 4kπ

2τ + 1 , (B.27)

where I impose θ ∈ [0, π] and thus k ∈ {0, . . . , ⌊τ/2⌋}. This includes all possible cases,
because the roots of (B.23) appear in complex conjugates pairs. From (B.27), the first
equation in (B.26), and the fact cos((τ + 1)θ) = − cos(τθ), it follows

λ = 2 cos
(

πτ + 4kπτ

2τ + 1

)
. (B.28)

The right-hand term in (B.28) is monotone increasing in k. Indeed, taking the argument
of the cosine modulus 2π yields

πτ + 4kπτ

2τ + 1 mod 2π = πτ − 2kπ

2τ + 1 ∈
[
0,

π

2

)
, (B.29)

which is nonnegative and monotone decreasing in k for any τ . Finally, the upper bound
for the gain λ is given by

λth = min
k

2 cos
(

πτ + 4kπτ

2τ + 1

)
= 2 cos

(
πτ

2τ + 1

)
. (B.30)

B.5 Variance Computation for Discrete-Time Systems

Wiener–Kintchine Formula. Given fixed delay and feedback gains, the steady-state
variance σ2

I (λ) or σ2
II (η, λ) of the decoupled subsystems can be computed numerically by

1
2π

∫ +π

−π

dθ

|h(ejθ)|2 , (B.31)

where the characteristic polynomial h(z) is (B.23) or (B.24).

Single Integrator Model. The moment-matching method applied to (3.27) yields a

B.5 variance computation for discrete-time systems 115

linear system of equations in the variables (ρ0, ..., ρτ), where ρt
.= E[x̃(k)x̃(k ± t)]:

ρ0 = E[x̃(k + 1)2] = ρ0 + λ2ρ0 + 1− 2λρτ (B.32a)

ρ1 = E[x̃(k + 1)x̃(k)] = ρ0 − λρτ (B.32b)
...

ρτ = ρτ−1 − λρ1, (B.32c)

where (B.32b)–(B.32c) are the Yule-Walker equations. System (B.32) can be written
compactly as A(τ)ρ = e1, where ρ⊤ = [ρ0, . . . , ρτ], e1 is the canonical vector in Rτ+1 with
nonzero first coordinate and A(τ) ∈ R(τ+1)×(τ+1) with

A(τ) =



−λ2 2λ

1 −1 −λ

. . .
.

.

−λ 1 −1


. (B.33)

In particular, when τ is odd, the (⌈τ/2⌉+ 1)-th row is[
0 . . . 0 1 −1− λ 0 . . . 0

]
, (B.34)

while, when τ is even, the (τ/2 + 2)-th row is[
0 . . . 0 1− λ −1 0 . . . 0

]
. (B.35)

Notice that A(τ) is full rank for all τ ≥ 1 and thus (B.32) can be solved uniquely. In
particular, the steady-state variance of interest σ2

I (λ) coincides with the autocorrelation
ρ0, which is given by the ratio between the minor associated with the top-left element of
A(τ), denoted by nτ

.= M
(τ)
1,1 , and the determinant dτ

.= det(A(τ)). Hence, ρ0 is a rational
function of λ and can be computed by a symbolic solver given any value of τ .

Further, nτ and dτ can be computed by leveraging the following nested structure of

116 Proofs of Chapter 3

the matrix A(τ):

A(τ) =

−λ2 −2λ

1 −1
1 −1 −λ

1 t1
Ã(τ−4)

t1
−λ 1 −1

−λ 1





, (B.36)

where Ã(τ) is the submatrix of A(τ) obtained by removing its first row and column such
that M

(τ)
1,1 = det(Ã(τ)), and the matrices Ã(τ−2) and Ã(τ−4) are framed in (B.36).

The solution obeys the following recursive expression in τ :

nτ =

(−1− λ)nτ−1 + ñτ−1 if τ odd

−(1− λ)nτ−1 − λñτ−1 if τ even,
(B.37a)

ñτ = (2− λ2)ñτ−2 − ñτ−4, (B.37b)

dτ = dτ−2 − λ2 (nτ + nτ−2) , (B.37c)

ñ−3 = −1 + λ2, ñ−2 = λ2, ñ−1 = −1, ñ0 = 0, (B.37d)

n−1 = 0, n0 = 1, d−1 = −2λ, d0 = 2λ− λ2. (B.37e)

Equation B.37 can be proved by an inductive argument on the delay τ .

Numerator. The formula is proved for odd delays τ = 2k + 1, k ∈ N. The other case
can be obtained similarly and is thus omitted.

Consider the submatrix Ã(τ) ∈ Rτ×τ obtained by removing the first row and column of
A, such that nτ = det(Ã(τ)). Replacing the (⌊τ/2⌋)-th column with the sum of (⌊τ/2⌋)-th
and (⌈τ/2⌉)-th columns yields

det
(
Ã(τ)

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã
(τ−1)
11 Ã

(τ−1)
12

. . . 0 −λ −1− λ

Ã
(τ−1)
21

1
0
...

Ã
(τ−1)
22

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (B.38)

from which it follows nτ = (−1− λ)nτ−1 − det(R(τ)) where R(τ) ∈ R(τ−1)×(τ−1) and the

B.5 variance computation for discrete-time systems 117

base case is n1 = −1−λ. This expression corresponds to (B.37a) with ñτ−1 = −det(R(τ)).
Manipulations of the second term yield a further recursive expression for ñτ−1. Consider

det
(
R(τ)

)
=

−1 −λ

1 −1 −λ

1 t1
R(τ−4)

t2
λ 1 −1

−λ 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (B.39)

where the two inner boxes highlight R(τ−2) and R(τ−4), respectively. Straightforward
calculations yield

det
(
R(τ)

)
= det

(
R(τ−2)

)
+ λ

1 −1 −λ

1 t1
R(τ−4)

t2
−λ 1 −1

−λ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (B.40)

The determinant in the second addend is computed as

−λ det
(
R(τ−2)

)
+

1 t1
R(τ−4)

t2
−λ 1

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
, (B.41)

and the second addend in the above equation has the same structure as the determinant
in the second addend in (B.40). Thus, an easy inductive argument proves

det
(
R(τ)

)
= det

(
R(τ−2)

)
+ λ

(
−λ det

(
R(τ−2)

)
−λ det

(
R(τ−4)

)
− · · · − λ det

(
R(3)

)
− λ

)
, (B.42)

where the base case is det
(
R(3)

)
= −λ2. Equation B.37b is retrieved by noting

det
(
R(τ−2)

)
−
(
1− λ2

)
det

(
R(τ−4)

)
= λ

(
−λ det

(
R(τ−6)

)
− · · · − λ

)
, (B.43)

118 Proofs of Chapter 3

and thus the tail of the infinite summation in (B.42) can be replaced by the left-hand
term in (B.43).

Denominator. The denominator of ρ0 is computed as the determinant of A. Letting
A(τ) .= A, from (B.33) it follows

det
(
A(τ)

)
= −λ2M

(τ)
1,1 − 2λ

1 −1
1 −1 −λ

1 t1
Ã(τ−4)

t1
−λ 1 −1

−λ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (B.44)

where Ã(τ−2) and Ã(τ−4) are framed in the second addend above. The latter can be
computed as the following sum,

λM
(τ−2)
1,1 +

1 −1
1 t1

Ã(τ−4)

t1
−λ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (B.45)

where the same structure is repeated recursively in the second addend above. Thus, an
easy inductive argument proves

dτ = −λ2nτ − 2λ (λnτ−2 + λnτ−4 + · · ·+ λn1 + 1) , (B.46)

where the base case is d1 = −λ2(−1− λ)− 2λ. Equation B.37c is retrieved by noting

−2λ (λnτ−2 + λnτ−4 + · · ·+ 1) = −λ2nτ−2 − λ2nτ−2 − 2λ (λnτ−4 + · · ·+ 1)

= −λ2nτ−2 + dτ−2.
(B.47)

Given τ , convexity of ρ0 in λ can be assessed by checking the sign of the second
derivative in the stability region. This reduces to a system of inequalities which can be
solved, e.g., by solve_rational_inequalities in Python. The variance was proved
strictly convex for all tried delays.

Double Integrator Model. The moment-matching system associated with (3.30) has

B.6 Proof of Proposition 3.4.1 119

τ + 2 variables (ρ0, . . . , ρτ+1) and is composed of the following equations:

ρ0 = (2− η)2ρ0 + (1− η)2ρ0 + η2λ2ρ0 + 1− 2(2− η)(1− η)ρ1

− 2(2− η)ηλρτ+1 + 2(1− η)ηλρτ

(B.48a)

ρ1 = (2− η)ρ0 − (1− η)ρ1 − ηλρτ+1 (B.48b)

ρ2 = (2− η)ρ1 − (1− η)ρ0 − ηλρτ (B.48c)
...

ρτ+1 = (2− η)ρτ − (1− η)ρτ−1 − ηλρ1, (B.48d)

where (B.48b)–(B.48d) are the Yule-Walker equations associated with (3.30). Analogous
considerations to the single-integrator model can be done in this case.

B.6 Proof of Proposition 3.4.1

Because the eigenvalues of a circulant matrix are the Discrete Fourier Transform (DFT)
of its first row, from linearity of the DFT and Plancherel theorem, problem (3.33) can be
rewritten as follows,

k̃∗ = arg min
k∈Rn

∥r(k)− λ∗e1∥22

s.t. λM (k) <
π

2τn
,

(B.49)

where r(k)⊤ is the first row of K and eℓ is the ℓth canonical vector in RN . Given a set
of integers I ⊂ {1, . . . , N}, consider now the problem

x∗ = arg min
x∈RN

∥x− eℓ∥22

s.t. xi = 0 ∀i ∈ I∑
i/∈I

xi = 0
(B.50)

with ℓ /∈ I and |I| = N −n− 1. I first show that x∗
i ≡ x̄∗ ∀i /∈ I ∪{ℓ}, which implies that

the suboptimal gains k̃∗
i , i = 1, . . . , n, in r(k̃∗) are equal. Assume there exists j /∈ I ∪ {ℓ}

such that xj ̸= xi ≡ x̄ for all i /∈ I ∪ {j, ℓ}. The cost of x is

Cx = ∥x− eℓ∥22 = (xℓ − 1)2 + (n− 1)x̄2 + x2
j . (B.51)

120 Proofs of Chapter 3

Let x̃ such that x̃ℓ = xℓ, x̃i ≡ ¯̃x for all i /∈ I ∪ {ℓ}. We have

xℓ = −xj −
∑

i ̸=ℓ,j

xi = −xj − (n− 1)x̄

x̃ℓ = −
∑
i ̸=ℓ

x̃i = −n¯̃x,
(B.52)

and the cost associated with x̃ is

Cx̃ = (x̃ℓ − 1)2 + n¯̃x2 = (xℓ − 1)2 + [(n− 1)x̄ + xj]2
n

. (B.53)

We then have the following chain of inequalities,

[(n− 1)x̄ + xj]2 < n[(n− 1)x̄2 + x2
j]

2(n− 1)x̄xj < (n− 1)
(
x̄2 + x2

j

)
0 < (x̄− xj)2 ,

(B.54)

which implies Cx̃ < Cx for any x, x̃.

Once proved that all suboptimal feedback gains have to be equal, the suboptimal value
k̃∗ can be computed by considering a simplified version of (3.33). According to (3.37)
and setting all feedback gains ki ≡ k̃, each eigenvalue λj of matrix K can be written as
λj = gj k̃ for a constant gj . The cost function in (3.33) can then be rewritten as

J(k̃) =
N∑

j=2

(
gj k̃ − λ∗

)2
. (B.55)

Convexity and differentiability of (B.55) allow to find the global minimum by setting

dJ(k̃)
dk̃

= 0 −→
N∑

j=2
gj

(
gj k̃ − λ∗

)
= 0, (B.56)

which admits the unique solution

k̃∗ =
∑N

j=2 gj∑N
j=2 g2

j

λ∗. (B.57)

B.6 Proof of Proposition 3.4.1 121

The coefficients gj ’s are the eigenvalues of K when k̃ = 1. Hence, it holds

N∑
i=2

gi =
N∑

i=1
gi = N

N∑
i=1

ri(k) = 2Nn (B.58)

N∑
i=2

g2
i =

N∑
i=1

g2
i = N

N∑
i=1

r2
i (k) = N(4n2 + 2n), (B.59)

where (B.58) comes from the definition of inverse DFT and (B.59) from Plancherel
theorem. The final expression of k̃∗ follows by substituting (B.58)–(B.59) in (B.57).

It is left to check if such solution satisfies the stability constraint. First, note that
λ∗ < π/4τn, which follows by studying the sign of (B.9). We then have the following
relations for the largest eigenvalue,

λ̃∗
M = gM k̃∗ = 2k̃∗

(
n−

n∑
ℓ=1

cos
(2π(M − 1)ℓ

N

))

= 2λ∗

2n + 1

(
n−

n∑
ℓ=1

cos
(2π(M − 1)ℓ

N

))
<

π

4τn

4n

2n + 1 <
π

2τn
.

(B.60)

122 Proofs of Chapter 3

C
Proofs of Chapter 4

C.1 Useful Lemmas

I report next standard facts in linear algebra that are used in the following proofs.

Lemma C.1.1. Let α ∈ R and A, B ∈ Rn×n differentiable functions of α, then the
derivative of Tr

(
A⊤B

)
is

dTr
(
A⊤B

)
dα

= Tr
(

dA⊤

dα
B

)
+ Tr

(
A⊤ dB

dα

)
. (C.1)

Lemma C.1.2. Let α ∈ R and A ∈ Rn×n invertible and differentiable function of α,
then the derivative of A−1 is

dA−1

dα
= −A−1 dA

dα
A−1. (C.2)

Lemma C.1.3. Let A ∈ Rn×n invertible with eigenvalue-eigenvector couple (λ, v), then
A−1 has eigenvalue-eigenvector couple (λ−1, v).

Corollary C.1.4. If A ∈ Rn×n is diagonalizable, then A and A−1 are simultaneously
diagonalizable.

Lemma C.1.5. Let A ∈ Rn×n with eigenvalue-eigenvector couple (λ, v), then (I − αA)
has eigenvalue-eigenvector couple ((1− αλ), v).

C.2 Proof of Proposition 4.2.3

I first compute the consensus error induced by FJ dynamics with λ = 0. By virtue of
Assumption 4.1.3, the steady-state consensus value induced by W is the average of the

124 Proofs of Chapter 4

priors of malicious agents, i.e., ¯̃θM
.= 1

M

∑
m∈M θ̃m, M

.= |M|. The consensus error eR

is

eC = E

∥∥∥∥∥1R
1⊤

M
M

θ̃ − 1R
1⊤

R
R

θ̃

∥∥∥∥∥
2


= E

∥∥∥∥∥1R
1⊤

M
M

θ̃

∥∥∥∥∥
2
+ E

∥∥∥∥∥1R
1⊤

R
R

θ̃

∥∥∥∥∥
2
− 2E

[
θ̃⊤ 1R

R
1⊤

R1R
1⊤

M
M

θ̃

]

=
RTr

(
Σ̃1M1⊤

M

)
M2 +

Tr
(
Σ̃1R1⊤

R

)
R

−
2Tr

(
Σ̃1R1⊤

M

)
M

= R

M2

∑
m∈M

dm + R

M2

∑
m∈M

σ2
m +

∑
n∈M
n̸=m

σmn



+ 1
R

∑
i∈R

σ2
i +

∑
j∈R
j ̸=i

σij

− 2
M

∑
i∈R

∑
m∈M

σim, (C.3)

where 1M ∈ RN and 1R ∈ RN are the indicator vectors of sets M and R, respectively.
On the other hand, the FJ dynamics with λ = 1 simply freezes all regular agents’ priors,
yielding consensus error

eF J
1 = E

[
∥θR − CRθR∥2

]
= E

[
∥(IR − CR)θR∥2

]
= Tr

(
E
[
θRθ⊤

R

]
(I − CR)

)
= R− 1

R

∑
i∈R

σ2
i −

1
R

∑
i∈R

∑
j∈R
j ̸=i

σij , (C.4)

which depends only on the nominal covariance matrix of priors Σ. By comparing the final
expressions in (C.3) and (C.4), it follows that eC > eF J

1 is equivalent to the following
inequality,

∑
m∈M

dm > −
∑

m∈M

σ2
m +

∑
n∈M
n̸=m

σmn

+ M2

R

∑
i∈R

σ2
i

− 2M2

R2

∑
i∈R

σ2
i +

∑
j∈R
j ̸=i

σij

+ 2M

R

∑
i∈R

∑
m∈M

σim, (C.5)

which leads to condition (4.9).

C.3 Proof of Theorem 4.2.5 125

C.3 Proof of Theorem 4.2.5

Part one: λ∗ < 1. Let matrix SR ∈ RR×N maps x to xR, and matrix CR
.= 1

R1R1
⊤
R

the consensus matrix for the regular agent subset. According to the labeling discussed
in Section 4.1.1, it holds SR = [IR 0]. Then, the error (4.4) can be written as

eR = Tr
(
Σ̃E⊤E

)
, E

.= SRL− CRSR, (C.6)

and its derivative with respect to λ is (up to constants)

deR
dλ

= 1
λ

Tr
(
Σ̃L⊤

(
I −W ⊤L⊤

)
S⊤

R E
)

, (C.7)

where Lemmas C.1.1–C.1.2 were used. At λ = 1, (C.7) takes value

deR
dλ

∣∣∣∣
λ=1

= Tr
(
Σ̃
(
I −W ⊤

)
S⊤

R (SR − CRSR)
)

. (C.8)

Straightforward computations show that the argument of the trace in (C.8) takes form

Σ̃
(
I −W ⊤

)
S⊤

R (SR − CRSR) =

 A 0
⋆ 0

 , A ∈ RR×R, (C.9)

and the ith diagonal element of A, associated with i ∈ R, is

ai = σ2
i + 1

R

∑
m∈M

σim

1−
∑

m′∈M
m′ ̸=m

W o
m′m

− 1
R

σ2
i

∑
m∈M

W o
mi

−
∑
j∈R
j ̸=i

σijWij −
1
R

∑
j∈R
j ̸=i

σij

∑
m∈M

W o
mj −

∑
m∈M

σimW o
mi, (C.10)

where W o
ij is the weight of the directed edge from j to i in the original matrix W o

(without malicious agents), and Wmj = δmj according to Assumption 4.1.3, δmj being the
Kronecker delta. Note that W o

ij = Wij for i, j ∈ R. Being W o doubly stochastic, it holds

1
R

σ2
i

∑
m∈M

W o
mi +

∑
j∈R
j ̸=i

σijWij + 1
R

∑
j∈R
j ̸=i

σij

∑
m∈M

W o
mj +

∑
m∈M

σimW o
mi

≤ max
{ 1

R
σ2

i + σim∗ , σij∗

}
, (C.11)

126 Proofs of Chapter 4

where j∗ .= arg maxj∈R\{i} σij and m∗ .= arg maxm∈M σim.

Case 1
R

σ2
i + σ2

im∗ ≥ σ2
ij∗: it follows

ai ≥ σ2
i + 1

R
σim∗ − 1

R
σ2

i − σim∗ =
(
σ2

i − σim∗

)(
1− 1

R

)
≥ 0. (C.12)

Case 1
R

σ2
i + σ2

im∗ < σ2
ij∗: it follows

ai ≥ σ2
i − σij∗ + 1

R

∑
m∈M

σim

1−
∑

m′∈M
m′ ̸=m

W o
m′m

 ≥ 0. (C.13)

Being ai ≥ 0∀i ∈ R, and because ∃i ∈ R : ai > 0 according to the hypothesis, the error
derivative at λ = 1 (C.8) is strictly positive, hence the consensus error (4.4) is increasing
in a left neighborhood of 1. By virtue of continuity of (C.7) for λ > 0, the point of
minimum of eR satisfies λ∗ < 1.

Part two: λ∗ > 0. By virtue of continuity of the error derivative in L, we can compute
the limit of (C.7) as

lim
λ→0+

deR
dλ

= Tr
(

Σ̃ lim
λ→0+

dL

dλ

⊤
S⊤

R lim
λ→0+

E

)
= Tr

(
Σ̃Γ⊤S⊤

R

(
SRW − CRSR

))
= Tr

(
Σ̃Γ⊤S⊤

R

[
− CR |CRM

])
= Tr

(
−Σ̃11Γ⊤

1 CR − Σ̃12Γ⊤
2 CR + Σ̃⊤

12Γ⊤
1 CRM + Σ̃22Γ⊤

2 CRM

)
,

(C.14)

where the steady-state consensus matrix W
.= limλ→0+ W has block partition (cf. As-

sumption 4.1.3)

W =

 0 CRM

0 IM

 , (C.15)

where Γ1, Σ̃11 ∈ RR×R and Γ2, Σ̃22 ∈ RM×M . Matrix Γ can be computed from the
spectral decomposition of W . In particular, its elements are finite, Γ1 is nonnegative,
and Γ2 is nonpositive (see details in Appendix C.4). Hence, limit (C.14) is negative if
and only if the following inequality holds,

Tr
(
VM(−Γ⊤

2 CRM)
)

> Tr
(
−Σ11Γ⊤

1 CR − Σ12Γ⊤
2 CR + Σ⊤

12Γ⊤
1 CRM + Σ22Γ⊤

2 CRM

)
,

(C.16)
which leads to condition (4.14). It follows that, if (C.16) holds, eR is strictly decreasing

C.4 Computation of Matrix Γ 127

in a right neighborhood of λ = 0. By virtue of continuity, it follows that λ∗ > 0.

C.4 Computation of Matrix Γ

For the sake of simplicity, in the following I assume that the original weight matrix
W o (i.e., with weights not corrupted by malicious agents) is symmetric, which implies
that W is diagonalizable also after malicious agents modify their weights according to
Assumption 4.1.3. If W is not diagonalizable, a similar derivation can be carried out by
considering the Jordan canonical form of W . This is because a straightforward extension
of Lemma C.1.3 shows that W and Γ share the same (chain of) generalized eigenvectors.

Computation of Γ. The derivative of L is (Lemma C.1.2)

dL

dλ
= L̃− λL̃

dL̃−1

dλ
L̃ = L̃− λL̃WL̃, (C.17)

where L̃
.= (I − (1− λ)W)−1. Let λW and vW an eigenvalue of W and its associated

eigenvector, respectively, from Lemmas C.1.3–C.1.5 it follows that L̃ has eigenvalue
(1− (1− λ)λW)−1 with associated eigenvector vW . Hence, straightforward computations
yield

dL

dλ
vW = 1− (1− (1− λ)λW)−1 λλW

(1− (1− λ)λW) vW . (C.18)

In particular, the dominant eigenvector vW = 1 (associated with λW = 1) is in the kernel
of dL/dλ for any λ. As for the other eigenvectors, by letting λ go to zero in (C.18), one
gets

ΓvW = (1− λW)−1 vW . (C.19)

Finally, the eigendecomposition of Γ is obtained from eigenvectors vW and eigenvalues
(1− λW)−1, plus the kernel.

Sign of Γ1 and Γ2. As regards Γ1, note that the upper-left block in W is identically
zero, and that L is a stochastic matrix for any value of λ: hence, as λ becomes larger
than zero, (some) elements in L1 become positive, and thus their derivative at λ = 0+ is
also positive.

As for Γ2, define the following block partitions,

L =

 L1 L2

0 IM

 , (C.20)

128 Proofs of Chapter 4

with W1, L1 ∈ RR×R and W2, L2 ∈ RR×M . Then, it holds

dL

dλ
= 1

λ
L (I −WL) =

 ⋆ −L1W1L2 − L1

0 0

 , (C.21)

which implies, for any λ ∈ (0, 1),

dLim

dλ
≤ 0, i ∈ R, m ∈M. (C.22)

In particular, the limit of the derivative of element Lim at λ = 0+ is nonpositive by virtue
of the theorem of sign permanence.

C.5 Proof of Proposition 4.2.10

Computing the partial derivative of eR(d1, . . . , dM) (C.6) yields

∂eR(d1, . . . , dM)
∂dm

= Tr

 0 0
0 Sm

E⊤E

 , (C.23)

where
∂Σ̃(d1, . . . , dM)

∂dm
=

 0 0
0 Sm

 (C.24)

and Sm ∈ RM×M has all zero elements except for the mth diagonal element equal to 1.
Hence, the argument of the trace in (C.23) has all zero rows except for the (R + m)th
row, which equals the (R + m)th row of (L1 − CR)2 (L1 − CR)L2

L⊤
2 (L1 − CR) L⊤

2 L2

 . (C.25)

The trace then selects the mth diagonal element of L⊤
2 L2, which has all positive elements

(see [144] and discussion in Section 4.3.1). Hence, it follows that the partial derivative
in (C.23) is strictly positive for any m ∈M.

C.6 Proof of Proposition 4.2.11 129

C.6 Proof of Proposition 4.2.11

The partial derivative of the error with respect to λ and to dm is

∂2eR(λ, d1, . . . , dM)
∂dm∂λ

= 1
λ

Tr
(

L
∂Σ̃(d1, . . . , dM)

∂dm
L⊤

(
I −W ⊤L⊤

)
S⊤

R SR

)
. (C.26)

It holds

L
∂Σ̃(d1, . . . , dM)

∂dm
=

 0 L2Sm

0 Sm

 (C.27)

M
.= I −W ⊤L⊤ =

 IR −W ⊤
1 L⊤

1 0
−W ⊤

2 L⊤
1 − L⊤

2 0

 (C.28)

L⊤MS⊤
R SR =

 ⋆ 0
−L⊤

2 W ⊤
1 L⊤

1 −W ⊤
2 L⊤

1 0

 , (C.29)

and the argument of the trace in (C.26) is −L2SmL⊤
2 W ⊤

1 L⊤
1 − L2SmW ⊤

2 L⊤
1 0

⋆ 0

 , (C.30)

whose upper-left block is a negative matrix for all λ ∈ (0, 1), and is the zero matrix for
λ = 1. Hence, the error derivative with respect to λ (C.7) is strictly decreasing with dm

for any λ ∈ (0, 1), and does not depend on dm at λ = 1. By virtue of continuity of (C.7)
in λ, the critical points of eR are strictly increasing with dm.

C.7 Proof of Proposition 4.2.12

I first expand (C.7) to highlight dependence on dm. Note that

deR
dλ

= 1
λ

Tr (VMN) + k(λ, W, Σ), (C.31)

where N is a nonpositive matrix defined as

N
.= −

(
L⊤

2 W ⊤
1 + W ⊤

2

)
L⊤

1 L2, (C.32)

130 Proofs of Chapter 4

and k(λ, W, Σ) > 0 does not depend on any dm, m ∈M. Then, it follows

deR
dλ

= 1
λ

∑
m∈M

Nmmdm + k(λ, W, Σ). (C.33)

Note that Nmm ̸= 0, because the opposite implies that the mth malicious agent has no
(even indirect) interactions with regular agents. It follows that, for any m ∈ M, there
always exists dm > 0 such that the error derivative (C.31) is negative, for any λ < 1. In
fact, given λ, the minimal such value of dm can be obtained from the following inequality,

dm > − λ

Nmm
k(λ, W, Σ)−

∑
m′∈M
m′ ̸=m

Nm′m′

Nmm
dm′ > 0. (C.34)

The claim follows by combining (C.34) with Proposition 4.2.11.

References

[1] W. Abbas, A. Laszka, and X. Koutsoukos, “Improving network connectivity and
robustness using trusted nodes with application to resilient consensus,” IEEE
Control Netw. Syst., vol. 5, no. 4, pp. 2036–2048, 2018 (Cited in page 14).

[2] N. Agmon and D. Peleg, “Fault-tolerant gathering algorithms for autonomous
mobile robots,” SIAM J. Comput., vol. 36, no. 1, pp. 56–82, 2006 (Cited in page 73).

[3] N. Allegra, B. Bamieh, P. Mitra, and C. Sire, “Phase transitions in distributed
control systems with multiplicative noise,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2018, no. 1, p. 013 405, 2018 (Cited in page 12).

[4] S. Amin, A. A. Cárdenas, and S. S. Sastry, “Safe and secure networked control
systems under denial-of-service attacks,” in Hybrid Systems: Computation and
Control, R. Majumdar and P. Tabuada, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 31–45 (Cited in page 12).

[5] M. Amir and T. Givargis, “Priority neuron: A resource-aware neural network for
cyber-physical systems,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2732–2742, 2018 (Cited in page 26).

[6] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,”
Annual Reviews Control, vol. 47, pp. 364–393, 2019 (Cited in pages 10, 55).

[7] M. Anvaripour, M. Saif, and M. Ahmadi, “A Novel Approach to Reliable Sensor
Selection and Target Tracking in Sensor Networks,” IEEE Trans. Ind. Informat.,
vol. 16, no. 1, pp. 171–182, Jan. 2020 (Cited in page 3).

[8] J. Arbelaiz, B. Bamieh, A. E. Hosoi, and A. Jadbabaie, “Distributed Kalman
filtering for spatially-invariant diffusion processes: The effect of noise on com-
munication requirements,” in Proc. IEEE CDC, Dec. 2020, pp. 622–627 (Cited in

page 9).

[9] J. Arbelaiz, B. Bamieh, A. E. Hosoi, and A. Jadbabaie, “Optimal structured
controllers for spatially invariant systems: A convex reformulation,” in Proc. IEEE
CDC, Dec. 2021, pp. 3374–3380 (Cited in page 9).

[10] M. S. Bahavarnia and N. Motee, “Sparse memoryless LQR design for uncertain
linear time-delay systems,” Proc. IFAC World Congress, vol. 50, no. 1, pp. 10 395–
10 400, 2017 (Cited in pages 9, 55).

132 References

[11] M.-F. Balcan, F. Constantin, and S. Ehrlich, “The Snowball Effect of Uncertainty
in Potential Games,” in Internet Netw. Econom. N. Chen, E. Elkind, and E.
Koutsoupias, Eds., vol. 7090, Springer Berlin Heidelberg, 2011, pp. 1–12 (Cited in

page 15).

[12] L. Ballotta, G. Como, J. S. Shamma, and L. Schenato, “Can competition outper-
form collaboration? The role of malicious agents,” arXiv e-prints, no. arXiv:2207.01346,
Jul. 2022, (submitted to IEEE Trans. Autom. Control) (Cited in page 23).

[13] L. Ballotta, G. Como, J. S. Shamma, and L. Schenato, “Competition-based
resilience in distributed quadratic optimization,” in Proc. IEEE CDC, (to appear),
2022 (Cited in page 23).

[14] L. Ballotta, M. R. Jovanović, and L. Schenato, “Can decentralized control
outperform centralized? The role of communication latency,” arXiv e-prints,
no. arXiv:2109.00359, Jul. 2022, (submitted to IEEE Control Netw. Syst.) (Cited

in page 23).

[15] L. Ballotta, M. R. Jovanović, and L. Schenato, “Optimal network topology of
multi-agent systems subject to computation and communication latency,” in Proc.
Mediterranean Conf. Control Autom., 2021, pp. 249–254 (Cited in page 23).

[16] L. Ballotta, G. Peserico, and F. Zanini, “A reinforcement learning approach to
sensing design in resource-constrained wireless networked control systems,” in
Proc. IEEE CDC, (to appear), 2022 (Cited in pages 28, 44).

[17] L. Ballotta, G. Peserico, F. Zanini, and P. Dini, “To compute or not to compute?
Adaptive smart sensing in resource-constrained edge computing,” arXiv e-prints,
no. arXiv:2209.02166, Sep. 2022, (submitted to IEEE Trans. Netw. Sci. Eng.)
(Cited in pages 28, 44).

[18] L. Ballotta, L. Schenato, and L. Carlone, “Computation-communication trade-offs
and sensor selection in real-time estimation for processing networks,” IEEE Trans.
Netw. Sci. Eng., vol. 7, no. 4, pp. 2952–2965, 2020 (Cited in pages 23, 28).

[19] L. Ballotta, L. Schenato, and L. Carlone, “From sensor to processing networks: Opti-
mal estimation with computation and communication latency,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 11 024–11 031, 2020, 21st IFAC World Congress (Cited in pages 23,
35).

[20] B. Bamieh, M. R. Jovanović, P. Mitra, and S. Patterson, “Coherence in large-
scale networks: Dimension dependent limitations of local feedback,” IEEE Trans.
Automat. Control, vol. 57, no. 9, pp. 2235–2249, 2012 (Cited in pages 9, 58).

References 133

[21] M. Baptistini and P. Táboas, “On the stability of some exponential polynomials,”
J. Math. Anal. Appl., vol. 205, no. 1, pp. 259–272, 1997 (Cited in page 111).

[22] J. S. Baras and X. Liu, “Trust is the cure to distributed consensus with adversaries,”
in Proc. MED, 2019, pp. 195–202 (Cited in pages 14, 78, 96, 97).

[23] J. Barreiro-Gomez, H. Tembine, L. Stella, D. Bauso, and P. Colaneri, “Risk-aware
control and games in engineering,” in Proc. IEEE Conf. Decis. Control, 2020,
pp. 3860–3870 (Cited in page 75).

[24] M. A. Batalin and G. S. Sukhatme, “The design and analysis of an efficient local
algorithm for coverage and exploration based on sensor network deployment,”
IEEE Trans. Robot., vol. 23, no. 4, pp. 661–675, 2007 (Cited in page 90).

[25] L. Berezansky, J. Diblík, Z. Svoboda, and Z. Šmarda, “Simple uniform exponential
stability conditions for a system of linear delay differential equations,” Appl. Math.
Comput., vol. 250, pp. 605 –614, 2015 (Cited in page 54).

[26] C. Bisdikian, L. M. Kaplan, and M. B. Srivastava, “On the quality and value of
information in sensor networks,” ACM Trans. Sen. Netw., vol. 9, no. 4, 48:1–48:26,
Jul. 2013 (Cited in page 5).

[27] A. Bojchevski and S. Günnemann, “Certifiable robustness to graph perturbations,”
in Proc. NeurIPS, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett, Eds., vol. 32, 2019 (Cited in pages 12, 97).

[28] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural networks for
efficient inference,” in Proc. Int. Conf. Machine Learning, D. Precup and Y. W.
Teh, Eds., ser. Proc. Mach. Learn. Research, vol. 70, PMLR, 2017, pp. 527–536
(Cited in page 5).

[29] K. Bonawitz, H. Eichner, W. Grieskamp, et al., “Towards federated learning at
scale: System design,” in Proc. Machine Learning Syst., A. Talwalkar, V. Smith,
and M. Zaharia, Eds., vol. 1, 2019, pp. 374–388 (Cited in page 74).

[30] L. Borghese and S. Braithwaite. “Hackers block italian covid-19 vaccination
booking system in ’most serious cyberattack ever’.” C. Business, Ed. (web). ()
(Cited in page 73).

[31] V. S. Borkar and S. K. Mitter, “LQG Control with Communication Constraints,”
in Communications, Computation, Control, and Signal Processing, A. Paulraj,
V. Roychowdhury, and C. D. Schaper, Eds., Springer US, 1997, pp. 365–373 (Cited

in page 8).

https://www.cnn.com/2021/08/02/business/italy-hackers-covid-vaccine-intl/index.html

134 References

[32] A. Brunello, A. Urgolo, F. Pittino, A. Montvay, and A. Montanari, “Virtual
Sensing and Sensors Selection for Efficient Temperature Monitoring in Indoor
Environments,” Sensors, vol. 21, no. 8, p. 2728, Jan. 2021 (Cited in page 3).

[33] L. Carlone and S. Karaman, “Attention and anticipation in fast visual-inertial
navigation,” IEEE Trans. Robot., vol. 35, no. 1, pp. 1–20, 2019 (Cited in page 4).

[34] D. Cartwright et al., Studies in social power (Publications of the Institute for
Social Research: Research Center for Group Dynamics Series). Research Center
for Group Dynamics, Institute for Social Research, University of Michigan, 1959
(Cited in page 87).

[35] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, “Network
intrusion detection for iot security based on learning techniques,” IEEE Commun.
Surveys Tuts., vol. 21, no. 3, pp. 2671–2701, 2019 (Cited in pages 73, 74).

[36] J. P. Champati, M. H. Mamduhi, K. H. Johansson, and J. Gross, “Performance
Characterization Using AoI in a Single-loop Networked Control System,” in Proc.
IEEE INFOCOM WKSHPS, Apr. 2019, pp. 197–203 (Cited in page 5).

[37] H. Chehardoli and A. Ghasemi, “Adaptive centralized/decentralized control and
identification of 1-d heterogeneous vehicular platoons based on constant time
headway policy,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 10, pp. 3376–3386,
2018 (Cited in page 8).

[38] H. Chehardoli and A. Ghasemi, “Formation control of longitudinal vehicular
platoons under generic network topology with heterogeneous time delays,” J. Vib.
Control, vol. 25, no. 3, pp. 655–665, 2019 (Cited in pages 8, 19, 54).

[39] S. Chen, H. Wen, J. Wu, W. Lei, W. Hou, W. Liu, A. Xu, and Y. Jiang, “Internet
of Things Based Smart Grids Supported by Intelligent Edge Computing,” IEEE
Access, vol. 7, pp. 74 089–74 102, 2019 (Cited in page 5).

[40] J. Cheng, M. Pavone, S. Katti, S. Chinchali, and A. Tang, “Data Sharing and
Compression for Cooperative Networked Control,” in Proc. NeurIPS, vol. 34,
Curran Associates, Inc., 2021, pp. 5947–5958 (Cited in page 6).

[41] M. Cheng, C. Yin, J. Zhang, S. Nazarian, J. Deshmukh, and P. Bogdan, “A
General Trust Framework for Multi-Agent Systems,” in Proc. AAMAS, May 2021,
pp. 332–340 (Cited in page 15).

References 135

[42] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament, E.
Cidon, S. Katti, and M. Pavone, “Network offloading policies for cloud robotics:
A learning-based approach,” Auton. Robot, vol. 45, no. 7, pp. 997–1012, Oct. 2021
(Cited in pages 6, 7).

[43] A. Chiuso, N. Laurenti, L. Schenato, and A. Zanella, “LQG cheap control subject
to packet loss and SNR limitations,” in Proc. ECC, Jul. 2013, pp. 2374–2379 (Cited

in page 8).

[44] E. Clark, S. L. Brunton, and J. N. Kutz, “Multi-Fidelity Sensor Selection: Greedy
Algorithms to Place Cheap and Expensive Sensors With Cost Constraints,” IEEE
Sensors J., vol. 21, no. 1, pp. 600–611, Jan. 2021 (Cited in page 4).

[45] L. Damonte, G. Como, and F. Fagnani, “Systemic risk and network intervention,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 2856–2861, 2020, 21st IFAC World Congress
(Cited in page 75).

[46] C. Davis, “All convex invariant functions of Hermitian matrices,” Archiv der
Mathematik, vol. 8, no. 4, pp. 276–278, 1957 (Cited in page 68).

[47] T. Devos, M. Kirchner, J. Croes, W. Desmet, and F. Naets, “Sensor selection and
state estimation for unobservable and non-linear system models,” Sensors, vol. 21,
no. 22, 2021 (Cited in page 3).

[48] S. Dezfulian, Y. Ghaedsharaf, and N. Motee, “On performance of time-delay linear
consensus networks with directed interconnection topologies,” in Proc. ACC, 2018,
pp. 4177–4182 (Cited in pages 9, 19, 54).

[49] S. M. Dibaji and H. Ishii, “Consensus of second-order multi-agent systems in the
presence of locally bounded faults,” Syst. Control. Lett., vol. 79, pp. 23–29, 2015
(Cited in page 14).

[50] S. M. Dibaji, M. Safi, and H. Ishii, “Resilient distributed averaging,” in Proc.
ACC, 2019, pp. 96–101 (Cited in pages 22, 78, 93–96).

[51] F. Dörfler, M. R. Jovanović, M. Chertkov, and F. Bullo, “Sparsity-promoting
optimal wide-area control of power networks,” IEEE Trans. Power Syst., vol. 29,
no. 5, pp. 2281–2291, 2014 (Cited in page 55).

[52] W. Fang, Y. Zhang, B. Yu, and S. Liu, “FPGA-based ORB feature extraction for
real-time visual SLAM,” in Proc. ICFPT, Dec. 2017, pp. 275–278 (Cited in page 5).

[53] M. Fardad, F. Lin, and M. R. Jovanović, “Design of optimal sparse interconnection
graphs for synchronization of oscillator networks,” IEEE Trans. Autom. Control,
vol. 59, no. 9, pp. 2457–2462, 2014 (Cited in page 10).

136 References

[54] M. Fardad, M. R. Jovanovic, and B. Bamieh, “Frequency analysis and norms
of distributed spatially periodic systems,” IEEE Trans. Autom. Control, vol. 53,
no. 10, pp. 2266–2279, 2008 (Cited in page 9).

[55] M. Fardad and M. R. Jovanović, “On the design of optimal structured and sparse
feedback gains via sequential convex programming,” in Proc. ACC, 2014, pp. 2426–
2431 (Cited in page 9).

[56] M. Fardad, F. Lin, and M. R. Jovanović, “On the optimal design of structured
feedback gains for interconnected systems,” in Proc. IEEE CDC & Chin. Control
Conf., 2009, pp. 978–983 (Cited in page 9).

[57] A. Forootani, R. Iervolino, M. Tipaldi, and S. Dey, “Transmission scheduling for
multi-process multi-sensor remote estimation via approximate dynamic program-
ming,” Automatica, vol. 136, p. 110 061, 2022 (Cited in page 5).

[58] M. Franceschelli, A. Giua, and A. Pisano, “Finite-Time Consensus on the Median
Value With Robustness Properties,” IEEE Trans. Autom. Contr., vol. 62, no. 4,
pp. 1652–1667, Apr. 2017 (Cited in page 14).

[59] N. E. Friedkin and E. C. Johnsen, “Social influence and opinions,” J. Math. Sociol.,
vol. 15, no. 3-4, pp. 193–206, 1990. eprint: https://doi.org/10.1080/0022250X.

1990.9990069 (Cited in pages 75, 79).

[60] M. I. Friswell, “The derivatives of repeated eigenvalues and their associated
eigenvectors,” J. Vib. Acoust., vol. 118, no. 3, pp. 390–397, 1996. eprint: https:

//asmedigitalcollection.asme.org/vibrationacoustics/article- pdf/

118/3/390/5625239/390_1.pdf (Cited in page 68).

[61] F. Gama, Q. Li, E. Tolstaya, A. Prorok, and A. Ribeiro, “Synthesizing decentralized
controllers with graph neural networks and imitation learning,” IEEE Trans. Signal
Process., vol. 70, pp. 1932–1946, 2022 (Cited in page 9).

[62] F. Gama and S. Sojoudi, “Distributed linear-quadratic control with graph neural
networks,” Signal Processing, vol. 196, p. 108 506, 2022 (Cited in page 9).

[63] E. Garcia, Y. Cao, and D. W. Casbeer, “Periodic event-triggered synchronization
of linear multi-agent systems with communication delays,” IEEE Trans. Autom.
Control, vol. 62, no. 1, pp. 366–371, 2016 (Cited in pages 19, 55).

[64] B. Ghosh, S. Chinchali, and P. S. Duggirala, “Interpretable Trade-offs Between
Robot Task Accuracy and Compute Efficiency,” in Proc. IEEE/RSJ IROS, Sep.
2021, pp. 5364–5371 (Cited in pages 6, 7).

https://doi.org/10.1080/0022250X.1990.9990069
https://doi.org/10.1080/0022250X.1990.9990069
https://asmedigitalcollection.asme.org/vibrationacoustics/article-pdf/118/3/390/5625239/390_1.pdf
https://asmedigitalcollection.asme.org/vibrationacoustics/article-pdf/118/3/390/5625239/390_1.pdf
https://asmedigitalcollection.asme.org/vibrationacoustics/article-pdf/118/3/390/5625239/390_1.pdf

References 137

[65] M. A. Gomez, A. V. Egorov, S. Mondié, and W. Michiels, “Optimization of the
H2 norm for single-delay systems, with application to control design and model
approximation,” IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 804–811, 2019
(Cited in pages 54, 68).

[66] R. M. Gray, “Toeplitz and circulant matrices: A review,” Found. Trends Commun.
Inf. Theory, vol. 2, no. 3, pp. 155–239, 2006 (Cited in pages 66, 71).

[67] S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, A. B. Yu, A. E. Kahn, J. D.
Medaglia, J. M. Vettel, M. B. Miller, S. T. Grafton, et al., “Controllability of
structural brain networks,” Nature communications, vol. 6, no. 1, pp. 1–10, 2015
(Cited in page 89).

[68] S. Gupta, R. Kambli, S. Wagh, and F. Kazi, “Support-vector-machine-based
proactive cascade prediction in smart grid using probabilistic framework,” IEEE
Trans. Ind. Electron., vol. 62, no. 4, pp. 2478–2486, 2015 (Cited in page 73).

[69] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic sensor
selection algorithm with applications in sensor scheduling and sensor coverage,”
Automatica, vol. 42, no. 2, pp. 251–260, Feb. 2006 (Cited in page 3).

[70] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
Second. Cambridge University Press, 2004 (Cited in pages 26, 29, 32).

[71] S. Hassan-Moghaddam and M. R. Jovanović, “Topology design for stochastically-
forced consensus networks,” IEEE Control Netw. Syst., vol. 5, no. 3, pp. 1075–1086,
2018 (Cited in page 10).

[72] C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for wireless sensor
networks with outage constraint,” IEEE Trans. Commun. Lett., vol. 3, no. 2,
pp. 209–212, 2014 (Cited in page 73).

[73] K. Imagane, K. Kanai, J. Katto, and T. Tsuda, “Evaluation and analysis of system
latency of edge computing for multimedia data processing,” in Proc. IEEE Global
Conf. Consumer Electron., 2016, pp. 1–2 (Cited in page 6).

[74] H. Jaleel, W. Abbas, and J. S. Shamma, “Robustness Of Stochastic Learning
Dynamics To Player Heterogeneity In Games,” in Proc. IEEE CDC, Dec. 2019,
pp. 5002–5007 (Cited in page 15).

[75] S. Jawaid and S. Smith, “Submodularity and greedy algorithms in sensor scheduling
for linear dynamical systems,” Automatica, vol. 61, pp. 282–288, 2015 (Cited in

page 5).

138 References

[76] M. Jilg, J. Tonne, and O. Stursberg, “Design of distributed H2-optimized con-
trollers considering stochastic communication link failures,” in Proc. ACC, 2015,
pp. 3540–3545 (Cited in page 9).

[77] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans.
Signal Process., vol. 57, no. 2, pp. 451–462, 2009 (Cited in pages 3, 34).

[78] M. R. Jovanović and N. K. Dhingra, “Controller architectures: Tradeoffs between
performance and structure,” Eur. J. Control, vol. 30, pp. 76–91, 2016 (Cited in

pages 8, 10, 18, 55).

[79] Z. Junhui, Y. Tao, G. Yi, W. Jiao, and F. Lei, “Power control algorithm of
cognitive radio based on non-cooperative game theory,” China Communications,
vol. 10, no. 11, pp. 143–154, 2013 (Cited in page 75).

[80] I. Kadota and E. Modiano, “Minimizing the Age of Information in Wireless
Networks with Stochastic Arrivals,” IEEE Trans. Mobile Comput., vol. 20, no. 3,
pp. 1173–1185, Mar. 2021 (Cited in page 4).

[81] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency Optimal
Task Assignment for Resource-constrained Mobile Computing,” IEEE Trans.
Mobile Comput., vol. 16, no. 11, pp. 3056–3069, Nov. 2017 (Cited in page 6).

[82] S. Kar, S. Aldosari, and J. M. F. Moura, “Topology for distributed inference on
graphs,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2609–2613, 2008 (Cited in

page 90).

[83] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” Int. J. Robot. Research, vol. 30, no. 7, pp. 846–894, 2011 (Cited in

page 26).

[84] H. K. Khalil, Nonlinear Systems (Pearson Education). Prentice Hall, 2002 (Cited

in page 112).

[85] M. F. Khan, M. Bibi, F. Aadil, and J.-W. Lee, “Adaptive Node Clustering for
Underwater Sensor Networks,” Sensors, vol. 21, no. 13, p. 4514, Jun. 2021 (Cited

in page 4).

[86] M. J. Khojasteh, A. Khina, M. Franceschetti, and T. Javidi, “Learning-Based
Attacks in Cyber-Physical Systems,” IEEE Control Netw. Syst., vol. 8, no. 1,
pp. 437–449, Mar. 2021 (Cited in page 15).

References 139

[87] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez,
“Tutorial on dynamic average consensus: The problem, its applications, and the
algorithms,” IEEE Control Syst. Mag., vol. 39, no. 3, pp. 40–72, 2019 (Cited in

page 74).

[88] R. Kieckhafer and M. Azadmanesh, “Reaching approximate agreement with mixed-
mode faults,” IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 1, pp. 53–63, 1994
(Cited in page 13).

[89] M. Klügel, M. H. Mamduhi, S. Hirche, and W. Kellerer, “AoI-Penalty Minimization
for Networked Control Systems with Packet Loss,” in Proc. IEEE INFOCOM
WKSHPS, Apr. 2019, pp. 189–196 (Cited in page 5).

[90] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “The Cost of Delay in
Status Updates and Their Value: Non-Linear Ageing,” IEEE Trans. Commun.,
vol. 68, no. 8, pp. 4905–4918, Aug. 2020 (Cited in page 5).

[91] W. W. Kywe, D. Fujiwara, and K. Murakami, “Scheduling of image processing
using anytime algorithm for real-time system,” in 18th International Conf. on
Pattern Recognition (ICPR’06), vol. 3, 2006, pp. 1095–1098 (Cited in page 26).

[92] U. Küchler and B. Mensch, “Langevins stochastic differential equation extended
by a time-delayed term,” Stochastics and Stochastic Reports, vol. 40, no. 1-2,
pp. 23–42, 1992. eprint: https://doi.org/10.1080/17442509208833780 (Cited

in page 61).

[93] J. Le Ny, E. Feron, and M. A. Dahleh, “Scheduling continuous-time kalman filters,”
IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1381–1394, 2011 (Cited in page 3).

[94] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic
consensus in robust networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 4,
pp. 766–781, 2013 (Cited in pages 13, 22, 74, 79, 93–96).

[95] A. S. Leong, S. Dey, and D. E. Quevedo, “Sensor scheduling in variance based
event triggered estimation with packet drops,” IEEE Trans. Autom. Control,
vol. 62, no. 4, pp. 1880–1895, 2017 (Cited in page 5).

[96] F. Li, M. C. De Oliveira, and R. E. Skelton, “Integrating Information Architecture
and Control or Estimation Design,” SICE JCMSI, vol. 1, no. 2, pp. 120–128, Mar.
2008 (Cited in pages 3, 34).

https://doi.org/10.1080/17442509208833780

140 References

[97] F. Li, B. R. Upadhyaya, and S. R. P. Perillo, “Fault Diagnosis of Helical Coil
Steam Generator Systems of an Integral Pressurized Water Reactor Using Optimal
Sensor Selection,” IEEE Trans. Nucl. Sci., vol. 59, no. 2, pp. 403–410, Apr. 2012
(Cited in page 4).

[98] H. Li and Y. Shi, “Network-Based Predictive Control for Constrained Nonlinear
Systems With Two-Channel Packet Dropouts,” IEEE Trans. Ind. Electron., vol. 61,
no. 3, pp. 1574–1582, Mar. 2014 (Cited in page 8).

[99] L. Li, C. Langbort, and J. Shamma, “An LP Approach for Solving Two-Player
Zero-Sum Repeated Bayesian Games,” IEEE Trans. Automat. Contr., vol. 64,
no. 9, pp. 3716–3731, Sep. 2019 (Cited in pages 15, 78).

[100] L. Li, C. Langbort, and J. Shamma, “An lp approach for solving two-player
zero-sum repeated bayesian games,” IEEE Trans. Autom. Control, vol. 64, no. 9,
pp. 3716–3731, 2019 (Cited in page 97).

[101] L. Li and J. S. Shamma, “Efficient Strategy Computation in Zero-Sum Asymmetric
Information Repeated Games,” IEEE Trans. Automat. Contr., vol. 65, no. 7,
pp. 2785–2800, Jul. 2020 (Cited in pages 15, 78).

[102] L. Li and J. S. Shamma, “Efficient strategy computation in zero-sum asymmetric
information repeated games,” IEEE Trans. Autom. Control, vol. 65, no. 7, pp. 2785–
2800, 2020 (Cited in page 97).

[103] N. Li and J. R. Marden, “Designing games for distributed optimization,” IEEE J.
Sel. Topics Signal Process., vol. 7, no. 2, pp. 230–242, 2013 (Cited in page 75).

[104] S. Li, Z. Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A Fast and Energy-
Efficient SNN Processor With Adaptive Clock/Event-Driven Computation Scheme
and Online Learning,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 4,
pp. 1543–1552, Apr. 2021 (Cited in page 5).

[105] F. Lian, A. Chakrabortty, and A. Duel-Hallen, “Game-theoretic multi-agent
control and network cost allocation under communication constraints,” IEEE J.
Sel. Areas Commun., vol. 35, no. 2, pp. 330–340, 2017 (Cited in page 55).

[106] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. N. Xiong, and J. Lloret Mauri, “A
Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge
Computing and Cloud Computing,” IEEE Trans. Ind. Informat., vol. 15, no. 7,
pp. 4254–4265, Jul. 2019 (Cited in page 6).

References 141

[107] F. Lin, M. Fardad, and M. R. Jovanovic, “Augmented lagrangian approach to
design of structured optimal state feedback gains,” IEEE Trans. Autom. Control,
vol. 56, no. 12, pp. 2923–2929, 2011 (Cited in page 9).

[108] F. Lin, M. Fardad, and M. R. Jovanovic, “Optimal control of vehicular formations
with nearest neighbor interactions,” IEEE Trans. Autom. Control, vol. 57, no. 9,
pp. 2203–2218, 2011 (Cited in page 8).

[109] F. Lin, M. Fardad, and M. R. Jovanović, “Design of optimal sparse feedback gains
via the alternating direction method of multipliers,” IEEE Trans. Autom. Control,
vol. 58, no. 9, pp. 2426–2431, 2013 (Cited in pages 10, 55).

[110] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state
estimation in electric power grids,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1,
2011 (Cited in page 12).

[111] M. C. Lucic, H. Ghazzai, A. Alsharoa, and Y. Massoud, “A Latency-Aware Task
Offloading in Mobile Edge Computing Network for Distributed Elevated LiDAR,”
in Proc. IEEE ISCAS, Oct. 2020, pp. 1–5 (Cited in page 6).

[112] N. A. Lynch, Distributed algorithms. San Mateo, CA, USA: Elsevier, 1996 (Cited

in page 12).

[113] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-Efficient
Admission of Delay-Sensitive Tasks for Mobile Edge Computing,” IEEE Trans.
Commun., vol. 66, no. 6, pp. 2603–2616, Jun. 2018 (Cited in page 6).

[114] J. Maestre, D. M. de la Peña, A. J. Losada, E. A. Durán, and E. Camacho, “An
application of cooperative game theory to distributed control,” Proc. IFAC World
Congress, vol. 44, no. 1, pp. 9121–9126, 2011, 18th IFAC World Congress (Cited in

page 10).

[115] D. Maity, D. Hartman, and J. S. Baras, “Sensor scheduling for linear systems: A
covariance tracking approach,” Automatica, vol. 136, p. 110 078, Feb. 2022 (Cited

in page 5).

[116] L. Mao, L. Jackson, and B. Davies, “Effectiveness of a Novel Sensor Selection
Algorithm in PEM Fuel Cell On-Line Diagnosis,” IEEE Trans. Ind. Electron.,
vol. 65, no. 9, pp. 7301–7310, Sep. 2018 (Cited in page 4).

[117] J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control and potential
games,” IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), vol. 39, no. 6,
pp. 1393–1407, 2009 (Cited in pages 75, 79).

142 References

[118] J. R. Marden and J. S. Shamma, “Chapter 16 - game theory and distributed
control,” in Handbook of Game Theory with Economic Applications, H. P. Young
and S. Zamir, Eds., vol. 4, Elsevier, 2015, pp. 861–899 (Cited in page 75).

[119] E. Masero, J. M. Maestre, A. Ferramosca, M. Francisco, and E. F. Camacho,
“Robust coalitional model predictive control with predicted topology transitions,”
IEEE Control Netw. Syst., vol. 8, no. 4, pp. 1869–1880, 2021 (Cited in page 10).

[120] P. R. Massenio, G. Rizzello, D. Naso, F. L. Lewis, and A. Davoudi, “Data-driven
optimal structured control for unknown symmetric systems,” in Proc. IEEE CASE,
2020, pp. 179–184 (Cited in page 9).

[121] N. Matni, “Communication delay co-design in H2-distributed control using atomic
norm minimization,” IEEE Control Netw. Syst., vol. 4, no. 2, pp. 267–278, 2017
(Cited in page 10).

[122] N. Matni and V. Chandrasekaran, “Regularization for design,” IEEE Trans.
Autom. Control, vol. 61, no. 12, pp. 3991–4006, 2016 (Cited in pages 10, 55).

[123] H. Medeiros, J. Park, and A. Kak, “Distributed object tracking using a cluster-
based kalman filter in wireless camera networks,” IEEE Journal of Selected Topics
in Signal Processing, vol. 2, no. 4, pp. 448–463, 2008 (Cited in page 50).

[124] W. Michiels, G. Hilhorst, G. Pipeleers, and J. Swevers, “Model order reduction
for time-delay systems, with application to fixed-order H2 optimal controller
design,” in Recent Results on Time-Delay Systems: Analysis and Control. Springer
International Publishing, 2016, pp. 45–66 (Cited in page 54).

[125] D. G. Mikulski, F. L. Lewis, E. Y. Gu, and G. R. Hudas, “Trust method for
multi-agent consensus,” in Unmanned Systems Technology XIV, R. E. Karlsen,
D. W. Gage, C. M. Shoemaker, and G. R. Gerhart, Eds., International Society for
Optics and Photonics, vol. 8387, 2012, pp. 146 –159 (Cited in page 14).

[126] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in
ECCV, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., Cham: Springer
International Publishing, 2020, pp. 405–421 (Cited in page 5).

[127] R. Mitchell, J. Blumenkamp, and A. Prorok, “Gaussian Process Based Message
Filtering for Robust Multi-Agent Cooperation in the Presence of Adversarial
Communication,” arXiv e-prints, no. arXiv:2012.00508, Dec. 2020 (Cited in page 15).

References 143

[128] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Sinopoli,
“Cyber–physical security of a smart grid infrastructure,” Proceedings of the IEEE,
vol. 100, no. 1, pp. 195–209, 2012 (Cited in page 12).

[129] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in 2009 47th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), 2009,
pp. 911–918 (Cited in page 12).

[130] R. Moarref, M. Fardad, and M. R. Jovanovic, “Perturbation analysis of eigenvalues
of a class of self-adjoint operators,” in Proc. ACC, 2008, pp. 955–960 (Cited in

page 9).

[131] M. M. Morato and J. E. Normey-Rico, “A novel unified method for time-varying
dead-time compensation,” ISA Trans., vol. 108, pp. 78–95, 2021 (Cited in page 54).

[132] F. J. Muros, J. M. Maestre, E. Algaba, T. Alamo, and E. F. Camacho, “Networked
control design for coalitional schemes using game-theoretic methods,” Automatica,
vol. 78, pp. 320–332, 2017 (Cited in pages 10, 75).

[133] F. J. Muros, J. M. Maestre, C. Ocampo-Martinez, E. Algaba, and E. F. Camacho,
“A game theoretical randomized method for large-scale systems partitioning,”
IEEE Access, vol. 6, pp. 42 245–42 263, 2018 (Cited in page 10).

[134] N. Muslim, S. Islam, and J.-C. Grégoire, “Reinforcement Learning Based Offloading
Framework for Computation Service in the Edge Cloud and Core Cloud,” JAIT,
vol. 13, no. 2, 2022 (Cited in page 6).

[135] U. Münz, A. Papachristodoulou, and F. Allgöwer, “Delay robustness in consensus
problems,” Automatica, vol. 46, no. 8, pp. 1252–1265, 2010 (Cited in pages 9, 19,
54).

[136] G. N. Nair and R. J. Evans, “Stabilizability of Stochastic Linear Systems with
Finite Feedback Data Rates,” SIAM J. Control Optim., vol. 43, no. 2, pp. 413–436,
Jan. 2004 (Cited in page 8).

[137] M. Nakanoya, S. Chinchali, A. Anemogiannis, A. Datta, S. Katti, and M. Pavone,
“Co-Design of Communication and Machine Inference for Cloud Robotics,” in
Robotics: Science and Systems, Robotics: Science and Systems Foundation, Jul.
2021 (Cited in page 6).

[138] R. B. Nelson, “Simplified calculation of eigenvector derivatives,” AIAA J., vol. 14,
no. 9, pp. 1201–1205, 1976. eprint: https://doi.org/10.2514/3.7211 (Cited in

page 68).

https://doi.org/10.2514/3.7211

144 References

[139] E. Nozari, F. Pasqualetti, and J. Cortés, “Heterogeneity of central nodes explains
the benefits of time-varying control scheduling in complex dynamical networks,” J.
Complex Netw., vol. 7, no. 5, pp. 659–701, Feb. 2019. eprint: https://academic.

oup.com/comnet/article- pdf/7/5/659/30157079/cnz001.pdf (Cited in

page 89).

[140] E. Nozari, F. Pasqualetti, and J. Cortés, “Time-invariant versus time-varying
actuator scheduling in complex networks,” in Proc. ACC, 2017, pp. 4995–5000
(Cited in page 3).

[141] F. de Oliveira Souza, L. A. B. Torres, L. A. Mozelli, and A. A. Neto, “Stability
and formation error of homogeneous vehicular platoons with communication time
delays,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 10, pp. 4338–4349, 2020
(Cited in page 54).

[142] T. Z. Ornee and Y. Sun, “Sampling and Remote Estimation for the Ornstein-
Uhlenbeck Process Through Queues: Age of Information and Beyond,” IEEE/ACM
Trans. Netw., vol. 29, no. 5, pp. 1962–1975, Oct. 2021 (Cited in page 5).

[143] R. Paluch, L. G. Gajewski, J. A. Hołyst, and B. K. Szymanski, “Optimizing
sensors placement in complex networks for localization of hidden signal source:
A review,” Future Gener. Comput. Syst., vol. 112, pp. 1070–1092, 2020 (Cited in

page 90).

[144] S. E. Parsegov, A. V. Proskurnikov, R. Tempo, and N. E. Friedkin, “Novel
multidimensional models of opinion dynamics in social networks,” IEEE Trans.
Autom. Control, vol. 62, no. 5, pp. 2270–2285, 2017 (Cited in pages 81, 88, 128).

[145] F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in unreliable
networks: A system theoretic approach,” IEEE Trans. Autom. Control, vol. 57,
no. 1, pp. 90–104, 2012 (Cited in page 14).

[146] M. Pezzutto, L. Schenato, and S. Dey, “Transmission power allocation for re-
mote estimation with multi-packet reception capabilities,” Automatica, vol. 140,
p. 110 257, 2022 (Cited in page 5).

[147] M. Pezzutto, F. Tramarin, S. Dey, and L. Schenato, “Adaptive transmission
rate for LQG control over Wi-Fi: A cross-layer approach,” Automatica, vol. 119,
p. 109 092, Sep. 2020 (Cited in page 8).

[148] E. Phaisangittisagul and H. T. Nagle, “Sensor Selection for Machine Olfaction
Based on Transient Feature Extraction,” IEEE Trans. Instrum. Meas., vol. 57,
no. 2, pp. 369–378, Feb. 2008 (Cited in page 4).

https://academic.oup.com/comnet/article-pdf/7/5/659/30157079/cnz001.pdf
https://academic.oup.com/comnet/article-pdf/7/5/659/30157079/cnz001.pdf

References 145

[149] U. Prells and M. I. Friswell, “Calculating derivatives of repeated and nonrepeated
eigenvalues without explicit use of eigenvectors,” AIAA J., vol. 38, no. 8, pp. 1426–
1436, 2000. eprint: https://doi.org/10.2514/2.1119 (Cited in page 68).

[150] A. Prorok, M. Malencia, L. Carlone, G. S. Sukhatme, B. M. Sadler, and V. Kumar,
“Beyond Robustness: A Taxonomy of Approaches towards Resilient Multi-Robot
Systems,” arXiv e-prints, no. arXiv:2109.12343, Sep. 2021 (Cited in pages 15, 73).

[151] A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of
dynamic social networks. part i,” Annual Reviews in Control, vol. 43, pp. 65–79,
2017 (Cited in page 75).

[152] J. Qi, J. Wang, and K. Sun, “Efficient estimation of component interactions for
cascading failure analysis by em algorithm,” IEEE Trans. Power Syst., vol. 33,
no. 3, pp. 3153–3161, 2018 (Cited in page 73).

[153] M. A. Rahimian, A. Ajorlou, and A. G. Aghdam, “Characterization of link failures
in multi-agent systems under the agreement protocol,” in 2012 American Control
Conference (ACC), 2012, pp. 5258–5263 (Cited in page 12).

[154] M. Rahnamay-Naeini and M. M. Hayat, “Cascading failures in interdependent
infrastructures: An interdependent markov-chain approach,” IEEE Trans. Smart
Grid, vol. 7, no. 4, pp. 1997–2006, 2016 (Cited in page 73).

[155] M. M. Rana, L. Li, and S. W. Su, “Cyber attack protection and control in
microgrids using channel code and semidefinite programming,” in Proc. IEEE
PESGM, 2016, pp. 1–5 (Cited in page 73).

[156] S. Raskin. “Energy secretary says enemies are capable of shutting down us power
grid.” N. Y. Post, Ed. (web). () (Cited in page 73).

[157] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv
e-prints, arXiv:1804.02767, arXiv:1804.02767, 2018. arXiv: 1804.02767 [cs.CV]

(Cited in page 26).

[158] H. Ren, G. Zong, L. Hou, and Y. Yang, “Finite-time resilient decentralized control
for interconnected impulsive switched systems with neutral delay,” ISA Trans.,
vol. 67, pp. 19–29, 2017 (Cited in pages 19, 54).

[159] W. Ren and R. Beard, “Consensus seeking in multiagent systems under dynamically
changing interaction topologies,” IEEE Trans. Autom. Control, vol. 50, no. 5,
pp. 655–661, 2005 (Cited in pages 12, 97).

https://doi.org/10.2514/2.1119
https://nypost.com/2021/06/06/energy-secretary-enemies-are-capable-of-shutting-down-power-grid/
https://arxiv.org/abs/1804.02767

146 References

[160] O. Rippel and L. Bourdev, “Real-time adaptive image compression,” in Proc. of
the 34th International Conf. on Machine Learning - Volume 70, ser. ICML’17,
Sydney, NSW, Australia: JMLR.org, 2017, 2922–2930 (Cited in pages 26, 36).

[161] G. Rudolph, “Convergence rates of evolutionary algorithms for quadratic convex
functions with rank-deficient hessian,” in Adaptive and Natural Computing Al-
gorithms, M. Tomassini, A. Antonioni, F. Daolio, and P. Buesser, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 151–160 (Cited in page 104).

[162] C. A. Rösinger and C. W. Scherer, “A flexible synthesis framework of structured
controllers for networked systems,” IEEE Control Netw. Syst., vol. 7, no. 1, pp. 6–
18, 2020 (Cited in page 9).

[163] J. Rüth, R. Glebke, T. Ulmen, and K. Wehrle, “Demo abstract: Towards in-
network processing for low-latency industrial control,” in Proc. IEEE INFOCOM
WKSHPS, Apr. 2018, pp. 1–2 (Cited in page 6).

[164] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed federated
learning for ultra-reliable low-latency vehicular communications,” IEEE Trans.
Commun., vol. 68, no. 2, pp. 1146–1159, 2020 (Cited in page 74).

[165] Z. A. Z. Sanai Dashti, C. Seatzu, and M. Franceschelli, “Dynamic Consensus on
the Median Value in Open Multi-Agent Systems,” in Proc. IEEE CDC, Dec. 2019,
pp. 3691–3697 (Cited in page 14).

[166] L. Schenato, “Optimal estimation in networked control systems subject to random
delay and packet drop,” IEEE Trans. on Automatic Control, vol. 53, pp. 1311–1317,
2008 (Cited in pages 40, 107).

[167] L. Schenato, “Optimal sensor fusion for distributed sensors subject to random
delay and packet loss,” in Proc. IEEE CDC, 2007, pp. 1547–1552 (Cited in pages 32,
41, 106).

[168] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foun-
dations of Control and Estimation Over Lossy Networks,” Proc. IEEE, vol. 95,
no. 1, pp. 163–187, Jan. 2007 (Cited in page 8).

[169] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed lms for consensus-
based in-network adaptive processing,” IEEE Trans. Signal Process., vol. 57, no. 6,
pp. 2365–2382, 2009 (Cited in page 74).

[170] S. Schön, C. Brenner, H. Alkhatib, et al., “Integrity and Collaboration in Dynamic
Sensor Networks,” Sensors, vol. 18, no. 7, p. 2400, Jul. 2018 (Cited in page 4).

References 147

[171] E. Shafieepoorfard and M. Raginsky, “Rational inattention in scalar LQG control,”
in Proc. IEEE CDC, Dec. 2013, pp. 5733–5739 (Cited in page 8).

[172] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in dynamic
environments using mirror descent,” IEEE Transactions on Automatic Control,
vol. 63, no. 3, pp. 714–725, 2018 (Cited in page 74).

[173] Y. Shang, “Median-Based Resilient Consensus Over Time-Varying Random Net-
works,” IEEE Trans. Circuits Syst. II, vol. 69, no. 3, pp. 1203–1207, Mar. 2022
(Cited in page 14).

[174] Y. Shang, “Resilient consensus in multi-agent systems with state constraints,”
Automatica, vol. 122, p. 109 288, 2020 (Cited in page 14).

[175] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S.
Sastry, “Kalman filtering with intermittent observations,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1453–1464, 2004 (Cited in pages 8, 32, 41).

[176] P. Y. Sohouenou, P. Christidis, A. Christodoulou, L. A. Neves, and D. L. Presti,
“Using a random road graph model to understand road networks robustness to
link failures,” Int. J. Crit. Infrastruct. Prot., vol. 29, p. 100 353, 2020 (Cited in

pages 12, 97).

[177] D. Soudbakhsh, A. Chakrabortty, and A. M. Annaswamy, “A delay-aware cyber-
physical architecture for wide-area control of power systems,” Control Eng. Prac-
tice, vol. 60, pp. 171–182, 2017 (Cited in pages 19, 54).

[178] M. V. Srighakollapu, R. K. Kalaimani, and R. Pasumarthy, “Optimizing network
topology for average controllability,” Syst. Control Lett., vol. 158, p. 105 061, 2021
(Cited in page 89).

[179] L. Su and N. Vaidya, “Multi-agent optimization in the presence of byzantine
adversaries: Fundamental limits,” in 2016 American Control Conference (ACC),
2016, pp. 7183–7188 (Cited in page 12).

[180] L. Su and N. H. Vaidya, “Byzantine-resilient multiagent optimization,” IEEE
Trans. Autom. Control, vol. 66, no. 5, pp. 2227–2233, 2021 (Cited in page 15).

[181] T. Summers and J. Ruths, “Performance bounds for optimal feedback control in
networks,” in Proc. ACC, 2018, pp. 203–209 (Cited in page 3).

[182] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and controlla-
bility in complex dynamical networks,” IEEE Control Netw. Syst., vol. 3, no. 1,
pp. 91–101, 2016 (Cited in page 3).

148 References

[183] S. Sun, H. Zhang, W. Li, and Y. Wang, “Time-varying delay-dependent finite-time
boundedness with H∞ performance for markovian jump neural networks with
state and input constraints,” Neurocomputing, vol. 423, pp. 419–426, 2021 (Cited

in page 54).

[184] Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener Process for Remote
Estimation Over a Channel With Random Delay,” IEEE Trans. Inf. Theory,
vol. 66, no. 2, pp. 1118–1135, Feb. 2020 (Cited in page 5).

[185] S. Sundaram and B. Gharesifard, “Consensus-based distributed optimization with
malicious nodes,” in Proc. Allerton, 2015, pp. 244–249 (Cited in pages 12, 15, 94).

[186] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear
iterative strategies in the presence of malicious agents,” IEEE Trans. Autom.
Control, vol. 56, no. 7, pp. 1495–1508, 2011 (Cited in page 15).

[187] D. Swaroop and J. Hedrick, “String stability of interconnected systems,” IEEE
Trans. Autom. Control, vol. 41, no. 3, pp. 349–357, 1996 (Cited in page 9).

[188] T. Taami, S. Krug, and M. O’Nils, “Experimental Characterization of Latency in
Distributed IoT Systems with Cloud Fog Offloading,” in Proc. IEEE WFCS, May
2019, pp. 1–4 (Cited in page 6).

[189] R. Talak, S. Karaman, and E. Modiano, “Optimizing Information Freshness in
Wireless Networks Under General Interference Constraints,” IEEE/ACM Trans.
Netw., vol. 28, no. 1, pp. 15–28, Feb. 2020 (Cited in page 4).

[190] R. Talak and E. H. Modiano, “Age-Delay Tradeoffs in Queueing Systems,” IEEE
Trans. Inf. Theory, vol. 67, no. 3, pp. 1743–1758, Mar. 2021 (Cited in page 4).

[191] T. Tanaka and H. Sandberg, “SDP-based joint sensor and controller design
for information-regularized optimal LQG control,” in Proc. IEEE CDC, 2015,
pp. 4486–4491 (Cited in page 4).

[192] S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE
Trans. Autom. Control, vol. 49, no. 7, pp. 1056–1068, Jul. 2004 (Cited in page 8).

[193] A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, and S. S. Sastry, “Cyber
security analysis of state estimators in electric power systems,” in 49th IEEE
Conference on Decision and Control (CDC), 2010, pp. 5991–5998 (Cited in page 12).

[194] Y. Tian, P. Jia, A. MirTabatabaei, L. Wang, N. E. Friedkin, and F. Bullo, “Social
power evolution in influence networks with stubborn individuals,” IEEE Trans.
Autom. Control, vol. 67, no. 2, pp. 574–588, 2022 (Cited in page 87).

References 149

[195] V. Tripathi, L. Ballotta, L. Carlone, and E. Modiano, “Computation and commu-
nication co-design for real-time monitoring and control in multi-agent systems,”
in Proc. WiOpt, 2021, pp. 1–8 (Cited in page 49).

[196] V. Tripathi and E. Modiano, “An Online Learning Approach to Optimizing Time-
Varying Costs of AoI,” in Proc. ACM MOBIHOC, Jul. 2021, pp. 241–250 (Cited in

page 5).

[197] V. Tripathi, R. Talak, and E. Modiano, “Age Optimal Information Gathering and
Dissemination on Graphs,” IEEE Trans. Mobile Comput., pp. 1–1, 2021 (Cited in

page 4).

[198] V. Tsiatsis, R. Kumar, and M. B. Srivastava, “Computation hierarchy for in-
network processing,” Mob. Netw. Appl., vol. 10, no. 4, pp. 505–518, 2005 (Cited in

page 6).

[199] V. Tzoumas, A. Jadbabaie, and G. Pappas, “Sensor placement for optimal kalman
filtering: Fundamental limits, submodularity, and algorithms,” in Proc. ACC, 2016
(Cited in page 3).

[200] V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Lqg control and sensing
co-design,” IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1468–1483, 2021 (Cited

in pages 4, 34, 44).

[201] J. Usevitch and D. Panagou, “Resilient leader-follower consensus to arbitrary
reference values in time-varying graphs,” IEEE Trans. Autom. Control, vol. 65,
no. 4, pp. 1755–1762, 2020 (Cited in page 14).

[202] M. E. Valcher, “Consensus in the presence of communication faults,” in 2019 18th
European Control Conference (ECC), 2019, pp. 1062–1067 (Cited in page 12).

[203] M. E. Valcher and G. Parlangeli, “On the effects of communication failures in a
multi-agent consensus network,” in Proc. ICSTCC, 2019, pp. 709–720 (Cited in

pages 12, 97).

[204] S. Vanka, V. Gupta, and M. Haenggi, “Power-delay analysis of consensus algo-
rithms on wireless networks with interference,” Int. J. Syst. Control Commun.,
vol. 2, no. 1-3, pp. 256–274, 2010. eprint: https://www.inderscienceonline.

com/doi/pdf/10.1504/IJSCC.2010.031166 (Cited in pages 19, 55, 56).

[205] S. Vanka, M. Haenggi, and V. Gupta, “Convergence speed of the consensus
algorithm with interference and sparse long-range connectivity,” IEEE J. Sel. Top.
Signal Process., vol. 5, no. 4, pp. 855–865, 2011 (Cited in pages 19, 55, 56).

https://www.inderscienceonline.com/doi/pdf/10.1504/IJSCC.2010.031166
https://www.inderscienceonline.com/doi/pdf/10.1504/IJSCC.2010.031166

150 References

[206] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
“When Edge Meets Learning: Adaptive Control for Resource-Constrained Dis-
tributed Machine Learning,” in Proc. IEEE INFOCOM, Apr. 2018, pp. 63–71
(Cited in page 5).

[207] Y. Wang, H. Ishii, F. Bonnet, and X. Défago, “Resilient consensus against mobile
malicious agents,” in Proc. IFAC World Congress, vol. 53, 2020, pp. 3409–3414
(Cited in pages 14, 78).

[208] Z. Wang, X. Li, and J. Lei, “Second moment boundedness of linear stochastic delay
differential equations,” Discrete Contin. Dyn. Syst. - B, vol. 19, no. 9, pp. 2963
–2991, 2014 (Cited in pages 62, 111).

[209] P. Warden and D. Situnayake, TinyML: Machine Learning with TensorFlow Lite
on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly Media, 2019 (Cited in

page 5).

[210] S. Wu, K. Ding, P. Cheng, and L. Shi, “Optimal scheduling of multiple sensors
over lossy and bandwidth limited channels,” IEEE Control Netw. Syst., vol. 7,
no. 3, pp. 1188–1200, 2020 (Cited in page 5).

[211] X. Wu and M. R. Jovanović, “Sparsity-promoting optimal control of systems
with symmetries, consensus and synchronization networks,” Syst. Control Lett.,
vol. 103, pp. 1–8, 2017 (Cited in page 10).

[212] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least-mean-
square deviation,” Journal of Parallel and Distributed Computing, vol. 67, no. 1,
pp. 33–46, 2007 (Cited in pages 11, 74).

[213] R. Xin, S. Pu, A. Nedić, and U. A. Khan, “A general framework for decentralized
optimization with first-order methods,” Proc. IEEE, vol. 108, no. 11, pp. 1869–
1889, 2020 (Cited in pages 74, 97).

[214] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (sdn) and
distributed denial of service (ddos) attacks in cloud computing environments:
A survey, some research issues, and challenges,” IEEE Commun. Surveys Tuts.,
vol. 18, no. 1, pp. 602–622, 2016 (Cited in pages 73, 74).

[215] R. D. Yates and S. K. Kaul, “The age of information: Real-time status updating
by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3, pp. 1807–1827, 2019
(Cited in page 4).

References 151

[216] A. Y. Yazıcıoǧlu, M. Egerstedt, and J. S. Shamma, “Formation of robust multi-
agent networks through self-organizing random regular graphs,” IEEE Trans.
Netw. Sci. Eng., vol. 2, no. 4, pp. 139–151, 2015 (Cited in pages 73, 90).

[217] Y. Ye, L. Shi, X. Chu, H. Zhang, and G. Lu, “On the outage performance of
swipt-based three-step two-way df relay networks,” IEEE Trans. Veh. Technol.,
vol. 68, no. 3, pp. 3016–3021, 2019 (Cited in page 73).

[218] M. Yemini, A. Nedi/’c, A. J. Goldsmith, and S. Gil, “Characterizing trust and
resilience in distributed consensus for cyberphysical systems,” IEEE Trans. Robot.,
vol. 38, no. 1, pp. 71–91, 2022 (Cited in pages 14, 78, 97).

[219] M. Yemini, A. Nedi/’c, A. J. Goldsmith, and S. Gil, “Resilience to malicious
activity in distributed optimization for cyberphysical systems,” in Proc. IEEE
CDC, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, Eds., (to appear, 2022 (Cited in page 15).

[220] S. Yu, Y. Chen, and S. Kar, “Dynamic Median Consensus Over Random Networks,”
in Proc. IEEE CDC, Dec. 2021, pp. 5695–5702 (Cited in page 14).

[221] D. Yue and Q.-L. Han, “Delayed feedback control of uncertain systems with
time-varying input delay,” Automatica, vol. 41, no. 2, pp. 233–240, 2005 (Cited in

page 19).

[222] G. Zardini, A. Censi, and E. Frazzoli, “Co-design of autonomous systems: From
hardware selection to control synthesis,” in Proc. ECC, 2021, pp. 682–689 (Cited

in page 4).

[223] G. Zardini, Z. Suter, A. Censi, and E. Frazzoli, “Task-driven modular co-design
of vehicle control systems,” arXiv e-prints, no. arXiv:2203.16640, 2022 (Cited in

page 4).

[224] Y. Zhai, Z.-W. Liu, M.-F. Ge, G. Wen, X. Yu, and Y. Qin, “Trusted-region
subsequence reduction for designing resilient consensus algorithms,” IEEE Trans.
Netw. Sci. Eng., vol. 8, no. 1, pp. 259–268, 2021 (Cited in page 14).

[225] H. Zhang and S. Sundaram, “A simple median-based resilient consensus algorithm,”
in Proc. Allerton, Oct. 2012, pp. 1734–1741 (Cited in page 14).

[226] J. Zhang and V. Varadharajan, “Wireless sensor network key management survey
and taxonomy,” J. Netw. Comput. Appl., vol. 33, no. 2, pp. 63–75, 2010 (Cited in

page 90).

[227] Y. Zhao, F. Pasqualetti, and J. Cortés, “Scheduling of control nodes for improved
network controllability,” in Proc. IEEE CDC, 2016, pp. 1859–1864 (Cited in page 5).

152 References

[228] B. Zhou and W. Saad, “Joint status sampling and updating for minimizing age
of information in the internet of things,” IEEE Trans. Commun., pp. 1–1, 2019
(Cited in page 4).

[229] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI Magazine,
vol. 17, no. 3, 1996 (Cited in pages 25, 26).

[230] D. M. Zoltowski, N. Dhingra, F. Lin, and M. R. Jovanović, “Sparsity-promoting
optimal control of spatially-invariant systems,” in Proc. ACC, 2014, pp. 1255–1260
(Cited in page 10).

[231] X. Zong, T. Li, G. Yin, L. Y. Wang, and J.-F. Zhang, “Stochastic consentability
of linear systems with time delays and multiplicative noises,” IEEE Trans. Autom.
Control, vol. 63, no. 4, pp. 1059–1074, 2018 (Cited in pages 9, 19).

[232] X. Zong, T. Li, and J.-F. Zhang, “Consensus conditions of continuous-time multi-
agent systems with time-delays and measurement noises,” Automatica, vol. 99,
pp. 412–419, 2019 (Cited in pages 9, 19).

	Abstract
	Contents
	Introduction
	Literature Review
	Sensing design
	Controller Architecture Design
	Resilient Control

	Novel Contribution
	Sensing design
	Controller Architecture Design
	Resilient Consensus

	Organization of the Thesis

	Sensing Design under Computation Latency
	System Model and Problem Formulation
	Anatomy of a Processing Network
	Optimal Estimation in Processing Networks

	Continuous-Time Analysis
	Sensitivity of Optimal Processing
	Homogeneous Network: Performance vs. Number of Sensors

	Latency-Aware Sensing Design
	Computation of Expected Steady-State Error Covariance
	Algorithms for Sensing Design

	Numerical Simulations
	Conclusion

	Controller Architecture Design under Communication Latency
	Problem Setup
	Continuous-time agent dynamics
	single integrator model
	double integrator model

	Discrete-Time Agent Dynamics
	single integrator model
	double integrator model

	Control Design
	General symmetric network topology

	The Centralized-Distributed Trade-off
	Ring Topology: Analytical Insight into the Trade-off

	Conclusion

	Resilient Consensus
	Setup and Problem Formulation
	malicious agents

	Resilient Average Consensus
	the consensus problem and game theoretic models
	Full Competition vs. Full Collaboration
	the truth lies in the middle
	FJ Dynamics vs. Attack Aggressiveness

	Numerical Experiments
	competition-collaboration trade-off: analytical insight

	The Role of Communication Network
	performance metrics
	Network Connectivity vs. Resilience

	Comparison with Existing Literature
	Conclusion

	Conclusion
	Proofs of Chapter 2
	Proof of Theorem 2.2.3
	Alternative Processing Models
	Proof of Proposition 2.2.6
	Sensor Fusion with Kalman Filter in Information Form and Packet Loss
	Proof of Theorem 2.3.3

	Proofs of Chapter 3
	Proof of Corollary 3.2.2
	Proof of Proposition 3.2.3
	reduced model of continuous-time double integrators
	stability conditions for discrete-time systems
	variance computation for discrete-time systems
	Proof of Proposition 3.4.1

	Proofs of Chapter 4
	Useful lemmas
	Proof of Proposition 4.2.3
	Proof of Theorem 4.2.5
	Computation of Matrix
	Proof of Proposition 4.2.10
	Proof of Proposition 4.2.11
	Proof of Proposition 4.2.12

	References

