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Abstract. We generalize a result of W. Kohnen in [9] to explicit Waldspurger

lifts constructed by E. M. Baruch and Z. Mao in [1]. As an application, we
prove a conjecture formulated by H. Darmon and G. Tornaŕıa in [6].

1. Introduction

The aim of this note is to extend a result of Kohnen [9, Thm. 3] to Waldspurger
lifts of elliptic modular forms constructed in [1] and use this formula to prove a
conjecture of H. Darmon and G. Tornaŕıa in [6].

Let us first explain the generalization of Kohnen’s formula we are interested in.
Suppose that f =

∑
n≥1 anq

n is a modular form of weight 2k for Γ0(M), the usual

congruence subgroup of level M in SL2(Z), where M ≥ 1 is a square free odd
integer. Thanks to the work of Baruch and Mao [1] one attaches to f and a divisor
M ′ |M a form g =

∑
n≥1 cnq

n of weight k+1/2 and with respect to the congruence

group Γ1(4MM ′). Let s0 be the cardinality of the set S0 of primes dividing M ′.
Let D(f, S0) be the set of fundamental discriminants D such that

(
D
`

)
= −w` if

` | M ′ and
(
D
`

)
= +w` if ` | M/M ′, where w` is the sign of the Atkin-Lehner

involution acting on f . We are interested in fundamental discriminants satisfying
the following condition

(∗) D ∈ D(f, S0) and (−1)s0+k = sgn(D).

Suppose D1 and D2 are fundamental discriminant satisfying (∗). Kohnen’s formula
relates the product c|D1| · c|D2| to certain linear combinations of explicit Shintani
integrals, namely, integrals of the differential form f(z)dz along geodesic cycles in
the upper half plane. The main result is Theorem 2.3 below, which is a generaliza-
tion of [9, Thm. 3]. However, the proof of this result is not a direct generalization
of the proof of loc. cit., which has a more combinatoric flavour. Instead, our proof
is based on methods from [1] and [15], working in the context of automorphic forms.
Finally, let us point out that the above result is proved in the more general setting
of automorphic forms over totally real number fields (in Proposition 2.7 below),
although for the application to Darmon-Tornaŕıa conjecture we only need the case
of rational numbers.

We now briefly explain the application to elliptic curves, and the content of
the Darmon-Tornaŕıa conjecture. Let E/Q be an elliptic curve of conductor N =
Mp, where M > 1 is an odd square free positive integer and p - 2M is a prime
number. Fix as above a divisor M ′ | M and let g be the generalized Kohnen-
Waldspurger lift in [1] of the modular form f attached to E. This is a modular form
of weight 3/2 for Γ1(4NM ′) with Fourier expansion

∑
n≥1 cnq

n. This expansion is

only well-defined up to (non-zero) scalar, and therefore we may form the quotients
1
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c̃n := cn/cn0
, where cn0

6= 0 (the existence of such an integer n0 follows from
the main result of Baruch-Mao, combined with standard non-vanishing results for
L-series). We show that these coefficients can be seen as the value at 1 of rigid
analytic functions c̃n(k), defined on a neighborhood U of 1 in a suitable weight
space, which incorporate similarly defined quotients of Fourier coefficients of the
generalized Kohnen-Waldspurger lifts of classical even weight modular forms in the
Hida family passing through f . We fix a fundamental discriminant D satisfying the
following modification of the condition (∗), where as above w` for ` | N is the sign
of the Atkin-Lehner involution on E (recall that s0 is the cardinality of the fixed
set S0):

(††)
(
D

`

)
= −w` if ` |M ′p;

(
D

`

)
= +w` if ` | (M/M ′) and (−1)s0 = −sgn(D).

It turns out that (††) implies c̃|D|(1) = 0 ([1, Thm. 1.1]), although the function
c̃D(k) is not identically zero in U because D satisfies (∗) with respect to all the
newforms of level Γ0(M) appearing in the Hida family; (actually in the Hida family
the associated p-stabilized forms of level Γ0(N) appear). Our main result (Theorem
4.5 below, a consequence of Theorem 4.4) is the following: There exists a family of
points PD ∈ E(Q̄)⊗Z Q̄, one for each D as above, which is non-zero if and only if
L′(E,χD, 1) 6= 0, and such that

(1) logE(PD) =

(
d

dk
c̃|D|(k)

)
|k=1

.

Further, if D < 0, then we may take PD ∈ E(
√
D) ⊗Z Q̄. Here logE is the formal

group logarithm on E (see §4.1 for a precise definition). Further, the point PD arises
from Darmon’s theory of his eponymous points, introduced [5] and developed by
several authors (see for example [3], [4], [7], [18], [22], [12], [13]). With S = ∅,
Theorem 4.4 corresponds to [6, Thm. 1.5]. We finally use this result to prove
Theorem 4.6, a conjecture of Darmon and Tornaŕıa, [6, Conj. 5.3]. This conjecture
predicts that the Fourier coefficients c|D| of g (where recall that g is the generalized
Kohnen-Waldspurger lift of the modular form f attached to the elliptic curve E)
for D a fundamental discriminant satisfying the following condition

(†)
(
D

`

)
= −w` if ` |M ′;

(
D

`

)
= +w` if ` | (Mp/M ′); and (−1)s0 = −sgn(D)

(which are not necessarily zero by [1, Thm. 1.1]), are encoded by certain p-
adic Shintani integrals, denoted ϑ(f,D,D′) and introduced in §4.1, depending
on the auxiliary choice of an auxiliary fundamental discriminant D′ satisfying
(††). Further, the common coefficient of proportionality between the Fourier coef-
ficients c|D| of g and ϑ(f,D,D′) is logE(PD′), and thus is non zero if and only if
L′(E,χD′ , 1) 6= 0. For S = ∅, this is [6, Thm 5.1], from which [6, Conj. 5.3] is
inspired.

The authors acknowledge H. Darmon, G. Tornaŕıa and J. Hakim for useful dis-
cussions. M. L. is partly supported by PRIN 2010-11 and PRAT 2013. Z. M. is
partly supported by NSF DMS 1400063.

2. Kohnen’s formula

2.1. Generalized Kohnen-Shintani correspondence. Let f =
∑
n≥1 anq

n be
a newform of even integral weight 2k, square-free odd level M and trivial character.
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We let S be the set of primes dividing M , whose cardinality we denote s = |S|. Fix a
subset S0 ⊂ S, write M ′ for the product of the primes in S0, and let s0 = |S0| be the
cardinality of S0. Let D(f, S0) be the set of fundamental discriminants D defined
in the Introduction. We also denote χD the quadratic character a 7→

(
D
a

)
attached

to the fundamental discriminant D. Fix a Dirichlet character χ′ of (Z/(4M))× such
that χ′` = 1 if ` | (M/M ′), χ′`(−1) = −1 if ` |M ′ and χ′(−1) = 1. We can consider
χ′ as a character of (Z/(4MM ′))×. Attached to f and the choice of the auxiliary
character χ′, we may consider the explicit Waldspurger’s lift of Baruch-Mao relative
to S0 ([1], [26], [28], [27]),

g =
∑
n≥1

cnq
n ∈ Sk+1/2(Γ0(4MM ′, χ′))

which satisfies the following properties (see [1, Thm. 1.1]):

(a) g is a Shimura lift of f .
(b) g belongs to the Kohnen’s plus space: cn = 0 if (−1)s0+kn ≡ 2, 3 mod 4.
(c) c|D| = 0 if (−1)s0+kD > 0 and D 6∈ D(f, S0).
(d) If D satisfies (∗) in the Introduction, then

(2)
|c|D||2

〈g, g〉
=
L(f, χD, k)

〈f, f〉
· 2|S| · |D|k−1/2 · (k − 1)!

πk
·
∏
`|S0

`

`+ 1
.

Otherwise, if D ∈ D(f, S0) and (−1)s0+k 6= sgn(D), then L(f, χD, k) = 0.

2.2. Kohnen’s formula. Let K = Q(
√

∆) be a real quadratic field of fundamental
discriminant ∆ such that all primes dividing M are split in K.

Fix τ = ( τ1 τ3
τ2 −τ1 ) such that τ2

1 + τ2τ3 = ∆ and 2M | τ2, 2 | τ3. Let F∆ denote
the set of binary integral primitive quadratic forms

Q(x, y) = Ax2 +Bxy + Cy2

of discriminant ∆ satisfying the following properties: (1) M | A and (2) B ≡ τ1
modulo M . The group Γ0(M) acts on F∆ from the right via

(Q|γ)(x, y) := Q(ax+ by, cx+ dy)

for γ =
(
a b
c d

)
.

Recall that canonical projection induces a bijection between F∆/Γ0(M) and the
group of SL2(Z)-equivalence classes of integral primitive binary quadratic forms
of discriminant ∆ equipped with Gaussian composition law. This is identified, by
class field theory, with the Galois group G+

K = Gal(H+
K/K) of the strict Hilbert

class field H+
K of K.

Let r+s
√

∆ be fundamental unit of norm 1 in O∆ = Z[(∆+
√

∆)/2] normalized
with r > 0 and s > 0 and define γQ :=

(
r+sB 2Cs
−2As r−sB

)
, an element in Γ0(M). Define

Shintani integrals attached to f and Q ∈ F∆ as

(3) r(f,Q) :=

∫ γQ(τ)

τ

f(z)Q(z, 1)k−1dz

Fix a genus character χD1,D2
of K, attached to the pair of Dirichlet characters

(χD1
, χD2

), where ∆ = D1 ·D2, and (D1, D2) = 1. Set as in [20]

r(f ;D1, D2; τ) :=
∑

[Q]∈F∆/Γ0(M)

χD1,D2
(Q) · r(f,Q)
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Remark 2.1. The value of (r(f ;D1, D2; τ))2 does not depend on the choice of τ .
Let χ be the character of (Z/M ′)× such that χ` = χ′` when ` |M ′. Then

rχ(f ;D1, D2) := χ(τ1)r(f ;D1, D2; τ)

is independent of the choice of τ .

Remark 2.2. When D1 = D2 and τ =
(
D1

−D1

)
, we denote r(f ;D1, D2; τ) by

r(f ;D1, D1).

Theorem 2.3. Suppose ∆ = D1 ·D2 with D1, D2 satisfying (∗) above and D1 odd.
Then

c|D2|c|D1|

〈g, g〉
= (−2i)k · 2|S| · χ(|D1|)−1 ·

∏
`∈S0

`

1 + `
· rχ(f ;D2, D1)

〈f, f〉
.

Moreover rχ(f ;D2, D1) = rχ(f ;D1, D2).

Remark 2.4. The difference in constant (a factor of 2|S|) between the above The-
orem and [9, Theorem 3] lies in the difference of rχ(f ;D2, D1) (which is defined
through a sum of oriented optimal embeddings in [20]) and rk,N (f ;D1, D2) in [9]
(which is a sum over non-oriented optimal embeddings). 1

Remark 2.5. A combination of (2), [3, Eq. (28)] and [3, Eq. (29)] already shows, at
least in the cases of weight 2k > 2 which will be relevant for the following sections,
that the square norm of the above formula is true.

The proof of the theorem is based on results in [1] and [15]. Before proving
the Theorem, we first give a generalization of Kohnen’s formula in the setting of
automorphic forms over a totally real number field.

2.3. Theta correspondence. From this subsection to the end of §2.7 we will use
a notation different from to the other sections of the paper. Thus, some symbols
used here (e.g., τ,∆, D1, D2, S, S0) will have a different meaning with respect to
the other parts of the paper.

Let F be a totally real number field, A its adele ring. Fix an additive character ψ
on A/F which is nontrivial. We will recall now the theta correspondence (Shimura
correspondence) studied by Waldspurger [28].

Let M be the space of 2 × 2 matrices, and M0 be the subspace consisting of
matrices with trace 0. Let Φ be in S(M0(A)) the space of Schwartz functions on

M0(A). Let ωψ be the Weil representation of PGL2×S̃L2 associated to ψ, (see for

example [1] for definition). We can construct a theta function Θψ
Φ on PGL2×S̃L2:

Θψ
Φ(g, h) =

∑
x∈M0(F )

ωψ(g, h)Φ(x), g ∈ PGL2(A), h ∈ S̃L2(A).

Then for any cusp form ϕ on PGL2 and Φ ∈ S(M0(A)) define:

θψΦ(ϕ)(h) =

∫
PGL2(F )\PGL2(A)

Θψ
Φ(g, h)ϕ(g) dg.

For irreducible cuspidal representations π of PGL2, the space

{θψΦ(ϕ) : ϕ ∈ π,Φ ∈ S(M0(A))}

1A similar factor should also appear in [6, Theorem 2.1].
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is an irreducible cuspidal representation π̃ (which could be trivial). We denote
π̃ = θψ(π) and call it the theta correspondence of π.

2.4. Transition of periods. Let τ ∈ GL2(F ) such that τ2 = (D D ), D ∈ F×. Let
Tτ be the centralizer of τ in PGL2. We fix measure on Tτ,v over a local place Fv as
follows. Let Kv = Fv(τ) be a quadratic algebra over Fv, take the measure on Fv to
be self dual with respect to ψv, the measure on Kv to be self dual with respect to
ψv ◦ trKv/Fv , and on K×v to be ζKv (1) dx

|NKv/Fvx|v
, on F×v to be ζFv (1) dx

|x|v .(Here ζFv
and ζKv are the L−functions associated to Fv and Kv when v is finite place, and
set to 1 when v is infinite place). The measure on Tτ,v is just the quotient measure
on F×v \K×v . The global measure is taken to be the product of local measures. The
choice of measure on PGL2 is not important for the discussion below.

Define

Pτ (ϕ) =

∫
Tτ (F )\Tτ (A)

ϕ(t) dt, ϕ ∈ π

and

W̃D(ϕ̃) =

∫
F\A

ϕ̃(( 1 x
1 ))ψ(−Dx) dx, ϕ̃ ∈ π̃.

The following Lemma is the analogue of [15, Proposition 2.1], we will skip the proof
as it is identical to the proof given in ibid.

Lemma 2.6. If ϕ̃ = θψΦ(ϕ), then

(4) W̃D(ϕ̃) = Pτ (fΦ,τ ∗ ϕ)

where fΦ,τ is a function on PGL2 satisfying∫
Tτ (A)

fΦ,τ (tg) dt = Φ(g−1τg)

and

fΦ,τ ∗ ϕ =

∫
PGL2(A)

fΦ,τ (g)ϕ(·g) dg.

Of course fΦ,τ is not uniquely determined; the discussion below applies to any
choice of fΦ,τ . For the special case τ =

(
1
−1

)
, we write fΦ := fΦ,τ , T := Tτ and

P := Pτ .

2.5. A generalization of Kohnen’s formula. Let π be such that L(π, 1
2 ) 6= 0.

Then it is well known that π̃ = θψ(π) 6= 0.
For ϕ ∈ π, define the corresponding Whittaker function

Wϕ(g) =

∫
F\A

ϕ(( 1 x
1 ) g)ψ(−x) dx.

Let W (ϕ) = Wϕ(e). By uniqueness of Whittaker model, if ϕ = ⊗v∈Sϕv ⊗v 6∈S ϕv,0,
where ϕv,0 is a fixed unramified vector in πv, we can write for g ∈ FS = ⊗v∈SFv,
Wϕ(g) =

∏
v∈SWv(g) for a compatible choice of functionsWv in the local Whittaker

spaces of πv.
On the other hand, from [28] we get locally the space of Tτ,v invariant forms on

πv is of dimension at most one. Any such invariant form (on the Whittaker space
of πv) is a scalar multiple of

Pτ (Wv) =

∫
Tτ,v

Wv(t) dt.
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(The above integral converges as πv is a unitary representation). Thus there is a
constant cπ,S depending on π and S (and not on ϕ) such that

Pτ (ϕ) = cπ,S
∏
v∈S

Pτ (Wv).

By [15, Lemma 3.1], if Φv and τv are unramified, in the sense that Φv is the
characteristic function of M0(Rv) where Rv is the ring of integers in Fv and τv ∈
GL2(Rv), we can let fΦ,τ,v = f0 the characteristic function of PGL2(Rv). Thus for
S large enough

W̃D(θψΦ(ϕ)) = cπ,S
∏
v∈S

Pτ (fΦ,τ,v ∗Wv).

Apply the discussion to the special case τ =
(

1
−1

)
; we have for some constant

c1π,S

W̃ (θψΦ(ϕ)) = c1π,S
∏
v∈S

P (fΦ,v ∗Wv).

It is well known that c1π,S = LS(π, 1
2 ) where LS(π, s) is the partial L−function of

π.
Let ϕ̃ = θψΦ(ϕ) be such that W̃ (ϕ̃) 6= 0, we get

W̃D(ϕ̃)W̃ (ϕ̃) =
cS
∏
v∈S Pτ (fΦ,τ,v ∗Wv)

c1S
∏
v∈S P (fΦ,v ∗Wv)

|W̃ (ϕ̃)|2.

Recall the (special case of) main formula in [1]:

(5)
|W̃ (ϕ̃)|2

‖ϕ̃‖2
=
|W (ϕ)|2

‖ϕ‖2
L(π,

1

2
)
∏
v∈S

Ev(ϕv, ϕ̃v, ψ),

where Ev(ϕv, ϕ̃v, ψ) are local constants defined in [1]; ‖ϕ̃‖2 and ‖ϕ‖2 are Peterson

norm with respect to a pair of compatible measures on S̃L2 and PGL2, fixed in [1].
We get from the above discussion:

Proposition 2.7. Let Φ = ⊗Φv ∈ S(M0(A)), φ = ⊗φv ∈ π and ϕ̃ = θψΦ(ϕ) be

such that W̃ (ϕ̃) 6= 0. Let S be large enough so that for v 6∈ S, ψv, φv,Φv, τv are
unramified, and assume Wϕ =

∏
v∈SWv (over FS) be such that Pτ (Wv) 6= 0. Then:

(6)

W̃D(ϕ̃)W̃ (ϕ̃)

‖ϕ̃‖2
= Pτ (ϕ)

|W (ϕ)|2

‖ϕ‖2
∏
v∈S

(
Pτ (fΦ,τ,v ∗Wv)

Pτ (Wv)P (fΦ,v ∗Wv)
L(πv,

1

2
)Ev(ϕv, ϕ̃v, ψ)

)
.

The above equation gives a relation between the product of distinct Whittaker
functionals of ϕ̃ and the period Pτ of ϕ, up to some local factors. We can consider
it as a generalization of Kohnen’s formula in [9, Theorem 3].

We remark that the same argument as above gives

(7) W̃D(ϕ̃′)W̃ (ϕ̃) = Pτ (ϕ)(c1S)−1
∏
v∈S

Pτ (fΦ′,τ,v ∗Wv)

Pτ (Wv)P (fΦ,v ∗Wv)
|W̃ (ϕ̃)|2

where ϕ̃′ = θψΦ′(ϕ). We will derive Theorem 2.3 from (7) and (5).
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2.6. Specification of the formula (7). Now consider the case F = Q. Let M
be a square free odd number. Let π′ be associated to a new form f of weight 2k
and level M . Let D be a positive fundamental discriminant such that ` splits in
Q(
√
D) for all primes ` | M . Assume D = D1D2 where D1 and D2 are coprime,

moreover we assume D1 is odd and D1 satisfies conditions (∗), then D2 also satisfies
conditions (∗).

Let π = π′ ⊗ χD1 . (We use as above χa to denote the quadratic character of
A attached to a ∈ Q×.) Let ψ(x) = ψ0(|D1|x) where ψ0(x) is fixed as follows:
ψ0,v(x) = e2πix if v is finite and e−2πix if v =∞. For convenience, we fix the local
measures with respect to ψ0 instead of ψ. This does not change the global measure,
thus the statements of our global results.

We assume L(f,D1, 1) 6= 0, then π̃ = θψ(π) 6= 0. Moreover with our restrictions
on D1 (that it satisfies the condition (∗)), the representation π̃ is independent of
our choice of parameter D1, (see [28], summarized in [1, Theorem 3.2]).

We will calculate the local constant

C(ϕv,Φv,Φ
′
v) :=

Pτ (fΦ′,τ,v ∗Wv)

Pτ (Wv)P (fΦ,v ∗Wv)

for some specific choice of ϕv,Φv,Φ
′
v. With our specific choices, we will check in

most cases

(8) fΦ′,τ,v ∗Wv = α′vWv, fΦ,v ∗Wv = αvWv, α
′
vαv 6= 0.

Thus the above constant is just

(9) C(ϕv,Φv,Φ
′
v) =

α′v
αvP (Wv)

.

We take ϕ′ = ⊗ϕ′v be the vector in π′ such that ϕ′v is the new vector at all finite
places v and ϕ′∞ is the lowest weight vector. Let ϕ(g) = ϕ′(g) · χD1

(det g).
Then S could be taken to be {∞, 2} ∪ {l : l|DM}. Recall for g ∈ QS , Wϕ =∏
v∈SWv(gv).
It is convenient to use the following notations: for α ∈ PGL2, α∗W (g) := W (gα);

for α̃ ∈ S̃L2, α̃ ∗ W̃ (g) = W̃ (gα̃) and α̃ ∗ Φ = ωψ(α̃)Φ; ã = ( ˜( a a−1 ), 1). Recall the

local theta correspondence defines a map from πv⊗S(M0(Fv)) to π̃v, we denote it by
ϕ̃v = θ(ϕv,Φv, ψv) ∈ π̃v, (this is only defined up to a scalar multiple). Sometimes

we also denote the absolute value |D1| ∈ Q+ by D]
1, to distinguish from |D|v.

Case (1) v = l|D2 is odd. Then π is unramified and ϕl is the unramified vec-
tor. We take Φl = Φ′l to be the characteristic function of M0(Zl). Then ϕ̃l is an
unramified vector in π̃. As τ = k−1 ( D

1 ) k for an element k ∈ PGL2(Zl), by [15,

Lemma 3.1], we can take fΦ,l = 1PGL2(Zl) and fΦ′,τ,l = |D|−
1
2

l 1PGL2(Zl). Thus (8)

holds with α′l = |D|−
1
2

l vol(PGL2(Zl)) and αl = vol(PGL2(Zl)). The local constant
is

C(ϕl,Φl,Φ
′
l) =

|D|−
1
2

l

P (Wl)
.

Case (2) l|D1. Then π′ is unramified and ϕ′l is the unramified vector. We take
Φ′l to be as chosen in [15, Lemma 3.2]. Namely Φ′l(

(
a b
c −a

)
) is 0 if one of a, b, c is

not integral, or both b and c are prime in Zl, or a2 + bc is in Z×l . Otherwise, we set

Φ′l(
(
a b
c −a

)
) = χD1

(c) if c ∈ Z×l or χD1
(−b) if b ∈ Z×l . We let Φl =

˜
D]

1∗Φ′l. Explicitly
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Φl(X) = Φ′l(D
]
1X)|D1|

3
2

l g where g is a root of unity, equal to l−
1
2 times Gaussian

sum associated to the quadratic character on the finite field Fl. Then ϕ̃ =
˜
D]

1 ∗ ϕ̃′
is unramified (see [21, Proposition 3.4]). (In [21] it is shown that θ(ϕl,Φ

′
l, ψ
′
l)

where ψ′l(x) := e2πix/D]1 is unramified. This easily implies that ϕ̃ = θ(ϕl,Φl, ψl) is
unramified.)

By [15, Lemma 3.2], fΦ′,τ,l = 1PGL2(Zl)|D1|
− 1

2

l χD1
(det ·). (Note in [15, Lemma 3.2]

L(χD, 1) = 1). On the other hand

fΦ,l = g|D1|
1
2 (1− l−1)1PGL2(Zl)

((
1 D]1
1 −D]1

)
·
)
χD1(det ·).

(Note the volume of the intersection of PGL2(Zl) with the centralizer of
(

l
l−1

)
is

(l − 1)−1). Thus α′l = vol(PGL2(Zl))|D1|
− 1

2

l while

fΦ,l ∗Wl(·) = g|D1|
1
2 (1− l−1) vol(PGL2(Zl))Wl(·

(
1 D]1
1 −D]1

)
).

Using the Iwasawa decomposition
(

1 D]1
1 −D]1

)
= ( 1 1

0 1 )
(
D]1

1

)(
0 2
1 −D]1

)
, we get

P (Wl(·
(

1 D]1
1 −D]1

)
)) =

∫
Q∗l
ψl(t)Wl

((
tD]1

1

))
d∗t.

It is clear thatW (( a 1 )) = 0 if a 6∈ l−1Zl. Thus we can restrict the above integration
to |t|l ≤ l2. On the other hand over the domain |t|l = c where c ≤ l is fixed, we have
ψl(t) = 1 and the integrand is a constant multiple of χD1(t). Thus the integration
over |t|l = c ≤ l is 0. We are left with

P (Wl(·
(

1 D]1
1 −D]1

)
)) =

∫
|t|l=l2

ψl(t)Wl(
(
tD]1

1

)
) d∗t

= (1− l−1)−1Wl(
(

(D]1)−1

1

)
)|D1|

1
2 g−1.

The local constant is

C(ϕl,Φl,Φ
′
l) = |D1|

− 3
2

l (Wl(
(

(D]1)−1

1

)
))−1.

Case (3) l|M and l 6∈ S0. In this case with our assumption on D1, ε(πl,
1
2 ) = 1.

Take Φ = Φ′l the characteristic function of {
(
a b
c −a

)
} where c ∈ lZl and a, b ∈ Zl.

Then ϕ̃ = ϕ̃′ is the vector in π̃l of the lowest level, i.e. a multiple of the vector
ϕ̃ appearing in [1, Lemma 8.3]; the representation π̃l is a special representation.
Let K0,l := {

(
a b
c d

)
: a, d ∈ Z×l , b ∈ Zl, c ∈ lZl}, wl := ( 1

l ). We get fΦ′,τ,l =

fΦ,l = 1K0,l∪wlK0,l
. Since ε(πl,

1
2 ) = 1, we have π(wl)Wl = Wl. Thus fΦ′,τ,l ∗Wl =

fΦ,l ∗Wl = 2 vol(K0,l)Wl and

C(ϕl,Φl,Φ
′
l) =

1

P (Wl)
.

Case (4) l ∈ S0. Then ε(πv,
1
2 ) = −1. Take Φl = Φ′l whose value at {

(
a b
c −a

)
}

is zero unless a ∈ Z×l , b ∈ Zl and c ∈ lZl. Otherwise it is χl(a) where χl is

an odd character on Z×l /(1 + lZl). Then ϕ̃ = ϕ̃′ is the vector described by [1,
Proposition 8.5]. It is still the vector of lowest level in the space of π̃l, this time
however π̃l is a supercuspidal representation.
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We get fΦ′,τ,l = (1K0,l
− 1wlK0,l

)χl(τ1) and fΦ,l = 1K0,l
− 1wlK0,l

. In this case
π(wl)Wl = −Wl. Thus fΦ,l ∗Wl = 2 vol(K0,l)Wl and

fΦ′,τ,l ∗Wl = 2 vol(K0,l)χl(τ1)Wl.

We get

C(ϕl,Φl,Φ
′
l) =

χl(τ1)

P (Wl)
.

Case (5) l = 2. Take Φl = Φ′l whose value at {
(
a b
c −a

)
} is zero unless a ∈ Zl

and b, c ∈ 2Zl. Then ϕ̃ = ϕ̃′ is the Kohnen vector described by [1, (9.4)]. By

[15, Lemma 3.4], fΦ′,τ,2 = |D|−
1
2

2 1PGL2(Z2) and fΦ,2 = 1PGL2(Z2). We get α′ =

|D|−
1
2

2 vol(PGL2(Z2)) and α = vol(PGL2(Z2)). The local constant is

C(ϕ2,Φ2,Φ
′
2) =

|D|−
1
2

2

P (W2)
.

Case (6) v =∞. Take Φ∞ to be the function in [21, p.544]. It follows from [24,
Remark 2.1] that ϕ̃ is the lowest weight vector in π̃∞. Recall D > 0. Then there
exists an element γ ∈ PGL2(F∞) such that

γ−1τ∞γ =
√
D
(

1
−1

)
∈ GL2(F∞).

Let t̃D,∞ = (
(√

D √
D
−1

)
, 1) ∈ S̃L2(F∞).

Lemma 2.8. Let Φ′ = t̃−1
D,∞ ∗ Φ, then

Pτ (fΦ′,τ,∞ ∗W∞) = |D|−
3
4∞ Pτ (γ ∗ (fΦ∞,∞ ∗W∞)).

Proof. First observe

Pτ (fΦ′,τ,∞ ∗W∞) =

∫
Tτ,∞

∫
PGL2(F∞)

fΦ′∞,τ,∞(g)W∞(tg) dg dt

=

∫
Tτ,∞

∫
PGL2(F∞)

fΦ′∞,τ,∞(tg)W∞(g) dg dt =

∫
PGL2(F∞)

Φ′∞(g−1τg)W∞(g) dg

=

∫
PGL2(F∞)

Φ′∞(g−1γ
√
D
(

1
−1

)
γ−1g)W∞(g) dg

=

∫
PGL2(F∞)

Φ′∞(g−1
√
D
(

1
−1

)
g)W∞(γg) dg.

Now use the fact that t̃D,∞ ∗ Φ′∞(X) = |D|
3
4∞Φ′∞(

√
DX). The above becomes

|D|−
3
4∞

∫
PGL2(F∞)

Φ∞(g−1
(

1
−1

)
g)W∞(γg) dg

= |D|−
3
4∞

∫
T (F∞)

fΦ∞,∞ ∗W∞(γt) dt = |D|−
3
4∞

∫
Tτ (F∞)

fΦ∞,∞ ∗W∞(tγ) dt

where the last identity comes from the Jacobian for the change of variable t 7→ γ−1tγ
is 1. �

It follows from the proof of [21, Proposition 3.5] that fΦ∞,∞ ∗W∞ = αW∞ for
a nonzero scalar α. Then

Pτ (ϕ)Pτ (fΦ′∞,τ,∞ ∗W∞) = α|D|−
3
4∞ Pτ (ϕ)Pτ (γ ∗W∞) = α|D|−

3
4∞ Pτ (γ ∗ ϕ)Pτ (W∞).
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Thus the local constant is:

C(ϕ∞,Φ∞,Φ
′
∞) =

|D|−
3
4∞ Pτ (γ ∗ ϕ)

Pτ (ϕ)P (W∞)
.

Note (for some nonzero α) W∞(( a 1 )) = αake−2πD]1a when a > 0 and 0 otherwise.
Thus

P (W∞) = α

∫ ∞
0

ak−1e−2πD]1a da

= α(2πD]
1)−kΓ(k) =

(k − 1)!

πk
2−ke2πWl

((
(D]1)−1

1

))
.

2.7. Summary. It is known that if D1 ∈ Z×l , then

P (Wl) = L(πl,
1

2
)Wl(e) = L(πl,

1

2
)Wl

((
(D]1)−1

1

))
.

When l|D1, L(π, s) ≡ 1. So (7) becomes
(10)

W̃D(ϕ̃′)W̃ (ϕ̃) = D−
1
4D]

1χ(τ1)
πk

(k − 1)!
2ke−2π Pτ (γ ∗ ϕ)

Lf (π, 1
2 )Wϕ(

(
(D]1)−1

1

)
)
|W̃ (ϕ̃)|2.

Here Lf (π, ·) is the finite part of the L−function L(π, ·); χ is an odd character on
(Z/

∏
l∈S0

l)× associated to {χl : l ∈ S0}, ϕ̃ is the vector corresponding to the half

integral weight form in Sk+ 1
2
(4M

∏
l∈S0

l, χ) defined in [1, Theorem 10.1], while

ϕ̃′ = χ(D]
1)(
√

D1

D2∞
D]

1

−1
) ∗ ϕ̃, (note that D]

1l
∗ ϕ̃l = ϕ̃l when D1 ∈ Z×l and l 6∈ S0;

when l ∈ S0, D]
1l
∗ ϕ̃l = χl(D

]
1)ϕ̃l). Thus

W̃D(ϕ̃′) = χ(D]
1)W̃

D/D2
1

ϕ̃ (

√
D1

D2∞
).

2.8. Proof of Theorem 2.3. We note Pτ (γ ∗ ϕ) is the integral `(ϕ) defined in
[20, (6.1.2)]. (It is easy to check that χD1

◦ det when restricted to Tτ is a genus
character on Tτ ). From [20, (6.1.7)], it equals:

∆−
k
2 i−kr(f ;D2, D1; τ).

(Note the measure chosen by [20] differs from ours by a factor of ∆
1
2 : see [20, p.

830]). We observe here χD1
◦ det = χD2

◦ det on Tτ , thus the relation:

r(f ;D2, D1; τ) = r(f ;D1, D2; τ).

By [27, Lemme 3], we have

W̃ ξ
ϕ̃(
√
a∞) = a

k
2 + 1

4 e−2πaξ|D1|c(ξ|D1|)

if g(z) =
∑
n≥1 cne

2πinz is the half integral weight form corresponding to ϕ̃ by the

recipe of [27]. Also Lf (π, 1
2 ) = L(f,D1, k), and Wϕ

((
(|D1|)−1

1

))
= e−2π, (recall

ψ(x) = ψ0(|D1|x)). Thus (10) becomes:

(
D1

D2
)
k
2 + 1

4 c(|D2|)c(|D1|) = ∆−
1
4−

k
2 |D1|i−kχ(

τ1
|D1|

)
πk

(k − 1)!
2k
r(f ;D2, D1; τ)

L(f,D1, k)
|c(|D1|)|2.



KOHNEN’S FORMULA AND A CONJECTURE OF DARMON AND TORNARÍA 11

Now we apply [1, Theorem 10.1], and get:

|c|D1||2

〈g, g〉
=
L(f,D1, k)

〈f, f〉
|D1|k−

1
2

(k − 1)!

πk
2|S|

∏
`∈S0

`

1 + `
.

Our Theorem follows from the above two equations.

3. Families of modular forms

We keep from now on the following notation: f is a weight 2 new form of
level N , square free and odd, trivial character and rational Fourier coefficients,
corresponding to an elliptic curve E. Fix a prime number p | N and put M := N/p.

Choose an embedding Q̄ ↪→ Q̄p. We will then identify algebraic numbers with
p-adic numbers by means of this embedding without making this explicit in the
following.

3.1. Hida families. Let f∞ be the Hida family passing through f , the weight 2
modular form attached to E by Taylor-Wiles’s modularity theorem. More precisely,
and to fix notations, there exists a compact open neighborhood U of 1 in Zp,
contained in the residue class of 1 modulo p− 1, and a formal series expansion

f∞(k) =
∑
n≥1

an(k)qn

where an(k) are Cp-valued rigid analytic functions on U (and Cp is the completion
of a fixed algebraic closure of Qp), such that:

(1) For any integer k ≥ 1 in U , fk := f∞(k) is the q-expansion of a p-ordinary
cusp form of weight 2k, level Γ0(N) and trivial character, which is an
eigenform for all Hecke operators;

(2) f1 = f .

For integers k > 1 in U , fk is not p-new, and we let f ]k =
∑
n≥1 a

]
n(k)qn be the

weight 2k cusp form of level Γ0(M) and trivial character whose p-stabilization is
fk.

3.2. Analytic continuation of generalized Kohnen’s lift. Fix a set of divisors
S0 of M and let M ′ be the product of the prime numbers in S0. Let g =

∑
n≥1 cnq

n

and g]k =
∑
n≥1 c

]
n(k)qn be the lifts of f and f ]k, respectively, relative to this choice

of S0 and the choice of an auxiliary character χ′ as in Sec. 2.1. Recall that s0 is
the cardinality of S0 and χ is a character of (Z/M ′)∗ determined by χ′.

Definition 3.1. Let D be a fundamental discriminant of a quadratic field such
that

(1)
(
D
`

)
= w` if ` | (M/M ′);

(2)
(
D
`

)
= −w` if ` |M ′;

(3) (−1)s0+1 = sgn(D).

We say that D is of Type I or Type II if

(I)
(
D
p

)
= wp;

(II)
(
D
p

)
= −wp.
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So, discriminants of type I (resp. II) are those satisfying (†) (resp. (††)) of the
Introduction. Thus, L(f, χD, 1) = 0 and c|D| = 0 for all D of type II, while non-
vanishing results for L-functions show that there are infinitely many fundamental
discriminant D0 of type I such that L(f, χD0

, 1) 6= 0 (cf. [17, Cor. 2], for example),
and consequently we also have c|D0|(1) 6= 0. We fix such a choice of D0 from now
on.

Lemma 3.2. There exists a neighborhood U of 1 in Zp such that the coefficients

c]|D0|(k) do not vanish for all k ∈ U .

Proof. By (2), this is equivalent to show that the same is true for the values

L(f ]k, χD0 , k).

We begin by fixing for each integer k > 1 in U , Shimura periods Ω±
f]k

satisfying

the additional property that

I±(f ]k, P, r, s) :=

∫ s
r
f ]k(z)P (z)dz ±

∫ s
r
f ]k(z)P (z)dz

2Ω±
f]k

belongs to the field Kf]k
generated over Q by the Fourier coefficients of f ]k, for

all polynomials P of degree at most k − 2 and all r, s ∈ P1(Q), where ξ 7→ ξ is
complex conjugation. Define the algebraic part of the special values of the relevant
L-functions to be

L∗(f ]k, χD0 , k) :=
(k − 1)! · τ(χD0

)

(−2πi)k−1 · Ωw∞
f]k

· L(f ]k, χD0 , k),

and, in weight 2,

L∗(f, χD0 , 1) :=
τ(χD0)

Ωw∞f
· L(f, χD0 , 1),

where τ(χD0
) is the Gauss sum ([3, §3.1], for example). These are algebraic num-

bers, which we can see as p-adic numbers by the fixed embedding Q̄ ↪→ Q̄p. Then,

one can equivalently show that the values L∗(f ]k, χD0 , k) do not vanish in a neigh-
borhood of 1.

Recall the Mazur-Kitagawa p-adic L-function LMK
p (f∞, χD0

, k, s), in two vari-
ables k and s for which we use the notation in [3, Sec. 3] (except that here the
weight variable is 2k instead of k in loc. cit.; to avoid confusion, we require that, for
a fixed k = k0 ∈ Z ∩ U , k0 ≥ 1, the function LMK

p (f∞, χD0 , k0, s) is the cyclotomic
p-adic L-function of f2k0

instead of fk0
as in [3]). Its definition requires the choice

of a sign at infinity w∞ corresponding to the choice of the w∞ eigencomponent
for the action of

(
1 0
0 −1

)
on modular symbols, and the choice of the corresponding

Shimura period Ωw∞
f]k

and Ωw∞f (cf. [3, §1.1]). We make the choice of w∞ so that

(note k is odd)

χD0(−1) = (−1)k−1w∞ = w∞.

Then, by [3, Theorem 3.1] we have

(11) LMK
p (f∞, χD0 , 1, 1) = (1− χD0(p)a−1

p ) · L∗(f, χD0 , 1)

and, by [3, Corollary 2.3], we have

LMK
p (f∞, χD0

, k, k) = λ(k) · (1− χD0
(p)a−1

p (k)pk−1)2 · L∗(f ]k, χD0
, k).
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The Q̄p-valued function λ 7→ λ(k) is non-zero in a neighborhood of 1, by [2, Propo-
sition 1.7]. The choice of D0 implies that χD0(p) = wp, and since ap = −wp, we
see that 1−χD0

(p)a−1
p 6= 0. Thus, since also L(f, χD0

, 1) 6= 0, the Mazur-Kitagawa
p-adic L-function does not vanish at (1, 1); since it is p-adic analytic in a neigh-
borhood of (1, 1), it follows then that there exists a neighborhood of 1 where it is
non-zero, which proves the non vanishing of the algebraic parts of the L-functions

of f ]k in a neighborhood of 1. �

Fix U as in Lemma 3.2. Define for each k ∈ U ∩ Z, k > 1, and D a fundamental
discriminant prime to D0, the normalized Fourier coefficients

(12) c̃|D|(k) :=
1− χD(p) · pk−1 · a−1

p (k)

1− χD0
(p) · pk−1 · a−1

p (k)
·
c]|D|(k)

c]|D0|(k)
.

Let Q(χ) be the subfield of Q̄ generated by the values of χ. Via our fixed
embedding, we will also view Q(χ) as a subfield of Q̄p.

Proposition 3.3. Let D be a fundamental discriminant of Type I or II. After
replacing U by a smaller neighborhood of 1 in Zp, we can insure that the normalized
coefficients c̃|D|(k) extend to a p-adic analytic function on U , whose value at 1 is

c̃|D|(1) =
c|D|

c|D0|
.

Finally, c̃|D|(1) belongs to Q(χ).

Proof. Fix a neighborhood as in Lemma 3.2 to start with. Note that

c]|D|(k)

c]|D0|(k)
=
c]|D|(k) · c

]
|D0|(k)

|c]|D0|(k)|2
.

Assume first that (D,D0) = 1. Combining (2) and Theorem 2.3 we find:

c̃|D|(k) =
1− χD(p) · pk−1 · a−1

p (k)

1− χD0(p) · pk−1 · a−1
p (k)

· (−2πi)k · χ(|D|)−1

|D0|k−1/2 · (k − 1)!
·
rχ(f ]k, D,D0)

L(f ]k, χD0
, k)

.

Using the expression in the proof of the lemma above for L(f ]k, χD0
, k) in terms of

the Mazur-Kitagawa p-adic L-function, we find

c̃|D|(k) =
−τ(χD0

) · χ(|D|)−1

|D0|k−1/2
· 1

LMK
p (f∞, χD0 , k, k)

·
(
1− χD(p) · pk−1 · a−1

p (k)
)
·

·
(
1− χD0

(p) · pk−1 · a−1
p (k)

)
·
λ(k) · (2πi) · rχ(f ]k, D,D0)

Ωω∞
f]k

.

Here, as in the proof of the above lemma, we make the choice of w∞ = χD0
(−1).

Suppose that D is of Type II and (D,D0) = 1. Since D0 and D are of different
types, we have(

1− χD(p) · pk−1 · a−1
p (k)

)
·
(
1− χD0

(p) · pk−1 · a−1
p (k)

)
= 1− a−2

p (k)p2k−2.

One observes now that

λ(k) ·
(
1− a−2

p (k)p2k−2
)
·

(2πi) · rχ(f ]k, D,D0)

Ωω∞
f]k

= LBD
p (f∞/Q(

√
D ·D0), χD,D0

, k)
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where the RHS is (up to a constant multiple) the p-adic L-function defined by
Bertolini and Darmon in [3, Definition 3.4, (1)] (note that the prime p is inert in
Q(
√
D ·D0), and all primes dividingM are split; also note the usual shift of notation

in the weight, so actually, and more precisely, by LBD
p (f∞/Q(

√
D ·D0), χD,D0

, k)

we mean the function Lp(f∞/Q(
√
D ·D0), χD,D0

, 2k) in loc. cit.). Therefore, we
can express c̃|D|(k) as a product of factors, each of them extending to a p-adic
analytic function in a neighborhood of 1, and therefore the extension of normalized
coefficients follows. Further, LBD

p (f∞/Q(
√
D ·D0), χD,D0 , 1) = 0 (cf. [3, Sec. 4])

and, since c|D| = 0, we have the claimed equality

c̃|D|(1) = c|D| =
c|D|

c|D0|
.

Suppose now that D is of Type I and (D,D0) = 1. Then all primes dividing
N = Mp are split in Q(

√
D ·D0). Since D0 and D are of the same type, we have(

1− χD(p) · pk−1 · a−1
p (k)

)
·
(
1− χD0(p) · pk−1 · a−1

p (k)
)

=
(
1− χD0a

−1
p (k)pk−1

)2
.

In this case, we have

λ(k) ·
(
1− χD0

a−1
p (k)pk−1

)2 · (2πi) · rχ(f ]k, D,D0)

Ωω∞
f]k

=

= LSh
p (f∞/Q(

√
D ·D0), χD,D0

, k)

where the RHS is the p-adic analytic function (up to a constant multiple) defined
in S. Shahabi’s thesis [23, §. 3.2], and the above formula is [23, Prop. 3.3.1], except
for the usual shift of weight. A similar construction, working more generally for
rational quaternion algebras which are split at the Archimedean prime, is described
in [16, §5.1] and [14, §4.5]. The extension of the normalized coefficients follows. Its
value at 1 is given by

−τ(χD0) · χ(|D|)−1

|D0|1/2
·
LSh
p (f∞/Q(

√
D ·D0), χD,D0

, 1)

LMK
p (f∞, χD0

, 1, 1)
.

By [16, Prop. 90], or [14, Prop. 4.24], we have

LSh
p (f∞/Q(

√
D ·D0), χD,D0

, 1) = 2 · (2πi) · rχ(f,D,D0)

Ωw∞f

and, by (11),

LMK
p (f∞, χD0

, 1, 1) = 2 · τ(χD0
)

Ωw∞f
· L(f, χD0

, 1)

and therefore the value c̃|D|(1) is given by

−2πi · χ(|D|)−1

|D0|1/2
· rχ(f,D,D0)

L(f, χD0
, 1)

.

This is equal to c|D|/c|D0| again by a combination of (2) and Theorem 2.3, and the
statement follows.

The rationality of c|D|/c|D0| follows from results on the rationality of the factors
appearing in the above factorizations. More precisely, one may choose Shimura
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periods Ωw∞f satisfying
2π·rχ(f,D,D0)

Ωw∞f
∈ Q(χ) because f has integer Fourier co-

efficients (see [25], for example), and then, with this choice of Shimura periods,
τ(χD0

)·L(f,χD0
,1)

Ωw∞f ·|D0|1/2 belongs to Q(χ) (see [17], for example).

We finally deal with the remaining case of (D,D0) 6= 1. One chooses an auxiliary
discriminant D′0, prime to both D and D0, satisfying the same conditions of D0

(this is possible by [17]). Then, express c̃|D|(k) as the product(
1− χD(p) · pk−1 · a−1

p (k)

1− χD′0(p) · pk−1 · a−1
p (k)

·
c]|D|(k)

c]|D′0|
(k)

)
·

(
1− χD′0(p) · pk−1 · a−1

p (k)

1− χD0
(p) · pk−1 · a−1

p (k)
·
c]|D′0|

(k)

c]|D0|(k)

)

and repeat the above argument to each of the two factors in parenthesis appearing
above, using the previously proved cases. This concludes the proof. �

Thus, for D1 of type I and D2 of type II, we have c̃D2
(1) = 0 even if the function

k 7→ c̃D2
(k) is not identically zero on the neighborhood U of 1 where it is defined

(this follows because LBD
p (f∞/Q(

√
D1 ·D2), χD1,D2 , k) is not necessarily zero). It

is naturally of interest to investigate then the value at 1 of its p-adic derivative,(
d
dk c̃D2

(k)
)
|k=1

.

Remark 3.4. It might be interesting to prove Proposition 3.3 directly, in a way
similar to [6, Prop. 1.3], using arguments borrowed from the proof of [25, Thm.
5.5] (and its sequels [19], [10], [11]). Formally, our proof makes a systematic recourse
to p-adic L-functions instead; however, note that the principle of our proof (i.e.,
the construction of p-adic L-functions) and the proof of [25, Thm. 5.5] share the
same fundamental tool, namely, the p-adic interpolation of complex integrals (which
are Shintani integrals for p-adic L-functions over real quadratic extensions), and
originated from the seminal paper [8].

We finally need to understand the action of complex conjugation on these nor-
malized coefficients. Let

i : Q(χ) ↪−→ Q̄ ↪−→ Q̄p

be obtained by composition with the fixed embedding Q̄ ↪→ Q̄p. Let c ∈ Gal(Q̄/Q)
be a fixed complex conjugation. The composition of c on Q(χ), viewed as a subfield
of Q̄, with i gives rise to a second embedding

i∗ := i ◦ c : Q(χ) ↪−→ Q̄ ↪−→ Q̄p

(use that Q(χ) is Galois over Q). For each integer k ∈ U , and each fundamental
discriminant D prime to D0, we thus have p-adic numbers

c̃|D|(k) := i∗
(
c̃|D|(k)

)
.

The map i(Q(χ))→ i∗(Q(χ)) defined by i(a) 7→ i∗(a) clearly extends on the p-adic
completions, and we denote the resulting map with the symbol x 7→ x̄. Thus, from
Prop. 3.3, the function k 7→ c̃|D|(k) extends to a p-adic analytic function on U ,

denoted by the same symbol, whose value at 1 is c̃|D|(1) =
c|D|
c|D0|

, which belongs to

i∗(Q(χ)) ⊆ Q̄p.
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4. Darmon-Tornaŕıa Conjecture

We keep the notation of Sec. 3: f is a weight 2 new form of level N , square
free and odd, trivial character and rational Fourier coefficients, corresponding to
an elliptic curve E; p | N is a prime and put M := N/p.

4.1. Rational points on elliptic curves. Let K = Q(
√

∆) be a quadratic imag-
inary field where all primes dividing M are split and the prime p is inert. Fix
Shimura’s periods Ω±

f]k
as in Lemma 3.2 for each integer k > 1 in U . Recall the

definition of Shintani integrals r(f ]k, Q) in (3) attached to f ]k and the quadratic form
Q ∈ F∆, and put

r̃±(k,Q) :=

(
1− p2k−2

ap(k)2

)
(r(f ]k, Q)± r(f ]k, Q))

2Ω±
f]k

.

Then these values belong to Kf]k
. Similarly, let τQ := −B+

√
∆

2A and define

I±(k,Q) :=

(
1− p2k−2

ap(k)2

)
I±(f ]k, (z − τQ)k−2, τ, γQτ)

which belong again to Kf]k
(this is again independent on the choice of τ and only

depends on the Γ0(M)-equivalence class of Q).
Fix an embedding Q̄ ↪→ Q̄p. Then τQ, as well as elements in Kf]k

, can be

alternatively viewed in Q̄ or Q̄p. We collect here the relevant facts about these
integrals (see [6, Sec. 3] for proofs):

(a) The functions k 7→ r±(k,Q) and k 7→ I±(k,Q), defined for integers k > 1
in U , extend to p-adic analytic functions on U , taking values in Q̄p, which
we denote by the same symbols r±(k,Q) and I±(k,Q).

(b) We have I±(1, Q) = 0.
(c) If we denote by ξ 7→ ς(ξ) the non-trivial automorphism of the quadratic

unramified extension Qp2 of Qp, and we define

ϑ±(f,Q) :=

(
d

dk
I±(k,Q)

)
|k=1

then ϑ±(f,Q) belongs to Qp2 and

(13) ϑ±(f,Q) + ς(ϑ±(f,Q)) = 2

(
d

dk
r̃±(k,Q)

)
|k=1

.

Let χD1,D2 be the genus character associated to a factorization ∆ = D1 ·D2 of
the discriminant of K, as in Sec. 2. Recall that χD1,D2 is associated with the pair
of Dirichlet characters (χD1

, χD2
), with associated quadratic fields Ki = Q(

√
Di),

i = 1, 2. Let ε = +1 if the Ki’s are both real and ε = −1 if the Ki’s are both
imaginary. Following the terminology in [3, Def. 3.4], the claracter χD1,D2 is said
to be even in the first case, and odd in the second. Since χD1 · χD2 = χK , which
is the quadratic character associated with K, then χD1

(`) = χD2
(`) for all ` | M ,

while χD1
(p) = −χD2

(p).
Define the following p-adic number (in Qp2):

ϑ(f,D1, D2; τ) :=
∑

[Q]∈F∆/Γ0(M)

χD1,D2
(Q)ϑ(f,Q)
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and let HD1,D2
be the quadratic extension of K determined by χD1,D2

. Also, denote
by

logE : E(Q̄p) −→ Q̄p
the p-adic formal logarithm defined by logE(P ) := logq(Φ

−1
Tate(P )), where q is Tate’s

period of E at p, logq is the branch of the p-adic logarithm satisfying logq(q) = 0
and ΦTate is Tate’s uniformization of the elliptic curve. The following result is [3,
Thm. 4.3].

Theorem 4.1 (Bertolini-Darmon). Suppose that (χD1
, χD2

) satisfies

χD1
(−M) = χD2

(−M) = −wM , χD2
(p) = −χD1

(p) = −wp.

There exists a point

PD1,D2
∈ (E(HD1,D2

)⊗Z Q)χD1,D2 ,

in the subspace of E(HD1,D2
)⊗ZQ where the Galois group Gal(HD1,D2

/K) acts via
the character χD1,D2 , such that:

(1) logE(PD1,D2
) = ϑ(f,D1, D2; τ);

(2) PD1,D2
is non-zero if and only if L′(E,χD2

, 1) 6= 0.

Remark 4.2. As in Remark 2.1, ϑχ(f,D1, D2) := χ(τ1)ϑ(f,D1, D2; τ) is indepen-
dent of the choice of τ .

4.2. Darmon points and generalized Kohnen lifts. We fix the sign ε as in
Sec. 4.1 taking ε = 1 for χD1,D2

even and ε = −1 for χD1,D2
odd.

Recall the choice of the periods Ω±
f]k

made in Sec. 4 and the fundamental dis-

criminant D0 of type I chosen in Sec. 2. By [6, Lemma 3.3], these periods can be
chosen so that, after replacing U by a smaller neighborhood, the following equality
holds:

(14) Ωε
f]k

=

(
1− wp

pk−1

ap(k)

)2

r(f ]k, D0, D0).

We will assume to have done this choice from now on.
Recall that g is the generalized Kohnen-Waldspurger lift in [1] and c̃|D|(k) are

the normalized coefficients introduced in (12).

Proposition 4.3. Let D1 (reps. D2) be of type I (resp. type II). Then

χ(|D1|) · c̃|D1|(1) ·
(
d

dk
c̃|D2|(k)

)
|k=1

= ϑχ(f,D1, D2).

Proof. Notice that, for all integers k > 1 in U , we have

c̃|D1|(k) · c̃|D2|(k) =

(
1− p2k−2

ap(k)2

)
c|D1|(k)c|D2|(k)(

1− wp p
k−1

ap(k)

)2

|c|D0|(k)|2
.

By Theorem 2.3, we have then

c̃|D1|(k) · c̃|D2|(k) = χ(|D1|)−1 ·

(
1− p2k−2

ap(k)2

)
rχ(f ]k, D1, D2)(

1− wp p
k−1

ap(k)

)2

r(f ]k, D0, D0)
.
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Therefore, using (14),

(15) c̃|D1|(k) · c̃|D2|(k) = χ(|D1|)−1 ·
(

1− p2k−2

ap(k)2

)
rχ(f ]k, D1, D2)

Ωε
f]k

.

With the above choice of ε, we have r(f ]k, Q) = r̃ε(k,Q) (cf. [3, eq. (27)], or [16,
Lemma 3.4], [14, §4.3]). Combining (13) and [6, eq. (16)] we get

(16) ϑχ(f,D1, D2) = χ(|D1|) ·
d

dk

(
c̃|D1|(k) · c̃|D2|(k)

)
|k=1

.

Differentiating (15), using that c̃D2
(1) = 0 because D2 is of type II, and substituting

(16) we get the result. �

We now apply Theorem 4.1 in this situation. Before doing this, we observe that,
for fundamental discriminants D1 and D2 of type I and II respectively, the condition

χD2
(p) = −χD1

(p) = −wp
is (I) and (II) in Def. 3.1, respectively, while the condition

χD1
(−M) = χD2

(−M) = −wM
is equivalent to

χD1(−1) = χD2(−1) = (−1)s0+1,

where recall that s0 is the cardinality of the set S0 and M ′ is the product of the
primes in S0: this is because χD1

(`) = χD2
(`) = w` for all primes ` | (M/M ′) (by (1)

in Def. 3.1) and χD1(`) = χD2(`) = −w` for all primes dividing M ′ (by (2) in Def.
3.1). Thus, Q(

√
D1) and Q(

√
D2) are both real or imaginary, accordingly with the

parity of s0: odd in the first case, even in the second, and this is precisely condition
(3) in Def. 3.1 (which, of course, agrees with (∗) required in the introduction of the
paper).

Theorem 4.4. Let D1 be of type I and D2 of type II. Also assume that c|D1| 6= 0.
There exists a point

P ∈ (E(HD1,D2
)⊗Z Q(χ))χD1,D2

such that:

(1) logE(P) =
(
d
dk c̃|D2|(k)

)
|k=1

;

(2) P is non-zero if and only if L′(E,χD2
, 1) 6= 0.

Proof. Combining Prop. 4.3 and Thm. 4.1, we see that, for P = PD1,D2 as in Thm.
4.1,

logE(P ) = χ

(
|D1|
τ1

)
· c̃|D1|(1) ·

(
d

dk
c̃|D2|(k)

)
|k=1

.

Since c̃|D1|(1) belongs to Q(χ), assertion (1) follows with

P = P ⊗
(
χ

(
|D1|
τ1

)
· c̃|D1|(1)

)
.

Finally, Prop. 3.3 shows that c̃|D1|(1) 6= 0 if and only if c|D1| 6= 0, so the second
part of Theorem 4.1 shows that this point is non-zero if and only L′(E,χD2

, 1) 6= 0,
thus showing assertion (2) and finishing the proof. �

We close this section with another application, which establishes Equation (1)
of the Introduction.
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Theorem 4.5. Let D be a fundamental discriminant of type II. There exists a
point PD ∈ E(Q̄)⊗Z Q(χ), which is non-zero if and only if L′(E,χD, 1) 6= 0, such
that

logE(PD) =

(
d

dk
c̃|D|(k)

)
|k=1

.

Further, if D < 0, then we may take PD ∈ E(
√
D)⊗Z Q(χ).

Proof. Put D2 := D. Fix a discriminant D1 of type I such that (D1, D2) = 1 and

c|D1|. Let ∆ := D1 ·D2 be the discriminant of the totally real field K = Q(
√

∆).
Then one can apply Theorem 4.6 and obtain the first part of the statement for
PD = P. The second part follows from the proof of [3, Theorem 4.3] because
if D < 0 then the point PD actually belongs to the imaginary quadratic field
Q(
√
D). �

4.3. Generating series and a conjecture of Darmon-Tornaŕıa. Based on the
work accomplished thus far, we are in position to address the conjecture of Darmon
and Tornaŕıa in [6, Conj. 5.3, Case 1]. Let D1 (resp. D2) be of type I (resp. type
II), coprime to each other with D1 and D2 both positive (resp. negative) if s0 is
odd (resp. even). Put

ηχ(f,D1, D2) := χ−1(|D1|) · ϑχ(f,D1, D2)

for D1 of type I and D2 of type II. Let g be given as in Sec. 2.1 and g∗ :=
∑
n cnq

n

be the form obtained from g =
∑
n cnq

n by applying the complex conjugation.

Theorem 4.6. The coefficients ηχ(f,D1, D2) for D1 of type I are proportional
to the |D1|-th coefficient of g∗, and they do not vanish identically if and only if
L′(E,χD2

, 1) 6= 0.

Proof. Combining Prop. 4.3 and Prop. 3.3, and using that cD0
6= 0, we have

ϑχ(f,D1, D2) =
χ(|D1|) ·

(
d
dk c̃|D2|(k)

)
|k=1

c|D0|
c|D1|.

Thm. 4.4 shows that the coefficient of proportionality
( d
dk c̃|D2|(k))|k=1

c|D0|
is non-zero if

and only if L′(E,χD2
, 1) 6= 0. �

Remark 4.7. We can remove the dependence on the character χ in the above Theo-

rem. Fix a congruence class m in Z/M ′Z and let gm :=
∑
n c

(m)
n qn where c

(m)
n = cn

if n = m ∈ Z/M ′Z and c
(m)
n = 0 if n 6= m ∈ Z/M ′Z. Then gm is a half inte-

gral weight form with respect to the congruence group Γ1(4MM ′). We get from
the above theorem that ϑ(f,D1, D2, τ) is proportional to |D1|-th coefficient of g∗m
whenever D1 is of type I and |D1| = m ∈ Z/M ′Z. They do not vanish identically
if and only if L′(E,χD2 , 1) 6= 0.
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