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General  Introduction:  the  role  of  the  temporo-

parietal  junctions  and  pre-stimulus  alpha  in 

predictive processing

The temporoparietal junctions (TPJs) are areas of the cerebral cortex that  roughly  include 

bilateral ventral portions of the inferior parietal lobule (the supramarginal and angular gyri) 

and posterior sections of the superior temporal gyrus (Doricchi et al., 2022; Masina et al., 

2022).  Cytoarchitectonically,  the TPJs encompass the PFop,  PFt,  PF,  PFm, and PFcm, 

located in the supramarginal gyrus, and the PGp and PGa, located in the angular gyrus 

(Doricchi et al., 2022; Gillebert et al., 2013). 

Figure 1. TPJ includes the supramarginal and angular gyri as well as the posterior part of the superior 

temporal gyrus.The figure highlights (in blue) the region encompassing the right TPJ.

These areas have been found to play a role in a variety of cognitive processes. For example, 

tasks that involve mentalizing, the ability to attribute mental states to one’s self and others 

(Schurz et al., 2014, 2017), activate the right TPJ (rTPJ) - and, to a lesser extent, the left 

TPJ (lTPJ; e.g., Cabeza et al., 2012; Decety & Lamm, 2007; Igelström & Graziano, 2017). 
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Also body ownership (the perception of one’s own body belonging to oneself) and sense of 

agency (the feeling of being in control of one’s own actions) seem to depend in particular on 

the integrity of the rTPJ (Blanke et al., 2002; De Ridder et al., 2007), while the lTPJ seems to 

be active during episodic memory retrieval (Daselaar et al., 2006; Yonelinas et al., 2005) as 

well  as during language processing: it  is activated in response to lexical violations, non-

words and words that are semantically unrelated with the previous context (Binder et al.,  

2005; Fiebach et al., 2002; Prince et al., 2007). In the language domain, lTPJ seems to play 

a  role  in  integrating  the  individual’s  general  world  knowledge  with  the  local  discourse 

information (Menenti et al., 2008) and in pre-activatng linguistic information (Gastaldon et al., 

2020).  In  addition,  attentional  tasks  result  in  rTPJ  activation,  especially  in  response  to 

unexpected but task-relevant stimuli (e.g., Doricchi et al., 2010; Indovina & Macaluso, 2007), 

leading to the hypothesis  that  rTPJ could play a key role in  the reorienting of  attention 

(Corbetta et al., 2008; Corbetta & Shulman, 2002). This hypothesis, known as the circuit-

breaking theory, states that the dorsal attention network (DAN; Vossel et al., 2014) maintains 

visuospatial information relevant to the current task-defined goals, while the ventral attention 

network  (VAN),  that  includes  rTPJ,  allows  the  reorientation  of  attention  to  behaviorally 

relevant  and  task-related  but  currently  unattended  stimuli;  rTPJ  would  therefore  be 

responsible for interrupting the activity of the DAN, resulting in the reorienting of attention to 

a new salient stimulus (Corbetta et al., 2008; Corbetta & Shulman, 2002). Moreover, rTPJ is 

not  only  part  of  the  VAN:  it  is  also  encompassed in  the  default  mode network  (DMN), 

supporting mentalizing processes (Hughes et al., 2019; Schurz et al., 2014).

The involvement  of  the bilateral  TPJs in  such heterogeneous contexts  has led to some 

domain-general conceptualizations of the role of these areas, in opposition to the domain-

specific approaches outlined so far, that focus on each cognitive ability separately. Domain-

general  (or  domain-independent)  approaches  strive  to  streamline  neurobiological 

mechanisms that are common to multiple areas of interest such as perception, action and 

cognition, with its different domains (e.g., Corlett et al., 2022; Poldrack and Yarkoni, 2016). 
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For example, the nexus model (Carter & Huettel, 2013) aims at reconciling the roles of the 

TPJs in mentalizing and attention within a comprehensive theory. According to this model, 

the TPJs serve as central hubs, or "nexus", where lower-level functions such as attentional 

reorientation intersect with higher-order social-cognitive functions. The central concept of the 

nexus model is that the TPJs integrate information from various cognitive domains to create 

a social framework that supports decision-making. Geng and Vossel (2013) have in turn 

proposed an  integrative  view of  the  rTPJ specifically,  which  is  based on  the  functional 

interpretation of the P300, an event-related potential (ERP) that arises from various neural 

sources. The P3b, a subcomponent of the P3, has been linked to TPJ and is considered a 

neural marker of contextual updating (Polich, 2007). According to this view, known as the 

contextual  updating  hypothesis,  TPJ  plays  a  role  in  updating  internal  models 

(representations) of the environment, which in turn generates appropriate expectations and 

behaviors (Geng & Vossel, 2013). In sum, these more general theories state that rTPJ in 

particular would act as a hub for integrating information from multiple domains and thus 

updating the internal models of the world. 

Internal  models are particularly important in predictive processing theories,  which aim to 

provide  comprehensive  frameworks  for  understanding  the  neural  processes  involved  in 

perception,  cognition,  and  action  (Clark,  2013;  Friston,  2012).  According  to  these 

frameworks,  to  deal  with  environmental  changes,  the  brain  predicts  upcoming  events 

through the implementation of internal models that spontaneously infer causal structures in 

the  world  (Clark,  2013).  An internal  model  identifies  causal  regularities  from a complex 

variety of sensory signals, extracting what is relevant to predict future stimuli, and detects 

mismatches between predictions (priors) and actual sensory inputs. The mismatch between 

a prediction and the actual  sensory input generates a prediction error,  which is used to 

update expectations and provide better predictions that are, in turn, tested against the actual 

input  (Friston,  2019).  Such  predictive  computations  are  believed  to  be  carried  out  in  a 

distributed way across the brain: a recent meta-analysis proposed that a set of brain areas, 
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comprising  also  rTPJ  among  others,  form  a  diffuse  network  involved  in  higher-level 

prediction generation and testing, that support both perception and action processes (Ficco 

et al., 2021; Siman-tov et al., 2019). 

Interestingly,  rTPJ  is  not  only  part  of  the  putative  prediction  network,  but  it  is  also 

encompassed in both the VAN and the DMN (Hughes et al., 2019). This concurrency speaks 

in favor of a domain-general conceptualization of rTPJ as an area where multiple cognitive 

processes and information types converge and are integrated, but it also opens interesting 

perspectives on how rTPJ carries out cognitive computations in a seemingly ubiquitous way 

across domains, and on what consequences can arise in the case of a disruption of rTPJ or 

its disconnection from other areas or networks. For example, the involvement of rTPJ within 

the VAN suggests an intriguing role of this brain area in the interplay occurring between the 

VAN and the prediction network, in other words, between attention and prediction. Along 

with the well-established role of the VAN in the stimulus-driven changes in attentional focus, 

this network would be also activated in case of violation of expectations (Geng & Vossel, 

2013),  evidence  that  further  links  the  VAN  to  the  predictive  processing  framework. 

Specifically, Siman-Tov et al. (2019) argued that the VAN might be part, together with other 

brain structures, of a larger network subserving domain-general high-order prediction. The 

authors do not reject the idea that rTPJ is involved in attention, but they interpret it through 

the lens of predictive processing, which considers attention as an emergent property of the 

precision optimization mechanism that takes place during prediction. Precision is defined 

mathematically as the inverse variance of a prediction and represents its reliability (Friston, 

2018), but it can also be associated with perceived stimuli or prediction errors (Walsh et al., 

2020). In sum, the more precise a stimulus or a prediction, the more the individual will rely 

on it.  In predictive terms, attending to a stimulus means representing and increasing the 

precision  of  sensory  information  (and  prediction  error)  during  the  inferential  process 

(Feldman & Friston, 2010), resulting in larger neural responses to attended vs. unattended 

stimuli (e.g., Jiang et al., 2013). In other words, attention depends in part on the predictions’ 
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precision (i.e., their reliability; Hohwy, 2012), and predictive processing proposes a constant 

interaction between attention and expectation (Walsh et al., 2020). In this vein, rTPJ, as a 

relevant hub of the VAN, would have a key role in estimating the precision of priors and 

sensory evidence. This hypothesis is not new, since attention has been already interpreted 

through the lens of predictive processing (Feldman & Friston, 2010; Hohwy, 2012). However, 

this  scenario  provides  a  sharpened  interpretation  of  neural  correlates  of  predictive 

mechanisms, and the overlap between the prediction network and the VAN substantiates the 

hypothesis that prediction and attention might be interdependent processes (Corbetta et al., 

2008; Vossel et al., 2014). 

Up to now we mainly discussed rTPJ; indeed, the evidence about the involvement of its left-

hemisphere  homologous in  predictive  processes is  still  limited.  However,  Doricchi  et  al. 

(2022) have proposed that the lTPJ has a role in prediction, by encoding both matches and 

mismatches between predicted and observed sensory,  motor,  or  cognitive  events,  while 

rTPJ only  encodes mismatches;  in  addition,  these match/mismatch computations should 

follow the prediction error minimization principle. Following their line of reasoning, we can 

assume that the TPJs are involved in the prediction testing phase. Conversely, Siman-Tov et 

al. (2019) presume that their putative prediction network, encompassing rTPJ, is involved in 

both  prediction  generation  and  testing,  a  hypothesis  supported  by  the  probable 

interdependency between predictions’ precision and attention  (Hohwy, 2012; Walsh et al., 

2020).

At this point, it  should be noted that the majority of studies reviewed so far have mainly 

detected TPJ activation  after predictions were disconfirmed. As a consequence, they only 

assume that the TPJs had a role in prediction, but they do not directly investigate it, and we 

can argue that the TPJs are involved in prediction violation, rather than in prediction per se. 

Here, therefore, some questions arise: are both left and right TPJ involved in prediction? Are 

they involved in prediction testing (i.e., checking whether the stimuli are or not in line with the 

predictions), as the majority of studies find, or also in prediction generation? If so, can the 
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pre-stimulus state of the TPJs be representative of prediction generation? Answering these 

questions means investigating the TPJs’  spontaneous activity during cognitive tasks,  not 

only  after  target  stimuli  but  also before them. We,  therefore,  have to direct  our  interest 

toward  TPJs’  state  during  the  pre-stimulus  interval,  which  could  be  representative  of 

prediction generation, and, as such, might modulate the neural responses to subsequent 

stimuli. To this aim, we will use fast-resolution techniques such as MEG and EEG, and we 

will focus on neurophysiological dynamics that are known to be associated with predictive 

processes, such as pre-stimulus alpha oscillations  (Alamia & VanRullen, 2019; Cao et al., 

2017). 

Aim of the dissertation

Broadly,  the  present  dissertation  aims  at  clarifying  the  role  of  the  bilateral  TPJs  in 

neurological  patients  and  healthy  individuals,  in  domain-general  and  domain-specific 

cognition,  with  a  specific  interest  in  the  language  domain,  which  has  been  surprisingly 

overlooked  during  previous  investigations  on  the  predictive  function  of  the  TPJs.  To 

investigate  predictions,  we will  focus on the  pre-stimulus  interval,  considered as  a  time 

interval when hypotheses about the upcoming stimuli are built by the individual on the basis 

of previous stimuli, the context, or prior knowledge.

We  will  first  outline,  in  a  systematic  literature  review,  the  role  of  the  rTPJ  in  aberrant 

predictive  processing  as  can  be  observed  in  neurological  pathologies,  a  field  in  which 

evidence about rTPJ role is abundant. Even though our interest lies in the bilateral TPJs, we 

initially focus on rTPJ in Study 1 because of theoretical and empirical reasons. Dominant 

and unified theoretical accounts of the functional role of the TPJs concentrate mainly on 

attention, a fundamental cognitive function that plays a pivotal role in various other cognitive 

domains  (Sani,  2023).  This  consideration  is  corroborated  by  long-standing 

neuropsychological evidence showing that up to 50% of stroke patients in the acute stage 

show signs of hemispatial  neglect (Vallar & Calzolari,  2018), a disorder of attention that 
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mainly  follows  lesions  to  the  right  hemisphere  and,  particularly,  to  rTPJ  (Corbetta  & 

Shulman, 2011). Probably for these reasons, rTPJ has been investigated more extensively 

with  respect  to  its  left-hemisphere  counterpart,  resulting  in  a  more  extended  body  of 

published studies: for example, when searching PubMed for articles on lTPJ, 867 results 

appear, while when searching for resources on rTPJ, 1226 entries are obtained1.

After establishing the domain-general, predictive role of rTPJ, in Study 2 we will delve more 

in-depth  into  linguistic  predictive  dynamics,  by  investigating  the  unfolding  of  the 

neurophysiological correlates of linguistic and semantic prediction generation and violation. 

From this moment on, this work will mainly focus on prediction in the language domain and 

its relation with TPJs activity. Prediction is known to take place in language (e.g., Gastaldon 

et  al.,  2020;  Nicenboim  et  al.,  2020;  Nieuwland  et  al.,  2020),  but  it  has  been  mostly 

investigated with violation paradigms, which only consider what happens after predictions 

have been (dis)confirmed (similarly to those studies on the predictive function of the TPJs, 

that detect activations in conditions of prediction violation; see above). Relatively few studies 

focused on the pre-stimulus interval and found that stronger expectations are associated 

with  lower  prestimulus  alpha  power.  Traditionally,  alpha  oscillations  have  been 

conceptualized as a gate for information to be redirected to task-relevant brain regions, while 

task-irrelevant ones are inhibited (Jensen & Mazaheri, 2010), so that anticipatory increases 

in alpha power reflect a state of cortical inhibition, while reductions reflect cortical activation 

and  facilitate  the  subsequent  detection  and  processing  of  task-relevant  information 

(Klimesch et al., 2007). Moreover, recent evidence specific for language processing points to 

a  possible  role  of  alpha  oscillations  during  reading.  For  example,  Jensen  et  al.  (2021) 

highlighted a link between the timing of saccades while reading a text and alpha oscillations, 

1 Search  algorithms:  ((right  [Title/Abstract])  AND  (TPJ[Title/Abstract]  OR  temporal  parietal 
junction[Title/Abstract]  OR  temporoparietal  junction[Title/Abstract]  OR  temporal-parietal 
junction[Title/Abstract]  OR  temporo-parietal  junction[Title/Abstract]  OR  temporo-parietal 
region[Title/Abstract]))  OR  (rTPJ[Title/Abstract])  for  rTPJ  and  ((left  [Title/Abstract])  AND 
(TPJ[Title/Abstract]  OR  temporal  parietal  junction[Title/Abstract]  OR  temporoparietal 
junction[Title/Abstract]  OR  temporal-parietal  junction[Title/Abstract]  OR  temporo-parietal 
junction[Title/Abstract] OR temporo-parietal region[Title/Abstract])) OR (lTPJ[Title/Abstract]) for lTPJ. 
The research has been conducted on the 15.09.2023.
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so that fixated and parafoveal words are represented at different phases of an alpha cycle. 

More specifically, onsets of saccades towards low frequency words within the text seem to 

be locked to the phase of alpha oscillations, suggesting that the alpha oscillations time the 

processing  between  the  oculomotor  and  visual  systems  during  reading,  and  that  this 

coordination becomes more pronounced for demanding words (Pan et al., 2023). However, 

alpha power also fluctuates spontaneously, in the absence of experimental manipulations; 

and in the attention domain, spontaneously low prestimulus power is associated with better 

behavioral performance and with ERPs with shorter latencies and higher amplitudes. On the 

other hand, in the context of predictive processing, alpha oscillations in the pre-stimulus 

interval have been linked to top-down predictions (Alamia & Van Rullen, 2019; Cao et al., 

2017), and especially to the concept of precision, the level of reliability of a prediction (see 

Section 1.2.  in Study 2;  Bauer et  al.,  2014; Sedley et  al.,  2016; Sherman et  al.,  2016). 

However, little is known about the role of precision and pre-stimulus alpha fluctuations in 

domains other than attention, for example, in language.  To this aim, Study 2 investigates 

whether  spontaneous fluctuations in  prestimulus alpha power modulate language-related 

ERPs in  a  semantic  congruence task.  This  allows us  to  better  explore  the  role  of  pre-

stimulus alpha power in predictive processing and to gain a deeper understanding of the link 

between pre- and post-stimulus neurophysiological correlates of predictive dynamics, i.e., of 

prediction generation and testing.

Finally, Study 3 will combine the investigation of pre-stimulus alpha with that of the role of 

bilateral  TPJs  during  complex  linguistic  computations  taking  place  during  a  metaphor 

comprehension task, a particular case of linguistic predictive processing (Vespignani et al., 

2010). Using source-reconstructed MEG recordings, we selected areas from the language 

network in addition to left and right TPJ,  with the aim of investigating the role of the bilateral 

TPJs  in  prediction  generation  and  testing.  More  specifically,  we  wanted  to  answer  the 

following questions: are both TPJs involved in linguistic prediction? Are they involved in both 

prediction  generation  and  testing,  as  proposed  by  Siman-Tov  et  al.  (2019),  or  only  in 
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prediction  testing,  as  proposed  by  Doricchi  et  al.  (2022)?  If  the  TPJs  are  involved  in 

prediction  generation,  can  pre-stimulus  alpha  (associated  with  predictions’  precision) 

modulate  the  subsequent  brain  responses to  target  stimuli?  And finally,  is  the  eventual 

modulation local, i.e., limited to the TPJs under investigation, or can pre-stimulus TPJ activity 

influence post-stimulus activations in other task-related areas? The results of this study can 

help shed some light on the possibly different roles of left and right TPJ during complex 

linguistic computations, and at what stage of predictive processing they come into play.
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Study  1:  Disconnection  from  prediction:  A 

systematic  review  on  the  role  of  right 

temporoparietal  junction  in  aberrant  predictive 

processing

This study was published in Neuroscience and Biobehavioral Reviews: Masina, F., Pezzetta, 

R., Lago, S., Mantini, D., Scarpazza, C., & Arcara, G. (2022). Disconnection from prediction: 

A  systematic  review  on  the  role  of  right  temporoparietal  junction  in  aberrant  predictive 

processing.  Neuroscience  &  Biobehavioral  Reviews,  138(January),  104713–104713. 

https://doi.org/10.1016/j.neubiorev.2022.104713

1. Introduction

The right  temporoparietal  junction (rTPJ)  is  a brain area that  plays a critical  role in  the 

higher-order cognitive and motor functions that underlie human behavior. A lesion of this 

area or its disconnection from other brain structures may have several etiologies, ranging 

from trauma to neurodegenerative diseases.  Among them, stroke (Campbell  and Khatri, 

2020) is the neurological condition for which the role of rTPJ has been more extensively 

investigated. Indeed, over half of all ischemic strokes occur in the middle cerebral artery 

territory (Ng et al., 2007), which supplies blood to the bilateral TPJ. The pattern of behavioral 

symptoms emerging from rTPJ lesions has fostered an extensive clinical interest in this brain 

structure. Lesions involving rTPJ are often associated with hemispatial neglect (Corbetta and 

Shulman, 2011), a disorder of attention that may follow right hemisphere stroke in up to 50 

% of patients in the acute stage (Vallar and Calzolari, 2018) and related to a difficulty to 

orientate,  report,  or  respond  to  stimuli  located  on  the  contralesional  hemifield.  Besides 

neglect, recent research effort has shown other functional consequences of rTPJ lesions in 
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several neurological disorders (for extensive reviews, see Frucht et al., 2021; Pisella et al., 

2011; Vallar, 2007), as spatial and visual impairments, and movement disorders. Thus, rTPJ 

potentially carries a high clinical significance and its deeper functional understanding could 

be extremely valuable for clinicians. The purpose of this systematic review is therefore to 

elucidate the involvement of rTPJ in human behavior. To this aim, we will investigate the 

functional role of rTPJ through the analysis of the functional consequences of its direct lesion 

or its disconnection from other regions in neurological disorders. We will initially discuss the 

role of rTPJ according to the most dominant theoretical accounts, and then introduce the 

predictive processing framework, an overarching and unifying theory that postulates that the 

core function of the brain is to minimize prediction errors concerning a generative model of 

the world (Pezzulo et al., 2021). In this vein, recently rTPJ has been conceived as a key hub 

of  a  putative prediction network  (Siman-Tov et  al.,  2019).  After  presenting a  systematic 

review of the literature linking rTPJ and neurological disorders, results will be interpreted in 

the  light  of  a  predictive  processing  framework.  Implications  and  advantages  of  such 

interpretations will be highlighted, suggesting that impairments associated with this structure 

may cause aberrant and domain-general  predictive mechanisms, rather than fragmented 

domain-specific cognitive deficits. Future endeavors for basic and clinical research will finally 

be proposed. 

1.1. Dominant theoretical accounts of rTPJ in cognition 

Anatomically, rTPJ refers to a composite portion of the cortex roughly encompassing the 

inferior parietal lobule and extending into the superior temporal gyrus. Albeit this definition 

can  approximate  the  location  of  rTPJ,  it  does  not  account  for  its  anatomical  and 

cytoarchitectonic complexity (Bzdok et al., 2013; Caspers et al., 2006; Patel et al., 2019). 

Functionally, the activation of rTPJ has been associated with the involvement of a variety of 

cognitive functions, raising controversy concerning the role of this region (Krall et al., 2015). 

To  date,  there  is  little  consensus  regarding  whether  these  functions  are  supported  by 
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specific mechanisms/modules, or they result from a common and overarching mechanism. 

Actually, there is evidence in favor of both functional specialization (Krall et al., 2015; Scholz 

et al., 2009) and functional overlap (Carter and Huettel, 2013; Corbetta et al., 2008; Geng 

and Vossel, 2013; Kubit and Jack, 2013; Wilterson et al., 2021). The functional specialization 

framework proposes a one-to-one mapping of cognitive mechanisms and brain structures 

(Scholz et al.,  2009). It  has been demonstrated that the posterior portion of rTPJ, which 

includes the angular gyrus and the terminal part of the superior temporal sulcus, plays a role 

in mentalizing,  also known as Theory of  Mind (ToM).  Mentalizing refers to the ability  to 

attribute mental states to one’s self and others (Schurz et al., 2014, 2017) and represents a 

milestone in the development of social skills. Some theories posit that ToM is grounded in 

the capacity to construct inner models of someone else’s beliefs (Koster-Hale and Saxe, 

2013) that allow inferring the mental states of others (Frith et al., 2003). Recent studies have 

shown that mentalizing tasks involve cognitive and affective processes to different extents, 

but such socio-cognitive functions are hierarchically organized and mostly localized within 

rTPJ,  activating different  portions of  the area (Schurz et  al.,  2017) or  different  networks 

encompassing rTPJ (Schurz et al., 2021). Along a posterior-anterior axis, evidence from a 

meta-analysis indicates that ToM shows higher activation probability in the posterior part of 

rTPJ whereas the most anterior portion has been associated with attention (Decety and 

Lamm,  2007).  A  large  body  of  evidence  shows the  role  of  rTPJ  as  part  of  the  ventral 

attentional control network (VAN) including the middle frontal gyrus and the inferior frontal 

gyrus. According to a dominant theory of rTPJ function, the VAN allows the reorientation of 

attention to behaviorally relevant and task-related but currently unattended stimuli (Corbetta 

and Shulman, 2002). The importance of rTPJ in the bottom-up reorientation of attention, 

which is responsible for stimulus-driven changes in attentional focus, is well supported by 

the neurological condition of hemispatial neglect. Regardless of motor or sensory deficits, 

patients  with  spatial  neglect  show  difficulties  in  spontaneously  reorienting  attention  to 

stimulus  information  in  the  contralesional  visual  field.  Importantly,  damage  to  rTPJ  is 

frequently  linked  to  the  occurrence  of  spatial  neglect  (Corbetta  and  Shulman,  2011), 
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confirming  the  pivotal  role  of  this  structure  in  reorienting  attention.  In  contrast  to  a 

fractionation view, recent attempts suggest common overarching mechanisms to integrate 

the variety of functions assigned to rTPJ. The nexus model (Carter and Huettel, 2013) tries 

to conciliate in a unified theory the role of rTPJ in mentalizing and attention, suggesting that  

TPJ is a “nexus” area where the overlap of lower-level functions (i. e., reorienting attention) 

leads to higher-order social-cognitive functions (i.e., mentalizing). The key idea of the nexus 

model  is  that  TPJ  would  integrate  information  from  different  domains  of  cognition  to 

construct a social context promoting decision-making. A further overarching view is known 

as the circuit-breaking theory by Corbetta et al. (2008); Corbetta and Shulman, (2002). This 

theory hypothesizes that the reorientation of attention is the result of the coordinated action 

of the ventral and the dorsal attention network. Broadly speaking, rTPJ plays a critical role in 

the detection of unexpected but task-relevant stimuli. As a node of the VAN, rTPJ would 

therefore act as a sort of circuit breaker for the dorsal attention network (DAN; Vossel et al.,  

2014). The activity of the latter, which is responsible for maintaining visuospatial information 

relevant to the current task-defined goals, would be interrupted by a signal of the VAN, with 

the consequence of  reorienting the attention to a new salient  stimulus.  Noteworthy,  this 

theory has been applied to social  cognition as well,  considering rTPJ as a relay to shift 

attention from an egocentric  perspective to  someone else’s  perspective,  and vice versa 

(Corbetta  et  al.,  2008).  An  alternative  explanation  of  the  role  of  rTPJ  in  cognition  is 

suggested  by  Geng and Vossel  (2013),  who refuse  the  core  assumption  of  the  circuit-

breaking  theory.  The  circuit-breaking  theory  posits  that  rTPJ  triggers  the  reorienting  of 

attention by interrupting the activity of the DAN. However, if it was true, this would entail that 

the activity  of  rTPJ occurs earlier  than the activity  of  the brain regions of  the DAN. On 

contrary, evidence from event-related potentials and transcranial magnetic stimulation (TMS) 

studies showed an opposite scenario: the frontal eye fields, which are part of the DAN, are 

activated earlier than rTPJ (i. e., the VAN) during attentional reorienting (Bardi et al., 2012; 

Thompson et al., 1996). Although Geng and Vossel (2013) agreed with the well-established 

role of TPJ in attentional control, they introduce an alternative explanation to reconcile the 
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above-mentioned inconsistencies in an integrative view. Their  theory originates from the 

functional  meaning  attributed  to  the  P3  (also  known  as  P300),  an  electrophysiological 

potential related to “contextual updating” (Polich, 2007). The P3 has been associated with 

the activity of several neural sources. The P3b, which is a particular subcomponent of P3, 

has  been  linked  with  TPJ  and  is  considered  to  be  a  neurophysiological  correlate  of 

contextual  updating  (Polich,  2007;  Verleger  et  al.,  1994).  In  the  contextual  updating 

hypothesis, TPJ would update internal models of the environment/context to generate and 

drive adequate expectations and actions (Geng and Vossel, 2013). This theory is supported 

also by functional magnetic resonance imaging (fMRI) evidence showing the activation of 

TPJ in attentional tasks, in which the violation of expectations triggers the largest responses 

in this region (Vossel et al., 2006). Remarkably, the contextual updating hypothesis offers a 

model to interpret both low-level functions, for example reorienting attention, and high-level 

social  functions,  such  as  ToM,  suggesting  a  common  computational  mechanism  (i.e., 

contextual updating). From a social perspective, TPJ contributes to integrating the contextual 

representation of social situations needed to take the perspective of another person. Partially 

in line with the view of Geng and Vossel (2013), especially about the role of rTPJ as a 

hotspot involved in updating internal models, is the attention schema theory. This theory 

postulates a relationship between awareness and selective visual attention. Specifically, this 

framework  states  that  awareness  reflects  an  inner  representation  of  selective  attention, 

therefore a model of attention containing a set of constantly updated information about the 

current state of attention. This attention model, or “attention schema” - as the authors state -  

allows to monitor and control attention, predict future changes in attention level, and predict 

how attention can affect behavior and cognition (Graziano, 2020; Graziano and Kastner, 

2011; Graziano and Webb, 2015). It  is known that selective attention can be defined as 

exogenous (e.g., attention automatically captured by a sudden flash) and endogenous (e. g., 

attention voluntarily allocated to perform a task). When a prediction is not confirmed, that is 

when awareness and attention dissociate, a misalignment between the model of attention 

and the actual  attention occurs,  leading to an impairment  of  the endogenous control  of 
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attention. The violation of the prediction generates an error signal aimed at updating the 

model itself.  As a recent fMRI study has demonstrated, rTPJ has a relevant role in this 

framework because it contributes to constructing and updating models of attention (Wilterson 

et al., 2021). The authors showed that when people are aware of a visual cue, they implicitly 

use the cue to generate awareness-dependent  predictions aimed at  driving endogenous 

attention to a target. Of interest, they argued that the brain area activated by the violation of 

predictions is rTPJ. In contrast to the circuit-breaking theory, rTPJ (and the VAN) would not 

serve exogenous attention.  Instead,  rTPJ would be implicated in creating or  adjusting a 

model of attention. A surprising or unexpected event that captures attention away represents 

a  violation  of  the  attention  model.  In  this  circumstance,  rTPJ  has  a  rise  in  activity,  as 

Wilterson et al. (2021) have shown. As the above-mentioned perspectives outline, clarifying 

the role of rTPJ in cognition has proven challenging because rTPJ is engaged across a 

broad  range  of  processes.  Taken  together,  both  the  perspectives  attributing  specific 

functions to rTPJ and the theories positing overarching mechanisms provide a fragmented 

view regarding the involvement of this region in cognition. This is going to translate this 

knowledge into practical  solutions very difficult.  For example,  current  neuropsychological 

measures and clinical treatments mostly reflect this theoretical fragmentation as they focus 

on  assessing  and  treating,  separately,  cognitive  or  functional  domains  (e.g.,  language, 

attention, ToM), hence assuming a modular view of brain functioning (Fotopoulou, 2014). 

The modular assumption, despite being historically central in cognitive science (Fodor et al., 

1983), may not be the unique rationale underlying the creation of neuropsychological tests 

and  clinical  interventions.  Although  it  is  well-known  that  after  brain  damage  cognitive 

functions  may  show  dissociations  of  deficits  (supporting  a  modular  view  of  the  mind; 

Shallice, 1988), it  is noteworthy to underline that most of the time clinical patients show 

associations  of  deficits  (other  than  dissociations;  Corbetta  et  al.,  2018,  2015).  The 

importance  of  association  of  deficits  has  also  been  acknowledged  in  the  field  of 

neuropsychological rehabilitation, as typically deficits do not occur in isolation (Wilson et al., 

2017).  Consequently,  the adoption of  an alternative view, different  from the “modularist” 
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tradition, may stimulate a rethink of the rationale of clinical treatments and provide different 

expectations  on  the  treatment  outcomes  (Brown  and  Kuperberg,  2015).  One  particular 

framework that can support this paradigm shift is the predictive processing. 

1.2. Predictive processing framework for brain disease 

In the last decade, the concept of predictive processing has become popular in cognitive 

neuroscience because it outlines a unifying framework for understanding neural computation 

underlying perception, cognition, and action (Clark, 2016, 2013). Although several theories 

and  algorithms  have  been  developed  within  the  “predictive  processing”  umbrella  term 

(elegantly summarized here: Aitchison and Lengyel, 2017; Euler, 2018; Nave et al., 2020; 

van Elk, 2021), in this review we will refer to Andy Clark’s general view (Clark, 2016, 2013). 

As mentioned, different frameworks have been proposed on the role of rTPJ in cognition, 

however, we decided to consider the deficits associated with rTPJ impairment under the lens 

of  the  predictive  processing,  as  it  provides  an  overarching  framework  that  allows  for 

interpretation of different aspects of cognition in terms of hierarchical processes of sensory 

inputs, prediction error, and model updating. Of importance, referring to Clark’s framework 

does not mutually exclude the possibility of being in line with other models which consider 

the role of rTPJ as a structure responsible for the integration of information and updating (e. 

g., as suggested in the contextual updating hypothesis and the attention schema theory: 

Geng and Vossel, 2013; Wilterson et al., 2021), which fits well with the idea of a predictive  

brain  (Clark,  2013;  Friston,  2019,  2010).  More  in  detail,  Clark  offers  an  integrative 

perspective of the abovementioned theories (Swanson, 2016) by postulating, through the 

predictive processing, that an internal model identifies causal regularities from a complex 

variety of sensory signals, extracting what is significant and salient to predict future events 

(Nave  et  al.,  2020).  The  mismatch  between  a  prediction  and  the  actual  sensory  input 

generates a prediction error. The goal of the “predictive brain” is to try to generate more and 

more accurate predictions and therefore minimize the prediction error (Clark, 2013, 2016). 
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This prediction error propagates up the processing hierarchy to update expectations and 

provide better predictions that are transferred down the hierarchy (Friston, 2019; Keller and 

Mrsic-Flogel, 2018), although an alternative mechanism to hierarchical predictive processing 

has been proposed as well (Heeger, 2017). Along with estimating predictions about future 

events, the brain also estimates the reliability of these predictions and the reliability of the 

incoming sensory information or, in other terms, their precision (Doya et al., 2006; Yon and 

Frith, 2021). Precision refers to the level of confidence in predictions, in other words, the 

estimation of their occurrence likelihood. Concepts such as prior, posterior, and likelihood 

draw on the Bayesian brain hypothesis,  a  dominant  -  but  also debated (Rahnev,  2019; 

Sanborn and Chater,  2016) -  perspective to model inferential  processes within the brain 

(Hohwy, 2017).  Most of  the time the causes of  incoming sensory information are latent, 

simply unknown. Thus, the brain has to face an inverse problem, namely to estimate the 

causes  of  sensory  information  by  generating  inferences  that  result  from  both  known 

information, so-called priors in Bayesian terms, and the incoming sensory information. The 

prediction resulting from priors and incoming sensory information is defined as the posterior 

probability that reflects the likelihood of the latent information being the cause of the sensory 

information. When either priors or sensory information are given more/less precision than 

they should, predictions about our reality may become less accurate or aberrant (Howes et 

al.,  2020;  Kube et  al.,  2020;  Smith  et  al.,  2021).  From a theoretical  point  of  view,  any 

alteration of the "predictive brain" may cause a cascade of consequences leading to domain-

general impairments. As suggested by Fotopoulou (2014), who interpreted anosognosia for 

hemiplegia as a deficit of predictive processing, several kinds of disruptions may impair the 

recursive  dialectic  between  prior  beliefs  and  current  experience:  (1)  deficits  to  update 

predictions; (2) weak or absent prediction error signal; (3) firm adherence to predictions; (4) 

inability  to  optimize  the  precision  of  prediction  errors;  and,  in  general,  (5)  aberrant 

predictions. In line with Fotopoulou (2014), Kocagoncu et al. (2021) suggested that aberrant 

predictive  mechanisms  may  explain  impairments  of  neurological  patients.  In  general, 
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difficulties resulting from disruptions at any level of predictive processing may affect both the 

cognitive and the motor domains. 

1.3. rTPJ as a key node in predictive processing 

The  hypothesis  regarding  the  association  between  rTPJ  and  predictive  processing  is 

relatively  recent  but  has  been  already  supported  by  and  discussed  in  several  studies 

(Koster-Hale  and  Saxe,  2013;  Park  et  al.,  2021;  Wilterson  et  al.,  2021).  For  example, 

recently Park and colleagues (2021) investigated a potential causal link between rTPJ and 

the updating of predictions. In their study, the authors used fMRI to investigate the dynamic 

process  underlying  the  maintenance  or  updating  of  social  impressions  of  others,  as  a 

function of the violation of expectations (i.e.,  the prediction error).  They showed that the 

recruitment  of  rTPJ  reflected  the  integration  of  prediction  error  signals:  specifically,  the 

engagement of rTPJ was related to the processing of the social prediction error and updating 

of  prior  beliefs.  Similarly,  corroborating  the  centrality  of  rTPJ  in  predictive  processing, 

Mengotti  et  al.  (2017) applied online TMS over rTPJ. In line with their  hypothesis,  TMS 

interfered  with  the  participants’  capability  to  update  prior  beliefs.  In  addition,  the  TMS 

disruption was determined only in precise timing, namely when the TMS pulse was delivered 

300 ms after a target stimulus, not at 50 ms. Of interest, the authors explained this result as 

further corroboration of the idea that rTPJ is one of the neural sources of the P3, an ERP 

component  strictly  associated with  contextual  updating (Geng and Vossel,  2013;  Polich, 

2007). An interesting view has been suggested by Siman-Tov et al. (2019) who conducted a 

coordinate-based  meta-analysis  of  neuroimaging  studies  engaging  both  prediction 

generation and violation. Their results showed a set of cortical and subcortical brain regions, 

including  the  inferior  and  middle  frontal  gyri,  anterior  insula,  premotor  cortex,  pre-

supplementary motor area, striatum, thalamus, cerebellum, as well as rTPJ. This assembly 

of  structures  would  be  engaged in  higher-level  predictions  that  have  been proposed to 

belong  to  a  putative  “prediction  network”  subserving  both  perception  and  action. 
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Interestingly, rTPJ is the only region within this prediction network that is also a crucial area 

of the VAN (Corbetta and Shulman, 2002). This concurrency has yielded the authors to 

suggest an intriguing role of rTPJ within the dynamics occurring between the VAN and the 

prediction network. Along with the well-established role of the VAN in the stimulus-driven 

changes in attentional focus, this network would be also activated in case of violation of 

expectations (Geng and Vossel, 2013; Wilterson et al., 2021), evidence that links the VAN to 

the predictive processing framework. Specifically, Siman-Tov et al. (2019) argued that the 

VAN might  be part,  together  with  other  brain structures,  of  a  larger  network subserving 

domain-general  high-order prediction.  Pushing this idea further,  the authors suggest that 

rTPJ, as a relevant hub of the VAN, has a key role in estimating the precision of priors and 

sensory evidence. This hypothesis is not new, since attention has been already interpreted 

through  the  lens  of  predictive  processing  (Feldman  and  Friston,  2010;  Hohwy,  2013). 

However,  this  scenario  provides  a  sharpened  interpretation  of  neural  correlates  of 

mechanisms responsible for predictions. To sum up, a consistent number of studies outline a 

view  in  which  rTPJ  seems  to  be  a  fundamental  cortical  region  subserving  predictive 

processing and possibly related to a core set of areas identified as a “prediction network”. As 

we have seen before, rTPJ is certainly a crucial structure of the "predictive brain". However, 

advancing the hypothesis that direct damage or disconnection of this area is a necessary 

condition to disrupt the prediction network and, consequently, cause deficits ascribable to 

aberrant  predictive  processing  would  be,  at  the  moment,  merely  speculative.  Instead, 

neurological disorders affecting rTPJ may be a sufficient, even if not necessary, condition to 

cause difficulties related to predictive processes, leading to a plethora of impairments such 

as overconfidence in prior beliefs or underconfidence in sensory information, alongside a 

difficulty to detect errors, and a general inability to distill probabilistic structures in the world. 

Of  course,  predictive  processing  deficits  can  also  emerge  as  a  consequence  of  the 

impairment of other brain regions, in line with Siman-Tov et al. (2019) who suggest that rTPJ 

is only part of an extended network subserving high-level predictions. This study aims to 

provide a state-of-the-art overview of structural and functional aberrant outcomes following 
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rTPJ “disconnection” from a putative prediction network, suggesting the involvement of rTPJ 

in a network potentially responsible for prediction. 

2. Methods

The current systematic review is reported according to the recently updated guidelines of 

Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA, Page et al., 

2021). 

2.1 Search

A systematic literature search was performed on three databases: PubMed, PsycInfo, and 

Embase. The search terms included the conjunction of the following terms: ((“right” AND 

(“TPJ” OR “temporo parietal junction” OR “temporoparietal junction” OR “temporo-parietal 

junction” OR “temporo-parietal region”)) OR “rTPJ”) AND (“lesion*” OR “neurological” OR 

“Huntington” OR “mild cognitive impairment” OR “Parkinson disease” OR “multiple sclerosis” 

OR “stroke” OR “brain damage” OR “dementia” OR “Alzheimer” (all keywords) OR “stroke” 

OR “multiple sclerosis” OR “dementia” (all Mesh terms)). For details about the full search 

strategy  for  all  databases  please  see  the  Supplementary  Materials.  Additional  records 

relevant to the topic of the systematic search (e.g., articles that were cited by other articles) 

were also included. No restriction on publication date range was applied (last date of search: 

23rd October 2020) and only studies with an English version and published in peer-reviewed 

journals were considered. Inclusion criteria were established a priori and were the following: 

(i)  peer-reviewed papers;  (ii)  papers written in  English;  (iii)  papers including adult  (> 18 

years) neurological patients; iv) papers studying the functional role of rTPJ (both due to a 

direct lesion of rTPJ or to its disconnection from other structures). Exclusion criteria were 

also established a priori and were the following: (i) papers without data analysis; (ii) reviews, 

meta-analysis, methodological papers; (iii) papers found incidentally by the algorithm, but not 
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including rTPJ;  (iv)  papers involving animal  models,  children (< 18 years),  healthy older 

adults only, non-neurological patients.

2.2 Risk of bias

To reduce the risk of bias, two independent reviewers (F.M. and S.L.) screened the articles 

and decided for appropriateness. Discrepancies in the evaluation of an article were resolved 

by  a  third  author  (R.P.).  To  assess  the  quality  of  the  studies  included,  we applied  the 

Newcastle-Ottawa Scale (NOS), a tool developed to evaluate non- randomized studies for 

systematic reviews (Wells et al., 2011); more specifically, we used a version adapted for 

cross-sectional studies (Patra et al., 2015) and we customized it according to the aims of our 

systematic search (please, see Table S1 and S2, in the Supplementary Materials, for details 

on NOS).

2.3 Data extraction

Data extraction was performed by F.M., R.P., and S.L. Each author was assigned a subset 

of papers to review. For each study, we highlighted the aim of the study, whether it focused 

on a cognitive domain and, if  so,  which specific domain was investigated, differentiating 

between  a priori  interests or incidental findings. This information was included to pinpoint 

potential selective biases of rTPJ studies towards certain cognitive functions. Data extracted 

from each subset of papers was subsequently and independently double-checked also by 

the authors that did not perform data extraction on that specific subset.

3. Results

The systematic literature search provided a total of 539 articles, as shown in the PRISMA 

flow diagram (Fig. 1). After discarding duplicates, a total of 199 records remained. These 

articles were screened based on title and abstract, according to the established criteria; 119 

articles were considered not appropriate; thus, the full text of 81 articles was screened. A 
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final set of 54 articles were judged suitable to be included in the review as the remaining 27 

papers did not meet the inclusion criteria.

Figure 1. PRISMA flow chart outlining the process of article selection.

The 54 identified studies were clustered into the following 4 subgroups according to the 

pathology of interest: (i) “acquired brain injury” (which included right non-traumatic damage, 

bilateral non-traumatic damage, and traumatic brain injury); (ii) “neurodegenerative disease” 

(including Alzheimer, Mild Cognitive Impairment, Frontotemporal Dementia, Dementia with 

Lewy  Bodies,  PD);  (iii)  “white  matter  disease”  (which  included  multiple  sclerosis  and 

hyperintense  lesions);  (iv)  several  pathologies  that  have  been  grouped  as  “other 

pathologies”  as  they  referred  to  a  minority  of  studies  found  (epilepsy,  psychogenic 

nonepileptic  seizures,  migraine,  and  hemianopia).  Importantly,  we  included both  studies 

where the lesion involved focal damage to rTPJ and studies where rTPJ was not directly 
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damaged  but  the  lesion  caused  a  disconnection  between  rTPJ  and  other  brain 

areas/networks. In this latter case, the functional damage was interpreted by the authors as 

a consequence of the segregation of rTPJ from other areas/networks. A summary of the 

main results for each subgroup can be found in Table 1. Table S3 summarizes information 

about brain structures, in addition to rTPJ, involved in the selected studies, and whether 

rTPJ is directly damaged, disconnected, hypoperfused, or other forms of alteration. In each 

of the following sections, we present a synthesis of the main results for each subgroup. 

3.1 Acquired brain injury

Acquired brain injury is an umbrella term encompassing a wide spectrum of brain lesions 

that  are  not  hereditary,  congenital,  or  degenerative,  and  are  characterized  by  a 

traumatic/non-traumatic etiology. Acquired brain injury can result in impairments in cognition, 

motor function, sensory processing, and emotional disturbances. Studies on patients with 

acquired brain injury can help investigate how rTPJ damage affects cognitive functioning. In 

the present review, 29 studies have been included within this subgroup: 22 studies regarding 

right nontraumatic brain lesions, 6 studies with bilateral non-traumatic brain damage, and 1 

study with patients with traumatic brain injury (TBI). Sixteen out of 29 studies specifically 

mentioned patients with hemispatial neglect, and their results have been summarized at the 

end of this section. Several authors suggest that cognitive and motor impairments observed 

in patients could result both from direct damage of rTPJ and from a disconnection of this 

brain structure from other areas or networks. This latter scenario implies that rTPJ can be 

directly  damaged or  not.  For example,  the disconnection of  rTPJ from the frontoparietal 

network could be responsible for a detrimental effect on orienting attention to relevant events 

(Pedrazzini  and  Ptak,  2019),  anosognosia  for  hemiplegia  (Monai  et  al.,  2020),  and  a 

selective  impairment  at  the  expense  of  cognitive  flexibility  (i.e.,  executive  functions), 

specifically in set-shifting abilities (Mandonnet et al., 2017). Interestingly, Wawrzyniak et al. 

(2018)  linked the patients’  deficits  to  a breakdown of  networks of  the right  hemisphere. 
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Through  the  lesion  network-symptom-mapping  approach,  the  authors  investigated  the 

phenomenon of the rubber hand illusion in patients with mild to moderate stroke symptoms 

and demonstrated the engagement of rTPJ in eliciting the illusory body-ownership feeling. A 

similar result was found by Martinaud et al. (2017) who showed that lesions associated with 

disturbing sensations of  limb ownership included rTPJ,  supramarginal  gyrus,  and middle 

frontal gyrus. Thus, rTPJ, together with other brain regions, seems to support the integration 

of body sensations to achieve a global body representation (Boccia et al., 2020). Studies 

included  in  the  next  subsection  found  an  association  between  rTPJ  and  attention 

impairment,  without  advocating  a  disconnection  of  this  area  with  other  circuits  but 

interpreting deficits as the consequence of rTPJ damage itself. For example, Shomstein et 

al.  (2010) studied the neural bases of top-down (goal-directed) and bottom-up (stimulus-

driven) attentional orienting. Starting from previous evidence showing the involvement of the 

superior parietal lobule for top-down attentional orienting and rTPJ for bottom-up attentional 

orienting, they selected a group of patients with lesions in these regions of interest. A lesion 

overlap  analysis  showed  a  double  dissociation:  (1)  impairment  of  top-down  attentional 

orienting, but normal bottom-up orienting, was related to superior parietal lobule lesions; (2) 

impairment of bottom-up attentional orienting, but normal top-down orienting, was related to 

TPJ lesions. Together with attentional orienting, rTPJ seems to play a role also in temporal  

attention. Agosta et al. (2017) investigated the capability to perceive the sequential order of 

two  events,  asking  participants  to  perform  temporal  judgment  tasks.  To  this  aim,  they 

conducted two experiments on a group of patients with left and right parietal lesions. Results 

of  the first  experiment  showed reduced visual  temporal  processing in patients with right 

parietal damage, while patients with lesions in the opposite hemisphere performed normally. 

The second experiment confirmed the role of the right parietal brain regions in temporal 

judgments. In particular, repetitive TMS over rTPJ - but not the left TPJ - bilaterally disrupted 

the ability of participants to visually discriminate stimuli across time. Along with attention, 

rTPJ has been found to be implicated in a variety of other functions. For instance, Starkstein 

et al. (1992) investigated the neural correlates of anosognosia, showing that patients with 
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mild or severe anosognosia more often had temporoparietal lesions (among several other 

lesions), as compared to patients with no or moderate anosognosia. As for the relation of 

rTPJ with mental state attribution, in Leigh et al. (2013) patients with right acute stroke were 

recruited  to  investigate  whether  deficits  in  affective  empathy  were  related  to  lesion  site 

alone, or also affected by other aspects, specifically lesion volume, age of patients, neglect, 

and prosody comprehension. What the authors found, confirming previous evidence, is that 

a unilateral lesion of rTPJ is not sufficient to impair affective empathy. Similarly, Cohen-

Zimerman et  al.  (2021)  employed voxel-based lesion-symptom mapping to  examine the 

relationship between focal brain lesions and mental state attribution. They tested a large 

sample of patients selected from the Vietnam Head Injury Study. In line with Leigh et al. 

(2013), Cohen-Zimerman et al. (2021) did not reveal the involvement of rTPJ in mental state 

attribution. Thus, both these studies suggest that rTPJ could not be necessary for mental 

state attribution.  Finally,  rTPJ was also associated with motor functions.  Indeed, several 

studies revealed the role of this brain region in motor planning and sensorimotor integration. 

Singh and Knight (1993) aimed to identify a relation between movement-related potentials, 

measured  in  a  self-paced  button-press  task,  and  unilateral  lesions  in  the  posterior 

association  cortex.  Results  from  this  study  revealed  an  involvement  of  the  posterior 

association  cortex  damage in  reducing  the  movement-related  potential  amplitudes.  This 

result  established  the  role  of  the  superior  parietal  regions  (and  rTPJ)  in  movement 

preparation.  Kaski  et  al.  (2016)  studied  the  neural  underpinnings  of  vestibular-spatial 

perception asking patients with right damage to perform a series of vestibular reorientation 

tasks  in  the  dark.  This  study  showed  that  the  brain  encodes  self-motion  and  spatial 

perception separately and rTPJ seems selectively crucial in spatial perception. The authors 

suggested that this area may work as a mental temporal integrator somehow, in which the 

subjective estimation of motion velocity over time is integrated with the updating of traveled 

distance perception in the dark (i.e., under vestibular guidance). As previously mentioned, in 

the  section  related  to  acquired  brain  injury,  16  papers  explicitly  considered  hemispatial 

neglect. Lesion analysis confirmed that rTPJ is associated with the occurrence of spatial  
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neglect (Demeurisse et al., 1997; Ptak and Schnider, 2011). Crucially, rTPJ contributed to 

predicting the patients’ performance in a variety of visuospatial tasks (Toba et al., 2020). For 

example, Kaufman et al. (2009) found that line bisection deficits in patients with neglect were 

associated with  damage to  the anterior  part  of  rTPJ,  among other  temporal  regions.  In 

addition to gray matter damage, Golay et al. (2008) highlighted that patients who showed 

large bisection bias and small cancellation errors also had white matter damage located in 

the proximity of rTPJ. Similarly, Thiebaut de Schotten et al. (2014) investigated the role of 

white matter disconnection in chronic spatial neglect measured with line bisection and letter 

cancellation. Results of their study revealed that white matter lesions in rTPJ, among other 

frontoparietal areas, predicted whether a patient showed neglect symptoms and had a worse 

bisection  performance.  Pedrazzini  et  al.  (2017)  enrolled  neglect  patients  with  right-

hemispheric lesions to examine which sites were more strongly associated with visuospatial 

processing of single objects or space. They observed that damage to rTPJ was a strong 

predictor of space-based variables only, suggesting that space and object-based processing 

have distinct neural bases and that space-based processing is grounded in rTPJ. Additional 

typical manifestations of neglect encompass the phenomenon of visual extinction, which is 

the inability of brain-damaged patients to detect a contralesional target in the presence of a 

competing ipsilesional stimulus. In a study by Karnath et al. (2003), the authors classified 

patients  into  three  groups  according  to  their  symptoms:  pure  extinction  (no  neglect), 

extinction plus neglect, and pure neglect (no extinction). Results showed that patients with 

extinction and neglect had lesions comparable to that of pure extinction patients, namely at 

the level of rTPJ, covering also other temporoparietal areas. Instead, extinction plus neglect 

patients reported greater damage of rTPJ compared to those with extinction only. Also, Ticini 

et al. (2010) focused on visual extinction, conducting normalized perfusion-weighted MRI 

analysis. Findings indicated that patients with visual extinction showed cortical malperfusion 

around rTPJ. Altogether, these findings lend support to the hypothesis that rTPJ is essential 

for the bottom-up detection of stimuli.  Together with visuospatial processing, it  has been 

found that rTPJ is implicated in a variety of other functions. Among these, Chechlacz et al. 
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(2014) showed that areas typically associated with neglect may support visuospatial memory 

performance. In a recent study, Dressing et al. (2020) investigated the relationship between 

neglect and apraxia (an impairment in tool use or imitation of gestures, naturalistic actions, 

and meaningless postures) in patients with right hemisphere damage. Interestingly, voxel-

based lesion-symptom mapping revealed a negative correlation between apraxia and rTPJ 

integrity.  Others  investigated  the  anatomical  substrates  of  neglect  dyslexia  showing  the 

pivotal contribution of rTPJ in reading (Lee et al., 2009). Finally, Rousseaux et al. (2015) 

examined the neural correlates of behavioral  manifestations of neglect in daily activities. 

Findings revealed that difficulties in daily living mainly resulted from subcortical white matter 

lesions underlying rTPJ, among other temporoparietal areas. A separate mention should be 

made for all those studies that have investigated how rTPJ disconnection from other areas 

or networks can yield different consequences. Hattori et al. (2018), for example, showed that 

in patients with rTPJ lesions the VAN was damaged.  Lesions included the white matter 

connecting rTPJ and surrounding areas with frontal regions. Moreover, in those patients with 

infarction in the territory of the posterior cerebral artery, white matter tracts connecting the 

thalamus  to  rTPJ  and  the  surrounding  areas  were  damaged.  The  authors  argued  that 

different lesion patterns may underlie different neglect phenotypes. Specifically, damage to 

the VAN impairs stimulus-driven, bottom-up attentional reorienting from current focus to new 

and unexpected focus by modulating the DAN. Instead, damage in the thalamus and related 

white  matter  tracts  may  secondarily  impair  the  spatial  attention-related  cortices  due  to 

interrupted somatosensory and feedback information from the thalamus. In another study, 

Committeri  et  al.  (2015)  tested  patients  for  representational  neglect,  visual 

extrapersonal/perceptual  neglect,  and  personal  neglect.  Results  showed  that  only  rTPJ 

emerged as significantly more involved in the genesis of representational neglect for places. 

In  particular,  the  posterior  rTPJ  appeared  uniquely  connected  with  the  DMN.  Finally, 

Pedrazzini and Ptak (2020) investigated the neural bases of spatial awareness, which is 

particularly impaired in neglect. Results showed that damage at the supramarginal part of 

rTPJ,  together  with  frontoparietal  connections,  was  the  best  predictor  of  neglect.  To 
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summarize, regarding the functional alteration investigated by each study, acquired rTPJ 

damage  was  associated  with  impairment  of  attention,  awareness,  executive  functions, 

visuospatial memory, spatial perception, movement preparation, and difficulties in activities 

of daily living (see Table 1). These deficits have been interpreted in two ways: locally or 

globally. The local explanation considers the functional impairment as a direct consequence 

of the rTPJ lesion. Instead, the global explanation outlines a more complex scenario where 

the rTPJ damage, together with the alteration to other brain structures, is the cause of the 

functional impairment. 

3.2 Neurodegenerative diseases

Neurodegenerative  diseases  are  a  group  of  disorders  characterized  by  the  progressive 

degeneration of nerve cells,  in the central  or the peripheral neural system (Palop et al.,  

2006). Fifteen studies were included in this subgroup, 13 studies comprise patients with 

various  types  of  dementia  or  cognitive  impairment,  including  Alzheimer’s  Disease  (AD), 

frontotemporal  dementia  (FTD),  mild  cognitive  impairment  (MCI),  functional  neurological 

disorder,  corticobasal syndrome, dementia with Lewy bodies (DLB). Two out of 15 were 

conducted on patients with PD. Among the studies that investigated the relationship between 

rTPJ and attention in AD patients, the one by Sorg et al. (2012) found that direction and 

degree of spatial attention bias correlated with TPJ activity. Furthermore, Yamashita et al. 

(2019)  showed  that  the  connectivity  between  rTPJ  and  posterior  parietal  cortex  was 

diminished in poor performers during a task on orientation for time. In another study, Luks et 

al.  (2010)  recruited  a  heterogeneous  group  of  patients  with  several  neurodegenerative 

disorders.  Results  showed  that  the  atrophy  in  the  TPJ-ventrolateral  prefrontal  cortex 

(VLPFC)  network  was  associated  with  slower  attentional  control  in  accurate  trials.  This 

network  (i.e.,  TPJ-VLPFC) is  thought  to  be responsible  for  reorienting attention towards 

salient and infrequent stimuli, in a bottom-up fashion. In the absence of an efficient top-down 

attentional  control  system mediated  by  the  DLPFC-ACC network,  accurate  and  speedy 
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processing  of  incongruent  Flanker  task  stimuli  may  be  accomplished  by  the  bottom-up 

reorienting  and  inhibitory  mechanisms of  the  TPJ-VLPFC network.  A  limited  number  of 

studies also focused on aspects related to selfawareness, such as Pickut et al. (2013) who 

found increased gray matter density in a variety of regions, including bilateral TPJ, in a group 

of  PD  patients  who  followed  an  8-week  mindfulness-based  intervention  compared  to 

standard training. Concerning self-awareness, Zamboni et al. (2010) found that in patients 

with various forms of FTD, the degree of anosognosia for behavioral impairment (which is a 

condition in which patients are often partially, if not completely, unaware of the behavioral 

deficits) correlated with gray matter atrophy in the posterior regions of the brain, near rTPJ 

region, suggesting a role for rTPJ in anosognosia and general self-awareness. Also, Baez et 

al.  (2019) tested patients with behavioral  variant  FTD (bvFTD) and patients with bipolar 

disorder, which present overlapping symptoms with the neurodegenerative disorder in the 

domain  of  cognitive  and  social  functioning.  BvFTD  patients,  who  also  showed  greater 

executive functions and theory of  mind deficits  than psychiatric  patients,  had atrophy in 

several regions, including rTPJ. The authors suggested that rTPJ is intended as part of the 

extended  cortical-limbic  networks,  which  play  a  role  in  social  cognition.  As  for  memory 

deficits, Kang et al. (2019) investigated the effects of AD and DLB on cognition and brain 

atrophy, and they found that AD was associated with prominent memory deficits and brain 

atrophy in the medial temporal lobe and temporoparietal association cortices, while DLB was 

characterized by visuospatial, attention, and executive dysfunction. The majority of studies 

found an impairment of rTPJ while investigating the structural and functional integrity of the 

brain, without a priori focus on a specific cognitive domain. Qian et al. (2015) investigated 

the functional and structural substrates of attention by testing the integrity of the VAN and 

DAN networks. Their data showed decreased functional connectivity in the orbital ventral 

frontal cortex and TPJ region in AD patients, whereas functional connectivity was preserved 

in amnestic MCI compared with controls. In addition, gray matter density in the right ventral 

frontal cortex was correlated with functional deterioration in rTPJ and ventral frontal cortex in 

AD. Recently, De Marco et al. (2019) used structural MRI data of AD, MCI patients, and 
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controls  to  disentangle  DMN  patterns  that  are  associated  with  normal  aging  or 

neurodegeneration.  They  found  a  significant  positive  association  between  hippocampal 

volumes and the DMN connectivity in rTPJ. The authors suggested that rTPJ may subserve 

ToM processes and social cognition through its connection to the DMN. They also found an 

association between rTPJ and verbal episodic memory. Diez et al.  (2019) observed that 

altered  connectivity  in  rTPJ  (as  part  of  the  multimodal  integration  network)  and  insular 

regions  correlated  with  neurological  symptoms,  including  altered  interoception  and 

self/emotional awareness. These results suggested that the functional alteration in insula 

and  rTPJ  play  a  crucial  role  in  promoting  altered  awareness  in  functional  neurological 

disorders. In addition, the study of Zou et al. (2014) revealed a decrease in cerebral blood 

flow values in AD patients compared to controls in bilateral frontal regions, the temporal 

lobe,  bilateral  TPJ,  as  well  as  parietal  and  hippocampal  regions.  In  a  longitudinal 

investigation, a significant correlation between the worsening of depression and the lowering 

of the cortical thickness in rTPJ over time (after approximately 18 months) was observed in 

non-demented PD patients (Hanganu et al., 2017). Three studies investigated the role of 

apathy  in  patients  with  neurodegenerative  disorders,  finding  structural  or  functional 

implications of rTPJ. Along this line, Blanc et al. (2015) investigated cortical thickness in a 

variety of patients with neurodegeneration. In the patients with DLB, the cortical thinning was 

found predominantly in rTPJ, insula, and other cortices, as compared to controls. In another 

study, Rohrer et al. (2012) examined patients with primary progressive aphasia with AD or 

the  presence  of  cerebrospinal  fluids  compatible  with  AD,  showing  a  pattern  of  cortical 

thinning in many regions when patients were compared to controls. In those patients with 

more severe diseases, they found increased involvement of the left anterior temporal and 

frontal cortices, posterior cingulate, medial temporal lobe, and rTPJ. Another study had a 

similar aim, namely to investigate the cortical changes in association with apathy (Eslinger et 

al., 2012). They showed that apathy was significantly correlated with atrophic changes in 

several  regions,  including  rTPJ  in  patients  with  bvFTD,  compared  to  other  forms  of 

dementia. Behaviorally, multiple measures of executive function and social cognition were 
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impaired in the bvFTD sample. To sum up, this paragraph shows how the involvement of 

rTPJ  in  neurodegenerative  disorders  is  associated  with  a  variety  of  impairments. 

Functionally,  deficits  associated  with  rTPJ  consisted  of  impairment  of  attention,  social 

cognition,  executive  functions,  awareness  (anosognosia),  memory,  and  language.  In 

addition,  several  studies showed the relationship between rTPJ, mood, and apathy (see 

Table 1). 

3.3 White matter disease

In this paragraph, we discuss studies on a group of heterogeneous disorders that engage 

degeneration of the white matter of the brain, which could disrupt cognitive functioning or 

result  in  other  symptoms.  Studies  on  patients  with  white  matter  disruptions  can  help 

investigate whether and how structural disconnections also impact rTPJ functioning. Five 

studies have been included in this subgroup, 4 studies with patients with multiple sclerosis 

(MS),  and  1  study  on  patients  with  white  matter  hyperintense  lesions.  In  a  first  study, 

Carotenuto et al. (2018) tested MS patients, who showed a correlation between rTPJ and 

deficits in pragmatic and communicative abilities (tested with the Assessment of Pragmatic 

Abilities and Cognitive Substrates - APACS - test, Arcara and Bambini, 2016). Here, a direct 

correlation between the APACS score and a cluster within the paracingulate cortex was 

found when evaluating the right Geschwind’s area (encompassing rTPJ), thus showing a 

relation between this area and pragmatics abilities. Huang et al. (2019) tested patients with 

relapsing-remitting MS that showed decreased dynamic functional connectivity within both 

the  DAN and  VAN,  of  which  rTPJ  is  part,  but  increased  connectivity  between  the  two 

networks; they also found that the connectivity between rTPJ and right ventral frontal cortex 

was  negatively  correlated  with  the  total  white  matter  lesion  loads,  suggesting  that  the 

detected effects of transient connectivity pattern are relevant to the lesions damage (Huang 

et  al.,  2019).  Kim  et  al.  (2019)  tested  resting-state  connectivity  in  MS  patients  using 

magnetoencephalography. They reported an increase in alpha-band neural power in rTPJ, 
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particularly in a subgroup of patients who experienced mixed neuropathic pain; the authors 

suggested  that  this  effect  may  reflect  an  overactivity  of  rTPJ  for  overflowing  sensory 

information. In another study, altered connectivity of rTPJ with the DMN was found in a 

subgroup of MS patients with mixed-neuropathic pain (Bosma et al., 2018). This result was 

interpreted  as  the  index  of  an  altered  engagement  of  the  ascending  nociceptive  and 

descending  modulation  pathway.  Peng  et  al.  (2016)  quantified  with  voxel-based 

morphometry the gray matter density and correlated it with the white matter hyperintense 

load, this latter visually estimated by two expert neurologists. The authors found that patients 

with white matter hyperintense lesions had a greater increase in gray matter density in rTPJ. 

They also found a negative correlation between rTPJ and white matter lesion load (Peng et 

al., 2016). 

3.4 Other pathologies

Five papers studied the involvement of  rTPJ in pathologies not included in the previous 

sections (see Table 1). The first two studies focused on epileptic patients. Beauchamp et al. 

(2012) investigated the perception of phosphenes following electrical stimulation of the visual 

cortex, in patients with subdural electrodes for surgical treatment of epilepsy. Electrodes in 

the visual cortex provided the stimulation, whereas the non-stimulating electrodes implanted 

in other sites of the brain were used for recording. Results showed that a much greater 

response of gamma oscillations (60–150 Hz) was observed in TPJ and close areas during 

electrical  stimulation of  the visual  cortex,  particularly  when phosphenes were perceived. 

Jiang et al. (2018) aimed at assessing the functional and causal connectivity patterns of the 

attention networks and DMN in patients with refractory epilepsy, using fMRI. All  patients 

showed a decreased activation within the VAN in the bilateral TPJ and prefrontal cortex and 

the  interaction  between  the  attention  networks  (VAN,  DAN)  and  DMN  was  altered,  as 

compared  to  controls.  One  of  the  remaining  four  studies  considered  psychogenic 

nonepileptic  seizures.  Peterson  et  al.  (2018)  stimulated  a  small  group  of  patients  with 
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psychogenic non-epileptic  seizures with repetitive TMS over rTPJ,  finding a decrease in 

weekly seizure rates after treatment. Improvement was also associated with lower measures 

of dissociation (particularly, conversion disorder). One study focused on the administration of 

transcutaneous auricular vagus nerve stimulation (taVNS) in migraine patients (Zhang et al., 

2019). Results showed that functional connectivity in rTPJ and other sites (hippocampal, 

temporal, parietal, and pontine regions) significantly increased following real compared to 

sham stimulation. Other significant results included increases in resting-state connectivity 

between rTPJ and locus coeruleus, and between rTPJ and left secondary somatosensory 

cortex. Such increases were negatively associated with the frequency of migraine attacks 

during the preceding month.  Finally,  Lu et  al.  (2018) tested chronic hemianopic patients 

during visual rehabilitation training. Besides improvements in their contrast sensitivity (no 

behavioral attention tests were administered), functional connectivity results show increased 

activation in rTPJ after  training and strengthening of  connectivity  between cingulate and 

insular regions to rTPJ (as part of the attention network). 
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Table 1. A summary of the studies included in the systematic review.

Authors Year Damage Pathology Participants Neuroimagin
g
 method

Attentio
n

Awareness 
and social 
cognition

Langua
ge

Executive 
functions

Memory Other
domains

Behavioral 
measurements

Neuroimaging 
measurements

Findings (related to the rTPJ)

Agosta et 
al.,

2017 Bilateral 
damage

Acquired 
brain injury

Experiment 1: 
18 RD, 5 LD, 
18 HC; 
Experiment 2: 
10 HC

MRI and NIBS AIM 
temporal 
attention

- - - - - Computerized task: 
simultaneity judgment 
task

Repetitive transcranial 
magnetic stimulation

Results from the first experiment showed reduced visual 
temporal processing in patients with the right parietal 
damage, instead of patients with damage in the opposite 
hemisphere that performed normally. The second 
experiment confirmed the role of the right parietal brain 
regions in temporal judgments. In particular, repetitive 
TMS over the rTPJ - but not homologous one - bilaterally 
disrupted the ability of participants to visually discriminate 
stimuli across time

Boccia et 
al.,

2020 Right 
damage

Acquired 
brain injury

26 RD, 39 HC MRI - AIM body 
structural 
representati
on

- - - - Computerized battery 
of tasks developed by 
the group to test body 
representations

Voxel-based lesion-
symptom mapping

The rTPJ, together with other areas, may be crucial in the 
integration of body sensations to achieve a global body 
representation

Cohen-
Zimerman 
et al.,

2020 Traumatic 
brain injury

Acquired 
brain injury

16 rTPJ, 7 
lTPJ, 30 
rDLPFC, 28 
lDLPFC, 34 
with no lesion 
in the PFC or 
the TPJ 
bilaterally, 30 
HC

MRI - AIM theory 
of mind

- - - - The strange stories 
test

Voxel-based lesion-
symptom mapping

The rTPJ was not involved in mental state attribution

Kaski et 
al.,

2016 Right 
damage

Acquired 
brain injury

18 RD, 2 
avestibular 
patients, 14 
HC

MRI - - - - - AIM 
vestibular-
spatial 
perception, 
travelled 
distance, 
motion 
duration

Subjective angular 
position, velocity, and 
motion duration during 
whole-body angular 
rotations in the dark

Voxel-based lesion–
symptom mapping

Patients with rTPJ damage showed impaired spatial 
orientation performance. This group of patients 
underestimated both the travelled distance and the motion 
duration during a task performed in the dark

Leigh et 
al.,

2013 Right 
damage

Acquired 
brain injury

28 RD, 24 HC MRI - AIM 
affective 
empathy

- - - - Affective and cognitive 
empathy measured 
with several tasks: the 
Affective Empathy 
Task (stories), the 
Interpersonal 
Reactivity Index, the 
Aprosodia Battery

Diffusion weighted 
image 

A unilateral lesion of the rTPJ is not sufficient to impair 
affective empathy

Mandonn
et et al.,

2017 Right 
damage

Acquired 
brain injury

Single case fMRI - - - AIM set-
shifting 
abilities

- - Several tasks to 
explore: language 
functions, praxis, non-
verbal semantic 
association, calculus, 
memory, attention, 
spatial awareness, 
executive functions

Resting state fronto-
parieto-temporal 
networks extracted by 
means of ICA

The surgical disconnection of the rTPJ from the fronto-
temporo-parietal network led to a selective impairment of 
cognitive flexibility, in particular the deterioration in set-
shifting abilities

Martinaud 
et al.,

2017 Right 
damage

Acquired 
brain injury

31 RD MRI - AIM body 
perception

- - - - A modified version of 
the Cutting 
questionnaire 

Voxel-based lesion–
symptom mapping

Damage associated with disturbed sensation of limb 
ownership included, among several areas, the rTPJ
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(Cutting, 1978)

Monai et 
al.,

2020 Bilateral 
damage

Acquired 
brain injury

35 
hemiplegia, 
28 
anosognosia 
for hemiplegia

MRI - AIM 
anosognosi
a for 
hemiplegia

- - - - - Disconnectome maps The disconnection between the inferior frontal gyrus with 
the TPJ may be critical in anosognosia for hemiplegia 
because this latter seems to integrate multimodal signals 
(body and visuospatial signals) and switch from inner to 
external perspectives

Pedrazzin
i and 
Ptak,

2019 Right 
damage

Acquired 
brain injury

10 rTPJ, 9 
IPFC/insula, 
10 subcortical 
damage, 12 
HC

MRI AIM 
orienting 
attention

- - - - - Computerized task: 
spatial cueing task

Voxel-based lesion-
symptom mapping

Patients with TPJ damage, but not the group with lateral 
prefrontal cortex/insula damage, exhibited exaggerated 
attention to behaviorally relevant cues

Shomstei
n et al.,

2010 Right 
damage

Acquired 
brain injury

9 RD, 9 HC MRI AIM 
attention
al 
orienting

- - - - - To examine the 
integrity of top-down 
attentional orienting: a 
variant of the Sperling 
and Reeves (1980) 
task. To examine the 
bottom-up attentional 
orienting abilities: a 
variant of Folk et al.’s 
(2002) contingent 
paradigm 

Lesion overlap 
analysis

rTPJ damage was associated to impairment of bottom-up 
attentional orienting (but normal top-down orienting)

Singh and 
Knight,

1993 Bilateral 
damage

Acquired 
brain injury

7 TPJ, 5 
lateral parietal 
lesion, 5 
lateral parietal 
and TPJ 
damage, 14 
HC

EEG - - - - - AIM self-
initiated 
movements

Self-paced switch 
closures

Movement-related 
potentials

Role of the superior parietal regions (and the rTPJ) for 
movement preparation

Starkstein 
et al.,

1992 Bilateral 
damage

Acquired 
brain injury

80 BD (stroke) CT - AIM 
anosognosi
a

- - - - Anosognosia 
questionnaire

Lesion volume Patients with mild or severe anosognosia typically had 
temporoparietal damage compared to patients with no or 
moderate anosognosia

Wawrzyni
ak et al.,

2018 Bilateral 
damage

Acquired 
brain injury

10 patients 
not 
experiencing 
the RHI 
(RHI-), 37 
experiencing 
the RHI 
(RHI+), 40 HC

fMRI - AIM illusory 
body-
ownership 
feeling

- - - - RHI paradigm Lesion network-
symptom-mapping 

Differences between who suffers from RHI failure and not 
were evident in the rTPJ, demonstrating the involvement of 
the rTPJ in eliciting the illusory body-ownership feeling

Chechlac
z et al.,

2014 Bilateral 
damage

Acquired 
brain injury 
(neglect)

57 BD, 100 
HC

MRI AIM 
spatial 
attention

- - - AIM 
working 
memory

- Corsi Block Task, 
visual extinction, and 
Apple cancellation 
task 

Voxel-based 
morphometry; tract-
wise lesion deficit 
analysis

Areas typically associated with neglect (e.g., the rTPJ) 
may support visuospatial memory performance

Committe
ri et al.,

2015 Right 
damage

Acquired 
brain injury 
(neglect)

40 RD fMRI AIM 
visuospa
tial 
attention

- - - - - Representational 
neglect: Squares test 
(familiar places); 
familiar objects 
(O'clock test); Visual 
extrapersonal neglect 
(Letter Cancellation 
Test, Line 
Cancellation Test, 
Wundt-Jastrow Area 
Illusion Test, 
Sentence Reading); 
personal neglect 
(semi-structured 

Voxel-based lesion-
symptom mapping

The TPJ emerged as significantly more involved in the 
genesis of representational neglect for places
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scale)

Demeuris
se et al.,

1997 Right 
damage

Acquired 
brain injury 
(neglect)

28 RD, 14 HC 
(only for 
behavioral 
normative 
data)

SPECT AIM 
spatial 
attention

- - - - - Letter cancellation 
task, Copy of Rey's 
figure,  Albert's 
cancellation task, 
Spontaneous drawing 
of a wheel, Zazzo's 
cancellation task, Line 
bisection task, 
Reading of composite 
words

Cerebral blood flow Neglect patients could be distinguished from patients 
without neglect by the presence of a remote decrease in 
cortical cerebral blood flow in the right temporoparietal 
region

Dressing 
et al.,

2020 Right 
damage

Acquired 
brain injury 
(neglect)

138 RD 
patients, 29 
HC (only for 
behavioral 
normative 
data)

MRI AIM 
spatial 
attention

- - - - AIM 
apraxia

Apraxia: imitation of 
meaningless gestures, 
pantomime of tool 
use; neglect: 
observation for signs 
of neglect, wiggle test, 
bells cancellation, line 
bisection, Ota test

Voxel-based lesion-
symptom mapping

Imitation of meaningless postures was related to various 
lesion clusters, one of those is located in the rTPJ

Golay et 
al.,

2008 Right 
damage

Acquired 
brain injury 
(neglect)

50 RD (28 
with and 22 
without 
neglect)

MRI AIM 
spatial 
attention

- - - - - Line cancellation, 
bisection and copying 
of drawings tests

Voxel-based lesion-
symptom mapping

The region differentiating best between neglect and control 
patients reached far into the white matter beneath the TPJ 
and STG

Hattori et 
al.,

2018 Right 
damage

Acquired 
brain injury 
(neglect)

59 RD (34 
with and 25 
without 
neglect), 5 HC

MRI AIM 
spatial 
attention

- - - - - Line cancellation, line 
bisection, cube 
copying test, clock 
drawing test

Non-parametric voxel 
based analysis

In patients with rTPJ lesions the VAN was damaged

Karnath 
et al.,

2003 Right 
damage

Acquired 
brain injury 
(neglect)

27 RD, 7 HC MRI AIM 
visual 
extinctio
n and 
spatial 
attention

- - - - - - Lesion overlap 
analysis

Lesion overlap analysis showed a relation between visual 
extinction and lesions at the rTPJ

Kaufman 
et al.,

2009 Right 
damage

Acquired 
brain injury 
(neglect)

23 RD MRI AIM 
spatial 
attention

- - - - - Line bisection Multiperturbation 
analysis approach for 
lesion-symptom 
mapping

Among several regions, the rTPJ predicted line bisection 
performance 

Lee et al., 2009 Right 
damage

Acquired 
brain injury 
(neglect)

30 patients 
with neglect 
dyslexia, 50 
patients 
without 
neglect 
dyslexia

MRI AIM 
neglect 
dyslexia

- - - - - Neglect: line bisection, 
Character Line 
Bisection Task, 
modified Albert's line 
cancellation test, Star 
Cancellation task, 
figure copying 
(modified Ogden 
Scene test, Two daisy 
figure); Neglect 
Dyslexia: single or 
compound words that 
varied in length from 
two to six syllables

Lesion location 
analysis

Lesions that were often associated with neglect were 
located in the region of the rTPJ, but patients with neglect 
dyslexia had on average larger lesions compared to the 
patients with neglect only

Pedrazzin
i and 
Ptak,

2020 Right 
damage

Acquired 
brain injury 
(neglect)

134 RD MRI AIM 
spatial 
attention

- - - - - Bells cancellation test, 
letter cancellation, line 
bisection, and reading 
compound words

Voxel-based lesion–
symptom mapping

One of the best predictors of impaired spatial exploration 
was a selective damage to the supramarginal part of the 
rTPJ

Pedrazzin 2017 Right Acquired 
brain injury 

101 RD MRI AIM 
spatial 

- - - - - Bells cancellation, 
letter cancellation, line 

Lesion site The TPJ was the only strong predictor of space-based 
processing
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i et al., damage (neglect) attention bisection, reading of 
compound words

Ptak and 
Schnider,

2011 Right 
damage

Acquired 
brain injury 
(neglect)

29 RD (20 
with and 9 
without 
neglect), 10 
HC

MRI AIM 
spatial 
attention

- - - - - Computerized spatial 
cueing task

Voxel-based lesion-
symptom mapping

The TPJ is critical for the occurrence of spatial neglect but 
does not explain participants' performance in the cueing 
task

Rousseau
x et al.,

2015 Right 
damage

Acquired 
brain injury 
(neglect)

45 RD MRI AIM 
spatial 
attention 

AIM 
anosognosi
a

- - - AIM 
activities of 
daily living 

Peripersonal neglect: 
line bisection and 
target cancellation; 
personal neglect: 
reaching, test of the 
subjective straight-
ahead; anosognosia 
for behavioral 
difficulties: 
discrepancy between 
clinician's and 
patient's ratings on 
Catherine Bergego 
Scale; anosognosia 
for hemiplegia or 
visual perception 
deficits: Bisiach's test 
for anosognosia

Voxel-based lesion-
symptom mapping

Difficulties in daily living resulted from subcortical white 
matter lesions underlying the rTPJ, among other 
temporoparietal areas

Thiebaut 
de 
Schotten 
et al.,

2014 Right 
damage

Acquired 
brain injury 
(neglect)

58 RD (38 
with and 20 
without 
neglect)

MRI AIM 
spatial 
attention

- - - - - Line bisection, letter 
cancellation

Voxel-based lesion–
symptom mapping, 
standard diffusion 
tensor imaging for 
single cases

Significant involvement of the TPJ, among other areas, in 
line bisection performance, but no involvement of the TPJ 
for letter cancellation performance

Ticini et 
al.,

2010 Right 
damage

Acquired 
brain injury 
(neglect)

13 patients (8 
visual 
extinction+neg
lect, 5 
neglect)

MRI AIM 
visual 
extinctio
n and 
spatial 
attention

- - - - - - Normalized perfusion-
weighted MRI

Patients with visual extinction showed cortical 
malperfusion around the rTPJ

Toba et 
al.,

2017 Right 
damage

Acquired 
brain injury 
(neglect)

25 RD MRI AIM 
spatial 
attention

- - - - - Line bisection, bells 
cancellation, letter 
cancellation

Multiperturbation 
Shapley value 
Analysis

The TPJ had positive interactions with a number of other 
areas and this contributed positively to the performance in 
the three visuospatial attention tests

Baez et 
al.,

2019 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

16 bvFTD, 13 
bipolar 
disorder, and 
22 HC

MRI - INC theory 
of mind

- AIM 
executive 
functions

- - Reading the Mind in 
the Eyes test

Voxel-based 
morphometry

bvFTD and bipolar patients showed an altered structural 
activity in diverse regions; in bvFTD patients atrophy (i.e., 
reduction of  gray matter) of several regions (including the 
rTPJ) was associated with theory of mind impairments

Blanc et 
al.,

2015 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

28 proDLB, 27 
proAD, 31 
DLB, 54 AD, 
33 HC

MRI - - - - - - - Cortical thickness In the patients with DLB the cortical thinning was found 
predominantly in the rTPJ, insula and other cortices, when 
compared to HC

De Marco 
et al.,

2019 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 

86 MCI, 35 
AD, 191 HC

fMRI - - - - INC verbal 
episodic 
memory 

- Prose Memory Test Functional 
connectivity

A positive association was found between hippocampal 
volumes and default mode network connectivity in the 
rTPJ; an association between the rTPJ and verbal episodic 
memory was found

41



impairment
)

Diez et 
al.,

2019 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

30 patients 
with motor 
FND, 30 HC

Resting-state 
fMRI

- INC 
awareness

- - - - Screening for 
Somatoform 
Symptoms 
Conversion Disorder 
subscale and patients 
Health questionnaire

Graph-theory 
stepwise functional 
connectivity

FND patients had increased connectivity from motor 
regions to the bilateral posterior insula, TPJ, middle 
cingulate cortex and putamen. Interestingly, symptoms 
severity correlated with enhanced SFC from the left 
anterior insula to the right anterior insula and TPJ, 
supplementary motor area and sensorimotor areas

Eslinger 
et al.,

2012 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

26 FTD (12 
bvFTD, 7 
progressive 
non-fluent 
aphasia, 7 
semantic 
dementia), 16 
HC

MRI - - - - - AIM apathy Apathy Evaluation 
Scale

Voxel-based 
morphometry

Apathy was significantly correlated with atrophic changes 
in several regions, including the rTPJ in the subgroup of 
bvFTD

Kang et 
al.,

2019 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

26 ADCI (18 
MCI and 8 
dementia), 28 
LBCI (13 MCI 
and 15 
dementia), 
and 54 mixed 
ADCI and 
LBCI (17 MCI 
and 37 
dementia), 38 
HC

MRI AIM 
attention
, 
visuospa
tial 
abilities

- AIM 
languag
e

AIM 
executive 
functions

AIM Verbal 
learning, 
memory

- Seoul 
neuropsychological 
screening battery

Cortical thickness ADCI and LBCI groups were independently associated 
with cortical thinning in the association cortices, including 
the bilateral TPJ, medial and lateral parietal, and DLPFCs 
cortices. The mixed group, namely the group that had 
concomitant ADCI and LBC, had additional cortical 
thinning in widespread association cortices, including 
bilateral TPJ

Luks et 
al.,

2010 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

65 mixed 
neurodegener
ative 
diseases, 22 
HC

MRI - - - INC 
attentional 
control

- - Flanker task Voxel-based 
morphometry

The atrophy in the TPJ–VLPFC network was associated 
with slower attentional control on accurate trials

Qian et 
al.,

2015 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

12 aMCI, 16 
AD, 15 HC

fMRI - - - - - - - Functional 
connectivity

Decreased functional connectivity in the orbital ventral 
frontal cortex and the TPJ in the AD patients, functional 
connectivity was preserved in aMCI compared with HC. In 
addition, gray matter density in the right ventral frontal 
cortex was correlated with functional deterioration in the 
rTPJ and ventral frontal cortex in AD

Rohrer et 
al.,

2012 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

19 AD, 23 HC MRI - - - - - - Neuropsychological 
testing

Cortical thickness In patients with more severe diseases there was increased 
involvement of the left anterior temporal and frontal 
cortices and in the right hemisphere with involvement of 
the TPJ

Sorg et 
al.,

2012 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

35 AD, 23 HC 
for PET, 36 
HC for task

PET AIM 
spatial 
attention

- - - - - Visual attention 
paradigm and partial- 
and whole-report 
paradigms

Brain metabolism Direction and degree of spatial attention bias (towards the 
left or the right) was correlated with direction and degree of 
an interhemispheric metabolism bias in the inferior parietal 
lobe and the TPJ

Yamashit 2019 Neurodege Neurodege 22 AD, 10 HC resting-state AIM - - - - - Orientation for time, a Functional The connectivity between the rTPJ and PCC (that is part of 
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a et al., neration nerative 
disease 
(dementia 
or cognitive 
impairment
)

fMRI orientati
on for 
time

subscale of the MMSE connectivity the default mode network) was diminished in the OT-poor 
AD 

Zamboni 
et al.,

2010 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

27 bvFTD, 12 
aFTD, 31 
CBS

MRI - AIM 
awareness 
and 
anosognosi
a

- - - - Anosognosia 
(measured as patient-
caregiver 
discrepancy)

Voxel-based lesion-
symptom mapping 

The degree of anosognosia for behavioral impairment 
correlated with gray matter atrophy in the posterior regions 
of the brain, near the rTPJ

Zou et al., 2014 Neurodege
neration

Neurodege
nerative 
disease 
(dementia 
or cognitive 
impairment
)

20 AD, 20 HC MRI, magnetic 
resonance 
spectroscopy

- - - - - - - Cerebral blood flow 
and spectrum 
variables

It was found a decrease in cerebral blood flow values in 
AD patients compared with elderly controls in the bilateral 
frontal regions, in the temporal lobe, in both TPJ

Hanganu 
et al.,

2017 Neurodege
neration

Neurodege
nerative 
disease 
(Parkinson)

24 PD MRI - - - - - AIM 
depression

Beck Depression 
Inventory (BDI-II) 
scale

Cortical thickness Significant correlation between the worsening of 
depression over time and lower cortical thickness over 
time in the rTPJ 

Pickut et 
al.,

2013 Neurodege
neration

Neurodege
nerative 
disease 
(Parkinson)

14 PD target 
training, 13 
PD other 
training

MRI - - - - - - 8-week mindfulness 
based intervention

Voxel-based 
morphometry

Increased gray matter density in a variety of regions 
including the TPJ bilaterally in the group that underwent 
the mindfulness training

Bosma et 
al.,

2018 Neurodege
neration

White 
matter 
disease

31 MS, 31 HC Resting-state 
fMRI

- - - - - - Pain questionnaire Static and dynamic 
functional connectivity 

Abnormalities in the connectivity between salience network 
and default mode network

Carotenut
o et al.,

2018 Neurodege
neration

White 
matter 
disease

36 MS Resting-state 
fMRI

- - AIM 
pragmati
c 
abilities

- - - The Assessment of 
Pragmatic Abilities 
and Cognitive 
Substrates (APACS)

Seed-based mediated 
functional connectivity

Correlation between the rTPJ and deficit in pragmatic and 
communicative abilities

Huang et 
al.,

2019 Neurodege
neration

White 
matter 
disease

22 MS, 22 HC fMRI - - - - - - - Dynamic functional 
connectivity

Decreased dynamic functional connectivity within both the 
dorsal and ventral attention networks, of which the rTPJ is 
part of, but increased connectivity between the two 
networks. Moreover, the connectivity between the rTPJ 
and the right ventral frontal cortex was negatively 
correlated with the total white matter lesion loads

Kim et al., 2019 Neurodege
neration

White 
matter 
disease

27 MS, 26 HC Resting-state 
MEG

- - - - - AIM pain Pain, neuropathic 
pain, and pain 
interference with 
activities of daily living

Resting-state regional 
spectral power

Increase in alpha power in the rTPJ, as part of the salience 
network, in particular in a subgroup of patients which 
experienced mixed neuropathic pain

Peng et 
al.,

2016 Neurodege
neration

White 
matter 
disease

23 patients 
with white 
matter 
hyperintense 
lesions, 23 
HC

MRI - - - - - - - Voxel-based 
morphometry

Decrease and increase gray matter density in a variety of 
cortical regions, including the rTPJ, in which they found a 
general greater increase in the white matter. It was also 
found a negative correlation between the rTPJ and white 
matter lesion load hyperintensity

Beaucha
mp et al.,

2012 - Other 
pathologies

3 epilepsy EEG - - - - - - Self-reported 
phoneme perception

Gamma power Gamma oscillations in the TPJ might be a neural signature 
of the phosphene perception
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Jiang et 
al.,

2018 - Other 
pathologies

19 epilepsy, 
21 HC

fMRI - - - - - - - Granger Causality 
Analysis

The influence of the default mode network was weakened 
in patients

Lu et al., 2018 Post-
geniculate 
lesions

Other 
pathologies

7 chronic 
hemianopia 
patients

fMRI - - - - - - Contrast sensitivity Functional 
connectivity

Increased activation in the rTPJ after training and a 
strengthening of connectivity between the anterior 
cIngulate cortex and left insula to the rTPJ

Peterson 
et al.,

2018 - Other 
pathologies

7 PNES NIBS - - - - - - Weekly PNES count - Weekly seizure rates decreased in post vs. pre-treatment. 
Decrease was sustained at 3-month follow-up

Zhang et 
al.,

2019 - Other 
pathologies

29 migraine 
patients (26 in 
final analyses)

fMRI, NIBS - - - - - - Disease duration, 
frequency of migraine 
attacks during the 
past month, score on 
the visual analog 
scale, and score on 
the Migraine Specific 
Quality-of-Life 
Questionnaire

Seed-to-voxel whole-
brain resting-state 
functional connectivity

Increased functional connectivity in the rTPJ. In addition, 
positive association between disease duration and resting-
state functional connectivity change at the rTPJ

List of acronyms (Brain areas)
lDLPFC: left dorsolateral prefrontal cortex; lPFC: lateral prefrontal cortex; lTPJ: left temporoparietal junction; PCC: posterior cingulate cortex; PFC: prefrontal cortex; rDLPFC: right dorsolateral prefrontal cortex; rTPJ: right temporoparietal junction; STG: superior temporal gyrus; VLPFC: 
ventrolateral prefrontal cortex.

List of acronyms (Other)
AD: Alzheimer's disease; ADCI: Alzheimer disease-related cognitive impairment; aFTD: aphasic variant frontotemporal dementia; aMCI: amnestic mild cognitive impairment; BD: patients with bilateral damage; bvFTD: behavioral variant frontotemporal dementia; CBS: corticobasal syndrome; CT: 
computerized tomography; DLB: dementia with Lewy bodies; EEG: electroencephalography; fMRI: functional magnetic resonance imaging; FND: functional neurological disorder; HC: healthy controls; LBCI: Lewy body disease-related cognitive impairment; LD: patients with left damage; MCI: mild 
cognitive impairment; MEG: magnetoencephalography; MRI: magnetic resonance imaging; MS: multiple sclerosis; NIBS: non-invasive brain stimulation; PD: Parkinson's disease; PET: positron emission tomography; PNES: Psychogenic non-epileptic seizures; proAD: prodromal Alzheimer's 
disease; proDLB: prodromal dementia with Lewy bodies; RD: patients with right damage; RHI: rubber hand illusion; SPECT: single photon emission computed tomography; TBI: traumatic brain injury.

Notes: For each study, the aim/s has/have been reported highlighting whether results were expected and in line with the hypotheses (“AIM” in Table) or were incidental (“INC” in Table).
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4. Discussion

The  current  study  aimed  to  systematically  investigate  the  rTPJ  contribution  to  several 

neurological deficits,  proposing how a wide variety of deficits may be a consequence of 

impairment  in  higher-order  and  domain-general  predictive  processing,  possibly  but  not 

necessarily,  related to  a  prediction network  (Siman-Tov et  al.,  2019).  This  interpretation 

would unify  several  proposals  and would be in  contrast  to  the interpretation of  rTPJ as 

having specific roles for specific cognitive functions. Results confirmed our hypothesis that 

rTPJ damage or degeneration,  due to direct  lesion or its disconnection from other brain 

regions (see Table S3),  has an impact on several  aspects of  perception,  cognition,  and 

motion.  In  the  next  paragraphs,  we will  argue,  from a  large-scale  perspective,  that  the 

ubiquitous association of rTPJ with manifold functional domains is supported by widespread 

connections with other brain structures/networks. It will be suggested how all these domains 

may underlie a common domain-general prediction-related processing. Then, we will discuss 

the limitations of  the review, as well  as the implications of  predictive processing on the 

interpretation  of  traditional  domains  of  cognitive  functions  both  for  basic  and  clinical 

research. 

4.1 Unveiling the ubiquity of rTPJ

Regardless  of  the  possible  bias  in  the  literature  that  left  some cognitive  domains  (e.g., 

language)  not  adequately  covered,  in  the  present  review  we  have  found  a  ubiquitous 

involvement of rTPJ across pathologies and cognitive tasks (see Table 1). In particular, it 

seems that damage to rTPJ can lead to impairment on almost any type of task, related to 

any main cognitive domain. As summarized in Table 1 and S3, findings from studies meeting 

the inclusion criteria showed how the damage or the disconnection of rTPJ has different 

functional  cognitive  consequences  there  clustered.  In  general,  rTPJ  seems  crucial  for 

attention,  especially  in  spatial  attention.  The  second  greater  cluster  of  deficits  included 
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studies on awareness and social cognition, considered as the inability or the difficulty of 

patients  to  maintain  a  proper  self-  or  other-perception.  Deficits  in  the  representation  of 

someone else’s  beliefs  (i.e.,  ToM),  difficulties to  build  up an appropriate body structural 

representation, and anosognosia are typical problems of this cluster. The systematic search 

shows, in addition, functional impairments involving other domains: motor deficits (including 

in this group also reduced goal directed behaviors for a lack of motivation, i.e., apathy) and 

executive functions. Finally, a marginal number of studies established that rTPJ is linked to 

language and memory. The sequelae of neurological disorders related to rTPJ can lead to 

interpreting all these deficits as the consequence of the disruption of specific domains. As 

such,  within a modular  view that  assumes a one-to one correspondence between brain 

structures and functions, it would be reasonable to infer that rTPJ plays a key role in all 

these  domains:  attention,  awareness,  social  cognition,  executive  functions,  memory, 

language, and motor functioning. However, in the era of networks, this “local” interpretation 

may sound simplistic since it neglects evidence showing how these impairments can result 

from  a  variety  of  other  etiologies  (e.g.,  attention  impairments  following  frontal  lesions). 

Hence, a large-scale approach may provide a better understanding of brain functioning, also 

outlining  a  multifaceted  characterization  and  prediction  of  the  consequences  following 

neurological  disorders.  Within  a  predictive  framework,  we  argue  that  the  ubiquitous 

involvement of rTPJ in cognition is supported anatomically and functionally by its connection 

with several brain areas, where it integrates diverse information and updates internal models 

and  expectations  regardless  of  the  network  in  which  it  is  involved.  Classically,  rTPJ  is 

considered one of the core areas of the right-lateralized VAN, which controls reorienting of 

attention,  whereas  the  DAN  mainly  controls  sustained  attention.  Within  the  VAN,  rTPJ 

processes stimuli that are unattended, but relevant to the task at hand. rTPJ is also assumed 

to respond to the salience of such stimuli (Corbetta et al.,  2008). For example, it  shows 

greater activation to infrequent targets in oddball tasks (Polich, 2007) and invalid rather than 

valid  targets  in  a  classical  Posner  task  (Kincade  et  al.,  2005).  In  a  predictive  view, 

unattended  but  relevant  stimuli  are  highly  salient  because  they  violate  the  agent’s 
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expectations about their features (e.g., location in invalidly cued targets during the Posner 

cueing task), and therefore produce a greater prediction error. In line with Corbetta et al. 

(2008), Geng and Vossel (2013) support this view. They observed that rTPJ is active both 

during the oddball and the Posner cueing task. Regarding oddball tasks, TPJ is one of the 

most prominent neural generators of the P3, and particularly of the P3b component, which is 

elicited in response to deviant targets (Polich, 2007). The P3 is traditionally considered as an 

index of “contextual updating” reflecting the modification of the internal model of the task 

context based on external stimuli. Standard, frequent stimuli during oddball tasks generate 

strong expectations about task context, which are disconfirmed by the infrequent, deviant 

targets, that are highly salient and signal the need for updating the contextual expectation by 

integrating it with the new evidence. Geng and Vossel (2013) also interpreted the greater 

activation  of  rTPJ to  the  invalidly  cued targets  in  the  Posner  cueing task  as  related to 

contextual  updating,  by  a  process that  is  analogous to  that  occurring for  oddball  tasks. 

These tasks activate rTPJ because this area allows the updating of the internal model of the 

environmental or task context based on the actual sensory inputs (Gastaldon et al., 2020). 

Such a change in expectation enables the initiation of actions that are appropriate to the task 

goal, even though during the task the stimuli have changed, or the cues are not valid. The 

evidence  accumulated  through  the  aforementioned  studies  has  led  some  authors  to 

hypothesize that rTPJ, besides being part of the VAN and DMN, is also part of a larger, 

hierarchical prediction network involved in determining the internal model of the task context 

(Geng and Vossel, 2013) and attention (Wilterson et al., 2021). A subsequent meta-analysis 

(Siman-Tov et al., 2019) supported this hypothesis, by highlighting a set of brain regions 

involved in both perception and action prediction, encompassing both the VAN and the DAN 

and including  rTPJ.  This  reinforces  the  hypothesis  that  rTPJ  is  a  predictive  hub  where 

different cognitive processes and information types converge and are integrated; about that, 

a disruption of rTPJ or its disconnection from other structures (see Table S3) - as observed 

in  heterogeneous  neurological  disorders  -  would  have  consequences  on  several  other 

deficits. Importantly, it seems that the role of rTPJ in predictive processing is not necessarily 
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related to its involvement in a specific prediction network. Indeed, in such a complex and 

dynamic system,  the exact  function of  rTPJ seems defined within  the network  which is 

recruited by the ongoing activity (which in experimental terms, is the ongoing task). In other 

words,  the  context  drives  the  specific  coupling  between  rTPJ  and  other  regions,  thus 

recruiting the appropriate  task-specific  networks.  For  example,  if  we are engaged in  an 

attentional task (e.g., the Posner cueing task), the VAN would be recruited; if instead we are 

engaged in a social cognition task, the DMN would be recruited. In both cases, rTPJ would 

be activated always as a key hub for predictive processing, but for different purposes and 

together with different areas. The context- and network-dependent role of rTPJ allows for 

maximum flexibility of integration between different brain areas and cognitive processes. In 

this manner, context-dependent specific networks can use the integrative and contextual-

updating function of rTPJ in different behavioral and cognitive contexts. In sum, the exact 

role of rTPJ is context- and network-driven, but its core function of integration and contextual 

updating integration does not change. We argue that the flexibility of rTPJ is the reason why 

we find its ubiquitous involvement across different cognitive domains: it fulfills a common 

function across a variety of different cognitive computations. In line with this, Fotopoulou 

(2014) proposed a predictive model for anosognosia for hemiplegia, reporting the existence 

of context-driven functional networks. This conceptualization enables us to go beyond the 

characterization of rTPJ as activated by peculiar, discrete, attention, or social cognition tasks 

contexts, and to appreciate its broader and domain-general role in comparing predictions 

about  internal  models of  the environment  or  task to  the actual  external  information and 

integrating it  to the prediction themselves. This process may be impaired in neurological 

diseases that involve rTPJ and cause a variety of domain-general disorders. Opposite to the 

advocated large-scale perspective, it has been claimed that rTPJ could be subdivided into 

different portions with different roles, such as related to attention or ToM (Scholz et al., 2009) 

or  to  attentional  selection  and  reorienting,  a  distinction  supported  by  cytoarchitectonic 

differences (Gillebert et al., 2013) similarly to what has been demonstrated for the visual 

word form area (Weiner et al., 2017). If this very precise subdivision of rTPJ was confirmed 
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for all the above-mentioned domains (to our knowledge, there is only limited evidence on 

this), one could argue that this would speak against our interpretation. Moreover, there is 

evidence of dissociations among the cognitive functions considered in this review, and that 

we traced back to damage to rTPJ or its connection to other areas (e.g., Happé et al., 1999), 

supporting a modular view of the mind that should be reflected in the brain architecture. We 

believe  that  both  these  possibilities  would  not  alter  the  conclusions  of  the  review. 

Considering the anatomical and functional parcellation of rTPJ, only two domains have been 

dissociated so far (spatial attention and ToM), while literature clearly shows the involvement 

of rTPJ in a plethora of cognitive and motor functions, showing the need for further studies to 

clarify the issue. Additionally, the proximity of two areas on two very different aspects of 

cognitive functions would speak in favor of the similarity of the putative role of the areas and 

point to a gradient-like organization of such areas (Sansom and Livesey, 2009; Vazquez-

Rodríguez  et  al.,  2019).  Concerning  the  evidence  of  dissociation  among  the  cognitive 

functions,  although  it  has  been  largely  claimed  that  connectionist  accounts  can  explain 

dissociations even without modularity (Plaut, 1995), we would like to stress that the aim of 

the present review is not to challenge modularism, nor can the results from this review aim to 

clarify this aspect (a mixed organization of domain-specific modules and domain-general 

functioning would be also possible). The important point raised here is that an alternative 

view (based on several empirical findings) can pave new ways to design experiments both 

for basic research purposes and to interpret the diseases, and guide the design of new 

treatments, as we will suggest in the following paragraphs. 

4.2 Limitations

The main limitation of the present review is that it only considers neurological populations 

and not healthy participants and psychiatric populations. The reason behind this choice is to 

be found in the aim of summarizing findings with a certain clinical relevance, to promote a 

predictive,  more  holistic  view  of  neurological  diseases.  Circumscribing  our  work  to 
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neurological patients opens the field for future investigations on the role of rTPJ in healthy 

individuals. Another limit could be related to the inclusion of studies in which rTPJ was either 

directly lesioned or it was disconnected by other close regions (see Table S3); therefore, we 

cannot rule out whether the neuropsychological deficits are caused by rTPJ per se or by its 

disconnections with other brain areas. However, considering rTPJ as a crucial hub involved 

in predictive processing, damages that directly or indirectly impact rTPJ functioning are of 

interest to understanding the role of this area. The investigation of a single hub (like rTPJ), 

rather than the whole prediction network, as recently highlighted by Siman-Tov et al. (2019), 

can  also  be  seen  as  a  limitation.  However,  rTPJ  has  particular  clinical  relevance,  as 

described  in  the  Introduction.  For  example,  it  is  frequently  involved  in  right-hemisphere 

strokes  in  the  territory  of  the  middle  cerebral  artery  and  its  lesioning  often  induces 

hemispatial neglect. Moreover, rTPJ is involved in cognitive functions apparently unrelated to 

each other (e.g., attention and ToM), suggesting the involvement of rTPJ in a plurality of 

networks (DAN, DMN; Corbetta et al., 2008; putative prediction network, Siman-Tov et al., 

2019),  which  makes  it  susceptible  to  have  a  role  in  generating  multiple  cognitive  and 

behavioral manifestations in neurological conditions. Finally, it is important to underline that 

there  are  two  limitations  related  to  the  interpretation  we  made  in  light  of  a  predictive 

processing framework.  First,  as  already pointed out  in  the  Introduction,  there  are  many 

theoretical interpretations and perspectives on the predictive processing framework or the 

bayesian  brain  (Clark,  2013)  that  could  lead,  in  the  end,  to  different  interpretations  or 

hypotheses. Second, predictive processing implies some specific mechanisms (e.g., model 

updates, propagation of prediction error) and the role of rTPJ in supporting them has not 

been fully clarified even if it seems it could be related to the update of internal models (Geng 

and Vossel, 2013; Wilterson et al., 2021). Given the nature of the evidence gathered in the 

present review, we believe that it would be too speculative to further detail these two latter 

aspects.  We  believe  the  generic  predictive  processing  framework  we  sketched  already 

highlights the potential for future developments.
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4.3 Implications and future directions

Considering neurological impairments engaging rTPJ as characterized by affecting domain-

general predictive processing can help to shed new light on how disorders are understood. 

Under this perspective, the results highlighted in the current review can open new scenarios 

for  basic  research  and  clinical  applications  in  neurological  disorders.  First,  predictive 

processing has stimulated a paradigm shift in neuroscience that, in some cases, is leading to 

revising the functional organization of the brain into domains. This is affecting, for example, 

the distinction in those cognitive domains that have been traditionally interpreted as separate 

but that, under a predictive processing view, can be seen as highly connected (e.g., Doricchi 

et al., 2021; Fotopoulou, 2014). Nevertheless, this perspective, although not new, is still not 

diffuse in clinical contexts. Most clinicians involved in the assessment and rehabilitation of 

neurological  patients still  base their  hypotheses and interventions on traditional  domains 

regarding brain functioning (e.g., memory, attention, ToM), and, to our knowledge, nobody 

uses clinical tools based on predictive processing perspectives. Although classification in 

functional domains has provided a method to decompose the complexity of brain functioning 

in “handy” components, the firm adherence to this approach can hamper the investigation of 

alternative  domains  or  modalities  of  functioning  of  the  brain,  with  both  theoretical  and 

practical consequences. Future works can clarify whether a predictive processing framework 

may be advocated as a general approach that could be applied to all domains of cognition, 

perception, and action (i.e., domain-general) or whether there are domain-specific aspects of 

predictive processing. Concerning the hypothesis of domain-specific predictive mechanisms, 

a reinterpretation of domains related to rTPJ under the perspective of predictive processing 

may  be  plausible.  For  example,  dedicated  predictive  mechanisms  may  be  engaged  in 

attention  and  be  different  or  partially  different  from  predictive  mechanisms  involved  in 

another domain, let’s say social cognition. The domain of attention is an emblematic case of 

cognitive domains reinterpreted under a predictive processing framework.  As mentioned, 

within the predictive processing framework, perception, cognition, and action occur via a 
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continuous model updating aimed at the minimization of the prediction error. In turn, the 

prediction  error  is  modulated  by  precision  estimates  that  determine  the  weight  of  the 

prediction error, namely the brain’s degree of confidence in prediction. According to several 

authors, precision estimation is functionally analogous to attention (Feldman and Friston, 

2010; Hohwy, 2013). Indeed, when individuals pay attention to a stimulus, an object, or a 

context, the reliability of the error signal is potentially higher than the opposite scenario when 

attention is low. Similarly, social cognition can be conceptualized as a phenomenon deriving 

from predictive mechanisms (see the supplementary chapter in Supplementary Materials for 

more details about a rethink of cognitive domains related to rTPJ under the perspective of 

predictive processing). However, the aim of this review is not to understand whether the 

brain is organized with domain-general predictive mechanisms or with domain-specific ones. 

Instead, regardless of the level of functional extension of these mechanisms, we want to 

suggest  a complementary explanation for  deficits  related to damage or  disconnection of 

rTPJ. Indeed, considering all of them through the lens of predictive processing may provide 

insights  to  interpret  these  deficits  as  the  consequence  of  the  disruption  of  predictive 

processing, rather than traditional modular domain-specific deficits (e.g., deficits in attention, 

memory, and language). We believe that bearing the more traditional hypothesis that rTPJ is 

involved in manifold domains raises a fundamental question: how can rTPJ contribute to all 

these  different  functions?  This  may  be  an  ill-posed  question  because  it  assumes  the 

existence of such modules. Thus, future studies might explore the general role of rTPJ as 

part  of  a  prediction network supporting non-conventional  domains,  transcending discrete 

modular  limits,  and tending towards new ontologies (Pessoa et  al.,  2022;  Poldrack and 

Yarkoni,  2016).  Second,  adopting  a  predictive  processing  framework  can  lead  to  very 

specific and clear-cut scientific questions that may further elucidate some long-lasting issues 

in the fields of cognitive impairments in neurological conditions. For example, it has been 

claimed that  rTPJ may have a role in domain-general  predictions,  possibly as part  of  a 

prediction network (Siman-Tov et al., 2019). As Siman-Tov et al. (2019) claim, this network 

would be involved in higher-level predictions. But what is meant by “high-” or “low-" level of 
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cognitive functions and ”high-” or a “low-” level of prediction? What is meant for “domain-

general” (what are the domains involved)? Although labels may be sometimes fuzzy, the 

predictive framework can help to unveil whether traditional distinct functions have important 

shared aspects. For example, as recently shown by Doricchi et al. (2021), and commented 

by Garrido and Deouell (2021), neglect patients base their predictive behavior on statistical 

regularities that are related to the occurrence of sensory events on the right side of space 

during an auditory task; results of their study suggested how the pre-attentive reaction to the 

mismatch (i.e., the mismatch negativity, MMN) and the contextual updating (i.e., the P3) can 

be considered independent systems (Doricchi et al., 2021). The dissociation between the 

MMN and P3 responses may indicate that patients suffer from pre-attentive deficits, or, more 

specifically, low precision weights that hinder the generation of predictive processes (Garrido 

and  Deouell,  2021;  Hohwy and  Seth,  2020).  It  would  be  useful  to  understand  whether 

specific biomarkers could be related not just to specific domains but could be extended also 

to other aspects of  cognition,  in line with an integrative and dynamic vision of  cognitive 

functioning (Roger and Banjac, 2022). Third, and about the First point, the interpretation of 

the neurological impairments in the light of a unifying approach could be a parsimonious 

explanation  of  specific  deficits  and  could  pave  the  way  for  developing  innovative 

neuropsychological  tests  for  assessment  and  new  neuropsychological  rehabilitation 

protocols (e.g., treatments). Concerning the assessment, a predictive processing view (not 

only related to rTPJ) supports the development of more extensive batteries to investigate 

clusters of deficits within and between domains (Corbetta et al., 2015), and suggests the 

importance to design different tasks that may be used to manipulate priors or precision and 

identify at what “stage” of predictive processing rTPJ plays a role. Whether the adoption of 

this framework has clinical relevance is an empirical issue that could be disentangled in 

future  studies  comparing  the  actual  assessment  instruments  with  new  assessment 

instruments  designed  in  light  of  the  predictive  processing  perspective.  Concerning  the 

rehabilitation  protocols,  a  predictive  processing view can lead to  the  design of  different 

treatments  from  several  points  of  view.  To  give  an  example,  the  implementation  of 
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treatments in a predictive processing framework would stress the importance of improving 

predictive abilities in neurological patients, such as helping patients to identify and exploit 

probabilistic associations among sensory stimuli in the environment, or improving their ability 

to use contextual information to update their expectations. The idea that these deficits are 

not specific to individual perceptual or cognitive domains, but instead lie in mechanisms that 

link  these  domains,  was  previously  suggested  for  generative  models  of  language  in 

schizophrenia, in which the combination of high- and low-level approaches was proposed for 

synergistic effects on overall cognitive and perceptual functioning (for similar considerations, 

see Brown and Kuperberg, 2015). Clearly, this speculative sketching of a model of predictive 

processing deficits in neurological  disorders requires proper computational  modeling and 

empirical testing at both neural and behavioral levels. This could have important implications 

for patients and for their daily functioning in a social environment, an environment that is 

highly complex, dynamic, and unpredictable, where an instant integration of information is 

required to efficiently respond to internal and external requests. In addition, even if purely 

speculative to date, shifting to a domaingeneral predictive processing framework may help to 

understand one current limitation of the traditional neuropsychological treatments: the lack of 

generalization of  the effects or  better  understanding of  the unexpected generalization to 

different domains (Anguera et al., 2013; Jacquin-Courtois et al., 2013). Assuming that it is 

possible to rehabilitate impaired predictive mechanisms (Brown and Kuperberg, 2015), the 

benefits of a treatment based on the predictive processing framework might extend over a 

specific (treated) domain by virtue of the fact that predictive processing is a general property 

of  brain  functioning,  common  across  domains.  As  for  the  considerations  made  for 

assessment,  it  is  an empirical  issue that  can be disentangled with experimental  studies, 

whether this approach can lead to better and more effective rehabilitation treatments.
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5. Conclusion

This review represents a systematic appraisal of studies that documented the involvement of 

rTPJ in neurological disorders, both in terms of its direct lesion or its disconnection from 

other  brain  regions.  By  overcoming  the  modular  fragmentation  of  cognition  following 

traditional domains (e.g., spatial attention, ToM, etc.), the present review sheds light on the 

possibility  of  interpreting  rTPJ  functioning  within  the  overarching  predicting  processing 

framework, in particular considering rTPJ as a key hub involved in predictions for different 

behaviors.  We  suggest  that  the  ubiquitous  involvement  of  rTPJ  in  distinct  domains  is 

imputable  to  rTPJ  being  connected  to  several  brain  regions,  with  the  functional  role  of 

integrating diverse information and updating internal  models and expectations.  A deeper 

understanding  of  the  role  of  rTPJ  within  a  prediction  network  paves  new  insights  for 

interpreting neurological diseases and developing new treatments aimed at contrasting the 

impairment suffered by these patients. 
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Interim summary 1

The first study focused on rTPJ (as it represent most widely investigated area among TPJs) 

to show its potentially domain-general role. Study 2 will momentarily shift the attention away 

from  the  TPJs,  as  we  will  delve  more  in-depth  into  linguistic  predictive  dynamics,  by 

investigating the unfolding of  the neurophysiological  correlates of  linguistic and semantic 

prediction generation and violation. 

Prediction is known to take place during language (e.g., Gastaldon et al., 2020; Nicenboim et 

al.,  2020;  Nieuwland  et  al.,  2020),  but  it  has  been  mostly  investigated  with  violation 

paradigms, which only consider what happens after predictions have been (dis)confirmed 

(similarly to those studies on the predictive function of the TPJs, that detect activations in 

conditions of prediction violation). Linguistic violation paradigms often elicit N400 and late 

posterior positivity/P600 ERPs, which have been interestingly linked to prediction error and 

subsequent repair or reanalysis processes, respectively (Kutas & Hillyard, 1984; Van De 

Meerendonk et al., 2010). In addition, it has been recently hypothesized that the N400 and 

the late posterior positivity/P600 could share some similarities with ERPs that are classically 

found in perceptual tasks, i.e., the mismatch negativity (MMN) and P300 respectively, and 

that their increased latencies and different topographies reflect the increased complexity of 

linguistic  stimuli  when  compared  to  perceptual  ones  (Bornkessel-Schlesewski  and 

Schlesewski, 2019; Leckey & Federmeier, 2020). Interestingly, one of the neural generators 

of the P300 is the TPJ (Polich, 2007); therefore, if the late posterior positivity/P600 really 

shares some similarities with  the P300,  it  would be worth to  explore the possibility  that 

neurophysiological correlates of linguistic prediction can be further linked to the TPJs. We 

will  attempt  this  in  Study  3,  and  from this  moment  on,  this  work  will  mainly  focus  on 

prediction in the language domain and its relation with TPJs activity. 
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Study 2:  Trial-by-trial  fluctuations of  pre-stimulus 

alpha power predict language ERPs

This  study  was  published  in  Psychophysiology:  Lago,  S.,  Pezzetta,  R.,  Gastaldon,  S., 

Peressotti,  F.,  & Arcara, G. (2023). Trial-by-trial  fluctuations of pre-stimulus alpha power 

predict language ERPs. Psychophysiology, 00:e14388. https://doi.org/10.1111/psyp.14388

1. Introduction

1.1. Anticipation in language: ERPs and pre-stimulus alpha 

Electrophysiology (EEG), and especially event-related potentials (ERPs), have long been 

used to study neurocognitive correlates of language processing (Bornkessel-Schlesewsky & 

Schlesewsky, 2019). Some of the most studied ERPs include the N400 but also post-N400 

positivities such as the late posterior positivity/P600, which are elicited in linguistic violation 

paradigms where  the  final  target  word  of  a  sentence is  incongruent  with  the  preceding 

context. Traditionally, the N400 and the late posterior positivity/P600 have been associated 

with  incongruent  sentence  endings  and  reanalysis  of  stimuli  perceived  as  anomalous, 

respectively (Kutas & Hillyard, 1984; Van De Meerendonk et al., 2010); recently, however, 

these  modulations  have  been  interpreted  according  to  predictive  processing  theories 

(Kuperberg  et  al.,  2020;  Mantegna  et  al.,  2019)  that  propose  unifying  frameworks  for 

understanding  neural  computations  underlying  perception,  cognition,  and  action  (Clark, 

2013;  Friston,  2012).  In  predictive  processing  frameworks,  to  deal  with  environmental 

changes, the brain predicts upcoming events through the implementation of internal models 

that  spontaneously  infer  causal  structures in  the world  (Clark,  2013).  An internal  model 

identifies causal regularities from a complex variety of sensory signals, extracting what is 

relevant to predict future stimuli, and detects mismatches between predictions (priors) and 

actual  sensory inputs.  The mismatch between a prediction and the actual  sensory input 
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generates  a  prediction  error,  which  is  used  to  update  expectations  and  provide  better 

predictions that are, in turn, tested against the actual input (Friston, 2019). According to 

some predictive processing perspectives, the N400 could reflect prediction errors, i.e., the 

degree to which the linguistic stimulus deviates from predictions generated from the context 

(e.g., Hodapp & Rabovski, 2021), even though some studies have argued that such an effect 

can be explained without considering top-down prediction2 (Huettig & Mani, 2016). On the 

other hand, the late posterior positivity/P600 is associated with a variety of  tasks where 

linguistic stimuli  are perceived as syntactically or semantically anomalous (Quante et al., 

2018; Van Petten & Luka, 2012) and would reflect the attempt at resolving prediction error 

through reanalysis of the stimulus and the preceding context (Kuperberg et al., 2020; Wang 

et  al.,  2021).  Albeit  there exists  compelling evidence from a wide range of  studies that 

anticipation indeed occurs during language comprehension and production (e.g., Gastaldon 

et al., 2020; Nicenboim et al., 2020; Nieuwland et al., 2020), linguistic violation paradigms 

have the main limitation of  investigating only  what  happens after  predictions have been 

disconfirmed (or confirmed), thereby assuming that anticipation is taking place before the 

target, but not directly addressing it (León-Cabrera et al., 2017). To fill this gap, some recent 

studies have investigated how expectations modulate neurophysiological dynamics in the 

pre-stimulus  interval,  i.e.,  before  the  target  word.  In  these  studies,  participants  read 

sentences that led them to make strong vs weak predictions about the upcoming target word 

(the sentence contexts differed in their level of constraint). As compared to the post-stimulus 

activity (typically focused on ERP components such as N400 or P600), investigations on pre-

stimulus activity are typically focused on frequency-specific signals in the brain, such as 

modulations of alpha (8-13 Hz) and beta frequencies (14-30 Hz). In particular, it  is well-

known that decreases in alpha power are associated with increased attention and stimulus 

processing,  but  also  with  expectations  about  the  upcoming  stimuli  (see  Section  1.2.). 

2 Note that predictive processing has been also associated with other neurophysiological 
correlates (i.e., oscillatory activity in specific frequency bands, Lewis & Bastiaansen, 2015). 
The present article focuses on the traditional language-related ERP components.
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Contrasts  between  different  levels  of  contextual  constraint  indicated  that  expectations 

modulate alpha power in the pre-stimulus interval: stronger predictions are associated with 

lower  levels  of  pre-stimulus  alpha  power  than  sentences  leading  to  weaker  predictions 

(Gastaldon et al., 2020; León-Cabrera et al., 2022; Rommers et al., 2017; Terporten et al., 

2019; Wang et al., 2018). Some of these studies also investigated N400 amplitude in relation 

to the preceding context and found that contexts eliciting lower pre-stimulus alpha power are 

associated with more negative post-stimulus N400s (Gastaldon et al., 2023; Rommers et al., 

2017; Terporten et al., 2019; Wang et al., 2018). Even though the current evidence points to 

a  link  between  pre-stimulus  alpha  and  N400  amplitude,  to  our  knowledge  post-N400 

positivities,  such as the late  posterior  positivity/P600,  have not  been investigated yet  in 

relation to pre-stimulus dynamics. Also, albeit a reduction in pre-stimulus alpha power has 

been linked to linguistic expectation, it  should be kept in mind that the studies reviewed 

above have contrasted alpha activity across conditions; therefore, these results are relative 

and are not informative on how pre-stimulus alpha  per se and regardless of experimental 

manipulation may modulate post-stimulus responses (Van Diepen et al., 2019).

1.2. Spontaneous fluctuations in alpha power: attention and precision

Fluctuations  in  pre-stimulus  alpha  power  can  occur  spontaneously,  i.e.,  in  absence  of 

experimental  manipulations.  Spontaneous,  trial-by-trial  fluctuations  in  pre-stimulus  alpha 

power have been especially studied in the attention and perception domains, revealing that 

in visual tasks, lower pre-stimulus alpha power is linked to conscious perception of brief and 

unexpected visual stimuli (Ergenoglu et al., 2004; Hanslmayr et al., 2007; Hutchinson et al., 

2021;  Limbach & Corballis,  2016)  or  to  shorter  reaction  times (Min  & Herrmann,  2007; 

Samaha  et  al.,  2018;  Van  Den  Berg  et  al.,  2016).  Besides  behavioral  performance, 

variations in pre-stimulus alpha power seem to be related also to changes in latency and 

amplitude  of  post-stimulus  ERPs:  lower  levels  of  pre-stimulus  alpha  power  have  been 

associated with larger P1, N1, P3, and P3b amplitudes (Cao et al., 2017, Ergenoglu et al.,  
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2004; Grent-’T-Jong et al., 2011; Samaha et al., 2018; Van Den Berg et al., 2016), while 

higher  pre-stimulus  alpha  power  was  associated  with  the  suppression  of  early  ERP 

components (C1 and N150), longer P3 link latencies and enhancement of late ERPs (after 

400 msec; Iemi et al., 2019; Min & Herrmann, 2007). 

Findings from these studies seem to support theories that conceptualize alpha oscillations 

as an anticipatory attentional suppression mechanism (Foxe & Snyder, 2011) or as a gate 

for information to be redirected to task-relevant brain regions, while task-irrelevant ones are 

inhibited (Jensen & Mazaheri,  2010). According to these views, anticipatory increases in 

alpha power reflect a state of cortical inhibition, while anticipatory alpha power reductions 

reflect  cortical  activation and facilitate the subsequent  detection and processing of  task-

relevant information (Klimesch et al., 2007). Such a line of reasoning could also explain the 

above-mentioned association between low pre-stimulus alpha power and larger N400s in 

linguistic paradigms: in a state of anticipatory attention or cortical activation, the processing 

of linguistic stimuli is facilitated, and so will be the processing of incongruent targets that 

elicit N400s.

In the context of predictive processing, alpha oscillations have been interpreted in different 

ways (Alamia & VanRullen, 2019; Friston, 2019). Some studies link specific properties of 

pre-stimulus alpha to top-down predictions (Alamia & Van Rullen, 2019; Cao et al., 2017), 

and especially to the concept of precision (Bauer et al., 2014; Sedley et al., 2016; Sherman 

et al., 2016). Precision is defined mathematically as the inverse variance of a prediction and 

represents its reliability (Friston, 2018), but it can also be associated with perceived stimuli 

or prediction errors (Walsh et al., 2020). In sum, the more precise a stimulus or a prediction, 

the more the individual will rely on it.

Interestingly,  attention  has  been  considered  as  an  emergent  property  of  the  precision 

optimization mechanism that takes place during prediction, where attending to a stimulus 

means  representing  and  increasing  the  precision  of  sensory  information  (and  prediction 
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error) during the inferential process (Feldman & Friston, 2010). This is consistent with the 

results of studies reporting larger neural responses to attended vs. unattended stimuli (e.g., 

Jiang et al., 2013), but although this finding is also in line with the traditional accounts of 

attention,  predictive  processing  is  different  from these  accounts  because  it  proposes  a 

constant interaction between attention and expectation (Walsh et al., 2020). 

To  illustrate  attentional  dynamics  in  light  of  predictive  processing,  Feldman and Friston 

(2010)  simulated the evoked responses to  a  classical  Posner  paradigm,  where the cue 

preceding the target could be valid (correctly indicating the position where the target will  

appear) or invalid (incorrectly indicating the target position). The cue, either valid or invalid, 

modulates the precision of  the predictions about the target before it  appears because it 

induces a  highly  precise expectation,  thus reducing the uncertainty  about  the upcoming 

stimulus. When the stimulus appears, the resulting prediction error precision is increased, 

enhancing the stimulus-evoked responses. In this way, attentional focus results from the 

predictability  of  the  stimulus  (attentional  resources  will  be  biased  towards  more  precise 

predictions;  Hohwy,  2012),  and the magnitude of  expectations’  effects on neural  activity 

depends on the precision-weighting applied to particular error signals (Walsh et al., 2020). 

However, the cues’ characteristics do not map linearly with their internal representations’ 

precision, i.e.,  with the predictions’ precision about the target: generative models include 

random variations of precision (state-dependent error variance) and assume that it is not 

constant for any level of hierarchical inference (Feldman & Friston, 2010). This means that 

precision might fluctuate spontaneously during the task, and points to the importance of 

studying such spontaneous fluctuations of precision during predictive processing, which is 

precisely the scope of this paper. 

To sum up, attention depends in part on the precision (i.e., reliability) of the prior (Hohwy, 

2012),  and  highly  precise  (reliable)  predictions  seem  to  be  associated  with  lower  pre-

stimulus alpha power in perceptual paradigms (Bauer et al., 2014; Cao et al., 2017), while 
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higher levels of pre-stimulus alpha power have been associated with attenuated stimulus-

evoked responses (Cao et al., 2017).

This view is in line with the above-mentioned findings on the role of pre-stimulus alpha in 

linguistic anticipatory processes: highly constraining linguistic contexts or cues may generate 

on average more precise, stronger predictions that modulate the level of pre-stimulus alpha 

power. Therefore, precision might be related to cue reliability in language. In case of high 

precision,  and  thus  high  cue  reliability,  when  incongruent  target  words  disconfirm  the 

prediction a prediction error will ensue, which can be reflected in larger N400s as compared 

to cases in which precision is low (Bornkessel-Schlesewski & Schlesewski,  2019). Since 

there is evidence of associations between contextual constraint/cue reliability, pre-stimulus 

alpha power level, and N400 amplitude, it is possible to hypothesize that in the linguistic 

domain, the precision of contextual cues might affect the individuals’ predictions and pre-

stimulus  alpha  power  levels,  but  also  post-stimulus  ERPs  amplitude.  In  particular, 

unexpected, incongruent target words following highly precise predictions elicit a prediction 

error, reflected in the N400 ERP; in turn, this might be followed by an attempt to resolve the 

prediction error through a reanalysis process, which is instead reflected in the late posterior 

positivity/P600.

It should be noted that the attentional-based and precision-based interpretations of these 

electrophysiological dynamics are not in conflict with one another and are both compatible 

with  a  predictive  account  of  the N400 and late  posterior  positivity/P600 effects.  Indeed, 

explaining  the  association  between  pre-stimulus  alpha  and  linguistic  ERPs  in  terms  of 

precision-based mechanisms incorporates and extends the attention-based interpretation, by 

offering a unified description of both pre and post-stimulus activity through the concept of 

precision.

In  sum,  both  an  attention-based  account  and  a  precision-based  account  point  to  the 

importance of investigating the role of spontaneous alpha oscillations in the pre-stimulus 
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interval  in relation to post-stimulus ERPs to get a glimpse of  the complexity of  stimulus 

processing dynamics. In this perspective, it is not sufficient to contrast power levels across 

different conditions, but it  is necessary to look at variations in pre-stimulus power at the 

single-trial level.

1.3. The present study

The goal of the present study is to combine the investigation of traditional post-stimulus 

linguistic  ERPs with  that  of  pre-stimulus  dynamics  of  alpha power.  To this  aim,  we re-

analyzed already collected EEG data (Arcara et al., 2019) on a simple semantic congruence 

task in which target  words were congruent  with the cue 50% of  the time.  We aimed at 

investigating whether trial-to-trial fluctuations in pre-stimulus alpha power can modulate the 

EEG response amplitude in a wide time window after each target. We did not a priori define 

time windows of interest so that we could detect also post-N400 effects in the most data-

driven way possible, unlike previous studies on pre-stimulus alpha in language. 

We  hypothesized  that  even  in  absence  of  direct  manipulations  (e.g.,  via  specific 

experimental design or non-invasive stimulation), different levels of pre-stimulus alpha power 

would modulate the N400 and P600 components (or in general any post-N400 positivity). In 

particular, based on the literature, for lower levels of alpha, we expected a larger N400, but 

we did not have any specific hypothesis for late positivity/P600 effects. 

In terms of attentional mechanisms, pre-stimulus alpha levels would correspond to different 

degrees of  anticipatory functional  activation/attention (relatively low power)  and inhibition 

(relatively  high  power;  Klimesch  et  al.,  2007),  and  therefore  have  an  influence  on  how 

linguistic stimuli, in particular linguistic violations, are processed by individuals: a state of 

activation  would  boost  the  detection  of  mismatches  between  predictions  and  targets, 

producing larger ERPs; conversely, a state of relative inhibition would hinder the detection of 

mismatches and produce smaller ERPs. 
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Such a hypothesis can also be seen under a precision-based mechanism: in this  case, 

attention is an emergent property of the precision weighting mechanism (Walsh et al., 2020) 

and depends on the precision of the prior (Hohwy, 2012). There is also evidence that lower 

pre-stimulus alpha power  might  reflect  higher  precision levels  of  expectations about  the 

upcoming stimuli. Notably, as in Feldman and Friston’s Posner paradigm simulation (2010), 

in our congruence task all cues were equally reliable; however, reliable cues can be invalid 

(i.e., disconfirmed by the target word). Therefore, reliability and validity are not the same 

thing. In the present task, the cues were equally reliable because they clearly indicated the 

candidate target (they presumably generated highly precise predictions). In this way, the 

cues varied systematically in terms of validity (they were valid 50% of the times), while their 

reliability/precision was theoretically constant throughout the task (cues always represented 

clearly a candidate target), but as stated in the previous section, the cues’ characteristics do 

not map linearly (i.e., systematically) with the predictions’ precision about the target, so that 

random variations of precision can take place at any level of the hierarchical inference. We 

assume that in this task, spontaneous alpha power fluctuations represent random variations 

in the ability to precisely predict the upcoming target word (Cao et al., 2017). According to 

the existing literature (Bauer et al., 2014; Cao et al., 2017), lower pre-stimulus alpha power 

might reflect higher precision levels of expectations about the upcoming stimuli, and in this 

condition,  the mismatches between the internal  model’s  predictions and the incongruent 

stimuli will result in the enhanced discrimination between expected and unexpected stimuli, 

therefore in higher prediction errors (Jiang et  al.,  2013) and greater  attempts to resolve 

them, reflected in larger N400s and possibly, also of later components, i.e., late posterior 

positivities/P600.

As mentioned in  section  1.1.,  previous  studies  that  attempted to  consider  post-stimulus 

ERPs in relation to pre-stimulus dynamics contrasted the N400 amplitude after congruent 

and incongruent  words within high and low pre-stimulus power conditions (or  contextual 

constraint),  thereby losing important information at  the single-trial  level  (Rommers et  al., 
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2017; Terporten et al., 2019; Wang et al., 2018). Indeed, based on this evidence we can 

only conclude that one condition is associated,  on average,  with lower pre-stimulus power 

and also  with  higher  amplitude N400s,  but  not  whether  variations  in  pre-stimulus  alpha 

modulate the subsequent ERPs in a trial-by-trial way. To provide an answer to this question, 

an  appropriate  statistical  approach  is  needed.  Grouping  the  trials  within-participant  and 

dividing them according to pre-stimulus power could be a potential solution, but it  would 

imply converting a continuous variable (i.e., pre-stimulus alpha power) to a factorial one, e.g. 

by  arbitrarily  sorting  pre-stimulus  power  as  “high”  and  “low”.  This  dichotomous  variable 

should then be entered as a predictor in the statistical  model,  but  this procedure would 

determine the loss of important information (Cohen, 1983; MacCallum et al., 2002; Tremblay 

&  Newman,  2015).  Given  the  nature  of  the  EEG signal  and  the  goal  of  the  study,  we 

identified in Generalized Additive Mixed Modeling (GAMM) a method that is better suited to 

properly tackle the issues described above.

GAMM is a non-linear mixed-effects regression method (van Rij et al., 2019; Wood, 2016) 

that extends the generalized linear mixed model (GLM) by including non-linear terms, and 

non-linear  interactions  between terms,  in  addition  to  the  linear  ones foreseen by  GLMs 

(Baayen et al., 2018; Baayen, Vasishth, Bates, et al., 2017; Baayen, Vasishth, Kliegl, et al., 

2017; Sóskuthy, 2021; Tremblay & Newman, 2015).  An important feature of GAMM is that 

non-linearities are modeled in a bottom-up fashion and not imposed by a priori choices. A 

second  important  aspect  is  that  GAMMs,  unlike  GLMs,  allow  to  flexibly  model  the 

interactions between continuous variables (see Baayen et al., 2010, Sulpizio et al., 2022); 

this is fundamental, given the interest of the present study: for each trial, we want to model 

how pre-stimulus power (a single value for each participant, from one continuous variable), 

may be associated with ERP responses, which is a time-series (a vector of values for each 

participant,  associated with two continuous variables,  Time and EEG Amplitude).  A final 

important advantage is that GAMMs also allow to model temporal dependencies in the data, 

an important aspect to take into account for correct statistical inferences, and very important 
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for EEG time-series in which each time point in the recording is highly dependent on the 

previous  ones.  

Taken together, these special features of GAMMs allow an improved fit to experimental EEG 

data and a systematic description of the whole time window of interest,  rather than only 

focusing on the averages in predefined time windows, or the statistical significance of the 

differences  between  the  experimental  conditions  (van  Rij  et  al.,  2019).  This  aspect  is 

essential  in the present study, which aims at analyzing the effects of pre-stimulus alpha 

power in a wide time window starting from the target word onset, including both early and 

late  language-related ERP components,  without  a-priori  defining  them. Because of  their 

flexibility,  GAMMs  have  already  been  used  in  the  analysis  of  EEG  data  in  linguistic 

experiments (e.g., Alday et al., 2017; De Cat et al., 2015; Meulman et al., 2015; Porretta et  

al., 2017; Tremblay et al., 2016; Tsiwah et al., 2021). 

2. Materials and Methods

2.1. Participants

27 participants volunteered to take part in the study, after signing an informed consent form. 

One participant was excluded from the analysis because of a misunderstanding of the task 

instructions and 5 participants did not  complete part  of  the recording (see section 2.2.). 

Thus, the final analyses were performed on 21 participants (15 females; mean age 25.1 

years).  All  participants  were  right-handed,  native  speakers  of  Italian,  had  normal  or 

corrected-to-normal vision,  and reported no history of  reading or learning disorders.  The 

experiment  was approved by  the  Local  Ethics  Committee.  Data  presented in  this  study 

comes from a  larger  experiment  aimed at  investigating  agreement  violations  in  number 

morphology, with already published results (Arcara et al., 2019). The published results did 

not affect in any way neither the hypotheses of the present study, nor the statistical choices 
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made. Here we will only cover the parts and materials of the experiment that are relevant to 

the present study and that were used in the present analyses.

2.2. Procedures

Participants were tested in a dimly lit, quiet room. They were asked to complete a picture-

phrase matching task, performed on a computer screen. The task was delivered with the E-

prime software (Psychology Software Tools, 1999, Pittsburgh, PA). Each trial was structured 

in the following way: first, a fixation cross appeared in the center of the screen (1000 ms); 

afterward, a picture (the cue) showed up (1000 ms), followed by a short blank screen for 200 

ms and then by two Italian words. The first word (the quantifier) was displayed for 300 ms, 

followed by a blank screen (200 ms), and the second word (the target) was displayed for 300 

msec. The quantifier was always congruent with the cue, while the target could be congruent 

or incongruent with the cue (with a 50% proportion). The words were followed by another 

blank screen with a random duration between 1000 and 1500 ms, after which two response 

words (True and False) appeared on the right and left sides of the screen. Participants were 

asked to respond whether the two-word sequence was congruent or incongruent with the 

preceding  picture,  without  any  time  pressure.  The  position  of  the  response  words  (i.e., 

True/False), as well as that of the response keys, were counterbalanced across participants. 

The trial procedure is illustrated in Fig. 1. All stimuli subtended at most 5 degrees on the 

horizontal  plane  to  avoid  excessive  eye  movements.  miniFive  practice  trials  were 

administered before the beginning of the experiment to familiarise with the task. The overall 

task lasted about 45 minutes and included twelve breaks. Before the beginning of the task, a 

5-minute  session  of  an  eyes-open  resting  state  was  recorded,  which  was  used  for 

normalizing the pre-stimulus alpha values, as described in Section 2.5.
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Figure 1. Task Design. All trials followed the depicted sequence: after a fixation cross, a picture was 

displayed, followed by a two-word phrase presented in a word-by-word fashion. In the picture, “una” = 

“one”, while “spugna” = “sponge”. Participants had to respond if the phrase matched the presented 

picture by pressing two buttons associated with TRUE/FALSE response (FALSE, in the depicted 

example; “vero” = “true”; “falso” = “false”). There was no time pressure for the response.

2.3. Materials

The linguistic stimuli  of  the experiment consisted of  phrases made up of  quantifier-noun 

pairs  and  three  Italian  quantifiers  were  selected:  un/uno/una,  alcuni,  and  qualche, 

corresponding to a/an, some+plural inflection of the noun, and some+singular inflection of 

the noun (which is perfectly grammatical in Italian; for the linguistic details of the stimuli, see 

Arcara et al., 2019). The stimuli were created to be matched as much as possible for length 

and frequency. In each phrase, all content nouns referred to concrete, countable, and non-

animate objects. We selected two pictures for each noun, representing either one single 

object or four instances of that object. The drawings in the pictures were arranged to avoid 

any kind of effect due to structural composition. Each picture-to-phrase matching could be 

congruent  (e.g.,  a  picture  of  four  apples  followed  by  the  phrase  ‘some  apples’)  or 

incongruent  (e.g.,  a  picture  of  one  orange  followed  by  the  phrase  ‘one  sponge’).  The 

mismatches considered in the present analyses only concerned the referential objects, but 

the experiment included also other experimental conditions related to number morphology 

that  were excluded from the present  analyses (see Arcara et  al.,  2019,  for  a  complete 
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description of the task). Each combination of experimental variables included 30 stimuli for a 

total of 180 experimental stimuli. In the present analyses, we focused on the case in which 

there was either a semantic congruence or a semantic incongruence between the picture 

and the following words, as it is the one in which a higher (and more easily interpretable)  

N400 is expected. 

Statistical analyses were conducted only on trials with correct behavioral responses.

2.4. EEG data recording and analysis 

The  EEG signal  was  recorded  from 28  active  electrodes  embedded  in  an  elastic  cap, 

arranged according  to  the  10/20  system (Brain  Products,  Acticap).  Each  electrode  was 

referenced online to the left earlobe. Three additional electrodes were used to monitor eye 

movements  and  blinks,  with  two  electrodes  placed  near  the  outer  corner  of  the  eyes 

(external  canthi)  and  one  placed  in  a  pupil-centered  position,  under  the  left  eye.  The 

impedance of each electrode was kept lower than 10 KΩ throughout the recording. The 

following electrodes were included: Fp1, Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, C3, 

C4, Cz, T7, T8, CP1, CP2, CP5, CP6, P3, P4, P7, P8, Pz, O1, O2, Oz. The EEG signal was 

amplified  by  using  BrainAmp  amplifiers  with  a  hardware  high-pass  of  0.1  and  with  a 

sampling  rate  of  500  Hz.  EEG data  were  pre-processed  with  the  Brainstorm  MATLAB 

toolbox (Tadel et al., 2011; March 2015 version). In the pre-processing phase, we applied a 

high-pass filter at 0.5 Hz to the continuous data and then used Independent Component 

Analysis (ICA) for artifact removal. From the ICA-corrected continuous data, we extracted 

epochs time-locked to the onset of the target word (content noun), ranging from -3020 msec 

to 1470 msec after  the stimulus and including the quantifier  (cue).  Trials  were baseline 

corrected to the mean value of 100 msec preceding the target word, and those containing 

excessive artifacts were rejected in this phase after visual inspection. For each condition 

(congruent and incongruent), 94.5% of trials were accepted on average (on average, 85.05 

out of 90 trials per condition). There were no appreciable differences across conditions: the 
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number of accepted trials separated for conditions ranged from 94% to 95%. The single-trial 

data  were  subsequently  downsampled  to  100  Hz  to  reduce  computational  burden  and 

filtered with a 50 Hz low-pass to avoid aliasing. Data were thus exported to R (R Core Team, 

2013) with the package erpR (Arcara and Petrova, 2017) for subsequent statistical analyses. 

Custom code was developed for data handling and plotting.

Resting-state  preprocessing  was  identical  to  that  performed  for  the  task.  After  the  ICA 

artifact removal, continuous recordings were split into 5 seconds epochs and trial rejection 

was performed based on visual inspection as in the task recordings.

2.5. Single-trial time-frequency analysis 

After trial rejection, time-frequency (TF) analysis was performed with Brainstorm (Tadel et 

al., 2011, ver. September 2018) on epoched, non-downsampled data. A Morlet wavelet was 

constructed,  with a central  frequency of  1 Hz and 3 s of  time resolution (full  width half 

maximum, FWHM). The wavelet ranged from 1 to 45 Hz, with 1 Hz linear frequency steps. 

We chose this frequency range to enable other analyses beyond the scope of this paper, 

that are not going to be presented here. From the single-trial time-frequency decomposition, 

we then extracted the average magnitude in the alpha band (8-13 Hz) and exported the 

single-trial alpha magnitudes to R for statistical analyses. The same procedure was applied 

to the resting-state recordings (previously epoched in 5 seconds segments for trial rejection 

purposes),  with  the  exception  that  time-resolved  alpha-band  magnitudes  in  the  single 

epochs were first  averaged in time (to obtain a Morlet-based frequency spectrum),  then 

averaged across epochs and then exported. We chose to use the average resting alpha 

power as a baseline, instead of other inter-trial intervals, because subjects were instructed to 

blink during such intervals (to reduce contamination during the experimental trials).  As a 

consequence, power estimates from this time window would have been influenced by such 

artifacts.
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We  obtained  pre-stimulus  power  by  averaging  the  TF  values  across  the  time  window 

between -200 and -10 msec before the target word. We chose this interval, albeit short, 

because it was the closest event-free interval to the target word, therefore enabling us to 

investigate pre-stimulus dynamics. Ending the time-window 10 ms before the target allows to 

avoid any undesired effect of temporal smearing due to the time-frequency analyses, i.e., the 

temporal leakage of stimulus-related oscillatory activity to the pre-stimulus time-window, in 

particular if the stimulus occurs at time 0 or shortly thereafter (Cohen, 2014).

We thus obtained a single mean value of pre-stimulus alpha power for every electrode and 

trial.  As  the  absolute  power  value could  be related to  irrelevant  factors  (e.g.,  individual 

characteristics of the participants, quality of the signal,  etc.),  we normalized pre-stimulus 

power with a baseline division procedure, consisting of dividing power during the task by the 

average power during the baseline period (in our case, resting-state activity). The resulting 

unit of this procedure is a ratio (Cohen, 2014). Values smaller than 1 mean that in each pre-

stimulus period, a given subject had a lower alpha power than during resting; values larger 

than 1 mean that the subject’s pre-stimulus power was higher than the resting state power. 

Since  the  power  distributions  were  skewed,  we  log-transformed  the  power  values  for 

statistical analysis purposes. 

2.5.1. Individual Alpha Peak Frequency

Characteristics of alpha oscillations (e.g., peak and power) vary across individuals (Wang et 

al., 2022), so researchers have recently directed their attention to a particular feature of the 

alpha  band  signal,  the  individual  alpha  peak  frequency  (IAPF),  defined  as  the  peak 

frequency in the alpha range with the greatest power (Bazanova & Vernon, 2014). However, 

the  previous  studies  on  pre-stimulus  alpha  power  and  N400  have  been  conducted 

considering the traditional 8-13 Hz alpha band, so we ran the same GAMM model on two 

versions of the same dataset, one obtained with the standard alpha band to be consistent 

with the existing literature, and one with the IAPF.

91



We obtained the IAPF from the resting state data by first computing the power spectrum 

densities (PSDs) on the continuous signal. PSDs were subsequently fed to the Brainstorm 

function specparam, which estimates and subtracts the 1/f noise from the PSDs and allowed 

us to extract the peak frequency within 8 and 13 Hz for each subject and electrode. In case 

an electrode had two peak frequencies in a given subject, we chose the peak frequency with 

the higher power (Katyal et al., 2019). On the other hand, some electrodes may lack a peak 

in the alpha band. To solve this issue, we calculated the 75% quantile of the number of 

electrodes (n=21) and adopted this value as a threshold, so that all subjects with less than 

21 electrodes with a peak in the alpha range were excluded from further analyses (n=4). As 

a result, IAPF analyses were performed on 17 subjects. For each subject, the global IAPF 

value was obtained as the median of all electrodes’ IAPF values. Pre-stimulus individualized 

alpha power was then calculated on the task data at the single trial level within ±1.5 Hz 

around this IAPF value, with the same procedure described in Section 2.5.

2.6. Statistical analyses 

The analyses were performed with R (version 3.4.4) and were focused on the ERPs time-

locked to the target word (the content noun, see Figure 1). 

2.6.1. Preliminary analysis.

We obtained averaged ERPs for conditions, by averaging all trials within participants, and 

then  averaging  data  from  participants  (see  Figure  2).  We  conducted  some  preliminary 

analyses to  investigate  whether  potential  and spurious differences in  pre-stimulus alpha 

across conditions were present and that could explain the difference between congruent and 

incongruent trials (we do not expect to find such differences, because the congruence of a 

trial  was defined only  by the target  word).  To this  aim,  we compared the average pre-

stimulus alpha power ratio (see section 2.5.) across congruent and incongruent conditions 
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for each electrode with a within-participants t-test, corrected for multiple comparisons with 

the Bonferroni method. 

2.6.2. Generalized Additive Mixed Models (GAMMs) 

After exporting the single trials ERPs to R, we restricted the time window of interest from -

100 to 800 msec. Data from each electrode were analyzed separately (as in de Cat et al., 

2015), using the same model syntax, in which continuous ERP amplitude in the whole time 

window of interest was entered as the dependent variable (before the model described here, 

several other options were run and compared). Main effects included: 

- condition as a linear predictor;

- a non-linear effect of time, depending on condition (this term captures the different 

changes in the ERP over time in the two conditions, i.e., the N400 and P600 effect);

- a non-linear effect of pre-stimulus alpha power, capturing the (possibly) non-linear 

modulation of ERP amplitudes by different magnitudes of pre-stimulus alpha.

An interaction term, specifying the non-linear interaction of interest between time and pre-

stimulus alpha power depending on the condition, was included to capture whether pre-

stimulus power modulates, in a possibly nonlinear way, the subsequent ERP amplitudes, in 

either  of  the  two  conditions.  In  GAMMs,  interactions  between  continuous  variables  are 

modeled by tensor smooth functions.

To reduce autocorrelation in the model’s residuals and account for dependency in the data, 

we added a random structure as recommended by Van Rij  and colleagues (2019).  The 

random structure should include random factor smooths for participants and items and a 

random intercept  and  slope  for  each  time  series  (i.e.,  item).  Such  structure  essentially 

adjusts the model’s predictions for every single trial  of  each subject.  However, doing so 

would result in too large computational demands; in addition, during the EEG recording, we 

did not keep track of which item (i.e., target word) was presented in each trial. We, therefore, 
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constructed  the  random  structure  attempting  to  reach  a  trade-off  between  the  model’s 

accuracy and the computational load. To this aim, we included two random factor smooths: 

one for participants and one for each combination of quantifier and condition, instead of 

each item. We then created a factor variable, called Event, that identified each trial through 

the unique combination of participant, quantifier, and trial number. We finally included this 

variable as both a random intercept and slope (in interaction with time). Please note that the 

quantifier was only included in the random structure to model part of the random variability 

between trials,  and is  not  a  variable  of  interest  in  the analysis;  therefore,  it  will  not  be 

discussed further.

After specifying the model syntax, we tested the model on a randomly selected electrode. 

Unsurprisingly, the residuals showed some remaining autocorrelation. This could be related 

to the filters applied to the signal: as filtering can be conceived as a weighted average of the 

signal at subsequent time points (Luck, 2014; for detailed considerations on downsampling 

and filtering in GAMM, see Van Rij et al., 2019). We dealt with this issue by including an AR1 

model that accounts for autoregressive processes in the data. We estimated the value of rho 

as the model’s autocorrelation function (ACF) at Lag 1 and we included it  in our model, 

together with a term specifying the starting point of each time series. The models’ nonlinear 

random structure and the AR1 error model are crucial for dealing with the intrinsic temporal 

dependency in time series data (van Rij et al., 2019). As the model’s residuals were not 

normally  distributed,  we  fitted  the  model  with  a  link  function  for  a  scaled-t  distribution 

(Wieling, 2018). Since adding this function considerably increases computational time, we 

set the argument “discrete” to true, enabling more efficient processing.

The final model R syntax is reported here:

Ampl ~ Cond + s(Time, by=Cond) + s(norm_log_power)  # main effects

+ ti(Time, norm_log_power, k = c(40, 40), by = Cond)  # tensor with 
main interaction

+  s(Time,  ID,  bs="fs",  m=1)  #  nonlinear  random  smoother  with 
individual differences in time course
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+ s(Time, cond, bs="fs", m=1)  # nonlinear random smoother with 
differences for original condition (should have been item)

+ s(Event, bs="re")  # random intercept for individual time series

+ s(Time, Event, bs="re") # random slope for individual time series

The same model was run on the IAF dataset, only adjusting the number of basis functions to 

fit the lower number of subjects included.

2.6.3. Visualization of results 

In GAMMs, the effects of the interactions of interest are mainly interpreted through visual 

inspection of the tensor functions’ plots, which can be 2- or 3-dimensional, depending on the 

number of numerical predictors (de Cat et al., 2015). In this case, our main effect of time 

depending on condition (the term “s(Time, by=Cond)”) has one numerical predictor (time), 

which  captures  the  different  ERP waveforms  (i.e.,  voltage  amplitude)  of  congruent  and 

incongruent trials and results in a 2-D plot with time on the x-axis and amplitude on the y-

axis (Figure 2), that allows to link GAMM results to the typical waveforms studied in the ERP 

literature  (Sulpizio  et  al.,  2022).  On  the  other  hand,  the  main  interaction  term “ti(Time, 

norm_log_power, k = c(40, 40), by = Cond)” has two numerical predictors (time and pre-

stimulus alpha). Therefore, it results in 3-D plots with time on the x-axis, pre-stimulus alpha 

power level on the y-axis, and color-coded voltage amplitude (Supplementary Figures 1S 

and 2S) that provide information on how ERP waveforms are modulated by pre-stimulus 

power depending on congruent and incongruent conditions. This interaction allows us to 

visualize the voltage amplitude depending on pre-stimulus alpha levels and conditions, but 

also to perform subtractions between the incongruent and congruent tensor surfaces as if 

they were ERP waveforms. We followed this procedure because comparing experimental 

conditions with their raw ERPs is not an optimal strategy, and difference waves allow us to 

overcome this difficulty by isolating components of interest that are informative on the effects 

of the experimental manipulations (Luck, 2005). Moreover, subtracting the incongruent from 

the congruent  tensor  surface also allows the identification of  significant  N400 and other 
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effects (predicted differences between voltage amplitudes) in relation to the pre-stimulus 

alpha level.  These effects were calculated and plotted with the plot_diff2 function in the 

package itsadug (Van Rij et al., 2020) and are shown in Figure 4 and the upper panels of 

Figure 5A-D. Since the interpretation of 3-D difference plots can be confusing, it is possible 

to break them down by selecting different values of a variable (in our case, pre-stimulus 

alpha power) and plot 2-D graphs “zooming in” on the interaction of the remaining variables 

(in our case, time and voltage amplitude), highlighting the differences between conditions for 

different values of pre-stimulus alpha. We show this in the lower left panels of Figures 5A-D. 

The lower right  panels,  instead,  show the time windows where the differences between 

conditions for different values of pre-stimulus alpha are significant.

Figure 2. Main effect of Time for one exemplificative electrode (Cp2). The term “s(Time, by=Cond)” 

captures the different ERP waveforms (i.e., voltage amplitude) of congruent and incongruent trials and 

results in a 2-D plot representing the congruent and incongruent tensors, which allows to link GAMM 
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results to the typical waveforms studied in the ERP literature. 0 ms in the X axis (Time) represents the 

target stimulus onset.

To  explore  whether  a  more  traditional  analysis  would  have  captured  the  modulations 

associated with pre-stimulus alpha we performed some additional analyses using ANOVAs 

instead  of  GAMM.  These  analysis  and  their  results  are  reported  in  the  Supplementary 

materials.  The  code  used  for  the  analys  can  be  found  at  the  following  OSF  link: 

https://osf.io/6jrk2/?view_only=00d6b579199a47758d8b8a2b854dabcf

3. Results

3.1 Behavioral results

As in the original paper (Arcara et al., 2019), the performance in the task was almost at 

ceiling in all subjects. The mean percentage of errors was .8% (mean number or errors = 

2.96, SD = 3.513, range = 0-13). As the performance was at ceiling, data on accuracy were 

not further analysed. As there was no time pressure to give the response, reaction times 

were not analysed.

3.2 ERP results

ERP grand averages across conditions is shown in Figure 3. The similarities between the 

grand averages and the tensors (main effects) of Time depending on conditions (Figure 2) 

indicate  that  the  statistical  model  provided  a  good fit  to  the  data.  Preliminary  analyses 

investigating the potential presence of spurious results did not show any significant effect, 

indicating that congruent and incongruent trials did not differ for pre-stimulus alpha power. 
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Figure 3. ERPs grand averages for all electrodes and conditions.

Table 1 reports the significance of the interaction between time, power, and congruent vs 

incongruent conditions for each electrode, in the model using the standard alpha band (8-13 

Hz). Analyses on IAPF yielded very similar results hence only results on the standard alpha 

band are reported here (see Supplementary materials for details).

The percentage of deviance explained by the models ranged between 16.3 and 24.1. The 

interaction between time and pre-stimulus alpha power for the incongruent condition was 

significant for almost all electrodes (Fp1, Fp2, F3, T7, C4, CP5, CP2, CP6, P7, P3, Pz, P4,  

P8, O1, O2, Oz). The same interaction for the congruent condition was significant in almost 

all electrodes (Fp2, F3, Fz, F8, FC5, FC1, C3, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, 

O1, O2, Oz). This means that pre-stimulus alpha power significantly predicted the ERPs 

modulation  in  both  the  congruent  and  incongruent  conditions  in  almost  all  electrodes, 

especially centroparietal and posterior ones (see Figures 1S and 2S).
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Table 1. Significance of interactions between time, power, and condition for the GAMM on 

the standard alpha band. 

Electrodes Interaction:  time,  power, 
incongruent condition

Interaction:  time,  power, 
congruent condition

Fp1 0.02* 0.12

Fp2 0.01* 0.05*

F7 0.77 0.70

F3 0.03* < 0.001*

Fz 0.20 < 0.001*

F4 0.53 0.22

F8 0.31 0.03*

FC5 0.08 0.00*

FC1 0.07 < 0.001*

FC2 0.30 0.20

FC6 0.40 0.08

T7 0.05* 0.09

C3 0.13 0.01*

Cz 0.24 0.18

C4 < 0.001* 0.02*

T8 0.07 0.14

CP5 < 0.001* 0.03*

CP1 0.45 0.02*

CP2 < 0.001* 0.04*

CP6 < 0.001* 0.01*

P7 < 0.001* < 0.001*

P3 < 0.001* < 0.001*

Pz 0.01* 0.01*

P4 < 0.001* 0.02*
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P8 < 0.001* < 0.001*

O1 < 0.001* < 0.001*

Oz < 0.001* < 0.001*

O2 < 0.001* < 0.001*

Significant results are marked with *.

Figure 4 depicts,  for  each electrode,  the predicted amplitude (tensor  surface)  difference 

between incongruent and congruent ERPs, i.e., the N400 and P600 effects depending on 

the pre-stimulus alpha level. Time is represented on the x-axis, pre-stimulus alpha power 

level on the y-axis, and predicted voltage amplitude difference is color-coded. Colored blots 

represent significant differences, while white areas indicate regions where the confidence 

intervals (95% CI) around the predicted surface included zero. Shades of blue and green 

represent negative differences, while shades of red and yellow stand for positive differences.
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Figure  4. Predicted  amplitude  (tensor  surface)  differences  between  incongruent  and  congruent 

conditions for the main interaction of interest (time, alpha band power, and conditions). The figure 

depicts the N400 and P600 effects depending on the pre-stimulus alpha level. Time is represented on 

the x-axis  and pre-stimulus power on the y-axis.  Colored areas reflect  significant  predicted ERP 

amplitude differences  between congruent  and incongruent  responses.  Shades of  yellow and red 

indicate  increasingly  positive  differences,  while  shades  of  green  and  blue  indicate  increasingly 

negative differences. Green shades indicate that the difference tends to zero. White areas indicate 

regions where the confidence intervals (95%)  around the predicted surface included zero.
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Power modulated the differential surfaces in slightly different ways across scalp locations, 

but  the  predicted  amplitude  difference  between  congruent  and  incongruent  ERPs  was 

significant in time windows compatible with those of the N400 and a later positive component 

resembling  a  late  posterior  positivity/P600.  This  effect  was  observable  for  almost  all 

electrodes, as shown in Figure 4 by the colored blots indicating that the 95% CI around the 

predicted amplitude difference did not include zero. The effect was less marked at frontal 

rather than centro-parietal sites. However, the predicted amplitude in the N400 time window 

appeared to be significantly modulated by pre-stimulus power, especially over central and 

posterior electrodes. The negative effect in the N400 time window was observable in all 

electrodes regardless of power, but its amplitude was more negative for lower pre-stimulus 

power (darker blue shades). 

At  all  locations  except  Fp2  and  Cz,  the  predicted  amplitude  in  the  late  posterior 

positivity/P600  time  window  was  significantly  more  positive  for  lower  power  and  was 

maximal over left  centro-parietal  electrodes (yellow shades);  frontally,  it  was followed by 

weakly  negative  differences,  differently  modulated  across  electrodes.  A  brief  negative 

deflection appearing immediately post-stimulus was visible in electrodes Fp1, F7, and T7, 

where it was associated with lower power; contrarily, in CP1 the opposite pattern was visible.

To  better  characterize  the  effects,  Figure  5A-D  shows  the  highlight  for  some  specific 

electrodes.

The top panels in Figure 5A-D show the tensor surface difference between responses to 

congruent and incongruent targets, as in Figure 4. To allow a more detailed inspection of 

such difference, we broke it down by selecting three different values of pre-stimulus alpha 

power (high, median, and low, corresponding to the upper quartile, the median value, and 

the lower quartile, respectively)  and plotted accordingly the smooth functions for congruent 

and incongruent conditions (bottom left panels), as well as the difference between congruent 

and incongruent smooths and the time windows where it is significant (bottom right panels).
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Overall, for low and median power, the predicted amplitude difference was significant for 

longer time windows than for large power, especially for the time window corresponding to 

the  late  posterior  positivity/P600  effect  (see  electrodes  C3,  C4,  P3,  P4).  Sometimes 

significant differences in this time window were only present for low power (see electrode 

CP2).  For  CP1,  we  can  also  observe  significant  positive  differences  immediately  post-

stimulus, for both median and high power. 

In  summary,  results  with  GAMM  showed  that  pre-stimulus  alpha  power  significantly 

modulated the amplitude of the N400 and late posterior positivity/P600 effects. In particular, 

the  N400  effect  was  present  regardless  of  the  pre-stimulus  alpha  level  but  was  more 

negative for lower levels of pre-stimulus alpha. The P600 effect, instead, was only significant 

for lower levels of pre-stimulus alpha power. Overall, the pattern of significant differences 

resembles the ERPs’ grand average in Figure 2.
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Figure 5. Highlights for specific electrodes. White areas indicate regions where the confidence 

intervals (95%) around the predicted surface included zero.
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4. Discussion

In the present study, we investigated whether and how trial-to-trial spontaneous fluctuations 

in pre-stimulus alpha power modulate the EEG response amplitude in a wide time window 

after  congruent  and  incongruent  target  words,  during  a  semantic  congruence  task. 

Compared to the previous literature, we did not experimentally manipulate the level of pre-

stimulus  alpha  power,  but  we  focused  on  its  spontaneous  fluctuations,  which  could  be 

interpreted  according  to  an  attention-based  mechanism  (cortical  activation/inhibition; 

Klimesch, Sauseng, & Hanslmayr, 2007; Foxe and Snyder, 2011; Jensen & Mazaheri, 2010) 

or according to a precision-based mechanism (Bauer et al., 2014; Cao et al., 2017; Walsh et 

al., 2020). The latter posits that the stimulus’ precision levels could be linked to cue reliability 

in  language,  so  that  when  predictions  are  disconfirmed,  the  prediction  error  would  be 

manifested  as  more  negative  N400s  (Bornkessel-Schlesewsky  and  Schlesewski,  2019). 

Focussing on the trial-to-trial alpha fluctuations has allowed us to perform analyses at the 

single-trial  level,  thereby avoiding the contrast  between  two conditions,  that  would  have 

given results relative in nature and entailed the loss of important information (Cohen, 1983; 

MacCallum et al., 2002; Tremblay & Newman, 2015; Van Diepen et al., 2019). Differently 

from previous studies, we also avoided the a priori definition of time windows of interest, so 

that we could explore the possible influence of pre-stimulus alpha also at time points that 

had not been considered in previous literature (e.g., post-N400 positivities), in a data-driven 

way. To these aims, we used Generalized Additive Models, that allow to model complex non 

linear relationships in a mixed model framework. A control analysis using a more traditional 

ANOVA approach did not yield any effect, supporting the importance of using GAMMs for 

the analysis (see also Supplementary Materials, p. 19).

Results of the study suggest the presence of an N400 effect with a typical centro-parietal 

distribution  and  a  later  positive  component  also  centro-parietally  distributed,  which 

resembles a late posterior positivity/P600 (Figure 3). It  is important to point out that late 
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posterior  positivities/P600  are  mostly  found  in  sentence  reading  paradigms,  where 

participants read structured sentences and have to integrate anomalous targets into rich 

linguistic contexts (Brothers et al., 2020), which is not the case for this experiment. However, 

there is also evidence that these potentials are associated with the detection and reanalysis 

of linguistic anomalies in the broad sense (see Section 1.1.; Quante et al., 2018; Van Petten 

& Luka, 2012) and according to predictive processing theories, they follow prediction errors 

to resolve them. According to this definition, these processes could also happen in more 

basic linguistic tasks other than sentence reading, so we included in our hypothesis also 

post-N400 positivities and, in particular, the late posterior positivity/P600. As the experiment 

design is not the one that would be typically used to elicit a classical P600 (see also Arcara 

et al., 2019), it is difficult to clearly interpret the functional meaning of the effects found in a 

late time window. Nonetheless, the effect was present and compatible with accounts of late 

posterior positivities/P600 as correlates of detection and reanalysis of linguistic anomalies; 

therefore, for clarity reasons, we will refer to our late positive component as a classic late 

posterior  positivity/P600  mirroring  these  processes,  while  in  a  predictive  processing 

framework, it could reflect the attempt at resolving a prediction error, which, we speculate, 

would not be strictly related to the type of task, but to the incongruence itself. Our results  

also point to a complex dynamic showing that the N400 and the late posterior positivity/P600 

found in centro-parietal electrodes were larger in the case of lower pre-stimulus alpha power. 

However,  the  N400 was observable  regardless  of  pre-stimulus  power  level,  albeit  more 

negative  for  lower  pre-stimulus  power  values  (as  shown  by  the  comparison  of  tensor 

surfaces,  see  Figure  4  and  upper  panels  of  Figure  5A-D),  while  the  late  posterior 

positivity/P600 effect was only observable for low pre-stimulus alpha. These findings extend 

previous reports on the influence of pre-stimulus alpha power on the linguistic ERPs and 

demonstrate that the pre-stimulus state exerts a stronger modulation on later components 

such as the P600 than on earlier ones, such as the N400. 
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We also replicated the analyses using the IAPF power, which yielded similar results to those 

obtained  with  standard  alpha  band  power  (see  Supplementary  Materials,  p.  216  and 

following). In the language domain, it seems that overall, a lower IAPF is associated with 

more efficient linguistic processing (e.g., Bornkessel-Schlesewsky et al., 2022; Nalaye et al., 

2022; for further considerations, see the Supplementary Materials, p. 15). This suggests that 

properties of alpha oscillations other than power, such as IAPF speed, might be predictive of 

post-stimulus cognitive processes and electrophysiological responses. This field therefore 

deserves further investigation.

In  sum,  the  results  confirm  our  initial  hypothesis,  positing  lower  pre-stimulus  power 

associated with larger N400s and late posterior positivities/P600. In addition, they showed 

that  pre-stimulus  alpha  power  differently  modulated  the  N400  and  late  posterior 

positivity/P600 effects in the semantic congruence task. Such differential modulation could 

be rooted in the different functional roles of the ERPs. 

It has been recently hypothesized that the N400 and the late posterior positivity/P600 could 

share some similarities with ERPs that are classically found in perceptual tasks, i.e., the 

mismatch negativity (MMN) and P300 respectively and that their increased latencies and 

different topographies reflect the increased complexity of linguistic stimuli when compared to 

perceptual  ones (Bornkessel-Schlesewski  and Schlesewski,  2019;  Leckey & Federmeier, 

2020). In the following paragraphs, we will discuss the possible interpretations of our results 

in  line  with  the  cognitive  processes  reflected  in  the  N400  and  the  late  posterior 

positivity/P600, under both an attention-based mechanism and a precision-based one.

4.1. Cortical inhibition and attention

In  response to  perceptual  stimuli,  the MMN is  associated with  the degree to  which the 

encountered stimulus is incongruent with (or deviates from) the previous ones and is elicited 

even when participants do not  pay attention to the stimuli  (Garrido et  al.,  2009).  In  the 

present study the N400 is present regardless of the pre-stimulus alpha power level, but is 
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more negative for lower levels of pre-stimulus power, so we can argue that this ERP might 

reflect processes that are relatively independent of the pre-stimulus state, interpreted as a 

correlate of the level of attention or cortical activation in the pre-stimulus interval. Assuming 

a similarity between the N400 and the MMN, it  is possible to hypothesize that the N400 

reflects  automatic  ways  to  signal  incongruent  and  salient  linguistic  stimuli,  and  is  only 

partially modulated by the pre-stimulus state (attention or level of cortical activation).

The late posterior positivity/P600, instead, deserves separate consideration. In line with the 

analogy between perceptual  and linguistic  ERPs,  in  the  perceptual  domain  the  P300 is 

related  to  attentional  reorienting  following  infrequent,  salient,  and  task-relevant  stimuli 

(Corbetta,  Patel,  and  Schulman,  2008;  Polich,  2007;  Sassenhagen  &  Bornkessel-

Schlesewsky,  2015).  In  this  domain,  the  P300 is  also  modulated  by  pre-stimulus  alpha 

power: lower pre-stimulus power is linked to larger P300 amplitudes (Ergenoglu et al., 2004), 

while higher pre-stimulus power to longer latencies and attenuated amplitude (Grent-’T-Jong 

et al., 2011; Price, 1997; see Section 1.2.). During language processing, linguistic anomalies 

such  as  semantic  incongruencies  are  usually  infrequent,  salient,  and  task-relevant. 

Therefore,  they  share  those  characteristics  of  the  stimuli  that,  in  attention/perception 

domains, elicit the P300; also, this ERP and the late posterior positivity/P600 may reflect, at 

least in part, the same neurocognitive processes (e.g., response to salience; Sassenhagen 

& Fiebach, 2019). In this vein, our results show that also the late posterior positivity/P600 

amplitude is larger for lower pre-stimulus alpha power, thus substantiating hypotheses about 

the similarity between the P600 and P300. In those studies linking pre-stimulus alpha and 

the P300, lower alpha power was interpreted as a correlate of attention or cortical activation, 

so  we  can  argue  that  also  in  the  present  study  anticipatory  attention/cortical  activation 

possibly have an influence over the P600 and the underlying cognitive process in response 

to semantic incongruencies. In addition, semantic incongruencies also trigger the reanalysis 

of linguistic stimuli, in an attempt to make sense of them; as we mentioned in Section 1.1.,  

the  late  posterior  positivity/P600  could  precisely  reflect  such  a  process.  A  possible 
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explanation for the influence of the pre-stimulus state on linguistic reanalysis would be that 

this process might entail the allocation of attentional resources to some extent; therefore, it 

could be dependent on the level  of  cortical  activation or attentional  resources that  were 

induced by the cue in the pre-stimulus interval,  as indicated by the level of pre-stimulus 

alpha power: the lower the power, the greater the attentional focus, which results in a larger 

post-stimulus late positive positivity/P600.  In other words,  the amplitude of  this  positivity 

varies spontaneously as a function of  the level  of  pre-stimulus alpha power,  which may 

reflect  the  level  of  anticipatory  attention/cortical  activation  deployed to  stimulus  analysis 

before the presentation of the incongruency.

4.2. Precision and attention

The analogy between perceptual and linguistic cognitive domains and ERPs also suits a 

more parsimonious predictive processing perspective, where the perceptual MMN is thought 

to  be an early  signature of  sensory prediction errors,  while  the later  P300 is  elicited in 

response to violations of higher-level regularities (Garrido et al., 2021). Similarly, the N400 

mirrors  the  degree  to  which  the  actual  linguistic  stimulus  deviates  from the  individual’s 

expectations,  i.e.,  the semantic  prediction error,  which essentially  signals  a  higher-order 

violation  that  needs  to  be  resolved  through  a  reanalysis  process,  reflected  in  the  late 

posterior positivity/P600 (Kuperberg et al.,  2020; Wang et al.,  2021). Tellingly,  predictive 

processing accounts  consider  N400s and late  posterior  positivities/P600s as part  of  the 

same process of prediction error generation and resolution, through the concept of precision. 

Precision, the inverse of variance or level of reliability of a hypothesis,  is related to cue 

reliability in language (Bornkessel-Schlesewski & Schlesewski, 2019). However, precision 

levels fluctuate spontaneously during the task even in presence of  equally  reliable cues 

(Feldman  and  Friston,  2010)  and  there  is  evidence  that  higher  precision  levels  are 

associated with lower pre-stimulus power (Bauer et al., 2014; Cao et al., 2017). In section 

1.1  we  reviewed  evidence  stating  that  in  sentence  comprehension  paradigms  featuring 

different levels of contextual constraint,  more constraining contexts were associated with 
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lower levels of pre-stimulus alpha power (Gastaldon et al., 2020; León-Cabrera et al., 2022; 

Rommers et al., 2017; Terporten et al., 2019; Wang et al., 2018), while similar studies found 

that contexts eliciting lower pre-stimulus alpha power were associated with more negative 

N400s (Gastaldon et al., 2023; Rommers et al., 2017; Terporten et al., 2019; Wang et al., 

2018). This body of evidence helped us generate the hypothesis that lower pre-stimulus 

alpha might be associated with more precise predictions. However, the paradigm we used in 

the  present  study  presents  some  important  differences  from  sentence  comprehension 

paradigms. In particular, we did not manipulate the level of pre-stimulus alpha power or prior 

precision: the graphic cues were equal in terms of reliability, so participants did not need to 

generate  different  predictions  for  lexical-semantic  candidate  targets  suggested  by  a 

sentence context, as the candidate target was clearly cued by the picture (e.g., picture of an 

apple).  Thus,  in  all  trials,  participants  could  pre-activate  the  specific  lexical-semantic 

candidate (apple) with equal levels of precision. This is different from the case in which 

predictions have to be derived from a sentence context, where the level of precision about 

the upcoming stimulus relies on the inferences made by the individual, based on contextual 

information and their prior knowledge. In the original study (Arcara et al., 2019), precision 

levels  and the associated pre-stimulus alpha power  was not  manipulated;  however,  our 

question in the present study was whether spontaneous, physiological fluctuations of alpha 

power - regardless of experimental manipulation - have an influence on subsequent ERPs: 

we hypothesized that spontaneous alpha power fluctuations taking place on a trial-by-trial 

basis represented random variations in the ability to precisely predict the upcoming target 

word  (Cao  et  al.,  2017).  In  particular,  lower  levels  of  pre-stimulus  alpha  power  should 

correspond to the ability to hold more precise expectations about the target, and when these 

expectations are disconfirmed in the case of incongruent targets, a N400 ensues, signaling 

linguistic/semantic prediction errors. 

In spite of these differences, our results (albeit more nuanced) are in line with those from 

sentence comprehension paradigms. We have demonstrated that even if the N400 effect is 
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observable regardless of pre-stimulus alpha power level, it is more negative for lower levels 

of pre-stimulus alpha power (Figure 4 and upper panels of Figure 5A-D). This suggests that 

prediction errors are only partly dependent on the pre-stimulus precision level, and that even 

in  absence  of  explicit  manipulations  of  pre-stimulus  power  or  precision  levels,  some 

spontaneous variability exists, and may reflect variations in the ability to precisely predict the 

upcoming target word (Cao et al., 2017), so that in the presence of lower pre-stimulus alpha 

power,  predictions about  the upcoming targets are more precise,  and generate a larger 

N400 (representing prediction error)  following incongruent  (i.e.,  unpredicted)  targets.  We 

hypothesize that this mechanism is similar to the one that takes place in those sentence 

comprehension paradigms that manipulate contextual constraint and find that more negative 

N400s  follow  context  associated  with  lower  pre-stimulus  alpha  and  incongruent  targets 

(Rommers et al., 2017; Terporten et al., 2019; Wang et al., 2018).

After a prediction error is generated, the cognitive system attempts to resolve it through a 

process of reanalysis, which is reflected in late posterior positivities/P600s (Kuperberg et al., 

2020;  Wang et  al.,  2021).  The reanalysis  process might  be associated with changes in 

precision weights with  respect  to  the precision configuration of  the pre-stimulus interval: 

input  reanalysis  and  prediction  error  resolution  may  be  therefore  dependent  on  and 

modulated by the precision level that was driving expectations in the pre-stimulus interval. 

However,  these are only  speculative explanations,  as  we did  not  manipulate  the priors’ 

precision levels.

As stated in Section 1.2, the attentional-based and precision-based interpretations of these 

electrophysiological dynamics are not in conflict with one another and are both compatible 

with  a  predictive  account  of  the  N400  and  late  posterior  positivity/P600  effects.  The 

predictive  account  also  offers  an  overarching  explanation  of  several  other  domains  of 

cognition, that transcends the limitations of discrete cognitive modules and tends toward new 

ontologies (Pessoa et al., 2022; Poldrack and Yarkoni, 2016). In this vein, recent works are 

going in the direction of interpreting traditional cognitive functions under predictive views 
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(Masina et al., 2022) with promising implications for basic research and clinical applications. 

Notably, sometimes predictive processing theories, albeit increasingly popular, are criticized 

as lacking empirical support (Litwin and Milkowski, 2020; Wilterson et al., 2021). One of the 

reasons for this criticism is that studies explaining their results in terms of anticipation and 

prediction seldom take into account neurophysiological dynamics taking place before the 

stimuli,  therefore  assuming  that  predictive  processes  are  taking  place  but  not  directly 

investigating  them,  while  prediction  is  an  ongoing  process  (Leon-Cabrera  et  al.,  2017); 

investigations on this  topic  thus cannot  disregard pre-stimulus dynamics.  In  the present 

study, we have established some evidence that pre-stimulus alpha power differently biases 

post-stimulus language-related ERPs, a phenomenon that can be parsimoniously explained 

by  considering  predictive  processing  in  language.  Deepening  the  understanding  of  the 

relationship  between  pre  and  post-stimulus  neurophysiological  dynamics,  i.e.,  prediction 

formation  and (dis)confirmation  and their  relative  precision  could  be useful  to  settle  the 

matter in favor of or opposing predictive processing theories. In this direction, future studies 

could manipulate the level of pre-stimulus attention and priors’ precision, to establish the 

relative role of these variables; also, investigating the activity of different brain regions and 

networks in the pre vs post-stimulus interval using neuroimaging methods with a high spatial 

and temporal resolution could prove useful to disentangle between different neurocognitive 

mechanisms involved in linguistic anticipation and modulation of pre-stimulus alpha power 

and post-stimulus ERPs.

Limitations and future directions. There are some limitations in the present study. First of 

all,  we  acknowledge  that  the  predictive  and  the  non-predictive  accounts  are  difficult  to 

disentangle. Moreover, the study design was purposely simple so that it  was possible to 

uncover  pre-  and  post-stimulus  dynamics  specifically  relative  to  very  clear  semantic 

violations, not embedded in a rich linguistic context. Future investigations should address 

this issue, performing single-trial analyses on more complex linguistic violation paradigms 

(e.g.,  sentence reading), to provide a more complete picture of the influence of the pre-
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stimulus state on later cognitive processes in linguistic comprehension. In the current study, 

the behavioral task was devised to ensure that the participants paid attention to the stimuli 

and was very easy and without time pressure. Future studies could employ different tasks 

that  could  link  prestimulus  alpha  not  only  to  EEG  responses,  but  also  to  behavioral 

performance.

Finally, it is important to notice a potential limitation, which is intrinsic to most ERP studies 

on language: it is very difficult to demonstrate that the trial-by-trial alpha variations are actual 

spontaneous fluctuations and are not instead related to some uncontrolled properties of the 

stimuli. In short, since all stimuli were not equal, it could be the case that some specific cue-

target pairs were associated to lower prestimulus alpha and in turn to enhanced N400 and 

P600. To explore this issue, we fitted additional GAMM models and ran control analyses 

based on simulations that can be found in the Supplementary Materials (p.  241).  These 

additional analyses demonstrated that the effects we report seems not due to uncontrolled 

properties of the stimuli. 

Conclusion.  In  the  present  study,  we  showed  that  ERPs  associated  with  semantic 

violations, such as the N400 and late posterior positivity/P600, were differently modulated by 

pre-stimulus alpha power: the N400 amplitude was less sensitive to pre-stimulus power level 

(being present  regardless of  the level  of  pre-stimulus power),  while  larger  late posterior 

positivities/P600s  were  only associated  with  low  pre-stimulus  alpha  power  level.  More 

specifically, lower levels of pre-stimulus alpha power were associated with more negative 

N400 and more positive P600 ERPs. This finding can be explained through the different, 

albeit  connected,  functional  meanings of  the  ERPs both  under  a  predictive  and a  non-

predictive theoretical framework. Capitalizing on the methodology proposed in the current 

study,  further  investigation  of  pre-stimulus  dynamics  could  better  characterize  how pre-

stimulus dynamics could affect brain responses.
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Interim summary 2

So far, Study 1 showed that rTPJ is a possible domain-independent predictive hub, while 

Study 2 highlighted the importance of considering the pre-stimulus interval when studying 

predictive dynamics, and showed that the level of pre-stimulus alpha power can modulate 

ERP amplitudes. To further elucidate the issue of TPJs in predictive processing Study 3 will 

combine the investigation of pre-stimulus dynamics with that of the role of bilateral TPJs 

during complex linguistic computations taking place during a metaphor comprehension task, 

a  particular  case  of  linguistic  predictive  processing  (Vespignani  et  al.,  2010).  More 

specifically, this study attempts to answer the following questions: are both TPJs involved in 

linguistic  prediction?  Are  they  involved  in  both  prediction  generation  and  testing,  as 

proposed by Siman-Tov et al. (2019), or only in prediction testing, as proposed by Doricchi 

et  al.  (2022)?  If  the  TPJs are  involved in  prediction  generation,  can pre-stimulus  alpha 

(associated with predictions’ precision) modulate the subsequent brain responses to target 

stimuli?  And  finally,  is  the  eventual  modulation  local,  i.e.,  limited  to  the  TPJs  under 

investigation, or can pre-stimulus TPJ activity influence post-stimulus activations in other 

task-related areas? The results  of  this  study  can help  shed some light  on  the  possibly 

different roles of left and right TPJ during complex linguistic computations, and at what stage 

of predictive processing they come into play.
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Study  3:  Roles  of  left  and  right  TPJ  during 

linguistic predictive processing

1. Introduction

1.1. The many facets of the TPJs

The bilateral TPJs have been found to play a role in a variety of cognitive processes, for 

example, attention, language, body ownership and sense of agency, and episodic memory 

retrieval. Bilateral TPJs are also part of the default mode network (DMN), which is active 

during social cognition tasks (see General Introduction).  However, the  left and right  TPJs 

also show some specificity in their functional roles. For example, attentional tasks seem to 

activate more specifically the right TPJ (rTPJ),  especially in response to unexpected but 

task-relevant stimuli (e.g.,  Doricchi et al., 2010; Indovina & Macaluso, 2007). This leads to 

the hypothesis that rTPJ could play a key role in the reorienting of attention (Corbetta et al., 

2008; Corbetta & Shulman, 2002). This hypothesis, known as the circuit-breaking theory, 

states that the dorsal attention network (DAN) maintains the visuospatial information relevant 

to the current task-defined goals, while the ventral attention network (VAN), including rTPJ, 

allows  the  switch  of  attention  to  relevant  but  currently  unattended  stimuli;  rTPJ  would 

therefore be responsible for interrupting the activity of the DAN, resulting in the reorientation 

of attention to a new salient stimulus (Corbetta et al., 2008; Corbetta & Shulman, 2002). 

On the other side  the left TPJ (lTPJ) appears to be more  involved in language processing: it 

is activated in response to lexical violations, non-words, and words that are semantically 

unrelated to the previous context (Binder et al., 2005, p. 200; Fiebach et al., 2002; Prince et 

al., 2007), but it is also in charge of integrating the individual’s general world knowledge with 

the local discourse information  (Menenti et al., 2008; Metusalem et al., 2012) and in pre-

activating linguistic information (Gastaldon et al., 2020). In addition, some studies link lTPJ 
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to figurative language comprehension (Bambini et al., 2011), but there is also evidence that 

this type of task activates the TPJs bilaterally (Bohrn et al., 2012; Spotorno et al., 2012). 

The involvement of the bilateral TPJs in such heterogeneous contexts has led to some more 

domain-general conceptualizations of the role of these areas (e.g., nexus model, Carter & 

Huettel,  2013;  contextual  updating  hypothesis,  Geng  &  Vossel,  2013;  see  General 

Introduction)  stating that rTPJ in particular would act as a hub for integrating information 

from multiple domains and thus updating the internal models of the world. 

Internal models are particularly important in predictive processing theories,  that have been 

extensively presented in the General Introduction and in Study 2. Predictive computations 

are believed to be carried out in a distributed way across the brain: a recent meta-analysis 

proposed that a set of brain areas, comprising also rTPJ, form a diffuse network involved in 

higher-level  prediction  generation  and  testing,  that  supports  both  perception  and  action 

processes in a domain-general way (Siman-Tov et al., 2019). 

Besides the putative prediction network, rTPJ is part of both the VAN and the DMN (Corbetta 

et al., 2008; Hughes et al., 2019), a concurrency that further speaks in favor of a domain-

general  conceptualization of  this  area as a hub where multiple  cognitive processes and 

information types converge and are integrated, as reported in Study 1. In essence, Study 1 

concludes that the role of rTPJ is driven by the specific context and network it operates in, 

while  its  core  function  of  integration  and  contextual  updating  remains  unchanged.  This 

inherent flexibility of rTPJ is likely why it is found to be involved across various cognitive 

domains, as it serves a fundamental function in a range of cognitive processes (Masina et 

al., 2022).

These findings support an interpretation of the role of rTPJ in terms of  predictive processing. 

In contrast to traditional views that emphasize the involvement of rTPJ in distinct domains, 

this evidence lays the case for a more parsimonious interpretation of the role of the rTPJ 
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(and, probably, also lTPJ) as a crucial hub involved in domain-general predictions, together 

with other areas.

1.2. Metaphors: a case of linguistic predictive processing

Predictive processing in the language domain is being extensively and increasingly studied 

in  recent  years  (e.g.,  Brown  &  Kuperberg,  2015;  Kuperberg  et  al.,  2020);  notably,  the 

figurative  use  of  language  can  be  intended  as  a  special  case  of  linguistic  prediction 

(Vespignani et al., 2010). Figurative language includes various forms such as metaphors, 

idioms, and irony, all situations where the intended meaning goes beyond the literal content 

of the single sentence components  (Weiland et al.,  2014). For instance, metaphors offer 

concise and evocative descriptions by creatively connecting two different concepts (e.g., 

“that lawyer is a shark”). In sum, differently from literal expressions, figurative ones include 

both literal and non-literal meanings (Diaz & Eppes, 2018), and the principles of predictive 

processing can help us understand how we make sense of figurative language. 

Goodman and Frank (2016) argued that speakers produce sentences that are both helpful 

and parsimonious, relative to some particular topic or goal. Comprehenders then understand 

these sentences by inferring what the speaker must have meant, given what she said. This 

means  that  comprehenders  infer  the  underlying  cause  (what  the  speaker  intends  to 

communicate)  based  on  the  sensory  input  (what  the  speaker  said).  Expanding  on  this 

observation, we can hypothesize that in the case of metaphors, the sensory input can have 

more than one meaning: it can be both literally and metaphorically true (Bohrn et al., 2012), 

but to correctly interpret the intended meaning of the sentence, i.e., inferring whether the 

metaphorical or the literal meaning is the true one, we have to rely on some expectations 

coming from our prior knowledge. Consider the sentence “that lawyer is a shark”.  While 

reading it, we generate a hypothesis about the general meaning of the sentence based on 

our prior knowledge about lawyers. We are, in other words,  uncertain about the plausible 

implied meaning of the sentence (Brown & Kuperberg, 2015), but we have some priors, 
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coming from our general knowledge, that can help us in the interpretation. Thanks to these 

priors we can understand that the literal meaning makes no sense, because it is implausible 

that the correct meaning of the sentence is that the lawyer is a predatory fish that swims 

underwater. Therefore, we have to infer that other features of the concept of “shark”, for 

example,  its  ferocity  or  aggressiveness,  constitute  the  correct  implied  meaning  of  the 

sentence. Another feature guiding the interpretation of the sentence is the context, which 

can shape our predictions. For example, if the sentence is uttered by a young boy that is 

watching  a  cartoon,  it  could  actually  describe  a  shark  that  works  as  a  lawyer.  During 

predictive linguistic computations, the degree of uncertainty (i.e., precision) associated with 

our  prediction  about  the  meaning  can  vary,  but  usually  our  priors,  built  from  general 

knowledge and and context, guide us through the inference with a fair degree of precision 

and are implied in updating our internal models of the sentence. The concept of precision 

mathematically represents the reliability of a prediction, and is defined as the prediction’s 

inverse  variance  (Friston,  2018),  even  though it  can  also  be  associated  with  perceived 

stimuli or prediction errors  (Walsh et al., 2020). In essence, the higher the precision of a 

stimulus  or  expectation,  the  more  the  individual  relies  on  it;  therefore,  highly  precise 

expectations  reduce  the  uncertainty  associated  with  the  underlying  cause  of  upcoming 

stimuli (in the case of figurative language comprehension, about the more plausible meaning 

of a metaphor).

During linguistic prediction, our internal models test the possible sentence meaning against 

our prior  knowledge of  the world and the actual  sensory input until  we come up with a 

plausible interpretation. This requires integrating global world knowledge and local sentence 

information, and unsurprisingly, beyond more classical linguistic areas, lTPJ seems to be 

particularly  implicated  in  such  a  process  (Doricchi  et  al.,  2022;  Gastaldon  et  al.,  2020; 

Menenti  et  al.,  2008;  Metusalem  et  al.,  2012),  but  there  is  also  evidence  showing 

involvement  of  rTPJ  during  metaphor  (Bambini  et  al.,  2011)  and,  in  general,  figurative 

language comprehension (Spotorno et al., 2012). 
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1.3. Are TPJs involved in both prediction generation and testing?

A recent systematic literature review proposed that the lTPJ encodes both matches and 

mismatches between predicted and observed sensory, motor, or cognitive events, whereas 

the rTPJ specifically encodes mismatches; and that match/mismatch computations follow the 

prediction error minimization principle (Doricchi et al., 2022). Following this line of reasoning, 

we can argue that both TPJs are active after the encounter with the actual environmental 

stimuli,  and they are involved in checking whether the stimuli  are or not in line with the 

predictions,  i.e.,  in  the  prediction  testing  phase.  Conversely,  Siman-Tov  et  al.  (2019) 

presume  that  their  putative  prediction  network,  encompassing  TPJ,  is  involved  in  both 

generating and testing predictions; this would mean that TPJ is active both before and after 

encountering the crucial environmental stimuli. However, the studies included in their meta-

analysis and those reviewed so far have only detected TPJ activation after predictions were 

disconfirmed, only assuming that the detected mismatch was the consequence of a violated 

prediction, but not directly investigating whether a prediction is actually taking place. As a 

consequence, we can argue that the TPJs are involved in prediction violation, rather than in 

prediction per se. Hence, some questions arise: is also lTPJ involved in prediction? Are the 

TPJs only involved in prediction testing or also in prediction generation? Answering these 

questions implies investigating the TPJs’ activity during cognitive tasks, not only after target 

stimuli but also before them. We, therefore, have to direct our interest toward the TPJs’ state 

during the pre-stimulus interval, which could be representative of prediction generation, and, 

as such, might modulate the neural responses to subsequent stimuli. 

1.3.1. Alpha, precision, and attention

To the best of our knowledge, no previous studies have directly investigated the influence of 

spontaneous (i.e.,  in the absence of manipulation) pre-stimulus TPJ activity on the post-

stimulus processing. Still, some preliminary evidence from EEG studies shows that different 

levels of pre-stimulus alpha power (8-13 Hz) might modulate post-stimulus ERPs: in simple 
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perceptual paradigms, lower levels of pre-stimulus alpha power have been linked to larger 

ERP amplitudes  (Cao  et  al.,  2017;  Ergenoglu  et  al.,  2004;  Grent-’T-Jong  et  al.,  2011; 

Samaha et al., 2018; Van Den Berg et al., 2016), while higher pre-stimulus alpha power has 

been associated with ERP amplitude suppression, longer latencies, and augmentation of 

late ERPs (occurring after 400 milliseconds; Iemi et al., 2017, 2019; Min & Herrmann, 2007). 

This evidence does not give us any insight into the role of the TPJs, but it suggests that pre-

stimulus alpha power can influence stimulus processing and that  its  fluctuations can be 

interpreted as possible correlates of anticipation or predictive processing.

Alpha  power  has  been  traditionally  considered  indicative  of  anticipatory  attentional 

suppression  (Foxe & Snyder, 2011), controlling the redirection of information flow to brain 

areas relevant to the task at hand, while inhibiting irrelevant regions  (Jensen & Mazaheri, 

2010). Under this perspective, increases in alpha power before a target stimulus suggest a 

state of cortical  inhibition, whereas decreases in alpha power indicate cortical  activation, 

facilitating the subsequent detection and processing of task-relevant information  (Klimesch 

et al., 2007). In sum, during a state of anticipatory attention or cortical activation, stimulus 

processing should  be facilitated;  in  this  context,  an unexpected stimulus would  elicit  an 

enhanced ERP. 

On the other hand, a predictive conceptualization of alpha oscillations proposes that they are 

linked to the concept of precision (see Section 1.3; Bauer et al., 2014; Sedley et al., 2016; 

Sherman et al., 2016). Notably, in the context of predictive processing theories, attention is 

regarded as an emergent property of the precision optimization mechanism, where directing 

attention  to  a  stimulus  involves  representing  and  enhancing  the  precision  of  sensory 

information (including prediction error) throughout the inferential process (Feldman & Friston, 

2010). As mentioned above, highly precise expectations reduce the uncertainty associated 

with the underlying cause of upcoming stimuli (in the previously described case of metaphor 

comprehension, about the more plausible meaning); as a consequence, the relative internal 

representations will be enhanced and so will the neural responses associated with them. In 
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this  way,  cognitive  resources  will  be  biased  towards  more  precise  predictions  (Hohwy, 

2012),  and  the  magnitude  of  expectations’  effects  on  neural  activity  depends  on  the 

precision  of  predictions  and  prediction  error  signals  (Walsh  et  al.,  2020). Within  this 

theoretical framework, alpha oscillations are considered correlates of the prior’s precision 

and  capable  of  modulating  post-stimulus  neural  responses,  and  there  appears  to  be  a 

correlation  between  highly  precise  (reliable)  predictions  and  reduced  pre-stimulus  alpha 

power (Bauer et al.,  2014; Cao et al.,  2017). Conversely, elevated levels of pre-stimulus 

alpha power have been linked to dampened stimulus-evoked responses (Cao et al., 2017). It 

is  however  important  to  note  that  variations in  pre-stimulus alpha power  can also arise 

spontaneously, without any experimental manipulations; additionally, within a specific task, 

the features of  the stimuli  do not  exhibit  a  linear  relationship with the precision of  their 

internal  representations,  as  predictive  models  include  random  fluctuations  of  precision 

(state-dependent error variance) and assume that this precision is not constant at any level 

of  hierarchical  inference  (Feldman  &  Friston,  2010).  As  a  result,  precision  levels  may 

fluctuate spontaneously during the task, similar to attention and alpha power.

This view on alpha oscillations aligns also with traditional “inhibitory” theories of attention, 

stating that anticipatory allocation of cognitive resources is reflected in lower levels of alpha 

power,  facilitates  stimulus  processing  and  results  in  enhanced  ERPs.  Nevertheless, 

predictive processing differs from traditional accounts as it proposes a continuous interplay 

between attention  and  expectation  that  is  aimed at  optimizing  precision  and  minimizing 

prediction  error  (Walsh  et  al.,  2020).  Interestingly  enough,  Siman-Tov  et  al.  (2019) 

substantiate  the  idea  that  prediction  and  attention  are  interdependent  processes:  they 

showed  that  their  putative  prediction  network  and  the  VAN,  subserving  attentional 

reorienting, overlap in the rTPJ, and some of the conditions activating the VAN also involve 

violation of predictions (Corbetta et al., 2008; Vossel et al., 2014).
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1.3.2. Pre-stimulus alpha in language

Prediction violation is an important feature when studying predictive processing, especially in 

the domain of language, in which expectations are mainly studied using EEG paradigms 

where the final target word is incongruent with the previous sentence contexts, and typically, 

incongruent (therefore unpredictable) words elicit  characteristic N400s and P600s ERPs, 

associated with linguistic prediction error and its resolution, respectively (Kuperberg et al., 

2020). Similarly to what happens for the TPJs, whose role in prediction has been inferred 

primarily  based  on  their  involvement  after  disconfirmation  of  expectations,  the  main 

drawback  of  linguistic  violation  paradigms  is  that  they  focus  on  the  neural  dynamics 

occurring after predictions have been either confirmed or disconfirmed; as a result, these 

experiments assume that prediction is occurring before the target, but they do not directly 

address  it  (León-Cabrera  et  al.,  2017).  To  overcome  this  limitation,  some  studies  on 

linguistic processing have considered both the pre- and post-stimulus interval, in different 

ways.  What  emerges is  that  more reliable,  stronger  linguistic  expectations  (induced,  for 

example, by a more constraining context) were associated with a reduced pre-stimulus alpha 

power and more negative N400s (Gastaldon et al., 2023; Rommers et al., 2017; Terporten et 

al., 2019; Wang et al., 2018). In addition, in a semantic congruence task where image cues 

induced  highly  precise  expectations  about  target  words  that  could  be  congruent  or 

incongruent, spontaneous fluctuations of pre-stimulus alpha power modulated the amplitude 

of the N400 and P600 components: the lower the pre-stimulus power, the greater the ERP 

amplitudes (Lago et al., 2023). Such an influence of fluctuations in pre-stimulus alpha power 

on the subsequent  neural  responses supports  the hypothesis  that  alpha oscillations are 

associated with the prediction’s precision level, which modulates how the upcoming stimuli 

will  be  processed.  Alpha  oscillations  can  therefore  be  interpreted  as  variations  in  the 

individual’s ability to predict the upcoming target word with a high level of precision (Cao et 

al., 2017). 
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This mechanism could be coherent with the predictive processing of metaphors as outlined 

in  section  1.3:  linguistic  predictions  in  favor  of  literal  meanings,  guided  by  prior  world 

knowledge, might be associated with varying levels of precision and, therefore, with varying 

levels of pre-stimulus alpha power. Where and how in the brain this mechanism is carried 

out remains an open question. For example, linguistic prediction could only be carried out 

within the language network; or maybe these computations might also involve other domain-

general  predictive hubs,  that  are functionally  connected with the language network and, 

probably, are also active in other cognitive operations (Ryskin & Nieuwland, in press).

As reviewed so far, there are reasons to hypothesize that, even if they are not part of the 

language network, the TPJs (or at least the left one) might come into play during linguistic 

prediction. If, as some studies report (Doricchi et al., 2022; Siman-Tov et al., 2019), the TPJs 

are involved in domain-general prediction generation and/or testing, and they are functionally 

connected  with  task-specific  areas  (Masina  et  al.,  2022),  we  can  hypothesize  that  pre-

stimulus alpha power recorded in the TPJs (associated with the prior’s precision),  could 

modulate the neural responses to metaphor comprehension.

1.4. The present study

Metaphor  comprehension  can  be  regarded  as  a  particular  form  of  linguistic  predictive 

processing, possibly related to priors’ precision (see Sections 1.2. and 1.3.2.). In predictive 

frameworks, fluctuations in precision have been linked with pre-stimulus alpha oscillations, 

which can modulate the post-stimulus EEG responses (see Study 2, Lago et al., 2023); in 

addition, the prior’s precision guides resources’ allocation, probably with the involvement of 

rTPJ  (the  overlapping  point  between  the  VAN,  a  domain-specific  network  engaged  in 

attentional processes, and a putative domain-general prediction network). Such evidence 

points to the importance of considering, when studying predictive dynamics, both precision 

variations and the potential functional connections between rTPJ and other areas. This last 

consideration  is  also  valid  for  lTPJ,  which  has  been  somewhat  overlooked  in  the 
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investigations about predictive processing. In addition, the TPJs have been rarely studied in 

the context of linguistic prediction (e.g. Gastaldon, 2020), despite some evidence that rTPJ 

may be part of a predictive network while lTPJ might be involved in (linguistic) prediction by 

integrating local, task-related linguistic information with our existing world knowledge, with 

the likely aim of formulating the priors guiding figurative language comprehension (Menenti 

et al., 2008; Metusalem et al., 2012). 

For these reasons, the present study aims at investigating the role of the bilateral TPJs in 

prediction generation and testing, during the comprehension of short literal and metaphoric 

sentences that participants were required to read; at the end of each sentence, they had to 

select, between two words, the one that was best related to the preceding phrase. 

More specifically, we want to answer the questions outlined in Section 1: are  both  TPJs 

involved in linguistic prediction? Are they involved in both prediction generation and testing, 

as  proposed  by  Siman-Tov  et  al.  (2019),  or  only  in  prediction  testing,  as  proposed  by 

Doricchi et al. (2022)? If the TPJs are involved in prediction generation, can pre-stimulus 

alpha (associated with predictions’ precision) modulate the subsequent brain responses to 

target  stimuli?  Finally,  is  the  eventual  modulation  local,  i.e.,  limited  to  the  TPJs  under 

investigation, or can pre-stimulus TPJ activity influence post-stimulus activations in other 

task-related areas?

These questions pose some methodological challenges that need to be addressed carefully. 

The majority of studies reviewed so far are fMRI studies (or meta-analyses and systematic 

literature reviews based on fMRI studies) with a very good spatial resolution but a limited 

temporal  resolution,  whereas  the  investigation  of  pre-stimulus  TPJ  dynamics  requires 

adequate resolution in both temporal and spatial domains. Magnetoencephalography (MEG) 

meets  these requirements,  since it  allows a  reliable  source reconstruction  of  the  signal 

together with an excellent temporal resolution, enabling the investigation of the influence of 

the  pre-stimulus  oscillations  on  the  post-stimulus  signal  both  within  the  TPJs  and  in 
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connection with other task-specific,  language-related areas.  As regards those areas that 

may be involved in the predictive processing of  metaphoric  sentences together with the 

TPJs,  we  chose  to  consider  three  core  regions  of  interest  (ROIs)  within  the  language 

network, namely, Broca’s area, and the superior and middle temporal gyri (STG and MTG; 

Friederici, 2017; Rapp et al., 2012).

In sum, the present study aimed to investigate whether the left  and right TPJs could be 

functionally connected to other language-related regions, by testing whether pre-stimulus 

alpha  recorded  from the  TPJs  could  predict  post-stimulus  activations  both  in  the  TPJs 

themselves and in the linguistic areas.

2. Method

The  study  was  approved  by  the  local  ethics  committee  (Comitato  Etico  per  la 

Sperimentazione Clinica della provincia di Venezia e IRCCS San Camillo) and conducted 

following the guidelines of the Declaration of Helsinki.

2.1. Participants

A  sample  of  28  healthy  participants  took  part  in  the  study.  All  participants  had  no 

neurological  or  psychiatric  disease  that  could  affect  cognitive  performance  and  had  no 

history of developmental dyslexia or dyscalculia. The mean age of participants was 28.14 

years (SD = 5.46, range = 21-45) and their mean education was 17.25 years (SD = 2.10, 

range = 13-21). Seventeen participants were female and 11 were male. All participants were 

right-handed.

2.2. Procedures

Before entering the magnetically shielded room, participants underwent initial preparation, 

which consisted of the placement of three head coils, to monitor head position during MEG 

recording, and eight external electrodes to record VEOG, HEOG, and ECG (all with bipolar 
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montage).  Before  recordings  coil  positions  and  head  shape  were  digitized  using  the 

Polhemus Fastrak system. 

Continuous MEG signal was acquired using a whole-head 275-channel system (CTF-MEG). 

Data were sampled at 1200 Hz, with a hardware anti-aliasing low pass filter at 300 Hz. 

Before the experimental session, participants underwent a five-minute resting state session 

and then undertook the experimental task which consisted of four runs of about five minutes 

each. During the breaks between each run participants were allowed to rest and adjust their 

position.  The  total  duration  of  the  experiment  was  approximately  45  minutes.  In  all 

recordings, head movements never exceeded the threshold of 5 mm (on any axis).

All participants had also an MRI scan for source localization purposes (Philips Achieva, 1.5 

T,  T1-3d  sequence).  If  the  participant  had  already  performed  this  examination  in  the 

institution and the data was available, we retrieved the scan. If not available, an MR scan 

was performed.

2.3. Materials

Participants were instructed that they would have to perform a language task that would 

consist of reading short word-by-word sentences and that at the end they would have to 

select, between two words, the one that was best related to the preceding sentence. There 

was no mention of the fact that the focus was on metaphors or pragmatics.

The task recording session was divided into four runs of about five minutes each, with small 

breaks between each run. The experiment was programmed with Psychopy (Peirce, 2007) 

(version 1.82), running on a PC. 

Each trial was organized as follows: first, a fixation cross (+) was presented for 1500 ms, 

followed by the five words composing the sentence, lasting 300 ms, and presented each on 

a separate screen. Each word was preceded by a blank screen lasting 200 ms (e.g. “That/ 

lawyer/ is/ a/ shark”). A schematic representation of each trial can be found in Figure 1. After 
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the  whole  sentence,  a  blank  screen lasting  from 1200 ms to  1600 ms was  presented, 

followed by two words, one on the left and one on the right of the screen (e.g. “precise”, 

“aggressive”).  Participants  were  instructed  to  respond  as  quickly  and  as  accurately  as 

possible by pressing one of two buttons with the index finger or the middle finger the word 

that was more closely related to the meaning of the preceding sentence. The hand to be 

used for the task was counterbalanced across participants and the buttons to press were 

always congruent to the spatial  location of the words (left  or right).  Reaction Times and 

Accuracy were recorded for this button press. Stimuli were presented using white Courier 

New font on a black background screen, and all stimuli subtended about 1.5° of visual angle 

on the horizontal plane. 

Figure 1.  Examples of  metaphorical  and literal  sentence stimuli.  Sentences were preceded by a 

fixation cross (800 msec duration). Sentences were presented word-by-word and each word word 

remained on the screen for 300 msec. ISI lasted 200 msec, while the adjectives remained on the 

screen until participants gave their response. 

Experimental items consisted of 164 sentences with the form “that X is a Y” (for similar 

stimuli see Bambini, Bertini, Schaeken, Stella, & Di Russo, 2016). In half (i.e., 82) of the 

experimental stimuli the meanings of X and Y had a literal relationship (Literal, e.g., “that fish 

is a shark”), while in 82 stimuli the meanings of X and Y had a metaphorical relationship 

(Metaphors, e.g. “that lawyer is a shark”). To ensure stimuli were all interpreted (and not just 

retrieved as a whole) we only employed non-lexicalized metaphors. Importantly, the target 
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words were the same in all the stimuli (in the examples above, the word “shark”), while the 

only difference was in the preceding context. To avoid any carry-over effect stimuli were split 

into two lists (A e B) each including half of the literal sentences and half of the metaphors, so 

that each target word appeared once in each list, either in literal or in metaphoric condition. 

Each participant was administered only with one of the lists that were assigned to each 

subject in counterbalanced order. To avoid that participants could note that the experiment 

focus was on metaphors, the final list of stimuli included also 64 fillers, which consisted of 

further literal sentences, similar to the other stimuli.  Fillers were excluded from statistical 

analyses. Further psycholinguistic details on the stimuli can be found in the Supplementary 

Materials.

The behavioral task aimed to ascertain that the participants understood the metaphors and, 

in general, paid attention to the sentences. For this reason, only descriptive statistics on 

behavioral data were calculated and statistical analyses were conducted only on trials with 

correct behavioral responses.

2.4. MEG data analysis 

The preprocessing of MEG data (see Figure 2) was conducted using Brainstorm (Tadel et 

al.,  2011;  version November 2018) in MATLAB 2016b (Mathworks,  Inc.,  Massachusetts, 

USA), which is available for free download online under the GNU general public license 

(http://neuroimage.usc.edu/brainstorm). On continuous recordings, we first applied the 3rd 

gradient noise cancellation. Data were then resampled at 600 Hz and filtered with a notch 

filter (50 Hz and harmonics at 100, 150, 200, and 250 Hz) and a high-pass filter at 0.1 Hz.  

The Signal-Space Projection algorithm (SSP) was applied to identify and eliminate cardiac 

and eye movement artifacts from the recordings. Digital  triggers were adjusted offline to 

match the actual  visual  stimulus presentation,  thereby improving the accuracy of  trigger 

timing.
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Figure 2. Data collection and analysis steps. The figure shows the main step in data collection and 

analysis. After data collection, data were cleaned and epoched. Source reconstruction was performed 

on MEG data and, as a final step before statistical analyses, pre-stimulus single-trial ROI pre-stimulus 

alpha power, and post-stimulus activation time series were extracted.

Therefore, we extracted epochs that were time-locked to the onset of the target word. The 

epoch duration ranged from -1500 msec to 1500 msec after the stimulus. During this phase, 

excessive artifacts were visually inspected and rejected. After trial rejection, each participant 

had, on average, 36.61 (SD = 2.2) epochs for the Literal [range = 29-40] and 36.79 (SD = 

2.74) epochs for the  Metaphorical  [range = 30-40], condition. The number of epochs for 

each condition did not show significant differences on a t-test [t(51.59) = -0.27,  p = 0.79].

The MEG forward model was generated using the Boundary Element Method (BEM) based 

on the default anatomy in Brainstorm. Source reconstruction was performed on the cortex 

surface using the  wMNE (weighted Minimum Norm)  algorithm,  with  Brainstorm's  default 

settings (fixed source orientation,  constraining dipoles to be normal  to the cortex,  depth 

weighting  with  Order  [0,1]  set  at  0.5  and  Maximal  amount  set  at  10;  noise  covariance 
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regularization set at 0.1; the regularization parameter 1/λ was determined by setting Signal-

To-Noise  Ratio  to  3).  The  noise  covariance  was  derived  from a  3-minute  empty  room 

recording made at the end of each participant's recording session.

Single-trial regions of interest (ROIs) activation time series were reconstructed into 5 cortical 

ROIs selected from the Destrieux atlas (Destrieux et al., 2010) and dimension-reduced by 

averaging all  signals (i.e.  signal  from all  vertices),  within each ROI.  As language-related 

areas, we chose the superior and middle temporal gyri (STG and MTG) and Broca’s area. 

STG and MTG were selected as depicted in the atlas, while  Broca’s area was obtained by 

merging the pars opercularis and triangularis (Lorca-Puls et al., 2021). Regarding the TPJs, 

we took into consideration those portions of this broad region that, according to Doricchi and 

colleagues (2022),  were maximally  involved in  linguistic  computations,  since the task of 

interest was a linguistic one. TPJs were  thus obtained by merging two adjacent regions, 

namely the posterior part of the STG and the angular gyrus (AG; Doricchi et al., 2022), that 

correspond to cytoarchitectonic areas PGp, PGa (angular gyrus), PF, PFcm, PFm (posterior 

STG). MNI centroid coordinates for each ROI are reported in Table 1. ROIs included in the 

analysis are represented in Figure 3.

ROI x y z

Broca -51 9 12

MTG -59 -34 -13

STG -56 -10 -11

lTPJ -45 -70 37

rTPJ 45 57 39

Table 1. MNI centroid coordinates of the selected ROIs.

We  standardized  the  single-trial,  source-reconstructed  data  through  Z-transformation 

according  to  the  mean  value  of  the  100  msec  period  preceding  the  target  word,  then 

downsampled  to  100  Hz  to  reduce  computational  load.  Subsequently,  the  data  were 
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exported to R (R Core Team, 2013) using the erpR package (Arcara & Petrova, 2017) for 

further statistical analyses. Custom code was developed for data handling and plotting. 

The preprocessing for the resting-state data was identical to that of the task data. Following 

the artifact  removal  through SSP, the continuous recordings were divided into 3-second 

epochs. Trial rejection was then conducted based on visual inspection, similar to the process 

applied in the task recordings.

2.5. Single-trial time-frequency analysis 

We conducted time-frequency (TF) analyses on source-reconstructed data at the single-trial 

level. An initial Morlet wavelet (Mother Wavelet in Brainstorm terms) was constructed with a 

central  frequency of  1  Hz and a time resolution of  3  seconds (full-width  half-maximum, 

FWHM). All other wavelet were built as scaled versions of this initial wavelet, spanning from 

1 to 45 Hz, with 1 Hz linear frequency steps. We selected this frequency range to allow for  

additional analyses beyond the scope of this paper, which will not be presented here. From 

the single-trial time-frequency decomposition, we extracted the average magnitude in the 

alpha band (8-13 Hz)  and exported the single-trial  alpha magnitudes to R for  statistical 

analyses. For the resting-state recordings (previously segmented into 3-second epochs for 

trial  rejection  purposes),  we  followed  a  similar  procedure,  with  the  exception  that  time-

resolved alpha-band magnitudes in the single epochs were first averaged in time to obtain a 

Morlet-based  frequency  spectrum.  Subsequently,  these  values  were  averaged  across 

epochs and exported. We opted to use the average resting alpha power as a baseline, as 

opposed to other inter-trial  intervals, because participants were instructed to blink during 

these intervals to reduce contamination during the experimental trials. As a result, power 

estimates from this time window would have been affected by such artifacts.

We obtained pre-stimulus power values for each trial by averaging the TF values across the 

time window between -500 and -10 msec before the target word. We chose this interval 

length, even if not event-free, to obtain a reliable estimation of alpha power. It is important to 
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note that there is evidence of specific anticipatory processes happening already at the level 

of  the article during sentence reading (DeLong et  al.,  2005),  which might modulate pre-

stimulus alpha power. Formally, the eventual influence of the article included in this interval 

(“a/an”)  on alpha power is not  controlled,  but  we overcame such limitation by means of 

control analyses (reported in the Supplementary Materials, p. 261) demonstrating that none 

of the experimental items is systematically associated with a particularly lower (or higher) 

value of alpha. We can therefore rest assured that the uncontrolled properties of the stimuli 

did not significantly influence the level of pre-stimulus alpha power. Moreover, the words 

included  in  the interval  are  not  content  words  and  they  are  consistent  throughout  the 

sentence stimuli, so their effect on sentence comprehension should be constant across all 

sentences. In addition, the target word is always in agreement with the article, so sentences 

do not generate syntactic or semantic violations. 

By ending the time window 10 ms before the target, we can prevent any undesired effects of  

temporal  smearing  caused  by  time-frequency  analyses,  like  the  temporal  leakage  of 

stimulus-related oscillatory activity into the pre-stimulus time window, particularly when the 

stimulus occurs at time 0 or shortly thereafter (Cohen, 2014).

As  the  absolute  single-trial  power  value  might  be  influenced  by  irrelevant  factors  (e.g., 

individual  participant  characteristics,  signal  quality,  etc.),  we normalized the pre-stimulus 

power  using  a  baseline  division  procedure.  This  procedure  involved  dividing  the  power 

during the task by the average power during the baseline period (in our case, the resting-

state  activity).  The  resulting  unit  of  this  normalization  is  a  ratio  (Cohen,  2014).  Values 

smaller than 1 indicate that during each pre-stimulus period, a given subject had lower alpha 

power than during the resting state; values larger than 1 indicate that the subject's pre-

stimulus power was higher than the resting state power.

Since  the  power  distributions  were  skewed,  we  log-transformed  the  power  values  for 

statistical analysis purposes.

145



2.6. Statistical analyses

2.6.1. Whole-brain and behavioral data analyses

In the context of another paper on the same data (in preparation), we performed a whole-

brain Cluster Based Permutation t-test  (Maris & Oostenveld, 2007). These analyses were 

conducted independently from those presented in this paper, but their results confirm that a 

difference between the activations recorded in the metaphorical and literal condition was 

present. To reduce the computational burden, data were downsampled at 200 Hz before the 

cluster-based permutation. Data for all time points and all vertices in the time window from 0 

to 1000 ms were then analyzed, setting the cluster alpha to 0.05 and the minimum number 

of neighbors to 2.

As regards behavioral data, accuracy rates and reaction times were compared by means of 

paired samples t-tests.

2.6.2. ROI analyses

After exporting the ROIs single trials time-series and pre-stimulus alpha to R, we restricted 

the time window of interest from -100 to 800 msec. Data from each ROI were analyzed 

separately, so we ran a total of 5 models (see Figure 3). The models for the TPJs were 

different from those of the language-related ROIs.
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Figure 3. Schematic representation of ROI relationship included in the GAMM models. We extracted 

pre-stimulus alpha power and post-stimulus activation time course from all the brain areas depicted in 

the figure. We then constructed the models using the post-stimulus activation as a dependent variable 

and the pre-stimulus alpha power from the region itself and from the TPJs as main effects (together 

with other variables, see section 2.6.1.).

In the TPJ models, continuous activation amplitude from the TPJ itself in the whole time 

window of interest was entered as the dependent variable. Main effects included: 

- condition (Metaphor vs. Literal) as factor;

- a non-linear effect of time, depending on condition (this term captures the different 

changes in the activation over time in the two conditions);

- a non-linear effect  of  pre-stimulus alpha power from the TPJ itself,  capturing the 

(possibly) non-linear modulation of activation amplitude by different magnitudes of 

pre-stimulus alpha.

- an  interaction  term,  specifying  the  non-linear  interaction  of  interest  between  the 

continuous  variables  of  time  and  pre-stimulus  alpha  power,  depending  on  the 

condition,  was  included  to  capture  whether  pre-stimulus  power  modulates,  in  a 

possibly nonlinear way, the subsequent activations, in either of the two conditions. 
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This term corresponds to the interaction of interest that, in GAMMs, is modeled by a 

tensor smooth function and allows us to answer the question regarding the influence 

of  the prestimulus alpha power on the subsequent activation response within the 

TPJ. 

In  the  models  for  the  language-related  ROIs,  additional  terms  were  included,  since  we 

wanted to test whether the continuous post-stimulus activation of each ROI (entered as the 

dependent variable) was better predicted by pre-stimulus alpha power recorded from left or 

right TPJ, controlling for pre-stimulus alpha power from the same area. Therefore, in addition 

to the linear main effect of time, the non-linear main effect of time depending on condition, 

the  non-linear  main  effect  of  pre-stimulus  alpha  power  from  the  same  ROI,  and  the 

interaction  term  specifying  the  non-linear  interaction  of  interest  between  time  and  pre-

stimulus  alpha power  depending on the  condition  within  the  same area (as  in  the  TPJ 

models), we also added: 

- a non-linear effect of pre-stimulus alpha power from rTPJ;

- a non-linear effect of pre-stimulus alpha power from lTPJ;

- an interaction term specifying the non-linear interaction between time and rTPJ pre-

stimulus alpha power depending on condition;

- an interaction term specifying the non-linear interaction between time and lTPJ pre-

stimulus alpha power depending on condition. 

As a consequence, the language ROI models included three interactions of interest, while 

the TPJ models only included one. This allows us to compare the respective influence of the 

pre-stimulus alpha from the different locations (rTPJ, lTPJ, or the same ROI) on the post-

stimulus activation. Results for the tensor representing the interaction involving the same-

area pre-stimulus alpha are reported in the Supplementary Materials.
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The R syntax for models with ROI activity on TPJ as dependent variable  and  for models 

with  Language  ROI  activity  as  dependent  variable  are reported  in  the  Supplementary 

Materials. In addition to these models, we introduced in  all the models a random structure to 

reduce autocorrelation in the residuals and account for data dependency  (van Rij  et  al., 

2019). This included two random factor smooths: one for participants and one for each target 

word.  To identify  each trial  uniquely,  we created a  factor  variable  called "Event,"  which 

comprised the combination of participant, condition, and target word. We used this variable 

as both a random intercept and slope, interacting with time. It's important to note that the 

target word was included in the random structure solely to model a portion of the random 

variability between trials and is not a variable of interest in the analysis. Therefore, it will not 

be  discussed  further.  Additionally,  we  incorporated  an  AR1  model  to  account  for 

autoregressive processes in  the data.  We estimated the value of  rho by examining the 

model's autocorrelation function (ACF) at Lag 1 and then included it in our model along with 

a term specifying the starting point of each time series. The nonlinear random structure of 

the  models  and  the  AR1  error  model  are  essential  for  handling  the  intrinsic  temporal 

dependency in time series data (van Rij et al., 2019). Since the model's residuals were not  

normally  distributed,  we  fitted  the  model  with  a  link  function  for  a  scaled-t  distribution 

(Wieling,  2018).  To optimize computational  time, we set the argument "discrete" to true, 

enabling more efficient processing. The models showed no convergence issues.

In GAMMs, the effects of the main interactions of interest are mainly interpreted through 

visual inspection of the tensor functions’ plots, which in our case are three-dimensional since 

they include two continuous predictors: time and pre-stimulus power (for more information on 

GAMM results visualization, please see Lago et al., 2023). As the sign of results does not 

help to interpret the data (source activations have not expected signs as ERP components) 

we rectified the Z-transformed activation time series signal prior to plotting. Any departure 

from zero can thus be interpreted as “higher activation of the ROI”. 3-D plots are represented 

with  time  on  the  x-axis,  pre-stimulus  alpha  power  level  on  the  y-axis,  and  color-coded 
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activation  that  provide information  on how activation  time series  are  modulated by  pre-

stimulus power depending on literal and metaphorical conditions. This interaction allows us 

to  visualize  the  activation  time  course  depending  on  pre-stimulus  alpha  levels  and 

conditions,  but  also to  perform subtractions between the metaphorical  and literal  tensor 

surfaces as if they were activation time series. We followed this procedure because the time 

series difference allows us to isolate components of  interest  that  are informative on the 

effects  of  the  experimental  manipulations  (Luck,  2005).  Moreover,  subtracting  the 

metaphorical from the literal tensor surface also allows the identification of significant effects 

(predicted differences between activation time series) in relation to the pre-stimulus alpha 

level.  These  effects  were  calculated  and  plotted  with  the  plot_diff2  function  in  the 

package itsadug (Van Rij et al., 2020) and are shown in Figure 5.

3. Results

3.1. Behavioral results

In the analysis of the behavioral task, the average Accuracy was 96.40% (SD  = 0.18) for 

Literal sentences and 96.03% (SD = 0.20) for Metaphors. This shows that metaphors were 

correctly understood. Average RTs were 1311.97 ms (SD = 490.38 ns) for Literal sentences 

and 1258.97 (SD = 544.48) for Metaphors. There were no significant differences in Accuracy 

between Metaphors and Literal sentences (t=0.562,  p=0.574), while the difference in RTs 

between the two conditions  was significant  (t=3.089,  p=0.002),  showing that  processing 

literal sentences is probably easier than the processing of metaphors. 

3.2. Activation results

3.2.1. Whole-brain results

The cluster-based permutation on whole-brain activation evidenced a significant difference, 

with higher activation for  Metaphors as compared to Literal  expressions.  This difference 
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(cluster mass = 31850, cluster size = 12033, p = 0.03) was expressed in the left hemisphere 

with a difference starting at around 620 ms and with activations encompassing the MTG, the 

STG, and the left Broca’s area. No significant differences encompassed the TPJs. Figures 

depicting this effect can be found in the Supplementary Materials. 

3.2.2. ROI results

The percentage of deviance explained by the models ranged between 10.3 and 15.4.

Table 2 reports the significance of the interaction between time, pre-stimulus alpha power, 

and literal vs. metaphorical condition for left and right TPJ. In these areas, the interaction 

was not  significant.  This  means that,  within the TPJs,  pre-stimulus alpha power did not 

significantly predict the activation in any condition.

Table 2. Beta coefficients and p values of interactions between time, power, and condition 

for the TPJs. There are no significant results.

lTPJ rTPJ

Beta p value Beta p value

Interaction: time, power, 
literal condition

0.186 0.654 1.879 0.119

Interaction: time, power, 
metaphoric condition

3.046 0.080 0.754 0.385

Table 3 reports the significance of the interaction between time, pre-stimulus alpha power, 

and  literal  vs  metaphorical  condition  for  the  language-related  ROIs.  Within  the  literal 

condition,  lTPJ pre-stimulus alpha power predicted the post-stimulus activation in all  the 

linguistic ROIs (Broca, MTG, and STG), while rTPJ pre-stimulus power only predicted the 

post-stimulus activation in the STG. Within the metaphorical condition instead, lTPJ pre-

stimulus alpha power did not predict the post-stimulus activation in any of the language-

related  ROIs,  while  rTPJ  pre-stimulus  alpha  power  only  predicted  the  post-stimulus 
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activation in the STG. This means that pre-stimulus alpha power originating from left and 

right TPJ significantly predicted the activation in both the literal and metaphorical conditions 

in different ways across areas (see Figures 4 and 5, only significant effects). 

Table 3. Beta coefficients and p values of interactions between time, power, and condition 

for the language-related ROIs. Significant results are marked with *.

Broca MTG STG

Beta p value Beta p value Beta p value

Interaction: time, lTPJ power, 
literal condition

4.683 0.031* 6.150 0.014* 2.811 0.006*

Interaction: time, lTPJ power, 
metaphoric condition

2.156 0.069 0.837 0.632 1.113 0.289

Interaction: time, rTPJ 
power, literal condition

0.572 0.729 0.658 0.607 3.397 0.021*

Interaction: time, rTPJ 
power, metaphoric condition

1.319 0.195 1.947 0.059 3.441 0.030
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Figure 4. 3-D plots of the main interaction between time and pre-stimulus alpha power for the literal 

condition, for significant effects. Time is represented on the x-axis, pre-stimulus alpha power level on 

the y-axis, and activation is color-coded. Colored blots represent plot regions where the interaction is 

significant, while white areas indicate regions where the confidence intervals (95% CI) around the 

predicted  surface  included  zero,  i.e.,  the  interaction  is  not  significant.  Increasingly  dark  shades 

indicate greater activation.

In Figures 4 and 5, time is represented on the x-axis, pre-stimulus alpha power level on the 

y-axis,  and  activation  is  color-coded.  Colored  blots  represent  plot  regions  where  the 

interaction is significant, while white areas indicate regions where the confidence intervals 

(95% CI) around the predicted surface included zero, i.e., the interaction is not significant. 

Increasingly dark shades indicate greater activation. As we can see from Figure 4, in the 

literal  condition  lTPJ  pre-stimulus  alpha  power  predicts  the  post-stimulus  activation  in 

Broca’s area, the MTG, and STG. In Broca’s area, lTPJ pre-stimulus alpha is associated with 

an early activation (about 200 to 400 ms). In the MTG and STG, it is also associated with 
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activations in later time windows (after 400 ms). Within the STG, post-stimulus activations 

are also predicted by rTPJ pre-stimulus alpha in late time windows (after 400 ms), similar to 

the effects observed in association with lTPJ pre-stimulus alpha.

Figure  5. 3-D  plots  of  the  main  interaction  between time and  pre-stimulus  alpha  power  for  the 

metaphorical condition, for significant effects. Time is represented on the x-axis, pre-stimulus alpha 

power level on the y-axis, and activation is color-coded. Colored blots represent plot regions where 

the interaction is significant, while white areas indicate regions where the confidence intervals (95% 

CI) around the predicted surface included zero, i.e., the interaction is not significant. Increasingly dark 

shades indicate greater activation.

Figure 5 instead depicts the interactions for the metaphorical condition. lTPJ pre-stimulus 

alpha power does not predict the activation in any language-related ROI, while rTPJ pre-

stimulus  alpha  is  only  associated  with  late  activations  in  the  STG,  in  a  time  window 

resembling the effect in the literal condition.
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Since time series differences allow us to isolate components of interest that are informative 

on  the  effects  of  the  experimental  manipulations  (Luck,  2005;  see  Section  2.6),  we 

subtracted the metaphorical predicted activation from the literal one in each ROI, only for 

significant interactions. Figure 6 shows, for each ROI, the predicted activation difference 

between metaphorical and literal conditions depending on the left and right TPJ pre-stimulus 

alpha level. As in Figures 4 and 5, time is represented on the x-axis, pre-stimulus alpha 

power level on the y-axis, and predicted activation difference is color-coded. Colored blots 

represent plot regions where the difference is significant, while white areas indicate regions 

where the confidence intervals (95% CI) around the predicted activation difference included 

zero,  i.e.,  the  difference  is  not  significant.  Increasingly  dark  shades  indicate  greater 

activation differences.

Figure 6. Predicted activation (tensor surface) differences between significant metaphorical and literal 

conditions for the main interactions of  interest  (time, alpha band power,  and conditions).  Time is 

represented on the x-axis, pre-stimulus alpha power level on the y-axis, and predicted activation the 
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difference is color-coded. Colored blots represent plot  regions where the difference is significant, 

while white areas indicate regions where the confidence intervals (95% CI)  around the predicted 

activation difference included zero,  i.e.,  the difference is not significant.  Increasingly dark shades 

indicate greater activation differences.

lTPJ  pre-stimulus  alpha  power  predicts  the  activation  differences  between  literal  and 

metaphorical conditions in all the language-related ROIs, albeit in different time segments: 

lower lTPJ pre-stimulus alpha power is associated with significant activation differences from 

0 to 200 msec in Broca’s area and the MTG. In Broca’s area, higher pre-stimulus alpha is 

also  associated  with  a  significant  activation  difference  around  400  msec.  In  the  STG, 

differences are more attenuated and distributed, spanning almost the whole time window. 

Conversely, rTPJ pre-stimulus alpha only predicts a small activation difference around 400 

ms in the STG. 

To summarize,  results  show that  left  and right  TPJ pre-stimulus  alpha power  does  not 

predict post-stimulus activation within the TPJs themselves, but it does predict post-stimulus 

activations in the language-related ROIs in both the literal and metaphoric condition, as well 

as  the  differential  activation  between  conditions,  in  different  ways  across  areas.  More 

specifically, STG post-stimulus activation is predicted by both left and right TPJ pre-stimulus 

alpha power, while Broca and MTG post-stimulus activations are only predicted by lTPJ pre-

stimulus alpha.

4. Discussion

In the present study, we investigated whether the TPJs could be involved in both linguistic 

prediction generation and testing. In particular, we used Generalized Additive Mixed Models 

(GAMMs) to test whether the pre-stimulus activity recorded from the TPJs could modulate 

the post-stimulus activations within the TPJs and in some core linguistic areas. We found 

that  lTPJ  pre-stimulus  alpha  was  associated  with  the  post-stimulus  activation  of  all  the 

language-related  ROIs  under  investigation,  and  it  predicted  early  differences  between 
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metaphoric and literal conditions in Broca’s area, MTG, and STG. The pattern of results is 

summarized in Figure 7. In addition, in Broca’s area, lTPJ pre-stimulus alpha was associated 

with significant differences around 400 msec. Here and in the MTG, post-stimulus activation 

is also predicted by the pre-stimulus alpha power recorded within these same areas (see 

Supplementary  Materials).  Importantly,  the  analytic  method  used  (i.e.  GAMM)  allowed 

identifying that the two contributions are separable, hence that the TPJs had some influence 

in predicting post-stimulus activity of the other areas, despite the fact that the pre-stimulus 

power within the same area was relevant or not.

Figure 7. Summary of significant interactions of interest between pre-stimulus alpha power and post-

stimulus ROI activations. Solid arrows represent significant interactions, while semitransparent arrows 

represent  the  non-significant  ones.  rTPJ  pre-stimulus  power  significantly  predicted  the  activation 

difference  between  metaphorical  and  literal  conditions  in  the  STG.  lTPJ  pre-stimulus  power 

significantly predicted the activation difference between metaphorical and literal conditions in Broca’s 

area, the MTG, and STG. Each effect is significant for different alpha values and different time points 

(see Fig. 6).

Conversely, rTPJ only predicted a difference around 400 msec in the STG. What’s even 

more interesting is that within the TPJs, pre-stimulus alpha power did not predict the post-

stimulus  activation  of  the  areas  themselves:  in  other  words,  during  a  metaphor 
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comprehension task, TPJ pre-stimulus alpha power appears to modulate the activation in 

language-related ROIs, but it does not modulate the activity within the TPJs.

These results indicate that probably, left and right TPJ have different roles in the generation 

of  linguistic  predictions,  thanks  to  their  functional  connections  with  task-specific  ROIs 

(Masina et al., 2022; Siman-Tov et al., 2019). 

4.1. rTPJ

One of the core functions of rTPJ is attentional reorienting (Corbetta et al., 2008; Corbetta & 

Shulman,  2002),  but  this  region has been proposed to play an ubiquitous role in  many 

cognitive domains (e.g., Masina et al., 2022). Such a pervasive involvement of rTPJ can be 

explained  in  terms  of  predictive  processing  and,  in  particular,  through  the  concept  of 

precision, i.e.,  the reliability of a prediction. In our task, it  was the final target word that  

defined  the  sentence  as  literal  or  metaphoric,  therefore  we  can  hypothesize  that  while 

reading the sentence, before encountering the target word, participants formed a precise 

expectation about a literal meaning. As outlined in Section 1.4.1., highly precise expectations 

about the possible meaning of a sentence could reduce the uncertainty associated with the 

underlying cause of the sensory input (this has been traditionally interpreted as a higher 

allocation  of  attentional  resources;  Hohwy,  2012).  As  a  consequence,  internal 

representations of the literal sentence meaning should be enhanced, as well as the neural 

response in the case of a metaphorical target, that disconfirms the prediction of a literal 

meaning and represents prediction error (Kuperberg et al., 2020). This view is supported by 

evidence showing that cytoarchitectonic areas of rTPJ, in particular, PGa, PFm, and PF, are 

sensitive  to  invalid  predictions  (invalidly  cued trials)  in  an attentional  task.  These areas 

could be specifically recruited when subjects reorient towards internal or external salient 

stimuli or, in the present case, highly precise hypotheses (Gillebert et al., 2013).

This mechanism might explain the significant effect of low rTPJ pre-stimulus alpha on STG 

post-stimulus activation visible around 400 msec (Fig. 6, lower right panel). This result is 
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consistent  with  previous  EEG  evidence  showing  that  low  levels  of  pre-stimulus  alpha, 

associated with highly precise predictions, modulate the signal in the N400 time window 

following incongruent target words (Lago et al., 2023).

Evidence for the involvement of rTPJ in figurative language processing has been previously 

reported (Bambini  et  al.,  2011; Spotorno et  al.,  2012) and corroborated by  the present 

findings. We hypothesize that rTPJ, in the time interval before the presentation of the final  

target word, helps enhance predictions relative to the most common (in our case literal) 

meaning  of  a  sentence,  through  a  mechanism  of  precision  optimization.  Linguistic 

predictions are then tested after  the presentation of  the target  word by more language-

specific areas, such as the STG.  

Our evidence for  the involvement of  rTPJ in predictive metaphor processing is  however 

limited since we found that this area only modulated post-stimulus activation in the STG for a 

very short time. lTPJ, instead, exerts a more extended influence on all the linguistic ROIs 

under investigation. 

4.2. lTPJ

Results  showed that  lTPJ pre-stimulus alpha power predicted early  differences between 

metaphoric and literal conditions in Broca’s area, MTG, and STG. In addition, in Broca’s 

area, lTPJ pre-stimulus alpha was associated with significant differences around 400 msec, 

and in the STG, effects were significant also in a later time window spanning from 500 up 

until almost the end of the time window (see Figure 6, upper panels).

The fact that pre-stimulus alpha power recorded from the lTPJ has more pervasive effects 

than  those  recorded  from its  right-hemisphere  homologous  could  be  a  consequence  of 

signal  propagation due to the contiguity  of  lTPJ,  MTG, and STG. The STG, the closest 

region to lTPJ, reports the lowest activation in association with lTPJ pre-stimulus alpha (Fig. 

6, upper right panel), while activation in Broca’s area seems to be stronger (Fig. 6, upper left  
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panel). Based on our results and on previous evidence showing that lTPJ integrates global 

world knowledge and local sentence information (Menenti et al.,  2008; Metusalem et al., 

2012), we can argue that in the time interval preceding the target word, lTPJ is involved in 

generating internal models of the sentence based on our prior world knowledge, that have a 

major role in guiding interpretations in conditions of uncertainty (see Section 1.3.). Internal 

models’ predictions are tested against metaphorical target words with the aid of task-specific 

areas,  namely,  Broca,  the  MTG,  and  the  STG.  Interestingly,  the  predictions  that  are 

generated  in  the  lTPJ  have  a  precocious  influence  on  the  post-stimulus  activation  time 

course in these ROIs: significant effects start right after the target word presentation and last 

up until 400 msec in the case of Broca’s area and of the STG, where significant effects also 

span from 500 msec almost until the end of the time-window. 

This sequence of effects is consistent with previous EEG evidence from other metaphor and 

figurative language comprehension studies. For example, in their metaphor comprehension 

task,  Schneider et  al.  (2014) found a significant  effect  as early  as ~200 msec after  the 

processing of the target word. Effects in this time window have been also associated with 

irony comprehension, another manifestation of figurative language  (Regel, Coulson, et al., 

2010; Regel, Gunter, et al., 2010), to sentence constraint, and predictability of the target 

word (Federmeier et al., 2005; Lee et al., 2012; Wlotko & Federmeier, 2007), suggesting that 

internal models’ predictions influence the processing of metaphorical targets starting from 

very early stages after presentation. Our effects around 400 msec and later are in line with 

other  EEG studies  of  metaphor  comprehension,  that  have  detected  N400/late  positivity 

complexes  (Bambini et al.,  2016; Goldstein et al.,  2012; Weiland et al.,  2014). Tellingly, 

modulations around 400 msec are observable in Broca’s area and are similar to those found 

in  the  STG  in  association  with  rTPJ  pre-stimulus  alpha  power,  probably  reflecting  the 

prediction errors that follow the mismatches between literal  predictions and metaphorical 

target words, similarly to the N400 ERP found in EEG studies. In the STG, these deflections 

are followed by later modulations that could represent a different dynamic emerging after 
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prediction errors. After the mismatches between literal expectations and metaphorical target 

words have triggered prediction errors, the cognitive system initially fails to integrate the 

unexpected word into the internal model, and this failure might cause subsequent attempts 

to make sense of the sentence through processes like reanalysis, repair, or reinterpretation, 

that  allow  correctly  inferring  the  plausible  implied  meaning  of  the  metaphor.  This  later 

dynamic,  observed in  the STG,  is  similar  to  the EEG late  positivities  found in  linguistic 

violation paradigms (Kuperberg et al., 2020).  

It is important to underline that we can draw more general interpretations from these results, 

without advocating for a specific function to be linked to a specific area (for example, internal 

model creation to lTPJ). Recent views suggest that specific cognitive functions can arise as 

a result of the interaction between several brain areas, i.e., brain networks (Pessoa, 2022). 

Within this perspective, the functional unit to be considered in association to the cognitive 

function under investigation is in fact the pattern of interaction between areas that emerges 

during a task (in our case, the link between the lTPJ and the STG, Broca and MTG, or  

between the rTPJ and STG), and such functional unit determines, for example, what we 

interpreted as precision optimization or internal model creation. However, the role of the 

single brain areas interacting in a network may be dynamic, therefore changing depending 

on the task at hand and on the different moments during the same task.

In sum, our results show that the two TPJs are involved in linguistic prediction generation 

during metaphorical  sentence comprehension thanks to their  functional  connections with 

language-related  areas.  Importantly,  we  showed that  the  activity  of  the  TPJs  seems to 

precede the one of  other areas, supporting the idea that  their  role is actually related to 

predictive processes. We suggest that both TPJs could function as predictive hubs, bringing 

together various cognitive processes and types of information, while closely interacting with 

other  brain  regions  and  networks.  As  hypothesized  by  Masina  et  al.  (2022),  functional 

connections  between domain-general  and  task-specific  regions  are  crucial  for  predictive 

computations in various cognitive domains, and the specific functions of the TPJs may be 
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determined  by  the  networks  activated  during  ongoing  activities,  such  as  the  language 

network  in  this  case.  As  a  result,  the  context-  and  network-dependent  nature  of  TPJs 

facilitates the seamless integration between different brain regions and cognitive processes, 

enabling  context-specific  networks  to  effectively  utilize  their  integrative  and  contextual-

updating capabilities in various behavioral and cognitive scenarios. 

It is important to note that left and right TPJ exert a different degree of influence on the post-

stimulus  activations  on  the  various  language-related  ROIs.  This  may  depend  on  their 

respective  role:  rTPJ  might  be  more  sensitive  to  precision  dynamics  that  enable  the 

allocation  of  attentional  resources  to  less  uncertain  predictions.  These  precision-related 

dynamics, reflecting on pre-stimulus alpha power, only modulate the activation in the STG in 

a short time window around 400 msec, probably reflecting the enhancement of linguistic 

prediction error. On the other hand, lTPJ would be more involved in the construction of an 

internal model of the sentence that is tested against the final metaphorical target word, a 

process that  extensively  involves all  the language-related ROIs under  investigation,  and 

causes more extended modulations,  that  might  possibly reflect  the reanalysis processes 

following metaphorical target words and their integration with the sentence internal model, 

allowing for the correct interpretation of the metaphor.

Limitations. There are some limitations in the present study. The current behavioral task 

was devised to ensure that the participants paid attention to the stimuli and was easy and 

without time pressure, therefore such a task does not enable any meaningful analysis of 

behavioral responses: accuracy was at ceiling and there were no significant differences in 

reaction times between conditions. For this reason, it  is difficult to draw a conclusion on 

whether pre-stimulus alpha power could influence,  besides post-stimulus language ROIs 

activations, also behavioral performance; or on whether the difficulty of the task could maybe 

modulate the relationship between pre- and post-stimulus alpha power.  Therefore, future 

studies could employ tasks that allow linking prestimulus alpha not only to neural responses 

but also to behavioral performance. In addition, we did not directly manipulate the level of 
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sentence constraint, with the consequence that the level of predictions’ precision fluctuates 

spontaneously  across stimuli,  not  allowing to systematically  link different  levels  of  alpha 

power to different levels of constraint and precision. Explicitly addressing the manipulation of 

sentential constraint could therefore lead to a clearer picture of how more or less precise 

predictions affect the subsequent stimulus processing. In relation to this point, we have to 

point out that in language experiments (and the present makes no exception) it  is often 

difficult to rule out the role of uncontrolled properties of the stimuli on the observedeffects. 

More specifically, our pre-stimulus interval also included the indefinite article, and there is 

evidence that anticipatory processes might be happening already at this level (DeLong et al., 

2005), which might influence the level of pre-stimulus alpha power and, in turn, also the final 

results. To explore this issue, we ran control analyses based on simulations that can be 

found in the Supplementary Materials (p. 261). These additional analyses demonstrated that 

no experimental item is associated with a particular value of alpha, and therefore the effects 

we  report  are  not  due  to  uncontrolled  properties  of  the  stimuli,  rather  than  to  random 

fluctuations.  It is also important to note that although we showed a relationship between the 

activity  in  both  TPJs  and  language-related  areas,  the  nature  of  MEG  data  (as  a 

neurophysiological technique) is purely correlational. Future studies perturbing TPJ activity 

in  tasks  and co-registering  activity  in  other  areas (e.g.  TMS-EEG studies)  could  further 

corroborate the interpretations of the results put forward in the present study. In addition, we 

have to point out that prediction as a continuous and ongoing process, so it it plausible that 

the TPJs exert a continuous influence on other brain areas throughout the sentence, and 

that  TPJs alpha level  could  influence the  subsequent  activation  in  the  language-related 

areas during a time interval spanning the whole sentence. In the present study instead we 

took into consideration only specific time intervals at the end of the sentence, since we were 

interested in studying the difference in activations between metaphors and literal sentences. 

Future studies could therefore adopt a more complex “sliding window” approach to consider 

the influence of pre-stimulus alpha on subsequent activation, that would further clarify the 

complex dynamics of linguistic prediction Finally, an interesting recent perspective (Doricchi 
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et al.,  2022) suggests two different and domain-general roles for bilateral TPJ related to 

match and mismatch. To test this hypothesis a further control would be needed (i.e., neutral  

cues) that was not available in the current experiment; another strategy could be to perform 

more fine-grained analyses that circumscribe the investigation of the pre-stimulus dynamics 

to  different  areas  of  the  TPJ.  For  example,  Gillebert  et  al.  (2013)  found  that  some 

cytoarchitectonic areas within rTPJ, in particular, PGa, PFm, and PF, are sensitive to invalid 

predictions in an attentional task, while another study proposed that neighboring but distinct 

regions of rTPJ may be selective for Theory of Mind and attention (Scholz et al.,  2009). 

Therefore, future studies could elaborate more on this hypothesis by investigating whether 

different portions of the TPJs are differently sensitive to (dis)confirmed predictions.

Conclusion. Our findings demonstrate that both TPJs are involved in prediction generation 

during a metaphor comprehension task, possibly thanks to their functional connections with 

domain-specific  areas.  Left  and  right  TPJ  are  probably  involved  in  linguistic  predictive 

computations with different roles, as they exert a different degree of influence on the post-

stimulus  activity  of  language-related  brain  regions,  depending  on  the  area  under 

investigation. 
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General  Conclusions,  Limitations  and  Future 

directions

The  aim  of  the  present  dissertation  was  to  elucidate  the  role  of  the  bilateral  TPJs  in 

neurological  patients  and  healthy  individuals,  in  domain-general  cognition  and,  more 

specifically, in the language domain.

Study 1, a systematic literature review, investigated the potential role of rTPJ in domain-

general  cognition  under  a  predictive  processing  perspective,  providing  an  overview  of 

cognitive impairments in neurological patients as the consequence of structural or functional 

disconnections or damage to rTPJ. Results of this review confirm the involvement of rTPJ 

across  several  tasks  and  neurological  pathologies:  via  its  connections  with  other  brain 

networks,  rTPJ integrates diverse information and updates internal  models of  the world. 

Against traditional views, which tend to focus on distinct domains, our hypothesis is that the 

role of rTPJ can be parsimoniously interpreted as a key hub involved in domain-general 

predictions, and in case of a direct lesion or a disconnection of rTPJ from other brain areas 

or networks, as in neurological pathologies, aberrant forms of predictive processing can be 

observed.  This  alternative  account  of  rTPJ role  in  aberrant  predictive  processing opens 

different perspectives, stimulating new hypotheses in basic research and clinical contexts.

After  establishing preliminary  evidence for  the role  of  rTPJ in  predictive  processing,  we 

aimed to better elucidate the involvement of the bilateral TPJs in prediction generation and 

testing. To do so, we needed to clarify the more suitable neurophysiological correlates to 

focus on during the following steps.

Therefore,  Study 2  temporarily  shifted the focus away from TPJ and demonstrated that 

spontaneous pre-stimulus alpha power fluctuations taking place on a trial-by-trial basis might 

be associated with random variations in the ability to precisely predict the upcoming target 

175



words and to enhance their relative internal representation. In particular, lower levels of pre-

stimulus alpha power should correspond to the ability to hold more precise expectations 

about the target. As a consequence, predictions about the upcoming targets are enhanced, 

and  generate  larger  prediction  errors  (N400s)  following  incongruent  (i.e.,  unpredicted) 

targets. After a prediction error is generated, the cognitive system attempts to resolve it 

through a process of reanalysis (reflected in late posterior positivities/P600s). This process 

might  be  associated  with  changes  in  precision  weights  with  respect  to  the  precision 

configuration  of  the  pre-stimulus  interval:  this  evidence  suggests  that  post-stimulus 

computations such as input reanalysis and prediction error resolution may be dependent on 

and  modulated  by  the  precision  level  that  was  driving  expectations  in  the  pre-stimulus 

interval, which can be reflected in varying levels of pre-stimulus alpha power. 

These  results  indicate  that  investigating  precision  fluctuations  during  the  pre-stimulus 

interval might be crucial for a detailed understanding of predictive computations. Notably, 

attention (traditionally related to alpha modulation) has been considered as an emergent 

property of the precision optimization mechanism taking place during prediction. In this way, 

attending  to  a  stimulus  means  representing  and  increasing  the  precision  of  sensory 

information (and prediction error) during the inferential process, and the extent to which an 

individual  is attending to a stimulus or prediction can be measured through pre-stimulus 

alpha oscillations. 

Study 3 finally combined the investigations on predictions’ precision and on the TPJs put 

forward in the first two studies, by investigating the neurophysiological dynamics of the TPJs 

both before and after target stimuli, in functional connection with some core language-related 

areas during a metaphor comprehension task that entails complex predictive computations 

(Vespignani et al., 2010). Results show that pre-stimulus alpha power recorded from the left 

and right TPJ did not modulate the post-stimulus activations within the TPJs themselves, but 

it exerted different degrees of influence on the post-stimulus activations of the language-

related ROIs. Importantly, the activity of the TPJs seems to precede the one on other areas, 
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supporting the idea that their role may be  related to prediction generation or maintenance. 

This suggests that both TPJs could function as predictive hubs (albeit with different roles), 

bringing  together  various  cognitive  processes  and  types  of  information,  while  closely 

interacting with other brain regions and networks. This finding reinforces the hypothesis, put 

forward in  Study 1,  that  the TPJs are functionally  connected with  other  domain-specific 

areas: in particular, rTPJ, being part of the VAN, might coordinate precision optimization in 

the time interval before the presentation of the final target word, traditionally interpreted as 

attentional resources allocation (Hohwy, 2012). lTPJ, on the other hand, might have a more 

domain-specific role in language, by integrating our prior world knowledge and incoming 

information  to  generate  internal  models,  which  guide  interpretations  in  conditions  of 

uncertainty. Internal models’ predictions are subsequently tested against target words with 

the aid of task-specific areas. This could mean that the specific functions of the TPJs may be 

determined  by  the  networks  activated  during  ongoing  activities,  such  as  the  language 

network in this case (Pessoa, 2022). As a result, the context- and network-dependent nature 

of TPJs facilitates the seamless integration between different brain regions and cognitive 

processes,  enabling  context-specific  networks  to  effectively  utilize  their  integrative  and 

contextual-updating capabilities in various behavioral and cognitive scenarios. 

The results of  these studies fit  into the overarching predictive framework outlined in the 

General Introduction and contribute to a broader understanding of TPJ’s predictive role in 

domain-specific  and  domain-general  cognition,  in  healthy  participants  and  neurological 

patients. Taken together, domain-specific results of studies 2 and 3 on healthy participants 

can be interpreted by keeping in mind the general conclusions of study 1, which suggests a 

context- and network-dependent, domain-general role of rTPJ. Study 3 suggests that  both 

left  and right  TPJ  are involved  in the generation of  complex linguistic predictions,  which 

might then be tested against the actual input with the aid of other language-related areas. 

This  means  that  the  TPJs  might  not  be  strictly  part  of  the  language network,  but  they 

nonetheless  modulate  the  activation  level  of  core  linguistic  areas  during  sentence 
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processing, in which they become involved. This result is a great example of the predictive 

conceptualization put forward in Study 1, i.e., that TPJ has a domain-general role that can be 

declined  in  many  cognitive  domains,  depending  on  the  context  and  on  the  network  it 

activates.

Predictive theoretical assumptions also propose that prediction is a continuous and ongoing 

process (León-Cabrera et al., 2017) and therefore, when investigating it, it is crucial to take 

into  account  the  pre-stimulus  dynamics.  Study  2  further  confirmed  this  assumption,  by 

demonstrating  that  such  dynamics  can  exert  a  great  influence  on  the  post-stimulus 

responses, probably because they carry information on the precision level of the hypothesis 

that is formulated. 

It is also valuable to point out the differences between the methodologies used in the three 

studies because they enrich the point of view on predictive dynamics. For example, while 

Study 1 focused on neurological patients, the remaining ones employed healthy participants 

and  had  a  deeper  understanding  of  the  neurophysiological  underpinnings  of  predictive 

processing, that can be impaired in case of neurological diseases. It would be interesting to 

deepen the understanding of which mechanisms are affected, and this should be definitively 

the matter for future studies. Another, yet more stubtle, difference in methodology can be 

found between study 2 (using EEG) and 3 (using MEG). Study 2 focused on basic ERPs 

traditionally  studied  in  language  research,  with  the  known  limitation  of  a  low  spatial 

resolution. This shortcoming was filled by Study 3, which used MEG to localize the effects 

and give a more complex picture of the spatial and temporal unfolding of linguistic predictive 

dynamics. 

In spite of these methodological differences, or maybe right because of them, the results 

outlined so far pave the way for  the joint investigation of predictions’ precision levels, pre-

stimulus dynamics, and TPJs activation, which might give a more complete picture of the 

complex mechanisms of predictive processing. 
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Limitations and future directions. These studies  have some limitations.  For  example, 

Study  1  only  considered  neurological  populations  and  not  healthy  participants  and 

psychiatric  populations.  The  reason  behind  this  choice  can  be  found  in  the  aim  of 

summarizing findings with a certain clinical relevance, to promote a predictive, more holistic 

view of neurological diseases. Circumscribing this work to neurological patients opens the 

field for a new, more parsimonious interpretation of the cognitive impariments resulting from 

neurological  pathologies but  also for  future investigations on the role of  rTPJ in healthy 

individuals.  The study did not  investigate the role of  lTPJ which may represent  another 

important  piece  of  the  puzzle,  but  focused  on  rTPJ  also  because  dominant  theoretical 

accounts  of  the  function  of  the  TPJs  concentrate  mainly  on  attention.  Moreover,  long-

standing neuropsychological evidence shows that  hemispatial neglect is statistically one of 

the most frequent sequelae after a stroke (Vallar  & Calzolari,  2018),  and mainly follows 

lesions to rTPJ (Corbetta & Shulman, 2011). For these reasons, rTPJ has been investigated 

more extensively with respect to its left-hemisphere counterpart (see General Introduction) 

and.

On  the  other  hand,  Studies  2  and  3  suffer  from  different  limitations,  common  in 

neurophysiological studies. One limitation is that behavioral responses were not analyzed 

because the interest was mainly on the neurophysiological dynamics, therefore the task was 

designed  so  that  there  was  no  time  pressure  to  respond,  thus  making  response  times 

meaningless. Future studies could employ more difficult tasks that might enable linking pre-

stimulus alpha not only to post-stimulus neural responses, but also to behavioral ones. Study 

2 also had a more specific limitation, which is intrinsic to most ERP studies on language: it is 

very difficult to demonstrate that the trial-by-trial alpha variations are actually spontaneous 

fluctuations and are not instead related to some uncontrolled properties of the stimuli. In 

short, since all stimuli were not equal, it could be the case that some specific cue-target pairs 

were associated to lower prestimulus alpha and in turn to enhanced N400 and P600. To 

explore  this  issue,  additional  analyses  were  performed,  that  can  be  found  in  the 
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Supplementary Materials (Section 3. in Study 2 Supplementary Materials). These additional 

analyses demonstrated that the effects we report seem not due to uncontrolled properties of 

the stimuli. In addition, in Study 3, we did not manipulate the sentence constraint level. This 

is also an issue that should be addressed in fiture studies, that could systematically vary the 

level of constraint, to enable investigating whether it could be associated to different levels of 

pre-stimulus alpha. 

In spite of these limitations, our results open new basic research questions to be addressed 

in future investigations, as outlined in the previous paragraphs, either by experimental task 

adjustments, or by non-invasive stimulation directed to the TPJs, with the aim of studying 

how modulations of post-stimulus responses are influenced by manipulations of pre-stimulus 

activity.  Besides  basic  research,  there  are  open  questions  also  in  the  field  of  clinical 

neuroscience: the bilateral TPJs are closely connected with a number of other areas, and 

they are part of extended brain networks (e.g., the DAN and DMN), with the functional role of 

integrating diverse information and updating internal models and expectations. Moreover, as 

outlined in Study 1, rTPJ lesions are found in many neurological pathologies and cause 

impairments in a number of cognitive domains, which can be parsimoniously interpreted as a 

disruption of predictive processes. A deeper understanding of the predictive role of left and 

right  TPJ  within  task-specific  networks  paves  the  way  for  interpreting  a  wide  range  of 

cognitive  impairments  resulting  from  neurological  diseases  and  for  developing  new 

treatments aimed at better contrasting the impairment suffered by neurological patients.

Conclusion. The present dissertation thoroughly studied the role of left and right TPJ, both 

in neurological patients and healthy individuals. As regards neurological populations, our 

interest was in aberrant forms of predictive processing, while regarding healthy individuals, 

in  the  relative  unfolding  of  the  neurophysiological  correlates  of  complex  predictive 

computations. In particular, we investigated how pre-stimulus dynamics could influence post-

stimulus  neural  responses  and  we  demonstrated  that  pre-stimulus  alpha  power  is  a 

candidate correlate for predictions’ precision level and, as such, it can modulate classical 
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linguistic  ERPs  like  the  N400  and  the  late  posterior  positivity/P600.  In  addition,  results 

demonstrated how both TPJs have a role in elaborating predictions,  possibly thanks to their 

functional connections to domain-specific areas: activity in the alpha band recorded in the 

TPJs during the time interval preceding the target stimulus can modulate the post-stimulus 

activation of language-related regions, showing that the processing of task-relevant stimuli is 

in  part  dependent  to  TPJs’  state  before  the  stimuli  itself,  probably  indicative  of  the 

predictions’ precision level. This confirms that the TPJs are crucial predictive hubs and their 

pre-stimulus state can influence neural responses to target stimuli.
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Supplementary Materials

Study 1

1. Databases and algorithms

This  supplementary  material  contains  all  details  about  the  full  search  strategy  for  all 

databases considered in the systematic review. Last date of search: 23rd October 2020. 

1.1 Pubmed

((right [Title/Abstract]) AND (TPJ[Title/Abstract] OR temporal parietal junction[Title/Abstract] 

OR temporoparietal junction[Title/Abstract] OR temporal-parietal junction[Title/Abstract] OR 

temporo-parietal  junction[Title/Abstract]  OR  temporo-parietal  region[Title/Abstract]))  OR 

(rTPJ[Title/Abstract])  AND  (lesion*  [Title/Abstract]  OR  dementia[MeSh  Terms]  OR  mild 

cognitive  impairment[Title/Abstract]  OR  Parkinson  disease[MeSh  Terms]  OR  multiple 

sclerosis[MeSH  Terms]  OR  stroke[MeSH  Terms]  OR  brain  damage[MeSH  Terms]  OR 

dementia[Title/Abstract]  OR  Alzheimer[Title/Abstract]  OR  Parkinson[Title/Abstract]  OR 

Huntington[Title/Abstract]  OR  multiple  sclerosis[Title/Abstract]  OR 

neurological[Title/Abstract])

Total records = 169 

1.2 Proquest

https://search.proquest.com/advanced

AB("right")  AND (AB("TPJ")  OR AB("temporal  parietal  junction")  OR AB("temporoparietal 

junction")  OR  AB("temporal-parietal  junction")  OR  AB("temporo-parietal  junction")  OR 

AB("temporo-parietal  region")  OR  AB(rTPJ))  AND  (AB(lesion*)  OR 

MESH.EXACT("Dementia")  OR  MESH.EXACT(“Cognitive  Dysfunction”)  OR 

MESH.EXACT("Parkinson  Disease")  OR  MESH.EXACT("Multiple  Sclerosis")  OR 

MESH.EXACT("Stroke") OR AB("brain damage") OR AB("dementia")  OR AB("alzheimer") 

OR  AB("parkinson")  OR  AB("huntington")  OR  AB("multiple  sclerosis")  OR 

AB("neurological"))

Total records = 151 (peer reviewed and English filters)
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1.3 Embase

('right':ab,ti  AND  ('tpj':ab,ti  OR  'temporal  parietal  junction':ab,ti  OR  'temporoparietal 

junction':ab,ti  OR  'temporal-parietal  junction':ab,ti  OR  'temporo-parietal  junction':ab,ti  OR 

'temporo-parietal region':ab,ti) OR 'rtpj':ab,ti) AND ('lesion*':ab,ti OR 'dementia'/mj OR 'mild 

cognitive  impairment'/mj  OR  'parkinson  disease'/mj  OR  'multiple  sclerosis'/mj  OR 

'cerebrovascular accident'/mj OR 'brain damage'/mj OR 'dementia':ab,ti OR 'alzheimer':ab,ti 

OR 'parkinson':ab,ti OR 'huntington':ab,ti OR 'multiple sclerosis':ab,ti OR 'neurological':ab,ti)

Total records = 219  

2. Tables

Table S1. The items of the modified version of the Newcastle-Ottawa Scale (NOS, Wells et al.,  

2011). In this systematic review, we used an adapted version for cross-sectional studies (Patra et 

al., 2015) that we customized according to the aims of our systematic search.

 

 Question 1 Question 2 Question 3 Question 4

Selection (max 4 points) Is  the  case  definition 

adequate?

 

a)  yes,  with  independent 

validation (1 point)

b) yes,  e.g.  record linkage or 

based on self reports

c) no description

 

Representativeness  of  the 

cases:

 

a)  consecutive  or  obviously 

representative series of cases 

(1 point)

b)  potential  for  selection 

biases or not stated

Selection of Controls:

 

a)  community  controls  (1 

point)

b) hospital controls

c) no description

 

 

Definition of Controls:

 

a)  no  history  of  disease 

(endpoint; 1 point)

b) no description of source

 

 

Comparability  (max  2 

points)

Comparability  of  cases  and 

controls  on  the  basis  of  the  

design or analysis:

 

a) study controls for the most 

important factor (age; 1 point)

b)  study  controls  for  any 

additional factor  (education; 1 

point)
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Outcome (max 3 points) Ascertainment  of  variable  of  

interest:

 

a)  Validated  tool/measure  (1 

point)

b) Non-validated tool/measure, 

but  the  tool/measure  is 

available  or  described  and  is 

replicable (1 point) 

c)  No  description  of  the 

measurement tool

 

 

Same  method  of  

ascertainment  for  cases  and 

controls:

 

a) yes (1 point)

b) no

 

 

Statistical analysis:

 

a)  The  statistical  analysis 

used to analyze the variable 

of  interest  is  clearly 

described  and  appropriate, 

and  confidence  intervals,  p 

values,  or  effect  sizes  are 

reported (1 point)

b)  The statistical  analysis  is 

not  appropriate,  not 

described  or  incomplete 

(trends  reported  as 

significance   and/or  no 

correction  for  multiple 

comparison (without clear a-

priori).

 

 

 

 

Table S2. Quality assessment using the Newcastle-Ottawa scale (NOS).

 

Authors Title Year Pathology Design Selection Comparability Outcome Overall Risk of 

bias

Agosta et 

al.,

The Pivotal Role of the 

Right Parietal Lobe in 

Temporal Attention

2017 Acquired brain 

injury

Case-

control

a a c a 3 a  1 a a a 3 7 low

Boccia et 

al.,

Topological and 

hodological aspects of 

body representation in 

right brain damaged 

patients

2020 Acquired brain 

injury

Case-

control

a a a a 4 a b 2 b a a 3 9 low
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Cohen-

Zimerman 

et al.,

The neural basis for 

mental state attribution: 

A voxel-based lesion 

mapping study

2020 Acquired brain 

injury

Case-

control

a b a a 3 a b 2 a a a 3 8 low

Kaski et al., Temporoparietal 

encoding of space and 

time during vestibular-

guided orientation

2016 Acquired brain 

injury

Case-

control

a b c a 2 a  1 a a a 3 6 medium

Leigh et al., Acute lesions that impair 

affective empathy

2013 Acquired brain 

injury

Case-

control

a a a a 4 a  1 a a a 3 8 low

Mandonnet 

et al.,

A network-level 

approach of cognitive 

flexibility impairment 

after surgery of a right 

temporo-parietal glioma

2017 Acquired brain 

injury

Single case a b c b 1   0 a b b 1 2 high

Martinaud 

et al.,

Ownership illusions in 

patients with body 

delusions: Different 

neural profiles of visual 

capture and 

disownership

2017 Acquired brain 

injury

Case series a a c b 2   0 a b a 2 4 medium

Monai et al., Multiple Network 

Disconnection in 

Anosognosia for 

Hemiplegia

2020 Acquired brain 

injury

Case series a b c b 1   0 b b a 2 3 high

Pedrazzini 

and Ptak,

Damage to the right 

temporoparietal junction, 

but not lateral prefrontal 

or insular cortex, 

amplifies the role of goal-

directed attention

2019 Acquired brain 

injury

Case-

control

a a c b 2 a  1 b a a 3 6 medium

Shomstein 

et al.,

Top-down and bottom-up 

attentional guidance: 

investigating the role of 

the dorsal and ventral 

parietal cortices

2010 Acquired brain 

injury

Case-

control

a b c b 1 a b 2 b a b 2 5 medium

Singh and 

Knight,

Effects of posterior 

association cortex 

lesions on brain 

potentials preceding self-

initiated movements

1993 Acquired brain 

injury

Case-

control

a b a a 3 a  1 b a a 3 7 low

Starkstein 

et al.,

Anosognosia in patients 

with cerebrovascular 

lesions. A study of 

causative factors

1992 Acquired brain 

injury

Case series a a c b 2   0 b b a 2 4 medium

Wawrzyniak 

et al.,

The neuronal network 

involved in self-

attribution of an artificial 

2018 Acquired brain 

injury

Case series a a c b 2   0 a b a 2 4 medium
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hand: A lesion network-

symptom-mapping study

Chechlacz 

et al.,

Neuronal substrates of 

Corsi Block span: Lesion 

symptom mapping 

analyses in relation to 

attentional competition 

and spatial bias

2014 Acquired brain 

injury (neglect)

Case-

control

a b a a 3   0 a b a 2 5 medium

Committeri 

et al.,

Where did you "left" 

Piazza del Popolo? At 

your right temporo-

parietal junction.

2015 Acquired brain 

injury (neglect)

Case series a a c b 2   0 a b a 2 4 medium

Demeurisse 

et al.,

Pathogenesis of 

subcortical visuo-spatial 

neglect. A HMPAO 

SPECT study

1997 Acquired brain 

injury (neglect)

Case-

control 

(controls 

only for 

behavioral 

normative 

data)

a b c b 1   0 a a a 3 4 medium

Dressing et 

al.,

The correlation between 

apraxia and neglect in 

the right hemisphere: A 

voxel-based lesion-

symptom mapping study 

in 138 acute stroke 

patients

2020 Acquired brain 

injury (neglect)

Case-

control 

(controls 

only for 

behavioral 

normative 

data)

a a c b 2   0 a a a 3 5 medium

Golay et al., Cortical and subcortical 

anatomy of chronic 

spatial neglect following 

vascular damage

2008 Acquired brain 

injury (neglect)

Case series a b c b 1   0 a a a 3 4 medium

Hattori et 

al.,

Structural connectivity in 

spatial attention network: 

reconstruction from left 

hemispatial neglect

2018 Acquired brain 

injury (neglect)

Case-

control

a a b a 3 a  1 a a b 2 6 medium

Karnath et 

al.,

The cortical substrate of 

visual extinction

2003 Acquired brain 

injury (neglect)

Case-

control

a a c a 3   0 b a a 3 6 medium

Kaufman et 

al.,

Multiperturbation 

analysis of distributed 

neural networks: the 

case of spatial neglect

2009 Acquired brain 

injury (neglect)

Case series a b c b 1   0 a b a 2 3 high

Lee et al., Neglect dyslexia: 

frequency, association 

with other hemispatial 

neglects, and lesion 

localization

2009 Acquired brain 

injury (neglect)

Case series a a c b 2   0 a b a 2 4 medium

Pedrazzini 

and Ptak,

The neuroanatomy of 

spatial awareness: a 

large-scale region-of-

2020 Acquired brain 

injury (neglect)

Case series a a c b 2   0 a b a 2 4 medium
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interest and voxel-based 

anatomical study

Pedrazzini 

et al.,

A neuroanatomical 

model of space-based 

and object-centered 

processing in spatial 

neglect

2017 Acquired brain 

injury (neglect)

Case-

control

a a c b 2   0 a b a 2 4 medium

Ptak and 

Schnider,

The attention network of 

the human brain: relating 

structural damage 

associated with spatial 

neglect to functional 

imaging correlates of 

spatial attention

2011 Acquired brain 

injury (neglect)

Case-

control

a a c b 2 a  1 b a a 3 6 medium

Rousseaux 

et al.,

Anatomical and 

psychometric 

relationships of 

behavioral neglect in 

daily living

2015 Acquired brain 

injury (neglect)

Case series a b c b 1   0 a b a 2 3 high

Thiebaut de 

Schotten et 

al.,

Damage to white matter 

pathways in subacute 

and chronic spatial 

neglect: a group study 

and 2 single-case 

studies with complete 

virtual "in vivo" 

tractography dissection.

2014 Acquired brain 

injury (neglect)

Case series a b c b 1   0 a a a 3 4 medium

Ticini et al., The role of temporo-

parietal cortex in 

subcortical visual 

extinction

2010 Acquired brain 

injury (neglect)

Case series a a c b 2   0 a b a 2 4 medium

Toba et al., Game theoretical 

mapping of causal 

interactions underlying 

visuo-spatial attention in 

the human brain based 

on stroke lesions

2017 Acquired brain 

injury (neglect)

Case series a b c b 1   0 b b a 2 3 high

Baez et al., Brain structural 

correlates of executive 

and social cognition 

profiles in behavioral 

variant frontotemporal 

dementia and elderly 

bipolar disorder

2019 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c a 3 a  1 b a a 3 7 low

Blanc et al., Cortical Thickness in 

Dementia with Lewy 

Bodies and Alzheimer's 

Disease: A Comparison 

of Prodromal and 

Dementia Stages

2015 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a a a 4  b 1 b a a 3 8 low

De Marco et Age and hippocampal 2019 Neurodegenerativ Case- a a c b 2 a b 2 b a a 3 7 low
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al., volume predict distinct 

parts of default mode 

network activity

e disease 

(dementia or 

cognitive 

impairment)

control

Diez et al., Corticolimbic fast-

tracking: enhanced 

multimodal integration in 

functional neurological 

disorder

2019 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a a a 4 a  1 b a a 3 8 low

Eslinger et 

al.,

Apathy in frontotemporal 

dementia: behavioral 

and neuroimaging 

correlates

2012 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c a 3 a b 2 a a a 3 8 low

Kang et al., Effects of Lewy body 

disease and Alzheimer 

disease on brain atrophy 

and cognitive 

dysfunction

2019 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c a 3 a b 2 b a a 3 8 low

Luks et al., Atrophy in two attention 

networks is associated 

with performance on a 

Flanker task in 

neurodegenerative 

disease

2010 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c a 3   0 b a a 3 6 medium

Qian et al., Functional-structural 

degeneration in dorsal 

and ventral attention 

systems for Alzheimer's 

disease, amnestic mild 

cognitive impairment

2015 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c b 2 a b 2 b a a 3 7 low

Rohrer et 

al.,

Alzheimer's pathology in 

primary progressive 

aphasia

2012 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c c 2   0 b a a 3 5 medium

Sorg et al., Asymmetric loss of 

parietal activity causes 

spatial bias in prodromal 

and mild Alzheimer's 

disease

2012 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

b a c b 1 a b 2 b a a 3 6 medium

Yamashita 

et al.,

Functional connectivity 

change between 

posterior cingulate cortex 

and ventral attention 

network relates to the 

impairment of orientation 

for time in Alzheimer's 

disease patients

2019 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c b 2   0 b a a 3 5 medium

Zamboni et 

al.,

Anosognosia for 

behavioral disturbances 

2010 Neurodegenerativ

e disease 

Case-

control

a a c a 3 a b 2 b a a 3 8 low

195



in frontotemporal 

dementia and 

corticobasal syndrome: 

A voxel-based 

morphometry study

(dementia or 

cognitive 

impairment)

Zou et al., 3.0 T MRI arterial spin 

labeling and magnetic 

resonance spectroscopy 

technology in the 

application of 

Alzheimer's disease

2014 Neurodegenerativ

e disease 

(dementia or 

cognitive 

impairment)

Case-

control

a a c a 3 a b 2 b a a 3 8 low

Hanganu et 

al.,

Depressive symptoms in 

Parkinson's disease 

correlate with cortical 

atrophy over time

2017 Neurodegenerativ

e disease 

(Parkinson)

Longitudinal a a c b 2   0 b b a 2 4 medium

Pickut et al., Mindfulness based 

intervention in 

Parkinson's disease 

leads to structural brain 

changes on MRI: a 

randomized controlled 

longitudinal trial

2013 Neurodegenerativ

e disease 

(Parkinson)

Longitudinal a a c b 2   0 b b a 2 4 medium

Beauchamp 

et al.,

Electrocorticography 

Links Human 

Temporoparietal 

Junction to Visual 

Perception

2012 Other pathologies Case series b b c c 0   0 b b a 2 2 high

Jiang et al., Altered attention 

networks and DMN in 

refractory epilepsy: A 

resting-state functional 

and causal connectivity 

study

2018 Other pathologies Case-

control

a a c a 3 a b 2 b a a 3 8 low

Lu et al., Visual rehabilitation 

training alters attentional 

networks in hemianopia: 

An fMRI study

2018 Other pathologies Longitudinal a a c b 2   0 b b b 1 3 high

Peterson et 

al.,

Right Temporoparietal 

Junction Transcranial 

Magnetic Stimulation in 

the Treatment of 

Psychogenic 

Nonepileptic Seizures: A 

Case Series

2018 Other pathologies Case series b b c b 0   0 b b a 2 2 high

Zhang et 

al.,

Transcutaneous 

auricular vagus nerve 

stimulation at 1 Hz 

modulates locus 

coeruleus activity and 

resting state functional 

connectivity in patients 

with migraine: An fMRI 

2019 Other pathologies Crossover a a c b 2   0 b a a 3 5 medium
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study

Bosma et 

al.,

Dynamic pain 

connectome functional 

connectivity and 

oscillations reflect 

multiple sclerosis pain

2018 White matter 

disease

Case-

control

a a a a 4 a  1 b a a 3 8 low

Carotenuto 

et al.,

Pragmatic abilities in 

multiple sclerosis: The 

contribution of the 

temporoparietal junction

2018 White matter 

disease

Case series a b c b 1   0 a b a 2 4 medium

Huang et 

al.,

White matter lesion 

loads associated with 

dynamic functional 

connectivity within 

attention network in 

patients with relapsing-

remitting multiple 

sclerosis

2019 White matter 

disease

Case-

control

a a a a 4 a  1 b a a 3 7 low

Kim et al., Neuropathic pain and 

pain interference are 

linked to alpha-band 

slowing and reduced 

beta-band

2019 White matter 

disease

Case-

control

a a c a 3 a  1 b a a 3 6 medium

Peng et al., Density abnormalities in 

normal-appearing gray 

matter in the middle-

aged brain with white 

matter hyperintense 

lesions: a DARTEL-

enhanced voxel-based 

morphometry study

2016 White matter 

disease

Case-

control

a a a a 4 a b 2 b a a 3 8 low

 

 

Table S3.  In this table,  two kinds of  information are specified:  (1) “Alteration location”,  which 

includes information about brain structures involved in each study and, if specified, more precise 

details about what the authors intended with “rTPJ” (e.g., by differentiating between the angular 

and supramarginal  gyrus);  (2)  “Type of  alteration”,  which specifies whether rTPJ was directly 

damaged, disconnected, hypoperfused, and so on.

Authors Title Year Alteration location Type of alteration
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Agosta et al., The Pivotal Role of the Right Parietal Lobe in Temporal Attention 2017 rTPJ Direct lesion

Boccia et al., Topological and hodological aspects of body representation in right brain 

damaged patients

2020 Body structural representation: right 

STG, insula, SMG and TPJ, Rolandic 

operculum, IFG, and posterior arcuate 

segment

 

Direct lesion and 

disconnection

Cohen-Zimerman 

et al.,

The neural basis for mental state attribution: A voxel-based lesion mapping study 2020 Right DLPFC, right MFG, left IPL, left 

ILF, right SLF

 

Disconnection

Kaski et al., Temporoparietal encoding of space and time during vestibular-guided orientation 2016 rTPJ Direct lesion

Leigh et al., Acute lesions that impair affective empathy 2013 Right PFC, OFG, ACC, anterior insula, 

temporal pole (including TPJ), and 

amygdala

 

No alteration

Mandonnet et al., A network-level approach of cognitive flexibility impairment after surgery of a right 

temporo-parietal glioma

2017 rTPJ

 

Direct lesion

Martinaud et al., Ownership illusions in patients with body delusions: Different neural profiles of 

visual capture and disownership

2017 Disturbed sensation of limb ownership: 

rTPJ, SMG, MFG

 

Direct lesion

Monai et al., Multiple Network Disconnection in Anosognosia for Hemiplegia 2020 rTPJ, right insula, right lateral and 

medial prefrontal cortex, SLF III, arcuate 

fasciculus, fronto-insular, frontal inferior 

longitudinal, and frontal aslant.

 

Direct lesion and 

disconnection

Pedrazzini and 

Ptak,

Damage to the right temporoparietal junction, but not lateral prefrontal or insular 

cortex, amplifies the role of goal-directed attention

2019 Right anterior angular gyrus, posterior 

part of SLF, arcuate fasciculus, fronto-

occipital fasciculus

 

Disconnection
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Shomstein et al., Top-down and bottom-up attentional guidance: investigating the role of the dorsal 

and ventral parietal cortices

2010 TPJ, SPL Direct lesion

Singh and Knight, Effects of posterior association cortex lesions on brain potentials preceding self-

initiated movements

1993 Anterior Brodmann areas 39 and 40 

(angular and SMG) and area 7 (SPL, 

IPL, precuneus)

 

Direct lesion

Starkstein et al., Anosognosia in patients with cerebrovascular lesions. A study of causative 

factors

1992 Thalamus, rTPJ Direct lesion

Wawrzyniak et 

al.,

The neuronal network involved in self-attribution of an artificial hand: A lesion 

network-symptom-mapping study

2018 TPJ (SMG), right IFG, and right

anterior insula

 

Direct lesion

Chechlacz et al., Neuronal substrates of Corsi Block span: Lesion symptom mapping analyses in 

relation to attentional competition and spatial bias

2014 rTPJ, IPL, MTG, MOG, SLF, arcuate 

fasciculus, IFOF, and ILF

 

Direct lesion and 

disconnection

Committeri et al., Where did you "left" Piazza del Popolo? At your right temporo-parietal junction. 2015 Posterior rTPJ (angular gyrus and

SMG)

 

Direct lesion

Demeurisse et 

al.,

Pathogenesis of subcortical visuo-spatial neglect. A HMPAO SPECT study 1997 Lenticular nucleus, thalamus, rTPJ Direct lesion

Dressing et al., The correlation between apraxia and neglect in the right hemisphere: A voxel-

based lesion-symptom mapping study in 138 acute stroke patients

2020 Imitation of meaningless postures: 

MTG, TPJ, STG and sulcus, angular 

gyrus, parieto-occipital sulcus, 

secondary sensorimotor cortex and 

(peri-)insular regions

 

Direct lesion

 

Golay et al., Cortical and subcortical anatomy of chronic spatial neglect following vascular 

damage

2008 rTPJ and underlying white matter, SMG, 

posterior STG, and insula

 

Direct lesion
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Hattori et al., Structural connectivity in spatial attention network: reconstruction from left 

hemispatial neglect

2018 SLF III/Arcuate fasciculus and the 

extreme capsule/inferior fronto-occipital 

fasciculus

 

Disconnection

Karnath et al., The cortical substrate of visual extinction 2003 rTPJ, including the ventral part of the 

IPL, the caudal parts of the STG and 

MTG

 

Direct lesion

Kaufman et al., Multiperturbation analysis of distributed neural networks: the case of spatial 

neglect

2009 Supramarginal and angular gyri of the 

IPL, the SPL, the anterior part of the 

rTPJ connecting the STG and SMG, 

and the thalamus

 

Direct lesion

Lee et al., Neglect dyslexia: frequency, association with other hemispatial neglects, and 

lesion localization

2009 The STG, MTG, IPL, posterior insular 

cortex, and the lingual and fusiform gyri

 

Direct lesion

Pedrazzini and 

Ptak,

The neuroanatomy of spatial awareness: a large-scale region-of-interest and 

voxel-based anatomical study

2020 Supramarginal part of the rTPJ and 

SLF-mediated frontoparietal 

connections (SLF I, SLF II, and SLF III)

 

Direct lesion and 

disconnection

Pedrazzini et al., A neuroanatomical model of space-based and object-centered processing in 

spatial neglect

2017 Anterior part of rTPJ

 

Direct lesion

Ptak and 

Schnider,

The attention network of the human brain: relating structural damage associated 

with spatial neglect to functional imaging correlates of spatial attention

2011 IPS, dorsal premotor cortex, and rTPJ

 

Direct lesion

Rousseaux et al., Anatomical and psychometric relationships of behavioral neglect in daily living 2015 Neglect in daily living was associated 

with lesions of the posterior part of the 

STG and extending to rTPJ, temporo-

occipital junction and subcortical white 

matter (including the SLF).

 

Direct lesion and 

disconnection
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Thiebaut de 

Schotten et al.,

Damage to white matter pathways in subacute and chronic spatial neglect: a 

group study and 2 single-case studies with complete virtual "in vivo" tractography 

dissection

2014 The SLF II

 

Disconnection

Ticini et al., The role of temporo-parietal cortex in subcortical visual extinction 2010 rTPJ and neighboring clusters: the 

posterior part of STG, the posterior part 

of MTG, angular gyrus, and SMG. In 

addition, the IFC

 

Direct lesion

Toba et al., Game theoretical mapping of causal interactions underlying visuo-spatial 

attention in the human brain based on stroke lesions

2017 IPS, rTPJ, IFG, and IOG

 

Direct lesion

Baez et al., Brain structural correlates of executive and social cognition profiles in behavioral 

variant frontotemporal dementia and elderly bipolar disorder

2019 Atrophy of rTPJ and superior temporal 

pole, as well as the amygdala, the 

hippocampus, the parahippocampal 

gyrus, the putamen, the insula, and the 

precuneus, was associated with Theory 

of Mind impairments

 

Direct lesion

Blanc et al., Cortical Thickness in Dementia with Lewy Bodies and Alzheimer's Disease: A 

Comparison of Prodromal and Dementia Stages

2015 Cortical thinning was found in the rTPJ, 

insula, and cingulate, orbitofrontal, and 

lateral occipital cortices in dementia with 

Lewy bodies

 

Direct lesion

De Marco et al., Age and hippocampal volume predict distinct parts of default mode network 

activity

2019 The disconnection between the default-

mode network and the anterior portion 

of rTPJ is related to hippocampal 

volumes

 

Disconnection

Diez et al., Corticolimbic fast-tracking: enhanced multimodal integration in functional 

neurological disorder

2019 Altered functional connectivity from the 

left anterior insula to the right anterior 

insula and TPJ

 

Disconnection

Eslinger et al., Apathy in frontotemporal dementia: behavioral and neuroimaging correlates 2012 Atrophy in the right caudate 

(encompassing the ventral striatum),

rTPJ, right ITG, right  MTG, and left 

Direct lesion
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frontal operculum-anterior insula

region

 

Kang et al., Effects of Lewy body disease and Alzheimer disease on brain atrophy and 

cognitive dysfunction

2019 Lewy body disease and Alzheimer's 

disease share the degeneration of TPJ 

and parietal cortices

 

Direct lesion

Luks et al., Atrophy in two attention networks is associated with performance on a Flanker 

task in neurodegenerative disease

2010 rTPJ, VLPFC, and DLPFC atrophy

 

Direct lesion

Qian et al., Functional-structural degeneration in dorsal and ventral attention systems for 

Alzheimer's disease, amnestic mild cognitive impairment

2015 Alzheimer's disease is associated with 

impaired functional connectivity in 

several areas belonging to attention 

networks: right OSG/MFG, right IPL, 

angular gyrus, and SMG around TPJ

 

Alteration of functional 

connectivity

Rohrer et al., Alzheimer's pathology in primary progressive aphasia 2012 Patients suffering from severe forms of 

logopenic/phonological aphasia show 

cortical thinning in the left posterior 

superior temporal, inferior parietal, 

medial temporal, posterior cingulate, left 

anterior temporal, and frontal cortices. 

In addition, in the right hemisphere, 

TPJ, posterior cingulate, and medial 

temporal lobe are involved

 

Direct lesion

Sorg et al., Asymmetric loss of parietal activity causes spatial bias in prodromal and mild 

Alzheimer's disease

2012 Hypometabolism in IPL and TPJ

 

Hypometabolism

Yamashita et al., Functional connectivity change between posterior cingulate cortex and ventral 

attention network relates to the impairment of orientation for time in Alzheimer's 

disease patients

2019 Disconnection between PCC and right 

MTG (adjacent to rTPJ) is related to 

orientation for time impairment in 

Alzheimer's disease patients

 

Disconnection

Zamboni et al., Anosognosia for behavioral disturbances in frontotemporal dementia and 2010 Right STS (close to rTPJ) Direct lesion
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corticobasal syndrome: A voxel-based morphometry study  

Zou et al., 3.0 T MRI arterial spin labeling and magnetic resonance spectroscopy 

technology in the application of Alzheimer's disease

2014 TPJ and frontal, temporal, parietal, and 

hippocampal regions, bilaterally

 

Hypoperfusion

Hanganu et al., Depressive symptoms in Parkinson's disease correlate with cortical atrophy over 

time

2017 rTPJ, right occipital medial region, right 

DLPFC, right posterior cingulate region, 

left MTG, and left SMA

Direct lesion

Pickut et al., Mindfulness based intervention in Parkinson's disease leads to structural brain 

changes on MRI: a randomized controlled longitudinal trial

2013 Whole brain analysis showed increased 

gray matter in the left and right caudate 

nucleus, the left occipital lobe at the 

lingual gyrus and cuneus, the left 

thalamus, and bilaterally in TPJ

 

No alteration

Beauchamp et 

al.,

Electrocorticography Links Human Temporoparietal Junction to Visual Perception 2012 rTPJ

 

No alteration

Jiang et al., Altered attention networks and DMN in refractory epilepsy: A resting-state 

functional and causal connectivity study

2018 Ventral attention network: reduction of 

functional connectivity in VPFC and 

TPJ, bilaterally; Default-mode network: 

reduction of functional connectivity in 

bilateral MPFC; increase of functional 

connectivity in bilateral precuneus

 

Alteration of functional 

connectivity

Lu et al., Visual rehabilitation training alters attentional networks in hemianopia: An fMRI 

study

2018 Increase of functional connectivity 

between the rTPJ to the insula and ACC

 

Alteration of functional 

connectivity

Peterson et al., Right Temporoparietal Junction Transcranial Magnetic Stimulation in the 

Treatment of Psychogenic Nonepileptic Seizures: A Case Series

2018 TPJ (Brodmann area 39) No alteration

Zhang et al., Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus 

coeruleus activity and resting state functional connectivity in patients with 

migraine: An fMRI study

2019 Transcutaneous auricular vagus nerve 

stimulation increases connectivity 

among locus coeruleus, rTPJ, and left 

Alteration of functional 

connectivity
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secondary somatosensory cortex

 

Bosma et al., Dynamic pain connectome functional connectivity and oscillations reflect multiple 

sclerosis pain

2018 Default-mode network (rTPJ) Alteration of functional 

connectivity

 

Carotenuto et al., Pragmatic abilities in multiple sclerosis: The contribution of the temporoparietal 

junction

2018 TPJ and paracingulate cortex

 

Alteration of functional 

connectivity

 

Huang et al., White matter lesion loads associated with dynamic functional connectivity within 

attention network in patients with relapsing-remitting multiple sclerosis

2019 Decreased functional connectivity in 

dorsal attention network (left IPS-right 

IPS, left IPS-right FEF, left FEF-right 

IPS) and in ventral attention network 

(rTPJ-right VFC), along with increased 

functional connectivity between dorsal 

attention network and ventral attention 

network (left IPS-right VFC, left IPS-

rTPJ)

 

Alteration of functional 

connectivity

Kim et al., Neuropathic pain and pain interference are linked to alpha-band slowing and 

reduced beta-band

2019 Thalamus, posterior insula, and rTPJ

 

Alteration of spectral 

power

 

Peng et al., Density abnormalities in normal-appearing gray matter in the middle-aged brain 

with white matter hyperintense lesions: a DARTEL-enhanced voxel-based 

morphometry study

2016 Decreased gray matter in the left MFG, 

bilateral ACC, left and right premotor 

cortex, and left and right MCC. 

Increased gray matter in the bilateral 

cerebellum, left MTG, rTPJ, left and 

right PFC, and left IPL. Relationship 

between white matter hyperintense 

lesion volume and the decreased gray 

matter density in left MFG, bilateral 

ACC, right MCC, and right premotor 

cortex. White matter hyperintense lesion 

volume negatively correlated with 

increased gray matter in the rTPJ, left 

and right PFC, and right PFC

 

Direct lesion
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List of acronyms (Brain structures)

ACC: anterior cingulate cortex; DLPFC: dorsolateral prefrontal cortex; FEF: frontal eye field; IFC: inferior frontal cortex; IFG: inferior frontal gyrus; IFOF: inferior  
fronto-occipital  fasciculus;  ILF:  inferior  longitudinal  fasciculus;  IOG: inferior  occipital  gyrus;  IPL:  inferior  parietal  lobule;  IPS:  intraparietal  sulcus;  ITG: inferior 
temporal gyrus; MCC: middle cingulate cortex; MFG: middle frontal gyrus; MOG: middle occipital gyrus; MPFC: medial prefrontal cortex; MTG: middle temporal 
gyrus; OFG: orbitofrontal gyrus; OSG: orbital superior gyrus; PCC: posterior cingulate cortex; PFC: prefrontal cortex; PPC: posterior parietal cortex; SLF: superior  
longitudinal fasciculus; SMA: supplementary motor area; SMG: supramarginal gyrus; SPL: superior parietal lobule; STG: superior temporal gyrus; STS: superior  
temporal sulcus; TPJ: temporoparietal junction; VFC: ventral frontal cortex; VLPFC: ventrolateral prefrontal cortex; VPFC: ventral prefrontal cortex.

 

3. A predictive processing account of neurological disorders

In this supplementary part of the review, we will suggest complementary explanations for 

deficits related to damage or disconnection of rTPJ considering all of them through the lens 

of  predictive  processing.  This  may  provide  insights  to  interpret  these  deficits  as  the 

consequence  of  the  disruption  of  predictive  processing,  rather  than  traditional  domain-

specific deficits.

3.1 Attention

Within the predictive processing framework precision estimation is functionally analogous to 

attention (Feldman and Friston, 2010; Hohwy, 2013). Indeed, when individuals pay attention 

to a stimulus, an object, or a context, the reliability of the error signal is potentially higher 

than the opposite scenario when attention is low. Thus, the more attention is paid, the more 

the gathered information is supposedly accurate. If a certain prediction error is assigned to a 

high degree of reliability, the impact (or the weight) of prediction error on the internal model 

updating will be higher. In other words, the predictive processing assigns to attention a novel 

functional meaning, and rTPJ, which is a hub of the VAN and strictly engaged in attention 

(Corbetta and Shulman, 2002), would represent a pivotal brain structure within the predictive 

processing network (Siman-Tov et al., 2019).

Emphasis  should  be  laid  on  spatial  attention  since  its  relationship  with  rTPJ  has  been 

steadily found. Spontaneously reorienting attention is necessary to pick up stimuli in an ever-

changing environment and neglect patients offer a paradigm in which patients overlook the 

contralesional  side of  space,  typically  the left  one.  A relatively  large number  of  authors 
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consider neglect as a dysfunction of predictive processing. At a computational level, Parr 

and  Friston  (2018)  suggested  that  neglect  may  be  the  consequence  of  abnormal  prior 

beliefs. This hypothesis outlines several scenarios, for example, a patient with neglect may 

generate abnormal sensorimotor hypotheses (i.e.,  abnormal  priors),  leading to report low 

occurrence probability of events in the contralesional hemifield, with the consequence of 

reducing the tendency to shift attention towards the left side of space. According to another 

interpretation,  the  impairment  of  spatial  attention  in  neglect  is  thought  to  be  due  to  a 

disruption of  the VAN, critical  for  precision estimates and, in turn,  the building up of  an 

environmental model during the sampling of left-sided stimuli, rather than the non-impaired 

sampling of right-sided stimuli (Dietz et al., 2021). As a result, patients with neglect may 

have difficulties in updating the representation of probabilistic environmental contingencies.

Recently, Doricchi and colleagues (2021) tested the intriguing hypothesis that patients with 

neglect suffer from impairment to predict probabilistic regularities of sensory events. The 

authors  investigated  the  electrophysiological  markers  that  were  evoked  by  auditory 

irregularities,  namely  the  mismatch  negativity  and  the  P3,  respectively  considered  as 

markers  of  pre-attentive/lower-order  prediction  errors  and  higher-order  prediction  errors. 

Findings showed that patients had predictive processing impairments both at lower- and 

higher-order  prediction  errors,  resulting  in  difficulties  to  update  the  representation  of 

probabilistic contingencies in the environment. If we consider these predictions as the basis 

for model updating and awareness, this result may explain the lack of conscious attention of 

the left side of space in patients with neglect (Garrido and Deouell, 2021).

3.2 Awareness and Social cognition

rTPJ is also engaged in social cognition and ToM tasks (Bardi et al., 2017; Young et al., 

2010),  namely  tasks  that  require  reasoning  about  others’  mental/emotional  states.  An 

important aspect of ToM tasks is that they activate the DMN, which is also associated with 

internally directed processes such as memory and introspection (Buckner and Carroll, 2007). 
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The DMN encompasses rTPJ and is anticorrelated with the VAN (Fox et al., 2005) since the 

latter is active during externally directed cognitive processes.

In sum, rTPJ is engaged in ToM tasks in association with the DMN, and in attention tasks in 

association  with  the  VAN.  Although apparently  counterintuitive,  this  pattern  of  activation 

might reflect processes that are active in both kinds of tasks. Decety and Lamm (2007) 

hypothesized  that  successful  performance  in  ToM  tasks  is  based  on  the  comparison 

between  internal  models  about  what  the  others  will  do/think/feel,  which  is  an  internally 

directed process, with the actual perceptual evidence. This comparison requires the ability to 

shift between internally and externally directed processes. Corbetta and co-workers (2008) 

agreed with this view, by hypothesizing that rTPJ might be involved in both attention and 

ToM because the VAN - thanks to the reorienting function of rTPJ - can shift attention from 

an internal to an external perspective. In a predictive view of cognition, comparing internal 

models or predictions with the actual external information is key to optimizing performance 

by minimizing prediction errors.  Carter and Huettel  (2013) further expanded this idea by 

hypothesizing that rTPJ, being active during several tasks - both internally and externally 

directed - acts as a hub where several cognitive processes converge, with repercussions to 

decision-making in social  context.  We therefore posit  that  rTPJ could be responsible for 

enabling internal models to predict complex social environments and, in general, to promote 

social  cognition.  Such  a  convergence  of  different  cognitive  processes  in  rTPJ  and  its 

involvement in reorienting attention to salient stimuli  implies that rTPJ has an integrative 

function. This not only involves social cognition, but also corporeal awareness, and sense of 

agency (Decety and Lamm, 2007). Indeed, the disruption or experimental manipulation of 

rTPJ was found to cause sensations of mismatch between one’s own body and the external 

environment, like out-of-body experiences. This has been explained by advocating rTPJ as 

an integration hub between visuospatial and proprioceptive information (Blanke and Arzy, 

2005), but results of the current review suggest that its role goes beyond simple sensory 

integration and is not limited to attention, social cognition, and bodily awareness. The rTPJ 
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role is instead related to the integration and comparison of internal models of task context 

with the actual external information, across a wide range of cognitive and behavioral tasks.

The idea of the brain as a predictive machine is intriguing but how it can generate, test and 

update hypotheses regarding a  complex and ever-changing environment  is  still  unclear. 

Some authors agree that motion can be exploited to test hypotheses (i.e., prior beliefs) about 

proprioceptive and visual sensations. This hypothesis, within the active inference framework, 

suggests that an individual uses movement in search of sensory feedback. As Fotopoulou 

(2014)  suggested,  anosognosia  for  hemiplegia  seems  a  condition  accompanied  by  an 

impairment  of  active  inference  together  with  disconnection  of  the  likelihood  mapping 

between motor control and the related intero- and exteroceptive outcomes. Computationally, 

anosognosia  for  hemiplegia  might  reflect  aberrant  predictive  processing,  specifically  a 

dynamic  imbalance  between  prior  beliefs,  sensory  feedback,  and  prediction  errors 

(Fotopoulou,  2014).  Experts  are  still  divided  on  whether  to  consider  anosognosia  for 

hemiplegia  as  a  secondary  consequence  of  sensory  deficits  or  because  of  impaired 

movement monitoring. According to the first hypothesis, these patients would be unaware of 

their  paralysis  because  they  are  unable  to  update  prior  beliefs  regarding  their  motor 

capabilities. Somehow, they would have difficulties accessing sensory feedback. However, a 

further  plausible  explanation  is  that  anosognosia  for  hemiplegia  involves  the  inability  to 

gather the discrepancy between predicted and actual sensory feedback (Kirsch et al., 2021).

3.3 Motor functions and Apathy

According  to  the  predictive  processing  framework,  motor  control  occurs  through  the 

integration between sensory information and predictions emerging from internal models of 

action.  As  already  mentioned,  this  integration  is  functionally  dependent  on  the  level  of 

precision of sensory information and precision of predictions. Within this framework, a variety 

of motor disturbances can be interpreted as impairment in predictive processing.
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In general, in the case of a highly uncertain environment (e.g., a dark room), individuals’ 

movements rely more on their priors (e.g., expectations about the light switch position in the 

room) than sensory evidence (Körding and Wolpert, 2004). Furthermore, in normal aging 

there  is  greater  precision  of  predictions  and  less  of  sensory  evidence  rather  than  in 

neurodegenerative disorders, such as in PD, in which motor deficits may result from an over-

confidence  in  sensory  evidence  together  with  an  under-confidence  in  sensorimotor 

predictions, leading to poverty of initiating movements (Wolpe et al., 2018). In these patients, 

the  strong  adherence  to  the  senses  is  confirmed  in  a  study  showing  how  movement 

performance  was  reduced  in  case  of  the  reduction  of  visual  feedback  (thus  visual 

information) with respect to healthy individuals who do not present this performance decay 

(Klockgether and Dichgans, 1994). Interestingly, peripheral vibrotactile stimulation seems to 

reduce motor symptoms in PD patients by increasing the precision of priors and, at the same 

time, reducing the precision from sensory evidence (Macerollo et al., 2018).

More related to higher-order motivational  deficits,  leading to a difficulty in initiating goal-

directed  behaviors,  Kocagoncu  and  colleagues  (2020)  suggested  that  in  apathy  the 

reduction  of  movements  would  depend  on  the  integration  of  rewards  and  costs  in 

predictions. Patients with apathy might expect low rewards or high costs from their actions 

with the consequence of reducing goal-directed movements. Apathy may entail uncertainty 

in predicting the outcome of one's own actions and, as reported by Jakobs and co-workers 

(2009), rTPJ appears to have a central role in predictive motor processing, especially in 

conditions  characterized  by  higher  uncertainty  where  rTPJ  activation  is  higher.  As  the 

authors stated, this suggests that rTPJ engagement may be linked to increased updating of 

prior beliefs in case of higher uncertainty.

3.4 Executive functions

Executive dysfunctions are commonly observed in most brain disorders (Godefroy et al., 

2018; Moreira et al., 2017), leading patients to be more disinhibited, impulsive, and prone to 
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perseverative errors.  The Wisconsin Card Sorting Test  has been one of  the most  used 

neuropsychological  tools to evaluate executive functions,  in particular cognitive flexibility. 

Typically,  patients  with  poor  cognitive  flexibility  show  the  tendency  to  perseverate  with 

inadequate  responses  despite  a  shift  in  the  context/rule  that  would  require  different 

responses. In a recent study, Barcelo (2020) provided convincing evidence supporting the 

interpretation  of  patients’  outcomes at  this  task  as  the  result  of  predictive  impairments. 

Crucially,  similarly  to  Doricchi  and  colleagues  (2021),  the  author  showed  how  P3-like 

responses  would  index  high-  and  low-level  expectation  updating  offering  biomarkers  to 

address  the  hierarchical  organization  of  predictive  models  in  the  domain  of  executive 

functions.

As Diamond (2013)  suggested,  “without  inhibitory  control,  we would be at  the mercy of 

impulses,  old  habits  of  thought  or  action  (conditioned  responses),  and/or  stimuli  in  the 

environment that pull us this way or that''. Computationally, within the predictive processing 

framework, these symptoms may assume a new meaning: not being able to evaluate the 

actual sensory stimulus against the internal model of a task, event, or in general, a context 

may result in the inability to recognize the salience of that stimulus for the current context. In 

the case of a stimulus that violates the internal model, being unable to recognize its salience 

can lead to a reduced or absent prediction error and, in turn, to the impossibility to update 

the internal model. From a behavioral point of view, this translates to the inability to initiate 

task-appropriate actions (Geng and Vossel,  2013) leading, for  example,  to perseverative 

errors and cognitive rigidity because of the firm adherence to the predictions or because of 

the persistence of premorbid predictions (Fotopoulou, 2014).
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Study 2

1. Pre-stimulus standard alpha band power: supplementary figures 

In  this  section  we report  additional  images illustrating  the  main  analysis  on prestimulus 

standard  alpha  band  power.  Figures  1  and  2S depict  the  plots  of  the  main  interaction 

between time and prestimulus alpha power for  the incongruent  and congruent  condition 

respectively, for significant electrodes.
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Figure 1S. 3-D plots  of  the main  interaction between time and prestimulus alpha power  for  the 

incongruent condition, for significant electrodes. Time is represented on the x-axis, prestimulus power 

on  the  y-axis,  and  voltage  amplitude  is  color  coded.  White  areas  indicate  regions  where  the 

confidence intervals (95% CI) around the predicted surface included zero, while colored areas reflect 

amplitudes  significantly  predicted  by  prestimulus  power.  Shades  of  yellow  and  red  indicate 

increasingly positive amplitudes, while shades of blue indicate increasingly negative amplitudes. In 

posterior electrodes, for lower levels of prestimulus power, the N400 was more negative while the 

P600 was more positive.
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Figure 2S. 3-D plots  of  the main  interaction between time and prestimulus alpha power  for  the 

congruent condition, for significant electrodes. Time is represented on the x-axis, prestimulus power 

on  the  y-axis,  and  voltage  amplitude  is  color  coded.  White  areas  indicate  regions  where  the 

confidence intervals (95% CI) around the predicted surface included zero, while colored areas reflect 

amplitudes  significantly  predicted  by  prestimulus  power.  Shades  of  yellow  and  red  indicate 

increasingly positive amplitudes, while shades of blue indicate increasingly negative amplitudes. In 

central and posterior electrodes, voltage amplitude is more positive for lower levels of prestimulus 

alpha power. 

Comparing these two figures we can see that lower prestimulus alpha power is predictive of 

enhanced voltage amplitude across conditions. 
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Figure 3S.  Highlights for  specific  electrodes,  for  GAMMs on standard alpha band power. 

White areas indicate regions where the confidence intervals (95%)  around the predicted surface 

included zero.r
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2. Individual Alpha Peak Frequency results

In this section we report results for the analyses conducted on prestimulus individual alpha 

peak frequency (IAPF). Table 1S reports the significance of the interactions of interest for 

each electrode and condition. Figures 4 and 5S depict the effects of pre-stimulus IAPF on 

the ERPs.

Table 1S. Significance of interactions between time, power, and condition for the GAMM on 

IAPF power. 

Electrodes Interaction  time  x  power  x 
incongruent condition

Interaction:  time  x  power  x 
congruent condition

Fp1 0.01* 0.01*

Fp2 0.26 0.06

F7 0.39 0.39

F3 0.02* 0.01*

Fz 0.11 0.01*

F4 0.30 0.06

F8 0.10 0.89

FC5 < 0.001* < 0.001*

FC1 0.16 0.01*

FC2 0.35 0.03*

FC6 0.35 0.47

T7 0.03* 0.01*

C3 0.21 < 0.001*

Cz 0.15 0.03*

C4 0.08 0.39

T8 0.40 < 0.001*

CP5 0.24 0.04*

CP1 0.55 0.01*

CP2 0.37 0.07

CP6 < 0.001* 0.09
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P7 < 0.001* < 0.001*

P3 0.02* 0.02*

Pz 0.04* 0.01*

P4 < 0.001* 0.06

P8 < 0.001* < 0.001*

O1 0.01* < 0.001*

Oz 0.01 < 0.001

O2 < 0.001 < 0.001

Significant results are marked with *.

As in Figure 4 in the main text, Figure 4S depicts, for each electrode, the tensor surface 

difference between the congruent and incongruent interactions of interest, i.e., the predicted 

amplitude difference between congruent and incongruent ERPs depending on prestimulus 

IAPF  power.  Colored  blots  represent  significant  differences,  while  white  areas  indicate 

regions where the confidence intervals (95% CI) around the predicted surface included zero. 

Shades of blue and green represent negative differences, while shades of red and yellow 

stand for positive differences.
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Figure  4S. Differences  between  incongruent  and  congruent  tensor  surfaces  for  the  interaction 

between time, IAPF power, and condition. 

Results are remarkably similar to those obtained with the standard alpha band with some 

differences, probably because of the exclusion of subjects without a clear peak in the 8-13 

Hz range. In particular, similarly to the results obtained with the standard alpha frequency 

band, the predicted amplitude in the N400 and late posterior positivity/P600 time windows 

appeared to be significantly modulated by individualized prestimulus power, especially over 

central and posterior electrodes. To investigate whether the differences between the results 

were  ascribable  to  the  lower  number  of  subjects  included  in  the  IAPF  analyses,  we 
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conducted a  follow-up exploratory  analysis,  running again  the  model  on  standard  alpha 

frequency data, including only the 17 subjects included in the IAPF analyses. Results are 

shown in Figure 5S. 

Figure  5S.  Differences  between  incongruent  and  congruent  tensor  surfaces  for  the  interaction 

between time, standard alpha band power, and condition (only for the 17 subjects included in the 

IAPF analyses). 

Comparing figures 4, 4S, and 5S we can see that figures 4S and 5S are very similar, albeit 

figure 4S represents IAPF results and figure 5S represents standard alpha band results, but 
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only including the 17 subjects with a peak in the 8-13 Hz range. This seems to suggest that 

indeed that the differences between the results of standard alpha band power and IAPF 

power analyses are ascribable to the different number of subjects.

Significance values of the interaction between time, power, and congruent vs incongruent 

conditions  for  the  results  presented  in  this  section,  as  well  as  highlights  for  specific 

electrodes, can be found in Table 2S and in Figures 6-9S.
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Figure 6-7S. Highlights for specific electrodes, for GAMMs on IAPF power. White areas indicate 

regions where the confidence intervals (95%)  around the predicted surface included zero.

Table 2S. Significance of interactions between time, power, and condition for the GAMM on 

the 17 subjects included in the IAPF analyses.

Electrodes Interaction  time  x  power  x Interaction  time  x  power  x 
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incongruent condition congruent condition

Fp1 < 0.001* < 0.001*

Fp2 < 0.001* < 0.001*

F7 < 0.001* < 0.001*

F3 < 0.001* < 0.001*

Fz < 0.001* < 0.001*

F4 < 0.001* < 0.001*

F8 < 0.001* < 0.001

FC5 < 0.001* < 0.001*

FC1 < 0.001* < 0.001*

FC2 < 0.001* < 0.001*

FC6 < 0.001* 0.41

T7 < 0.001* < 0.001*

C3 < 0.001* 0.02*

Cz < 0.001* < 0.001*

C4 < 0.001* 0.15

T8 < 0.001* < 0.001*

CP5 < 0.001* < 0.001*

CP1 < 0.001* < 0.001*

CP2 < 0.001* < 0.001*

CP6 < 0.001* < 0.001*

P7 < 0.001* 0.24

P3 < 0.001* < 0.001*

Pz < 0.001* < 0.001*

P4 < 0.001* < 0.001*

P8 < 0.001* < 0.001*

O1 < 0.001* < 0.001*

Oz < 0.001* < 0.001*

O2 < 0.001* < 0.001*

Significant results are marked with *.
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Figures 8-9S. Highlights for specific electrodes, for GAMMs on the standard alpha band, only 

including the 17 subjects included in the IAPF analyses. White areas indicate regions where the 

confidence intervals (95%)  around the predicted surface included zero.
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Standard alpha band power has been studied more extensively and linked to a variety of 

cognitive processes (see Section 1), but recently introduced methodologies allow an easier 

estimation of multiple properties of alpha oscillations. For example, higher IAPF (i.e., faster 

alpha band oscillations) seems to be related to the sampling resolution of visual information 

(Samaha  and  Postle,  2015),  probably  enabling  faster  processing  speed  and  therefore 

optimizing the efficiency of basic cognitive functions such as attention. In this vein, a positive 

correlation between high IAPF and general intelligence was found (Grandy et al.,  2013), 

while  in  patients  with  schizophrenia,  lower  IAPF  has  been  associated  with  poorer 

discrimination of visual targets in an attention task, as well as impaired global cognition when 

compared  to  healthy  controls  (Ramsay  et  al.,  2021).  These  results  substantiate  the 

hypothesis  that  higher  IAPF  optimizes  the  efficacy  of  basic  cognitive  functions,  with 

cascading positive effects also on higher cognitive abilities. However, there are also reports 

contrasting this view: Howard et al., 2017 found an advantage for individuals with a lower 

IAPF in a spatial attention task, and Ociepka et al., 2022 found that general intelligence was 

unrelated  to  the  IAPF,  but  correlated  positively  with  processing  speed,  leading  to  the 

conclusion that “brains with higher IAFs do run faster, but it does not make them smarter”.

In the language domain, it seems that overall, a lower IAPF is associated with more efficient 

linguistic processing: for example, lower-IAPF individuals show a better performance than 

their higher-IAPF counterparts when learning a modified miniature language (Nalaye et al., 

2022). As regards the ERP correlates of language processing instead, low-IAPF individuals 

showed  a  sustained  positivity  when  processing  syntactically  or  semantically  ambiguous 

sentences, while high-IAPF individuals did not (Bornkessel et al., 2004). In another study, 

the authors examined whether the speed of predictive model adaptation in response to intra-

experimental  probabilistic  information,  reflected  in  the  N400  amplitudes,  were  different 

between high and low-IAPF participants. Interestingly, participants with lower IAPF showed a 

faster model adaptation (Bornkessel-Schlesewsky et al., 2022). 
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This body of evidence is in line with our findings on IAPF power, but it suggests also that 

other  properties  of  alpha oscillations,  such as IAPF speed,  might  be predictive  of  post-

stimulus  cognitive  processes  and  electrophysiological  responses.  This  field  therefore 

deserves further investigation.

3. Additional analyses 

To  explore  whether  a  more  traditional  analysis  would  have  captured  the  modulations 

associated with prestimulus alpha we performed some additional analyses using ANOVAs 

instead of GAMM. In particular, we performed two separate ANOVAs, one on the N400 and 

one on the P600 time window. To investigate topographic effects, we followed the same 

method as in the original paper (Arcara et al., 2019): we selected 12 electrodes grouped in 4 

Regions of interest (ROI): a left anterior (F3, FC5, FC1) a right anterior (F4, FC6, FC2), a left 

posterior (CP1, CP5, P3) and a right posterior (CP2, CP6, P4). ERP amplitudes for each 

ROI were calculated as the mean amplitude of the electrodes in the two time windows of 

interest, based on the literature: the first from 300 to 500 post-stimulus (Kuperberg et al.,  

2020), to capture the N400 effect; and the second from 500 to 700 msec post-stimulus, to 

capture the P600 (Mancini et al., 2019). 

To investigate the effects of prestimulus alpha on the ERP amplitudes, we averaged every 

single-trial raw prestimulus alpha value over the electrodes of each ROI. We then calculated 

two individualized cut-off values for prestimulus alpha power, corresponding to the first and 

third quartile of each participant’s set of prestimulus power extracted from every single trial 

(Arcara  et  al.,  2021).  The  trials  were  then  labelled  as  “high  power”  and  “low  power” 

according to whether their power value fell above the third or below the first quartile. Trials 

falling in between the two quartiles were discarded from the analysis. In this way, each ERP 

amplitude value was associated with a label indicating whether that ERP was preceded by 

high or low prestimulus power. The repeated ANOVAs included three within variables with a 

2  ✕  2  ✕  4 design: Congruence with two levels (congruent and incongruent); Prestimulus 
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Alpha Power Level with two levels (high and low alpha) and Position with four levels (left 

anterior, right anterior, left posterior and right posterior ROIs). Since more than two levels 

were  involved  in  the  Position  variable,  a  preliminary  Mauchly  test  for  sphericity  was 

performed.  If  sphericity  assumption  was  not  met,  Greenhouse-Geisser  correction  was 

applied. Effect size for ANOVA effects was calculated as global eta squared (η2
G), which is a 

more accurate estimate of effect size than traditional η2
p in the case of repeated measure 

design (Bakeman, 2005). Post-hoc contrasts were performed by means of paired t-tests, 

corrected for multiple comparisons with Bonferroni correction method. 

3.1. Additional analyses results

Contrast  on  congruence,  N400  time  window (300-500).  In  this  analysis  we  found  a 

significant interaction of congruence ✕ position [F(3,60) = 25.85, p < .05, η2
G = .56].  Post-

hoc contrasts related to this interaction showed that over all ROIs, incongruent trials elicited 

more negative ERPs than congruent ones in the N400 time window (corrected ps < .05; see 

representative electrodes for the ROIs in figure A1). All results for these contrasts are shown 

in Tables from 3A to 10A.

Figure 10S. Results of repeated measures ANOVAs in the N400 time window (300-500 ms).
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Contrast  on  congruence,  P600  time  window  (500-700). In  this  analysis  we  found  a 

significant interaction of congruence ✕ position [F(3,60) = 8.17, p < .05, η2
G = .29]. Post-hoc 

contrasts related to this interaction showed that in the left posterior ROIs (electrode P3 in 

Figure A2),  incongruent trials elicited a more positive ERP in the P600 time window than 

congruent trials. All results for these contrasts are shown in Tables from A.2.1. to A.2.4.

Figure 11S. Results of repeated measures ANOVAs in the P600 time window (500-700 ms).

The absence of significant interactions between congruence and prestimulus alpha level, or 

between congruence, prestimulus power and position for the P600 time-window could seem 

somewhat  surprising,  especially  if  compared  to  the  GAMM results  in  this  time-window. 

However,  we  think  that  the  reason  for  the  lack  of  significant  interactions  between 

congruence and prestimulus power (and position) lies in that ANOVA testing is not suitable 

to  detect  such  fine-grained  effects,  since  this  statistical  technique  requires  the  prior 

averaging and factorization of data before entering it in the model (see Section 1.3). This 

leads  to  the  loss  of  important  variability  within  the  data,  that  negatively  influences  the 

statistical outcomes.
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Table 3S. Results of ANOVA of contrast on Congruence, N400 time window (300-500 msec). This table reports the full ANOVA results. The  
first column reports the effect name, the second and the third the degrees of freedom of numerator and denominator. The fourth column reports 
the F value. The fifth column reports the p-value, and the sixth column reports an asterisk if the p.value of the effect is below 0.05. The final  
column reports the ηG2 (global eta squared), a measure of effect size (Bakeman, 2005).

Contrast on Congruency, N400 time window (300-500 msec)

ANOVA detailed results

ANOVA terms DFn DFd F p-value p<0.05 ges

Congruence
1.00 20.00 177.41 < 0.001 * 0.90

Prestimulus_alpha
1.00 20.00 1.47 0.24 0.07

Position
3.00 60.00 3.83 0.01 * 0.16

Congruence  x 
Prestimulus_alpha

1.00 20.00 < 0.001 0.98 < 0.001
Congruence x Position

3.00 60.00 25.85 < 0.001 * 0.56
Prestimulus_alpha x Position

3.00 60.00 2.80 0.05 * 0.12
Congruence  x 
Prestimulus_alpha:Position

3.00 60.00 2.63 0.06 0.12

Table 4S. Results of Mauchly’s test associated with ANOVA for contrast on Congruency, N400 time window (300-500 ms). This table reports  
the results of Mauchly’s test associated with ANOVA. The first column reports the effect name, the second the W value, the third the p-value, 
the fourth an asterisk if the p-value associated with the Mauchly’s test was below 0.05 (i.e., sphericity assumption violated). 
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Contrast on Congruency, N400 time window (300-500 msec)

Mauchly’s test

Mauchly’s test for Sphericity W p-value p<0.05

position 0.40 < 0.001 *

Cond:position 0.69 0.22

trial_type:position 0.29 0.01 *

Cond:trial_type:position 0.71 0.27

Table 5S.  Results of Sphericity corrections associated with ANOVA for contrast on Congruence, N400 time window (300- 500 ms). This table 
reports the sphericity corrections associated with the contrast.  The first  column reports the effect names, the second column reports the 
Greenhouse-Geisser (GG) epsilon. The third reports the p-value with GG correction, the fourth column reports if the p-value with GG correction 
was below 0.05. The fifth column reports the value of the Huynh-Feldt (HF) epsilon. The sixth the p-values with HF correction, and  the  seventh 
reports an asterisk if the p-value with HF correction is below 0.05.

Contrast on Congruency, N400 time window (300-500 msec)

Sphericity corrections of p-values

Sphericity correction terms GGe p[GG] p[GG] 
< .05

HFe p[HF] p[HF]<.05

position 0.65 0.03 * 0.71 0.03 *

Cond:position 0.79 0.01 * 0.91 0.01 *

trial_type:position 0.64 0.08 0.71 0.07
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Cond:trial_type:position 0.82 0.07 0.95 0.06

Table 6S. Post-hocs for the term Congruence x Position (contrast on Congruence, N400 time window, 300-500 ms). The table reports all the 
post-hocs.  The first  column reports the pairwise contrast.  The second column reports the t  value. The third column reports the p-value,  
corrected with the Bonferroni method. The fourth column reports the mean of the first term. The fifth column reports the mean of the second  
term. The sixth column marks with * significant contrasts.

post-hocs (contrast on Congruence, N400 time window)

Congruence x Position

comparison t-value

(df=24)

p-value Mean 1 Mean 2 p<.05

CON_left_anterior  vs 
CON_left_posterior -5.37 < 0.001 1.65 3.11 *
CON_left_anterior  vs 
CON_right_anterior -3.20 0.13 1.65 2.39
CON_left_anterior  vs 
CON_right_posterior -6.58 < 0.001 1.65 4.02 *
CON_left_anterior vs
INC_left_anterior 7.12 < 0.001 1.65 -1.25 *
CON_left_anterior  vs 
INC_left_posterior 8.22 < 0.001 1.65 -1.86 *
CON_left_anterior  vs 
INC_right_anterior 6.30 < 0.001 1.65 -0.92 *
CON_left_anterior  vs 
INC_right_posterior 7.07 < 0.001 1.65 -1.86 *
CON_left_posterior  vs 
CON_right_anterior 2.12 1.00 3.11 2.39
CON_left_posterior  vs 
CON_right_posterior -4.52 0.01 3.11 4.02 *
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CON_left_posterior  vs 
INC_left_anterior 11.05 < 0.001 3.11 -1.25 *
CON_left_posterior  vs 
INC_left_posterior 13.83 < 0.001 3.11 -1.86 *
CON_left_posterior  vs 
INC_right_anterior 8.99 < 0.001 3.11 -0.92 *
CON_left_posterior  vs 
INC_right_posterior 11.95 < 0.001 3.11 -1.86 *
CON_right_anterior  vs 
CON_right_posterior -4.67 < 0.001 2.39 4.02 *
CON_right_anterior  vs 
INC_left_anterior 10.06 < 0.001 2.39 -1.25 *
CON_right_anterior  vs 
INC_left_posterior 9.57 < 0.001 2.39 -1.86 *
CON_right_anterior  vs 
INC_right_anterior 8.53 < 0.001 2.39 -0.92 *
CON_right_anterior  vs 
INC_right_posterior 8.33 < 0.001 2.39 -1.86 *
CON_right_posterior  vs 
INC_left_anterior 12.81 < 0.001 4.02 -1.25 *
CON_right_posterior  vs 
INC_left_posterior 14.15 < 0.001 4.02 -1.86 *
CON_right_posterior  vs 
INC_right_anterior 10.24 < 0.001 4.02 -0.92 *
CON_right_posterior  vs 
INC_right_posterior 13.37 < 0.001 4.02 -1.86 *
INC_left_anterior vs
INC_left_posterior 1.75 1.00 -1.25 -1.86
INC_left_anterior vs
INC_right_anterior -1.22 1.00 -1.25 -0.92
INC_left_anterior  vs 
INC_right_posterior 1.43 1.00 -1.25 -1.86
INC_left_posterior  vs 
INC_right_anterior -2.72 0.37 -1.86 -0.92
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INC_left_posterior  vs 
INC_right_posterior < 0.001 1.00 -1.86 -1.86
INC_right_anterior  vs 
INC_right_posterior 2.54 0.54 -0.92 -1.86

Table 7S. Results of ANOVA of contrast on Congruence, P600 time window (500-700 msec). This table reports the full ANOVA results. The 
first column reports the effect name, the second and the third the degrees of freedom of numerator and denominator. The fourth column reports 
the F value. The fifth column reports the p-value, and the sixth column reports an asterisk if the p.value of the effect is below 0.05. The final  
column reports the ηG2 (global eta squared), a measure of effect size (Bakeman, 2005).

Contrast on Congruency, P600 time window (500-700 msec)

ANOVA detailed results

ANOVA terms DFn DFd F p-value p<0.05 ges

Congruence
1.00 20.00 6.98 0.02 * 0.26

Prestimulus_alpha
1.00 20.00 2.25 0.15 0.10

Position
3.00 60.00 12.19 < 0.001 * 0.38

Congruence:Prestimulus_alph
a

1.00 20.00 2.74 0.11 0.12
Congruence:Position

3.00 60.00 8.17 < 0.001 * 0.29
Prestimulus_alpha:Position

3.00 60.00 0.18 0.91 0.01
Congruence:Prestimulus_alph
a:Position

3.00 60.00 0.16 0.92 0.01
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Table 8S. Results of Mauchly’s test associated with ANOVA for contrast on Congruency, P600 time window (500-700 msec). This table reports 
the results of Mauchly’s test associated with ANOVA. The first column reports the effect name, the second the W value, the third the p-value, 
the fourth an asterisk if the p-value associated with the Mauchly’s test was below 0.05 (i.e., sphericity assumption violated). 

Contrast on Congruency, N400 time window (300-500 msec)

Mauchly’s test

Mauchly’s test for Sphericity W p-value p<0.05

Position
0.42 0.01 *

Congruence:Position
0.54 0.04 *

Prestimulus_alpha:Position
0.29 < 0.001 *

Congruence:Prestimulus_alph
a:Position

0.44 0.01 *

Table 9S. Results of Sphericity corrections associated with ANOVA for contrast on Congruence, P600 time window (500-700 msec). This table 
reports the sphericity corrections associated with the contrast.  The first  column reports the effect names, the second column reports the 
Greenhouse-Geisser (GG) epsilon. The third reports the p-value with GG correction, the fourth column reports if the p-value with GG correction 
was below 0.05. The fifth column reports the value of the Huynh-Feldt (HF) epsilon. The sixth the p-values with HF correction, and  the  seventh 
reports an asterisk if the p-value with HF correction is below 0.05.

Contrast on Congruency, P600 time window (500-700 msec)

Sphericity corrections of p-values

Sphericity correction terms GGe p[GG] p[GG] HFe p[HF] p[HF]<.05
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< .05

Position
0.65 < 0.001 * 0.71 < 0.001 *

Congruence:Position
0.77 < 0.001 * 0.88 < 0.001 *

Prestimulus_alpha:Position
0.57 0.80 0.62 0.82

Congruence:Prestimulus_alph
a:Position

0.65 0.85 0.72 0.87

Table 10S. Post-hocs for the term Congruence x Position (contrast on Congruence, P600 time window, 500-700 msec). The table reports all 
the post-hocs. The first column reports the pairwise contrast. The second column reports the t value. The third column reports the p-value,  
corrected with the Bonferroni method. The fourth column reports the mean ofthe first term. The fifth column reports the mean of the second 
term. The sixth column marks with * significant contrasts.

post-hocs (contrast on Congruence, P600 time window)

Congruence x Position

comparison t-value

(df=24)

p-value Mean 1 Mean 2 p<.05

CON_left_anterior  vs 
CON_left_posterior -1.81 1.00 2.06 2.63
CON_left_anterior  vs 
CON_right_anterior -2.55 0.53 2.06 2.64
CON_left_anterior  vs 
CON_right_posterior -3.11 0.15 2.06 3.09
CON_left_anterior vs
INC_left_anterior -1.04 1.00 2.06 2.50
CON_left_anterior  vs 
INC_left_posterior -4.68 < 0.001 2.06 4.49 *
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CON_left_anterior  vs 
INC_right_anterior -2.17 1.00 2.06 2.71
CON_left_anterior  vs 
INC_right_posterior -4.28 0.01 2.06 4.00 *
CON_left_posterior  vs 
CON_right_anterior -0.01 1.00 2.63 2.64
CON_left_posterior  vs 
CON_right_posterior -2.46 0.65 2.63 3.09
CON_left_posterior  vs 
INC_left_anterior 0.31 1.00 2.63 2.50
CON_left_posterior  vs 
INC_left_posterior -4.71 < 0.001 2.63 4.49 *
CON_left_posterior  vs 
INC_right_anterior -0.19 1.00 2.63 2.71
CON_left_posterior  vs 
INC_right_posterior -3.43 0.07 2.63 4.00
CON_right_anterior  vs 
CON_right_posterior -1.23 1.00 2.64 3.09
CON_right_anterior  vs 
INC_left_anterior 0.29 1.00 2.64 2.50
CON_right_anterior  vs 
INC_left_posterior -3.62 0.05 2.64 4.49 *
CON_right_anterior  vs 
INC_right_anterior -0.20 1.00 2.64 2.71
CON_right_anterior  vs 
INC_right_posterior -2.82 0.30 2.64 4.00
CON_right_posterior  vs 
INC_left_anterior 1.58 1.00 3.09 2.50
CON_right_posterior  vs 
INC_left_posterior -3.54 0.06 3.09 4.49
CON_right_posterior  vs 
INC_right_anterior 1.03 1.00 3.09 2.71
CON_right_posterior  vs 
INC_right_posterior -2.36 0.79 3.09 4.00
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INC_left_anterior vs
INC_left_posterior -6.36 < 0.001 2.50 4.49 *
INC_left_anterior vs
INC_right_anterior -0.84 1.00 2.50 2.71
INC_left_anterior  vs 
INC_right_posterior -4.18 0.01 2.50 4.00 *
INC_left_posterior  vs 
INC_right_anterior 4.38 0.01 4.49 2.71 *
INC_left_posterior  vs 
INC_right_posterior 1.33 1.00 4.49 4.00
INC_right_anterior  vs 
INC_right_posterior -4.32 0.01 2.71 4.00 *
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4. Stimulus properties and spontaneous fluctuations

In the context of the present study, we hypothesized that the observed pre-stimulus alpha 

power is  related to spontaneous fluctuations in  a physiological  state,  not  related to any 

external manipulations. It is important to note that it is very difficult to demonstrate that these 

are actual spontaneous fluctuations and are not instead related to some cue-target  pair’s 

properties. In short, since all stimuli were not equal, it could be the case that some specific 

stimuli were associated to lower prestimulus alpha and in turn to enhanced N400 and P600. 

As a first check to this aim we fitted additional GAMM models using the same syntax as in 

the manuscript  but  adding  tensors including the available variables of  the stimulus that 

could  have  influenced  the  response  (that  is,  quantifier  word  frequency  and  semantic 

relatedness (similarity) across the cue and the upcoming target word). For transparency, the 

full list of stimuli is reported in Table 14S. To make the models computationally manageable, 

we had to  run two different  models,  one featuring  semantic  relatedness,  and the  other 

featuring word frequency. Here we report the models’ syntax for the word frequency model: 

Ampl ~ Cond # main effect

+ s(word_frequency, k = 5) # main effect

+ s(Time, by = Cond) # main effect

+ s(norm_log_power) # main effect

+ ti(Time, norm_log_power, k = c(20, 20), by = Cond) # two-way 

interaction  between  time  and  pre-stimulus  power,  depending  on 

condition

+  ti(Time,  word_frequency,  k  =  c(20,  5),  by  =  Cond)  #  two-way 

interaction between time and word frequency, depending on condition

+ ti(Time, norm_log_power, word_frequency, k = c(20, 20, 5), by = 

Cond) # three-way interaction of interest (time, pre-stimulus power 

and frequency, depending on condition)

+ s(Time, ID, bs = "fs", m = 1) # random effect
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+ s(Time, cond, bs = "fs", m = 1) # random effect

+ s(Event, bs = "re") # random effect

+ s(Time, Event, bs = "re") # random effect

The one for semantic relatedness was identical, except for the variable of interest. We run 

the models on some representative electrodes (CP1, CP2, P3 and P4). 

Results for the three-way interaction of interest between time, pre-stimulus alpha power and 

word  frequency  were  not  significant  (see  Table11S  for  the  p  values),  meaning  that 

controlling for word frequency did not significantly modulate the association between pre-

stimulus power  and ERPs amplitude levels.  On the other  hand,  the two-way interaction 

between time and pre-stimulus alpha power remained mostly significant (see Table 12S), 

and as can be seen from pictures 12 to 15S, the modulation of ERP amplitudes by means of 

pre-stimulus alpha power was very similar to that obtained in the original models, reported in 

the paper. We can therefore conclude that word frequency dies not explain the trial-by-trial 

variability in ERP amplitudes.

Table  11S.  Significance  of  the  three  way  interactions  between time,  pre-stimulus  alpha 

power and word frequency depending on condition. Significant results are marked with *.

Electrodes Interaction:  time*power* 

frequency,  incongruent 

condition

Interaction:  time*power* 

frequency,  congruent 

condition

CP1 0.71 0.29

CP2 0.35 0.89

P3 0.60 0.30

P4 0.75 0.68

Table 12S. Significance of the two way interactions between time and pre-stimulus alpha 

power, depending on condition. SIgnificant results are marked with *.
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Electrodes Interaction:  time*power, 

incongruent condition

Interaction:  time*power, 

congruent condition

CP1 0.04 * 0.01*

CP2 < 0.001* 0.27

P3 < 0.001* 0.05*

P4 < 0.001* 0.13

Figure 12S. Figure  13S.

Figure  14S. Figure  15S.
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Figures  12  to  15S.  Predicted  amplitude  (tensor  surface)  differences  between  incongruent  and 

congruent  conditions for  the two-way interaction (time and pre-stimulus alpha power).  The figure 

depicts the N400 and P600 effects depending on the pre-stimulus alpha level. Time is represented on 

the x-axis  and pre-stimulus power on the y-axis.  Colored areas reflect  significant  predicted ERP 

amplitude differences  between congruent  and incongruent  responses.  Shades of  yellow and red 

indicate  increasingly  positive  differences,  while  shades  of  green  and  blue  indicate  increasingly 

negative differences. Green shades indicate that the difference tends to zero. White areas indicate 

regions where the confidence intervals (95%)  around the predicted surface included zero.

The relatedness models that included three way interactions were killed for computational 

memory overload, therefore we had to simplify the model syntax by removing the three way 

interaction (syntax reported below):

Ampl ~ Cond # main effect

+ s(relatedness) # main effect

+ s(Time, by = Cond) # main effect

+ s(norm_log_power) # main effect
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+ ti(Time, norm_log_power, k = c(20, 20), by = Cond) # two-way 

interaction  between  time  and  pre-stimulus  power,  depending  on 

condition

+ ti(Time, relatedness, k = c(20), by = Cond) # two-way interaction 

between time and semantic relatedness, depending on condition

+ s(Time, ID, bs = "fs", m = 1) # random effect

+ s(Time, cond, bs = "fs", m = 1) # random effect

+ s(Event, bs = "re") # random effect

+ s(Time, Event, bs = "re") # random effect

Results  for  the  two-way  interaction  of  interest  between  time  and  semantic  relatedness 

depending on condition is significant (see Table 13S), meaning that in these electrodes there 

is a significant effect of semantic relatedness on the ERPs. 

Table 13S. Significance of the two way interaction between time and semantic relatedness 

depending on condition. Significant results are marked with *.

Electrodes Interaction:  time*semantic 

relatedness,  incongruent 

condition

Interaction:  time*semantic 

relatedness,  congruent 

condition

CP1 0.02* 0.01*

CP2 0.02* 0.04*

P3 0.09 0.03*

P4 0.01* 0.01*

However,  upon visual  inspection of  the effect  (see figures 16 to 19S),  we can see that 

different levels of semantic relatedness are not predictive of different ERP amplitudes (i.e., 

ERP amplitude is independent from the level of semantic relatedness). 
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Figure  16S. Figure  17S.

Figure  18S. Figure  19S.

Figures  16  to  19S.  Predicted  amplitude  (tensor  surface)  differences  between  incongruent  and 

congruent conditions for the two way interaction (time and semantic relatedness). The figure depicts 

the N400 and P600 effects depending on semantic relatedness level. Time is represented on the x-

axis and relatedness on the y-axis. 
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In other words, semantic relatedness is associated with the presence of a N400 and/or late 

posterior positivity/P600 effect depending on electrodes, but it does not explain the trial-by-

trial variations of ERP amplitudes, since amplitude is constant regardless of the semantic 

relatedness level. On the other hand, figures 20 to 23S show the effect of the interaction 

between  time  and  pre-stimulus  alpha  power  depending  on  condition;  these  images  are 

comparable to those reported for the original models. Given these results, we can conclude 

that even when controlling for semantic relatedness, the effect of pre-stimulus power is still a 

better predictor of the trial-by-trial variations of ERP amplitudes.

Figure  20S. Figure  21S.

Figure  22S. Figure  23S.
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Figures  20  to  23S.  Predicted  amplitude  (tensor  surface)  differences  between  incongruent  and 

congruent conditions for the two-way interaction (time and pre-stimulus alpha power) of the semantic 

relatedness model.  The figure depicts the N400 and P600 effects depending on the pre-stimulus 

alpha level. Time is represented on the x-axis and pre-stimulus power on the y-axis. 

In  sum,  results  of  the  models  with  the  additional  available  variables  show  that  these 

variables did not change the conclusions that can be derived from the original models. Even 

if these additional models show that some stimuli variables have no influence on the main 

results  of  the  experiment,  it  is  important  to  underline  that  other  cue-target  word  pairs’ 

properties  could  be  of  more  relevance,  e.g.  cue  reliability,  i.e.,  how  much  a  figure  is 

associated with a specific noun. This issue posits two additional problems: i) it is not clear 

how to evaluate cue reliability in the context of this specific experimental task; ii) given the 

quasi-experimental  design of  the  study,  it  is  never  possible  to  exclude the  presence of 

further additional missing confounding variables, other than cue reliability.

To further substantiate the claim that the observed values of alpha are related to random 

fluctuations we run a simulation using the following logic:
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1) If the fluctuations of alpha power are associated with some properties of the stimuli, 

then some stimuli should be systematically associated with lower pre-stimulus alpha 

power as compared to others. This is because, for some reason, cue validity or any 

other missed confound would be associated more often with a lower (or higher) value 

of pre-stimulus power;

2) We can rank, separately for each participant, the stimuli associated with the lowest 

prestimulus power, considering the N lowest stimuli;

3) We can run a Monte Carlo Simulation in which we simulate 1000 times a dataset 

analogous to the real one, but randomly assigning the rank of all the stimuli. For each 

simulation we store the value of a stimulus that is ranked more often in the range of 

N more extreme stimuli (e.g. for lower alpha ranking, suppose that the stimulus with 

highest occurrence rate is a stimulus ranked 97 times as in the lower alpha range, 

than the number “97” is stored as max observed value). We can build a distribution of 

all  maximum observed values under  random ranking and this  would  act  as  null-

distribution for our statistical test (note that this simulation is strongly inspired to Mass 

Univariate Statistics, Groppe et al., 2011 and Cluster Based Permutation approach, 

Maris & Oostenveld, 2008).

In other words, the simulation we built answers the following question: “what is the expected 

probability,  under  the  null  hypothesis,  of  observing  that  some specific  items tend to  be 

ranked as the lowest?”. Albeit with limitations, this is an empirical test of the “randomness” of 

the observed data distribution, regardless of the potential confound taken into account. 

Figure 24S reports the empirical distribution observed on our data, counting how often the 

item was among the 20 items with the lowest alpha power values. The horizontal line depicts 

the threshold of 95° percentiles of distribution of values as obtained in the simulation.
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Figure 24S. Results  of  observed stimulus ranking (of  prestimulus alpha power)  as  compared to 

random ranking. Each bar represents a single stimulus (cue-target word pair) and how many times it 

appears ranked as one within the 20 pairs with the lowest alpha (as calculated within participants). 

The dashed line indicates the results of the simulation of random ranking as described above. In 

particular, when randomly ranking the stimuli 95% of the stimuli were ranked within the 20-th lowest 

no more than 108 times (hence the threshold is 108). All bars exceeding this threshold indicate that 

they  tended too  often  (as  compared to  random ranking)  to  be  among the  ones with  the  lowest 

prestimulus alpha. 

Results  from this  simulation show that  8.7% of  the items showed values exceeding the 

threshold obtained by the simulation. This result is close to those expected when the null  

hypothesis  is  true  (in  which,  by  definition,  5%  of  values  exceeded  this  threshold).  As 

additional  control,  we re-fit  the  same model  reported in  the  manuscript  excluding those 

items, that is excluding the items which tended too often to be among the ones with the 

lowest alpha variables. Results of this trimmed model are consistent with the original models 

251



including all the stimuli (see Figures 25 and 26S), suggesting that the observed effect is not 

related to those specific stimuli that tended to show the lowest prestimulus alpha. 

 

Figure  25S. Differences  between  incongruent  and  congruent  tensor  surfaces  for  the  interaction 

between time, pre-stimulus alpha power, and condition from the trimmed models.
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Figure 26S. Highlights for specific electrodes from the trimmed models. Results are analogous to 

those reported in the main text.
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Study 3

1. Materials: psycholinguistic details of the stimuli

Stimulus properties were defined by asking a series of participants (who did not perform the 

MEG  task)  questions  about  the  stimuli.  First  we  enrolled  a  total  of  17  participants  to 

investigate properties about sentence completion of experimental sentences (age: mean = 

29,  SD =  6.29,  range  =  22-46;  education:  mean  =  16,  SD =  2.74,  range  =  13-21;  12 

Females). These participants were presented with the same sentences of the experimental 

items, with the exceptions of the last word, which was not presented (e.g. “That lawyer is a 

____”). They were asked to complete the sentences with the first word that came up in their 

mind.  From  this  data  collection,  two  measures  were  computed:  Cloze  Probability  was 

calculated as the percentage of people that completed the sentence with the same word 

used in the experimental stimuli (e.g. in reference to the examples as in Fig. 1, “shark”, in the 

sentence,  “that  lawyer  is  a  ____  ”).  Entropy  was  calculated  to  express  a  measure  of 

variability in responses given by the participants. It was calculated as  

H=∑
❑

❑

p (x ) ∙ log p (x )

Where H is the entropy associated with a stimulus and p(x) was the probability of observing 

a given response in the tested sample. Entropy is high when there are many equiprobable 

responses, while it is low when there is just one single response or one dominant response. 

In a few words, while Cloze Probability captures the probability of predicting correctly the 

actual  target  given the  preceding context,  Entropy estimates  how variable  is  the  set  of 

candidates that is predicted given the preceding context. 

For Familiarity a total of 39 participants were enrolled (age: mean = 27.05, SD = 4.54, range 

= 20-43; education: mean = 16.69, SD = 2.44, range = 11-21, 20 Females). They were 
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asked to rate, on a 5-point likert scale, the degree of familiarity of the stimuli, from 1 (not 

familiar at all) to 5 (completely familiar). 

We also added three corpus based measures: log word Frequency, as collected from the 

itWAC  corpus  (Baroni,  Bernardini,  Ferraresi,  &  Zanchetta,  2009),  target  word  length, 

calculated as number of letters, and similarity between the first noun of the sentence and the 

target word (e.g., between “lawyer” and “shark” in the example “that lawyer is a shark”), 

expressed  as  cosine  distance  calculated  from WEISS 3-words  window context  (Marelli, 

2017). 

We investigated differences between the two stimulus  types (Metaphors  and Literal)  by 

means  of  independent  t-tests  and  by  equivalence  tests  in  all  the  above  mentioned 

measures. While t-tests investigate differences in the stimuli, equivalence tests investigate 

whether  groups  can  be  considered  as  significantly  equal.  Metaphoric  stimuli  had  lower 

familiarity and lower Cloze Probability as compared to Literal ones. Stimuli also showed a 

difference in Entropy (with higher entropy for metaphoric contexts) and a higher semantic 

similarity between the two nouns. Overall these differences are all expected and intrinsically 

related to the kind of stimuli,  as we employed non lexicalized metaphors that almost by 

definition are less common than their literal counterparts. Note that for frequency and length 

no test is reported because the target stimuli on which these two variables were calculated 

were exactly the same for metaphoric and literal sentences.

Details on stimuli  and comparisons are reported in Table 1S.

Variable df t Cohen's 
d

P 
value

Equivalence 
p

epsilon Mean  Lit 
(SD)

Mean  Met 
(SD)

Cloze 
Probability

160 4.2 0.66 < 0.001 < 0.001 0.1 0.05 (0.09) 0.01 (0.03)

Entropy 160 -1.6 -0.24 0.120 < 0.001 0.3 3.68 (0.34) 3.75 (0.27)

Familiarity 160 6.1 0.96 < 0.001 0.021 1.000 3.4 (0.62) 2.65 (0.91)
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Target 
Length

160 - - 1.000 - - 7.17 (2.12) 7.17 (2.12)

Log 
Frequency 

160 - - - - - 8.47 (1.45) 8.47 (1.45)

Similarity 160 9 1.4 < 0.001 1.000 0.1 0.33 (0.14) 0.15 (0.1)

Table 1S. The table reports the mean variables associated with experimental stimuli (Metaphors and 

Literal  sentences).  Each row shows a measure.  Columns report:  the name of  the  variable,  the 

degrees of freedom of the t-tests for the comparison Metaphor vs Literal, the t-value for this test, the 

p-value for this test, the equivalence p-value (which is the p-value stating if groups can be considered 

significantly equal), the epsilon value, which is required for the equivalence test, mean and SD for the 

Metaphor and literal sentences. 

2. Statistical analyses

R syntax for models with ROI activity on TPJ as dependent variable:

ROI_activity ~ cond + s(Time, by=cond) + s(TPJ_log_pre_power) # main 

effects

+ ti(Time, TPJ_log_pre_power, k=c(20, 20), by=cond) # tensor with 

main interaction

+ s(Time, subj_ID, bs=”fs”, m=1) # nonlinear random smoother with 

individual differences in time course

+ s(Time, target, bs=”fs”, m=1) # nonlinear random smoother with 

differences in time course for each target word

+ s(Event, bs=”re”) # random intercept for each trial time series

+ s(Time, Event, bs=”re”) # random slope for each trial time series
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The R syntax for models with Language ROI activity as dependent variable is reported here:

ROI_activity  ~  cond  +  s(Time,  by=cond)  +  s(ROI_log_pre_power)  + 

s(rTPJ_log_pre_power) + s(lTPJ_log_pre_power) # main effects

+  ti(Time,  ROI_log_pre_power,  k=c(20,  20),  by=cond)  +  ti(Time, 

rTPJ_log_pre_power,  k=c(20,  20),  by=cond)  +  ti(Time, 

lTPJ_log_pre_power,  k=c(20,  20),  by=cond)  #  tensors  with  main 

interactions

+ s(Time, subj_ID, bs=”fs”, m=1) # nonlinear random smoother with 

individual differences in time course

+ s(Time, target, bs=”fs”, m=1) # nonlinear random smoother with 

differences in time course for each target word

+ s(Event, bs=”re”) # random intercept for each trial time series

+ s(Time, Event, bs=”re”) # random slope for each trial time series

3. Results

3.1. Whole-brain cluster-based permutation t-test 
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Figure 1s. Results of the cluster-based permutation t-test on whole-brain activations. There was a 

significant positive activation difference between the metaphorical and literal conditions. Activations 

were higher for Metaphors as compared to Literal expressions.

3.2. Same-area interactions for the language-related ROIs models

Table 2s reports the significance of the interaction between time, pre-stimulus alpha power, 

and  literal  vs  metaphorical  condition  for  the  language-related  ROIs.  Within  the  literal 

condition, same-area pre-stimulus alpha power only predicted the post-stimulus activation 

within  the  MTG.  Within  the  metaphoric  condition  instead,  same-area  pre-stimulus  alpha 

power only predicted the post-stimulus activation within Broca’s area. 

Table  2S. Significance  of  interactions  between  time,  power,  and  condition  within  the 

language-related areas. Significant results are marked with *.

literal condition metaphorical condition

Broca MTG STG Broca MTG STG

Interaction: 
time, same 
area power

0.38 <0.001* 0.4    0.01* 0.4    0.07 
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Figure 2s. 3-D plots of the main interaction between time and pre-stimulus alpha power for the literal  

condition, for significant effects. Time is represented on the x-axis, pre-stimulus alpha power level on 

the y-axis, and activation is color-coded. Colored blots represent plot regions where the interaction is 

significant, while white areas indicate regions where the confidence intervals (95% CI) around the 

predicted  surface  included  zero,  i.e.,  the  interaction  is  not  significant.  Increasingly  dark  shades 

indicate greater activation.

As we can see from Figure 1s, in the literal condition, within the MTG, pre-stimulus alpha 

power from this area itself is also associated with late activations (after 500 ms). 

Figure 3s. 3-D plots of  the main interaction between time and pre-stimulus alpha power for  the 

metaphorical condition, for significant effects. Time is represented on the x-axis, pre-stimulus alpha 

power level on the y-axis, and activation is color-coded. Colored blots represent plot regions where 

the interaction is significant, while white areas indicate regions where the confidence intervals (95% 

CI) around the predicted surface included zero, i.e., the interaction is not significant. Increasingly dark 

shades indicate greater activation.

As we can see from Figure 2s, within Broca’s area, pre-stimulus alpha power from the area 

itself is associated with early activation (until about 400 ms), resembling the effect in the 

literal condition (see main text), but more extended in time.
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Figure  4s. Predicted  activation  (tensor  surface)  differences  between  metaphorical  and  literal 

conditions for the main interactions of  interest  (time, alpha band power,  and conditions).  Time is 

represented on the x-axis,  pre-stimulus alpha power level  on the y-axis,  and predicted activation 

difference is color-coded. Colored blots represent plot  regions where the difference is significant, 

while white areas indicate regions where the confidence intervals (95% CI)  around the predicted 

activation difference included zero,  i.e.,  the difference is not significant.  Increasingly dark shades 

indicate greater activation differences.

As can  be seen in Figure 3s, activation differences in Broca’s area and in the MTG are also 

predicted by the pre-stimulus alpha power recorded from these same areas. In both ROIs, 

significant differences are present from 0 to 200 msec and after 400 msec; however, such 

differences are associated with high pre-stimulus alpha power in Broca’s area and with lower 

pre-stimulus power in the MTG.

3. Control analyses

Since the pre-stimulus interval we chose included the indefinite article (“a/an”) and we did 

not explicitly control for possible anticipatory processes happening at the level of the article 

in the task design, we performed additional analyses. First of all, we have to point out that, 

given  the  quasi-experimental  nature  of  the  design,  even  in  case  we  establish  that 

anticipatory processes are taking place already at the level of the article,  we could not rule 
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out  the  explanation  that  a  further  additional  confound  associated  with  the  stimuli  could 

explain the fluctuations in alpha power taking place in the pre-stimulus interval. Please note 

that this limitation is not specific for our study but is shared by any quasi-experimental study 

in language that investigates properties that are not manipulated (e.g.,  language studies 

investigating difference between two types of stimuli in a lexical decision task).

To  further  substantiate  our  claims  we  thus  followed  a  different  way  of  reasoning,  that 

involved simulations, which are now reported in the supplemental data. The logic used was 

the following:

1) If the fluctuations of alpha power are associated with anticipatory processes relative 

to the determinant, then some stimuli should be associated more often with lower (or 

higher)  pre-stimulus  alpha  power  as  compared  to  others.  This  is  because those 

stimuli would be associated for some reason (i.e., congruency of the determinant with 

the participants’ hypotheses  or any other missed confound) with a lower (or higher) 

value of prestimulus power.

2) We can rank, separately for each participant, the stimuli associated with the lowest or 

highest prestimulus power, considering the N lowest or N highest stimuli (and using 

different values of N).

3) We can run a Monte Carlo Simulation in which we simulate 1000 times a dataset 

analogous to the real one, but randomly assigning the rank of all the stimuli. For each 

simulation we store the value of stimulus that more often is ranked in the range of N 

more extreme stimuli (e.g. for lower alpha ranking, suppose that the stimulus with 

highest occurrence rate is a stimulus ranked 97 times as in the lower alpha range, 

than the number “97” is stored as max observed value). We can build a distribution of 

all max observed values under random ranking and this would act as null-distribution 

for our statistical test (Note that this simulation is strongly inspired to Mass Univariate 

Statistics, Groppe et al.,  2011 and Cluster Based Permutation approach, Maris & 

Oostenveld, 2007).
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In other words, the simulation we built answers the following question: “what is the expected 

probability,  under  the  null  hypothesis,  of  observing  that  some specific  items tend to  be 

ranked as the lowest?”. Albeit with limitations, this is an empirical test of the “randomness” of 

the observed data distribution, regardless of the potential confound taken into account. 

The figure below reports the empirical distribution observed on our data, counting how often 

the item was among the 20 items with the lowest alpha power values. The horizontal line 

depict the threshold, as obtained in the simulation.

Figure 5s. Results of observed stimulus ranking (of prestimulus alpha power) as compared to random 

ranking. Each bar represents a single stimulus (article-target word pair) and how many times it 

appears ranked as one within the 20 pairs with the lowest alpha (as calculated within participants). 

The line indicates the results of the simulation of random ranking as described above. In particular, 

when randomly ranking the stimuli 95% of the stimuli were ranked within the 20-th lowest no more 

than 36 times (hence the threshold is 36). All bars exceeding this threshold indicate that they tended 

too often (as compared to random ranking) to be among the ones with the lowest prestimulus alpha. 
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Other published works

The following studies are (however tangentially) related to what has been outlined in the 

present work.

● Lago, S., Bevilacqua, F., Stabile, M. R., Scarpazza, C., Bambini, V., & Arcara, G. 

(2022). Case report: Pragmatic impairment in multiple sclerosis after worsening of 

clinical  symptoms.  Frontiers  in  Psychology,  13,  1028814. 

https://doi.org/10.3389/fpsyg.2022.1028814

○ Study 1 reviewed several  domains of  cognitive impairments resulting from 

several  neurological  pathologies.  However,  in  the  review  the  language 

domain was not covered adequately. This case report presents an interesting 

account of decline of pragmatic abilities, that can be interpreted, in light of the 

findings outlined in the present dissertation, as a possible global impairment 

of  predictive processing. Future investigations are needed to elucidate the 

specific neural and cognitive processes that might be involved in the decline 

of pragmatic abilities.

● Sulpizio, S., Arcara, G., Lago, S., Marelli, M., & Amenta, S. (2022). Very early and 

late form-to-meaning computations during visual  word recognition as revealed by 

electrophysiology. Cortex, 157, 167–193. https://doi.org/10.1016/j.cortex.2022.07.016

○ This study allowed me to implement and perfectionate the statistical analyses 

technique used in Studies 2 and 3.
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Response to Reviewers

Reviewer 1

The present thesis represents a nice contribution to the literature on predictive processes 

and the relationship between pre-stimulus neurobiological correlates and post-stimulus brain 

activity. It provides a nice overview on the role of the temporo-parietal junctions during 

language processing and contributes to further deepen our understanding on the interaction 

between TPJ and other language-related brain areas. Study 1 provides a review of the 

studies on the role of right TPJ in neurological patients and proposes a general functional 

interpretation of these brain areas within a domain-general predictive framework. Study 2 

describes an EEG experiment investigating the relationship between pre-stimulus alpha and 

post-target evoked responses (N400/P600) in a picture matching design. Study 3 is an MEG 

experiment on literate and figurative language processing aimed at testing the link between 

pre-stimulus alpha in TPJs and temporal dynamics of post-target neural activity in other 

language-related areas.

These studies represent a nice contribution to the literature on language processing and 

predictive analysis. The designs of the studies are sound and well justified. The introduction 

of each study is well structured. I highly appreciated the thoughtful explanation of each of 

statistical and methodological choice. I also want to highlight that the candidate shows a 

strong expertise in a wide range of electrophysiological methods, ranging from EEG to MEG. 

Overall, I think that the candidate can be admitted to the final exam.

I have some minor suggestions that I hope can help widening the theoretical introduction, 

smoothing the between-studies transitions, and deepening the understanding of scientific 

results presented here (especially for Study 3).

- Introduction, page 11: when talking about alpha and its functional interpretation in the 

cognitive domain (especially language), I think it would be good to mention the 

“Gating and pulsed inhibition hypothesis” (Jensen & Mazaheri, 2010; Frontiers) and 

recent evidence suggesting a relevant role of alpha in reading (Jensen, Pan, Frisson, 

& Wang, 2021, TICS; Pan, Popov, Frisson, Jensen, 2023, Plos Biol).

Answer: Thank you for the suggestion. I edited the text accordingly (p.11).

- Introduction, page 47: when taking about possible functionally different sub-areas of 

rTPJ it would be good to know if this distinction can be supported by 

cytoarchitectonic differences (something that has been suggested for the visual word 

form area as well; e.g., Weiner KS, Barnett MA, Lorenz S, et al. 2017, Cereb Cortex).

Answer: Thank you for the suggestion. I edited the text accordingly (p.48).
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- Study 1, page 48: can you give an estimation about how often rTPJ is solely 

damaged vs how often it is damaged together with other brain areas that are in the 

territory of the middle cerebral artery? In other words, how easy is to disentangle the 

functional interpretation of rTPJ from the surrounding areas in clinical studies?

Answer: As reported in Table S3, of the 54 studies included in the review, most (33) 

reported either a direct lesion of rTPJ (28) or a direct lesion in addition to the 

disconnection of rTPJ from surrounding areas (5), in relation to the behavioral deficit 

observed. Among these 33 studies, only 5 reported that rTPJ was solely damaged, 

while the large majority reported lesions of other areas in addition to lesions to rTPJ. 

This probably indicates that other frontal, parietal, and temporal regions can 

frequently show abnormalities in neurological pathologies, while small, selective 

lesions circumscribed to rTPJ might occur very rarely. This consideration highlights 

the impossibility of disentangling the effects of lesions solely to rTPJ from lesions to 

rTPJ and other brain areas with the only aid of clinical, observational studies; 

however, it is also in line with the observation, outlined in the Introduction, that rTPJ 

is part of many neural networks subserving different cognitive functions. For this 

reason, it is beyond the scope of this study to disentangle the effects of a lesion 

circumscribed to rTPJ from the effects of a lesion that also includes the surrounding 

areas, because we argue that brain regions are indeed interconnected. Therefore, 

even if a lesion only involves one area, such a lesion might entail functional 

abnormalities in other regions of the network too. Our goal was rather to give a more 

holistic picture of the role of the area of interest, without focusing only on lesions 

solely circumscribed to rTPJ, but taking into account all the cases when this region 

was involved in behavioral and cognitive manifestations of neurological diseases. 

The fact that our results demonstrate how rTPJ is frequently involved in many 

different complex behaviors and cognitive domains, either alone or with other brain 

areas, supports once again the hypothesis that this area might be part of a domain-

general predictive network. 

- Transition between Study 1 and Study 2: it is not clear what is the logical transition 

connecting the two studies here. Are there studies supporting the idea that the neural 

sources of alpha, N400 or P600 might include TPJs? How is TPJ related to the role 

of pre-stimulus alpha and why should we suspect a connection there?

- Answer: Thank you for the suggestion. I added an interim summary (p. 75)

- Study 2, Page 91-92: very nice description of the statistical details of the study and 

very clear justification of the methodological choices.

Answer: Thank you, your feedback is greatly appreciated.
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- Study 2, page 111: to further support the conclusion here (“the N400 amplitude was 

less sensitive to pre-stimulus power level” [as compare to the P600 amplitude]), it 

would be good to add a quantification of the modulatory effect of pre-stimulus alpha 

power on N400 and P600 amplitude, respectively.

Answer: Thank you for the suggestion. I edited the text accordingly (p.112).

- Transition between Study 2 and Study 3: again, it is not clear what is the logical 

transition connecting the two studies here. Is there any study suggesting that the 

neural sources of pre-stimulus alpha power include TPJ? This can be also added and 

further elaborated on pages 133-134.

Answer: Thank you for the suggestion. I added another interim summary (p. 126).

- Study 3, materials: the experimental design comes a little bit out of the blue here and 

it should be anticipated more in the last part of the introduction to familiarize the 

reader with the experimental conditions and the specific related hypotheses.

Answer: Thank you for the suggestion. I edited the text accordingly (p. 136).

- Study 3, page 143: “The words included in this interval (“is a/an”) are not content 

words and they are consistent throughout the sentence stimuli, so their effect on 

sentence comprehension should be constant across all sentences.” There can be 

specific anticipatory processes happening already at the level of the determinant, 

which might influence pre-stimulus alpha power (DeLong, Urbach & Kutas, 2005; 

Nature). How are these aspects controlled in this design?

Answer:  We thank the reviewer for this comment, which we consider to be really 

relevant. We did not explicitly control for possible anticipatory in the task design. 

However, we addressed this point in several ways. First of all, given the quasi-

experimental nature of the design, even in case we establish that anticipatory 

processes are taking place already at the level of the determinant,  we could not rule 

out the explanation that a further additional confound associated with the stimuli 

could explain the fluctuations in alpha power taking place in the pre-stimulus interval. 

Please note that this limitation is not specific for our study but is shared by any quasi-

experimental study in language that investigates properties that are not manipulated 

(e.g., language studies investigating difference between two types of stimuli in a 

lexical decision task).

To further substantiate our claims we thus followed a different way of reasoning, that 

involved simulations, which are now reported in the supplemental data. Note that the 

same strategy was used to solve a similar issue for Study 2 (See Supplementary 

Materials, p. 249 and following).

The logic used was the following:
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1) If the fluctuations of alpha power are associated with anticipatory processes 

relative to the determinant, then some stimuli should be associated more 

often with lower (or higher) pre-stimulus alpha power as compared to others. 

This is because those stimuli would be associated for some reason (i.e., 

congruency of the determinant with the participants’ hypotheses  or any other 

missed confound) with a lower (or higher) value of prestimulus power.

2) We can rank, separately for each participant, the stimuli associated with the 

lowest or highest prestimulus power, considering the N lowest or N highest 

stimuli (and using different values of N).

3) We can run a Monte Carlo Simulation in which we simulate 1000 times a 

dataset analogous to the real one, but randomly assigning the rank of all the 

stimuli. For each simulation we store the value of stimulus that more often is 

ranked in the range of N more extreme stimuli (e.g. for lower alpha ranking, 

suppose that the stimulus with highest occurrence rate is a stimulus ranked 

97 times as in the lower alpha range, than the number “97” is stored as max 

observed value). We can build a distribution of all max observed values under 

random ranking and this would act as null-distribution for our statistical test 

(Note that this simulation is strongly inspired to Mass Univariate Statistics, 

Groppe et al., 2011 and Cluster Based Permutation approach, Maris & 

Oostenveld, 2007).

In other words, the simulation we built answers the following question: “what is the 

expected probability, under the null hypothesis, of observing that some specific items 

tend to be ranked as the lowest?”. Albeit with limitations, this is an empirical test of 

the “randomness” of the observed data distribution, regardless of the potential 

confound taken into account. 

The figure below reports the empirical distribution observed on our data, counting 

how often the item was among the 20 items with the lowest alpha power values. The 

horizontal line depict the threshold, as obtained in the simulation.
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Results for this simulation are now reported in supplemental data, Figure 5s of Study 

3, and show that none of the items showed values exceeding the threshold obtained 

by the simulation. This result suggests that no item is associated systematically with 

a particularly lower value of alpha.

These analyses and results are now reported also in the Supplementary Materials (p. 

261 and following) and mentioned in the Methods section (p. 143 and following) and 

in the Discussion (p. 162).

- Study 3, page 147-148: do these complex models converge?

Answer: yes, they do, and I edited the text on page 148. 

- Study 3, page 149-150: were there any significant differences between conditions in 

the behavioral results?

Answer: yes, please see p. 149 for a comment

- Study 3, page 150: was there any TPJ difference in the whole brain results?

Answer: no, significant differences did not encompass any of the TPJs. This 

information is now reported on p. 150

- Study 3, page 150: I highly encourage the authors to report full statistical details and 

not only p-values. E.g., Table 2 and following Tables should report beta values, 

standard errors and t (or z) values.

Answer: thank you for the suggestion. I edited the tables accordingly.

- Study 3, page 151: was there any relationship between TPJ pre-stimulus alpha and 

the pre-stimulus alpha activity of language-related brain areas? Are we sure that the 

effect of TPJ on language-related areas starts after the presentation of the target?

Answer: I will answer the first part of this question here, while the answer to the 

second part (Are we sure that the effect of TPJ on language-related areas starts after 
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the presentation of the target?) is provided together with the answer to the next 

question because I think they are related. 

First of all, I checked whether there was a relationship between TPJ pre-stimulus 

alpha and the pre-stimulus alpha activity of language-related brain areas by means of 

GAMMs, with the formula:

ROI_prestim_power ~ s(lTPJ_prestim_power) + s(rTPJ_prestim_power)

Results are reported in Table 1 and they show that rTPJ pre-stimulus alpha power 

levels, in particular, have an effect on the pre-stimulus alpha in all the language-

related areas, while lTPJ pre-stimulus alpha power only modulates STG pre-stimulus 

power. To my opinion, however, this is an expected result and it is in line with the 

theoretical assumption stated throughout the dissertation. Prediction is an ongoing 

and pervasive process that, in the case of the present experiment, takes place 

throughout the sentence. Predictive processing also presumably involves a 

distributed network of areas, encompassing the TPJs (see Study 1), whose role is 

context- and network-dependent. Therefore, the TPJs and the other areas involved in 

predictive computation within a particular cognitive domain unavoidably influence one 

another at different time points. 

Table 1. Beta coefficients and p values of the main effects of left and right TPJ pre-stimulus 

power on the language-related ROIs pre-stimulus power. Significant results are marked with 

*.

Broca pre-stimulus 
power

MTG pre-stimulus 
power

STG pre-stimulus 
power

Beta p value Beta p value Beta p value

lTPJ pre-stimulus power 2.042 0.096 1.957 0.16 6.603 <0. 001*

rTPJ pre-stimulus power 9.265 <0. 001* 6.919 0.001* 27.429 <0. 001*

- Study 3, page 154: Figure 6 left upper corner plot seems to show a difference that 

starts before 0 ms. Did the authors check what happens before the target 

presentation? Is there a baseline issue? How do the authors explain such an early 

effect?

Answer: In addition to these questions, I will also answer part of the question above: 

Are we sure that the effect of TPJ on language-related areas starts after the 

presentation of the target?
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As happens with the time-frequency decomposition in EEG/MEG analyses where 

results show smearing effects and are therefore excluded from the interpretation, the 

edges in our graphs might show unreliable and spurious results since the datapoints 

in these areas are less dense than in other areas of the graph, such as in the center. 

For these reasons, we did not draw any conclusions regarding effects that are too 

close to the edges, such as those apparently starting before 0 ms. Also, we did not 

investigate what happened before the target stimulus in terms of ROI activation or of 

the relationship between pre-stimulus alpha power and pre-stimulus activation level. 

However, we have to consider prediction as a continuous and ongoing process, so it 

it plausible that the TPJs exert a continuous influence on other brain areas 

throughout the sentence, as we have demonstrated in the previous point, and that 

the activation in the language-related areas could be influenced by the TPJs alpha 

level during a time interval spanning the whole sentence.

In this context, studying whether pre-stimulus alpha could modulate the activation in 

the same pre-stimulus time window could not be the best strategy, since we are 

investigating the same phenomenon with two different methodologies and we would 

probably end up finding an influence of one variable on the other simply because we 

are looking at the same time interval. On the other hand, a more sensitive approach 

would be a "sliding window" one, i.e. to take TPJ alpha power from the pre-stimulus 

interval before each word and examine whether and how it modulates the post-

stimulus activation in the time interval spanning from the presentation of each word to 

the starting point of the next one, thereby investigating whether effects really start 

before 0 ms.

However, this goal was beyond the scope of the present study, but it is a really nice 

starting point in future studies, and I included these considerations on p. 162.

- Page 176: there is an incomplete sentence at the end of the first paragraph.

Answer: thank you, I edited the text accordingly.

Reviewer 2

General Evaluation:

The thesis explores an intriguing and highly relevant topic in the field of cognitive 

neuroscience and is well-written and organized. The investigation into the predictive role of 

TPJ in both domain-general and domain-specific cognition is of great significance and holds 
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the potential for meaningful contributions to the field. The inclusion of diverse studies in the 

thesis, encompassing a systematic review of patient studies, as well as empirical

investigations utilizing neuroimaging techniques (EEG/MEG) in healthy volunteers, 

underscores the comprehensive nature of the research, which leverages a wide array of 

methodological approaches. The fact that two of the three studies have been published in 

excellent peer-reviewed journals Neuroscience and Biobehavioral Reviews, 

Psychophysiology) speaks to the high quality of the work and its recognition within the 

academic community. I only have a few suggestions to enhance the overall quality of the 

thesis.

General Introduction:

The thesis starts with a clear introduction. However, it would be beneficial to provide explicit 

definitions for the terms 'domain-general' and 'domain-specific' cognition to ensure that 

readers have a clear understanding of these concepts from the outset. This will help in 

establishing a solid foundation for the subsequent studies.

Answer: Thank you for the suggestion. I added a clarification at the end of p. 6.

Study 3:

• In the third study, there is an opportunity to streamline the introduction to make it more 

concise, focusing on the core objectives and hypotheses. This will help maintain reader 

engagement and clarity.

Answer: Thank you for your suggestion. The Introduction is now shorter. 

• Regarding the methodology in Study 3, a clarification about the rationale behind the order 

of data preprocessing steps, particularly why downsampling was performed before filtering, 

would be valuable for readers seeking a deeper understanding of the methodology.

Answer: Thank you. I corrected the text (p. 142)

• A important point to consider is that the TPJ, as shown in Figure 1 (General Introduction) 

and used in Chapter 3, may not correspond precisely to regions described in the Introduction 

(“bilateral ventral portions of the inferior parietal lobule (the supramarginal and angular gyri”) 

and posterior sections of the superior temporal gyrus) and to the specific cytoarchitectonic 

areas studied in the literature (|PFop, PFt, PF, PFm, and PFcm, located in he supramarginal 

gyrus, and the PGp and PGa, located in the angular gyrus”). Clarifying whether this 

mismatch is a limitation of the study would add depth to the discussion. Moreover, providing 

information about which cytoarchitectonic areas the TPJ corresponds to, based on the 

current research, and discussing any potential implications or limitations associated with this 

discrepancy would be beneficial.

Answer: Thank you for your suggestion. I added these considerations both in the Methods 

section (p. 142) and in the Discussion (p. 157 and 163).
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• On page 147, moving complex formulae to an appendix could improve the readability of the 

thesis and to maintain focus on the main text.

Answer: Thank you for your suggestion. The models’ structures are now reported in the 

Supplementary Materials, p. 258 and following.

• On page 149, please add a '%' symbol after "96.04".

Answer: Thank you for noticing, I corrected the typo.

• Considering potential confounding factors, it would be helpful to discuss whether the 

results in Study 3 could be influenced by variations in task difficulty.

Answer: Thank you for your suggestion. I added some consideration on p. 161.

• Lastly, on page 126, a typographical error should be corrected to “pre-activating.”

Answer: Thank you for noticing, I corrected the typo.

General Conclusion:

There is a notable omission in the discussion of how the results from the different studies fit 

into an overarching framework. Highlighting how the findings from each study collectively 

contribute to the broader understanding of TPJ’s predictive role in domain-specific and 

domain-general cognition.

Answer: Thank you for your suggestion. I added some considerations (together with those 

suggested in the note below) in p. 176/177.

Moreover, emphasizing the extent to which the results from different studies can be 

compared, considering variations in study populations (patients vs. healthy volunteers) and 

methodologies (brain lesions vs. MEG vs. EEG) would further enrich the conclusion. In 

summary, Sara Lago's thesis is well-written and addresses an important topic. The 

suggested revisions aim to enhance the clarity, depth, and cohesion of the research 

presented throughout the thesis.

Answer: Thank you very much for your positive feedback. 
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