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THE SAITO-KUROKAWA LIFTING AND DARMON POINTS

MATTEO LONGO, MARC-HUBERT NICOLE

Abstract. Let E/Q
be an elliptic curve of conductor Np with p ∤ N and

let f be its associated newform of weight 2. Denote by f∞ the p-adic Hida
family passing though f , and by F∞ its Λ-adic Saito-Kurokawa lift. The p-
adic family F∞ of Siegel modular forms admits a formal Fourier expansion,

from which we can define a family of normalized Fourier coefficients {ÃT (k)}T
indexed by positive definite symmetric half-integral matrices T of size 2 × 2.
We relate explicitly certain global points on E (coming from the theory of
Darmon points) with the values of these Fourier coefficients and of their p-
adic derivatives, evaluated at weight k = 2.

1. Introduction

Let f be an elliptic newform of weight 2 and level Γ0(M). Eichler and Shimura
showed how to associate to f an abelian variety Af of arithmetic conductor M
such that the complex L-functions attached to f and Af agree, cf. [23, Theorem
7.14]. Although the theory of Siegel modular forms provides a satisfactory gener-
alization of the notion of classical elliptic modular forms in higher dimension, no
such construction is known for Siegel modular forms of genus > 1. Generalizing the
Shimura-Taniyama conjecture, Yoshida [27] conjectured the existence of a genus
two holomorphic Siegel modular cusp eigenform of parallel weight 2 associated to
any irreducible abelian surface A defined over Q. Note that this Siegel modular
form, in contrast with the elliptic case, cannot be obtained in general by cutting
out a piece of the étale cohomology of the Siegel modular variety. This makes the
connection to geometric constructions much less immediate.

In this paper, we study instead the reducible case by considering Siegel cusp
forms in the image of the Saito-Kurokawa lifting. We use this lift to convert known
connections between elliptic modular forms and certain global points on rational
elliptic curves to Siegel modular forms in the image of the Saito-Kurokawa lifting.
Our main result (partially summarized in Theorem 1.1 below) provides a relation
between Fourier coefficients of the Saito-Kurokawa lift of f and global points on the
elliptic curve associated with f as above. This result offers a geometric interpreta-
tion of Fourier coefficients of Saito-Kurokawa lifts. It is obtained by combining p-
adic techniques developed by Darmon-Tornaŕıa in [7] for the Λ-adic Shintani lifting
with various results on the Saito-Kurokawa lifting recently obtained by Ibukiyama
in [12] and an explicit description of Fourier coefficients of modular forms of half-
integral weight by Kohnen [15]. The global points providing such a description
come from the theory of Stark-Heegner points introduced by Darmon in [6]. Re-
cently, after [19], there has been a move in the literature to relabel Stark-Heegner
points as Darmon points, explaining the title of the paper.
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To describe our work and main results in a more precise form, we fix an elliptic
newform f of weight 2, level Γ0(Np) and rational Fourier coefficients, where N > 1
is an integer and p ∤ N is a fixed prime number.

Denote by

(1) f∞(k) =
∑

n≥1

an(k)q
n

the Hida family passing through f , where k is a p-adic variable in a neighborhood
U of 2 in

X := Homcont(Z
×
p ,Z

×
p )

and a1(k) = 1 for all k ∈ U . Here Z →֒ X via k 7→ (x 7→ xk). For simplicity,
we will also assume that U is contained in the residue class of 2 modulo p − 1.
Thus f∞(2) coincides with the Fourier expansion of f and, more generally, f∞(k)
is a normalized ordinary eigenform of level Γ0(Np) for all positive integers k ∈ U .
Using the explicit Λ-adic Saito-Kurokawa lifting following Li [18] and Kawamura
[13] and based on work of Stevens [25], in Section 2 we recall the construction of a
p-adic family of Siegel modular forms

F∞(k) :=
∑

T>0

aT (k)q
T

(where k ∈ U and the sum runs over all positive definite, half-integral symmetric
matrices T of size 2 × 2) interpolating the p-stabilization of the Saito-Kurokawa
lifting of the classical forms appearing in the Hida family f∞(k). In particular,
F∞(2) is just the Fourier expansion of the Saito-Kurokawa lift of f (well-defined
up to non-zero complex factors). In Section 3, we introduce a normalization of the

coefficients aT (k), which we denote ÃT (k); these are p-adic analytic functions on a

neighborhood U of 2 in X . The analysis of the modified Fourier coefficients ÃT (k)
is carried out in Section 3, which contains the technical heart of the proof. We
combine various results for the explicit Saito-Kurokawa lifting due to Ibukiyama
[12] and explicit relations for Fourier coefficients on modular forms of half-integral
weight due to Kohnen [15]. In particular, the paper [12] generalizes to arbitrary
level various results on the Saito-Kurokawa lifting due to, among others, Eichler-
Zagier [8], Kohnen [16], Manickam-Ramakrishnan-Vasudevan [20] and Manickam-
Ramakrishnan [21]. In Section 4, we combine our explicit analysis of the modified

Fourier coefficients ÃT (k) with the work of Darmon-Tornaŕıa [7] on half-integral

weight modular forms to relate the values ÃT (2) and Ã′
T (2) to global points on

the elliptic curve E associated with f via the Eichler-Shimura construction. To be

more precise, the family of p-adic Fourier coefficients {ÃT (k)} can be divided into
two subfamilies called of type I and II, respectively, corresponding to those T for

which ÃT (2) do not need to vanish and respectively to those T such that AT (2)
is forced to vanish, see §4.1 and eq. (12) for precise definitions. Thus, for T of
type II we have AT (2) = 0 and it natural to look at the value of the first derivative
A′

T (2) (with respect to k) at k = 2. Our main result, corresponding to Theorem 4.5
below, relates this derivative to a global point on the elliptic curve E, defined over
a quadratic imaginary field depending on T . To state the result more precisely, we
need some further notations. Let

(2) ΦTate : C
×
p /q

Z −→ E(Cp)
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be Tate’s p-adic uniformization, and let

logE : E(Cp) −→ Cp

be the p-adic formal group logarithm, defined by

(3) logE(P ) := logq(Φ
−1
Tate(P )),

where logq is the branch of the p-adic logarithm satisfying logq(q) = 0. Extend

logE by Q-linearity to E(Cp) ⊗Z Q. Finally, say that T =
( u v/2
v/2 w

)
is primitive if

gcd(u, v, w) = 1. Our main result can now be stated as follows.

Theorem 1.1. There exists a point QT ∈ E(KT )⊗ZQ, where KT is an imaginary
quadratic field depending on T , such that

(4)
∂

∂k
ÃT (k)|k=2 = logE(QT ).

Further, if T is primitive,

(5) QT 6= 0 ⇐⇒ L′(SK(f), χKT , 1) 6= 0,

where L(SK(f), χKT , s) is the Adrianov L-function attached to the Saito-Kurokawa
lift SK(f) of f , twisted by the quadratic character χKT of KT .

The above equations (4) and (5) in Theorem 1.1 may be viewed as an analogue
of [7, Theorems 1.5, 5.1] where similar results are established for the Shintani lifting
in lieu of the Saito-Kurokawa lifting.

We also remark that a more general version (5) above is proven in the text,
relaxing the primitivity assumption on T . For more general T of type II, the relation
(5) between the global point QT and the L-function L(SK(f), χKT , s) depends on
the value of a certain explicit integer attached to T , denoted nT in the text. If
nT = 0, the condition L′(SK(f), χKT , 1) 6= 0 does not imply the non-vanishing of
the point QT . See Remark 3.5 for an explicit description of nT and a discussion on
its possible vanishing.

Our second main result, Theorem 4.6, deals instead with T ′ of type I. Having
fixed a T of type II, we show that, at least when T ′ is primitive of type I, the prod-

uct ÃT ′(2) logE(QT ) is equal to a quantity (denoted by J(f, dT , dT ′) in the text)
obtained as a p-adic variation of classical Shintani geodesic integrals attached to f
and certain quadratic forms depending on T and T ′, see (23) for details and defi-
nitions. This result also holds without the assumption, made in the introduction,
that N > 1.

We mention that Kawamura investigated in [13] applications of p-adic methods à
la Hida to the Ikeda lifting, introducing more general p-stabilized families of Siegel
modular forms. Also, we finally point out that Brumer-Kramer refined Yoshida’s
conjecture in the paramodular case, conjecturing a bijection between isogeny classes
of abelian surfaces A/Q of conductorM with EndQ(A) = Z and weight 2 paramod-
ular newforms of levelM with rational eigenvalues that are not Gritsenko lifts, with
an equality of L-series (see [4]). Brumer-Kramer’s conjecture has been verified nu-
merically for small prime levels by Poor-Yuen [22]. As a complement, it would thus
be interesting to see if our arguments can be adapted to the paramodular case.
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2. The Λ-adic Saito-Kurokawa lifting

In this section, we construct an explicit Λ-adic Saito-Kurokawa lifting, using a
key result of Stevens [25] and following Kawamura [13]. See also the anterior work
[10] by Guerzhoy.

Let f =
∑∞

n=1 anq
n be a newform of weight 2 and level Γ0(Np), where N ≥ 1

is a fixed odd squarefree integer, p ∤ N is an odd prime number and an ∈ Z for
all n ≥ 1. Consider the Hida family f∞(k) passing through f introduced in (1);
recall that k belongs to a neighborhood U of 2 in the weight space X , with U
contained in the residue class of 2 mod p− 1, and a1(k) = 1 for all k ∈ U . For any
integer k ≥ 2 in U , let fk := f∞(k) denote the k-specialization of f∞. We also let
Λ := Zp[[1 + pZp]] denote the Iwasawa algebra of 1 + pZp with coefficients in Zp.

We first recall a well-known result of Stevens [25] on the Λ-adic Shintani lifting.
Let θ(fk) ∈ S(k+1)/2(4Np) denote the Shintani lifting of fk, whose definition is
recalled, for example, in [25, §2.2]; here S(k+1)/2(4Np) denotes the C-vector space
of modular forms of half integral weight (k + 1)/2 and level 4Np. In particular,
θ(fk) is well-defined only up to a complex non-zero factor. A result of Shimura [24]
(cf. [25, Proposition 2.3.1]), asserts the existence, for any positive even integer k,
of a complex number Ω−

fk
such that

θ(fk)

Ω−
fk

∈ Ofk

where Ofk denotes the ring of integers of the finite extension Kfk generated over
Q be the Fourier coefficients of fk.

Remark 2.1. Ω−
fk

is defined in [9, Theorem 4.8] in such a way that Ω−
fk
Φfk (where

Φfk is the standard modular symbol associated to fk as in [9, Definition 4.7]) spans

the one-dimensional Kfk -vector space consisting of Symk−2(K2
fk
)-valued Γ0(Np)-

invariant modular symbols where the involution
(
−1 0
0 1

)
acts as −1 and the Hecke

algebra acts through the character associated to fk, cf. [9, Section 4].

We recall now the following result due to Stevens (see [25, Theorem 3.3]).

Theorem 2.2 (Stevens). There is a formal power expansion

Θ(k) =
∞∑

n=1

b̃n(k)q
n

(where b̃n are p-adic analytic functions defined on U) and, for any positive even
integer k, a p-adic number Ωk ∈ Q̄p, such that:

(1) Ω2 6= 0;
(2)

Θ(k) =
Ωk

Ω−
fk

θ(fk).

We shall use the above result to construct an explicit Λ-adic Saito-Kurokawa
lifting. This is well-known to experts and follows in particular from a suitable
correction of Li’s thesis [18], following Kawamura [13]. We recall the constructions
which will be used later. For an integer k > 2 in U , let Fk := SKNp(fk) denote the
Saito-Kurokawa lifting of fk of level Np, the existence of which is proved in this
generality in [12]. (Note that Fk is is well-defined only up to a non-zero complex
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number.) The Siegel modular form Fk has weight k/2+ 1 and level Γ2
0(Np) where,

for any integer M ≥ 1, we define

Γ2
0(M) =

{(
A B
C D

)
∈ Sp2(Z)|C ≡ 0 mod M

}
.

The Fourier expansion of Fk can be written as follows:

Fk(Z) =
∑

T>0

aT (k)q
T

where the sum is over all positive definite, half-integral symmetric matrices T of
size 2× 2 and qT := exp

(
2πitr(TZ)

)
. If we write

gk := θ(fk) =
∑

D ≥ 1; (−1)k/2D ≡ 0, 1 mod4

bD(k)qD

for the Shintani lifting of fk (which is well-defined only up to a non-zero com-
plex number), then the image of the Saito-Kurokawa lifting satisfies the following
relation, thanks to [12, §3.4]:
(6) aT (k) =

∑

d>0; d|c(T ); (Np,d)=1

bDT /d2(k)dk/2

where DT = det(2T ) and, for T =
( u v/2
v/2 w

)
, c(T ) := gcd(u, v, w). Of course, the

only d’s contributing to the above sum are those for which (−1)k/2DT /d
2 ≡ 0, 1

mod 4. Define for k ∈ U

ãT (k) =
∑

d>0; d|c(T ); (Np,d)=1

b̃DT /d2(k).

Then as an immediate corollary of Theorem 2.2 and the above discussion, we find:

Corollary 2.3 (Li). The formal power series expansion:

F∞(k) :=
∑

T>0

ãT (k)q
T

defined for k ∈ U satisfies

F∞(k) =
Ωk

Ω−
fk

Fk

for any positive integer k ∈ U , where the p-adic numbers Ωk are defined in Theorem
2.2.

Remark 2.4. In general, Fk is not an ordinary form (in the sense that Fk does not
need to be an eigenform for p-Hecke operators such that the eigenvalues are p-adic
units). One may ask for (semi-)ordinarity conditions by considering another family
of Siegel modular forms interpolating p-adic stabilizations (in a suitable sense) of
the Saito-Kurokawa lifting of the classical forms fk in the Hida family. This is
the point of view taken in Kawamura’s paper [13]. See [13, Theorem 4.4] for the
construction of the Λ-adic family of Siegel modular forms interpolating suitable
p-stabilizations of the Ikeda lifting of the classical forms fk in the Hida family.

Instead of working with Fk, we will work with related forms F ♯
k , defined as

follows. For an integer k > 2 in U , let f ♯
k denote the unique newform of weight k

and level Γ0(N) such that

fk(z) = f ♯
k(z)− ap(k)

−1pk−1f ♯
k(pz).
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We remark that, since f is a newform, f ♯
k is newform too (see for example [11,

Corollary 1.3] for details). Let F ♯
k = SKN (f ♯

k) denote the Saito-Kurokawa lifting of

level N of f ♯
k, for an integer k > 2 in U (see again [12], and note again that F ♯

k is

well-defined only up to a non-zero complex number). The Siegel modular form F ♯
k

has weight k/2 + 1 and level Γ2
0(N), and its Fourier expansion can be written as

F ♯
k(Z) =

∑

T>0

AT (k)q
T

(same conventions as above). If we write

g♯k := θ(f ♯
k) =

∑

D ≥ 1; (−1)k/2D ≡ 0, 1 mod4

cD(k)qD

for the Shintani lifting of f ♯
k, then the image of the Saito-Kurokawa lifting satisfies

the following relation

(7) AT (k) =
∑

d>0; d|c(T ); (N,d)=1

cDT /d2(k)dk/2

(again, use [12, §3.4], with the same notations and conventions as above). To use
uniform notations, also denote by cD(2) instead of bD(2) the Fourier coefficients of
g2, and by AT (2) instead of aT (2) the the Fourier coefficients of F2.

Remark 2.5. Equations (7) and (6) can be interpreted as an analogue for arbitrary
level of the Maaß relations describing the image (called the Maaß Spezialschar) of
the Saito-Kurokawa lifting in level 1. See [8, Chap. 6], [16, Proposition 3] and [1]
for precise references. For general levels, we refer to the discussion in [12] on the
possibility of describing the image of the Saito-Kurokawa lifting in terms of such
relations.

To correct the asymmetry in (7) and (6) arising from the fact that the condition
p ∤ d is in (7) but not in (9), for integers k ≥ 4 in U we introduce still another
family of Siegel modular forms

F̃k(Z) = F ♯
k(Z)− pk/2F ♯

k(pZ).

By [12, Prop. 3.7], we know that F̃k is a modular form of weight k/2+ 1 and level
Γ2
0(Np). Also, define for any positive integer k ∈ U :

(8) A
(p)
T (k) :=

∑

d>0; d|c(T ); (d,Np)=1

cDT /d2(k)dk/2

obtained from AT (k) by excluding the coefficients such that p | c(T ). An easy
computation shows that, for any integer k ≥ 2 in U ,

pk/2F ♯
k(pZ) =

∑

T>0; p|c(T );




∑

p|d and d|c(T )

cDT /d2(k)dk/2


 qT ,

from which we have:

(9) F̃k =
∑

T>0

A
(p)
T (k)qT .

To use uniform notations, we will write A
(p)
T (2) for aT (2). It follows immediately

from [12, §3.4] that F̃k is the Saito-Kurokawa lifting of level Np of the form f ♯
k,
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viewed as a modular form of level Np. Since the family of modular forms obtained
in Corollary 2.3 above interpolates the modular forms Fk for k ∈ U , we have

Fk 6= F̃k if k 6= 2. However, Fk and F̃k share interesting Fourier coefficients, as we
will explain in the next section (see in particular Remark 3.3).

3. Normalized Fourier coefficients

In this section we modify the Fourier coefficients A
(p)
T (k) introduced in the pre-

vious section in order to relate them with the work of Darmon-Tornaŕıa [7].
We first recall some results on the coefficients cD(k). For any prime number

ℓ | Np, denote by wℓ ∈ {±1} the eigenvalue of the Atkin-Lehner involution Wℓ

acting on f . We first observe that, since f ♯
k has trivial character, g♯k is zero if and

only if k/2 is even, and f2 6= 0 (see for example [24, page 137]). Hence, if cD(k) 6= 0
then k/2 ≥ 1 is odd and −D ≡ 0, 1 modulo 4. Also, by [15, Corollary 1], if k > 2
and k/2 is odd, then cD(k) = 0 unless

(
−D
ℓ

)
= wℓ for all primes ℓ | N and cD(2) = 0

unless
(
−D
ℓ

)
= wℓ for all primes ℓ | Np.

Motivated by the above discussion, choose a fundamental discriminant D0 such
that cD0

(2) 6= 0 and let D > 0 be an integer such that p ∤ D and
(
−D
ℓ

)
= wℓ for

all primes ℓ | N , so that the family cD(k) need not vanish identically for all k (but

note that cD(2) vanishes if
(

−D
p

)
= −wp, for example).

Proposition 3.1. Let D and D0 be as above. There is a p-adic neighborhood
U ⊆ U of 2 such that:

(1) cD0
(k) 6= 0 for k ∈ Z ∩ U with k ≥ 2.

(2) The function k 7→ c̃D(k), defined for integers k ≥ 4 in U , by:

c̃D(k) :=

(
1−

(
−D
p

)
ap(k)

−1pk/2−1
)
cD(k)

(
1−

(
−D0

p

)
ap(k)−1pk/2−1

)
cD0

(k)
=

cDp2(k)

cD0p2(k)

extends to a p-adic analytic function on U satisfying:

c̃D(2) =
cDp2(2)

cD0p2(2)
=

cD(2)

cD0
(2)

.

Remark 3.2. This is [7, Proposition 1.3]. We simply note that, since p ∤ D, this
can be interpreted as a p-stabilization process. More precisely, for k ≥ 4 an even
integer (and k/2 odd, otherwise c̃D(k) vanishes) we have

c̃D(k) =
bD(k)

bD0
(k)

=
b̃D(k)

b̃D0
(k)

.

This follows from the explicit description of Hecke operators given, for example, in
[14, Ch. IV, Prop. 13].

In order to relate our coefficients A
(p)
T (k) with the coefficients c̃D(k) appearing

in Prop. 3.1, we proceed as follows. First recall from the above discussion that
cD(k) = 0 for all D such that −D ≡ 2, 3 mod 4 and for all positive integers k ∈ U .
If we define

ST := {d ∈ Z such that d | c(T ), (d,Np) = 1, −DT/d
2 ≡ 0, 1 mod 4},
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we have

(10) A
(p)
T (k) =

∑

d∈ST

dk/2cDT /d2(k).

Fix now a fundamental discriminant d with d < 0 and an integer n 6= 0. Define,
for any even integer k ≥ 4 with k/2 odd,

ρd,n(k) :=
∑

d|n; (d,N)=1

µ(d)

(
d

d

)
dk/2−1an/d(k),

where µ(d) is the Möbius function. Thanks to [15, (11)], for all even integers k > 2
in U we have:

(11) c|d|n2(k) = c|d|(k)ρd,n(k).

We now use (11) to simplify the above sum (10). For this, we need the following
preliminary discussion. For any integer D we can write D = df2 with d the funda-
mental discriminant of the quadratic field Q(

√
d) and f > 0 a half-integer. In this

case, we say that d is the fundamental discriminant associated with D. Also, note
that f ∈ Z if D ≡ 0, 1 mod 4. More precisely, if we denote by δ the maximal integer
such that δ2 | D, then d = D/δ2 and f = δ unless D ≡ 0 mod 4 and D/δ2 ≡ 2, 3
mod 4, in which case d = D/(δ/2)2 and f = δ/2. If D ≡ 2, 3 mod 4, then d = 4D/δ2

and f = δ/2 6∈ Z. More generally, let d | δ, so that d2 | D. Write D = dDf2D and
D/d2 = dD/d2(fD/d2)2, with dD and dD/d2 the fundamental discriminants associ-
ated with D and D/d, respectively. First note that the maximal integer whose
square divides D/d2 is δ/d. We then have dD = dD/d2 and fD = dfD/d2 unless

D ≡ 0 mod 4, D/δ2 ≡ 1 mod 4 and D/d2 ≡ 2, 3 mod 4, in which case 4dD = dD/d2

and fD = 2dfD/d2 .
As anticipated, we now use (11) to simplify (10). For any matrix T > 0 write

(12) −DT = dT f
2
T ,

with dT < 0. We have −DT ≡ 0, 1 mod 4, so, in particular, the above discussion
shows that fT ∈ Z. We thus have

cDT (k) = c|dT |f2T
(k) = c|dT |(k)ρdT ,fT (k)

for all integers k ∈ U with k > 2. More generally, fix d ∈ ST . For T =
( u v/2
v/2 w

)
,

define T/d :=
( u/d v/2d
v/2d w/d

)
. Then DT/d = DT /d

2. Under the assumption that

−DT/d
2 ≡ 0, 1 mod 4, the above discussion shows that fT/d ∈ Z and that dT = dT/d

and fT = dfT/d. We can thus write:

(13) cDT /d2(k) = cDT/d
(k) = c|dT/d|f

2

T/d
(k) = c|dT |(k)ρdT ,fT /d(k)

for all integers k ∈ U with k > 2. Inserting (13) into (10) we get

(14) A
(p)
T (k) = c|dT |(k)

∑

d∈ST

dk/2ρdT ,fT /d(k).

for all integers k ∈ U with k > 2.
We are now ready to define our modified Fourier coefficients. Fix a matrix T0

such that c(T0) = 1 and cDT0
(2) 6= 0, which exists by a combination of the explicit

formula of [17] relating cm(2) with special values of L-series and non-vanishing
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results for L-series by [5], [26] (see for example [13, Lem. 2.4] for details). Define,
for integers k in U with k > 2,

(15) ÃT (k) :=

(
1−

(
dT

p

)
ap(k)

−1pk/2−1
)
A

(p)
T (k)

(
1−

(
DT0

p

)
ap(k)−1pk/2−1

)
A

(p)
T0

(k)
.

To simplify notations, define, for all integers k ∈ U with k > 2:

(16) nT (k) :=
∑

d∈ST

dk/2ρdT ,fT /d(k).

Putting (14) into (15) we get, for all integers k ∈ U with k ≥ 4:

(17) ÃT (k) =

(
1−

(
dT

p

)
ap(k)

−1pk/2−1
)
c|dT |(k)

(
1−

(
DT0

p

)
ap(k)−1pk/2−1

)
cDT0

(k)
nT (k) = c̃|dT |(k)nT (k).

Remark 3.3. Since cDT0
(2) 6= 0, clearly p ∤ DT0

. Suppose that p ∤ DT . Then

(18) ÃT (k) =
aT (k)

aT0
(k)

.

To show this, combining (16) and (17) we find

ÃT (k) =
∑

d∈ST

(
1−

(
dT

p

)
ap(k)

−1pk/2−1
)
c|dT |(k)ρdT ,fT /d(k)

(
1−

(
DT0

p

)
ap(k)−1pk/2−1

)
cDT0

(k)
dk/2.

Using (17) we find

ÃT (k) =
∑

d∈ST

(
1−

(
dT

p

)
ap(k)

−1pk/2−1
)
cDT /d2(k)

(
1−

(
DT0

p

)
ap(k)−1pk/2−1

)
cDT0

(k)
dk/2.

Since p ∤ DT , then in particular p ∤ fT . So we have
(

dT

p

)
=

(
dT f2T
p

)
=

(
−DT

p

)
.

Further, if d ∈ ST then p ∤ d and we have
(

−DT

p

)
=

(
−DT /d2

p

)
. Hence we obtain

the relation

ÃT (k) =
∑

d∈ST

(
1−

(
−DT /d2

p

)
ap(k)

−1pk/2−1
)
cDT /d2(k)

(
1−

(
DT0

p

)
ap(k)−1pk/2−1

)
cDT0

(k)
dk/2

and, using the definition of c̃D(k), we get

(19) ÃT (k) =
∑

d∈ST

c̃DT /d2(k)dk/2.

Now, by Remark 3.2, we have

(20)
ãT (k)

ãT0
(k)

aT (k)

aT0
(k)

=
∑

d∈ST

b̃DT /d2(k)

b̃DT0
(k)

dk/2 =
∑

d∈ST

c̃DT /d2(k)dk/2.

Combining (19) and (20) gives (18).
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Proposition 3.4. The function k 7→ ÃT (k), defined for integers k > 2 in U ,
extends to a p-adic analytic function on U . Moreover, for k = 2 we get the equality:

(21) ÃT (2) = nT · c̃|dT |(2) = nT · c|dT |(2)

cDT0
(2)

where nT := nT (2).

Proof. Clearly, ρd,n(k), defined for integers k > 2 in U , can be extended analytically
to all of U because the same is true for the Fourier coefficients an(k). We denote by
ρ̃d,n(k) the resulting function. Likewise, we set ñT (k) the obvious analytic extension
of nT (k) obtained from ρ̃dT ,fT /d(k) for all d ∈ ST . We can thus define for all k ∈ U

(22) ÃT (k) := c̃|dT |(k)ñT (k)

which is, thanks to Proposition 3.1, the sought for extension of ÃT (k). The value
at 2 is then a consequence of the second part of Proposition 3.1. �

Remark 3.5. The integer nT above can be explicitly written as

nT =
∑

d∈ST

∑

e|fT /d; (e,N)=1

d · µ(e) ·
(
dT

e

)
· afT /(de)(2).

In level 1, the analogous sum is seen to be non-zero by writing it explicitly as a
finite product of non-zero terms arising as special values of local singular series
polynomials. That is, in the terminology of [13, Thm. 4.1], we have:

AT (Lift(φ)
∗) =

(
1−

(dT
p

)
βp(φ)p

−r
)
c|dT |(ψ)× αp(φ)

vp(fT )+2×

×
∏

ℓ|fT ,ℓ 6=p

αℓ(φ)
vℓ(fT )Fℓ(T ;βℓ(f)ℓ

−r−1).

Here φ is a p-ordinary normalized Hecke eigenform on SL2(Z) of weight 2r, Lift(φ)
∗

is a certain p-stabilization of the Saito-Kurokawa lifting of φ, with Fourier coeffi-
cients AT (Lift(φ)

∗) (introduced in [13, (15)]), ψ is the Shintani lifting of φ with
Fourier coefficients cD(ψ), αp(φ) and βp(φ) are the roots of the Hecke polynomial
at p of φ, ordered in such a way that αp(φ) is a p-adic unit, vp and vℓ denote p-adic
and ℓ-adic valuations, F (T ;X) is a polynomial introduced in [13, (eq 4)], and all
other symbols have the same meaning as above. We do not know a proof of the
analogous non-vanishing statement for higher levels.

4. Global points on elliptic curves

In this section, we compute the p-adic derivative of the explicit formula for the
Fourier coefficients of the Saito-Kurokawa family exhibited in Section 3, and relate
it to global points on elliptic curves via the fundamental results of [2] and [3].

4.1. Global points associated to the Shintani lifting. We start by recalling
the work of Darmon and Tornaŕıa [7], for which we need to introduce some extra
notations. Recall that g = g2 denotes the Shintani lifting of f = f2, as usually well-
defined only up to scalars, with Fourier coefficients cD(2). Recall that wℓ ∈ {±1} is
the eigenvalue of the Atkin-Lehner involution Wℓ acting on f , for a number ℓ | Np.
In accordance with [7], we introduce the following terminology:
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(I) We call discriminants of type (I) those fundamental discriminants d < 0
such that (

d

ℓ

)
= wℓ

for all primes ℓ | Np.
(II) We call discriminants of type (II) those d such that

(
d

ℓ

)
= wℓ

for all primes ℓ | N and
(
d

p

)
= −wp.

If d is of type II, then cd(2) = 0 and then c̃d(2) = 0 too. In this latter case, it
becomes interesting to look at the value at 2 of the derivative of cd(k) with respect
to k.

Let E/Q denote the elliptic curve of conductor Np associated with f via the
Eichler-Shimura construction. Let d < 0 be a fundamental discriminant and, to
simplify notations, define the imaginary quadratic field

Kd := Q(
√
d).

Denote by E(Kd)
− the submodule of the Mordell-Weil group E(Kd) on which the

non-trivial involution of Gal(Kd/Q) acts as −1.
Since p does not divide N , the curve E has multiplicative reduction at p. For a

fundamental discriminant d < 0, let L(f, χd, s) denote the complex L-function of f
twisted by the quadratic character

χd(n) :=

(
d

n

)

of Kd. So, if the real part of s is sufficiently large, we have

L(f, χd, s) =

∞∑

n=1

χd(n)ann
−s.

We now state the main result of Darmon-Tornaŕıa ([7, Theorem 1.5]). Recall
that ΦTate denotes Tate’s uniformization introduced in (2) and logE is the logarithm
defined in (3).

Theorem 4.1 (Darmon-Tornaŕıa). Let N > 1 and suppose that d < 0 is a funda-
mental discriminant of type II. Then there exists an element Pd ∈ E(Kd)

− ⊗Z Q
such that

(1) ∂
∂k c̃|d|(k)|k=2 = logE(Pd).

(2) Pd 6= 0 if any and only if L′(E,χd, 1) 6= 0.

Remark 4.2. The point Pd in Theorem 4.1 comes, as already mentioned, from the
theory of Darmon points. These points were introduced in [6], under the name of
Stark-Heegner points, as local points on elliptic curves, and are conjectured to be
global points, defined over ring class fields of real quadratic fields. A special case of
this conjecture, which is needed in Theorem 4.1 above, is proved by Bertolini and
Darmon in [3], using results from [2], by establishing a connection between classical
Heegner points and Darmon points. For more details, we refer the reader to the
discussion in [7, Section 3].
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For the next result, let d′ < 0 be a fundamental discriminant of type I, prime
to d, and define ∆(d, d′) := dd′. In the following lines, we simply write ∆ when
the role of d and d′ are clear from the context. In particular, since d is of type II,
∆ is not a perfect square and is prime to Np. Let χ∆ denote the genus character
associated to the pair of quadratic Dirichler characters χd and χd′ of Q(

√
d) and

Q(
√
d′). Then ∆ is the discriminant of the real quadratic field Q(

√
∆) and the

field Q(
√
d,
√
d′) cut out by χ∆ is a quadratic extension of Q(

√
∆) (unless χ∆ is

trivial, in which case coincides with Q(
√
∆)). Since all primes ℓ | N are split in

K, we may choose an integer δ such that δ2 ≡ ∆ mod 4N . Recall from [7, §2]
that a primitive binary quadratic form Q(x, y) = Ax2 +Bxy+Cy2 of discriminant
∆ is said to be a Heegner form relative to the level N if N | A and B ≡ δ mod

N . Let F∆ denote the set of such forms. Let a+ b
√
∆ denote a fundamental unit

of norm one in Z[(∆ +
√
∆)/2], normalized such that a > 0 and b > 0, and, for

Q(x, y) = Ax2 +Bxy + Cy2 ∈ F∆, define the matrix

γQ =

(
a+ bB 2Cb
−2Ab a− bB

)
∈ Γ0(N).

The group Γ0(N) acts on F∆ from the right by the formula

(Q|γ)(x, y) = Q(ax+ by, cx+ dy)

for γ =
(
a b
c d

)
. Let d = Q(m,n) be any integer represented by Q (namely, such

that there are integers (m,n) such that Q(m,n) = d) satisfying the condition
gcd(d, d) = 1. The genus character χ∆ defines a function, denoted by the same
symbol,

χ∆ : F∆/Γ0(N) −→ {±1}, χ∆(Q) =

{
0 if gcd(A,B,C, d) > 1(
d
d

)
otherwise.

For any integer k ∈ U with k ≥ 4, we consider the integrals

IC(f
♯
k, P, r, s) :=

∫ s

r

f ♯
k(z)P (z)dz

where P is a polynomial of degree at most k − 2 with coefficients in C, r, s are in
P1(Q) and the above integral is along any path in the upper half plane connecting r
and s. A result of Shimura shows that one can find a complex period Ω−

f♯
k

, analogous

to Ω−
fk

considered in Remark 2.1, such that

I(f ♯
k, P, r, s) := IC(f

♯
k, P, r, s)/Ω

−

f♯
k

belongs to the field generated over Q by the Fourier coefficients of f ♯
k, for all P , r

and s. Define

J(f ♯
k, P, r, s) := (1 − ap(k)

−2pk−2)I(f ♯
k, P, r, s).

Remark 4.3. The only choice among the complex periods Ω+

f♯
k

and Ω−

f♯
k

which is

relevant for this paper is Ω−

f♯
k

. This corresponds to the choice made in Theorem 2.2

(see also Remark 2.1). In fact, the proof of Theorem 2.2 proceeds by p-adically in-

terpolating the above integrals I(f ♯
k, P, r, s), which are eventually related to Fourier

coefficients of half-integral modular forms by Shintani’s work. However, the choice
of periods Ω+

f♯
k

instead of Ω−

f♯
k

is possible and leads to a parallel theory of Darmon
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points in this situation and conjectural relations with half-integral modular forms:
see [7, Secs. 4 and 5] for details.

We fix now embeddings Q̄ →֒ C and Q̄ →֒ Cp. By [3, Proposition 3.4], one
knows that, for any choice of τ ∈ Qp2\Qp, where Qp2 is the quadratic unramified

extension of Qp, the function k 7→ J(f ♯
k, P, r, s), a priori only defined for integers

k > 2 in U , extends to a p-adic analytic function on U that vanishes at k = 2. We
shall denote k 7→ J(k, P, r, s) this function.

Fix a square root
√
∆ of ∆ in Qp2 and, for Q ∈ F∆ as above, define

τQ :=
−B +

√
∆

2A
.

We may then define

J(f,Q) :=
d

dk
J(k, (z − τQ)

k−2, r, γQ(r))|k=2 .

Twisting J(f,Q) by χ∆, we may also define:

(23) J(f, d, d′) =
∑

Q∈F∆/Γ0(N)

χ∆(Q)J(f,Q).

The second result we quote from the work of Darmon-Tornaŕıa is [7, Theorem 5.1],
which can be restated as follows:

Theorem 4.4 (Darmon-Tornaŕıa). Fix d < 0 is a fundamental discriminant of
type II.

(1) For any fundamental discriminant d′ of type I, we have the relation:

c̃|d′|(2) logE(Pd) = J(f, d, d′).

(2) If N > 1 then the function d′ 7→ J(f, d, d′) is non-zero if and only if
L′(E,χd, 1) 6= 0.

4.2. Global points associated to the Saito-Kurokawa lifting. We combine
the explicit Λ-adic Saito-Kurokawa lifting with Darmon-Tornaŕıa’s result. We first
introduce the L-function attached to SK(f). Denote by L(SK(f), s) the Adrianov
L-function associated with SK(f), whose definition can be found, e. g., in [20, p.
179], where it is denoted by Z∗

F (s) for F = SK(f). We have the following relation
between L(SK(f), s) and the standard L-function of f (see [20, Theorem 8])

L(SK(f), s) = ζ(s)ζ(s − 1)L(f, s)

from which it is apparent that the central critical point is s = 1. Accordingly, we
may consider the χdT -twisted L-functions

L(SK(f), χdT , s) = L(χdT , s)L(χdT , s− 1)L(f, χdT , s).

Since dT is of type II, L(f, χd, 1) = 0 and we have

L′(SK(f), χd, 1) = L(χd, 0)L(χd, 1)L
′(f, χd, 1)

In particular, since the factor L(χd, 0)L(χd, 1) is non-zero, we see that

(24) L′(SK(f), χd, 1) 6= 0 ⇐⇒ L′(f, χd, 1) 6= 0.

Before stating the main result of this paper, let us recall the integer nT introduced
in Proposition 3.4 and define the point

QT := nT · PdT .
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Suppose from now on that nT 6= 0.

Theorem 4.5. Let N > 1. Suppose that −DT = dT · f2T , where dT < 0 is a
fundamental discriminant of type II. Then:

(1) We have the following relation:

∂

∂k
ÃT (k)|k=2 = logE QT .

(2) QT is non-zero in E(KdT )
− ⊗Z Q if and only if L′(SK(f), χdT , 1) 6= 0.

Proof. Using (22) to compute formally the p-adic derivative of the Fourier coeffi-

cients ÃT (k), we find:

∂

∂k
ÃT (k)|k=2 =

∂

∂k
c̃|dT |(k)|k=2 · ñT (2) + c̃|dT |(2) ·

∂

∂k
ñT (k)|k=2.

Since dT is of type II, we have c̃|dT |(2) = 0, and thus Theorem 4.1 implies the result,
in light of the definition of QT . For the second part, simply note that if PdT 6= 0
then any non-zero multiple of it is non-zero and then use the relation (24) together
with Theorem 4.1, Part (2). �

Theorem 4.6. Fix T such that −DT = dT · f2T with dT < 0 a fundamental dis-
criminant of type II. For T ′ such that −DT ′ = dT ′ · f2T ′ with dT ′ a fundamental
discriminant of type I, we have:

(1) ÃT ′(2) logE(PdT ) = nT ′J(f, dT , dT ′).
(2) If N > 1 then the function dT ′ 7→ J(f, dT , dT ′) is non-zero if and only if

L′(SK(f), χdT , 1) 6= 0.

Proof. Combining (21) and Theorem 4.4, we have

ÃT ′(2) logE(PdT ) = c̃|dT ′ |(2)nT ′ logE(PdT ) = nT ′J(f, dT , d
′
T ).

This shows the first part, while the second is just a restatement of the second part
of Theorem 4.4 combined with (24). �
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