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Abstract: Aerial manipulators are used in industrial and service robotics tasks such as assembly,
inspection, and maintenance. One of the main challenges in aerial manipulation is related to the
motion of the UAV base caused by manipulator disturbance torques and forces, which jeopardize the
precision of the robot manipulator. In this paper, we propose two novel inverse kinematic control
methods used to track a trajectory with an aerial manipulator while also considering resultant UAV
base motions. The first method is adapted from the generalized Jacobian formulation used in space
robotics and includes the change in system momentum resulting from gravity and UAV control
forces in the inverse kinematic control equation. This approach is simulated for a 2 and 3 degree-of-
freedom aerial manipulator tracking trajectories with the end-effector. Although the end-effector
position error is approximately zero throughout the simulated task, we see significant undesired UAV
base motions of several centimeters in magnitude. To ameliorate this by exploiting the kinematic
redundancy, we modify the generalized Jacobian by adding an additional task constraint which
minimizes the reaction torques from the manipulator, to form the extended generalized Jacobian.
While the second approach results in improved precision and reduced base motion by an order of
magnitude as compared to the generalized Jacobian, a drawback is the reduction in the available
workspace as the solution seeks to minimize the manipulator center of gravity translation. We also
demonstrate and compare both approaches in a load picking task. All the algorithms are completed
computationally faster than real time in the MATLAB simulations, illustrating their potential for
application in real-world experiments.

Keywords: aerial manipulation; UAV; kinematic control; redundancy; generalized Jacobian

1. Introduction

Autonomous systems such as aerial manipulators have seen an uptake in recent
years for conducting safety-critical and resource-intensive applications in industry, such
as the inspection, assembly, and maintenance of mechanical structures, and in general
for inspection and maintenance tasks. Aerial manipulators offer improved feasibility of
executing difficult tasks due to the small size and improved maneuverability in comparison
to humans.

The types of aerial robotic manipulation platforms are defined by their base and
manipulation design. The most common base is a multicopter unmanned aerial vehicle
(UAV) with four or more rotors [1], which can remain hovering while the manipulator
completes the required task. The manipulator can have several different designs, and for a
large workspace and dexterity multiple joint arms are extensively used.

The types of aerial robotic manipulation platforms are defined by their actuator and
manipulation design. Based on the mechanical design of these two aspects, platforms
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are specialized for various tasks such as grasping, pulling/pushing, sliding, bending, or
assembly. The actuator design ranges from single to multiple propeller configurations, with
various additional actuators to allow for omni-directional motion. The most common type
of platform is a parallel propeller configuration with tilted rotors [1], such as TiltHex [2],
AEROX [3], and ODAR [4], equipped with rigid links, grippers, or articulated arms. This
propeller configuration has also been extended to include servomotors that can tilt the
propeller arms, enabling full omni-directional motion [4,5].

The design and control of aerial manipulators face many challenges compared to other
types of mobile robots. Unlike wheeled robots, aerial manipulators do not have a stable
base, and therefore the forces and torques generated by the manipulator and interactions
with the environment affect the platform as a whole [6]. This impacts the position, attitude,
stability, and flight autonomy of the aerial manipulator. Various approaches in controller
design ranging from decoupled to coupled have been explored to address this problem.
A decoupled approach controls the robot and manipulator separately, and compensates
for the interaction forces and related motions through disturbance observers and robust
controllers. A coupled approach models the full-body dynamics of both the base and the
manipulator. A partially coupled approach is also possible, where the control of both
components is independent, but improved through sensing or estimation of interaction
wrenches on each other [7].

The coupling of both the kinematics and dynamics of the aerial robot and manipulator
results in difficulty in precise positioning and control of the end-effector, which is required
for complex tasks such as grasping.

Some existing approaches to address this issue include balancing of the center of
gravity (CoG) through attitude control [8,9], or static balancing through mechanical design
of the manipulator mount mechanism [10,11]. Nevertheless, the experimental results for
these approaches still show significant CoG variations and attitude destabilization during
manipulator motion. In general, static balancing through controlling the arm to be aligned
with the aerial robot does not guarantee that zero reaction forces and torques are transferred
from the manipulator to the robot. The dynamic interaction between the manipulator and
UAV in aerial manipulation has also been discussed in [12].

To solve this problem, we require minimization of the manipulator reaction torque
disturbances on the base, while it moves to complete its task. This problem has been inves-
tigated in the domain of space robotic manipulators through various approaches [13–16].
Of relevance for our application is the generalized Jacobian, which allows for manipu-
lator joint-velocity level control with accurate end-effector trajectory tracking even with
large base motions [17]. However, adapting this approach from space to aerial manipu-
lators requires several modifications to the inverse kinematic control algorithm, as aerial
manipulators do not operate in an environment free of external forces.

In this research, we utilize the generalized Jacobian and extended Jacobian [18] ap-
proaches (i) to track the desired end-effector trajectory even if the UAV moves in the 3D
space, and (ii) to minimize the dynamic disturbances transferred to the UAV while the
manipulator completes the desired tracking/picking task, in the case of a kinematically
redundant arm. The UAV is hovering during the above-mentioned maneuvers. We also
consider the change in momentum resulting from external forces on the system such as
gravity and UAV controller forces in the inverse kinematic control computation. This is a
novel contribution required to adapt the generalized Jacobian formulation from its original
assumption of conservation of momentum. The use of an extended generalized Jacobian for
trajectory tracking and simultaneous reaction torque minimization in aerial manipulation
is another novel contribution. The proposed algorithms are validated in simulation for
two types of task: trajectory tracking and load picking.

The UAV base is a multicopter, while the arm is a 2- or 3-degree-of-freedom (DOF)
serial link arm. The motions of the base and manipulator are restricted to the 2D plane
to simplify the problem and better compare the impact of different Jacobian formulations
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in terms of end-effector position error, UAV base translations, and reaction torques. We
consider three different Jacobian formulations:

1. Generalized Jacobian for an ideal-trolley model (Section 4): the UAV base controller
maintains perfect hover conditions vertically and rotationally, with only base hor-
izontal translations permitted. A linear trajectory tracking task is completed by a
2-DOF serial link manipulator utilizing a simplified generalized Jacobian formulation.
This provides an initial exploration of the problem and demonstrates some of the
limitations of purely using the generalized Jacobian for inverse kinematic control
without inclusion of external forces.

2. Generalized Jacobian with external forces (Section 5): the Jacobian includes the impact
of all base motions, and the inverse kinematics control equation takes into account the
external forces and torques such as gravity and UAV controller forces. Both 2-DOF
(nonredundant) and 3-DOF (redundant) serial link manipulator cases are simulated
for the trajectory tracking tasks outlined in Section 3.

3. Extended generalized Jacobian (Section 6): the generalized Jacobian is extended to
include an additional constraint, which is the minimization of the reaction torques
on the UAV caused by the manipulator motion for a redundant 3-DOF serial link
manipulator. We validate this algorithm with two trajectory tracking tasks as outlined
in Section 3.

Section 2 contains the background for the proposed algorithms, including the dynamic
model for planar UAV motions, a general outline of inverse kinematic algorithms for
manipulator joint control, and the generalized Jacobian formulation. Section 3 describes the
simulation setup, including the trajectory tasks and the kinematic and dynamic parameters
used. Sections 4–6 derive the Jacobian formulations and show results for the trajectory
tracking tasks. Section 7 considers the scenario where the end-effector is picking a load
and compares the generalized Jacobian and extended Jacobian formulations for completing
this task. Computational times of the inverse kinematics solution through the generalized
and extended generalized Jacobian were measured on a machine featuring an Intel i7
eighth generation exa-core (12 thread) processor with 16 GB RAM, SSD mass storage and
using Windows 11 and MATLAB version 2022a. The measured computational times are
mentioned in the corresponding Simulation Results subsections.

2. Background Theory
2.1. Unmanned Aerial Manipulator Dynamics and Control Model

In this research, we select a fixed-rotor multicopter configuration as our UAV base,
with the manipulator as a serial multiple link arm mounted on the base. We model the
unmanned aerial manipulator (UAM) as a dynamically coupled system, i.e., the base and
manipulator are regarded as two distinct systems, but the motion of either system affects
the other, in addition to the external forces and torques acting on the whole system.

The UAV is modeled as a rigid body subjected to net thrust/attitude torques from the
propellers and gravity. The UAV controller tries to keep altitude and inclination angle in
hover conditions (i.e., maintaining elevation and minimizing attitude changes).

We model the UAV and manipulator dynamics separately, taking into account the
interaction forces, and employ separate control algorithms: (1) PID control to maintain the
UAV in hover conditions and (2) inverse kinematic control of the manipulator to perform
the desired task.

The reference frames for the UAV are shown in Figure 1, where I denotes the inertial
frame and B is the UAV body-fixed frame. We use the conventional simplification for the
controller forces and torques for UAVs, where the body of the UAV moves vertically along
zB through a net thrust force and rotates about all three local body axes xB, yB, and zB
through attitude torques. In a real-world application, a low-level controller calculates the
rotor speeds that result in these control forces and torques. The general dynamic equations
relating rotor speeds and simplified thrust/attitude control inputs for a multicopter system
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in 3D are summarized in [12]. In our analysis, we only consider UAM translations in the
2D plane xIzI and rotation about the yI-axis orthogonal to that plane.
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Figure 1. Illustration of reference frames for the UAV system (DJI S1000) [12].

The control actions on the UAV base in the xIzI plane are simplified into a vertical
thrust force U1 and roll moment U2. The mechanical design of a fixed-rotor multicopter
does not permit horizontal displacement to be controlled independently, hence horizontal
motion is controlled by applying a combination of thrust force and roll moment on the UAV.

We model the UAV center of gravity (CoG) in the inertial frame with the Cartesian
position in the 2D xIzI plane [x, z]T and the UAV rotation with the roll angle φ about the
UAV body yB-axis (centered at the CoG) parallel to the inertial yI-axis. The net thrust force
U1 acts directly upwards from the UAV CoG at the roll angle φ. U2 is the net roll moment
about the UAV CoG. With mB as the mass and IB as the rotational moment of inertia about
the CoG, the UAV dynamic equations are the following:

mB
..
x = −U1 sin(φ)

mB
..
z = −mBg + U1 cos(φ)

IB
..
φ = U2

(1)

The manipulator is mounted on the base with an offset vector rm with respect to the
UAV CoG, and the manipulator motion exerts reaction forces along the xI and zI axes, Rx
and Rz, as well as a reaction torque τm on the interface point. The UAM model is illustrated
in Figure 2. In this paper, we focus on tracking a desired end-effector trajectory while the
UAV maintains hover, and on locally minimizing the manipulator reaction torques while
the manipulator executes a task.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 28 
 

 
Figure 2. Coordinates and forces of the UAM. UAV forces/torques are in red and manipulator reac-
tion forces/torques are in orange. The UAV is shown in blue and manipulator in green. 

Indeed, as demonstrated in [12], a torque transferred to the UAV CoG causes an un-
desired large horizontal displacement of the UAV, which in turn jeopardizes the end-ef-
fector precision. On the other hand, global [19] and nearly-global [20] optimization ap-
proaches have been developed in the case of fixed-base and of space manipulators, and 
their applicability to the case of aerial manipulators will be part of future work. 

As in real-world applications, during hover the desired UAV position and attitude 
are set by a high-level controller and an inner-loop controller calculates the required thrust 
and attitude torques. The UAV inner-loop controller modeled is a proportional–integral–
derivative (PID) controller which minimizes the vertical and roll displacement: 

푈 = −푘 푧 − 푘 푧̇ − 푘 푧 푑푡 

푈 = −푘 휙 − 푘 휙̇ − 푘 휙 푑푡 
(2)

It is important to note from (2) that the horizontal displacements cannot be inde-
pendently controlled. Hence, the minimization of reaction torques from manipulator mo-
tions aims to primarily minimize the horizontal displacement. This concept is first ex-
plored in an ideal control example in Section 4, where we assume that our controller has 
instantaneous control response to vertical and roll displacements, and the UAV only 
translates horizontally. The simple generalized Jacobian used in the inverse kinematic 
control algorithm only accounts for these horizontal translations in the linear momentum 
formulation. We then relax the ideal control assumption and account for the full range of 
base motions as well as the controller/external forces and torques in subsequent sections. 

2.2. Kinematics of Manipulators 
The configuration of a robotic manipulator system is described in terms of a vector 

of generalized coordinates 푞 ∈ ℝ , which are a complete and independent set of scalar 
coordinates. The degrees of freedom are the minimal set of coordinates needed to describe 
the system configuration, which in our case correspond to the number of actuated joints 
in the manipulator 푛 , and each coordinate in 푞 is a joint angle.  

The forward kinematic equations χ (푞) are a geometric mapping from the manipu-
lator configuration in generalized coordinates 푞 to the desired end-effector pose task 푝  
in Cartesian space: 푝 = χ (푞). In our case, we desire a target end-effector position in the 
2D plane, and hence 푝 ∈ ℝ , consisting of the 푥  and 푧  Cartesian coordinates at a given 
time 푡. 

Figure 2. Coordinates and forces of the UAM. UAV forces/torques are in red and manipulator
reaction forces/torques are in orange. The UAV is shown in blue and manipulator in green.



Appl. Sci. 2022, 12, 12254 5 of 27

Indeed, as demonstrated in [12], a torque transferred to the UAV CoG causes an
undesired large horizontal displacement of the UAV, which in turn jeopardizes the end-
effector precision. On the other hand, global [19] and nearly-global [20] optimization
approaches have been developed in the case of fixed-base and of space manipulators, and
their applicability to the case of aerial manipulators will be part of future work.

As in real-world applications, during hover the desired UAV position and attitude are
set by a high-level controller and an inner-loop controller calculates the required thrust
and attitude torques. The UAV inner-loop controller modeled is a proportional–integral–
derivative (PID) controller which minimizes the vertical and roll displacement:

U1 = −kPzz− kDz
.
z− kIz

∫ t
0 z dt

U2 = −kPφφ− kDφ

.
φ− kIφ

∫ t
0 φ dt

(2)

It is important to note from (2) that the horizontal displacements cannot be indepen-
dently controlled. Hence, the minimization of reaction torques from manipulator motions
aims to primarily minimize the horizontal displacement. This concept is first explored in an
ideal control example in Section 4, where we assume that our controller has instantaneous
control response to vertical and roll displacements, and the UAV only translates horizon-
tally. The simple generalized Jacobian used in the inverse kinematic control algorithm only
accounts for these horizontal translations in the linear momentum formulation. We then
relax the ideal control assumption and account for the full range of base motions as well as
the controller/external forces and torques in subsequent sections.

2.2. Kinematics of Manipulators

The configuration of a robotic manipulator system is described in terms of a vector
of generalized coordinates q ∈ Rne , which are a complete and independent set of scalar
coordinates. The degrees of freedom are the minimal set of coordinates needed to describe
the system configuration, which in our case correspond to the number of actuated joints in
the manipulator ne, and each coordinate in q is a joint angle.

The forward kinematic equations χe(q) are a geometric mapping from the manipulator
configuration in generalized coordinates q to the desired end-effector pose task pe in
Cartesian space: pe = χe(q). In our case, we desire a target end-effector position in the 2D
plane, and hence pe ∈ R2, consisting of the xI and zI Cartesian coordinates at a given time t.

For kinematic control of the end-effector, we set the corresponding target velocity
ve ∈ R2 of the end-effector based on a generated trajectory velocity profile that follows the
desired trajectory positions. The relationship between the forward kinematics in position
space and the forward differential kinematics in velocity space is described through the
Jacobian matrix J(q) ∈ R2×ne :

.
pe = ve = J(q)

.
q (3)

where J(q) = ∂χe(q)
∂q , and

.
q is the vector of joint velocities at time t. For brevity’s sake, all

Jacobians J(q) will be hereafter denoted as J, with the implicit relationship to the joint
state q(t).

We invert this relationship to obtain the inverse differential kinematic relation which
defines the required joint velocities to achieve our desired end-effector velocity at time t:

.
q = J−1ve (4)

The inverse J−1 exists as long as the matrix J is square and invertible, i.e., the manipu-
lator is not in a singular configuration where Det(J) ≈ 0. These are typically configurations
where the links are aligned in a straight line, and we initialize the manipulator configuration
to avoid such configurations. In the case of a redundant manipulator (ne > 2), the matrix J
is not square and, for a desired Cartesian velocity task, infinite solutions of

.
q that achieve
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the desired ve are possible. To find the optimal joint velocities, we minimize the objective
function g

( .
q
)

for desired joint velocities
.
q0:

g
( .
q
)
= 1

2
( .
q− .

q0
)TW

( .
q− .

q0
)

(5)

where W ∈ R2×2 is a symmetric positive definite weighting matrix. This objective function
is minimized subject to the forward differential kinematic constraint (3) and formulated as
a Lagrange multiplier problem:

g′(q, λ) =
1
2
( .
q− .

q0
)TW

( .
q− .

q0
)
− λT(ve − J(q)

.
q
)

(6)

where λ ∈ Rne is the vector of Lagrange multipliers. We find the minimum of g′
( .
q, λ
)

by

solving ∇(
.
q,λ)g

′( .
q, λ
)
= 0. This is carried out through setting

∂g′(
.
q,λ)

∂
.
q

= 0 and
∂g′(

.
q,λ)

∂λ = 0,
which results in the following solution:

.
q = W−1 JT(JW−1 JT)−1ve + (I −W−1 JT(JW−1 JT)−1)

.
q0 (7)

If we desire the solution which minimizes joint velocities, it is sufficient to set
.
q0 = 0,

and if the weighting of all joints is equal (i.e., W = I), then the solution to the redundant
manipulator kinematic control equation is:

.
q = JT(J JT)−1ve = J+ve (8)

with J+ = JT(J JT)−1 as the Moore–Penrose right pseudo-inverse.
Detailed derivation of these inverse kinematics control equations can be found in [21].

2.3. Generalized Jacobian

The inverse kinematics solutions outlined in Section 2.2 are suitable for fixed-base
manipulator control, where there is a direct relationship between the joint velocities and
end-effector position.

However, in our case our manipulator is mounted on a floating base system (the UAV),
and the movement of joints causes reaction forces and torques on the UAV. The base of the
manipulator moves due to these forces, which also changes the end-effector and joint and
link positions. Hence, for effective tracking an improved method that includes the effect of
these forces and torques on the manipulator motion is required.

To achieve this, we employ a method from space manipulator mechanics known as
the generalized Jacobian [17]. This Jacobian formulation employs the properties of free-
floating manipulators in the absence of gravity, where the linear and angular momentum
are conserved. In this work, the momentum balance equations are combined with the
kinematic Jacobian formulation derived in Section 2.2 to incorporate the external forces on
the whole system, allowing for accurate end-effector trajectory tracking through velocity-
level joint control, even if the UAV base moves in 3D space due to the dynamic interaction
between UAV and manipulator.

The generalized Jacobian algorithm in [17] is computed with the following steps:

1. The center of gravity (CoG) of the base–manipulator system is found and the inertias
of the base and links are reformulated in a CoG centered reference frame.

2. The kinematic equations of the system for velocity-space are defined in the CoG frame.
The Jacobians and generalized coordinates for the base component and manipulator
component are decoupled:

ve = Jb
.
qb + Jm

.
qm + v0 (9)

where
.
qb and

.
qm are the velocities of the generalized coordinates of the base and manipula-

tor, respectively, Jb and Jm are the corresponding Jacobians, and v0 is the initial translational
velocity of the end-effector.
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3. The momentum conservation equations for the system in the CoG frame are defined.
Similarly to (9), the base and manipulator components are decoupled:

L0 = Ib
.
qb + Im

.
qm (10)

where L0 is the initial system momentum, Ib and Im are the mass/inertia matrices for
the base and manipulator in the CoG frame, the calculation of which is provided in [17].
Note that the momentum is purely rotational and the inertias are time-varying about the
instantaneous CoG of the system at time t.

4. Combine (9) and (10) to eliminate the unknown base variables
.
qb, to find the relation-

ship between end-effector and joint velocities:

ve =
(

Jm − Jb I−1
b Im

) .
qm + Jb I−1

b L0 + v0 = J∗
.
qm + p0 (11)

where we rewrite p0 = Jb I−1
b L0 + v0 and J∗ is the generalized Jacobian. The inverse

kinematic relationship to find the desired joint velocities therefore becomes:
.
qm = [J∗]−1(ve − p0) (12)

The generalized Jacobian for a 2-DOF manipulator fulfilling the 2D task ve is nonre-
dundant as ve ∈ R2 and J∗ ∈ R2×2, so direct inversion is possible. For a manipulator
with more than 2 degrees of freedom, J∗ ∈ R2×ne and ne > 2, which results in kinematic
redundancy. In this case, we minimize the joint velocities by taking the Moore–Penrose
right pseudo-inverse (8). Another alternative for inverse kinematic control of a redundant
manipulator is to extend the task-space by adding tasks so that the ve ∈ Rne and J∗ is square.
This approach is called the extended Jacobian [18] and we utilize this approach in Section 6
by adding an additional constraint to the generalized Jacobian derived in Section 5, which
minimizes the reaction torque on the base due to the manipulator motions.

Our approach for the generalized Jacobian and extended generalized Jacobian deriva-
tions in Sections 5 and 6 has some modifications to the original algorithms, as detailed here
below. For all the following derivations, steps 1 and 2 are omitted and the kinematic and
momentum balance equations are defined about the inertial frame with the generalized
coordinates consisting of the base coordinates and joint angles. In Section 5 to Section 6, we
relax controller assumptions and develop the complexity of our Jacobian formulation by
adding all components of linear and angular momentum as well as modeling all external
forces and torques acting on the system.

3. Simulation Setup

The UAM control algorithms derived in subsequent sections are implemented in
a MATLAB simulator that recursively solves the kinematics and dynamics of free-base
robotic systems [15], which was originally developed for space robotic systems, and that
has been adapted to take into account the gravity force and the control forces of the UAV for
the purposes of this work. The simulator solves the inverse kinematics aimed at tracking
a desired end-effector velocity profile by a time discretization: at each iteration the end-
effector desired velocity is given, and the joint velocities and angles are calculated, the
timestep used is ∆t = 1× 10−3 s.

To validate the algorithms, the joint velocities obtained from the inverse kinematics
performed in MATLAB are then imported and imposed in an ADAMS model of the UAM
used to perform dynamic simulations. The dynamic simulations are used to validate
the proposed solutions and, in particular, to measure the maximum position error of the
end-effector, defined as the 2-norm difference between the desired and actual end-effector
position. The UAV and manipulator kinematic and dynamic parameters are outlined
in Table 1.
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Table 1. Kinematic and dynamic UAM model parameters used in simulation experiments.

Parameter Description Value Unit

mUAV Mass of the UAV 4.2 kg

mi Link mass 1 kg

IUAV Moment of inertia (z) of the UAV 0.4097 kg m2

Ig,i Moment of inertia (z) of Link i 6× 10−4 kg m2

li Link i length 0.13 m

ai Distance from joint i to link i CoG 0.065 m

xo Distance from UAV CoG to manipulator joint 1 along UAV body x-axis 0 m

zo Distance from UAV CoG to manipulator joint 1 along UAV body z-axis −0.06 m

We tested 2 types of end-effector trajectory tracking tasks:

1. Linear trajectory with xI displacement of 0.1 m and zI displacement of 0.06 m from
the initial position of the end-effector and back, to be completed within 5 s. This
is implemented in the velocity space with a smoothed trapezoidal velocity profile,
with an acceleration, constant velocity, and deceleration phase for the forward and
backward motions. The equation defining the velocity v along axis xI or zI at time t
for the forward motion is the following:

v =


1
2 vmax

(
1 + sin

(
tπ
ta
− π

2

) )
, t < ta

vmax, ta ≤ t < T − ta

vmax

(
1− 1

2

(
1 + sin

(
π(t−(T+ta))

ta
− π

2

)))
, T − ta ≤ t

(13)

where ta is the acceleration interval and is equal to 0.4 s; T is the duration of the forward
motion; the maximum velocity vmax is different for the xI and zI components and can be
respectively calculated from the maximum displacement in the corresponding direction ∆s
as vmax = ∆s

T−ta
.

The velocity profile of the backward motion has the same shape, i.e., the profile is
translated of T and has the opposite sign. The velocity profile and initial configuration for
a 3-DOF manipulator with the kinematic and dynamic parameters of Table 1 (as modeled
in Sections 5 and 6) are shown in Figures 3 and 4.
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Figure 3. End-effector desired velocities for the line trajectory (left) and initial configuration for
3-DOF manipulator (right). The UAV base is the large green marker, joints are the black circles, links
are the blue lines, and end-effector positions tracked are the red crosses.
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Figure 4. End-effector desired velocities for the circular trajectory (left) and initial configuration for a
3-DOF manipulator (right). The UAV base is the large green marker, joints are the black circles, links
are the blue lines, and end-effector positions tracked are the red crosses.

2. Circular trajectory with diameter 0.1 m, to be completed within 5 s, with the initial
position of the end-effector as the topmost point of the circle. The velocity profile is
generated using the procedure in [22] and is omitted here for brevity. The velocity
profile and initial configuration for a 3-DOF manipulator with the kinematic and
dynamic parameters outlined in Table 1 (as modeled in Sections 5 and 6) are shown
in Figure 4.

In addition to this, for the generalized Jacobian with external forces (Section 5) and
extended Jacobian (Section 6) cases we also investigate a load picking test case and compare
both approaches, using a separate trajectory profile accounting for the load model. This
scenario and its trajectory are elaborated on in Section 7.

For each trajectory, the initial configurations for the joints are set so that the base and
manipulator centers of gravity are aligned, the manipulator is in a nonsingular config-
uration, and the system is at an equilibrium where the control force U1 and torque U2
keep the UAM at hover. The starting point of the end-effector is set to the beginning of
each trajectory.

The kinematic and dynamic parameters of all the models used in subsequent sections
are summarized in Table 1. For the UAV, we used the parameters of the high-payload
multicopter DJI S1000 available in our lab (as shown in Figure 1). We modeled heavy links
on purpose in order to keep reaction forces and torques resulting from the manipulator
motion high, so that their impact is easily observable for comparison purposes between
different experiments. In a real-world implementation, the links could be lighter and
designed to reduce the impact of the manipulator motion on the system dynamics, resulting
in a smaller disturbance and in an improved control of the UAM.

The PID controller tunings in the UAV control forces calculation (2) are summarized
in Table 2.

Table 2. PID controller tunings.

Coordinate (i) kPi kDi kIi

z 37 18 8

φ 40 3 35

4. Ideal Control 2-DOF Trolley Model
4.1. Model Derivation

We first formulate a simple model of our UAM system, assuming that our UAV base
has perfect vertical and rotational tracking of hover conditions through its controller. This
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is modeled as a horizontal trolley with a 2-DOF manipulator mounted at the CoG position
of the UAV base (GUAV), with mass mUAV and rotational inertia IUAV .

Our generalized coordinates are the joint angles q1 and q2. The following parameters
are defined: i is the link number, mi is its mass, li is the length, and ai is the distance from
the first joint of the link to the link CoG position Gi. The geometry and dynamic parameters
of the system are illustrated in Figure 5.
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Figure 5. Model for the ideal 2-DOF trolley case.

The end-effector task velocities ve consisting of x and z velocities vx and vz are derived
with respect to the joint velocities

.
q and kinematic Jacobian Jk:[

vx
vz

]
=

[
J11(q) J12(q)
J12(q) J22(q)

][ .
q1.
q2

]
=

[
l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)
l1 sin(q1) + l2 sin(q1 + q2) l2 sin(q1 + q2)

]
.
q = Jk

.
q (14)

The joint movements induce motion of the base and manipulator along the horizontal
(xI) axis. We define the linear momentum along this axis:

(mUAV + m1 + m2)
.
xB + m1a1 cos(q1)

.
q1 + m2

(
(l1 cos(q1) + a2 cos(q1 + q2))

.
q1 + a2 cos(q1 + q2)

.
q2
)
= 0 (15)

We rearrange (15) to solve for the base velocity
.
xB, and combine the result with (14) to

derive the generalized Jacobian JG for the 2-DOF trolley model[
vx
vz

]
=

[
J11(q) + A1(q) J12(q) + A2(q)

J12(q) J22(q)

][ .
q1.
q2

]
= JG

.
q (16)

where:
A1(q) = − (m1a1 cos(q1)+m2(l1 cos(q1)+a2 cos(q1+q2))

(mUAV+m1+m2)

A2(q) = − m2a2 cos(q1+q2)
(mUAV+m1+m2)

(17)

The inverse kinematic control equation for the 2-DOF trolley model is the following:

.
q = J−1

G ve (18)

The inverse kinematics is solved through a time discretization and an iterative process:
at every timestep k, the end-effector velocities are known and, by assuming that joint
angles qk do not significantly change between two consecutive timesteps k and k + 1, the
generalized Jacobian can be calculated through (16) by substituting q = qk.

4.2. Simulation Results with Ideal Control

We first simulated the UAM with the ideal control assumption, using the inverse
kinematic model (18) with the corresponding generalized Jacobian (16). The base controller
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is assumed to behave perfectly to restrict motion to horizontal translations only (ideal
control). The geometric and dynamic parameters for the UAM model are as defined
in Table 1.

We performed the linear trajectory illustrated in Section 3 for the trolley model. The
inverse kinematics was solved through the procedure shown in Section 4.1 using the
MATLAB simulator mentioned in Section 3. The resulting joint velocities were imported
in the ADAMS model of the UAM to perform the dynamic simulation of the task, where
the ideal control was implemented as a rotation and vertical translation constraint. We
measured the end-effector position and compared it to the desired position. The time
discretization used for the inverse kinematics is ∆t = 1× 10−3 s. The end-effector position
error is smaller than 8 × 10−5 m at all times. The stroboscopic trajectories are shown
in Figure 6. Figure 7 shows the joint angles, UAV horizontal translation, and torque
disturbance transmitted from the manipulator to the base during the task.
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Figure 6. Stroboscopic trajectories for the first half (left) and second half (right) of the linear trajectory
task for the 2-DOF trolley model and ideal control assumption. The UAV base is the large green
marker, joints are the black circles, links are the blue lines, and end-effector positions tracked are the
red crosses.

Our UAV base translations are minimal (3 cm displacement) and it returns to the
original position at the end of the trajectory. The torque disturbance is up to 2 Nm mag-
nitude, which is counteracted by our ideal controller. However, in a real scenario with a
not ideal controller, the torque disturbance is likely to cause both vertical and rotational
displacements of the base during the manipulation task.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 28 
 

 
Figure 7. Manipulator (top) and UAV (middle) motions, and torque disturbance (bottom) for the 
ideal 2-DOF trolley case. 

4.3. Simulation Results with PID Control 
We simulated the same line trajectory, with the 2-DOF trolley assumption general-

ized Jacobian (16) and inverse kinematic Equation (18). The resulting joint velocities were 
then imported in the ADAMS model for the dynamic simulation, but in this case we re-
laxed the rotation and vertical translation constraints assumption (ideal control). The base 
motions were instead counteracted with the PID controller force 푈  and torque 푈  de-
fined in (2) in order to validate (16) under more realistic conditions. In the dynamic sim-
ulation carried out with ADAMS, the results showed an end-effector position error of 
1.3 m, which is equivalent to the UAV base translation. The UAV rotates during the ma-
nipulation task due to the torque disturbance. After the task is completed, it takes several 
seconds for the PID base controller to counteract this motion. At the end of the task, a 
horizontal translation of 1.3 m of the base remains, which cannot be successfully adjusted 
by the PID controller. Figure 8 illustrates these results. 

From these results, it is evident that our ideal control assumption in the formulation 
of the generalized Jacobian results in unsuccessful tracking of the linear trajectory, as well 
as significant base motion, when a realistic PID control is used. This motivated us to de-
velop a complete generalized Jacobian that includes all the displacements of the base, as 
well as an inverse kinematic method that includes controller feedback forces being 

jo
in

t a
ng

le
 [r

ad
]

G
U

A
V
 p

os
iti

on
 [m

]
to

rq
ue

 [N
m

]

Figure 7. Cont.



Appl. Sci. 2022, 12, 12254 12 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 28 
 

 
Figure 7. Manipulator (top) and UAV (middle) motions, and torque disturbance (bottom) for the 
ideal 2-DOF trolley case. 

4.3. Simulation Results with PID Control 
We simulated the same line trajectory, with the 2-DOF trolley assumption general-

ized Jacobian (16) and inverse kinematic Equation (18). The resulting joint velocities were 
then imported in the ADAMS model for the dynamic simulation, but in this case we re-
laxed the rotation and vertical translation constraints assumption (ideal control). The base 
motions were instead counteracted with the PID controller force 푈  and torque 푈  de-
fined in (2) in order to validate (16) under more realistic conditions. In the dynamic sim-
ulation carried out with ADAMS, the results showed an end-effector position error of 
1.3 m, which is equivalent to the UAV base translation. The UAV rotates during the ma-
nipulation task due to the torque disturbance. After the task is completed, it takes several 
seconds for the PID base controller to counteract this motion. At the end of the task, a 
horizontal translation of 1.3 m of the base remains, which cannot be successfully adjusted 
by the PID controller. Figure 8 illustrates these results. 

From these results, it is evident that our ideal control assumption in the formulation 
of the generalized Jacobian results in unsuccessful tracking of the linear trajectory, as well 
as significant base motion, when a realistic PID control is used. This motivated us to de-
velop a complete generalized Jacobian that includes all the displacements of the base, as 
well as an inverse kinematic method that includes controller feedback forces being 

jo
in

t a
ng

le
 [r

ad
]

G
U

A
V
 p

os
iti

on
 [m

]
to

rq
ue

 [N
m

]

Figure 7. Manipulator (top) and UAV (middle) motions, and torque disturbance (bottom) for the
ideal 2-DOF trolley case.

4.3. Simulation Results with PID Control

We simulated the same line trajectory, with the 2-DOF trolley assumption generalized
Jacobian (16) and inverse kinematic Equation (18). The resulting joint velocities were then
imported in the ADAMS model for the dynamic simulation, but in this case we relaxed the
rotation and vertical translation constraints assumption (ideal control). The base motions
were instead counteracted with the PID controller force U1 and torque U2 defined in (2) in
order to validate (16) under more realistic conditions. In the dynamic simulation carried
out with ADAMS, the results showed an end-effector position error of 1.3 m, which is
equivalent to the UAV base translation. The UAV rotates during the manipulation task due
to the torque disturbance. After the task is completed, it takes several seconds for the PID
base controller to counteract this motion. At the end of the task, a horizontal translation
of 1.3 m of the base remains, which cannot be successfully adjusted by the PID controller.
Figure 8 illustrates these results.

From these results, it is evident that our ideal control assumption in the formulation of
the generalized Jacobian results in unsuccessful tracking of the linear trajectory, as well as
significant base motion, when a realistic PID control is used. This motivated us to develop
a complete generalized Jacobian that includes all the displacements of the base, as well as
an inverse kinematic method that includes controller feedback forces being applied on the
base, and other external forces. The full generalized Jacobian considering all possible base
translations and external forces is presented in the next section.
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Figure 8. UAV horizontal translation (top) and rotation/torque disturbance (bottom) during the
linear trajectory task for the 2-DOF trolley model with PID control assumption.
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5. Generalized Jacobian with External Forces
5.1. Derivation of Generalized Jacobian with External Forces for Trajectory Tracking

A more complete model of the UAM includes the effect of the base translations and
rotation as well as the external forces applied by the controller on the UAM and the gravity
force. This is based on the generalized Jacobian approach outlined in Section 2.3.

The manipulator modeled is a serial link arm, that is mounted at an offset rm (as
defined in Section 2.1) from the UAV base CoG GUAV . The reaction forces between the base
and manipulator are considered internal, and the controller forces U1 and U2 as well as the
gravity force on the system are considered external.

First, we consider the fact that the change in linear momentum L(t) ∈ R3 over time of
a mechanical system occurs due to external forces F(t) ∈ R3:

dL(t)
dt

= F(t) (19)

where L(t) = [Lx(t) Ly(t) Lz(t)]T is the linear momentum, and F(t) = [Fx(t) Fy(t) Fz(t)]T

is the force with its three components along xI , yI , and zI . Similarly, the change in angular
momentum K(t) ∈ R3 occurs due to external torques τ(t) ∈ R3:

dK(t)
dt

= τ(t) (20)

where K(t) =
[
Kx(t) Ly(t) Lz(t)

]T and τ(t) =
[
τx(t) τy(t) τz(t)

]T are the angular
momenta and external torques about each axis. Therefore, the linear and angular momenta
of a system with external forces and torques at time t can be obtained by integrating the
forces and torques over time, starting from the initial time t0:

L(t) =
∫ t

t0
F(t)dt + L(t0)

K(t) =
∫ t

t0
τ(t)dt + K(t0)

(21)

We discretize these equations to obtain the linear and angular momentum at each
timestep k = ∆t, where ∆t is the sampling time interval. The discretized forms of (21) at
each k are the following:

Lk+1 = Fk∆t + Lk
Kk+1 = τk∆t + Kk

(22)

The momentum equation is expressed in terms of the mass/inertia matrix of the
system H ∈ R6×(6+ne), base generalized coordinates

.
qb ∈ R6, and manipulator generalized

coordinates
.
qm ∈ Rne :

H
[ .

qb(t).
qm(t)

]
=

[
L(t)
K(t)

]
(23)

We partition H into a base component Hb ∈ R6×6 and manipulator component
Hm ∈ R6×ne :

H =
[
Hb Hm

]
(24)

We combine the kinematic equation in (9) with (23) and (24), to obtain the end-effector
velocity in terms of our Jacobians, mass/inertia matrices, and momenta:

ve,k+1 = (Jm − Jb H−1
b Hm)

.
qm + Jb H−1

b

[
Lk
Kk

]
= JG

.
qm + Jb H−1

b

[
Lk
Kk

]
(25)

where JG is the generalized Jacobian of our system. To find the required joint velocities, we
solve for

.
qm (dropping the notation of timestep for brevity):

.
qm = J−1

G

(
ve − JbH−1

b

[
Lk
Kk

])
(26)
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To find the current momenta of the system based on the external forces as stated in
(22), we first define the following vectors as illustrated in Figure 9:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 28 
 

퐾(푡) = 휏(푡)푑푡 + 퐾(푡 ) 

We discretize these equations to obtain the linear and angular momentum at each 
timestep 푘 = Δ푡, where 훥푡 is the sampling time interval. The discretized forms of (21) at 
each 푘 are the following: 

퐿 = 퐹 Δ푡 + 퐿  

 퐾 = 휏 Δ푡 + 퐾  
(22)

The momentum equation is expressed in terms of the mass/inertia matrix of the sys-
tem 퐻 ∈ ℝ ×( ), base generalized coordinates 푞̇ ∈ ℝ , and manipulator generalized 
coordinates 푞̇ ∈ ℝ : 

퐻 푞̇ (푡)
푞̇ (푡) = 퐿(푡)

퐾(푡)  (23)

We partition 퐻  into a base component 퐻 ∈ ℝ ×  and manipulator component 
퐻 ∈ ℝ × : 

퐻 = [퐻 퐻 ] (24)

We combine the kinematic equation in (9) with (23) and (24), to obtain the end-effec-
tor velocity in terms of our Jacobians, mass/inertia matrices, and momenta: 

푣 , = (퐽 − 퐽  퐻  퐻 )푞̇ + 퐽 퐻 퐿
퐾 = 퐽  푞̇ + 퐽 퐻 퐿

퐾   (25)

where 퐽  is the generalized Jacobian of our system. To find the required joint velocities, 
we solve for 푞̇  (dropping the notation of timestep for brevity):  

푞̇ = 퐽 푣 − 퐽 퐻 퐿
퐾  (26)

To find the current momenta of the system based on the external forces as stated in 
(22), we first define the following vectors as illustrated in Figure 9: 
 푟 : vector from the inertial frame origin to the UAV CoG 퐺 ; 
 푟 : vector from the inertial frame origin to the whole system CoG 퐺 . 

 
Figure 9. External forces on the UAM for the generalized Jacobian formulation. 

The linear momentum at timestep 푘 under the external forces comprising the con-
troller force and UAM gravity is found with the following equation: 

Figure 9. External forces on the UAM for the generalized Jacobian formulation.

• rB: vector from the inertial frame origin to the UAV CoG GUAV ;
• rG: vector from the inertial frame origin to the whole system CoG Gm.

The linear momentum at timestep k under the external forces comprising the controller
force and UAM gravity is found with the following equation:

Lk+1 = Lk +

A0

 0
0

U1

+

 0
0

mT g

∆t (27)

where A0 is the rotation matrix of the UAV, and mT is the total mass of the UAM (mT =
m1 + m2 + m3 + mUAV).

The angular momentum at timestep k under the external controller and gravity torques
is found with the following equation:

Kk+1 = Kk +

−vb,k−1 × Lk +

 0
U2
0

+ (rG − rB)×

 0
0

mT g

∆t (28)

where −vb,k−1 is the vector of linear velocities of the base (first 3 rows of
.
qb) at timestep

k− 1, assuming that the velocities do not change significantly between the two timesteps.
Each iteration of the presented method can be seen as composed of three steps: (1) the

computation of forward kinematics to find the link and end-effector positions from given
joint angles and UAV pose; (2) the computation of the dynamics in terms of linear and
angular momentum of the global system through (27) and (28); (3) the computation of the
inverse kinematics of the manipulator through the generalized Jacobian with given linear
and angular momenta of the whole system.

5.2. Simulation Results

In order to validate the method proposed in Section 5.1, the inverse kinematics was
solved in MATLAB using a timestep of ∆t = 1 × 10−3 s and then the resulting joint
velocities were used to perform the dynamic simulation of the task in ADAMS.

We first considered the case of the 2-DOF nonredundant manipulator tracking the line
trajectory: as opposed to the results obtained with the 2-DOF trolley model with PID control
feedback (Section 4.3), the position error of the end-effector is now smaller than 4× 10−5 m
at all times even if the base has horizontal translations bigger than 10 cm. During the
operation, the torque transmitted by the manipulator to the base makes the UAV rotate,
as a result U1 has a horizontal component and the base translates along xI . At the end
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of the operation, the control torque U2 stabilizes the rotation of the base, which tends to
return to its initial position. The stroboscopic trajectories, joint angles, UAV translations
and rotation, and torque disturbance transmitted from the manipulator to the UAV are
shown in Figures 10 and 11. The computational time to perform the inverse kinematics for
tracking the above-mentioned linear trajectory (5 s) with the 2-DOF manipulator is 2.51 s.
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Figure 10. Stroboscopic trajectories for the first half (left) and second half (right) of the linear
trajectory task for the 2-DOF UAM using the generalized Jacobian with external forces. The UAV
base is the large green marker, joints are the black circles, links are the blue lines, and end-effector
positions tracked are the red crosses.
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Figure 11. Manipulator (top) and UAV motions and torque disturbance (middle and bottom) for the
2-DOF UAM using the generalized Jacobian with external forces.
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We also tracked the same trajectory with a 3-DOF redundant manipulator using
the same approach, where the right pseudo-inverse of the generalized Jacobian (8) was
used to find the minimum joint velocities solution. The end-effector position error is
smaller than 4× 10−5 m at all times. As in the 2-DOF manipulator case, the base rotates
and translates due to the torque disturbances from the manipulator. The stroboscopic
trajectories, joint angles, UAV translations and rotation, and torque disturbance transmitted
from the manipulator to the UAV are shown in Figures 12 and 13.
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Figure 12. Stroboscopic trajectories for the first half (left) and second half (right) of the linear
trajectory task for the 3-DOF redundant UAM using the generalized Jacobian with external forces.
The UAV base is the large green marker, joints are the black circles, links are the blue lines, and
end-effector positions tracked are the red crosses.
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Figure 13. Manipulator (top) and UAV motions and torque disturbance (middle and bottom) for the
3-DOF UAM using the generalized Jacobian with external forces performing a linear trajectory task.
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Finally, we tested the method on the circular trajectory with the redundant 3-DOF
manipulator. The results in Figures 14 and 15 show that, at the beginning of the task, the
UAV translates horizontally following the motion of the end-effector, reaching a maximum
displacement of about 9 cm from its initial position, and that in the last part of the task
the UAV tends to return to the initial position. In this case, the UAV also shows a visible
vertical translation bigger than 1 cm, however, the end-effector position error is always
smaller than 12× 10−5 m.
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Figure 14. Stroboscopic trajectories for the first half (left) and second half (right) of the circular
trajectory task for the 3-DOF redundant UAM using the generalized Jacobian with external forces.
The UAV base is the large green marker, joints are the black circles, links are the blue lines, and
end-effector positions tracked are the red crosses.
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Figure 15. Manipulator (top) and UAV motions and torque disturbance (middle and bottom) for the
3-DOF UAM using the generalized Jacobian with external forces performing a circular trajectory task.
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The computational time for the tracking of the linear and circular trajectories using
the 3-DOF manipulator is, respectively, 3.96 s and 3.89 s, both faster than the trajectory
duration of 5 s.

6. Extended Generalized Jacobian for a 3-DOF Redundant Manipulator with Full
Base Movement
6.1. Derivation of Extended Jacobian

For a redundant manipulator (ne > 2), i.e., with more than 2 joints actuated in a 2D
plane and a 2D velocity tracking task ve ∈ R2, we have infinite solutions and formulate the
inverse kinematics problem as a minimization of joint velocities, as illustrated in Section 2.2.
We can also leverage the redundancy of the manipulator to add additional tasks/constraints,
for example, to minimize the torque disturbance from the manipulator to the base. The
general form of the additional constraint for a 3-DOF manipulator is f1

.
q1 + f2

.
q2 + f3

.
q3 = b.

Adding this constraint to the generalized Jacobian for a 3-DOF serial link manipulator
allows us to find a unique solution:vx

vz
b

 =

[
JG

f1 f2 f3

] .
q1.
q2.
q3

 (29)

As outlined earlier in (20) and (21), the change in angular momentum is caused by an
external torque. The forces/torques acting on the manipulator are shown in Figure 16. The
equation of the derivative of the angular momentum of the manipulator about the base
CoG is:

dKman

dt
= −vB × Lman + τB +

τm + rm ×

Rx
Ry
Rz

 (30)

where vB is the velocity of the base CoG (the pole of the angular momentum), Lman is
the linear momentum of the manipulator, τB is the torque about the base CoG due to the
gravity force (mmg, where mm is the manipulator mass) and due to the external force on
the end-effector (Fe). The term in the brackets is the change in angular momentum of the
manipulator caused by the reaction torques exerted by the base on the manipulator and, as
this term is equal and opposite to the torque disturbance transmitted from the manipulator
to the UAV, we impose that it is null. So, we obtain:

dKman

dt
= −vB × Lman + τB (31)
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Similarly to the approach used in (23) and (24), we can express the manipulator angular
momentum in terms of the generalized coordinates of the base

.
qb and manipulator

.
qm:

Kman = Hman

[ .
qb.
qm

]
=
[
Hb,man Hm,man

] [ .
qb.
qm

]
(32)

where Hman is partitioned into Hb,man ∈ R3×3 and Hm,man ∈ R3×ne .
We discretize Equation (31): we write the derivative of the angular momentum as

(Kman,k − Kman,k−1 )/∆t and we isolate Kman,k which can be written as a function of the
unknown joint velocities

.
qm,k:

Kman,k =
[
Hb,man(qk−1) Hm,man(qk−1)

] [ .
qb,k.
qm,k

]
= Kman, k−1 + (τB,k−1 − vB,k−1 × Lman,k−1) ∆t (33)

In (33), we take all joint angles and manipulator momenta for timestep k− 1 with the
assumption that these quantities do not change significantly over one timestep.

As in the derivation of the generalized Jacobian with external forces, we express the
generalized velocities of the UAV

.
qb, k in terms of

.
qm, k and of the angular momenta of the

UAM to obtain the inverse kinematics equation for the extended Jacobian, dropping the
discretized notation for joint angles (qk−1) for brevity:[

Hb,man H−1
b Hm + Hm,man

] .
qm,k =

(
Kman, k−1 + (τB,k−1 − vB,k−1 × Lman,k−1)∆t− HT

mH−1
b

[
Lk
Kk

])
. (34)

This gives us the constraint in the form of (29), where the term
[

Hb,man H−1
b Hm + Hm,man

]
is
[

f1 f2 f3
]

and the term on the right is b. If the manipulator has more than one re-
dundant DOF, the extended Jacobian is formed by adding more tasks and corresponding
constraints to the generalized Jacobian in order to make it a square matrix.

6.2. Simulation Results for Trajectory Tracking

We evaluated the reduction of torque disturbance for the linear and circular trajectories,
we focused on the horizontal translation of the UAV base and on the ability to track the
desired trajectory. We solved the inverse kinematics for the linear and circular trajectories
in MATLAB by the procedure shown in Section 6.1 with a timestep of ∆t = 1× 10−3 s. As
in previous cases, we imposed the resulting joint velocities in the ADAMS model of the
UAM to perform the dynamic simulation of the task operations.

Initially, we considered the linear trajectory: the position error is below 8× 10−5 m
and the UAV rotation is smaller than 5× 10−6 rad. Compared to the generalized Jacobian
with external forces (Section 5.2), the torque disturbance is decreased by four orders of
magnitude. The manipulator moves while minimizing the horizontal distance between
the UAV and manipulator centers of gravity. This results in a drawback of the method
since the workspace is reduced. The vertical UAV translation is not visibly affected by the
introduction of the extended Jacobian. Figures 17 and 18 show the stroboscopic trajectories,
joint angles, UAV translations, UAV rotation, and reaction torque.

For the circular trajectory, the end-effector position error is again smaller than
12× 10−5 m, the base translation is mainly vertical since it reaches 9.5 mm in the yI direc-
tion and it is smaller than 1 mm in the xI direction. The torque disturbance transmitted
from the manipulator to the UAV and UAV rotation have the same order of magnitude as
for the linear trajectory. The stroboscopic trajectories, joint angles, UAV translations and
rotation, and torque disturbance are shown in Figures 19 and 20.
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Figure 17. Stroboscopic trajectories for the first half (left) and second half (right) of the linear
trajectory task for the 3-DOF redundant UAM using the extended Jacobian. The UAV base is the
large green marker, joints are the black circles, links are the blue lines, and end-effector positions
tracked are the red crosses.
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Figure 18. Manipulator (top) and UAV motions and torque disturbance (middle and bottom) for the
linear trajectory task with the 3-DOF UAM using the extended Jacobian.
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Figure 19. Stroboscopic trajectories for the first half (left) and second half (right) of the circular
trajectory task for the 3-DOF redundant UAM using the extended generalized Jacobian. The UAV
base is the large green marker, joints are the black circles, links are the blue lines, and end-effector
positions tracked are the red crosses.
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Figure 20. Manipulator (top) and UAV motions and torque disturbance (middle and bottom) for the
circular trajectory task with the 3-DOF UAM using the extended generalized Jacobian.
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By using the extended generalized Jacobian, the computational time for the tracking of
the linear and circular trajectories (with time duration of 5 s) by the 3-DOF manipulator is
3.89 s and 3.88 s, respectively. This result is comparable to the generalized Jacobian method
computational speed and faster than the trajectory duration of 5 s.

7. Load Picking Case
7.1. Model Derivation

When using the generalized Jacobian for inverse kinematic control, a concentrated mass
payload attached to the end-effector can be considered as an additional external force and
torque: the new contributions are accounted for in the terms Fk and τk of (22). In the extended
generalized Jacobian, the additional torque is also considered in the term τB of (31).

The load force on the end-effector consists of three terms: weight force, inertial force,
and contact force. We consider the load initially lying on a stiff but elastic frictionless sup-
port in order to eliminate discontinuities in force application, which reduces the inaccuracy
of taking the force at the previous timestep in the algorithms outlined in Sections 5 and 6.
We use a simple spring model for the contact; therefore, after the payload is grasped by
the manipulator, the load force applied on the end-effector is defined by the following
equations and can thus be calculated at each timestep:

FLoad,EE =

 0
0

mcg

−mc

 ..
xc..
yc..
zc

+ Fcontact (35)

Fcontact =

 0
0

max(0, kS(zS − zc))

 (36)

where mc is the mass of the load, xc, yc, zc are the Cartesian coordinates of the load, kS is
the contact spring stiffness, and zS is the unloaded height of the contact spring.

7.2. Simulation Setup

For the load picking case, the end-effector is required to move horizontally 8 cm and
vertically 12 cm through a linear trajectory which lasts 12 s in the following stages:

1. The forward motion (without payload) is accomplished from 0 s ≥ t > 1.5 s.
2. The end-effector velocities are then null from 1.5 s ≥ t ≥ 2 s and the grasp starts at

t = 1.6 s so we can start to add the payload in this interval without large discontinu-
ities in the load force.

3. The backward motion begins at t > 2 s with a slow trapezoidal velocity profile
to avoid too fast changes in the load force which would cause the UAV to lose
altitude excessively.

4. At t = 7 s, Fcontact is null and the payload is entirely sustained by the manipulator so
we increase the end-effector backward velocity.

Desired velocity profiles of the end-effector are obtained through the superposition
of profiles defined by (13) appropriately scaled and translated in order to have acceler-
ation continuity. We considered a load mass mc = 0.2 kg and a contact spring stiffness
kS = 200 Nm−1, and zS is chosen such that the load is in equilibrium at its initial position
(equal to the position of the end-effector at t = 1.6 s). The end-effector velocity profile for
the load picking task is shown in Figure 21.

The task is executed by a 3-DOF manipulator. We compare the task execution using
both the generalized Jacobian with external forces (26) and the extended generalized
Jacobian method, (29) and (34).
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Figure 21. Desired end-effector velocities for the load picking task. The vertical gray line indicates
the start time of contact.

7.3. Simulation Results

For the same load picking task, inverse kinematics was solved in MATLAB discretizing
with a timestep ∆t = 1× 10−3 s, firstly by using the generalized Jacobian and then using
the extended generalized Jacobian. Resulting joint velocities were imported in the ADAMS
model of the UAM to dynamically simulate the task. The results comparing the stroboscopic
trajectories of load picking experiments for both algorithms are shown in Figure 22. The
simulated joint angles, UAV translations, and UAV rotations and reaction torques are
shown in Figure 23. For both the solution methods, the trajectory is successfully tracked
with minimal position errors: for the generalized Jacobian with external forces, the end-
effector position error is always smaller than 12× 10−5 m, and for the extended generalized
Jacobian the end-effector position error is smaller than 6× 10−4 m at all times.
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Figure 22. Stroboscopic trajectories for the load picking task for the 3-DOF redundant UAM using the
generalized Jacobian with external forces (top) and using the extended generalized Jacobian (bottom).
The left column shows the forward motion until the start of the grasping, the central one shows the
slow load lifting part, and the right one the fast part of the backward motion. The UAV base is the
large green marker, joints are the black circles, links are the blue lines, and end-effector positions
tracked are the red crosses; the black line shows the height of the undeformed contact spring (z = zS).
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For the generalized Jacobian method, at the beginning of the task the manipulator
exerts a torque of almost 0.6 Nm on the base and causes the UAV to rotate and translate.
The base UAV also translates after the load grasping along xI up to 10 cm, overtaking
the initial position of the load (8 cm). Then, the UAV moves backward reaching an xI of
about 2.5 cm at the end of the task. In this movement, we can see oscillations on torque
disturbance, UAV rotation, and horizontal translation since the UAV control torque requires
time to stabilize the angle caused by the initial disturbance from the manipulator.

For the extended generalized Jacobian method, we can see that the torque disturbance
is reduced by two orders of magnitude compared to the previous case and is now smaller
than 1.5× 10−3 Nm, the UAV rotation is now smaller than 5× 10−5 rad, negligible com-
pared to the generalized Jacobian solution. Consequently, the UAV, except for some small
oscillations of the millimeter magnitude due to the algorithm, keeps its initial horizontal
position. Indeed, we are imposing a zero torque transferred to the UAV during the picking
of a load not aligned with the CoG of the system, and this most probably causes these
small oscillations. Please note that, in the inverse kinematics algorithm for the extended
generalized Jacobian, the external torque in (34) is obtained from a previous timestep, so it
is accounted for with a delay of ∆t.

For both methods, we can see that the UAV altitude increases in the first second
because of the inertia of the manipulator (moving downwards), then the UAV reduces
its elevation (along zI) until the load loses contact with the elastic ground; there are no
substantial differences in vertical displacement between the two methods.

For the load picking case (which has a trajectory duration of 12 s), the overall com-
putational time obtained through the generalized Jacobian method is 9.88 s, and the com-
putational time obtained through the extended generalized Jacobian method is compara-
ble: 9.28 s.

8. Conclusions

In this research, we proposed two control methods based on the generalized Jacobian
to solve the inverse kinematics of an aerial manipulation and to minimize the UAV base
reaction torque and, therefore, its horizontal motion. The main novelty of this work is
related to the application of differential kinematics methods to a UAM through the inclusion
of external forces and torques acting on the system in the inverse kinematics solution, and
to the minimization of the torque disturbance transferred from the manipulator to the UAV.
In our case, external forces and torques include weight, UAV control inputs, and forces
exerted from the load to be picked to the end-effector. The method can also be extended
to other cases where the forces can be modeled, for example to the case of interaction
forces with the environment. The effectiveness of both methods was confirmed by the
capability of tracking a linear and a circular trajectory, and in a load picking test case.
In the extended generalized Jacobian case, the task was carried out with zero reaction
torque transferred from the manipulator to the UAV. This is particularly important since
the horizontal translation of the UAV is almost zero and, therefore, the aerial manipulator
can safely operate in the proximity of walls.

For the generalized Jacobian with external forces method, the base has noticeable
rotations and large horizontal translations during task execution due to the UAV dynamics
and the UAV controls used. By including an additional task (null manipulator reaction
torque), UAV translations are minimized in the case of the extended generalized Jacobian.

The simulated cases showed that using the extended generalized Jacobian method
significantly reduces the horizontal translation of the base, however, this is achieved by
reducing the available workspace. This is because the main contribution to the torque
disturbance on the UAV is the weight of the manipulator, so it is constrained to move
reducing the horizontal translation of its center of gravity.

Our MATLAB implementation runs faster than real time, which indicates that the algo-
rithm can be implemented in a real-world system with minimal optimization modifications
required. The computational times could be significantly reduced by implementing the
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algorithm in a compiled programming language (such as C++), which would also enable
inverse kinematic control with more complex models of the UAV and manipulator.

Future extensions to this research will be to conduct real-world experiments on a
UAM in a planar control scenario. To implement this algorithm on a physical aerial
manipulator, we require precise estimation/measure of the UAV pose, end-effector position,
joint positions, and contact forces. This will require integration of sensors such as IMUs,
force-sensors, and vision systems such as Vicon.

Although the algorithms outlined in this research are validated in 2D, this approach
can easily be generalized to 3D systems and different types of manipulators. To address the
problem of reduced workspace while minimizing the disturbance torques in the extended
generalized Jacobian, we can also investigate the feasibility of adding a controlled coun-
terweight for torque balancing. This would require further modifications to the dynamic
modeling of the UAM as well as the inverse kinematic control algorithm. Another topic of
research that will be part of future work is the investigation of different solution methods,
e.g. using constrained least squares, which would allow for constraints on joint positions
and velocities and faster computational times.
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