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This article reports on a trace-based assessment of 
approaches to learning used by middle school aged 
children who interacted with NASA Mars Mission 
science, technology, engineering and mathematics 
(STEM) games in Whyville, an online game environ-
ment with 8 million registered young learners. The 
learning objectives of two games included aware-
ness and knowledge of NASA missions, developing 
knowledge and skills of measurement and scaling, 
applying measurement for planetary comparisons in 
the solar system. Trace data from 1361 interactions 
were analysed with nonparametric multidimensional 
scaling methods, which permitted visual examina-
tion and statistical validation, and provided an exam-
ple and proof of concept for the multidimensional 
scaling  approach to analysis of time-based behav-
ioural data from a game or simulation. Differences 
in approach to learning were found illustrating the 
potential value of the methodology to curriculum and 
game-based learning designers as well as other crea-
tors of online STEM content for pre-college youth. 
The theoretical framework of the method and anal-
ysis makes use of the Epistemic Network Analysis 
toolkit as a post hoc data exploration platform, and 
the discussion centres on issues of semantic inter-
pre tation of interaction end-states and the application 
of evidence centred design in post hoc analysis.
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OVERVIEW AND BACKGROUND

This article reports on a trace-based analysis of ‘approaches to learning’ in a digital game. 
Gamification approaches have been used in many fields, including education, to improve moti-
vation (Hanus & Fox, 2018) as well as improve learning outcomes (Koivisto & Hamari, 2019). 
Educational game play has been demonstrated to positively affect learning performance and 
learning persistence (Mayo, 2007). However, many findings are based primarily on pre and 
post comparisons, or ‘state to state’ statistics, which do not address or enlighten research-
ers about the dynamic components or trajectories of the differences in problem-solving 
approaches, patterns and semantics used by study participants. This study, rather than posing 
research questions and then searching for evidence, created an exploratory model-based 
explanation of gameplay using five foundational frameworks—(1) unobtrusive data collection 
and observation, (2) nonparametric scaling methods, (3) multimodal analysis, (4) epistemic 
network analysis (ENA) and (5) evidence-centred design (ECD). The narrative summarizes 
the historical antecedents of trace-based analysis methods leading to these foundations, 
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Practitioner notes
What is already known about this topic
•	 Educational game play has been demonstrated to positively affect learning 

performance and learning persistence.
•	 Trace-based assessment from digital learning environments can focus on learning 

outcomes and processes drawn from user behaviour and contextual data.
•	 Existing approaches used in learning analytics do not (fully) meet criteria commonly 

used in psychometrics or for different forms of validity in assessment, even though 
some consider learning analytics a form of assessment in the broadest sense.

•	 Frameworks of knowledge representation in trace-based research often include 
concepts from cognitive psychology, education and cognitive science.

What this paper adds
•	 To assess skills-in-action, stronger connections of learning analytics with educational 

measurement can include parametric and nonparametric statistics integrated with 
theory-driven modelling and semantic network analysis approaches widening the 
basis for inferences, validity, meaning and understanding from digital traces.

•	 An expanded methodological foundation is offered for analysis in which 
nonparametric multidimensional scaling, multimodal analysis, epistemic network 
analysis and evidence-centred design are combined.

Implications for practice and policy
•	 The new foundations are suggested as a principled, theory-driven, embedded data 

collection and analysis framework that provides structure for reverse engineering 
of semantics as well as pre-planning frameworks that support creative freedom in 
the processes of creation of digital learning environments.



discusses key ideas of unobtrusive educational data gathering and measurement, presents 
a specific game-based learning example, analyses the data with a combination of theoreti-
cal frameworks and shares findings about differences in approaches to learning. We aim to 
provide the reader with evidence of the effectiveness of the methodological foundations for 
linking nonparametric multidimensional scaling to approaches used in learning analytics.

Trace-based assessment of approaches to learning

Trace-based methodologies allow for analyses and inferences concerning learning 
outcomes and processes drawn from user behaviour and contextual data identified as learn-
ing events in a digital context such as a simulation or game. The learning events can be 
considered signatures of behavioural, cognitive and metacognitive features of a learner's 
interactions with curriculum resources and people in a designed digital environment. For 
example, trace-based research has focused on self-regulated learning and other metacog-
nitive skills (Azevedo & Gašević, 2019; Siadaty et al., 2015), cognition and understanding 
(Barnes, 1994; Kopainsky et al., 2010), decision-making (Cohen, 2005) and ethical behav-
iour (Schrier & Gibson, 2010). Among the targets for trace-based investigation are learning 
processes and approaches to learning at both individual and team levels. Our international 
team has used trace-based analysis methods to investigate and report here on individual 
learning outcomes and processes in a globally available online science game designed for 
middle school students.

Online unobtrusive data gathering

Unobtrusive data gathering has the goal of staying out of the way of a person's interactions 
so a more authentic and relevant profile of performance, or knowledge-in-action, can be 
gathered (Gibson,  2018). With fine grained data recorded, the context for action can be 
captured in great detail and the enacted response of the user will be a more realistic signa-
ture of what the person knows and can do in the context (Shute & Ke, 2012).

A general method for gathering unobtrusive observational data involves metadata 
mapped to structured and unstructured digital interactions where an individual's words, 
deeds and things created (expressed thoughts, behaviours and artefacts) are implicitly or 
explicitly prompted and documented in the digital space. There is considerably more open-
ness in a simulation or game than in a test or quiz, in terms of the type, degree and amount 
of possible learner responses that can be documented by a highly granular data record of a 
learner's performance, with many attendant options for analysis (Gibson, 2018).

Several methods adapted from a range of disciplines are used for analysing and 
making sense of the rich datasets that are typical of such learning environments (Timms 
et  al.,  2012). These include statistics (correlational and nonparametric statistics, scaling 
methods), psychometrics (Item Response Theory), data mining (principal component anal-
ysis and cluster analysis), artificial intelligence (Bayesian Nets and Hidden Markov Models) 
computational ethnography (Shaffer, 2017) and dynamic network analyses that account for 
complexity (Feng et al., 2017; Kerrigan et al., 2019; Oshima & Shaffer, 2021).

Frameworks of knowledge representation in trace-based research often include concepts 
from cognitive psychology, education, and cognitive science (Quellmalz et al., 2012). A generic 
approach to building such knowledge representation systems for specific research or educa-
tional contexts known as ECD or ‘evidence centred design’ (Mislevy et al., 2003) has been 
developed based on the idea of an evidential argument. We have applied the ECD frame-
work as a reflective activity in research, illustrating its value for post-analysis validation of the 
results of a trace-based analysis effort. An additional tool of the analysis is ‘epistemic network 
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analysis’ drawn from quantitative ethnography (Shaffer, 2017) used in conjunction with statisti-
cal tests that expand on the ECD knowledge representation of measurement targets based on 
goals of the two games studied. We next describe the foundational theories of the research.

THEORETICAL FRAMEWORK

Nonparametric multidimensional scaling

Multidimensional scaling is a term encompassing analysis methods that attempt to spatially 
represent proximities between psychological objects (Dunn-Rankin et al., 2014). A distinction 
can be made between different uses of the term “multidimensional,” one of which is based 
on contrasting unidimensional scaling techniques such as Guttman scaling (Guttman, 1944, 
2017), applications of ordering theory (Swartz, 2002), circular triad analysis (Knezek, 1978; 
Knezek et al., 1998) or rank sum scaling (Dunn-Rankin, 1978) with multidimensional tech-
niques that accommodate spatial representation in more than one dimension simultane-
ously. Within this context, well-established methods such as factor analysis (Cattell, 1957, 
1962; Dunn-Rankin et al., 2014; Wilkins & Cattell, 1953) that attempt to identify or confirm 
underlying constructs that cause observed or self-reported psychological characteristics can 
also be considered multidimensional. However, in the current context, the term multidimen-
sional scaling (MDS) will be used to refer to specific methods where the goal is to determine 
the smallest hyperspace (eg, straight line, X-Y Cartesian representation, X-Y-Z space, etc.) 
necessary to accurately represent the psychometric distances between objects (Dunn-Rankin 
et al., 2014). This is consistent with the perspectives of scholars such as Takane (2006) who 
defined MDS as a set of data-analytic tools for deriving a graphical representation of objects 
in a multidimensional space based on proximity relations among them.

MDS procedures such as ALSCAL (Young et al., 1978) and PROXSCAL (Busing et al., 1997) 
can accept parametric data (normal curve assumptions) or nonparametric (distribution free) 
data. However, our current focus is on scaling methods based on distribution free assumptions 
(Gibbons, 1997; Kendall, 1957) including ENA (Shaffer, 2006, 2017; Shaffer et al., 2009). Note 
that in the literature the term metric vs. non-metric multidimensional scaling is often used (eg, 
Rabinowitz, 1975) but because a common layperson meaning for ‘nonmetric’ is not based on 
the meter and because there is always some metric used in scaling—whether it be nominal, 
binary no/yes, rank order, Euclidean or even Minkowski city block—we use the term nonpara-
metric multidimensional scaling to clarify that we are referring to a class of procedures in which 
no underlying assumptions are made a priori about the distribution of the data being examined. 
This is believed to be in keeping with Kruskal's foundational treatise on the topic entitled Multi-
dimensional scaling by optimizing goodness of fit to a nonmetric hypothesis (Kruskal, 1964).

The result of any MDS procedure is often a visual representation of proximities that 
reveal underlying relationships among the objects being scaled. Objects in MDS might 
be attributes (ie, personality traits or STEM career interests) or entities (ethnic groups or 
nations), or both (Dunn-Rankin, 1978; Knezek & Christensen, 2014). The representation of 
objects in one, two or three dimensions often reveals to the human eye the same typologi-
cal clusters that are identified by nearest-neighbour classifications commonly used in clus-
ter analysis techniques. This approach can be compared with construct-based dimensional 
indices produced by the group of procedures generally classified as factor analysis. The 
two alternative approaches can be complimentary and even synergistic, as described by 
Cattell (1977, personal communication) in the example that we accept height and weight as 
unique, useful-to-society constructs, even though we acknowledge that the two are related. 
However, when we plot a sample of subjects based on x and y axes representing these two 
attributes, we will commonly find that that the plotted points form two clusters, which we might 
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label as “big people” (taller and weigh more) versus “small people” (shorter and weigh less). 
Humans often report perceptions of subjects based on two or more constructs simultane-
ously, and therefore typological classifications might be meaningful for terms such as extro-
verted, which can be defined as “outgoing and socially confident” (OGL, 2021). However, for 
most personality measurement instruments, extroversion is the opposite of introversion for 
a unique personality construct labelled introversion-extroversion. Both definitions may have 
merit. The choice of which is most appropriate often depends on context.

When applying MDS procedures such as ALSCAL or PROXSCAL that can be used to 
produce the representations and visualizations of a set of objects in n-dimensional space, the 
percent of variance explained by the one-dimensional (straight line) versus two-dimensional 
(flat plane or piece of paper), or three-dimensional (cube) representation is often used as an 
aid to decide which of N-dimensions is most appropriate to retain. In the case of ALSCAL, a 
familiar R-squared total variance explained is reported, while in the case of PROXSCAL,  a 
proportion of dispersion accounted for (D.A.F) is reported. These are often used together 
with researcher judgements of the meaningfulness of the visualizations at each dimensional 
level. From a mathematical perspective, these types of multidimensional scaling iterations (in 
reverse) are consistent with projecting data representations into or onto successively smaller 
and smaller hyperspaces with the principle of parsimony (stinginess but completeness) in mind.

For ENA, a nonparametric test of significance of established cluster distinctions is often 
reported and the thickness of the connecting lines in the visualization along with the size 
of the nodes represent the strengths of associations. This approach takes advantage of 
some of the visualization benefits of the branch of mathematics known as Graph Theory 
(Harary, 1969), and it is often used in social distance representations in the 21st Century. 
See the following for more information about ENA.

Multimodal analysis

Historically, multimodal analysis emerged in linguistics focused primarily on communication of 
meaning or semantics in which there is more than one mode of text, broadly understood as 
any form of representation. Spurred by technology such as sound recordings, starting in the 
1960s, the field began to be highly concerned with dynamical problems such as transcription, 
analysis and reproduction of complex texts and their meaning. Multimodal analysis thus devel-
oped to deal with the interaction and integration of two or more semiotic resources or modes in 
addition to language. For example, the additional ‘social semiotics’ or ‘sign’ modes in a tradi-
tional multimodal analysis might include gesture, gaze, dress, physical proximity, visual and 
aural art, image-text relationships, film and sound design and production resources such  as 
technical resources (Sommer, 2021). These expanded definitions of a ‘text’ take on a whole 
new meaning in a digital learning environment, where they can each exhibit a unique digital 
signature—a dynamic event profile—with a unique physically instantiated case-in-context.

As digital learning environments have emerged, researchers have begun to apply the 
field's lessons to trace-based analysis (Shum et al., 2007) and to frameworks for examining 
potentially overlapping layers of meaning, such as in epistemic frames of analyses, which 
we describe later (Shaffer, 2006). One of the lessons from social semiotics is that all modes 
are potentially meaningful, so it would be artificially discriminatory to only pay attention to 
the verbal or visual communications in a multimodal study, which we take to also mean any 
trace-based research on any digital learning environment. In a digital learning environment, 
all meaningful signals and signatures, either intended or unintentional, of behaviour, thinking, 
and emotional reactions are potentially discoverable during analysis. A key methodologi-
cal stance to remember is that both hypothesis-led and computational model-led research 
approaches are supported by the multimodal framework (Gibson & Jakl, 2013).
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Learning analytics informed by multimodal data captured during students' interactions 
with digital learning environment affordances (Gibson, 1979) hold promise for developing 
a deeper, more dynamic understanding of learning, designing interactive digital learning 
environments and informing smart systems (eg, with adaptive scaffolding) to support indi-
vidualized learning. One research project, for example, investigated the degree to which 
separate and combined modalities (ie, gameplay, facial expressions of emotions and eye 
gaze) were predictive of student post-test performance and interest after interacting with a 
game. The findings suggested that multimodal learning analytics could accurately predict 
students' post-test performance and interest during learning and thus held potential for guid-
ing real-time adaptive scaffolding (Emerson et al., 2020).

Epistemic network analysis

Multivariate and multimodal analysis can be combined, but examples are rare. For 
example, with the rise in neuroimaging techniques and increased computational power, 
‘multimodal-fusion’ can be found in the study of brain function related to structure (Sui 
et al., 2012). The goal of multimodal fusion is to capitalize on the strength of each modality in 
a joint analysis, rather than a separate analysis of each. An interesting parallel can be drawn 
between the neuroscience concept of multimodal fusion and an educational analysis of digi-
tal performances in that in both instances, there may be a small number of cases, with a large 
amount of high dimensional data. Statistical approaches to the challenges have included, 
for example, independent component analysis (ICA), canonical correlation analysis (CCA) 
and partial least squares (PLS). A review of these and other multivariate approaches can be 
found in an article that uses multivariate methods for brain imaging data (Sui et al., 2012).

Approaches for combining or fusing data in brain imaging have been conceptualized as 
existing on an analytic spectrum with highly distilled data meta-analysis (to examine conver-
gent evidence) at one end and highly detailed yet large-scale computational modelling (to 
generate testable data) at the other end. ENA fits on this continuum as it successfully bridges 
ethnographic research concepts such as discovering the meaning of multimodal texts (eg, 
words representing observations of complex events and levels of meaning) with the compu-
tational graphics of networks.

ENA was originally developed as a model for cognition and discourse processes (Shaffer 
et al., 2009) considering learning as a process by which isolated skills, experiences and knowl-
edge are connected through theoretical frameworks to develop both new and deep, systematic 
understandings. Foundational to ENA is the theory of epistemic frames: the pattern of connec-
tions among skills, knowledge, values, and experiences within a group of people that share 
similar ways of making decisions and justifying actions. Thus, ENA analyzes these frames by 
creating a network model that quantifies how the skills, knowledge, values and epistemologies 
are connected to one another in an interaction. It moves from three assumptions: (1) that mean-
ingful features in the data can be systematically identified (nodes); (2) that there is local struc-
ture to the data (sliding time windows, or conversational contexts); and (3) that nodes within 
conversations are connected in a meaningful way (Shaffer et al., 2016; Shaffer & Ruis, 2017).

In our research, we can consider that STEM learning implies an epistemic frame, S, with 
s1 … sn elements, where each si is some knowledge, skill, value or epistemology typical of 
a STEM mindset. A learning environment (such as the web based Whyville game) based on 
S can be described as a series of tasks about which we collect data, D, in a certain time, t. 
Hence, we can look at a participant, p, and at their Dt as the picture of the participant's STEM 
epistemic frame at a certain time, D pt. If we want to inquire how this participant's STEM 
epistemic frame develops over time, that is look at their learning curve in Whyville, we could 
consider the sequence of data D pt1….e ranging from the beginning of p's interaction in the envi-
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ronment (t = 1) to the end of it (t = e). ENA may then create a cumulative network where the 
single elements (ie, s1 … sn - nodes) in data that are connected more often (greater number 
of relationships) in p's interactions are spatially closer to each other than those elements that 
do not share such frequent connection (Shaffer et al., 2009). A network's weighted density is 
calculated by taking the square root of the sum of the squares of the associations between 
individual elements. As such, it provides an indication of the overall strength of the associ-
ation of the network, emphasizing that the dense core of the graph is central to the overall 
strength of the epistemic frame (Oshima & Shaffer,  2021). Such weighted density of the 
epistemic frame can be used to measure its changes over time, observing how they correlate 
to specific elements of the participants' tasks in the game environment.

Moreover, ENA can develop models for groups of participants at the same time, allowing 
for both visual and statistical comparison of several epistemic frames. Based on ENA's mathe-
matical justification, the nodes of a network are in a co-registered space with the network graph 
representation. Hence, the centroid of each network, ci, becomes visible in the same overall 
space. Ci is computed as the mean of all the nodes weighted by the connection strength of the 
network. The mathematically justified placement of nodes and centroids across all networks 
in the same ENA space allows comparisons of the network graphs. Researchers, for exam-
ple, can inquire as to why two networks are close to one another in the ENA space, through 
summary statistics such as density, degree and betweenness centrality, without losing the 
pivotal role of the semantics in defining the networks' structure (Oshima & Shaffer, 2021).

Evidence centred design

The final pillar of the theoretical foundation of the research is evidence centred design (ECD; 
Mislevy, 2011; Mislevy et al., 1999; Rupp et al., 2010), which we have applied here as a 
post hoc analysis framework. Other researchers have used ECD as a design template for 
the development of a game or simulation, but in this case, the games being studied were 
created by others before data analysis began. The core idea of ECD is that an educational 
assessment is a professional agreement, about what can be inferred and claimed about 
what someone knows and can do, that follows the logic of evidentiary reasoning. The logic 
builds to a conclusion (eg, does someone know x or can the person do x) based on multiple 
sources and chains of evidence, drawing on an underlying mapping from the evidence to the 
claim based on linking or connecting rules.

In statistical inference, the chain and rules of evidence are instantiated as commonly 
understood algorithms (eg, for central tendency or correlation). In model-based inference, 
the chain and rules are instantiated in the model's computations and relationships (eg, a 
network's nodes and linkages). In either approach when the approach is exploratory, as 
distinct from hypotheses testing, the fusion of patterns with possible meanings is an emerg-
ing, complex endeavour calling upon many tools of science and reasoning, entailing a simul-
taneous concern for hierarchical as well as time-based structures that accompany and infer 
functions.

In ECD, these concerns have been likened to a tapestry (Shute et al., n.d.) in which each 
thread reveals a portion of a larger picture and tells its part of the story only when visible at a 
distance in the context of the other threads' contributions to the whole. The most distant posi-
tion is the domain model, for example, how people in an educational field conceptualize and 
construct ideas. In the middle distance where the whole tapestry cannot yet be seen in total-
ity, three structures are found, each of which is a computationally efficient (eg, the compu-
tation will reach a result) representation of knowledge-in-action in two respects—expected 
and real or empirical—and the evidence mapping rules that relates a real performance to an 
expected one (eg, how close the real reached to the expected). In ECD terms, the expected 
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entity is the task model, the real or empirical entity is the student model, (a specific user 
interaction trace in ‘trace-based analysis’) with the affordances or potential patterns of some 
digital problem space and the chain of reasoning is called the evidence model.

In our study, the data for the empirical student model came from user traces and the task 
model was determined by the NASA Mars Mission games described next. Our evidence 
model is described in the Analysis section that follows.

CASE EXAMPLE CONTEXT

Whyville, a pioneer in the use of social gaming to engage children in informal STEM learning, 
was developed in 1999 as an informal virtual learning environment targeted at children ages 
8–15 years old. (See http://whyville.net) The site was built on the idea that collaboration and 
cooperation are an important part of learning. Demographics of the participants in the envi-
ronment indicate that about 70% of the participants are female. Based on several studies 
using immersive simulations for learning, Barab and Dede (2007) concluded that “leveraging 
the affordances of game-based technologies and methodologies provides a powerful poten-
tial for supporting deep and engaging science learning” (p. 2).

In 2020, efforts were begun by the research team, funded by NASA, to expand 
evidence-based space science learning engagement activities into the online interactive, 
game-based learning environment of Whyville. Arrangements were made to locate the activ-
ities within Mars Mission Control situated within the Whyville Aeronautics and Space Admin-
istration (WASA) whose other components had been developed through NASA support 
spanning more than a decade. Participants are free to access any of the games in this pack-
age. For this study, we have focused on the two most frequently accessed among young 
learners, based on free-choice access statistics during the initial months after release: (a) 
Space Swap and (b) Martian Measure. Learning objectives are listed in Table 1. More than 
9000 interactions by more than 200 individuals had taken place within the Mars Mission 
Control within its first six months of access. We explain below how we reduced the data set 
for this analysis.

Mars Mission Control features a beagle, named Maggie, that helps users explore Mars 
and the Solar System through a series of interactive games (Christensen & Knezek, 2021). 
The Space Swap game is designed to raise awareness of NASA missions and technologies 
by having the user match pictures of five unmanned spacecraft to their description. Images of 
the spacecraft are also available in 3D. The Martian Measure game allows users to measure 
each of the five spacecraft with seven different scales, including the dog, Maggie. For exam-
ple, the Perseverance Rover is equal to 3.5 Maggie body lengths. Users compare celestial 
bodies in the solar system through the game Solar Sizing. Users are asked various distances 
such as how wide Jupiter is in terms of Earth. There are six challenges in this mission.

ANALYSIS

The parent company of Whyville routinely records numerous indicators of usage and game 
dynamics for the more than 100 remote access environments maintained free to educators 
and young learners within the Whyville environment. For Mars Mission Control, a dashboard 
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Game Learning objective Trace data indicators

Space Swap Awareness and knowledge of NASA missions Pre-Post Survey (not reported here)

Martian Measure Knowledge and skills of measurement and scaling Units of measure, Guessing Winning

T A B L E  1   Mapping Mission learning objectives to indicators

http://whyville.net


for privacy-protected data downloads of the NASA-funded project was created and could only 
be accessed by the research team. Data files of demographic variables, game stats and traces 
were downloaded from Whyville and then joined together for analysis in ENA. The demo-
graphics file contains Whyville user ID, gender, birth year, geographic region, months on the 
platform, number of logins and pre-post survey responses. The game stats file contains a user 
ID, action, action timestamp, game played, and details of the interaction. Each time a user 
views one of the games the system logs a pageview. When a user guesses the answer to 
one of the games, a “guess” is logged with the details, and if the user is correct, a “won game” 
is logged with the same details and timestamp. The details field contains variables the user 
chose when either guessing or winning the game. For ENA analysis, the unit of measurement 
for Martian Measure is extracted from the details field and viewed with the game action as 
seen in Figure 2a,b.

In the current study, analysis was restricted to data from participants in the Whyville 
Mars Mission Control suite of games who were between the ages of 11 and 19. The overall 
population interacting on Whyville in our data was distributed as follows, with 38 girls and 
19 boys interacting on the platform for a total of 1412 times. The number of interactions 
was considered pivotal to access learning approaches. Students with 1–10 interactions on 
Whyville were judged to have so few interactions with the intended learning environment 
(came in and then soon left) that they were grouped into the category of Irrelevant and 
excluded from further analysis (Table 2). Thus, 17 out of 19 boys and 15 out of the 38 girls' 
records did not warrant additional analysis. The remaining population (n = 25), interacting for 
a total of 1361 times in Whyville, was examined with boys and girls (hereafter called ‘teens’) 
in one group, together. Students with 11 to 40 interactions were classified as “low” number of 
interactions, while students with 41 or more interactions were classified as a “high” number 
of interactions. The total number of interactions in the low interactions group (n = 7) was 133 
compared to a total of 1228 interactions in the high interactions group (n = 18).

ENA methodology

Feature extraction for ENA analysis is a multistep process that includes data transformations 
needed, as described by (Shaffer, 2017) We defined the units of analysis as all individuals 
associated with a binned value of interactions (low or high) and an identification number 
(representing an individual). For example, one unit consisted of all the lines associated with 

NONPARAMETRIC APPROACHES TO ASSESSING LEARNING 9

Number of interactions Boys Girls

Irrelevant

  1 10 11

  2 to 10 7 4

Low

  11 to 20 0 6

  21 to 40 0 1

High

  41 to 60 2 4

  61 to 80 0 8

  More than 80 0 4

Total 19 38

T A B L E  2   Cases with number of interactions



low interactions and an individual with the ID 1029432. Identifying aggregation units in ENA 
enables the construction of networks based on the data linked to unique parameters. In 
other words, the described parameters will ensure the visualization of networks in which the 
actions performed on Whyville by a specific user (ID) and belongs to the wider group of users 
with high/low interactions, are aggregated together in a single unit of analysis.

The ENA algorithm uses a moving window to construct a network model for each line 
in the data (ie, an action in Whyville), showing how codes in the current line are connected 
to codes that occur within the recent temporal context (Siebert-Evenstone et  al.,  2017) 
defined as 4 lines (each line plus the 3 previous lines) within a given ‘conversation’ or sliding 
time window. The resulting networks are aggregated for all lines for each unit of analysis in 
the model. In this model, we aggregated networks using a binary summation in which the 
networks for a given line reflect the presence or absence of the co-occurrence of each pair 
of codes.

Our model included the following codes: units of measures (ie, dogs, inches, meters, 
feet, centimetres, kilometre, lumen and astronomical) and types of actions within the game 
(ie, Guess, Won, Pageview). ENA considers conversations as all lines of data that deal 
with possibly interrelated concepts. In ENA, conversation variables indicate, for every line 
of data in each unit, to which conversation they belongs, and hence they model connec-
tions within each unique conversation. We defined conversation variables as all lines of data 
with a single value of the type of game (ie, MartianMeasure or Swap) as a subset of the 
Martian craft, wherever appropriate (ie, parker, perseverance, curiosity, ingenuity, insight). 
For example, one block of interactions for a particular student might consist of data records 
associated with MartianMeasure and ingenuity. Considering the definition of unit and codes, 
we proceeded in ENA modelling the networks for single teens in high/low interaction groups, 
observing their tasks within each Whyville game and subset(s), and mapping their epis-
temic networks in terms of units of measures and actions. The ENA model normalized the 
networks for all units of analysis before they were subjected to a dimensional reduction, 
which accounts for the fact that different units of analysis may have different amounts of 
coded lines in the data, for example the low interaction group has less coded lines than the 
high interaction one (respectively, 133 and 1228).

From code co-occurrences, ENA first creates a high-dimensional representation, called 
the analytic space, of all analysis units. The units of analysis are then projected onto a 
lower-representational space, called the projection space, which is derived from the analytic 
space through singular-value decomposition (svd) maximizing the data variance explained 
by each dimension. The visualization in our model was done using svd1 (x axis) and svd2 (y 
axis), which accounted for 41.9% and 25.2% of variability of the epistemic networks created 
by the students, respectively. At the end, the output of ENA is a series of graph models which 
capture the relationships between the different codes (Shaffer et al., 2016).

Networks were visualized using network graphs where nodes correspond to the codes, 
and edges reflect the relative frequency of co-occurrence, or connection, between two codes. 
The result is two coordinated representations for each unit of analysis: (1) a plotted point, 
which represents the location of that unit's network in the low-dimensional projected space, 
and (2) a weighted network graph. The positions of the network graph nodes are fixed, 
and those positions are determined by an optimization routine that minimizes the differ-
ence between the plotted points and their corresponding network centroids. Because of this 
co-registration of network graphs and projected space, the positions of the network graph 
nodes—and the connections they define—can be used to interpret the dimensions of the 
projected space and explain the positions of plotted points in the space.
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Findings

Our model in Figure 1 had co-registration correlations of 0.94 (Pearson) and 0.90 (Spear-
man) for the x-axis and co-registration correlations of 0.83 (Pearson) and 0.74 (Spearman) 
for the y-axis. Co-registration correlations in ENA reflect that the network model, for each 
unit of analysis, projects both a point in the vector space and a weighted network of all other 
relationships in the space. Co-registration allows a consistent interpretation of (and compar-
ison of) the units of analysis, which for example, allows us to infer that the difference in the 
centroids (small squares in Figure 1) of the high and low groups has meaning.

Figure 1 shows that the data in the two groups of participants have different degrees of 
certainty as the dotted squares represent the confidence intervals. Each dot in the figure repre-
sents a player and shows how players in the low interaction group (n = 7, 133 interactions) are 

NONPARAMETRIC APPROACHES TO ASSESSING LEARNING 11

F I G U R E  1   ENA model for high and low interactions on Whyville, in teens.

F I G U R E  2   (a) ENA network diagram for low interaction group. (b) ENA network diagram for high interaction 
group.



more widespread than their counterparts in the high interaction group (n = 18, 1228 interac-
tions). More specifically, players in the low interaction group have a standard deviation of 1.10 
on the x-axis and 1.11 on the y axis, while players in the high interaction group have a lower 
standard deviation of 0.26 and 0.31 respectively on the x and y axis. Along the x axis (Svd1), 
a Mann–Whitney test showed that the low interaction group (Mdn = −0.68, N = 6) was statis-
tically significantly different at its centroid (the square in Figure 1) at the alpha = 0.05 level, 
from the high interaction group's centroid (Mdn = 0.94, N = 15 U = 99.00, p = 0.00, r = −0.89).

The epistemic network graphs corresponding to the two groups of participants (low and 
high interactions) will now be more closely inspected in Figure 2a (low interaction group) and 2b 
(high interaction group). Visible in Figure 2a, the triangle Won-meters-Guess in the low interac-
tion group lies on a different plane than in Figure 2b the triangle Won-inches-guess by the high 
interaction group indicating significant differences in the action-strategies of the two groups.

Upon closer inspection, the x axis (svd1 explaining about 42% of the variance) seems 
to primarily distinguish between teens focusing more on the early phases of cognitive pres-
ence (Garrison et al., 1999), namely exploration of the environment in the low interaction 
group, or the later phases, exhibiting more purposeful manipulation of the environment in 
the high interaction group. This can be seen in the weighted connections between the nodes 
(codes), which are represented by thickness of lines in the network diagrams. The low inter-
action group (Figure 2a) has connections between actions such as guessing and winning 
the games using units of measures like dogs, meters or inches (thickest lines in the diagram 
in Figure 2a). The centroid, which is a centre of mass for the network diagram, considers 
the weights of the connections among the nodes and, for the low interaction group, is close 
to the area of playing around guessing with dogs or meters. In contrast, the high interaction 
group (Figure 2b) has stronger connections among all the nodes, which is expected due to 
the increased number of interactions. Students in the high interaction group make more use 
of standard units of measure in US: inches and feet. The group's centroid is also closer to the 
side of winning the game, suggesting a shift toward purposeful interactions.

The ratio of wins to guesses, like a percentage of correct items on a quiz, is not as 
informative as a finer grain picture of the processes used in the low and high groups. The 
low group (40 wins to 68 guesses) is an order of magnitude smaller than the high group (435 
wins to 723 guesses) but the Martian Measure design allows both groups to guess at about 
the same win rate (59% vs. 60%). However, evidence of a group difference is apparent in 
the units of measure, where the playful use of ‘dogs’ as an approximation measure engaged 
students at first but was abandoned as the players interacted more often and space objects' 
distances and sizes became too great. The centroid of the low interaction group network is 
thus closer to dogs (Figure 2a) than the high interaction group (Figure 2b).

The ENA model suggests that as the number of interactions grow, the players actions in 
the game become more purposeful (eg, group centroid closer to winning) and focused on 
using more familiar US standard measures of unit (eg, inches as opposed to dogs or meters) 
to win and complete the tasks. With increased time and interactions, students seem to move 
from an initial exploration to a higher levels of scientific engagement.

DISCUSSION AND IMPLICATIONS

Game-based learning has rapidly gained acceptance in the 21st century as a premier mode 
of learning engagement. As introduced in this study, embedded assessment techniques can 
unobtrusively produce data that allow us to analyse evidence of learning without interfering 
with its natural development or flow. Nonparametric multidimensional scaling techniques do 
not assume that the distribution underlying the sample of data drawn is based upon normal 
curve assumptions. Often the presence or absence of an attribute (eg, a specific gender) or 
specific occurrence (eg, viewed page or completed game) is all that is recorded, and it is more 
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realistic in such cases to start with few or no assumptions and use nonparametric statistics to 
explore and search for meaningful patterns that may emerge. Analysis packages such as ENA 
can greatly aid the process by providing alternative visual perspectives of the relationships 
among key variables, and by calculating the statistical likelihood of what may at first glance 
appear to be a meaningful pattern. This approach leads us to several observations that may be 
useful for other researchers in the field. We have categorized our observations into the three 
areas of learning design, learning theories and educational data mining and scaling methods.

Learning design

The design of digital games without a principled, theory-driven, embedded data collection 
framework requires researchers who are interested in learning processes to reverse engineer 
semantics into the variable names in the data to then conduct exploratory semantic analy-
ses. Not all ‘interactions’ are meaningful to learning objectives. For example, the number of 
‘pageviews’ is not meaningful without more context about what is on the page, or if there were 
options and the selected page is a good decision. At the same time, new indicators can arise 
from a theory-guided exploratory analysis and can be applied in post hoc analysis. For exam-
ple, even though a pageview interaction has limited value by itself, in concert with information 
about immediate past actions and those that follow, may increase its semantic importance. To 
work with that increased level of meaning requires more than data cleaning and transformation. 
Researchers can enhance meaning of the data by labelling the widened context as a new unit 
of analysis within the ECD framework (eg, as a part of the domain, student, task or evidence 
models). NASA-type games in Whyville, for example, can thus be enhanced for learning by 
expanding the number and type of interactions recorded to include things players use, say, and 
make during the gameplay and situating those interactions within a theory of learning.

Learning theory

In this study, the research team encountered three learning theories relevant to NASA-type 
game data. We found evidence of differences in approach to learning we believe may be related 
to cognitive presence (Garrison et al., 1999). Students who spent an increasing time playing 
with the games changed from exploratory behaviour (eg, using a dog to measure  a distance), 
to integrative behaviour (eg, using a newly acquired measurement method to find and answer) 
and to resolve a quest. The ECD framework (Mislevy et al., 2003) helped illuminate gaps in 
both data and game design. In particular, the conceptual assessment framework (task, student 
and evidence models) enhanced analysis possibilities when applied post hoc. Finally, we have 
shown that ENA (Shaffer & Ruis, 2017) is a useful theory and toolset for exploratory research 
that can help bridge traditional psychometrics and game-based learning analysis.

Educational data mining and scaling methods

Computational power for data analysis and visualization has so greatly increased in recent 
decades, while the cost has so rapidly declined, that educational researchers now face the 
challenges of developing creative ways to apply this tremendous power though algorithmic 
approaches that are typically used in interactive cycles with the end points for meaning 
determined by human judgement. The goal of most scaling methods has always been simpli-
fication of complex relationships while retaining meaning, for the purpose of aiding human 
understanding. The principle of parsimony (being stingy but complete) has always been 
the overarching goal of this class of multidimensional scaling methods (Cattell, personal 
communication, 1977), and so by beginning the analyses with few prior assumptions about 
the underlying distribution of the data, we simplify at step one.

NONPARAMETRIC APPROACHES TO ASSESSING LEARNING 13



Limitations and future directions

A clear limitation of this study is the context of Whyville and the structure of two interactive 
game-like digital learning environments that were the subject of the study and discussion. 
We note that many interactive digital learning environments exist within the larger Whyville 
site and numerous digital interactives exist in other environments that could be similarly 
analysed. The important features of appropriate datasets being a time-stamped data record 
of any kind of user process directed by an explicit goal. Attaching semantic meaning to these 
sorts of data requires the research team to construct (sometimes post hoc) from the inten-
tions of the designers to potentially meaningful clusters of behaviours and then to apply ENA 
analysis methods to explore and make further sense.

SUMMARY

The theoretical foundations of analysis presented here—nonparametric representation, 
multidimensionality, scaling methods compared with network analyses (both generic and 
epistemic) and evidentiary argumentation—are suggested as fundamental to unobtrusive 
observation of and understanding learning and performance in digital learning environments. 
Nonparametric multidimensional scaling methods have evolved to be a powerful tool that are 
especially appropriate for analysis of learning traces in game-based learning environments.
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