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RESEARCH PAPER

From the Wuhan-Hu-1 strain to the XD and XE variants: is targeting the SARS-
CoV-2 spike protein still a pharmaceutically relevant option against COVID-19?

Matteo Pavan�, Davide Bassani�, Mattia Sturlese and Stefano Moro

Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy

ABSTRACT
Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 genome has undergone
several mutations. The emergence of such variants has resulted in multiple pandemic waves, contributing
to sustaining to date the number of infections, hospitalisations, and deaths despite the swift development
of vaccines, since most of these mutations are concentrated on the Spike protein, a viral surface glycopro-
tein that is the main target for most vaccines. A milestone in the fight against the COVID-19 pandemic
has been represented by the development of Paxlovid, the first orally available drug against COVID-19,
which acts on the Main Protease (Mpro). In this article, we analyse the structural features of both the
Spike protein and the Mpro of the recently reported SARS-CoV-2 variant XE, as well the closely related XD
and XF ones, discussing their impact on the efficacy of existing treatments against COVID-19 and on the
development of future ones.
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1. Introduction

More than two years have now passed since the beginning of the
COVID-19 pandemic, back in December 20191,2. Caused by a beta
coronavirus known as SARS-CoV-2 and characterised by para-influ-
enzal symptoms such as fever, cough, and dyspnoea, this world-
wide-spread disease has resulted in the death of more than 6
million people around the world, becoming one of the deadliest
illnesses in human history3,4.

The SARS-CoV-2 virus was first identified in the Chinese city of
Wuhan, where the pandemic was firstly spotted5. The genomic
sequence of this virus (named Wuhan-Hu-1 from now on in the
article) is80% identical to the one of the SARS-CoV virus6,7, which
was responsible for the Severe Acute Respiratory Syndrome (SARS)
that stroke the South East of Asia in 2002/2003, causing the death
of about 800 patients over 9000 cases (10% death rate)8,9. The
exact origin of the SARS-CoV-2 virus is still to this date unknown,
however several pieces of evidence point out bat coronaviruses as
closely related ancestors and the pangolin as the intermediate
host before the human spillover10–13.

Soon after the original virus started spreading all over the
world, several viral variants began to emerge14,15, especially in the
poorest countries where public health measures such as social dis-
tancing and wearing surgical masks in public places were difficult
to implement16–18. Most of the genome mutations that character-
ised these variants were concentrated in the S gene19, which enc-
odes for the Spike protein, a surface glycoprotein that mediates
the virus entry within the human cell through an interaction with
the human ACE2 receptor20. Some of these mutations gathered
the attention of the scientific community due to the selective
advantage that they provided to the correspondent viral variants,

regarding both the virus’ ability to infect human cells and to
escape the immune system response21, gaining for these reasons
the status of “variant of concern” (VOC).

The first SARS-CoV-2 variant to be labelled as VOC was the so-
called Alpha variant (B.1.1.7). First identified in November 2020 in
the Kent region of the United Kingdom and for this reason also
known as the “English variant”, B.1.1.7 was estimated to be 29%
more transmissible than the original virus22,23. Despite being more
transmissible than other circulating viral strains24,25, and despite
showing the first signs of reduced protection provided by vac-
cines, monoclonal antibodies, and convalescent sera26–28, the indi-
cation from clinical studies showed that the vaccine coverage
(especially in those who had already completed the vaccination
cycle) was still able to contain the impact of this variant on the
sanitary system29.

Soon after the identification of the Alpha variant, a second
VOC arose: the Delta variant (B.1.617.2), also known as the “Indian
variant” due to being first detected in India in late 2020, rapidly
overcame the Alpha variant becoming the dominant strain in the
world, thanks to being 97% more transmissible than the original
Wuhan virus23. The replacement of the less threatening Alpha
variant with the Delta marked a significant change of pace in the
pandemic trend, signing an increased burden for the health sys-
tem30 and posing for the first time a serious threat to the protec-
tion provided by vaccines, convalescent sera, and monoclonal
antibodies31–33 due to its increased ability to evade the immune
system response34.

From November 2021 onwards, the Delta variant has been
flanked by another VOC firstly identified in South Africa and
defined as the Omicron variant (B.1.1.529)35. The rise of the
Omicron variant, fuelled by a contemporary increase in
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transmissibility36 and immune evasion37, resulted in an unprece-
dented diffusion of the SARS-CoV-2 virus all over the world, being
able to overcome even the protection provided by the full pri-
mary vaccination cycle and by most neutralising antibodies used
in therapy38–40, thus inducing the introduction of a “booster dose”
to bring the protective effect of vaccines back to
adequate levels41,42.

In the face of this increasingly troublesome variant landscape,
characterised by a progressive reduction of the efficacy of existing
therapeutic options against COVID-19, a light at the end of the
tunnel is possibly represented by the development and release on
the market of Paxlovid. This therapeutic combination between the
active principle Nirmatrelvir (also known as PF-07321332) and the
pharmacokinetic enhancer Ritonavir, represents the first orally
available drug specifically designed against SARS-CoV-2 virus43.
Instead of targeting the Spike protein, this peptidomimetic entity
is designed to inhibit the SARS-CoV-2 Main Protease (Mpro) by
covalently binding to Cysteine 145, one of the two components of
the protease’s catalytic diad44. Clinical studies showed a remark-
able therapeutic efficacy of this novel treatment, with Paxlovid
being able to lower by 89% the risk of severe complications asso-
ciated with COVID-19 infection in symptomatic, non-vaccinated,
and non-hospitalized adult patients45.

Recently, three novel recombinant SARS-CoV-2 variants were
identified in the United Kingdom: Xd, Xe, and Xf46. These variants
are derived from the combination of the genomes of other major
circulating variants, namely Delta, Omicron, and Omicron 246,47.
Among these three novel viral strains, particular worry is related
to the XE variant, which derives from the recombination between
two VOCs, Omicron and Omicron 2, and is supposed to be
13–20% more transmissible than the Omicron 2 variant46.

The rise of novel SARS-CoV-2 variants derived from the recom-
bination of other threatening and heavily diffused ones poses a
serious challenge in the fight against the COVID-19 pandemic
since it could contribute to rendering existing therapeutic options
inefficient or practically useless. To evaluate the impact that these
recently reported recombinant variants could have on the efficacy
of existing vaccines and treatments (Paxlovid, in particular), we
performed a computational analysis to shed light on the key
structural features that characterise both the Spike glycoprotein
and the Main Protease of these novel viral strains. Moreover, we
analysed the structural evolution of these two viral proteins
throughout the pandemic, discussing the impact that mutations
found on these strains had and will have on the efficacy of exist-
ing therapeutic options against COVID-19 and the development of
future ones.

2. Materials and methods

The genome sequence for the SARS-CoV-2 virus and its variants,
namely Delta, Omicron, XD, XE, and XF, was obtained through
GenBank48. Accession codes for each of the considered genomes
are reported in Table 1. In the case of newly discovered variants

XD, XE, and XF, the sequence was chosen according to the one
reported by the Nextclade project48.

All the basic molecular modelling operations have been exe-
cuted with the Molecular Operating Environment (MOE) suite (ver-
sion 2019.01)49.

For what concerns the Spike protein, the approach chosen
depended on the variant considered. For the wild-type (WT) Spike,
the three-dimensional structure was retrieved from the Protein Data
Bank (PDB code: 6ZDH50, method: cryo-EM, resolution: 3.70Å), as
well as for the Delta (PDB code: 7W9E51, method: cryo-EM, reso-
lution: 3.10Å), and the Omicron (PDB code: 7WPD52, method: cryo-
EM, 3.18Å) variants. The cited structures were all subjected to the
same preparation procedure for molecular modelling.

Table 1. The genome sequences used in this work and their origin.

Organism Isolate Accession Code

SARS-CoV-2 “Wuhan-Hu-1” NC_045512.2
SARS-CoV-2 “Delta” “SARS-CoV-2/human/JPN/SARS-CoV-2” OK091006.1
SARS-CoV-2 “Omicron” “SARS-CoV-2/human/NLD/EMC-Omicron-1/2021” OM287553.1
SARS-CoV-2 “XD” “SARS-CoV-2/human/FRA/IHUCOVID-64762/2022” OM990851.1
SARS-CoV-2 “XE” / OW018845.1
SARS-CoV-2 “XF” / OV940149.1

Table 2. List of all the single-point mutations affecting the SARS-CoV-2 Spike
protein for all the variants considered in our study (Delta, Omicron, XE, XD,
and XF).

Delta variant Omicron variant XD variant XE variant XF variant

T19R T19R T19R
A27S A27S

A67V A67V
T95I T95I T95I
G142D G142D G142D

Y145D
R158G R158G

L212I L212I L212I
V213G

G339D G339D G339D G339D
S371L S371L S371L S371L
S373P S373P S373P S373P
S375F S375F S375F S375F

T376A
D405N
R408S

K417N K417N K417N K417N
N440K N440K N440K N440K
G446S G446S G446S

L452R
S477N S477N S477N S477N

T478K T478K T478K T478K T478K
E484A E484A E484A E484A
Q493R Q493R Q493R Q493R
G496S G496S G496S
Q498R Q498R Q498R Q498R
N501Y N501Y N501Y N501Y
Y505H Y505H Y505H Y505H
T547K T547K T547K

D614G D614G D614G D614G D614G
H655Y H655Y H655Y H655Y
N679K N679K N679K N679K

P681R P681H P681H P681H P681H
N764K N764K N764K N764K
D796Y D796Y D796Y D796Y
N856K N856K N856K
Q954H Q954H Q954H Q954H
N969K N969K N969K N969K
L981F L981F L981F

The mutations have been aligned to give a better perspective of the ones which
have been conserved through the evolutionary process. The mutations involving
the RBD have been highlighted in green, while the ones involving the RBM are
coloured in cyan.
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After being downloaded, the Structure Preparation tool imple-
mented in MOE was applied to rebuild the missing loops in the
structures, the proper protonation state was assigned to each
amino acid with the MOE “Protonate 3 D” application, and finally,
the added hydrogens were minimised under the AMBER10:EHT53

force field implemented in MOE. Since experimentally resolved
structures for the XD, XE, and XF variants are not available in pub-
lic databases, the models considered for our study were created
starting from the WT SARS-CoV-2 Spike coming from the PDB
code 6ZDH by manually mutating the residues, exploiting the
MOE “Protein builder” tool, and subjecting each protein to the
preparation procedure reported above. For the realisation of the
video reported in the Supplementary Materials, the program VMD
1.9.254 (Visual Molecular Dynamics) was used.

For what concerns Mpro, the protein sequences corresponding
to the main protease were extracted from the whole genome
sequence and aligned to the reference sequence (Wuhan-Hu-1)
making use of the appropriate tool of MOE 2019.01. Subsequently,
homology models for each variant were created making use of
the “Homology Model” tool of MOE 2019.01, using the structure
deposited in the Protein Data Bank with accession code 6Y2E
(Crystal structure of the free enzyme of the SARS-CoV-2 main pro-
tease) as a template for model generation.

3. Results and discussion

3.1. Structural analysis of spike glycoprotein mutations found in
SARS-CoV-2 XD, XE, and XF variants and their impact on
hACE2 binding

The SARS-CoV-2 Spike protein (S) consists of a large biological
entity formed by 1273 amino acids organised in different func-
tional domains. The main role of the Spike protein is to mediate
the virus entry into the host cell, with the principal and better-
characterised mechanism being the pathway involving the bind-
ing to the human ACE2 receptor (hACE2)55, a membrane-bound
enzyme that is widely expressed in various districts of the human
body (from the endothelial cells of the blood vessels to kidneys,
liver, intestine, lungs56, and cells of bronchial and nasal
epithelia57).

The S protein, which works in a trimeric organisation, is divided
into two main subunits, S1 and S2. The second of these has very
important roles in spike protein trimerization and in mediating
the virion entry into the host cell once the molecular contacts
have been established. It is formed by relevant subdomains such
as the fusion peptide (FP, residues 943–982, crucial for viral fusion
to the host cell membrane), the transmembrane domain (TM,
composed of 24 amino acids and deputed both to the anchoring

Figure 1. Representation of structural differences between the WT (taken from the Protein Data Bank70, PDB code: 6ZDH) and the Delta variant (retrieved from the
PDB, code 7W9E51) of SARS-CoV-2 Spike protein. Panels A and B offer a front view of the comparison between the structures, while panels C and D shift the point of
view to the bottom of the proteins. To give a clearer view of the mutations, only one monomer was considered to create the image. The amino acids involved in
mutations are labelled in the figure and are coloured based on their kind, following the legend reported in panel A. Specifically, Gly, Ala, Val, Leu, Ile, Pro, Cys, Met,
Phe, and Trp are considered non-polar amino acids (green), Asp and Glu represent the negatively-charged amino acids (red), and Lys, Arg, and His form the positively-
charged amino acid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered polar amino acids (purple). All images were created and rendered using the
Molecular Operating Environment (MOE) suite.
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of S protein to the viral membrane and the maintenance of the
Spike trimeric organisation), and the cytoplasmatic fusion domain
(CT, mediating virus-cell fusion).

The S1 subunit, instead, contains both the N-terminal and the
C-terminal domains (NTD and CTD, respectively), which are
involved in the binding to host cell receptors. Specifically, the CTD
contains the receptor-binding domain (RBD, aminoacids 319–541),
the region deputed to the binding with hACE2. This function is
more precisely carried out by a particular RDB subdomain, called
receptor-binding motif (RBM), which is formed by two beta-sheets
(b5 and b6) composed of those residues which are in close con-
tact with hACE2 (from 438 to 506)58,59.

Looking at all the S proteins of the different SARS-CoV-2 rele-
vant variants, the RBD contains the highest “single-point muta-
tions/sequence length” ratio in all cases. Examining the different
SARS-CoV-2 variants discovered up to date, the Spike protein is
surely the viral entity that has mutated the most in the evolution-
ary process of the virus60. Its exposition on the viral surface and
its crucial function in viral cell entry make this protein the eligible
target for the host immune system61.

The SARS-CoV-2 S protein has experienced several mutations in
the past two years48, as reported in Tables 1 and 2 for the variants
considered in our study. As can be noticed, variants such as Delta
(but also Alpha and Beta, not specifically treated in this article)
showed few mutations in the overall viral genome, and Spike

protein displayed never more than a tenth of single-point
changes. The game-changing event was the advent of the
Omicron variant, much different from its previous analogs, with
30-single nucleotide mutations involving the S protein only. Many
of these, such as K417N, T478K, and P614G were inherited from
the previous lineages (mainly Beta and Delta), but other mutations
were completely new, such as G339D, G446S, or E484A.

Most of the mutations listed in Table 2 have been related to
higher infectivity, mainly due to a consequent gain of affinity for
hACE2 or improved shielding from the immune cells. As evidence
of this, the most successful vaccination campaigns for COVID-19
always involved the forced recognition of Spike protein from the
patients’ immune cells62.

Specifically, mutations such as S371L, K417N, and Q493R were
related to a diminished binding to the anti-coronavirus monoclo-
nal antibody Casivirimab, while mutations like N440K and G446S
confer resistance towards the antibody Imdevimab63. The combin-
ation of Casivirimab and Imdevimab has been used to treat
COVID-19 patients but has demonstrated to be ineffective against
the Omicron variant64. Other mutations external to the RBD have
been linked to different outcomes, such as increased viral replica-
tion (D69–7065 and D614G66) and higher viral resistance (G339D
and N440K67). In other scenarios, mutations have been reported
to influence tropism of the S1/S2 cleavage, as in the cases of
N679K and P681H68.

Figure 2. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the Omicron variant (retrieved from the PDB, code 7WPD) of SARS-
CoV-2 Spike protein. Panels A and B offer a front view of the comparison between the structures, while panels C and D shift the point of view to the bottom of the
proteins. To give a clearer view of the mutations, only one monomer was considered to create the image. The amino acids involved in mutations are labelled in the
figure and are coloured based on their kind, following the legend reported in panel A. Specifically, Gly, Ala, Val, Leu, Ile, Pro, Cys, Met, Phe, and Trp are considered
non-polar amino acids (green), Asp and Glu represent the negatively-charged amino acids (red), and Lys, Arg, and His form the positively-charged amino acid group
(blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered polar amino acids (purple). All images were created and rendered using the Molecular Operating
Environment (MOE) suite.
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The majority of the mutations highlighted up to date on the
SARS-CoV-2 S protein impact the binding with hACE2, as in the
cases of S477N, Q498R, and N501Y69. These last mutations, as can
be seen in Table 2, have been conserved from all the variants
following Omicron, assessing their importance for the viral evolu-
tionary process.

As can be seen in Figures 1–5 and video.mp4 (Supplementary
Materials), the highest “number of mutations/sequence length”
ratio is owned by the RDB, as previously mentioned. Indeed,
taking Omicron as an example, among the 30 mutations in the
overall 1273-residues structure, 15 are located just in the 222 resi-
dues-sequence forming the RBD. The insertions and the deletions
(summarized in Table 3), on the other hand, are located far out-
side the hACE2-binding domain in all the variants examined,
allowing us to assert that these mutations should not impact all
the host cell recognition process.

Interestingly, as depicted in the aforementioned figures, single-
point mutations that are present in the RBD for all considered var-
iants tend to progressively increase the positively-charged charac-
ter of this protein region. Moreover, of all the changes operated
by the evolutionary process of Spike protein, the very few muta-
tions which transform a residue into a negatively-charged one
(Asp or Glu) are always located away from the RBD (except for
G339D, which is located in the posterior part of the RBD, away
from the RBM that contacts hACE2). Indeed, in this region, the
changes from polar amino acids to positively charged ones are

abundant (N440K, T478K, Q498R, Y505H), and there are also cases
in which non-polar residues transform into polar ones (e.g. G446S
and G496S, which are conserved in all examined post-Omicron
variants except for the XE one). Another conserved structural fea-
ture across all post-Omicron variants is also the fact that E484,
located in the RBM, mutates into an alanine, while a peculiar
mutation exclusive to the XE variant is represented by the trans-
formation of D405 into an asparagine. Taken together, all these
pieces of evidence converge in assessing that an increase in the
polar characteristics of the RBD (more specifically, the RBM), with
particular relevance to an increase in the number of positively
charged amino acids, could be the mechanism adopted by SARS-
CoV-2 to continuously increase its infectivity through an increase
in the interaction with hACE2.

To further support this evidence, in Figure 6 we reported the
electrostatic surface of hACE2 complexed with WT-Spike RBD
highlighting the prevalence of negative charge on the surface fac-
ing Spike RBM (coloured in green in the image). Coherently, the
only mutation present in the RBD in which a positively-charged
residue shift into a polar one (K417N) has been reported to reduce
the affinity with hACE226. It is worth noting that other hACE2-
independent entry routes for SARS-CoV-2 have been described in
literature71,72, but the lack of reliable structural information about
the interaction with the target at the present date hampers and
limits the possibility to analyse and discuss the impact that these
mutations could have on them in a meaningful way. However, it

Figure 3. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the XD a variant of SARS-CoV-2 Spike protein. Due to the lack of
experimentally resolved structure of SARS-CoV-2 XD variant, the three-dimensional structure represented was obtained from the wild-type S protein coming from PDB
code 6DZH, and then manually mutating the residues involved in the mutations (exploiting the MOE “Protein builder” tool). Panels A and B offer a front view of the
comparison between the structures, while panels C and D shift the point of view to the bottom of the proteins. To give a clearer view of the mutations, only one
monomer was considered to create the image. The amino acids involved in mutations are labelled in the figure and are coloured based on their kind, following the
legend reported in panel A. Specifically, Gly, Ala, Val, Leu, Ile, Pro, Cys, Met, Phe, and Trp are considered non-polar amino acids (green), Asp and Glu represent the
negatively-charged amino acids (red), and Lys, Arg, and His form the positively-charged amino acid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered
polar amino acids (purple). All images were created and rendered using the Molecular Operating Environment (MOE) suite.
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cannot be excluded that this mutation pattern and other future
Spike mutations could also impact these other entry pathways,
contributing to making them more relevant for the ability of
SARS-CoV-2 to infect human cells and increasing its overall
infectivity.

3.2. Structural analysis of main protease mutations found in
SARS-CoV-2 XD, XE, and XF variants and their impact on the
recognition of known inhibitors

The main protease Mpro, also known as 3 C-like protease or 3CLpro,
is a cysteine peptidase that is essential for the replication cycle of
SARS-CoV-273,74. Its catalytic activity revolves around the process-
ing of two overlapping polyproteins, namely pp1a and pp1ab,
which leads to the formation of 16 mature non-structural proteins
(NSPs)75. Composed of 306 amino acids, the SARS-CoV-2 Mpro

shares 96% sequence identity and a highly conserved three-
dimensional structure with the SARS-CoV Mpro (0.53 Å R.M.SD
between PDB entries 6Y2E and 2BX4)76,77. Although a dynamic
equilibrium between a monomeric and a dimeric form exists, only
the dimer is responsible for the protease’s enzymatic activity78,79.
Each protomer composing the catalytically active dimer is com-
posed of three different domains: the chymotrypsin-like b-barrel
domains I (residues 1–99) and II (residues 100–182), which com-
prehend the substrate-binding site and directly control the cata-
lytic event, and the extra a-helical domain III (residues 198–306),

which is connected to the remaining domains through a 16 resi-
dues loop and is involved in the dimerisation process, thus play-
ing an indirect role in the regulation of Mpro catalytic activity78,80.

The catalytic site is a shallow, solvent-exposed cavity that is
formed by several sub-pockets that are responsible for the recog-
nition of various residues composing the substrate peptide
sequences76,80. Concerning this, particularly important is the con-
served sequence Gln#-Ser, where Gln#- indicates the glutamine
residue that precedes the cleavage site81.

Despite its peculiar structural features, which make it a difficult
target for drugs, rational structure-based approaches such as
Molecular Docking82 and Molecular Dynamics83 have proven to be
useful tools in the identification and characterisation of Mpro small
molecule inhibitors, leading to the discovery of both covalent and
non-covalent lead compounds84,85. Further reinforcing the import-
ance of the Main Protease as a key drug target against COVID-19,
is the discovery and approval by regulatory agencies of
Nirmatrelvir, the first drug specifically designed against SARS-CoV-
2 to enter the market43.

Due to its pivotal role in the virus replication cycle, the Main
Protease is, on the contrary to Spike, particularly conserved in its
primary sequence and its three-dimensional structural features
among different viral strains. Taking a closer look at the main pro-
teases from previously mentioned SARS-CoV-2 variants, only one
out of 306 amino acids is mutated compared to the reference
sequence, precisely residue 132, which is a proline in the case of

Figure 4. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the XE variant of SARS-CoV-2 Spike protein. Due to the lack of experi-
mentally resolved structure of the SARS-CoV-2 XE variant, the three-dimensional structure represented was obtained from the wild-type S protein coming from PDB
code 6DZH, and then manually mutating the residues involved in the mutations (exploiting the MOE “Protein builder” tool). Panels A and B offer a front view of the
comparison between the structures, while panels C and D shift the point of view to the bottom of the proteins. To give a clearer view of the mutations, only one
monomer was considered to create the image. The amino acids involved in mutations are labelled in the figure and are coloured based on their kind, following the
legend reported in panel A. Specifically, Gly, Ala, Val, Leu, Ile, Pro, Cys, Met, Phe, and Trp are considered non-polar amino acids (green), Asp and Glu represent the
negatively-charged amino acids (red), and Lys, Arg, and His form the positively-charged amino acid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered
polar amino acids (purple). All images were created and rendered using the Molecular Operating Environment (MOE) suite.
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Wuhan-Hu-1, Delta, and XD viral strains, while it is mutated to his-
tidine in the case of Omicron, XE, and XF variants.

As can be seen in Figure 7, this mutated residue is located out-
side the substrate-binding site, specifically in a turn that precedes
the sequence leading to the oxyanion loop (residues 138–145),
which is a vital part of the catalytic machinery that is responsible
for the processing of substrate peptides76. Although the position
of such mutation could suggest a possible destabilisation of the
catalytic site related to an alteration of the enzymatic activity of
the protease, a visual inspection of the surroundings of residue
132 suggests that this mutation should not affect in any way the
stability of the three-dimensional structure of the protease,
thereby not harming its ability to correctly process the substrate.

As can be seen in Figure 8, indeed, the proline residue is not
involved in any intermolecular interaction relevant to the struc-
tural stability of the protease, suggesting that its only role could
be limited to a joint between more relevant residues such as
R131, which mediates several interactions through its sidechain
guanidium group (specifically, a salt bridge with both D289 and
D197, and a hydrogen bond with the backbone of T198) and its
backbone (a hydrogen bond between its backbone amide proton
and the amide carbonyl oxygen of T135 and another one between
its carbonyl oxygen and the amide proton of F134), and N133,
which is itself involved in a network of intermolecular interactions
with both its backbone (hydrogen bond between its amide proton
and the carboxyl oxygen of D197) and its sidechain (the amide
proton donates to the carbonyl oxygen of G195 while the car-
bonyl oxygen receives from the hydroxyl group of T135). These
structural insights are confirmed also by a functional screening
performed by Flynn et al., which showed that mutations at this
position, especially the P132H found in these viral variants, are
generally well-tolerated, while mutations of both R131 and N133
drastically reduce or even abolish the catalytic activity of
the protease86.

Concerning the relevance of this mutation for the efficacy of
existing treatments and the development of future ones, a recent
study from Greasley et al. reported the crystal structure of
Nirmatrelvir in complex with the main protease from three differ-
ent viral variants that presented a mutation on Mpro87. The ana-
lysed mutations included the P132H, which characterises both the
Omicron SARS-CoV-2 variant and the recently found XE and XF.

Figure 5. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the XF variant of SARS-CoV-2 Spike protein. Due to the lack of experi-
mentally resolved structure of the SARS-CoV-2 XF variant, the three-dimensional structure represented was obtained from the wild-type S protein coming from PDB
code 6DZH, and then manually mutating the residues involved in the mutations (exploiting the MOE “Protein builder” tool). Panels A and B offer a front view of the
comparison between the structures, while panels C and D shift the point of view to the bottom of the proteins. To give a clearer view of the mutations, only one
monomer was considered to create the image. The amino acids involved in mutations are labelled in the figure and are coloured based on their kind, following the
legend reported in panel A. Specifically, Gly, Ala, Val, Leu, Ile, Pro, Cys, Met, Phe, and Trp are considered non-polar amino acids (green), Asp and Glu represent the
negatively-charged aminoacids (red), and Lys, Arg, and His form the positively-charged aminoacid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered
polar amino acids (purple). All images were created and rendered using the Molecular Operating Environment (MOE) suite.

Table 3. List of all the insertions and deletions operated by SARS-CoV-2 Spike
protein for all the variants considered in our study (Delta, Omicron, XD, XE,
and XF).

Delta variant Omicron variant XD variant XE variant XF variant

D24-26
D69-70 D69-70

D142-144
D143-145

D156-157 D156-157
D211 D211 D211
ins214EPE ins214EPE ins214EPE

The mutations have been aligned to give a better perspective of the ones which
have been conserved through the evolutionary process.
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Greasley and collaborators established that the P132H mutation
does not affect the affinity of Nirmatrelvir for the main protease
catalytic site, thereby indicating the same data would be extend-
able also to XE and XF variants considering that they share the
same P132H mutation as the Omicron variant.

As can be seen in Figure 9, although our homology model of the
XE/XF variant is based on the structure 6Y2E, which represents the
SARS-CoV-2 main protease in its free/unliganded form, there is an
almost perfect structural superposition between our homology model
and the experimentally resolved structure of the complex between
the Mpro from the Omicron variant and Nirmatrelvir (PDB ID: 7TLL), as
is also quantitatively assessed by the 0.67Å R.M.SD between the two
structures after optimal superimposition of the backbone. The con-
gruence between our structural prediction and the experimental data

supports the idea that the overall fold of the main protease is con-
served across several variants and that the structural effect that resi-
due mutations could have on the effectiveness of the main protease
inhibitor could be accurately predicted through the combination of
computational techniques such as homology modelling, molecular
docking, and molecular dynamics. Moreover, based on available
structural information, the high degree of structural similarity
between the main proteases is not only shared by variants of the
SARS-CoV-2 virus but also by other coronaviruses such as bat corona-
virus13, the Porcine transmissible Gastroenteritis virus (TGEV)78,
Human coronavirus strain 229E (HCoV)80, Infectious bronchitis virus
(IBV)88and MERS-CoV89, thereby validating the pursue of novel Mpro

inhibitors that could act as pan-coronaviral drugs and help to prevent
future coronavirus associated pandemics.

Figure 6. Representation of the interaction between WT-Spike receptor-binding domain (RBD) and hACE2 (coming from PDB code: 6M0J58). The Spike RBD is coloured
in yellow, while the receptor-binding motif (RBM) is coloured in green. The hACE2 surface is coloured according to the electrostatic properties of underlying residues
(blue, positively-charged regions, red, negatively-charged regions, white, neutral regions). Panel A offers a lateral view of the complex, while panel B focuses the atten-
tion on a top-lateral perspective. As can be seen from panel B, the hACE2 regions in contact with Spike-RBM are prevalently negatively-charged (red color): concerning
this, for visualisation purposes, the most extended negative regions at the Spike-hACE2 interface have also been highlighted with grey circles.

Figure 7. The structure of SARS-CoV-2 Mpro (PDB ID: 6Y2E) in its free form. The
protein is depicted in blue ribbons, while the mutated residue P132 in compari-
son with considered SARS-CoV-2variants (Delta, Omicron, XD, XE, and XF) is high-
lighted and depicted as a CPK model. For visual reference, Nirmatrelvir (also
known as PF-07321332, commercial name Paxlovid) from structure 7RFS is also
shown in the picture, alongside the binding site surface coloured according to
electrostatic properties.

Figure 8. Comparison between SARS-CoV-2 3CL protease (Mpro) from crystal
structure 6Y2E (blue) and homology models of Mpro from five different SARS-
CoV-2 variants, reported in Table 1: the focus is on residue 132 (either proline or
a histidine) of SARS-CoV-2 Mpro and homology models of Delta, Omicron, XD, XE
and XF variants Mpro.
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4. Conclusions

The recent emergence of novel recombinant SARS-CoV-2 variants,
namely XD, XE, and XF, poses a serious threat to the efficacy of
existing therapeutic options against COVID-19. In the face of a
continuous evolution of the SARS-CoV-2 genome under an evolu-
tionary pressure opposed by the development of vaccines and by
the natural immunity induced by infections, the more recent viral
variants have increased both their infectiveness and their ability
to escape the immune response. The structural analysis reported
in this article depicts a scenario where the Spike protein, which is
responsible for the ability of the virus to infect human cells by
interaction with the hACE2 receptor, is the viral entity that is accu-
mulating the highest number of mutations in an attempt to
increase its affinity towards the hACE2 and decrease the one
towards antibodies, while the main protease Mpro, a key enzyme
for the virus replication cycle, is still practically identical to the
wild-type virus. The different behaviour of these two proteins in
response to SARS-CoV-2 genome evolution could be vital not only
for the development of efficient therapies against COVID-19 but,
considering the striking structural similarities between the main
protease from different viruses, also in the development of pan-
coronaviral drugs that could prevent the development of future
coronavirus-associated pandemics.
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