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Editorial: Advances in additive manufacturing of ceramics 

Recently, additive manufacturing of ceramics has achieved the 
maturity to be transferred from scientific laboratories to industrial ap
plications. At the same time, research is progressing to expand the 
boundaries of this field into the territory of novel materials and 
applications. 

This feature issue addresses current progress in all aspects of additive 
manufacturing of ceramics, from parts design to feedstock selection, 
from technological development to characterization of printed compo
nents. It includes comprehensive reviews on the state of the art and 
future perspectives of additive manufacturing processes comprising 
thermoplastic feedstocks [1] as well as following the laser powder bed 
fusion route [2]. Technological developments that help expand the ca
pabilities of current processes are also presented, such as a device that 
allows for top-down vat-photopolymerization with viscous slurries [3] 
or a building platform actuated by an anthropomorphic robot that helps 
counteract gravity during the fabrication of cylindrical lattice structures 
by direct ink writing [4]. The advent of robotic arms into the additive 
manufacturing field expands the design space and can also lead to the 
development of hybrid additive-subtractive processes for complex 
components, such as ceramic parts with internal channel networks [5]. 
Machine development forms the basis for the multi-material vat-pho
topolymerization process featured in this issue, whose capabilities are 
demonstrated with the fabrication of a zirconia-alumina sandwich 
composite with outstanding biaxial strength [6]. 

Current technologies can also highly benefit from innovation in their 
feedstock materials that enhance their processability and final proper
ties. The addition of metal oxide nanoparticles to selective laser sinter
ing powder beds, for example, results in higher heat absorbance and 
improved densification of alumina parts [7]. For processes employing 
liquid feedstocks, the high particles’ dispersion and the stability of the 
ceramic suspensions are key aspects, which can be predicted by corre
lation to the zeta potential [8]; when such requirements are achieved for 
nanosized particles suspensions, they can be employed in volumetric 
additive manufacturing processed such as 2-photon-polymerization to 
produce ceramic structures with resolution in the sub-micrometer scale 
[9]. 

A proper combination of feedstock and process can be taken 
advantage of to produce unique properties and features: for instance, 
textured alumina ceramics with superior mechanical properties are 
fabricated by employing a platelet-based suspension that benefits from 
the stresses induced by the doctor blade and the immersing platform in a 
vat-photopolymerization process [10]. 

This feature issue also showcases some of the latest additions to the 
family of printable materials, including cermets [11] and 
ceramic-matrix-composites embedding metal-organic-frameworks [12]. 

The renewed interest in human space exploration fosters research on in 
situ resource utilization to support astronauts over the long term and 
reduce spacecraft payloads; in this framework, examples of additive 
manufacturing processes employing extraterrestrial material simulants, 
namely lunar and Mars regolith, are here included, with particular focus 
on the sintering process in simulated extraterrestrial atmosphere [13, 
14]. 

The assessment of the relationship between process, structure and 
properties finds space in several works featured in this issue. Process 
parameters need to be linked precisely to the material properties and 
geometry of choice; for instance, modelling the material extrusion of a 
reactive geopolymer composite opens up to the process of upscaling and 
employment in the construction field [15]. In the case of sintered ce
ramics, the object’s topology influences its final properties and the 
printing, debinding and sintering stages [16]. The digital design can be 
improved by models and simulations of the chosen process; for 
vat-photopolymerization, custom supports are added, and part orien
tation is optimized to minimize and counteract the scraping loads 
generated during the spreading of individual layers [17]. Custom 
functional geometries, such as fluctuating surface features and graded 
porosity profiles, can be systematically designed through numerical 
simulations of specific properties such as optimized fluid flow propa
gation [18]. 

The industry’s adoption of additive manufacturing processes runs 
through their incorporation into established post-processing protocols. 
The additive manufacturing of SiC parts provides an example: their 
fabrication has to be accompanied by specific sintering procedures, 
including liquid phase sintering, precursor infiltration, pyrolysis, and 
liquid silicon infiltration. The final density and strength of a part rely on 
successful processing after printing; thus, the whole process chain needs 
to be accounted for starting from the component design [19,20]. 

Validation of ceramic additive manufacturing processes for indus
trial applications has to be accompanied by a thorough characterization 
of their physical and functional properties. Different defect determina
tion methods are presented and compared here, from x-ray micro
tomography to less expensive mass and volume determinations that 
could be integrated into process chains [21]. The complexity of printed 
structures demands novel characterization methods and models; this 
issue features a novel approach for thermal conductivity estimation 
based on high resolution infrared thermography, which avoids using 
thermocouples that would be difficult to attach to 3D porous structures 
[22]. 

In summary, this collection encompasses research work that aims to 
improve the acceptance of existing technologies and develop novel 
technologies and materials for future applications. 
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