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UNIFORM BOUNDEDNESS FOR THE OPTIMAL CONTROLS OF A DISCONTINUOUS,
NON–CONVEX BOLZA PROBLEM ∗, ∗∗

PIERNICOLA BETTIOL 1 AND CARLO MARICONDA 2

Abstract. We consider a Bolza type optimal control problem of the form

min Jt(y, u) :=

∫ T

t

Λ(s, y(s), u(s)) ds + g(y(T ))

Subject to: 
y ∈W1,1([t, T ];Rn)

y′ = b(y)u a.e. s ∈ [t, T ], y(t) = x

u(s) ∈ U a.e. s ∈ [t, T ], y(s) ∈ S ∀s ∈ [t, T ],

where Λ(s, y, u) is locally Lipschitz in s, just Borel in (y, u), b has at most a linear growth and both the Lagrangian
Λ and the end-point cost function g may take the value +∞. If b ≡ 1, g ≡ 0, (Pt,x) is the classical problem of
the Calculus of Variations. We suppose the validity of a slow growth condition in u, introduced by Clarke in 1993,
including Lagrangians of the type Λ(s, y, u) =

√
1 + |u|2 and Λ(s, y, u) = |u| −

√
|u| and the superlinear case.

We show that, if Λ is real valued, any family of optimal pairs (y∗, u∗) for (Pt,x) whose energy Jt(y∗, u∗) is equi-
bounded as (t, x) vary in a compact set, has L∞ – equibounded controls. Moreover, if Λ is extended valued, the
same conclusion holds under an additional lower semicontinuity assumption on (s, u) 7→ Λ(s, y, u) and requiring
a condition on the structure of the effective domain. No convexity, nor local Lipschitzianity is assumed on the
variables (y, u). As an application we obtain the local Lipschitz continuity of the value function under slow growth
assumptions.
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INTRODUCTION

A major issue arising in the basic problem of the Calculus of Variations is the Lipschitz regularity of the minimizers.
Providing positive answers on this issue is often a first step towards higher regularity properties, and it allows numerical
methods to catch the value of the infimum.

We consider here optimal control problems, such as (Pt,x) below, imposing very weak assumptions on the Lagrangian
Λ(s, y, u), where s ∈ [t0, T ] (the time variable), y ∈ Rn (the state variable) and u ∈ Rm (the control variable), motivated
by the fact that, starting from the Calculus of Variations case (i.e. when b ≡ 1, u ∈ Rn) there are discontinuous and non-
convex problems that admit existence of minimizers, even if the classical Tonelli’s existence conditions are not satisfied.

In the Calculus of Variations setting several results appeared on the subject following Tonelli himself [20]: we just
mention Clarke – Vinter [16], Ambrosio – Ascenzi – Buttazzo [2], Cellina [9]. In the autonomous case, just superlinearity
and even slower growths suffice to obtain Lipschitzianity of the minimizers, whether they exist among the absolutely
continuous functions (Dal Maso – Frankowska [17], Mariconda – Treu [18]).

In the nonautonomous case growth conditions in general do not guarantee the Lipschitzianity of the minimizers. A
celebrated example by Ball – Mizel [3] shows that there are polynomial Lagrangians that satisfy Tonelli’s existence as-
sumptions (convexity in the velocity variable and superlinearity) for which even the Lavrentiev phenomenon occurs (i.e.,
the infimum of the functional among Lipschitz functions is strictly greater than the infimum taken over the absolutely con-
tinuous ones). So, extra hypotheses are needed in the nonautonomous setting to make sure that minimizers are Lipschitz
continuous.

A well established approach consists in imposing superlinearity together with some regularity conditions on the state
or velocity variables in order to ensure the validity of both the Euler condition and Weierstrass inequality, see [14] for a
minimal set of assumptions.

Alternatively, one can impose a local Lipschitz condition just on the time variable of the Lagrangian, that we call
here Condition (S) (see § 1.2). Condition (S) was known in the smooth setting for providing the validity of the Du
Bois-Reymond equation (see [12]) at any minimizer x∗: namely,

p(s) := Λ(s, x∗(s), x
′
∗(s))− x′∗(s) · ∇vΛ(s, x∗(s), x

′
∗(s))

is absolutely continuous and
p′(s) = (DsΛ)(s, x∗(s), x

′
∗(s)),

where DsΛ denotes the partial derivative of Λ with respect to the first variable. In the nonsmooth setting it became a key
assumption for several recent results concerning important aspects such as existence and regularity of minimizers:

• Existence: Clarke introduced in his seminal paper [13] the essential idea of using an indirect method which relies
on a weak growth condition of type (H), that we write here for simplicity just in the autonomous case Λ = Λ(y, v):
it subsumes the convexity of v 7→ Λ(y, ·) = Λ(y, v) for each y; denoting by ∂vΛ(y, v) the convex subdifferential of

Λ(y, ·) at v and by J(y) =

∫ T

t0

Λ(y(s), y′(s)) ds it requires that there is c > 0 such that, for every admissible trajectory

on a suitable finite sublevel of J , one has

essinfs∈[t0,T ] |x′(s)| < c,

and
lim

ν→+∞
sup

y∈Rn, v∈U|v|>ν
{Λ(y, v)− v · ∂vΛ(y, v)} < inf

y∈Rn, v∈U|v|≤c
{Λ(y, v)− v · ∂vΛ(y, v)} .

We notice that the term Λ(y, v) − v · ∂vΛ(y, v) is the level of the intersection of the supporting hyperplane to the
graph of u 7→ Λ(y, u) at u = v with the ordinate axis. Condition (H) is fulfilled, for instance, by Lagrangians of the
form Λ(s, y, u) =

√
1 + |u|2, and superlinear ones. In [13] it is shown that Condition (S) with Condition (H) allow

to replace the superlinearity assumption in Tonelli’s existence theorem (leaving unchanged lower semicontinuity of the
Lagrangian and convexity in the velocity variable), with the advantage that minimizers turn out to be Lipschitz.
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• Regularity: Condition (S) alone yields the validity of a Du Bois-Reymond (DBR) type condition expressed in terms of
convex subdifferentials, without any convexity assumption (see [4, 6]). The fact that (S) is satisfied whenever the La-
grangian is autonomous implies in particular the validity of the (DBR) condition for any Borel autonomous Lagrangian.
Once Condition (S) is fulfilled, the weak growth condition (H) (alone if Λ is real valued) yields the Lipschitzianity of
the minimizers, when they exist, see [6].

Conditions such as (H) and (S) can be rephrased in the context of optimal control, providing Lipschitz regularity of
minimizers and boundedness of optimal controls (cf. [8], [7], [5], [19]).

We study here the problem of finding a uniform Lipschitz constant for minimizers of a Bolza type control problem of
the form

min Jt(y, u) :=

∫ T

t

Λ(s, y(s), u(s)) ds+ g(y(T )) (Pt,x)

Subject to: 
y ∈W1,1([t, T ];Rn)

y′ = b(y)u a.e. s ∈ [t, T ], y(t) = x

u(s) ∈ U a.e. s ∈ [t, T ], y(s) ∈ S ∀s ∈ [t, T ],

(D)

as the initial time t and point x vary on compact sets. A motivation is the study of the regularity of the value function,
when one can assume the existence of an optimal pair for any initial data. This existence hypothesis on minimizers is
widespread in the literature and becomes a starting point to derive properties on the value function, see for instance Dal
Maso – Frankowska [17] in the autonomous and superlinear case of the Calculus of Variations. In the real valued case
our main result, Theorem 3.1 below, states that if Λ satisfies Condition (S) and a growth condition of type (H), then the
minimizers of (Pt,x) are locally equi-Lipschitz whenever t < T, x ∈ Rn. Furthermore, if one knows an a priori upper
bound of the integral term

∫ T
t

Λ(s, y∗(s), u∗(s)) ds along the minimizers, a common Lipschitz rank may be explicitly
written. We shall consider also the case of the extended valued Lagrangians: in this case some further assumptions,
namely the lower semicontinuity of Λ(s, y, u) with respect to (s, u) and a topological property of the effective domain of
Λ, are needed in order to prove our regularity result on minimizers.

The growth condition introduced in § 2.4 represents a violation of the (DBR) condition for high values of the velocity; it
coincides with Clarke’s original one when the compact set is reduced to a single initial datum (t0, x0) and the Lagrangian
is convex in the velocity variable. The Lipschitz regularity of the (local) minimizers for fixed initial time and data under
this kind of growth condition was studied in [5]. The novelty here is the fact that we can obtain uniform estimates of the
Lipschitz constant when the initial data vary in a neighbourhood of a given (t0, x0) with t0 < T .

As a byproduct of our formulation, the growth condition (Condition (G), see § 2.2) introduced by Cellina – Treu –
Zagatti in [11], and studied in [9, 10, 18], becomes a particular case of the class of the growth condition of type (H) con-
sidered here.
An equi-Lipschitz minimizers regularity was recently established in [19] under the additional assumption that 0 < r 7→
Λ(s, y, ru) is convex for all u (called ‘radial convexity’); in our paper we consider problems which may not be necessarily
radially convex. Moreover, differently from [19], minimizers are allowed to be just local ones, in the sense of the abso-
lutely continuous norm. The fundamental tool in the proof of Theorem 3.1 is the Du Bois-Reymond condition established
in [5, Theorem 3.1].

As an application, we extend the local Lipschitz regularity of the value function formulated in [17] in the framework
of autonomous and superlinear Lagrangians to the nonautonomous ones under the slower growth condition of type (H).

1. PRELIMINARIES

1.1. Basic setting and notation

Let t < T and x ∈ Rn. We consider the Bolza type optimal control problem (Pt,x)-(D) above with the following
basic assumptions.

Basic Assumptions and Notation. The following conditions hold (n,m ≥ 1).
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• t0 < T are given real numbers, and t ∈ [t0, T ].
• The Lagrangian Λ : [t0, T ] × Rn × Rm → R ∪ {+∞}, (s, y, u) 7→ Λ(s, y, u) is Lebesgue – Borel measurable

(i.e., measurable with respect to the L([t0, T ])× BRn×Rm measurable sets).
• (Linear growth from below) There are α > 0 and d ≥ 0 satisfying, for a.e. s ∈ [t0, T ] and every y ∈ Rn, u ∈ U ,

Λ(s, y, u) ≥ α|u| − d. (L)

Notice that if Jt(y∗, u∗) < +∞ then (L) implies that u+ ∈ L1([t, T ]).
• b : Rn → L(Rn,Rm) (the space of linear functions from Rn to Rm) is a Borel measurable function such that,

for some θ ≥ 0,
|b(y)| ≤ θ(1 + |y|). (1.1)

We refer to y′ = b(y)u as the controlled differential equation. It will be useful to recall that, if y′ = b(y)u, y(t) =
x for some integrable function u(·) on [t, T ] then, owing to Gronwall’s lemma (see [15, Theorem 6.41]), the
following estimate holds:

∀s ∈ [t, T ] |y(s)− x| ≤ (|x|+ 1)eθ
∫ T
t
|u(τ)| dτ . (1.2)

• The control u : [t, T ] 7→ Rm is measurable.
• The state constraint set S is a nonempty subset of Rn;
• The control set U ⊂ Rm is a cone, i.e. if u ∈ U then λu ∈ U whenever λ > 0.
• The cost function g : Rn → R ∪ {+∞} is not identically equal to +∞.
• The effective domain of Λ, is given by

Dom(Λ) := {(s, y, u) : Λ(s, y, u) < +∞}.

An admissible pair for (Pt,x) is a pair of functions (y, u) : [t, T ] → Rn × Rm with u measurable, (y, u) satisfying
(D) and such that Jt(y, u) < +∞. We assume henceforth that, for each t ∈ [t0, T ] and x ∈ S , there exists at least an
admissible pair for (Pt,x).

Notice, that in the particular case where the function b ≡ 1 in the controlled differential equation, then (Pt,x) becomes a
problem of the Calculus of Variations.
If z ∈ Rk we shall denote by Bkr (z) (simply Bkr if z = 0) the closed ball of center z and radius r in Rk. The norm in L1

is denoted by ‖ · ‖1, and the norm in L∞ by ‖ · ‖∞.

1.2. Condition (S)

We will consider the following local Lipschitz condition on the Lagrangian Λ with respect to the time variable.

Condition (S). There are κ,A ≥ 0, γ ∈ L1([t0, T ]), ε∗ > 0 satisfying, for a.e. s ∈ [t0, T ]

|Λ(s2, y, u)− Λ(s1, y, u)| ≤
(
κΛ(s, y, u) +A|u|+ γ(s)

)
|s2 − s1| (1.3)

whenever s1, s2 ∈ [s− ε∗, s+ ε∗] ∩ [t0, T ], y ∈ Rn, u ∈ Rm, are such that (s1, y, u), (s2, y, u) ∈ Dom(Λ).

Remark 1.1. Notice that, when (y∗, u∗) is an admissible pair for (Pt,x), then the growth condition (L) implies that
u∗ ∈ L1([t, T ]) and thus the function

κΛ(s, y∗(s), u∗(s)) +A|u∗(s)|+ γ(s) ∈ L1([t, T ]).

Condition (S) is satisfied if Λ(s, y, u) = Λ(y, u) is autonomous. Indeed in that case (1.3) holds with κ = A = 0,γ ≡ 0
and ε∗ = T .
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2. GROWTH CONDITIONS

The definitions and results in this section are similar to those ones which have been introduced in some recent papers
(see [5,6,19]). There are however some differences: the present definition of Condition (HδB(χ)) is more general than the
corresponding growth condition used in [5, 6], and we do not require, as in [19], that the Lagrangian is radially convex in
the control variable. Therefore, the detailed proofs of the properties displayed in this section are reported below for the
convenience of the reader.

2.1. Partial derivatives and subgradients

In what follows we often deal with subdifferentials in the sense of convex analysis.

Notation. If (s, y, u) ∈ Dom(Λ), we shall denote by

• ∂µ
(

Λ
(
s, y,

u

µ

)
µ

)
µ=1

the convex subdifferential of the map

0 < µ 7→ Λ
(
s, y,

u

µ

)
µ

at µ = 1;
• ∂rΛ

(
s, y, ru

)
r=1

the convex subdifferential of the map

0 < r 7→ Λ(s, y, ru)

at r = 1;
• ∇uΛ(s, y, u) the gradient of Λ(s, y, ·) at u. If Λ(s, y, ·) is differentiable then the (classical) directional derivative

of Λ w.r.t. the vector u is written DuΛ(s, y, u) = u · ∇uΛ(s, y, u).

Remark 2.1. Let (s, y, u) ∈ Dom(Λ). A simple change of variable r =
1

µ
shows that

p ∈ ∂µ
(

Λ
(
s, y,

u

µ

)
µ
)
µ=1
⇔ Λ(s, y, u)− p ∈ ∂rΛ

(
s, y, ru

)
r=1

.

The growth assumptions introduced below involve some uniform limits.

2.2. The Growth Condition (G)

The growth Condition (G) was thoroughly studied by Cellina and his school for autonomous Lagrangians of the Calcu-
lus of Variations that are smooth or convex in the velocity variable. The extension to the radial convex case, recalled here,
was considered in [18] in the autonomous case and was subsequently generalized to the nonautonomous case in [4, 5].

Growth Condition (G). We say that Λ satisfies (G) if, for all K ≥ 0,

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u) = −∞ unif. |y| ≤ K, (2.1)

meaning that for all M ∈ R there exists R > 0 such that P (s, y, u) ≤ M for all (s, y, u) ∈ Dom(Λ) whenever
∂µ(Λ(s, y, uµ )µ)µ=1 is no empty, |y| ≤ K, u ∈ U , |u| ≥ R.
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Remark 2.2. (1) If u 7→ Λ(s, y, u) is differentiable, (2.1) becomes

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U
∂rΛ(s,y,ru)r=1 6=∅

Λ(s, y, u)− u · ∇uΛ(s, y, u) = −∞ unif. |y| ≤ K.

Superlinearity plays a key role in Tonelli’s existence theorem. It has been widely used as a sufficient condition for
Lipschitz regularity of minimizers.

Superlinearity. For every K ≥ 0 there exists ΘK :] − ∞,+∞[→ R such that, for a.e. s ∈ [t0, T ] and every y ∈
Rn, |y| ≤ K, u ∈ U ,

Λ(s, y, u) ≥ ΘK(|u|), lim
r→+∞

ΘK(r)

r
= +∞. (GΘ)

Superlinearity, together with some local boundedness condition, implies the validity of the growth Condition (G). We
refer to [6, Proposition 2 and Remark 11] for the proof of the following result.

Proposition 2.3 (Superlinearity⇒ (G)). Let Λ be superlinear and assume that for every K ≥ 0 there is rK > 0 such
that Λ(s, y, u) is bounded when s ∈ [t0, T ], |y| ≤ K,u ∈ U , |u| = rK . Then Λ satisfies Assumption (G).

2.3. Assumptions on Dom(Λ) and distance-like functions

We assume that for a.e. s ∈ [t0, T ] and every y ∈ Rn the set

{u ∈ Rm : (s, y, u) ∈ Dom(Λ)}

is strictly star-shaped in the variable u w.r.t. the origin, i.e.,

Λ(s, y, u) < +∞, 0 < r ≤ 1⇒ Λ(s, y, ru) < +∞.

Definition 2.4 (u-distance,∞-distance, Euclidean distance). • We shall denote by diste the usual Euclidean dis-
tance in [t0, T ]× Rn × Rm.
• The infinity distance-like dist∞ is defined for all ωi = (si, zi, vi) ∈ [t0, T ]× Rn × Rm (i = 1, 2),

dist∞(ω1, ω2) =

{
+∞ if ω1 6= ω2

0 if ω1 = ω2.

• The u-distance-like is the function defined on the pairs of points ω1 = (s1, z1, v1), ω2 = (s2, z2, v2) ∈ [t0, T ]×
Rn × Rm such that (s1, z1) = (s2, z2) by

distu(ω1, ω2) = |v2 − v1|.

If χ ∈ {e, u,∞} and (s, z, v) ∈ Dom(Λ) we set distχ((s, z, v),Dom(Λ)c) to be equal to

inf{distχ((s, z, v), ω) : ω ∈ Dom(Λ)c}.

Remark 2.5. Differently from the Euclidean distance, the infinity distance-like and the u-distance-like are not metrics
on [t0, T ] × Rn × Rm. Indeed both can take the value +∞ and distu is defined just on a strict subset of pairs of
[t0, T ]×Rn ×Rm. We point out, however, that as well as diste and dist∞, distu satisfy the triangular inequality among
triples of points that have the same first two coordinates: if ωi := (s, z, vi) ∈ [t0, T ] × Rn × Rm (i = 1, 2, 3) and
χ ∈ {e, u,∞} then

distχ(ω1, ω3) ≤ distχ(ω1, ω2) + distχ(ω2, ω3).
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Definition 2.6 (Well-inside Dom(Λ) for distχ, χ ∈ {e, u,∞}). We say that a subset E of Dom(Λ) is well-inside
Dom(Λ) w.r.t. distχ(χ ∈ {e, u,∞}) if it is contained in {(s, y, v) ∈ Dom(Λ) : distχ((s, y, v), Dom(Λ)c) ≥ ρ},
for a suitable ρ > 0.

• If χ = e the above means that for all (s, y, v) ∈ E, the open ball of radius ρ in [t0, T ]× Rn × Rm and center in
(s, y, v) is contained in Dom(Λ);
• If χ = u the above means that

(s, y, v) ∈ E, 0 < r < ρ⇒ (s, y, v + rv) ∈ Dom(Λ).

• If χ =∞ the above means simply that E ⊂ Dom(Λ).

Remark 2.7. Notice that, if ω := (s, y, u) ∈ Dom(Λ) and F := Dom(Λ)c, then

diste(ω, F ) ≤ distu(ω, F ) ≤ dist∞(ω, F ).

Thus, ifMχ is the class of sets that are well inside Dom(Λ) w.r.t. distχ we have

Me ⊂Mu ⊂M∞. (2.2)

Example 2.8. Let Λ be autonomous and Dom(Λ) = {(y, u) ∈ R2 : |y| ≤ 1}. Then the set {(y, u) ∈ R2 : |y| ≤ 1, |u| ≤
1} is well-inside Dom(Λ) w.r.t. to du but not w.r.t. de.

2.4. Growth Condition (Hδ
B(χ))

Let δ ∈ [t0, T [. The number B represents an upper bound of the integral term in (Pt,x) for a prescribed family of
admissible pairs, with initial time t varying in [t0, δ]. The following quantities ct(B) and Φ(B) will play a role in the
proof of the main results.

Definition 2.9 (ct(B) and Φ(B)). Let t ∈ [t0, T [, B ≥ 0 and assume the linear growth from below (L). Set

ct(B) :=
B + d(T − t)
α (T − t)

.

Moreover, if Condition (S) holds, we define

Φ(B) :=

0 if Λ is autonomous,

κB +
A

α
(B + d (T − t0)) + ‖γ‖1 otherwise.

Remark 2.10. Notice that, in Definition 2.9, ct(B) ≤ cδ(B) for all t ∈ [t0, δ].

The next result highlights the roles of Φ(B) and ct(B), we refer to [19, Proposition 4.10] for a proof.

Proposition 2.11 (The role of φ(B) and ct(B)). Assume the linear growth from below (L) and the validity of Condition

(S). Let t ∈ [t0, T [, x ∈ Rn, and take an admissible pair (y, u) for (Pt,x) with
∫ T

t

Λ(s, y(s), u(s)) ds ≤ B for some

B ≥ 0. Then
(1) ∫ T

t

|u(s)| ds ≤ B + d(T − t)
α

= (T − t)ct(B).

(2) For every c > ct(B) the set {s ∈ [t, T ] : |u(s)| ≤ c} is non negligible.

(3)
∫ T

t

{
κΛ(s, y(s), u(s)) +A|u(s)|+ γ(s)

}
ds ≤ Φ(B).
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Given B ≥ 0 and δ ∈ [t0, T [, the growth Condition (HδB(χ)) below requires the validity of Condition (S), unless Λ is
autonomous. It will be applied when B is an upper bound for the values of a given set of admissible pairs for problems
(Pt,x) as t ∈ [t0, δ].
Below, taking the inf/sup where P (s, y, u) ∈ ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅ means that we consider just those points (s, y, u)

such that ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅.

Growth Condition (Hδ
B(χ)). Assume that Λ satisfies Condition (S) and let χ ∈ {e, u,∞}. Let B ≥ 0 and δ ∈ [t0, T [.

We say that Λ satisfies (HδB(χ)) if for all K ≥ 0, there are ν > 0 and c > cδ(B) satisfying, for all ρ > 0,

sup
s∈[t0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

{P (s, y, u)}+ Φ(B) < inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u). (2.3)

Remark 2.12. Condition (HδB(χ)) below is a refinement of [13, Condition (H)], introduced by Clarke, who first thor-
oughly began the investigation on existence and regularity under such a kind of weak growth condition. [13, Condition
(H)] corresponds to Condition (HδB(χ)) with δ = t0, χ = ∞. It was subsequently considered in [6] to derive Lipschitz
regularity of minimizers for a given initial datum (t, x). Here we are interested in investigating the uniformity of the
Lipschitz constant of the minimizers as the initial data (t, x) vary. Moreover, allowing the cases when χ = e or χ = u,
we enlarge the class of Lagrangians that satisfy (HδB(χ)). Notice, in view of (2.2), that from (2.3) we have

(Hδ
B(∞))⇒ (Hδ

B(u))⇒ (Hδ
B(e)). (2.4)

We refer to [19, Example 4.18] for a Lagrangian that satisfies (Hδ
B(e)) but not (Hδ

B(∞)). Notice that, if Λ is autonomous,
Condition (2.3) is much simpler and does not depend anymore on B, since Φ(B) = 0.

Remark 2.13. (1) The validity of Condition (HδB(χ)) implies that the right side of inequality (2.3) is not equal to
−∞.

(2) If u 7→ Λ(s, y, u) is differentiable, (2.3) may be rewritten as

sup
s∈[t0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞
∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

{Λ(s, y, u)− u · ∇uΛ(s, y, u)}+ Φ(B) < inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

{Λ(s, y, u)− u · ∇uΛ(s, y, u)}.

Remark 2.14 (Interpretation of (G) and of (HδB(χ))). Consider for simplicity a Lagrangian Λ(u) of the variable u. Let
Λ(u) < +∞ and assume that

P (u) ∈ ∂µ
(

Λ
(u
µ

)
µ
)
µ=1
6= ∅.

Then P (u) = Λ(u)−Q(u) for some Q(u) ∈ ∂rΛ(ru)r=1. Notice that

Λ(ru) ≥ φu(r) := Λ(u) +Q(u)(r − 1) ∀r > 0.

The value φu(0) = P (u) := Λ(u)−Q(u) represents the intersection of the “tangent” line z = φu(r) to 0 < r 7→ Λ(ru)
at r = 1 with the z axis.
Condition (G) thus means that the ordinate P (u) of the above intersection point tends to −∞ as |u| goes to∞.
Condition (HδB(χ)) means that there is a gap of at least Φ(B) between the above points as |u| ≥ ν and when evaluated at
u such that |u| ≤ c, more precisely that

sup
|u|≥ν

P (u) + Φ(B) < inf
|u|≤c

P (u).
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FIGURE 1. Condition (HδB(e))

The validity of Condition (HδB(χ)) implies that the infimum (resp. the sup) involved in (2.3) is not equal to −∞
(resp. +∞). These facts, actually, occur quite often, independently of Condition (HδB(χ)): their validity is actually a
slow growth Condition, it was introduced and named (Mδ

B) in [19]. Claim 2) of Proposition 2.15 improves the sufficient
condition formulated in [19, Proposition 4.24].

Proposition 2.15. Let K ≥ 0. The following implications hold:

(1) Assume that Λ is bounded on the bounded sets that are well-inside Dom(Λ) w.r.t. distχ(χ ∈ {e, u}). Then for
any c, ρ > 0,

−∞ < inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u). (2.5)

(2) Assume that there is ν > 0 such that

Λ is bounded on ([t0, T ]×BnK ×Bmν ) ∩Dom(Λ). (B)

Then
sup

s∈[t0,T ],|y|≤K
|u|≥ν,u∈U

Λ(s,y,u)<+∞
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u) < +∞. (2.6)

Proof. 1) Fix c, ρ > 0. It is not restrictive to assume that ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅ for some (s, y, u) ∈ Dom(Λ),
distχ((s, y, u),Dom(Λ)c) ≥ ρ. It follows from Remark 2.1 that

inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
P (s,y,u)∈∂µ(Λ(s,y,uµ )µ)µ=1 6=∅

P (s, y, u) = inf
s∈[t0,T ],|y|≤K
|u|≤c,u∈U

distχ((s,y,u),Dom(Λ)c)≥ρ
Q(s,y,u)∈∂r(Λ(s,y,ru)µ)r=1 6=∅

{Λ(s, y, u)−Q(s, y, u)}.

The claim follows directly from Lemma 2.17.
2) Let (s, y, u) ∈ Dom(Λ) with |y| ≤ K and |u| ≥ ν, u ∈ U . Assume that P (s, y, u) ∈ ∂µ(Λ(s, y, uµ )µ)µ=1 6= ∅.
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Then P (s, y, u) = Λ(s, y, u) −Q(s, y, u) for some Q(s, y, u) ∈ ∂r(Λ(s, y, ru))r=1 (Remark 2.1). The assumption that
Dom(Λ) is star-shaped in the control variable implies that

(
s, y, ν

u

|u|

)
∈ Dom(Λ) and thus

Λ
(
s, y, ν

u

|u|

)
− Λ(s, y, u) ≥ Q(s, y, u)

( ν
|u|
− 1
)
,

from which we deduce that

Λ(s, y, u)−Q(s, y, u) ≤ Λ
(
s, y, ν

u

|u|

)
− ν

|u|
Q(s, y, u). (2.7)

The assumptions imply that

Λ
(
s, y, ν

u

|u|

)
≤ C1(K, ν) (2.8)

for some constant C1(K, ν) depending only on K, ν.
We now provide un upper bound for −Q(s, y, u). The assumption that Dom(Λ) is strictly star-shaped in the control
variable implies that

(
s, y,

ν

2

u

|u|

)
∈ Dom(Λ) and thus

Λ
(
s, y,

ν

2

u

|u|

)
− Λ(s, y, u) ≥ Q(s, y, u)

(
ν

2|u|
− 1

)
,

so that the linear growth hypothesis (L) gives

−Q(s, y, u) ≤ 1(
1− ν

2|u|

) [Λ(s, y, ν
2

u

|u|

)
− Λ(s, y, u)

]

≤ 2

[
Λ
(
s, y,

ν

2

u

|u|

)
+ d

]
≤ C2(K, ν)

(2.9)

for some constantC2(K, ν) depending only onK and ν. It follows from (2.8) – (2.9) that the right side of (2.7) is bounded
above by a constant depending only on K and ν. �

Remark 2.16. Assumption (B) in Proposition 2.15 is a known sufficient condition for the nonoccurrence of the Lavrentiev
gap for positive autonomous Lagrangians of the Calculus of Variations (see [1, Assumption (B)]). Unsurprisingly, the
more recent Conditions (2.5) - (2.6) play a role in the avoidance of the Lavrentiev phenomenon (see [19]).

Lemma 2.17 (Bound of ∂rΛ(s, y, ru)r=1 on bounded sets). Assume that Λ(s, y, u) is bounded on the bounded subsets
that are well-inside Dom(Λ) w.r.t. distχ(χ ∈ {e, u}). Let

Σ := {(s, y, u) ∈ Dom(Λ) : ∂rΛ(s, y, ru)r=1 6= ∅},

and Q be any function satisfying Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 for every (s, y, u) ∈ Σ. Then Q is bounded on the
bounded sets of Σ that are well-inside Dom(Λ) w.r.t. distχ.

Proof. Let (s, y, u) ∈ Dom(Λ) and Q(s, y, u) ∈ ∂rΛ(s, y, ru)r=1 6= ∅. Suppose that, for some C > 0, ρ > 0,
|y|+ |u| ≤ C and

distχ((s, y, u),Dom(Λ)c) ≥ ρ.
The triangular inequality (see Remark 2.5) implies that

distχ

((
s, y, u+

ρ

2C
u
)
,Dom(Λ)c

)
≥ ρ

2
.
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Assuming that
∂rΛ(s, y, ru)r=1 6= ∅

we obtain
Λ
(
s, y, u+

ρ

2C
u
)
− Λ(s, y, u) ≥ ρ

2C
Q(s, y, u).

The boundedness assumption of Λ implies that Q(s, y, u) is bounded above by a constant depending only on C and ρ.
Similarly, from

Λ
(
s, y, u− ρ

2C
u
)
− Λ(s, y, u) ≥ − ρ

2C
Q(s, y, u),

we deduce a lower bound for Q. �

The fact that the validity of Condition (G) implies that of Condition (HδB(χ)) was proved in [6] for real valued La-
grangians and in [19, Proposition 4.21] under the additional assumption that 0 < r 7→ Λ(s, y, ru) is convex. Actually, the
result holds true in greater generality.

Proposition 2.18 ((G) implies (Hδ
B(χ)) for all B, δ). Assume that Λ satisfies Condition (S) and that Λ is bounded on

the bounded subsets that are well-inside Dom(Λ) w.r.t. distχ(χ ∈ {e, u}). If Λ satisfies Condition (G) then Λ satisfies
Hypothesis (HδB(χ)), whatever are the choices of δ ∈ [t0, T [, c > 0 and B ≥ 0.

Proof. Take any K ≥ 0. Assume that

lim
|u|→+∞

(s,y,u)∈Dom(Λ), u∈U
Q(s,y,u)∈∂r(Λ(s,y,r u))r=1 6=∅

{Λ(s, y, u)−Q(s, y, u)} = −∞ unif. |y| ≤ K.

Then we obtain

lim
ν→+∞

sup
s∈[t0,T ]
|u|≥ν,u∈U

Λ(s,y,u)<+∞
Q(s,y,u)∈∂r(Λ(s,y,r u))r=1 6=∅

{Λ(s, y, u)−Q(s, y, u)} = −∞ unif. |y| ≤ K.

It follows from 1) of Proposition 2.15 that Condition (HδB(χ)) is valid, for any choice of B, c > 0, δ ∈ [t0, T [. �

Remark 2.19. In Proposition 2.18, the assumption that Λ is bounded on bounded sets that are well-inside Dom(Λ) is not
a merely technical hypothesis (see [19, Example 4.25]).

3. UNIFORM REGULARITY FOR OPTIMAL PAIRS

We say that (y∗, u∗) is a W 1,1-weak local optimal pair for (Pt,x) if there is ε > 0 such that Jt(y∗, u∗) ≤ Jt(y, u)
for any admissible pair (y, u) such that ‖y − y∗‖1 + ‖y′ − y′∗‖1 ≤ ε. In [5, Theorem 4.2] it is shown that, if (y∗, u∗)
is a W 1,1-weak local optimal pair for (Pt,x) and Condition (Ht0Jt(y∗,u∗)(e)) holds, then u∗ is bounded and y∗ has a finite
Lipschitz rank. We give here a sufficient condition under which the above bounds are uniform as the initial time t varies
in an interval [t0, δ] (δ ∈ [t0, T [) and the initial point x varies in a compact set.

Theorem 3.1 (L∞– uniform boundedness for optimal controls and equi-Lipschitz rank of minimizers). Assume that
Λ takes values in R and satisfies Assumption (S). Fix δ ∈ [t0, T [, δ∗ ≥ 0 and x∗ ∈ Rn. Let (y∗, u∗) be a W 1,1-weak local
optimal pair for (Pt,x) where t ∈ [t0, δ], x ∈ Bnδ∗(x∗), and let B ≥ 0 be such that∫ T

t

Λ(s, y∗(s), u∗(s)) ds ≤ B.

Assume that Λ satisfies the growth condition (HδB(e)). Then u∗ is bounded and y∗ is Lipschitz with bounds and ranks
depending only on δ,B, δ∗, x∗.
The same conclusion is valid when Λ takes values in R∪{+∞}, provided that we impose also the following assumptions:
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a) (s, u) 7→ Λ(s, y, u) is lower semicontinuous for every y;
b) For every (s, y, u) ∈ Dom(Λ), the set {λ > 0 : Λ(s, y, λu) < +∞} is open;
c) Λ satisfies the growth condition (HδB(χ)) for some χ ∈ {e, u,∞} and for a.e. s ∈ [t, T ], {(s, y∗(s), u∗(s))} is

well-inside Dom(Λ) w.r.t. distχ, i.e.,

∃ρs > 0 distχ((s, y∗(s), u∗(s)),Dom(Λ)c) ≥ ρs a.e. s ∈ [t0, T ]. (Wχ)

Remark 3.2. When Λ is an extended valued function, in Theorem 3.1 we impose the additional assumptions a), b) and c).
Condition c) is employed in the proof of Theorem 3.1 (for the extended valued case) to take advantage of the information
provided by ‘inf’-term in (2.3) of the growth Condition (HδB(χ)), while assumptions a) and b) are used just to ensure
the validity of the Du Bois-Reymond condition [6, Theorem 2]. Therefore, a) and b) can be removed and the regularity
properties of Theorem 3.1 remain valid provided that the Du Bois-Reymond condition [6, Theorem 2] is in force. This is
the case, for instance, when Λ is the indicator function of a (bounded) control set U (cf. [6, Remark 4]).

Remark 3.3. In the case of an extended valued Lagrangian, the choice of χ ∈ {e, u,∞} in Theorem 3.1 depends on the
validity of both conditions (HδB(χ)) and (Wχ) of Condition c) of Theorem 3.1. Now, it appears that the best choice of χ
for the first condition may be the worse for the second one, and vice versa. Indeed, from (2.4),

(Hδ
B(∞))⇒ (Hδ

B(u))⇒ (Hδ
B(e)),

whereas
(We)⇒ (Wu)⇒ (W∞).

Thus, if (HδB(e)) or (W∞) are not fulfilled, Theorem 3.1 is not applicable. Otherwise, one has to find a trade-off for a
common value of χ ∈ {e, u,∞} in order to satisfy both the conditions.

Remark 3.4. Let χ be as in Hypothesis (HδB(χ)). Then, in Theorem 3.1:
• If χ = u then (Wχ) of Assumption c) follows from Assumption b).
• If χ =∞ then (Wχ) of Assumption c) is always satisfied.
• If χ = e Assumptions b) and (Wχ) of c) are fulfilled if Dom(Λ) is open in [t0, T ]× Rn × Rm.
• The validity of (Wχ) of Assumption c) is ensured once, for all s ∈ [t0, T ],

lim
distχ((s,z,v),Dom(Λ)c)→0

Λ(s, z, v) = +∞, (3.1)

uniformly w.r.t. z in compact sets, i.e., if for all compact K ⊂ Rn and M ≥ 0 there is ρ > 0 such that, for all
(s, z, v) ∈ Dom(Λ) with z ∈ K,

distχ ((s, z, v),Dom(Λ)c) ≤ ρ⇒ Λ(s, z, v) ≥M.

Condition (3.1) has been used in the assumptions [19, Theorem 5.1] among the sufficient conditions for the
existence of minimizing sequences with equi-bounded controls.

Proof of Theorem 3.1. Let α, d be as in (L) and (y∗, u∗) be a W 1,1-weak local optimal pair for (Pt,x). From Point 1 of
Proposition 2.11 we have ∫ T

t

|u∗| ds ≤
B + d(T − t)

α
≤ R = R(B) :=

B + d(T − t0)

α
. (3.2)

Claim: There is K := K(δ,B, δ∗, x∗) such that |y∗(s)| ≤ K for every s ∈ [t, T ]. Indeed, for a.e. s ∈ [t, T ],

|y′∗(s)| ≤ θ(1 + |y∗(s)|)|u∗(s)|.
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Since y∗(t) = x, (1.2) and (3.2) imply that, for all s ∈ [t, T ],

|y∗(s)− x| ≤
∫ s

t

exp

(
θ

∫ s

τ

|u∗(r)| dr
)
θ|u∗(τ)|(|x|+ 1) dτ

≤ (|x|+ 1)(eRθ − 1),

so that

|y∗(s)| ≤ |x|+ (|x|+ 1)(eRθ − 1) ≤ eRθ(|x∗|+ δ∗ + 1),

where in the latter we used the fact that x ∈ Bδ∗(x). The claim follows from the fact that R depends on B, with

K = eRθ(|x∗|+ δ∗ + 1).

We prove the result in the extended valued case since when Λ is real valued the analysis is simpler: we just take χ = e and
hypotheses a), b), c) are not necessary anymore. Assumptions a), b) imply that the Lagrangian Λ satisfies [5, Hypothesis
(S∞(y∗,u∗))]. The optimal pair (y∗, u∗) satisfies the Du Bois-Reymond – Erdmann condition formulated in [5, Theorem
3.1]. In particular

∂µ

(
Λ
(
s, y∗(s),

u∗(s)

µ

)
µ

)
µ=1

6= ∅ a.e. s ∈ [t, T ]

and there is an absolutely continuous function p ∈W 1,1([t, T ]) such that

p(s) ∈ ∂µ
(

Λ
(
s, y∗(s),

u∗(s)

µ

)
µ

)
µ=1

a.e. s ∈ [t, T ],

|p′(s)| ≤ κΛ(s, y∗(s), u∗(s)) +A|u∗(s)|+ γ(s) a.e. s ∈ [t, T ]. (3.3)

We consider P (s, z, v) ∈ ∂µ
(

Λ
(
s, z,

v

µ

)
µ
)
µ=1

such that

p(s) = P (s, y∗(s), u∗(s)) a.e. s ∈ [t, T ].

Remark 2.10 tells us that the parameter c in Condition (HδB(χ)) satisfies c > ct(B). It follows from Claim 2 of Propo-
sition 2.11 that there is a non negligible set of τ ∈ [t, T ] satisfying |u∗(τ)| < c and p(τ) = P (τ, y∗(τ), u∗(τ)). We fix
such a τ and set ρ := distχ((τ, y∗(τ), u∗(τ)),Dom(Λ)c); notice that Assumption c) implies that ρ > 0. Let ν be such
that (2.3) holds. We have

P (s, y∗(s), u∗(s)) = p(τ) +

∫ s

τ

p′(σ) dσ a.e. s ∈ [t, T ]. (3.4)

It follows from (3.3) and (3.4) that for a.e. s ∈ [t, T ] we have

p(τ) = P (s, y∗(s), u∗(s))−
∫ s

τ

p′(σ) dσ

≤ P (σ, y∗(s), u∗(s)) +

∫ s

τ

[κΛ(σ, y∗, u∗) +A|u∗|+ γ] dσ.
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Assume that there is a non negligible subset F of [t, T ] such that |u∗| > ν on F . By taking s ∈ F we deduce that

p(τ) ≤ sup
s∈[t0,T ],|z|≤K
|v|≥ν,v∈U

Λ(s,z,v)<+∞
∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

{P (s, z, v)}+

∣∣∣∣∫ s

τ

κΛ(σ, y∗(σ), u∗) +A|u∗|+ γ dσ

∣∣∣∣
≤ sup

s∈[t0,T ],|z|≤K
|v|≥ν,v∈U

Λ(s,z,v)<+∞
∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

{P (s, z, v)}+ Φ(B),
(3.5)

where the last inequality is justified by Claim 3 of Proposition 2.11. Now,

p(τ) = P (τ, y∗(τ), u∗(τ)) ≥ inf
s∈[t0,T ],|z|≤K
|v|≤c,v∈U,

distχ((s,z,v),Dom(Λ)c)≥ρ

∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

P (s, z, v). (3.6)

Therefore (3.5) and (3.6) imply that

sup
s∈[t0,T ],|z|≤K

|v|≥ν,v∈U,Λ(s,z,v)<+∞
∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

{P (s, z, v)}+ Φ(B) ≥ inf
s∈[t0,T ],|z|≤K
|v|≤c,v∈U,

distχ((s,z,v),Dom(Λ)c)≥ρ

∂µ(Λ(s,z, vµ )µ)µ=1 6=∅

P (s, z, v),

contradicting (2.3). It follows that |u∗| ≤ ν a.e. on [t, T ]. The Lipschitzianity of y∗ and the uniformity of its rank follows
from (1.1). �

Remark 3.5. The proof of Theorem 3.1 shows that if Λ is real valued then a uniform bound for the optimal control u∗
satisfying the conditions of the claim is given by any ν > 0 satisfying one of the assumptions of Condition (HδB(χ)), with

K = eRθ(|x∗|+ δ∗ + 1) and R =
B + d(T − t0)

α
.

One of the assumptions of Theorem 3.1 is the existence of an upper bound B for the cost of the optimal pairs. Such
a bound exists and can be explicitly computed for some classes of problems, e.g., for finite valued Lagrangians of the
Calculus of Variations, or if the cost function g is real valued. Corollary 3.6 below extends [17, Proposition 3.3] in various
directions: Nonautonomous Lagrangians, weaker growths than superlinearity, optimal control problems more general
than problems of the Calculus of Variations, no convexity in the velocity variable.

Corollary 3.6 (The Calculus of Variations or real valued final cost g). Assume that Λ is real valued, satisfies Assump-
tion (S) and is bounded on bounded sets. Suppose, moreover, that g is bounded from below and that one of the following
assumptions holds:

i) b = 1 in the controlled differential equation, S is convex and U = Rn;
ii) The cost function g is real valued, locally bounded and 0 ∈ U ;

iii) b is Lipschitz continuous, the cost function g is real valued, locally bounded and S = Rn.
Let δ ∈ [t0, T [, δ∗ ≥ 0, x∗ ∈ Rn. Let t ∈ [t0, δ], x ∈ Bδ∗(x∗) and (y∗, u∗) be optimal for (Pt,x).

(1) There is B ∈ R such that

B ≥
∫ T

t

Λ(s, y∗(s), u∗(s)) ds.

(2) Assume that Λ satisfies (HδB(e)). Then, u∗ is uniformly bounded and y∗ is uniformly Lipschitz as t ∈ [t0, δ], x ∈
Bδ∗(x∗).
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Proof. In view of Theorem 3.1, Claim 2 is an immediate consequence of Claim 1.
If i) or ii) hold, Claim 1 follows from [19, Lemma 5.3]. Assume that iii) holds. Let Υ be a bound from below for g.
Consider u ∈ U and let y be the solution to

y′ = b(y)u, y(t) = x.

Then

Jt(y∗, u∗) ≤ Jt(y, u) =

∫ T

t

Λ(s, y(s), u) ds+ g(y(T ))

is bounded above by a constant B that does not depend on x ∈ Bnδ∗(x∗) and on t ∈ [t0, δ], owing to standard a priori
boundedness properties of trajectories. Therefore∫ T

t

Λ(s, y∗(s), y
′
∗(s)) ds ≤ B − g(y∗(T )) ≤ B −Υ =: B.

�

4. LIPSCHITZ CONTINUITY OF THE VALUE FUNCTION

We consider here problem (Pt,x) in the framework of the Calculus of Variations, i.e., with b ≡ 1 in (D). The value
function V (t, x) associated with problem (Pt,x) is the function defined by

∀t ∈ [t0, T ],∀x ∈ Rn V (t, x) = inf (Pt,x).

In this section we shall assume that Λ is real valued and bounded on bounded sets: since g is not identically +∞ it
follows that V (t, x) < +∞ for every (t, x). The next result extends to the nonautonomous case [17, Corollary 3.4],
formulated there for autonomous and superlinear Lagrangians.

Corollary 4.1 (Local Lipschitz continuity of the value function in the Calculus of Variations setting). Suppose that Λ
is real valued, bounded on bounded sets, satisfies Assumption (S) and, moreover, b = 1, S = U = Rn. Let δ ∈]t0, T [,
x∗ ∈ Rn, δ∗ > 0. We suppose that (Pt,x) admits at least an optimal pair for each t ∈ [t0, δ], x ∈ Bδ∗(x∗). Assume,
moreover, the validity of at least one of the following conditions:

(1) Λ satisfies (HδB(e)), where B ≥ 0 is such that, for any t ∈ [t0, δ], x ∈ Bδ∗(x∗) and optimal pair (y∗, u∗) for
(Pt,x),

B ≥
∫ T

t

Λ(s, y∗(s), u∗(s)) ds; (4.1)

(2) Λ satisfies (G).
Then the value function V (t, x) is locally Lipschitz on [t0, δ[×Bδ∗(x∗).

Remark 4.2. If the cost function g is bounded from below, then the existence of B in (4.1) is ensured by Corollary 3.6
(Case i)).

Remark 4.3. Sufficient conditions for the existence of a minimizer under the slow growth condition of type (H), required
in Corollary 4.1, are provided in [13, 19].

Example 4.4. The result covers Lagrangians of slow growth not considered in previous literature concerning the regu-
larity of the value function. Consider, for instance, Λ(s, y, u) := L(y, u) = a(y)

√
1 + |u|2 (y, u ∈ R) with a lower

semicontinuous and 1 ≤ a ≤ 2, S = U = R; let g be continuous on R (this example is inspired by [13, Example 2.4.2]).
Clearly L is not superlinear and, since L(y, u) ≥ |u|, it satisfies (L). Fix t0 = 0, T = 1, δ ∈ [0, 1[, x∗ ∈ R, δ∗ > 0,
t ∈ [0, δ] and x ∈ [x∗ − δ∗, x∗ + δ∗]. Let y∗ be a minimizer for (Pt,x); its existence follows from [13, Theorem 2]. Claim
1 of Corollary 3.6 says that there is B ≥ 0 depending only on δ and x∗, δ∗ such that

B ≥
∫ 1

t

L(y∗(s), y
′
∗(s)) ds.
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Now, denoting by Lu the partial derivative of L with respect to u, we have

L(y, u)− uLu(y, u) =
a(y)√
1 + u2

,

so that, for any ν, c > 0,

sup
|u|≥ν

{L(y, u)− uLu(y, u)} =
a(y)√
1 + ν2

≤ 2√
1 + ν2

,

inf
|u|≤c
{L(y, u)− uLu(y, u)} =

a(y)√
1 + c2

≥ 1√
1 + c2

.

Since lim
ν→+∞

1√
1 + ν2

= 0, then L satisfies (HδB(e)). Corollary 4.1 shows that the value function V (t, x) is locally

Lipschitz in [0, δ]× [x∗ − δ∗, x∗ + δ∗].

Proof of Corollary 4.1. Assume the validity of Condition 1. Let t∗ ∈ [t0, δ[, x ∈ Bδ∗(x∗) and fix ε > 0 such that

0 < ε < min{δ − t∗, δ∗}.

Take t0 ≤ t1, t2 ∈ [t∗−ε/5, t∗+ε/5] and x1, x2 ∈ Bnε/5(x∗) with either t2 6= t1 or x2 6= x1. Set ∆ := |t2−t1|+|x2−x1|.
Notice that

t0 ≤ t1 < t1 + ∆ ≤ t∗ + ε ≤ δ, t0 ≤ t2 ≤ t1 + ∆ ≤ δ.
Since inf(Pt2,x2 ) is attained, let y2 ∈W 1,1([t2, T ];Rn) be such that

y2(t2) = x2, Jt2(y2, y
′
2) = V (t2, x2).

Theorem 3.1 shows that every minimizer y for (Pt,x) is such that ||y||∞, ||y′||∞ ≤ K, where the constant K depends
only on δ, δ∗ and x∗.
Let

u :=
y2(t1 + ∆)− x1

∆
.

The choice of ε yields

|u| ≤ |y2(t1 + ∆)− y2(t2)|
∆

+
|y2(t2)− x1|

∆

≤ |y2(t1 + ∆)− y2(t2)|
∆

+
|x2 − x1|

∆

≤ K |t1 + ∆− t2|
∆

+
|x2 − x1|

∆
≤ K |∆|+ |t2 − t1|

∆
+ 1 ≤ 2K + 1.

We consider now the competitor z for (Pt1,x1 ) given by

z(s) :=

{
x1 + (s− t1)u t1 ≤ s ≤ t1 + ∆,

y2(s) t1 + ∆ ≤ s ≤ T.

Since z(T ) = y2(T ) we get

V (t1, x1) ≤
∫ t1+∆

t1

Λ(s, z, z′) ds+

∫ T

t1+∆

Λ(s, y2, y
′
2) ds+ g(y2(T ))

≤
∫ t1+∆

t1

Λ(s, z, z′) ds+ V (t2, x2)−
∫ t1+∆

t2

Λ(s, y2, y
′
2) ds.

(4.2)
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Since 0 ≤ ∆ ≤ 4ε/5 for all s ∈ [t1, t1 + ∆] we obtain

|z(s)| ≤ |x1|+ ∆|u| ≤ |x∗|+ ε/5 + 4(2K + 1)ε/5, |z′(s)| ≤ |u| ≤ 2K + 1,

so that, given that Λ is bounded on bounded sets,∣∣∣∣∣
∫ t1+∆

t1

Λ(s, z, z′) ds

∣∣∣∣∣ ≤ C∆ = 2C(|t2 − t1|+ |x2 − x1|),

for some positive constant C which depends only on δ, δ∗ and x∗. Moreover, as observed above, from Theorem 3.1 we
obtain that ||y2||∞, ||y′2||∞ ≤ K, and thus, using the fact that |t2 − t1| + ∆ ≤ 2∆ (we can take the same constant C
previously employed) ∣∣∣∣∣

∫ t1+∆

t2

Λ(s, y2, y
′
2) ds

∣∣∣∣∣ ≤ C|t1 + ∆− t2|

≤ 2C(|t2 − t1|+ |x2 − x1|).
It follows from (4.2) that

V (t1, x1)− V (t2, x2) ≤ 4C(|t2 − t1|+ |x2 − x1|).
Exchanging the roles of (t1, x1) and (t2, x2) we arrive at

|V (t1, x1)− V (t2, x2)| ≤ 4C(|t2 − t1|+ |x2 − x1|),

which proves the claim. The result under Condition 2 follows immediately as a consequence of Proposition 2.18. �
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