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Abstract: Nonverbal learning disability (NVLD) is a neurodevelopmental disorder characterized
by deficits in visuospatial processing but spared verbal competencies. Neurocognitive markers
may provide confirmatory evidence for characterizing NVLD as a separate neurodevelopmental
disorder. Visuospatial performance and high-density electroencephalography (EEG) were measured
in 16 NLVD and in 16 typically developing (TD) children. Cortical source modeling was applied
to assess resting-state functional connectivity (rs-FC) in spatial attention networks (dorsal (DAN)
and ventral attention networks (VAN)) implicated in visuospatial abilities. A machine-learning
approach was applied to investigate whether group membership could be predicted from rs-FC maps
and if these connectivity patterns were predictive of visuospatial performance. Graph theoretical
measures were applied to nodes inside each network. EEG rs-FC maps in the gamma and beta band
differentiated children with and without NVLD, with increased but more diffuse and less efficient
functional connections bilaterally in the NVLD group. While rs-FC of the left DAN in the gamma
range predicted visuospatial scores for TD children, in the NVLD group rs-FC of the right DAN in
the delta range predicted impaired visuospatial performance, confirming that NVLD is a disorder
with a predominant dysfunction in right hemisphere connectivity patterns.

Keywords: nonverbal learning disability; resting-state electroencephalography; visuospatial abilities;
gamma band; delta band; right hemisphere

1. Introduction

Nonverbal learning disorder (NVLD) is a neurodevelopmental disorder with a neu-
ropsychological profile characterized by visuospatial processing deficits, within a profile
of intact verbal abilities [1–4]. Individuals with NVLD show major problems with visu-
ospatial working memory (VSWM, i.e., [5–7]), visuoconstructive and spatial organizational
skills [8–11], comprehension of spatial descriptions [12,13], and nonverbal problem-solving
abilities [14]. Such neuropsychological deficits may be associated with learning difficul-
ties in the areas of mathematics, geometry, and drawing [7,15–17]. Finally, studies have
also reported difficulties in social interaction abilities for individuals with NVLD [18,19]
albeit less pronounced relative to autism spectrum disorder (ASD). Although in recent
years researchers have collected many data supporting the main characteristics of NVLD,
despite its growing recognition, NVLD is not yet identified in the current classification
systems as a distinct developmental disorder (DSM-5, APA, 2013; ICD-11; World Health
Organization [WHO], 2018). Since neurobiological markers of brain structure and function
may contribute important convergent evidence that NVLD is indeed a distinct disorder,
the present study employed behavioral and brain electroencephalographic (EEG) measures
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in an attempt to discriminate between children with NVLD and with typical development
(TD), and to predict performance in the visuospatial domain from connectivity patterns
of brain activity. Only a few studies on NVLD using brain-based techniques have been
published in the literature, and their findings are summarized below.

1.1. Neural Correlates of NVLD

Based on the neuropsychological profile and the presence of mild left-sided motor
and sensory signs [20,21], Rourke [1] postulated that the neurological basis of NVLD is a
“white matter” syndrome, with a predominant dysfunction in right hemisphere connectivity
patterns, a hypothesis based on the available evidence linking the right hemisphere with
specialized visuospatial processing [22–25].

An electroencephalography (EEG) study [26] tested Rourke’s right hemisphere hypoth-
esis employing EEG, comparing two groups of children–one with NVLD and the other with
verbal learning disorder (dyslexia). They computed EEG coherence, a frequency-specific
measure that reflects functional interregional coupling, mainly depending on structural
connections [27,28]. Consistent with Rourke’s hypothesis, in the NVLD group, they found,
in the resting state, a relative decrease in coherence in the gamma band between distant
locations restricted to the right hemisphere (long-distance hypoconnectivity), interpreted
as reflecting defective neuronal interactions between distant cortical regions in the right
hemisphere [26]. Albeit promising, the study had some limitations. First, there was no com-
parison group of typically developing (TD) children. Second, no behavioral performance
data in the visuospatial domain were reported. Third, EEG functional connectivity was
calculated only at the scalp level from a sparse sensor array (19 electrodes).

Advances in imaging techniques based on magnetic resonance imaging (MRI) have ad-
dressed brain correlates of visuospatial and social deficits in NVLD. Concerning the former,
an anatomical MRI study measured the volume of the splenium of the corpus callosum,
connecting temporal, posterior parietal, and occipital cortices across the two hemispheres.
Compared to TD children and other clinical groups (attention deficit–hyperactivity disor-
der and autism spectrum disorder), the NVLD group showed smaller splenial volumes,
which were associated with lower performance IQ but not verbal IQ scores, suggesting
that the visuospatial deficits may derive from the inability to integrate visuoperceptual
and visuospatial information across the hemispheres [29]. A second MRI study compared
resting-state functional connectivity (rs-FC) among children with NVLD and reading disor-
der (RD), as well as TD children [30]. They analyzed a broad spatial network, including
nodes in the dorsal attention network (DAN) involved in VSWM and spatial attention (see
below), as well as other cortical areas involved in topographical memory (retrosplenial
cortex, parahippocampal gyrus, and others). Across all groups, global network efficiency
was associated with performance IQ. Within the spatial network, reduced rs-FC in NVLD
relative to the other two groups combined was found between the left posterior cingulate
cortex (PCC) and the right retrolimbic area (RA), which correlated with differences between
groups in performance IQ [30]. Since the splenium contains fibers directly connecting left
and right retrosplenial cortices [31]—which include both PCC and RA—these results could
still be accounted for by a white-matter abnormality centered in the splenium, as reported
in the previous study [29]. Concerning the neural substrates of social abilities in NVLD, a
structural MRI study found smaller volume of the anterior cingulate cortex (ACC) in NVLD
relative to typically developing (TD) children [32]. A second study reported reduced rs-FC
between ACC and the anterior insula (hubs of the salience network) in NVLD relative to
TD children [33].

In recent years, developments of the EEG technique, including high-density sensor
arrays and EEG cortical source modeling, allow the study of functional connectivity with
much greater detail and spatial resolution than before. ‘Dynamic network neuroscience’
aims to investigate the interconnected nature of neurophysiological phenomena underlying
human cognition in health and disease [34,35]. A flexible dynamic reconfiguration of
the modular organization of cortical networks has been related to learning proficiency in
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healthy individuals [34], to memory and executive functions performances [36], and to
social cognitive abilities [37]. This approach has recently been successfully employed in
network disorders such as temporal lobe epilepsy [38].

1.2. Visuospatial Working Memory and EEG Oscillations

In EEG studies with healthy volunteers performing visuospatial processing tasks,
findings were reported associating oscillatory patterns to spatial short-term memory, in
particular, mental rotation, especially in the gamma band (30–80 Hz) [39,40] but also in the
beta band (13–29 Hz) [41]. Of relevance was a review by Tallon-Baudry [42], concluding
that, in working memory tasks, gamma and beta bands address different processing stages.
The gamma frequency would be prevalent during the presentation of the item to be held
in memory, while the beta band would be prominent during the maintenance period. In
fact, Von Stein and Sarnthein [43] proposed that the bottom-up or perceptually driven
processes are mediated by local gamma frequency, whereas top-down processes would
involve long-distant oscillations in the beta, alpha (8–12 Hz), and theta (4–7 Hz) bands.
The gamma frequency band has also been linked to perceptual binding, that is, the process
whereby the sensory stimuli are combined together in order to create a meaningful and
unitary percept.

Importantly, Basso Garcia et al. [44] assessed visual short-term memory for shapes
and colors and the binding of shapes and colors by comparing a group of children at risk of
NVLD with a control group. They found that the groups did not differ in retention of either
shapes or colors, but children at risk of NVLD were poorer than children in the control
group in memory for shape-color bindings, exhibiting a binding deficit.

1.3. Spatial Attention Networks

The investigation of brain network dynamics through high-density EEG and cortical
source modeling may help to elucidate the neural mechanisms underlying cognitive im-
pairment in NVLD. Particularly relevant would be to address potential abnormalities in the
dorsal and ventral attention networks (DAN and VAN), two anatomically and functionally
distinct cortical systems previously identified by fMRI studies of active attention processing,
mainly involved in top-down and bottom-up attention processes, respectively [45].

The DAN supports endogenous attention and comprises the frontal eye fields (FEF)
and the intraparietal sulcus (IPS). These core regions have retinotopically organized maps
of contralateral space [46], which make them particularly suitable for VSWM processes.
Activity in these frontal and parietal areas creates maps of prioritized space that rank the
importance of locations in the visual field in accordance with their attentional priority [47].
The priority maps are then used in order to select between competing representations of
actions in the motor system or between competing representations of objects in the visual
system. In addition, there is a substantial body of research describing the involvement of
DAN in two main contexts: the representation of spatial information [47,48], and working
memory and sustained attention tasks [49,50].

The VAN supports exogenous attentional processes recruiting areas of the ventral
prefrontal cortex (VPFC) and the temporo-parietal junction (TPJ). This network has been
found to be lateralized to the right [51], but neuroimaging studies have also highlighted a
role of the left hemisphere for the TPJ in attentional processes [52], or a bilateral involvement
of the same region [53].

1.4. Aims

Based upon these premises, the first aim of the present project was to attempt to
discriminate between the NVLD and TD groups employing maps of EEG resting-state
functional connectivity (rs-FC) in the DAN and VAN of the left and right hemispheres
by applying a machine-learning approach, i.e., a support vector regression (SVR) model.
The second aim was to determine whether such rs-FC measures would be predictive of
performance in the visuospatial domain. Our final aim was to apply graph theoretical



Brain Sci. 2023, 13, 731 4 of 21

analysis to ascertain whether network topology properties (degree, strength, clustering
coefficient, and local efficiency) would be effective measures for discriminating between
NVLD and TD groups.

1.5. Hypotheses

We hypothesized that the DAN and VAN would show differential resting-state con-
nectivity maps between the two groups and that this information would solely be able to
distinguish between children with and without NVLD. Given their relevance for visuospa-
tial and working memory processes, we predicted that these changes mostly affect gamma
and beta frequency bands. We further hypothesized that visuospatial performance in NVLD
would more robustly depend on connectivity patterns within the DAN—particularly in the
right hemisphere, given its role in active visuospatial processing. Finally, we predicted that,
by examining each cortical node falling in the two neural networks in the two groups, the
NVLD cohort would show differential connectivity patterns and networks’ topology from
TD children.

2. Materials and Methods
2.1. Participants

A total of 32 participants (26 males and 6 females), aged 8 to 16 years old, were selected
to take part in the present study. The experimental group included participants diagnosed
with NVLD (n = 16, 2 left-handed) and participants without any diagnosis (not diagnosed),
and for whom a typical development was assumed (TD, n = 16; 3 left-handed). Only
children who achieved a standard score of 80 or above on the full-scale IQ on the Wechsler
Intelligence Scale (WISC-IV; [54]) were included in the sample. All participants were native
Italian speakers and had normal or corrected-to-normal vision and hearing. None of them
had a history of neurological and/or psychiatric disorders, as reported by an anamnestic
interview conducted with parents. NVLD and TD groups were not statistically different
regarding chronological age [F (1, 30) = 0.049, p = 0.827, η2

p = 0.002], gender distribution
[χ2 (1) = 0.183, p = 0.669], or verbal abilities [F (1, 30) = 0.732, p = 0.399, η2

p = 0.024], as
measured using the Vocabulary subtest from the WISC-IV (Wechsler, 2003).

Children with NVLD had previously received an independent clinical diagnosis
by private psychologists or child psychiatrists at specialized clinical centers, following
recommendations from the literature [55], while children in the TD group were recruited via
local schools or community contacts. The Developmental Test of Visual-Motor Integration
(VMI; [56]) was used as a screening measure to assess visuospatial processing: the scores
of the two groups were significantly different [F (1, 30) = 21.550, p < 0.001, η2

p = 0.519],
highlighting the presence of significant impairments only in the NVLD group. Moreover,
aiming to perform a differential diagnosis between NVLD and autism spectrum disorder
(ASD) without intellectual disability, the Autism Diagnostic Interview-Revised (ADI-R; [57])
was administered to the participants’ parents. All participants, from both the NVLD and the
TD groups, scored below the clinical cut-offs in all the assessed areas (i.e., Reciprocal Social
Interactions, Language/Communication, and Repetitive Behaviors/Interests). Descriptive
statistics concerning inclusion and screening measures are provided in Table 1.

All participants’ parents or legal guardians gave written informed consent before
the experiment, and the participants’ agreement to take part in the study was acquired.
All experimental procedures were approved by the Ethics Committee of the School of
Psychology at the University of Padua (protocol no 3921) and were conducted according to
the principles expressed in the Declaration of Helsinki.
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Table 1. Descriptive statistics for the inclusion and screening measures.

Measures
NVLD
(n = 16)

Mean (SD)

TD
(n = 16)

Mean (SD)

Group
Differences

Chronological age (months) 157.19 (21.78) 155.44 (23.09) NS *
Gender (M:F) 12:4 14:2 NS
Vocabulary 1 11.56 (2.53) 12.25 (1.98) NS

VMI 2 77.92 (11.96) 101.60 (11.86) NVLD < TD
ADI-R 3: A (Reciprocal Social Interactions) 6.31 (4.99) 2.29 (2.28) both groups < clinical cut-off
ADI-R 3: B (Language/ Communication) 4.88 (3.65) 2.12 (2.62) both groups < clinical cut-off

ADI-R 3: C (Repetitive Behaviors/Interests) 2.64 (2.37) 0.41 (0.62) both groups < clinical cut-off
1 Scaled scores on Vocabulary subtest from the WISC-IV [54]. 2 Standard scores in the Developmental Test of
Visual-Motor Integration (VMI; [56]). 3 Autism Diagnostic Interview-Revised (ADI-R; [57]); higher raw scores
reflect more severe impairments in each domain. * p > 0.05.

2.2. Visuospatial Performance

The Rey–Osterrieth complex figure test (ROCFT; [58]) assesses visuoconstructive
abilities and visuospatial memory. Participants are asked to copy a complex geometrical
figure as accurately as possible. After 3 min, they are requested to reproduce it from
memory. Accuracy is determined by scoring each element based on its presence, accurate
reproduction, positioning, and respect for proportions [58]. In the present study, individual
scores for the copy and recall portions were averaged together for the behavioral prediction
from EEG connectivity data (see below).

2.3. EEG Resting-State Recording

For each participant, the rs HD-EEG activity was recorded before the active tasks (not
reported here) in a 4-min eyes-closed session. We used a geodesic high-density EEG system
(EGI® Net Amp GES-400) (Magstim EGI, Withland, UK) with a pre-cabled 256 channels,
through NetStation (v5.4) EEG Software. The elastomer structure of the EEG net is formed
by polyvinyl alcohol sponges that are housed within the HydroCel Hydrating Skin interface
chamber. The sampling rate of the recording was set to 500 Hz, with an automatic alignment
of real-time EEG.

2.4. EEG Preprocessing

The preprocessing was performed in MATLAB (v2019b) using functions from the
EEGLab (v.2020.048) and ERPLab (v.2021.8.30) Toolbox. Continuous data were downsam-
pled to 256 Hz, a passband filter (0.01–80 Hz) was applied, and the signal was re-referenced
to the average of all channels. Next, the clean_artifacts routine in EEGLab was used with
default parameters to detect bad channels and exclude them from further processing. If
a channel was rejected, its value was replaced by means of the interpolation using sur-
rounding channels. Another cleaning procedure was applied with an ERPLab function,
continuousartdet, to reject segments of data with a peak-to-peak amplitude exceeding
±100 µV using a moving-window procedure (window size = 200 ms, step size = 20 ms).
Finally, independent component analysis (ICA) was performed, and artifact components
were marked with ICLabel and manually discarded.

2.5. EEG Source Modeling and Connectivity Analysis

The processing phase was carried out with Brainstorm and Matlab (MathWorks, Inc.).
In order to model the source activity, a forward model was calculated with the BEM, a
three-layer boundary element method, and the source was estimated with the weighted
minimum norm estimation (wMNE) method. This inverse solution was then downsampled
to 148 cortical parcels defined by the Destrieux Atlas [59]. The connectivity matrices
were calculated with magnitude squared coherence (MSC), which describes the linear
relationship (covariance) between two signals in the frequency domain (Delta: 2–4 Hz,
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Theta: 5–7 Hz, Alpha: 8–12 Hz, Beta: 13–29 Hz, Gamma: 30–59 Hz), and it is calculated
as follows:

∣∣ Cxy ( f ) | 2 =

(
|Sxy( f ) |√

Sxx ( f )Syy ( f )

)2

Sxy( f ) : Cross-spectrum
Sxx ( f ) and Syy ( f ) : Auto-spectra or power spectral density

(1)

Thus, the MSC (C) between two signals (x and y) is estimated by the square of the
coherence value between x and y divided by the square root of the coherence of x, with x
multiplied by the cohere of y with y.

2.6. Discrimination between NVLD and TD Groups: A Machine-Learning Approach

After EEG signal preprocessing, source-reconstructed cortical activity and whole-brain
resting-state functional connectivity (rs-FC) were computed. Subsequently, phase coherence
values were extracted from the parceled cortex (Destrieux atlas, 148 ROIs; [59]) to estimate
individual rs-FC in the DAN and the VAN. These cortical networks were distinguished
by hemisphere, given the recognized role of the right hemisphere for visuospatial pro-
cessing [23–25]. A machine-learning approach (i.e., support vector machine) was applied
in order to investigate whether group membership could be predicted from rs-FC maps
in each hemisphere and frequency band (Delta: 2–4 Hz, Theta: 5–7 Hz, Alpha: 8–12 Hz,
Beta: 13–29 Hz, Gamma: 30–59 Hz). The objective of this first analysis was to investigate
whether (i) there was such information, within the coherence maps of the selected networks
of interest, able to discriminate between the NVLD and TD groups and (ii) the hemisphere
played a crucial role in differentiating the two groups. In order to test these hypotheses,
we used a machine-learning approach based on the SVM classifier. The Matlab functions
svmtrain and svmclassify, respectively, were used in order to train a linear SVM model
(with default parameters) for discriminating between the clinical and the control groups,
starting from the functional connectivity matrices. The Matlab function cvpartition was
employed, at each run, for implementing the leave one subject out cross-validation scheme.
The prediction accuracy was computed at the end of the cross-validation loop on the
corrected predicted classes (one per each test subject, at each run).

2.7. Behavioral Predictions from Functional Connectivity Matrices

In order to understand the characteristics driving the successful classification of FC
maps of NVLD with respect to TD children, we applied a series of linear regression models.
The goal of this approach was to link the functional connectivity information, which could
discriminate the NVLD group from the control one, to the individual visuospatial perfor-
mance in the ROCFT. We adopted an approach similar to that used by Duma et al. [60]—
specifically, an SVR (support vector regression) model for each group, network of interest
(considered separately in the left and right hemispheres), and frequency band. For testing
the generalization ability of the regression model, we adopted a leave-one-subject-out
cross-validation scheme, implemented across subjects within each group. As suggested
by Yadav et al. [61], leave-one-out cross validation is preferred for datasets with a sample
number less than 100. By contrast, for very large datasets, using this cross-validation
scheme could increase the overfitting probability, and therefore, other schemes, like folds,
can be used [61,62]. The prediction accuracy was expressed in terms of a correlation co-
efficient (see [60,63] for a similar procedure applied, respectively, to EEG and fMRI data).
For more details about the analysis, see Section 2.9 in the work of Duma et al. [60]. Only
positive correlations were reported as an index of a good-quality fitting. Note that negative
correlations are an index of a very bad fitting and therefore were not considered. Using
Bayesian correlation allowed us to get a ratio between the null hypothesis and the alter-
native hypothesis and provided a measure of the strength of evidence of one hypothesis
over the other, which is highly valuable in clinical research. In the frequentist approach,
instead, the p-value is not informative for the alternate hypothesis; it only computes the
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likelihood of the null hypothesis and allows researchers to discard it. Moreover, the use of
the Bayes factor robustness check allowed us to test the robustness of the obtained results
by varying the beta-prior width. Bayes factor (BF) correlations were performed using
the software JASP (https://jasp-stats.org/ accessed on 6 November 2014). Note that the
reported BF values correspond to the assumption of a Cauchy prior width equal to 0.5, but
a BF robustness check was considered in order to estimate the robustness of the results as
a function of the selected prior width. Considering the scale of interpretation of the BF
(Jeffreys, 1998), we adopted a conservative approach, reporting only the correlations with
BFs≥ 3, which is considered moderate (3 < = BF < 10) to strong (10 < = BF < 30), very strong
(30 < = BF < 100), or extreme (BF > = 100) evidence toward the alternative hypothesis.

2.8. Discrimination between NVLD and TD: A Graph Theory Approach
2.8.1. Graph Construction

We used a single-subject-connectivity-matrix approach, as suggested by Langer et al. [64].
Thus, for each network of interest, frequency band, and subject, we constructed a graph
(N × N adjacency matrix, where N represents the number of ROIs included in the network),
and then we extracted the graph measures (i.e., 3 global measures and 3 local measures)
by using the Brain Connectivity Toolbox (BCT). Note that graph connections were not
binarized, in order to avoid a loss of information. Moreover, we maintained all the weighted
connections in graph construction under the threshold of 10% of the top-ranked connections.
For reasons related to the numerosity of nodes in our selected networks (i.e., twelve nodes
in both hemispheres), we preferred a more conservative approach considering only the
most informative coherence values in the graph. Indeed, in this way, we preserved the
network topology and retained the maximum information within the graphs, avoiding
spurious connections.

2.8.2. Graph Measures

All the measures were computed on the weighted graphs normalized by using the
function weight conversion (with the parameter option “normalize”), contained in the
BCT for normalizing the graph connectivity. This function scales all weight connections
to the range [0, 1] by dividing the connection values by the maximal weight and should
be performed prior to computing the network parameters (e.g., clustering coefficient).
Indeed, since network measures strictly depend on the mean of the weighted connections,
weighted graphs need to be normalized in order to perform statistical analysis on the
extracted measures. We extracted graph measures both at a global and a local (i.e., nodal)
level. For global measures, we tested the hypothesis of a difference between the NVLD and
the TD control group, considering potential hemispheric asymmetries. Thus, we extracted
the global measures from the graphs computed separately for each hemisphere (e.g., left
DAN and right DAN graphs). At the nodal level, we extracted the graph measures from
the complete graphs, considering both the hemispheres in a single graph (i.e., bilateral
DAN and VAN).

2.8.3. Global Measures

In order to characterize both segregation and integration properties of each func-
tional network at rest, we extracted three global measures (i.e., one value per subject for
each graph of interest, in each hemisphere—L DAN, R DAN, L VAN, R VAN): (i) global
efficiency, which can index both segregation and integration functional properties; (ii) assor-
tativity, which can index the presence of hierarchy in structuring the information flow; and
(iii) modularity, which can index segregation (i.e., specificity) in information elaboration.

2.8.4. Nodal Measures

At a nodal level, we extracted two local measures (i.e., one value per subject for
each node within the graph of interest—DAN and VAN) from each considered brain
network modeled as a graph: (i) degree, which is the number of connections incident on the

https://jasp-stats.org/
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node, surviving after normalization of the adjacency matrix, and could be interpreted as an index of
integration; (ii) strength, which is computed for each node of the graph as the sum of the weights
on its connections and could be interpreted as an index of integration and synchronization of brain
activity; and (iii) clustering coefficient, which quantifies, for each node, how close its neighbors
are to becoming a complete graph; it reflects the prevalence of clustered connectivity around
individual nodes and roughly corresponds to an index of segregation and specialization.

2.8.5. Statistical Analyses between NVLD and TD

We performed Bayesian independent sample t-tests using the software JASP (https://
jasp-stats.org/), reporting the Bayes factor (BF) in favor of the alternative Hypothesis H1
(NVLD 6= TD). As described for the correlation analysis, we used a Bayesian independent
t-test that provides a measure of the strength of evidence of the alternative hypothesis over
the null hypothesis, by considering the previously mentioned parameters.

3. Results
3.1. Visuospatial Performance Measures

As expected, the NVLD group and the TD control group significantly differed both in
the copy and the memory parts of the Rey–Osterrieth complex figure test, with the worst
performance in the NVLD group. For consistency with the EEG connectivity approach,
results in Table 2 employed Bayesian independent sample t-tests. Note that the results
stayed the same when employing traditional F-tests for the ROCFT copy [F (1, 30) = 29.67,
p < 0.001, η2

p = 0.497] and the ROCFT recall [F (1, 30) = 22.19, p < 0.001, η2
p = 0.425].

Table 2. Descriptive statistics for the copy and recall trials of the Rey–Osterrieth complex figure test.

Measures
NVLD
(n = 16)

Mean (SD)

TD
(n = 16)

Mean (SD)
BF10

Group
Significance

ROCFT copy trial 1 −4.93 (2.69) −0.88 (1.27) 44,791.26 NVLD < TD
ROCFT recall trial 1 −2.52 (1.15) −0.56 (1.21) 357.90 NVLD < TD

1 Z-scores on the Rey–Osterrieth complex figure test [58,65].

3.2. Rs-Connectivity Differences in the DAN and in the VAN

The support vector machine model highlighted the fact that our selected networks
contained information able to discriminate between the NVLD and TD groups. Specifically,
classification results showed that the DAN in both hemispheres (left DAN: accuracy of
62.5% in the beta band, 62.5% in the delta band, and 84.38% in the gamma band; right
DAN: accuracy of 56.29% in the alpha band and 59.38 in the delta band), and the VAN in
both hemispheres (left VAN: accuracy of 65.63% for the beta band; right VAN: accuracy
of 59.38% in the alpha, beta, and gamma bands, and 65.63% in the theta band) contained
functional connectivity information able to discriminate (above the chance level of 50%)
between the two groups. We focused our analysis on graph-theory measures on those
frequency bands that were most informative, on average, across networks and hemispheres,
in discriminating between the two groups: i.e., beta (M = 57.03, SE = 2.81) and gamma
(M = 56.25, SE = 5.34) bands. For the remaining frequency bands, the mean accuracy
across hemispheres and networks did not exceed the chance level of 50% (alpha: M = 49.22,
SE = 10.33; delta: M = 50, SE = 15.52; theta: M = 42.19, SE = 20.65). In order to better
understand and characterize these findings, we applied successive analyses based on graph
theory and regression models, focusing on the beta and gamma frequency bands.

3.3. Behavior Prediction from Functional Connectivity Matrices

Results presented in Table 3 showed a differential pattern of predictions in NVLD and
TD children. In the TD group, rs-functional connectivity in the left DAN in the gamma band
(R = 0.89, BF10 = 2343.64, extreme evidence) and in the left VAN in the delta band (R = 0.55,
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BF10 = 5.65, moderate evidence) was predictive of visuospatial abilities in the ROFC. In
sharp contrast, in the NVLD group, rs-functional connectivity in the right DAN in the delta
band was predictive of the visuospatial performance level (R = 0.84, BF10 = 445.29, extreme
evidence). Figures 1b and 2b show the BF robustness checks for the predictions where the
evidence was preserved as extreme (BFs10 > 100) by varying the Cauchy prior width.

Table 3. Results of the regression analysis, including the coherence level in the networks and the
visuospatial performance in the two groups separately. The Bayes factor is related to the robustness
check on the analysis [10 > BF > 3 = moderate evidence, 30 > BF > 10 = strong, 100 > BF > 30 = very
strong, BF > 100 = extreme].

ROI Freq. Bands Group BF10

R-DAN delta NVLD 445.285
L-DAN gamma TD 2343.641
L-VAN delta TD 5.645
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connectivity within the left dorsal attention network (DAN; R = 0.89, BF10 = 2343.64) in TD children 

Figure 1. Prediction of the visuospatial performance from the connectivity maps in TD children.
(a): Prediction of visuospatial individual performance (as indexed by the Rey index) from rs-functional
connectivity within the left dorsal attention network (DAN; R = 0.89, BF10 = 2343.64) in TD children
in the gamma frequency band. (b): BF robustness check showing that the evidence was preserved as
extreme (BFs10 > 1000) by varying the Cauchy prior width.
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Figure 2. Prediction of the visuospatial performance from the connectivity maps in NVLD children.
(a): Prediction of visuospatial individual performance (as indexed by the Rey index) from rs-functional
connectivity within the right dorsal attention network (DAN; R = 0.84, BF10 = 445.28) in NVLD
children in the delta frequency band. (b): BF robustness check showing that the evidence was
preserved as extreme (BF10 > 100) by varying the Cauchy prior width.
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3.4. Discrimination between NVLD and TD: A Graph Theory Approach
3.4.1. Global Measures

At a global level, we tested the directional hypothesis that the global efficiency of the
NVLD group is lower than that of the TD control group. Bayesian independent sample t-
tests showed that in the left VAN (in the beta band), there was moderate evidence of a lower
mean global efficiency for the NVLD relative to the control group children (BF10 = 4.78;
NVLD: M = 0.10, SE = 0.003; TD: M = 0.12, SE = 0.005), as displayed in Figure 3. No effect
on global efficiency emerged in the gamma band (BF10 = 1.45), nor did other effects emerge
when considering assortativity (BF10= 0.18) or modularity (BF10= 0.2) across networks and
hemispheres. As shown in Figure 5B, the BF robustness check showed that the evidence
was preserved as moderate (3 < BF10 < 10) by varying the Cauchy prior width.

Brain Sci. 2023, 13, x FOR PEER REVIEW 11 of 22 
 

 
(a) (b) 

Figure 3. (a): Mean global efficiency for the NVLD children, which was lower than that of the con-
trols (BF10 = 4.78) in the left VAN (in the beta frequency band). (b): BF robustness check showing that 
the evidence was preserved as moderate (3 < BFs10ß < 10) by varying the Cauchy prior width. 

3.4.2. Nodal Measures: Dorsal Attention Network 
Results from Bayesian independent sample t-tests showed an increased connectivity 

in the bilateral DAN regions (i.e., frontal eye fields—FEF and intraparietal Sulcus—IPS, 
bilaterally) for NVLD children compared to TD controls, as shown by the degree and 
strength measures in both beta and gamma frequency bands (see Tables A1 and A2 in 
Appendix A for statistical information, and Figures 4 and 5). 

 
Figure 4. Connectivity degree in the dorsal attention network. Node size represents the value of 
degree, whereas node color relates to the BF value: red for a BF > 10 and blue for a BF < 3. The red 
nodes report evidence for a significant difference between NVLD and TD children. (A,B): Increased 
connectivity degree in the bilateral intraparietal sulcus (IPS) for the NVLD group compared to TD 
controls, in the beta frequency band. (C,D): Increased connectivity degree for NVLD children com-
pared to TD controls, in bilateral IPS and areas of the frontal eye field (FEF) in the right hemisphere 
in the gamma frequency band (see Table A1 for details on statistics). 
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3.4.2. Nodal Measures: Dorsal Attention Network

Results from Bayesian independent sample t-tests showed an increased connectivity
in the bilateral DAN regions (i.e., frontal eye fields—FEF and intraparietal Sulcus—IPS,
bilaterally) for NVLD children compared to TD controls, as shown by the degree and
strength measures in both beta and gamma frequency bands (see Tables A1 and A2 in
Appendix A for statistical information, and Figures 4 and 5).

Instead, bilateral frontal areas of the DAN showed a decreased local specificity in
NVLD children with respect to the TD controls, as measured by a reduced clustering
coefficient in the beta band (see Table A3 in Appendix A for statistical information, and
Figure 6).

3.4.3. Nodal Measures: Ventral Attention Network

Results from Bayesian independent sample t-tests showed a decreased clustering
coefficient in the left ventral prefrontal cortex (in the beta band) for the NVLD children,
with respect to the controls, as an index of reduced local specificity. The opposite pattern
of results emerged in the right temporoparietal junction (in the gamma band), where an
increased clustering coefficient was found for the NVLD group with respect to the TD group
(see Table A4 in Appendix A for statistical information, and Figure 7).
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Figure 4. Connectivity degree in the dorsal attention network. Node size represents the value of
degree, whereas node color relates to the BF value: red for a BF > 10 and blue for a BF < 3. The red
nodes report evidence for a significant difference between NVLD and TD children. (A,B): Increased
connectivity degree in the bilateral intraparietal sulcus (IPS) for the NVLD group compared to
TD controls, in the beta frequency band. (C,D): Increased connectivity degree for NVLD children
compared to TD controls, in bilateral IPS and areas of the frontal eye field (FEF) in the right hemisphere
in the gamma frequency band (see Table A1 for details on statistics).
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Figure 5. Connectivity strength in the dorsal attention network. Node size represents the strength
value, whereas the color relates to the BF value: red for a BF > 30 in panels (A) and (B), and BF > 4
in panels (C) and (D); blue for a BF < 3. The red nodes report evidence for a significant difference
between NVLD and TD children. (A,B): Increased connectivity strength in the bilateral frontal eye
field (FEF) areas within the dorsal attention network for NVLD children compared to TD controls in
the beta frequency band. (C,D): Increased connectivity strength for NVLD children compared to TD
controls in bilateral IPS and areas of the FEF in the right hemisphere in the gamma frequency band
(see Table A2 for details on statistics).
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Figure 6. Connectivity clustering in the dorsal attention network. Node size represents the clustering
value, whereas node color relates to the BF value: red for a BF > 3 and blue for a BF < 3. The red
nodes report evidence for a significant difference between NVLD and TD children. (A,B): Decreased
clustering coefficient for NVLD children compared to TD controls, in bilateral areas of the frontal eye
field (FEF) in the beta frequency band (see Table A3 for details on statistics).
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Figure 7. Connectivity clustering in the ventral attention network. The node size represents the
clustering value, whereas node color relates to the BF value: red for a BF > 4 in panels (A,B), BF > 7 in
panels (C) and (D); and blue for a BF < 3. The red nodes report evidence for a significant difference
between NVLD and TD children. (A,B): Decreased clustering coefficient in the left frontal areas for
NVLD children compared to TD controls in the beta frequency band. (C,D): Increased clustering
coefficient for NVLD children compared to TD controls in areas within the right temporoparietal
junction (TPJ) in the gamma frequency band (see Table A4 for details on statistics).

4. Discussion

Visuospatial performance levels and EEG resting-state functional connectivity in spa-
tial attention networks were investigated in children with nonverbal learning disability
(NVLD) and in typically developing (TD) children. A machine-learning approach was
employed to test whether the two groups could be discriminated by EEG connectivity
patterns. The resting-state connectivity maps were then employed to predict the individual
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performance in the visuospatial domain. Finally, a graph theoretical approach was em-
ployed to determine whether network topology properties (degree, strength, clustering
coefficient, and local efficiency) would be effective measures for discriminating between
NVLD and TD groups.

At the neural level, rs-FC maps contained information able to differentiate children
with and without NVLD. The SVM approach turned out to be useful in selecting the most
informative and discriminative frequency bands, namely, the beta and the gamma bands,
for which we explored, more in depth, the internal organization of the neural nodes in the
DAN and VAN using the graph theory measures. We found an increased connectivity in
parietal and frontal areas of the DAN in children with NVLD compared to TD children.
Critically, the maps relative to the left DAN in the gamma frequency band were able to
predict visuospatial performance for children without NVLD, whereas in the NVLD groups,
we found the same prediction on the right DAN in the delta frequency band.

4.1. Behavioral Measures

As expected, performance of the Rey–Osterrieth complex figure test was significantly
different in children with and without NVLD, as previous research reported [8,11,16,66],
reflecting the presence of core visuospatial and visuoconstructive processing deficits among
the NVLD children.

4.2. EEG Rs-Functional Connectivity: Discrimination between NVLD and TD

The support vector machine model proved that the selected networks of interest
(DAN and VAN) contained information able to reliably discriminate between the NVLD
and TD groups, based on resting EEG functional connectivity in the gamma and beta
bands, which are implicated in visuospatial and working memory processing in healthy
participants [39–41]. The centrality of gamma band abnormalities confirms the results
of a previous resting EEG study comparing a NVLD group to a group with verbal LD,
which reported a decrease in gamma band coherence between distant locations in the right
hemisphere [26].

4.3. EEG Rs-Functional Connectivity: Behavior Prediction

An important and novel finding of this study is that, while for the control TD children,
increased resting-state connectivity (rs-FC) in the DAN in the gamma band (in the left
hemisphere) strongly predicted visuospatial performance, in the NVLD group, rs-FC in
the delta band in the right DAN strongly predicted individual visuospatial performance.
The results in the TD children confirmed the role of gamma rhythm in spatial and working
memory processes in healthy individuals [39,40]. The different prediction profile in NVLD
can be explained by previous resting EEG findings in verbal learning disabilities reporting
a preponderance of slow-frequency activity (“slowing”) [67–69]. In one such study, more
delta power in frontotemporal regions predicted worse educational evaluations in children
with verbal learning disorder, interpreted as a sign of underlying cerebral dysfunction in
areas involved in reading and writing processes [70].

Importantly, it has been proposed that the slower EEG activity of children with an
LD is akin to that of younger, healthy children since slow EEG activity in the delta range
is prevalent in early life, later replaced by faster rhythms [71]. This apparent lag in the
brain functional development of children with LDs has led to the hypothesis that a delay in
the maturation of the brain’s electrical activity impairs children’s ability to achieve their
academic milestones [69]. In agreement with the above studies and their conclusions,
we interpret the NVLD-specific behavioral prediction with rs-FC in the right DAN in the
present study as indicating a suboptimally functioning resting-state network that provides
a detrimental ‘starting point’ for task-specific brain activations, pinpointing an inefficient
neural resource control due to a delay in neural maturation.
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4.4. EEG Rs-Functional Connectivity: Discrimination between NVLD and TD with a Graph
Theory Approach

In this paper, we also reported novel evidence of reconfiguration of resting-state
functional connectivity in spatial attention networks relevant to core symptoms in the
visuospatial domain in NVLD. Within the DAN, we found evidence of bilaterally increased
functional connectivity at rest for NVLD compared to the TD group, measured through the
graph measures of degree and strength. Importantly, however, such increased functional
connectivity was associated with reduced local specificity in the frontal nodes of the same
network for NVLD children (FEF). The specificity was calculated with the clustering
coefficient, which represents the propensity of the network to segregate in order to execute
specialized processes. In other words, in the frontal nodes, such connections were more
diffuse and less modular: They were not directed within the neural nodes composing the
functional network.

Within the VAN, the global efficiency of the left VAN was found to be reduced in
the NVLD group. Furthermore, children with NVLD exhibited reduced local specificity
(segregation) in the ventral prefrontal (opercular) areas, coupled with an opposite pattern
of increased clustering (segregation) in the posterior node of the temporo-parietal junction
(TPJ) of the right hemisphere.

4.5. Reconfiguration of Rs-Functional Connectivity in NVLD

The present study reports a substantial reconfiguration of resting-state connectivity
of the spatial attention networks in NVLD. We propose here that in NVLD, slow rs-EEG
connectivity in the delta band, predicting visuospatial performance in the NVLD group,
may index immature functional interregional coupling, as a consequence of a primary white-
matter abnormality in the right dorsal attention network, specialized for active aspects
of visuospatial processing compromised in the disorder, while the bilateral increased
gamma connectivity in the DAN, combined with the more diffuse (less modular) gamma
connectivity in the frontal nodes, may represent secondary plastic changes in an ineffective
attempt to compensate for the primary connectivity dysfunction. Similarly, reconfiguration
of functional connections in the VAN in NVLD may constitute an additional compensatory
mechanism recruiting more right TPJ, typically activated by exogenous, bottom-up, more
automatic spatial orienting of targets [45].

4.6. Hemispheric Differences

The behavioral prediction findings in the NVLD group concerning the delta band
provide evidence that a primary abnormality at the level of the right dorsal attention
network may explain visuoconstructive and visuospatial deficits in NVLD, bringing some
support to the centrality of intact right-hemisphere white-matter fibers in this neurodevel-
opmental disorder [1]. We propose that the primary right DAN abnormality and its effects
on visuospatial performance in NVLD may be similar to the effects of lateralized hippocam-
pal lesions on verbal and nonverbal (visual) long-term memory abilities, for example, in
patients with temporal lobe epilepsy [72,73]. As proposed for other neurodevelopmental
disorders, such abnormalities may take place early in development, likely prenatally, as the
result of a combination of genetic and early environmental influences [74]. In contrast, as
reported earlier, the bilateral and more diffuse increase in gamma connectivity in the DAN
in NVLD, particularly in the frontal nodes, may be the result of later and secondary plastic
changes in an ineffective attempt to compensate for the primary connectivity dysfunc-
tion, possibly related to a different stage of information processing or a working memory
subcomponent (see below).

Another explanation, however, is necessary to interpret the finding that gamma band
connectivity at rest in the left DAN predicted visuospatial performance in the neurotypical
group. A body of evidence in the literature suggests that the verbal/left visuospatial/right
dichotomy may be too simplistic. First, based on a meta-analysis of neuroimaging studies,
Smith and Jonides concluded that the prefrontal cortex is the main site of working memory
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but that different regions are specialized for various working memory aspects (storage of
spatial, verbal, or visual (object) material, executive processes). While short-term storage of
spatial information would be a function of the right hemisphere prefrontal and premotor
cortex, short-term storage of visual (object) information (such as memory for non-namable
or abstract visual shapes, such as visual matrices) would depend more on left hemisphere
prefrontal areas. Furthermore, executive processes required for active manipulation, such
as inhibition of irrelevant distractors, may involve the left prefrontal region more [75].
Other neuroimaging studies in healthy volunteers reported increased activity in the DAN
bilaterally (both frontal and parietal nodes) in both verbal and visual working memory
tasks [76–78]. Secondly, an in-vivo structural MRI study in brain-injured patients using the
voxel-based lesion symptom mapping approach reported that visuospatial working mem-
ory, measured by visuospatial span, was most impaired for lesions in the left hemisphere
centered on areas of the frontoparietal network, such as the FEF [79]. This confirmed earlier
lesion correlation evidence reporting both verbal and visuospatial short-term memory
deficits in left hemisphere patients with aphasia [80–82]. Based on the evidence mentioned
above, our findings of a prediction of functional connectivity in the left DAN to visuospatial
performance for the TD children are therefore not in contrast to extant literature.

Finally, it is worth cautioning about generalizing conclusions on the hemispheric
specialization and the effect of lesions from adult populations to children and adolescent
typical and atypical groups.

5. Limitations and Future Directions

Because of their relevance to the visuospatial processing symptoms in NVLD, and since
we wanted to avoid issues related to significance of multiple comparisons, the present study
used a network of interest approach, only exploring resting state functional connectivity in
cortical networks clearly associated with spatial attention (i.e., DAN and VAN). However,
other cortical networks may be relevant in association with NVLD symptoms. One of
them may be the default mode network (DMN), which has been associated with social
cognition and whose abnormality may explain the mild deficits of NVLD individuals in
social abilities. A previous resting-state fMRI study comparing NVLD, reading disorder
(RD), and TD children found reduced connectivity in NLVD only among posterior DMN
regions of both hemispheres [30].

It could be argued that the sample size of the clinical group was relatively small.
However, NVLD is a rare disorder, and we included participants referred from all
over Italy. Futures studies may include patients from cohorts across multiple research
institutions and nations. On the other hand, published studies using behavioral [7,9,17]
and neural [26,30,33] measures in NVLD and other neurodevelopmental disorders have
used comparable sample sizes.

Furthermore, it would be important to test the specificity of the present EEG connec-
tivity abnormalities in NVLD, extending the same approach to other neurodevelopmental
disorders and, first, to autism spectrum disorder, which shares some symptoms in the
social domain, albeit of different extent/severity. Finally, it would be important to include
measures of social ability such as perspective taking or theory of the mind [83,84] in order
to assess differences between the two clinical groups.

Lastly, since our study strongly implicates a primary functional connectivity abnor-
mality in the right DAN, it may be important to conduct in NVLD children a MRI diffusion
tensor (DTI) tractography study of the superior longitudinal fasciculus in the right hemi-
sphere, particularly the superior longitudinal fasciculus II component connecting the caudal
inferior parietal cortex to the dorsolateral prefrontal cortex (dlPFC), providing dlPFC with
parietal cortex information regarding perception of visual space [85,86], since this is the
primary white-matter tract we suspect to be compromised in NVLD.
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6. Conclusions

The above limitations notwithstanding, this is the first study to assess resting-state
functional connectivity measures in the DAN and VAN using a state-of-the-art graph
metrics approach, providing important clues about the topology of functional maps in
NVLD and TD groups as a function of the hemisphere. It is also the first to report that
such rs-FC measures can discriminate between children with and without NVLD and to
discover an association between visuospatial processing and the dorsal attention network
in the right hemisphere of NVLD children as a confirmation that the visuospatial deficit
is linked to a right hemisphere pathological process, while an opposite left hemisphere
association is present in neurotypically developing children.
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Appendix A

Table A1. Bayesian independent samples t-test (BF = Bayes factor) and group descriptive (mean,
SD = standard deviation, and SE = standard error) of the nonverbal learning disability (NVLD) and
the control (TD) groups. The dependent variable is the connectivity degree in the dorsal attention
network in both beta and gamma frequency bands.

Beta Frequency Band BF10 Group n Mean SD SE

L S_intrapariet_and_P_trans 40.70
NVLD 16 1.438 1.031 0.258

TD 16 0.313 0.602 0.151

R S_intrapariet_and_P_trans 10.46
NVLD 16 1.438 0.892 0.223

TD 16 0.375 1.025 0.256

Gamma frequncy band BF10 Group n Mean SD SE

R G_front_sup 3.521
NVLD 16 1.813 0.834 0.209

TD 16 1.000 0.966 0.242

L S_intrapariet_and_P_trans 218.118
NVLD 16 1.063 0.854 0.213

TD 16 0.063 0.250 0.063
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Table A1. Cont.

Beta Frequency Band BF10 Group n Mean SD SE

R S_intrapariet_and_P_trans 20.932
NVLD 16 1.250 0.856 0.214

TD 16 0.250 0.775 0.194

R S_interm_prim-Jensen 8.123
NVLD 16 0.500 0.730 0.183

TD 16 1.250 0.683 0.171

Table A2. Bayesian independent samples t-test (BF = Bayes factor) and group descriptive (mean,
SD = standard deviation, and SE = standard error) of the nonverbal learning disability (NVLD) and
the control groups (TD). The dependent variable is the connectivity strength in the dorsal attention
network in both beta and gamma frequency bands.

Beta Frequency band BF10 Group n Mean SD SE

L S_intrapariet_and_P_trans 35.45
NVLD 16 0.951 0.728 0.182

TD 16 0.178 0.407 0.102

L S_front_middle 31.10
NVLD 16 0.684 0.632 0.158

TD 16 1.399 0.464 0.116

R S_intrapariet_and_P_trans 39.96
NVLD 16 0.991 0.715 0.179

TD 16 0.163 0.512 0.128

Gamma frequency band BF10 Group n Mean SD SE

G_front_sup R 1528.70
NVLD 16 1.362 0.534 0.133

TD 16 0.448 0.438 0.109

S_intrapariet_and_P_trans L 83.332
NVLD 16 0.696 0.660 0.165

TD 16 0.018 0.071 0.018

S_front_middle L 5.103
NVLD 16 0.709 0.612 0.153

TD 16 1.261 0.517 0.129

G_front_sup L 7.685
NVLD 16 1.391 0.696 0.174

TD 16 0.724 0.567 0.142

S_intrapariet_and_P_trans R 12.695
NVLD 16 0.830 0.659 0.165

TD 16 0.150 0.528 0.132

G_front_middle R 4.452
NVLD 16 0.608 0.651 0.163

TD 16 1.100 0.338 0.084

Table A3. Bayesian independent samples t-test (BF = Bayes factor) and group descriptive (mean,
SD = standard deviation, and SE = standard error) of the nonverbal learning disability (NVLD) and
the control groups (TD). The dependent variable is the clustering coefficient in the dorsal attention
network in the beta frequency bands.

Beta Frequency Band BF10 Group n Mean SD SE

R G_front_sup 3.716
NVLD 16 0.043 0.172 0.043

TD 16 0.281 0.326 0.082

L S_front_middle 17.602
NVLD 16 0.017 0.068 0.017

TD 16 0.295 0.322 0.080



Brain Sci. 2023, 13, 731 18 of 21

Table A4. Bayesian independent samples t-test (BF = Bayes factor) and group descriptive (mean,
SD = standard deviation, and SE = standard error) of the nonverbal learning disability (NVLD) and
the control groups (TD). The dependent variable is the clustering coefficient in the ventral attention
network in both beta and gamma frequency bands.

Beta Frequency Band BF10 Group n Mean SD SE

L G_front_inf-Opercular 4.386
NVLD 16 0.010 0.039 0.010

TD 16 0.213 0.302 0.075

Gamma frequency band BF10 Group n Mean SD SE

R G_temp_sup-G_T_transv 7.256
NVLD 16 0.330 0.300 0.075

TD 16 0.069 0.189 0.047

R G_temp_sup-Lateral 11.286
NVLD 16 0.347 0.296 0.074

TD 16 0.069 0.189 0.047
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