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Abstract—As it propagates in a real single-mode fiber, light
accumulates a phase delay and undergoes variations of its
polarization state. These two phenomena are partly related to
each other, owing to both well known geometric effects, i.e. the
Pancharatnam’s phase, and less known dynamic ones. This paper
aims at reviewing these concepts, highlighting the polarization-
depended phase of light that propagates in a single-mode fiber.
We present a mathematical treatment using the familiar language
of Jones and Stokes vectors and report experiments supporting
the theory. The presented analysis has a general validity, and it
can describe phase variation with respect to several parameters,
such as distance, frequency and time. Its extension to multimode
and multi-core fibers is also discussed. The results can be used for
a better modelling and understanding of coherent transmission
systems and interferometric fiber optic sensors.

Index Terms—Polarization, optical fibers, Pancharatnam
phase, geometric phase, dynamic phase.

I. INTRODUCTION

IN 1956, S. Pancharatnam published a seminal paper prov-
ing that when the polarization of a light beam is changed

over a cycle, also the phase of the light beam changes, and the
amount of this phase change is related only to the trajectory
that the polarization of the beam draws on the Poincaré sphere
[1]. Pancharatnam’s work, however, didn’t received the due
attention until the second half of the 1980s, after M.V. Berry
discovered the eponymous geometric phase in quantal systems
[2] and Pancharatnam’s phase was recognized as a special
manifestation of it [3], [4]. Since then, there has been a
flourishing research activity on geometric phase in photonic
systems, including optical fibers [5]–[7].

It is worthwhile remarking, for completeness and clarity,
that the scientific literature about geometric phase in optical
fibers follows two distinct research lines: one focuses on
the Pancharatnam’s phase, the other (so far the most active
one) focuses on the rotation of polarization of light prop-
agated along a non-coplanar path, sometimes called Rytov-
Vladimirskii-Berry phase [8]. Actually, soon after Berry’s pub-
lication, some authors [9], [10] reported experiments showing
how the polarization of light transmitted across a single-mode
fiber, deployed along a helical path, undergoes a rotation that
can be explained as a manifestation of Berry’s geometric
phase. Berry himself argued that the phenomenon is better
described in terms of parallel transport of light polarization
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[11], as previously observed by Ross [12] and subsequently
by other authors [6], [13]–[19]. Parallel transport of light
is a manifestation of classical anholonomy, and it has been
originally studied in the framework of ray optics [20]. Despite
it shares a similar theoretical framework with the Pancharat-
nam’s phase, parallel transport of polarization is a distinct
phenomenon, and we do not considered it in this paper.

Pancharatnam’s phase is related to variations of the light
polarization and it can accumulate also when light propagates
along straight or planar paths. While physically different
from the Rytov-Vladimirskii-Berry phase, also Pancharatnam’s
phase can be interpreted as a parallel transport, but in this case
occurring on the Poincaré sphere. Only a few papers have
analyzed this phenomenon in optical fibers, in the framework
of both telecommunications [21], [22] and sensing [23]–[25].
Nonetheless, to the best of our knowledge a general theoretical
model unifying polarization effects in randomly birefringent
single-mode fibers and the Pancharatnam’s phase has never
been reported. Following the guidelines of theoretical anal-
yses made about Berry’s phase in quantum systems, in this
paper we highlight how the phase of the light field can be
decomposed in two terms: one is independent of polarization,
while the other is dependent on polarization; we call this term
”polarization-dependent phase” (PDP). As we show later, PDP
is given by two terms: one is the Pancharatnam’s phase, the
other is a dynamical phase related to birefringence.

We remark that this is only a decomposition of the total
phase and, sure enough, any modelling or measurement based
on Jones formalism already implicitly includes the PDP.
Nevertheless, we believe that singling it out can contribute to
a better modelling and understanding of fiber-based coherent
transmission systems and interferometric sensors.

The paper is organized as follows. Section II presents the
theoretical framework and the main result of this paper, namely
Eq. (12); an example of application to the simple scenario
of birefringence waveplates is also discussed. Section III
reports experimental results supporting the theoretical analysis.
Finally, Sec. IV discusses the extension of the model to
multimode and multicore fibers. In the following, we explicitly
refer to optical fibers, yet the results do apply to any other
waveguide. For the sake of readability, mathematical deriva-
tions and technical details are deferred to the Appendices.

II. THEORETICAL ANALYSIS

Before presenting the polarization-dependent phase, we
deem worthwhile recalling the key aspects of Pancharatnam’s
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analysis. Given two scalar waves at the same frequency, it
is rather natural to say whether these are in phase or not.
Pancharatnam was the first to address the same problem for
vector waves, proposing a natural, yet powerful, extension of
the scalar concept [1], [4], [26]. Let a0 be the Jones vector
of a reference wave and let a be that of an arbitrary wave;
according to Pancharatnam, the two waves are said to be in
phase when the intensity of their interference is maximum.
Mathematically, this intensity reads

|a0 + a|2 = |a0|2 + |a|2 + 2 |a∗
0a| cos

(
arg(a∗

0a)
)
, (1)

so the two waves are in phase when the argument of a∗
0a is

zero (hereinafter ∗ represents transposition and conjugation).
Equation (1) defines the so called ”Pancharatnam’s connec-
tion”, and it allows to define the phase of a with respect to
a0 as

ψ = arg(a∗
0a) . (2)

Note, however, that in general this phase is not the Pancharat-
nam’s phase, as clarified later.

Pancharatnam’s connection has two important properties.
The first one is that it is invariant with respect to changes of
the state of polarization (SOP) of a that are represented on the
Poincaré sphere by the geodesic (great circle) passing though
the points ŝ0 and ŝ — i.e. the unit Stokes vectors associated
to a0 and a, respectively [27]. The second property is that
the Pancharatnam’s connection is not transitive [26], which
means that if a is in phase with a0 and also another wave a′

is in phase with a0, there is no guarantee that a and a′ are
in phase. This non-transitivity has an important consequence.
Assume that a has the same polarization of a0, so they are
represented by the same point ŝ0 on the Poincaré sphere.
Assume now that the polarization of the wave a is varied
along a closed trajectory on the Poincaré sphere; then, it can be
proved that the final phase of a with respect to a0 is varied by
a quantity equal to −1/2 times the area encircled by the closed
trajectory [4]. This phase is purely geometric and it is called
Pancharatnam’s phase. These properties of Pancharatnam’s
connection have been analyzed in several papers [26]; for the
sake of completeness, we review them also in App. A.

Note that, in general, the Pancharatnam’s phase is just one
contribution to ψ. Actually, we highlight in the following that
the phase difference between the two waves a and a0 can be
decomposed in the sum of three terms:

ψ = arg(a∗
0a) = σ + χ+ γ . (3)

The first one, σ, is the dynamic scalar phase; it is said
”dynamic” because it depends on the effective refractive index
seen by the propagating light (i.e. on its propagation velocity)
and ”scalar” because it is independent of polarization. The
second term, χ, is the dynamic polarization-dependent phase;
it depends on fiber birefringence (hence it is still a ”dynamic”
term) and on light polarization. To understand this term, we
can think about a polarization maintaining fiber: depending on
whether the input SOP is aligned with the fast or slow axis,
the actual phase delay is smaller or larger; as we will see, χ
capture this fact and generalizes it to arbitrary polarization.
Finally, γ is the geometric Pancharatnam’s phase introduced

before; it is said ”geometric” because it depends only on how
the polarization of light varies. In the next section we derive
the expressions of these terms.

A. Calculation of the PDP

To evaluate ψ, it is better to analyze how it varies with
respect to a parameter. From a mathematical point of view,
which parameter we choose is immaterial; however, just for
reference, we consider the distance of propagation, z. There-
fore, we now focus on ψ(z) = arg[a∗

0a(z)], which is the
phase of the propagating wave a(z) with respect to the fixed
reference a0. In general we can write [27], [28]

∂a(z) = −jK(z)a(z) , (4)

where ∂ indicates derivative with respect to z,

K(z) = κ0(z)Λ0 + κ̄(z) · Λ̄ , (5)

Λ0 is the identity matrix, Λ̄ is the vector of Pauli matrices,
κ0 = β0 − jα0 (β0 is the propagation constant, α0 the
attenuation coefficient), and κ̄ = (β̄ − jᾱ)/2, with β̄(z) the
birefringence vector and ᾱ(z) the local dichroism vector, both
of which are real and three-dimensional [27], [28]. Following
the analysis performed in Ref. [29] for quantum systems, we
introduce the transformed wave b(z) as (see App. B-A)

b(z) = exp

{
j

∫ z

0

ξ(z′)dz′
}
a(z) , (6)

where

ξ =
Re [a∗Ka]

a∗a
= Re [κ0 + κ̄ · ŝ] = β0 +

1

2
β̄ · ŝ , (7)

and ŝ(z) = a∗(z)Λ̄a(z) is the unit Stokes vector associated
to a(z) and b(z) [27], [28]. Note that ξ does not depend on
the local dichroism. Using (6) we have

ψ(z) = arg[a∗
0a(z)] = −

∫ z

0

ξ(z′)dz′ + arg[a∗
0b(z)] ; (8)

we will see that the first term is equal to σ + χ and accounts
only for the dynamic phases (both scalar and polarization-
dependent), while the second term is the Pancharatnam’s
phase, γ.

We now proceed to derive a differential equation for the
phase γ(z) of the Pancharatnam’s connection p(z) = a∗

0b(z).
Note that b(z) obeys the equation

∂b = −j(K − ξΛ0)b = −jHb (9)

therefore, ∂p = −ja∗
0Hb. Moreover, ejγ = p/ |p| and hence

∂γ = j(p ∂p∗ − p∗∂p)/(2 |p|2) , (10)

which leads to the final expression (see App. B-A)

∂γ = − (ŝ0 × ŝ) · ∂ŝ
2(1 + ŝ0 · ŝ)

, (11)

where ŝ0 is the unit Stokes vector associated to the reference
wave a0. Summarizing, we have found that the variation per
unit length of the phase ψ(z) = arg[a∗

0a(z)] is

∂ψ = −β0 −
1

2
β̄ · ŝ− (ŝ0 × ŝ) · ∂ŝ

2(1 + ŝ0 · ŝ)
, (12)
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Fig. 1. The Pancharatnam’s phase γ(z) given by (16) is equal to −1/2 the
solid angle subtended by the shaded area. Solid curve: trajectory of the SOP;
dashed curves: geodesics connecting the reference SOP ŝ0 and the edges of
the SOP trajectory.

which is the main theoretical results of this paper.
We recognize that

σ(z) = −
∫ z

0

β0(z
′)dz′ (13)

is the dynamic scalar phase; it does not depend on light
polarization but only on the effective refractive index of the
mode propagating in the fiber. The second term yields the
dynamic polarization-dependent phase

χ(z) = −1

2

∫ z

0

β̄(z′) · ŝ(z′)dz′ . (14)

Recalling the example of the polarization maintaining fiber
for which β̄ is constant and eigenstates of polarization exist,
we see that when the SOP is parallel or antiparallel to β̄,
the quantity σ+ χ correctly represents the scalar phase delay
associated to the propagation along the fast and slow axes
of birefringence. Equation (14) generalizes this concept for
arbitrary birefringence vectors and arbitrary SOPs. Note that
it does not depend explicitly on the local dichroism vector ᾱ;
yet, it depends implicitly on ᾱ through the variation of ŝ as a
function of z.

Finally, the third term leads to the Pancharatnam’s phase

γ(z) = −1

2

∫ z

0

[ŝ0 × ŝ(z′)] · ∂ŝ(z′)
1 + ŝ0 · ŝ(z′)

dz′ , (15)

which can be rearranged as (see App. B-B)

γ(z) = −1

2

∫
C(z)

[ŝ0 × ŝ] · ∂ŝ
1 + ŝ0 · ŝ

, (16)

where C(z) is the trajectory that, on the Poincaré sphere, goes
from ŝ0 to ŝ(0) along the shortest geodesic, then follows the
trajectory of the SOP up to ŝ(z), and finally goes back to ŝ0
again along the shortest geodesic (see Fig. 1). This quantity
is purely geometric in the sense that it depends only on the
trajectory C(z) and, as known, it is equal to −1/2 times the
area encircled by the path C(z) (see App. B-B). The sign of
this area is taken to be positive when the path is traversed in
counterclockwise direction, negative otherwise. Notice that γ
is implicitly dependent on both β̄ and ᾱ.

We define the polarization-dependent phase ψpol(z) as the
sum of the last two phase terms:

ψpol(z) = χ(z) + γ(z) . (17)

The PDP is the only phase term that depends on (and only
on) the polarization-related aspects of wave propagation, while
being independent of the scalar ones. On the contrary, the
dynamic scalar phase σ is the only phase term independent
of polarization aspect. As an example, a temperature variation
occurring along a fiber do have an impact on σ, whereas it
does not affect the PDP, as long as it is not changing the fiber
birefringence (or dichroism). On the contrary, if for instance
the SOP launched into a fiber is changed, we might expect the
output phase to vary because of the PDP term, while σ will
remain unchanged.

Examples of application of this decomposition to simple
optical elements as birefringent waveplates and polarizers are
discussed for completeness in App. C.

B. PDP with respect to a varying reference wave

In the previous sections we have focused the attention to the
case in which the reference wave a0 is fixed. Considering for
example a coherent receiver (either homodyne or heterodyne)
this is indeed a common case. Nevertheless, there is an interest
in analyzing also how the phase of the field a2(z) varies with
respect to another non-fixed field a1(z), which is a function
of z too (we recall that the choice of the parameter z is
arbitrary). Basically, we are interested in the phase of the
product p2,1(z) = a1(z)

∗a2(z).
As examples of application of this problem, we may con-

sider two fields a1(z) and a2(z) propagating along the same
fiber, but launched with different input SOPs and/or with
different frequencies (so to experience different birefringence).
Another case that falls within this model is suggested in the
recent analysis reported in Ref. [25]. In that paper, the authors
used a phase-sensitive OTDR to measure, as a function of
time, the phase of the light backscattered from a point beyond
a polarization scrambler with respect to the phase of the light
backscattered from a point before it. Strictly speaking, this
is still the case in which the reference wave is constant (in
this case with respect to time); nevertheless, if that kind of
measurement have to be put in practice, it is likely that the
SOP will vary over time at different points along the fiber, so
that also the reference wave cannot be considered fixed.

At a first glance one may (erroneously!) think that the phase
of p2,1(z) is equal to the difference between the phases of
a2(z) and a1(z) evaluated with respect to a common fixed
field a0. Actually, the fact that the Pancharatnam’s connection
is not transitive makes the above solution wrong, and the
correct solution less trivial.

Following the guidelines of Sec. II-A, we highlight the dy-
namic phase term of both fields by factorizing them according
to (6):

an(z) = exp

{
−j

∫ z

0

ξn(z
′)dz′

}
bn(z) , (18)
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Fig. 2. Schematic of the experimental setup. OFDR, optical frequency domain
reflectometer; PC, polarization controller; PMF, polarization maintaing fiber;
R, reflector.

where ξn = β0,n + β̄n · ŝ/2 and n = 1, 2. It is then
straightforward to express the phase difference as

ψ2,1(z) = arg(p2,1(z)) =∫ z

0

ξ1(z
′)dz′ −

∫ z

0

ξ2(z
′)dz′ + arg[b∗1(z)b2(z)] ; (19)

this indicates that for what concerns the dynamic phases, the
contribution to arg(p2,1(z)) is indeed simply the difference
between the dynamic phases of each field (i.e. the first two
integrals); differently, the geometric phase is given by the
argument of b∗1b2. Proceeding in a way similar to what
done in Sec. II-A, we find that the derivative of the phase
γ2,1(z) = arg[b∗1(z)b2(z)] reads

∂γ2,1 = −1

2

{
(ŝ1 × ŝ2) · ∂ŝ2
1 + ŝ1 · ŝ2

− (ŝ1 × ŝ2) · ∂ŝ1
1 + ŝ1 · ŝ2

}
. (20)

Mathematically, both terms of this expression are similar to
the analogous term of (11); yet, the crucial difference is that
in (20) all the vectors depend on z, whereas in (11) ŝ0 is
independent of z.

The geometrical interpretation of (20) is less straightfor-
ward. Nevertheless, resorting to the arguments presented in
Ref. [4], we can conclude that

γ2,1(z) = −1

2

∫ z

0

(ŝ1 × ŝ2) · ∂ŝ2
1 + ŝ1 · ŝ2

dz′+

1

2

∫ z

0

(ŝ1 × ŝ2) · ∂ŝ1
1 + ŝ1 · ŝ2

dz′ . (21)

is equal to the area encircled by the closed path that goes from
ŝ1(0) to ŝ2(0) along the shortest geodesic arc, then follows the
trajectory of ŝ2 up to ŝ2(z), goes to ŝ1(z) along the shortest
geodesic arc, and finally back to ŝ1(0) following the trajectory
of ŝ1.

In conclusion, the phase of a2(z) with respect to a1(z) is
equal to the difference between the dynamic phases of a2 and
those of a1 (both the scalar and polarization-dependent terms),
plus the geometric contribution given by (21).

III. EXPERIMENTAL ANALYSIS

Since measuring phase and polarization of light as a func-
tion of the distance of propagation is not viable, to verify the
above theory we setup an experiment to measure phase and
polarization of the light transmitted across a fiber link as a
function of the angular frequency ω. The idea is to measure
the complex wave a(ω), for ω varying in a given range, and
to analyze its phase with respect to a reference frequency ω0;
in fact, we want to measure and analyze the phase

ψ(ω) = arg
(
a∗(ω0)a(ω)

)
. (22)

Fig. 3. DGD of the fiber link (upper graph) and second component of the
transmitted SOP (lower graph) measured as a function of frequency.

In this context, the dynamic polarization-dependent phase χ
given by (14) is

χ(ω) = −1

2

∫ ω

ω0

Ω̄(ω′) · ŝ(ω′)dω′ , (23)

where Ω̄ is the polarization mode dispersion (PMD) vector of
the fiber link. Similarly, according to (16), the Panchratnam
phase is given by

γ(ω) = −1

2

∫
C(ω)

[ŝ0 × ŝ] · ∂ŝ
1 + ŝ0 · ŝ

, (24)

where the only differences are that ŝ0 = ŝ(ω0) and the path
C(ω) is now a function of frequency.

Figure 2 shows the experimental setup, which is built around
a commercial optical frequency domain reflectometer (OFDR;
Luna OBR 4600). The use of a commercial OFDR simplifies
the experiment, because the device guarantees the linearity of
the frequency sweep, includes a polarization diversity receiver
that measures a(ω), and enables performing the measurements
on a relatively short time scale of about two seconds. The
OFDR is connected to an optical circuit made of two circula-
tors and one polarization controller (PC1), which is needed to
change the SOP of the light launched into the fiber, without
affecting that of the backscattered light. This control of the
input SOP is necessary to calculate the PMD vector of the
fiber link [30]. In order to have nontrivial polarization effects,
the fiber link should have non-negligible polarization mode
dispersion (PMD). For this reason, the link is made of a
polarization maintaining fiber (PMF; 5m long for about 6.2 ps
of differential group delay), followed by a second polarization
controller (PC2) and a reflector (R). This reflector (basically, a
fiber-coupled mirror) makes Rayleigh scattering from the fiber
negligible. Moreover, the polarization controllers are made
with Lefevre’s loops [31], and as a consequence, the total PMD
of link includes the effects of the two circulators (estimated
in the order of 0.1 ps to 0.2 ps per passage) and of the double
passage along the PMF, making the frequency dependence of
the total PMD vector nontrivial.

Five different input SOPs have been launched in the fiber
link and the corresponding reflected complex light waves
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(a)

(b)

Fig. 4. Trajectory on the Poincaré sphere as a function of frequency of (a) the
principal state of polarization of the fiber link and (b) one of the transmitted
SOP (the ŝ2 axis is pointing beyond the spheres in both cases). The black
star indicate the SOP of the field used as a reference for the calculation of
the phase terms.

a(ω) have been measured over 4.5THz around 1550 nm. The
frequency was scanned at about 20 nm/s, so the measurements
lasted about 1.8 s each. Using these measurements, the trans-
mitted SOPs and the PMD vector Ω̄(ω) of the link have been
calculated according to the method described in Ref. [30].

The upper graph of Fig. 3 shows the measured differential
group delay (DGD), ∆τ =

∣∣Ω̄∣∣, whereas Fig. 4(a) shows
the vector Ω̄/∆τ (i.e. the principal state of polarization [27])
drawn on the Poincaré sphere. Similarly, the lower graph of
Fig. 3 shows, as an example, the second component of the
transmitted SOP for the first input SOP; the corresponding
complete SOP trajectory ŝ(ω) is shown in Fig. 4(b) as a
function of frequency. Using these data, the different terms of
the PDP have been calculated, adopting as reference the field
transmitted at the lowest frequency, whose SOP is indicated
by the star in Fig. 4(b). The blue curve in Fig. 5(a) represents
the phase ψ(ω) calculated according to (22). The quantity is
characterized by marked oscillations with the same period as
the DGD, suggesting that they are due to polarization effects.
In the same figure, the red curve represents the Pancharatnam’s
phase γ(ω) calculated according to (24); again the quantity
shows similar marked oscillations. Finally, the green curve
is the dynamic polarization-dependent phase χ(ω), calculated
using (23); while here the oscillations are less marked, they
still have the same period. According to (3), the dynamic scalar
phase is σ = ψ−χ−γ, and it is shown in Fig. 5(a) by the black
curve. In practice, σ(ω) represents the scalar phase effect due
to the environmental perturbations acting on the fiber circuit
during the measurement, which we recall lasted about 1.8 s. It
is remarkable that, some residual oscillations apart likely due
to environmental noise, σ does not show oscillations evidently
related to polarization effects, confirming its scalar nature.

Figure 5(b) shows a similar analysis performed on another
input SOP. As we see, the above remarks and conclusions
are confirmed, supporting the proposed decomposition of the
phase ψ in terms of polarization-dependent and polarization-

Fig. 5. Phases measured for two different input SOP, (a) and (b), respectively,
plotted as a function of the frequency ω/(2π). For both graphs, curves
represent the phase ψ = arg(a∗(ω0)a(ω)), the Pancharatnam’s phase γ,
the dynamic polarization-dependent phase χ, and the dynamic scalar phase
σ, as indicated on the graphs. Graphs share the same units on the vertical
axes.

independent terms.

IV. MULTIMODE AND MULTICORE FIBERS

The above analysis can be extended to multimode propaga-
tion, including the case of multicore fibers, although there is
no simple geometrical interpretation.

The propagation of M modes (counting both spatial and
polarization modes) can be described by the M -dimensional
generalized Jones vector a (also called state vector by some
authors [28]), which represents amplitude and phase of the
modes. It is useful to introduce the coherence matrix associ-
ated to a, defined as A = aa∗. The propagation of the modes
along the fiber is still described by (4), where K(z) is now
the M ×M complex coupling matrix (as before, we consider
without loss of generality the dependence of a on z; yet
the following analysis holds also for any other dependence).
Similarly, also the transformed vector b(z) defined by (6) can
be generalized to the M -dimensional case in a straightforward
way, with ξ expressed as

ξ =
Re [a∗Ka]

a∗a
=

Re [tr(KA)]

tr(A)
, (25)

where tr(X) is the trace of a matrix X . As discussed in
Refs. [29] and [32], ξ is the dynamic phase variation per unit
length of the wave a. Similarly to the single-mode case, it
can be decomposed in a scalar term and in a mode-dependent
term. Actually, the coherence matrix A can be decomposed
as

A =
1

M
(A0Λ0 + Ā · Λ̄) , (26)

where now Λ0 is the M -dimensional identity matrix, Λ̄ is the
(M2 − 1)-dimensional vector of generalized Pauli matrices
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[28], [33], A0 = |a|2, and the vector Ā = a∗Λ̄a is the
generalized Stokes vector associated to a [28]. Analogously:

K = κ0Λ0 + κ̄ · Λ̄ , (27)

where κ0 = β0 − jα0, β0 is the scalar phase delay per unit
length, α0 is the scalar attenuation coefficient, and

κ̄ =
1

M
(β̄ − jᾱ) , (28)

where β̄ and ᾱ are the M -dimensional generalized birefrin-
gence and local dichroism vectors, respectively [28]. Using
these decompositions it can be proved that

ξ = β0 +
β̄ · Ā
MA0

, (29)

where the first term accounts for the dynamic scalar phase σ
and the second one accounts for the dynamic mode-dependent
phase χ, similarly to (13) and (14), respectively.

Owing to the applied transformation, the vector b(z) is
parallel transported [29], [32]; therefore, the phase γ(z) of
b(z) with respect to a reference a0 is a purely geometric phase,
and can be considered a generalized Pancharatnam’s phase [?],
[34]. Following the guidelines of Sec. II-A, we consider the
z derivative of phase γ(z) of p(z) = a∗

0b(z), which is given
by (10) and can be rearranged as (see App. B-A)

∂γ = − tr(AH∗A0) + tr(A0HA)

2 tr(AA0)
, (30)

where A0 is the coherence matrix associated to a0, H is
as before defined as H = K − ξΛ0 and we used the fact
that A = aa∗ = bb∗. The generalized Stokes vectors do not
have most of the properties of the standard Stokes vectors
(note for example that A0 is not the modulus of Ā) [28]; as
a consequence, it is not possible to reduce (30) to a simpler
expression similar to (11).

While the above considerations make explicit reference to
optical fibers, they can in principle be applied also to any beam
made of a superposition of propagating modes [35], provided
that the optical components traversed by the beam are properly
described in terms of their mode-coupling matrices.

V. CONCLUSIONS

In this paper we have analyzed the phase of a field transmit-
ted across an optical fiber, highlighting how this phase can be
decomposed into a scalar term and a polarization-dependent
term, which is made itself of two contributions. The first one is
the well known Pancharatnam’s phase, which is geometric in
nature; it depends explicitly only on the trajectory that the SOP
draws on the Poincaré sphere, as given in (16). The second
term is a dynamic phase depending on both the SOP and the
birefringence of the fiber, according (14).

All these phase terms are implicitly taken into account by
any model or experimental analysis based on the formalism
of Jones matrices. Nevertheless, we believe that highlighting
them can contribute to a better understanding of coherent
and polarimetric optical systems. For example, in a coherent
transmission system we should expect that random fluctuations
of polarization contribute to phase noise. Another possible use

Fig. 6. Sketch of the trajectories tracked by the electric field for some
polarization states. The gray dots indicate the field position at a given time
t0; the red arrows suggest the direction of motion as time flows.

of these results is in the framework of fiber sensing, specifi-
cally regarding the interferometric sensors and the polarimetric
ones. To the best of our knowledge, almost always the former
neglect polarization and the latter neglect phase; this despite
the fact that interferometers have to cope with polarization and
often polarimeters are based on coherent receivers. It seems
reasonable to foresee that the phase decomposition analyzed
here might be used to improve their accuracy.

The analysis reported in this paper is mainly focused on
singlemode fibers and on polarization variation as a function
of either distance of propagation or frequency. Nevertheless,
the theoretical framework has a much wider validity and can
be applied to different scenarios. Here, we extended the anal-
ysis to multimode and multi-core fibers, showing that, while
lacking an easy geometrical interpretation, the decomposition
of the phase in a scalar term and a mode-dependent one is
still possible.

APPENDIX A
PANCHARATNAM’S CONNECTION

Consider Fig. 6; comparing graphs (a) and (b) it is reason-
able to state that the fields in (a) are out of phase, whereas
those in (b) are in phase. Similarly, the fields in (c) are out
of phase, while those in (d) are in phase. Pancharatnam’s
connection a∗

1a2 captures this concept; actually, any wave
a2 can be decomposed in a wave parallel to a1 and a wave
orthogonal to it. Clearly, the latter one does not contribute to
arg(a∗

1a2), so Pancharatnam connection measures the phase
difference between the component of a2 projected on a1

and a1 itself, reducing the problem of assessing the phase
difference between vector waves back to a problem of phase
difference between scalar (co-polarized) waves, for which
we know a familiar answer. A consequence of the above
observation is that as long as the wave a2 is changed only
in the component orthogonal to a1, the phase difference
between the two waves does not change. As an example,
consider Fig. 6(b); if we change the ellipticity of the elliptical
polarization by changing the length of the axis orthogonal to
the linear polarization, the phase difference between the two
waves does not change. On the Poincaré sphere, changing
the ellipticity corresponds to moving along a meridian, which
happens to be a great circle of the sphere. This result has in
fact a general validity: Pancharatnam’s connection is invariant
with respect to changes of the polarization state that occur
along great circles (geodesics) of the Poincaré sphere [29].

Pancharatnam’s connection is not transitive. Regarding
scalar or co-polarized waves it is evident that if a wave A is
in phase with a wave B, and B is in phase with C, then A is
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Fig. 7. Example of the non-transitivity of Pancharatnam phase.

in phase with C; hence the transitivity. This does not happen
for vector waves, and a simple counter example is given in
Fig. 7(a)-(c): waves A and B are in phase, and so are B and
C; yet, waves A and C are clearly out of phase. It is interesting
to follow the variations among the states of polarization just
considered on the Poincaré sphere (Fig. 7(d)). We can move
from A to B by collapsing the circle along the axis orthogonal
to B; this corresponds to moving along the meridian passing
through points A and B on the sphere; as we have seen, this
does not induce variation of the phase. Moving from B to
C corresponds to moving along the equator of the sphere;
again a great circle; again no phase change. Finally, from C
we go back to A along another meridian, again without phase
variation. Nevertheless, as shown in Fig. 7(c), at the end of the
process the waves are out of phase. It has been proved that this
phase shift is equal to −Ω/2, where Ω is the area encircled by
the trajectory (or, equivalently, the solid angle subtended by
that area). This result has been generalized to arbitrary open
trajectories, provided that they are closed by a geodesic [29].
In conclusion, when the polarization goes through a series
of transformations, at the end of the process the wave has
accrued a phase delay equal to −Ω/2, where Ω is the area
encircled by the trajectory that the transformations draw on
the Poincaré sphere, closed by the geodesic connecting the
end points of the trajectory. This phase is purely geometric
and it is called Pancharatnam’s phase.

APPENDIX B
MATHEMATICAL PROOFS

A. Derivation of (11) and (30)

According to the transformation given by (6) and (7), the
complex vector b(z) obeys (9) and hence the condition

Im
[
b̃
∗
∂b̃

]
= Im [−j (a∗Qa− Re [a∗Qa])] = 0 . (31)

As remarked in Refs. [29], [32], this condition is a parallel
transport law, in the sense that b(z) does not accumulate a
dynamical phase; this leads to conclude that ξ defined in (7)
represents the dynamical phase delay per unit length. Recalling
that p(z) = a∗

0b(z) and ejγ = p/ |p|, and using (9) and (10),
we have

p ∂p∗ − p∗∂p = ja∗
0(HA+CA∗)a0 = (32)

= j tr(AH∗A0) + j tr(A0HA) , (33)

where A(z) = b(z)b∗(z) = a(z)a∗(z) is the coherence
matrix associated to a(z), b(z), and A0 that associated to
a0, and we used the properties of the trace tr(·) of matrices.

Exploiting the decomposition (3) for the 2-dimensional case,
we can write

A(z) =
1

2
P (z)

(
Λ0 + ŝ(z) · Λ̄

)
, (34)

with P (z) = |a(z)|2 and ŝ(z) the unit Stokes vector associated
to a(z). Let us set for brevity H = h0Λ0 + κ̄ · Λ̄, with
h0 = κ0 − γ; neglecting the factor P/2 we have:

HA ∝ (h0Λ0 + κ̄ · Λ̄)(Λ0 + ŝ · Λ̄) =

(h0 + κ̄ · ŝ)Λ0 + (h0ŝ+ κ̄+ j κ̄× ŝ) · Λ̄ , (35)

where we used the property of 2-dimensional Pauli matrices
[36]. Since AH∗ = (HA)∗ we readily find

HA+AH∗ ∝ 2Re [h0 + κ̄ · ŝ]Λ0+

2Re [h0ŝ+ κ̄] · Λ̄− 2(Im [κ̄]× ŝ) · Λ̄ , (36)

and hence

p ∂p∗ − p∗∂p = jP {Re [h0 + κ̄ · ŝ] +
Re [h0ŝ+ κ̄] · ŝ0 − (Im [κ̄]× ŝ) · ŝ0} , (37)

where ŝ0 is the SOP associated to a0 and we assumed without
loss of generality that |a0| = 1. Now notice that h0 = κ0−ξ =
−jα0 − (β̄ · ŝ)/2; therefore,

Re [h0 + κ̄ · ŝ] = Re

[
−jα0 − j

1

2
ᾱ · ŝ

]
= 0 , (38)

Re [h0ŝ+ κ̄] = −1

2
(β̄ · ŝ)ŝ+ 1

2
β̄ . (39)

Moreover

|p|2 = a∗
0Aa0 = tr(AA0) =

P

2
(1 + ŝ · ŝ0) , (40)

so putting everything back together we reach (30) and find:

∂γ =
[(β̄ · ŝ)ŝ− β̄ − ᾱ× ŝ] · ŝ0

2(1 + ŝ · ŝ0)
= (41)

= − [(β̄ × ŝ)− ᾱ] · (ŝ0 × ŝ)

2(1 + ŝ · ŝ0)
. (42)

Finally, recalling that1

∂ŝ = β̄ × ŝ+ ŝ× ŝ× ᾱ , (43)

we reach (11).

B. Geometrical interpretation of (11) and (16)

We now prove that when integrated along the fiber length,
i.e. from z = 0 to L, (11) yields a value equal to −1/2 times
the area on the Poincaré sphere encircled by the trajectory that
goes from ŝ0 to ŝ(0) along the geodesic, then follows ŝ(z)
and finally goes back to ŝ0 along the geodesic that connects
ŝ(L) to ŝ0 (see Fig. 8). Note that, the ”area” should be taken
positive if the trajectory is ”right handed”, i.e. consistent with
a counterclockwise rotation around ŝ0.

Consider the generic infinitesimal area, dΩ, delimited by the
geodesic from ŝ0 to ŝ(z), the section of SOP trajectory going

1The plus sign in this equation stems from the definition κ̄ = (β̄ − ᾱ)/2
introduced in (5). Note that some authors define ᾱ with the opposite sign.
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Fig. 8. Representation of the infinitesimal surface spanned by an infinitesimal
variation of the SOP.

from ŝ(z) to ŝ(z+dz), and the geodesic from ŝ(z+dz) to ŝ0
(Fig 8). This area can be decomposed in two parts: the first
one, dΩ1 (darker in the figure), is obtained by rotating ŝ(z)
around ŝ0 until the geodesic passing through ŝ0 and ŝ(z+dz)
is meet; the second part, dΩ2, is simply the rest. Since dΩ1

is obtained by a rotation around ŝ0, it is actually a wedge of
a spherical cap and its area is

dΩ1 = µ0(1− cos θ) = µ0

(
1− ŝ0 · ŝ(z)

)
, (44)

where µ0 is the angle at the vertex ŝ0 and θ is the angle
subtended by ŝ0 and ŝ(z). The angle µ0 is the angle subtended
by the plane defined by ŝ0 and ŝ(z) and the plane defined by
ŝ0 and ŝ(z + dz); therefore, it is also the angle subtended by
the normals to those planes. Mathematically, we have

|sinµ0| =
∣∣(ŝ0 × ŝ)×

(
ŝ0 × (ŝ+ dŝ)

)∣∣
|ŝ0 × ŝ| |ŝ0 × (ŝ+ dŝ)|

≈ |dŝ · (ŝ0 × ŝ)|
|ŝ0 × ŝ|2

,

(45)
where we set ŝ(z + dz) ≈ ŝ + dŝ. Considering that µ0 is
infinitesimal and that it is positive if dŝ ”makes the plane
{ŝ0, ŝ} rotate” counterclockwise around ŝ0, we can write

µ0 ≈ dŝ · (ŝ0 × ŝ)

|ŝ0 × ŝ|2
=
dŝ · (ŝ0 × ŝ)

1− (ŝ0 · ŝ)2
. (46)

Combining this with (44) we get

dΩ1 ≈ dŝ · (ŝ0 × ŝ)

1 + ŝ0 · ŝ
. (47)

Regarding the second part of the area, note that as dz tends to
0, the area collapses in a point, approximating a flat triangle.
More specifically, all the sides of this triangle are proportional
to |dŝ|, therefore the area dΩ2 is an infinitesimal of order 2,
whereas dΩ1 is infinitesimal of order 1. As a consequence,
dΩ2 plays no role in the Riemann sum that leads to the
integration, proving the starting hypothesis.

APPENDIX C
PDP IN SIMPLE WAVEPLATES

We analyze here for completeness the PDP in simple optical
waveguides as birefringent waveplates and ideal polarizers.

Fig. 9. Polarization-dependent phase accumulated by a light beam as it
traverse a birefringence waveplate with different thicknesses: (1) L = LB ,
full waveplate; (2) L = LB/10; (3) L = LB/4, quarter waveplate; (4)
L = 2LB/5; (5) L = LB/2, half waveplate.

A. Birefringent waveplate

An interesting case of study is that of a birefringent wave-
plate with β̄ constant and ᾱ = 0; this is the typical elementary
building block in the numerical representation of birefringent
fibers [27]. We are interested in studying how the phase of
the output wave changes with respect to the input one; so we
set a0 = a(0) — and hence ŝ0 = ŝ(0). Then, the transmitted
SOP can be expressed as [27]

ŝ(z) = ŝ0+(sinβz)(β̂× ŝ0)+(1−cosβz)(β̂×β̂× ŝ0) , (48)

where β =
∣∣β̄∣∣, and β̂ = β̄/β. The dynamic polarization-

dependent phase reads simply

χ(z) = −1

2
(β cos θ)z (49)

where θ is the (constant) angle subtended by β̄ and ŝ0. Re-
garding the geometric term, using (48) and (16), and recalling
that ∂ŝ = β̄ × ŝ, we find

∂γ = −β
2

(1− cosβz) sin2 θ cos θ

2− (1− cosβz) sin2 θ
. (50)

Integrating this expression and summing the result to χ(z) we
finally reach the expression of the PDP of a waveplate:

ψpol = − arctan (cos θ · tan (πL/LB)) , (51)

where L is the length of the waveplate and LB = 2π/β is its
beat length. Figure 9 shows ψpol as a function of θ, for different
lengths L; there are some interesting features to comment. The
so called full-wave plate (FWP, curve (1) in the figure) has
thickness equal to an integer multiple of LB , hence it does
not vary the polarization; we see here that it doesn’t vary the
PDP neither. Nevertheless, the FWP has a non-zero geometric
phase, which is however exactly compensated by the dynamic
polarization-dependent term [37]. The half-wave plate (HWP,
curve (5)) induces a θ-independent phase shift, which however
abruptly changes sign as soon as the sign of cos θ changes.
Differently, the PDP of a quarter-wave plate (QWP, curve
(3)) varies smoothly with θ. The extreme values of ψpol are
obtained for either θ = 0 or θ = π, which correspond to the
input SOP being aligned with one of the two optical axes of
the waveplate—i.e. the conditions in which the input SOP is
not changed.
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B. Polarizer

A polarizer can be modelled as a device with constant
dichroism axes and negligible birefringence, which correspond
to setting ᾱ constant with respect to z and β̄ = 0. In this case,
the propagation across the waveplate corresponds to moving
the SOP on the Poincaré sphere along the great circle passing
through ᾱ and the input SOP, ŝ0; hence the propagation across
an ideal polarizer does not induce Pancharatnam’s phase.

To prove this, notice that if ŝ moves along the great circle
passing through ŝ0 and ᾱ, then ŝ must be always orthogonal
to ŝ0× ᾱ. Using (43) with β̄ = 0, it is straightforward to show
that

∂
[
(ŝ0 × ᾱ) · ŝ

]
= (ᾱ · ŝ)

[
(ŝ0 × ᾱ) · ŝ

]
; (52)

for z = 0 we have ŝ(0) = ŝ0 and (ŝ0 × ᾱ) · ŝ(0) = 0, hence
∂
[
(ŝ0 × ᾱ) · ŝ(z = 0)

]
= 0, proving that (ŝ0 × ᾱ) · ŝ(z) = 0

is the solution of (52), and thus that the trajectory is the said
great circle. Further calculation would show that the SOP tends
to be parallel to −ᾱ, which is the SOP with least attenuation.

Incidentally, notice also that this result is (of course) consis-
tent with the fact that moving along a geodesic does not change
the Pancharatnam’s phase. Indeed, for β̄ = 0 and using again
(43), (11) yields

∂γ =
(ŝ0 × ᾱ) · ŝ
1 + ŝ · ŝ0

, (53)

which is 0 if ᾱ is constant, as proved above.
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