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A B S T R A C T   

High-Density surface Electromyography (HD-sEMG) is the most established technique for the non-invasive 
analysis of single motor unit (MU) activity in humans. It provides the possibility to study the central proper
ties (e.g., discharge rate) of large populations of MUs by analysis of their firing pattern. Additionally, by spike- 
triggered averaging, peripheral properties such as MUs conduction velocity can be estimated over adjacent re
gions of the muscles and single MUs can be tracked across different recording sessions. In this tutorial, we guide 
the reader through the investigation of MUs properties from decomposed HD-sEMG recordings by providing both 
the theoretical knowledge and practical tools necessary to perform the analyses. The practical application of this 
tutorial is based on openhdemg, a free and open-source community-based framework for the automated analysis 
of MUs properties built on Python 3 and composed of different modules for HD-sEMG data handling, visual
isation, editing, and analysis. openhdemg is interfaceable with most of the available recording software, equip
ment or decomposition techniques, and all the built-in functions are easily adaptable to different experimental 
needs. The framework also includes a graphical user interface which enables users with limited coding skills to 
perform a robust and reliable analysis of MUs properties without coding.   

1. Introduction 

The motor unit (MU) is the basic functional component of the 
neuromuscular system that consists of an alpha motoneuron, its axon, 
and the muscle fibres it innervates (Heckman and Enoka, 2012; Sher
rington, 1925). The central nervous system (CNS) responds to the lo
comotor functional demands by sending trains of axonal discharges (i.e. 
neural information or activation signal), which in turn elicit action po
tentials in the innervated muscle fibres (i.e. MUs action potentials 
(MUAPs)) (Heckman and Enoka, 2012, 2004). In simple terms, MUs act 
as a transducer that converts the neural activation signal into muscular 
forces. Indeed, because of a large physiological safety factor in synaptic 
transmission at the neuromuscular junction (Sarto et al., 2022a; Wood 

and Slater, 2001), there is a one-to-one relation between the discharges 
of a motoneuron and the MUAPs evoked in the muscle (Duchateau and 
Enoka, 2011; Wood and Slater, 2001). 

During voluntary muscle contractions, the MUAPs can be detected at 
the muscle level via electromyographic (EMG) recordings, therefore 
making the motoneurons the only cells of the CNS that can be recorded 
in humans with non-invasive or minimally-invasive techniques (Farina 
et al., 2004; Merletti and Farina, 2009). Recent advancements in EMG 
techniques have led to the development of High-Density surface EMG 
(HD-sEMG), where densely populated grids of closely spaced small- 
diameter recording electrodes are applied directly to the skin over
lying the muscles (Gallina et al., 2022). The elevated spatial sampling of 
these grids allowed the researchers to record MUAPs from different 
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regions of the muscle, thus increasing the possibility to discriminate 
spatially non-overlapping MUAPs and the number of single MUs that 
could be accurately decomposed (Farina et al., 2016). These advance
ments allowed for the simultaneous discrimination of large and repre
sentative populations of concurrently active MUs without invasive 
procedures (Farina et al., 2016). 

These peculiar features established HD-sEMG as the preferred tool 
for researchers in physiology, sports science and medicine to investigate 
how the CNS controls voluntary movements in physiological conditions, 
and opened a new era in the study of MUs physiology and activity in 
response to different stimuli (Casolo et al., 2021; Martinez-Valdes et al., 
2018; Škarabot et al., 2023; Valli et al., 2023), in health and pathology 
(Drost et al., 2001; Gallego et al., 2015), to injury (Nuccio et al., 2021) 
and for man–machine interface applications (Farina et al., 2017). 

In this tutorial, we provide the reader with the theoretical knowledge 
necessary to perform a complete investigation of central and peripheral 
MUs properties such as MUs recruitment/derecruitment thresholds, 
discharge rate, and conduction velocity from decomposed HD-sEMG 
recordings. Additionally, in this context we introduce openhdemg, an 
innovative, freely available, and open-source framework specifically 
designed for the automated analysis of MU properties in decomposed 
HD-EMG recordings (Fig. 1). 

2. Lowering the barriers to the use of HD-sEMG with openhdemg 

Although some general consensus and standardisation on HD-sEMG 
data acquisition and analysis has been recently proposed (Gallina et al., 
2022; Martinez-Valdes et al., 2023), the implementation of this tech
nique still faces notable challenges. One such challenge is the limited 
availability of practical guidelines, instructions and user-friendly open- 
source software for the analysis of MUs activity (Felici and Del Vecchio, 
2020). Indeed, proper analysis of HD-sEMG recordings requires 
specialized knowledge and expertise in signal processing and compu
tational methods, alongside advanced coding skills, which may preclude 
some laboratories from such type of research. 

The aim of this tutorial article is to lower some of the barriers to the 
implementation of the HD-sEMG technique by providing the reader with 
the theoretical knowledge and practical tools necessary to investigate 
MUs properties from decomposed HD-sEMG recordings. 

Specifically, this tutorial has been structured as a step-by-step guide 
to the analysis of central and peripheral MUs properties once the 
discharge times are known, and combines simple and clear guidelines 
with an easy-to-read code implementation of all the showed concepts. 

The tutorial will briefly cover basic concepts of signal acquisition and 
decomposition (as these phases generate the information to be analysed) 
and will then cover, in detail, the following steps:  

- Load the decomposed HD-sEMG file in a working environment;  
- Visualise, inspect and process the decomposition outcome;  
- Discard unwanted MUs based on objective criteria;  
- Track MUs within and between recording sessions;  
- Analyse central and peripheral MUs properties; 

For organisational purposes, the main text of the manuscript will 
focus on the theoretical aspects necessary to correctly investigate MUs 
activity. Alongside the text, figures and figures’ captions will illustrate 
the application of all the discussed notions. Furthermore, a clear and in- 
depth documentation of the code implementation will allow the users to 
interactively follow all the steps of this tutorial and to implement their 
own analyses. 

The practical application of the tutorial can be easily followed by 
readers with any scientific background and no advanced or strong 
knowledge of signal processing and coding will be required. 

In order to achieve or purpose, we will use openhdemg, a free and 
open-source framework specifically designed for the analysis of MUs 
properties from HD-EMG recordings. openhdemg is written in Python 3 

(Python Software Foundation, USA) and, at the time of writing, it is 
composed of 9 modules and 75 functions for HD-EMG data handling, 
visualisation, editing and analysis easily adaptable to different experi
mental needs (Fig. 1). All the functions are designed for the maximum 
simplicity and convenience of the user and are extensively documented 
at https://www.giacomovalli.com/openhdemg/. 

Noticeably, openhdemg is designed to be interfaced with any avail
able system for data acquisition and decomposition, starting from the 
commercially available software up to any personal implementation of 
these phases, with little or no customisation required by the user. 

For didactic purpose, the user is encouraged to follow the tutorial 
article with the provided code implementation of all the showed con
cepts. This approach enables users to directly utilise the individual 
functions within the openhdemg framework. These functions are 

Fig. 1. The openhdemg framework. openhdemg is a free, versatile and open- 
source framework for the analysis of single motor unit (MU) properties from 
High-Density Electromyography (HD-EMG) recordings. It can be virtually 
interfaced with any custom or commercial system for HD-EMG data acquisition 
and decomposition. Starting from the discharge pattern of the identified MUs, 
openhdemg automates the steps of visualisation, processing and analysis of the 
decomposed HD-EMG file. Developed using Python 3, a widely recognized 
programming language for data analysis, openhdemg provides a rich set of built- 
in functions that can be further expanded using popular tools for signal pro
cessing, machine learning, and statistics available in the Python ecosystem. 
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designed to offer maximum customization and flexibility, allowing for 
further extension with well-known Python libraries dedicated to signal 
processing and data analysis (as depicted in Fig. 1). By doing so, users 
can leverage their ability to perform advanced investigations. 

However, the reader can also decide to use the built-in graphical user 
interface (presented in Fig. 2), which enables users to perform analysis 
tasks with ease and efficiency without writing a single line of code. The 
graphical interface contains all the tools needed to follow this tutorial 
article and to analyse MUs properties in real-life scenarios. For the 
interested readers, the use of the graphical interface is well documented 
at (https://www.giacomovalli.com/openhdemg/gui_intro/). 

3. Fundamentals of HD-sEMG signal acquisition and 
decomposition 

Although the explanation of procedures for HD-sEMG signal acqui
sition and decomposition into MUs discharge patterns goes beyond the 
scope of this article, these are the prerequisites for generating the output 
that is subsequently analysed, and are determinant for the quality of the 
analysis. Therefore, the following two sections are intended to provide a 
brief overview of the fundamental concepts for HD-sEMG data acquisi
tion and decomposition in light of the subsequent analyses. For the 
readers that need further explanations, we redirect to more specialised 
articles covering these topics (Besomi et al., 2019; Del Vecchio et al., 
2020; McManus et al., 2020; Merletti and Cerone, 2020; Merletti and 
Muceli, 2019). Additionally, Fig. 3 provides a visual representation of 

the key steps in HD-sEMG signal acquisition and decomposition in light 
of the subsequent analyses. 

3.1. Signal acquisition 

Being the primary step of all the studies involving HD-sEMG re
cordings, the signal acquisition phase will determine the type of analysis 
that can be performed, the number of accurately identified MUs and the 
reliability of the obtained results. 

According to recent consensus (Gallina et al., 2022), if the scope is to 
investigate both central and peripheral properties of single MUs, the HD- 
sEMG signal should be recorded during isometric contractions 
(Fig. 3A–C) with densely populated grids of closely spaced (2.5 – 10 mm) 
electrodes of small diameter (0.5 – 3 mm). Additionally, the number and 
distribution of the recording electrodes should be adequate to accurately 
represent the propagation of MUAPs through the muscle fibres. Nowa
days, it is common practice to use 32 or more recording electrodes, 
especially on large muscles (Cohen et al., 2023; Del Vecchio et al., 2017; 
Okudaira et al., 2023). 

Given that HD-sEMG signals have a bandwidth of approximately 
10–500 Hz, the signal should be preferentially recorded with a sampling 
rate of at least 2000 Hz (McManus et al., 2020). Additionally, the signal 
should be recorded in monopolar configuration (montage), in order to 
maximise the information that can be collected and to allow for different 
off-line spatial filtering (e.g., single or double differential) (Fig. 3G) 
(Gallina et al., 2022). 

Fig. 2. The Graphical user interface. The openhdemg framework is equipped with a practical and functional graphical interface that integrates the most relevant high- 
level functions of the openhdemg library and that allows users to perform a broad range of visualisation, processing and analysis tasks in a time-efficient manner and 
without coding. High-Density Electromyography, HD-EMG; Motor units, MUs. 
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For the investigation of peripheral MUs properties such as MUs 
conduction velocity (MUCV) or amplitude of the MUAPs, it is absolutely 
necessary to standardise the location in which the grid is attached and its 
orientation (Merletti and Muceli, 2019). Indeed, the estimation of pe
ripheral MUs properties is affected by the dimension and direction of 
muscle fibres, which vary across the muscle area (Casolo et al., 2023). 
For these analysis, the grid should be placed following the muscle fibres 
anatomical orientation and its position should be standardised with 
respect to an easily-identifiable superficial innervation zone (Martinez- 
Valdes et al., 2023). Both the direction of the fibres and the innervation 
zones can be accurately identified with different methods, including the 
use of linear electrode arrays (Casolo et al., 2020; Del Vecchio et al., 
2017) or with low-intensity percutaneous electrical stimulations (Botter 

et al., 2011) coupled with ultrasound imaging (Hug et al., 2021; Valli 
et al., 2023). 

3.2. Signal decomposition 

MUs decomposition is a semi-automated process aimed at extracting 
the discharge pattern of single MUs from interference EMG signals. Over 
the last 20 years, different decomposition techniques have been specif
ically implemented for HD-EMG recordings (Chen and Zhou, 2016; De 
Luca et al., 2015; Holobar and Zazula, 2007; Nawab et al., 2010; Negro 
et al., 2016; Ning et al., 2015). These techniques greatly differ in the 
mathematical approaches employed to discriminate the discharge ac
tivity of single MUs, but all provide the same fundamental outcome: the 

Fig. 3. High-Density surface Electromyography (HD-sEMG) signal acquisition and decomposition. Representative example of HD-sEMG recordings performed during 
isometric and standardised contractions (A). Specific pools of motoneurons are recruited depending on the target task, resulting in a series of precisely modulated 
action potentials (B) that cause the depolarisation of the sarcolemma and the generation of the desired muscle force. (C). The summation of all the action potentials 
generated by different motoneurons generates the interference EMG signal (D) which, if acquired during isometric tasks, can be decomposed in the discharge pattern 
of individual motor units (MUs) (E, F). For flexibility in the off-line analysis, the interference EMG signal is usually recorded in monopolar montage, although other 
spatial filtering techniques can be adopted (G). Regardless of the contraction type and setup for EMG signal acquisition, the decomposed HD-sEMG file should contain 
all the variables necessary for the subsequent analysis of central and peripheral MUs properties, including at least the times of discharge of each MU (H), the raw EMG 
signal, the auxiliary input signal, the sampling rate, and ideally the decomposed source (E). Maximum voluntary contraction, MVC; number, N; Hertz, Hz. 
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discharge times of single MUs. 
Some of these techniques are considered “automated” because they 

provide a ready-to-use decomposition outcome (De Luca et al., 2015; 
Nawab et al., 2010). On the other hand, other approaches such as those 
based on convolutive blind source separation (Holobar and Zazula, 
2007; Negro et al., 2016) are considered “semi-automated”. In semi- 
automated methods, an initial automated phase aimed at identifying 
and refining the mathematical vectors representing the contribution of 
single MUs is followed by a manual refinement of the decomposition 
outcome (as briefly showed in Fig. 3D–F) (Del Vecchio et al., 2020; 
Enoka, 2019). 

While technicalities of MUs decomposition are beyond the scope of 
this tutorial, it is essential to comprehend the output it generates, which 
contains the foundational variables for all subsequent analyses on single 
MUs. 

The basic and most important output variable is the time at which 
each MU is active (Fig. 3F). The times of discharge of each MU are 
usually represented as a one-dimensional array containing the instants 
of discharges or, alternatively, as a binary representation of the MUs 
behaviour over time (i.e., each sample is assigned 0 if the MU is not 
discharging or 1 if the MU is discharging) (Fig. 3H). This very basic 
information is fundamental to perform the majority of the analysis, 
including MUs recruitment and derecruitment threshold (RT and DERT), 
discharge rate (DR) and MUCV. 

In order to estimate the RT and DERT, the information about the 
times of discharge has to be associated with an auxiliary input signal. 
Similarly, for the estimation of MUCV or other peripheral properties, the 
times of discharge have to be associated with the raw multichannel EMG 
signal. Therefore, these variables have to be included in the decomposed 
EMG file when the researcher wants to investigate both central and 
peripheral MUs properties. 

Finally, the decomposed file must contain information about the 
sampling rate, which is fundamental to express all the estimated pa
rameters in time units. 

The beforementioned variables in the decomposed HD-sEMG file are 
sufficient to perform a complete investigation of central and peripheral 
MUs properties. However, it must be noted that the times of discharge 
provide very limited information on the reliability of the identified MUs 
and do not allow to apply any signal-based metrics of accuracy, there
fore preventing the discrimination of a properly identified MU from 
decomposition errors. To overcome this limitation, the files decomposed 
via blind-source separation contain also the decomposed source, which 
is the result of the decomposition from which the times of discharge are 
detected and manually edited, and which allows to estimate the relative 
magnitude of the spikes in respect to the baseline noise (Holobar et al., 
2014; Negro et al., 2016). Conversely, automated techniques such as 
High-yield decomposition do not contain the decomposed source and 
estimate decomposition accuracy via, often proprietary, reconstruct- 
and-test procedures (Nawab et al., 2010). 

4. Load the decomposed HD-sEMG file in a working 
environment 

The analysis of the decomposed HD-sEMG files requires specific al
gorithms or software, which are typically implemented in programming 
languages such as Python and MATLAB. Therefore, the decomposed HD- 
sEMG file needs to be imported into a suitable working environment. 
Since this tutorial is based on openhdemg, the only user-friendly solution 
currently available for the analysis of single MUs activity, the proposed 
working environment has been specifically designed to enhance the user 
experience with this framework. 

A working environment generally refers to the set of resources 
necessary to carry out a particular task or job. In the context of this 
tutorial, we refer to the combination of a computer, a programming 
language, an integrated development environment and a set of 
algorithms. 

The programming language required by openhdemg is Python 
(v3.11), which can be downloaded and installed from (https://www.py 
thon.org/). The integrated development environment is a software that 
facilitates to write, test, and debug code. The suggested integrated 
development environment to follow this tutorial is Visual Studio Code 
(can be downloaded and installed from https://code.visualstudio. 
com/). Once Python and Visual Studio Code are installed, the user 
needs to download the set of pre-built algorithms (usually named “li
brary” in Python, which indicates a collection of reusable code modules 
and functions). As previously mentioned, openhdemg is the library used 
in this tutorial. openhdemg is hosted at PyPI (https://pypi.org/project/o 
penhdemg/) and can be installed as “pip install openhdemg” from the 
Python terminal. The user is encouraged to install openhdemg and other 
libraries in a specific “virtual environment”, which is a self-contained 
directory that contains a specific version of Python and its de
pendencies. The users without previous experience using Python are 
strongly encouraged to follow the detailed guide through the befor
ementioned steps at (https://www.giacomovalli.com/openhdemg/tutor 
ials/setup_working_env/). 

Once the working environment is set, the user is ready to perform the 
analyses presented in this tutorial exploiting the functionalities of 
openhdemg. As previously introduced, the code necessary to analyse the 
decomposed HD-sEMG file will not be presented in the main text of the 
manuscript, which will instead prioritise the theoretical and visual as
pects. However, the user can download different Python files (.py 
extension) that contain all the code necessary to replicate the analyses 
presented in this tutorial alongside an extensive step-by-step explana
tion of the code provided. These files can be opened and executed 
directly in Visual Studio Code. 

The user that immediately wants to test the example code can 
download 4 decomposed example files (named Pre_25_a, Pre_25_b, 
Post_25_a and Post_25_b). The recordings have been performed 4 weeks 
apart (i.e., “Pre” and “Post”) in a young subject performing moderate 
physical activity. For each timepoint, the same muscle contraction was 
performed twice, and distinguished by the labels “a” and “b.”. These 
sample files contain all the variables necessary to investigate both cen
tral and peripheral MUs properties. Both the example scripts and the 
example decomposed files can be downloaded from https://www.giaco 
movalli.com/openhdemg/isek_jek_tutorials/ or from https://data.me 
ndeley.com/datasets/g2p2r6b5zr/1. 

For the scope of this tutorial, we are using example files decomposed 
via blind source separation (Negro et al., 2016), as these will allow us to 
present also signal-based metrics of accuracy. However, files from any 
recording system or decomposition technique could be utilized, as 
openhdemg offers various functions for loading different decomposition 
outcomes into a standardized data structure. This common data struc
ture is essential to ensure that the same set of functions can be applied 
uniformly to process different sources, regardless of their original 
format. 

5. Visualization, inspection and processing of decomposition 
outcome 

As shown in Fig. 4A, the sample decomposed HD-sEMG file contains 
a trapezoidal contraction ranging from 0 to 25 % MVC for a total 
duration of about 30 s. In this example file, the auxiliary input signal 
represents the participant’s generated force and is expressed as % MVC. 
This type of contraction is very common in HD-sEMG studies and it has 
been preferred for the scope of the tutorial as it allows to detect the 
progressive and ordered recruitment and derecruitment of different MUs 
and their DR modulation during voluntary isometric contractions 
(Nuccio et al., 2021; Valli et al., 2023). 

As research in HD-sEMG advances, however, different types of 
contraction such as triangular and explosive contractions, are also 
becoming of common use to address specific research questions (Del 
Vecchio et al., 2019b; Hassan et al., 2021; Mesquita et al., 2022). 
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Obviously, the flexibility and customisability of the openhdemg frame
work makes it suitable also to work with these (and other) novel 
contraction types. 

In Fig. 4B, the same MUs have been sorted based on their order of 
recruitment. This visualisation is useful to detect the distribution of the 
decomposed MUs and whether the decomposition procedure identified 
MUs through the whole or the majority of the volitional recruitment 
range of the tested muscle, or only at specific force levels. The latter 
phenomenon can be typically observed in contractions executed at 
higher force levels (e.g., 50 or 70 % MVC) where the superimposition of 
larger MUAPs generated by MUs with higher RT might prevent the 

observation of the smaller MUAPs generated by lower-threshold MUs 
(Fig. 4C–D) (Casolo et al., 2021; Del Vecchio et al., 2019a; Valli et al., 
2023). 

From the visualisation of the discharge times, however, it is difficult 
to have a complete understanding of the MUs discharge activity. 
Therefore, it is usually more informative to visualise each MUs discharge 
pattern both as a function of time (X axis, in seconds) and as a function of 
DR (left Y axis, in pulses per second) as shown in Fig. 4E. Indeed, from 
this representation of the MUs discharge activity, it is possible to observe 
some typical physiological characteristics of the MUs discharge such as 
the motoneuron’s linear response to the depolarizing current it receives 

Fig. 4. Visualization, inspection and processing of decomposition outcome. The content of the decomposed High-Density surface Electromyography (HD-sEMG) file 
can be practically inspected by visualising the binary representation of motor units (MUs) discharge times eventually coupled with the auxiliary input signal (A). To 
better detect the distribution of the decomposed MUs, these can be visualised based on their order of recruitment (B). In this visualisation, the recruitment thresholds 
provide information on whether the decomposition procedure identified MUs through the majority of the volitional recruitment range of the tested muscle, or only at 
specific force levels, as typically observed in contractions executed at higher force levels (C, D). The discharge behaviour of single MUs can be better visualised by the 
instantaneous discharge rate which, in the showed example, reflects the motoneuron’s linear response to the depolarizing current it receives (E). The auxiliary input 
signal can be adjusted before the analysis via filtering of the noisy components (F) (in this example figure, a 4th order, zero-lag low-pass Butterworth filter with 15 Hz 
cut-off frequency was used) and via removal of signal offset (G). Similarly, also the EMG signal can be filtered if the decomposed HD-sEMG file only contains its 
unprocessed version (H) (in this example figure, a 2nd order, zero-lag band-pass Butterworth filter with a frequency range of 20–500 Hz was used). Maximum 
voluntary contraction, MVC; number, N; recruitment threshold, RT; pulses per second, PPS. 
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(Fig. 4E) (Mendell, 2005) and the common drive to the muscle (Fig. 4B) 
(De Luca and Erim, 1994). 

Regarding muscle force, Fig. 4B highlights two common problems in 
HD-sEMG recordings: (i) the auxiliary input signal shows the presence of 
a signal offset and (ii) of a noisy component that might affect some 
analyses like the MUs RT and DERT. 

The beforementioned examples and observations, although do not 
provide any objective measurement, present a clear overview of the 
quality of the HD-sEMG recording and decomposition output, and grant 
enough guidance for editing the HD-sEMG file before estimating the 
MUs properties. 

In this regard, the openhdemg library offers a complete pipeline for 
the processing of the decomposition outcome before MUs analysis, 
including the removal of auxiliary input signal offset and different 

filtering techniques to reduce electric noise, both in the auxiliary input 
and in the raw EMG signal when needed (as exhaustively shown in the 
code implementation and in Fig. 4F–H). 

In the context of this tutorial article, we recognize the need to 
explicitly state that signal filtering is a complex topic and that the 
appropriate filter type should be selected based on the user’s specific 
needs. We therefore redirect the reader to more specific articles covering 
this topic (Clancy et al., 2002; McManus et al., 2020). 

A final adjustment, often necessary while preparing the HD-sEMG 
file for analyses, is to remove areas of the recording with unwanted 
neuromuscular activation before and after the actual contraction phase 
(e.g., movement artefacts). This editing can be efficiently performed by 
resizing the HD-sEMG file in a narrower time-window that only includes 
the active contraction phase. During this process, the user should be 

Fig. 5. Accuracy of the identified motor units. The coefficient of variation of interspike interval (COVisi) estimates the regularity of the motor units (MUs) discharge 
events. When applied to the steady-state phase of trapezoidal contractions, it can be used to estimate the accuracy of the identified MU (e.g., MU 1 vs MU 16 in panel 
A). However, the COVisi is greatly affected by the discharge rate (DR) modulation necessary to increase or decrease muscle force production. Indeed, the COVisi is 
not an appropriate metric for contractions with a very short (B) or completely absent (C) steady-state phase. The silhouette score (SIL) is a signal-based metrics of 
accuracy estimating the separation between the signal (the source signal at the time of firing of the identified MU) and the noise. The SIL is therefore estimated on the 
decomposed source and is not affected by the discharge behaviour of the MU. Additionally, being a normalised value, it provides a clear indication of correctly (D) 
and incorrectly (E) identified MUs. Maximum voluntary contraction, MVC; pulses per second, PPS. 
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careful to resize the EMG and auxiliary input signal in the same time 
window but, at the same time, all the other variables in the time domain, 
or depending from the time-window of interest, should be adjusted 
accordingly. For example, If the EMG signal is resized, all the instants of 
discharge will take a different value, which can be simplified as the 
original value minus the number of samples removed from the initial 
part of the HD-sEMG file. 

6. Discard unwanted MUs based on objective criteria 

The term “unwanted MUs” is used to indicate those MUs that do not 
respect some qualitative criteria of accuracy or with irrelevant features 
for the intended analysis. In the context of HD-sEMG and MUs detection, 
the term” accuracy” refers to the accurate identification of the MUs 
discharge behaviour with respect to their physiological discharge 
pattern, which can be either known a priori in simulation studies or 
assumed from intramuscular recordings (Holobar et al., 2009; Mambrito 
and De Luca, 1984). 

One of the reasons why MUs activity is usually investigated during 
standardised tasks is that the discharge behaviour of the MUs is highly 
predictable from the performed task. Consequently, unexpected and 
unregular discharge profiles might indicate errors in the identification of 
the specific MU discharge times, at least in healthy individuals. 

For example, during trapezoidal contractions, the frequency of the 
discharge pattern of each MUs is expected to progressively increase from 
the moment of recruitment through all the ascending phase of the 
contraction. Similarly, the steady-state phase should show a mainte
nance of the frequency (or a slow and constant decrease) that is then 
progressively reduced during the descending phase (Fig. 5A) (Del Vec
chio et al., 2017; Pascoe et al., 2014). 

In light of this, a common parameter used to estimate the physio
logical behaviour of the identified MUs (and to indirectly infer on their 
accuracy) is the variability of the MUs discharge pattern during the 
steady-state phase of the contraction (Hu et al., 2014). This variability 
can be estimated as the coefficient of variation of the interspike interval 
(COVisi), which is the ratio between the standard deviation of the 
interspike interval (ISI) array and its average value, usually expressed in 
percent. The ISI array represents the time-difference between consecu
tive discharge instants of each MU. 

High values of the COVisi indicate high variability in the MUs 
discharge pattern and, according to recent consensus and research ar
ticles, the COVisi during the steady-state phase of the contraction could 
serve as a criterion for identifying inaccurate MUs and excluding them 
from subsequent analyses (Gallina et al., 2022; Martinez-Valdes et al., 
2017). 

However, there are limitations in the use of the COVisi as a criterion 
to determine the reliability of the decomposition. Indeed, the type of 
contraction heavily influences the MUs ISI and its variability, which 
might be elevated also in accurately identified MUs whenever the 
steady-state phase is either very short (2–5 s) or completely absent (as 
showed in Fig. 5B–C). Additionally, MUs behaviour in non-physiological 
conditions such as neuromuscular diseases and extreme muscle fatigue 
might not respect the assumption of regular discharge activity of the 
MUs, therefore preventing the use of COVisi as a metric to evaluate the 
accuracy of the decomposition (Holobar et al., 2012; Taylor et al., 
2016). 

Another approach for the discrimination of accurately identified 
MUs consists in the use of signal-based metrics of accuracy such as the 
pulse to noise ratio (PNR) (Holobar et al., 2014) or the silhouette score 
(SIL) (Negro et al., 2016), which are estimated from the decomposed 
source. 

The PNR is a ratio between the signal and the noise (i.e., the time 
moments in which the MU is estimated to have or not to have dis
charged) expressed in decibels (dB). Specifically, the distinction be
tween signal and noise is determined by a threshold estimated via a 
heuristic penalty function that accounts for the variability of the ISI and 

for the MUs DR (Holobar et al., 2012). Therefore, also the PNR value is 
influenced by the MUs discharge behaviour (Holobar et al., 2014). 
Common PNR thresholds used to determine a sufficient level of accuracy 
are PNR ≥ 30 dB, although also PNR ≥ 28 dB could be accepted if 
supported by a careful visual inspection of the MUs discharges by 
experienced investigators (Holobar et al., 2014; Valli et al., 2023). 

The SIL provides an estimation of reliability similar to the PNR 
although with a different approach. Indeed, the SIL is defined as the 
normalized measure of the distance between the clusters of the detected 
discharge points and the cluster of the noise values (Fig. 5D and 5E). 
Compared to the PNR, the SIL has two main advantages in the estimation 
of accuracy as (i) it does not depend on the discharge behaviour of the 
MUs and (ii) being a normalised measure ranging from 0 to 1, it is of easy 
interpretation and directly associated to metrics like the rate of agree
ment that are commonly used in the validation of the decomposition 
algorithms (Negro et al., 2016). 

Common SIL thresholds used to determine a sufficient level of ac
curacy are SIL ≥ 0.9. However, as for the PNR, lower values of about 
0.88 can be accepted if supported by careful visual inspection of the MUs 
discharges by experienced investigators (Negro et al., 2016). 

7. Track MUs within and between recording sessions 

The possibility to recognise and track the same MU across different 
recordings and recording sessions opened new possibilities in the un
derstanding of how MUs adjust to various types of interventions, 
including muscle disuse and pharmacological treatments (Goodlich 
et al., 2023; Valli et al., 2023). Indeed, comparing the same population 
of MUs over time provides a more robust estimation of their changes and 
filters the contribution of different MUs that can be detected at different 
data collection points (Maathuis et al., 2008; Martinez-Valdes et al., 
2017). 

The recognition of the same MU is based on the comparison of their 
MUAPs representation across the channels of the recording grid, thus 
accounting both for the shape of the MUAPs and their spatial distribu
tion. The estimation of the MUAPs is accomplished via spike-triggered 
averaging of the EMG signal (Stein et al., 1972; Taylor et al., 2002). 
Spike-triggered averaging involves identifying a specific time window 
(e.g., 50 ms) in the EMG signal centred on each firing event of a MU, and 
then averaging all the signals within that window. This procedure, that 
has to be performed in each grid channel, enhances the definition of the 
MUAP by reducing the contribution of action potentials generated by 
neighbouring MUs. A visual representation of the spike-triggered aver
aging technique is provided in Fig. 6A. 

For MUs tracking, the spike-triggered averaging is often performed 
on the single differential derivation of the EMG signal, because the 
comparison of the MUAPs in monopolar configuration tends to over
estimate similarities (Martinez-Valdes et al., 2017). The single differ
ential signal is calculated by subtracting the EMG signal in two adjacent 
channels of the grid along the direction of the muscle fibres. 

The estimation of similarity between the MUAPs representation of 
two MUs is usually achieved via two-dimensional cross-correlation 
analysis (Martinez-Valdes et al., 2017). This analysis returns a two- 
dimensional array of values representing a subset of the discrete linear 
cross-correlation between the input that is then normalised for the 
different energy levels of the two MUs. The cross-correlation coefficient 
(XCC) is computed as the maximum value of the normalised cross- 
correlation array. XCC represents the degree of correlation between 
the two arrays, with values closer to 1 indicating a stronger correlation. 
In cases where a MU exhibits high correlation with multiple MUs in the 
other contraction, only the MU with the highest XCC is considered for 
the pair matching (Martinez-Valdes et al., 2017). 

The tracking technique maximises the likelihood of observing the 
same MU in different recordings and proved to be effective also after 
weeks of various interventions (Casolo et al., 2020; Del Vecchio et al., 
2019a; Martinez-Valdes et al., 2018; Valli et al., 2023). It should be 
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noted, however, that a number of factors can undermine the successful 
tracking. When the tracking is performed in different recording sessions, 
the grid of electrodes has to be re-applied at each data collection point 
and changes in the grid position will alter the MUAPs representation 
over the different electrodes. Therefore, it is fundamental to re-apply the 
grid in the same exact position at each recording session. To date, the 
most precise way to ensure correct placement consists in marking the 
skin with a permanent marker. Apart from technical aspects, muscle 
morphology and MUAPs can also be affected by particular interventions 
(Inns et al., 2022; Sarto et al., 2022b), thus requiring extra attention in 
the validation of the tracking results. 

Due to the possible confounding factors in the longitudinal MUs 
tracking, it becomes of extreme importance to check the reliability of the 
cross-correlation measure by visualising the overlying MUAPs from the 
pair of MUs across each channel, and to determine the inclusion/ 
exclusion by verifying the effective overlapping of the MUAPs shape and 
their spatial distribution (Fig. 6B–D). 

In order to account for the minor differences in grid placement or 
changes in the MUAPs profile, the XCC threshold is commonly set ≥ 0.8 
(Cudicio et al., 2022; Lulic-Kuryllo et al., 2021; Oliveira and Negro, 
2021), although some authors adopted also XCC ≥ 0.7 (Casolo et al., 
2020; Del Vecchio et al., 2019a). 

After identifying pairs of MUs, the user can decide to perform the 
subsequent statistical analyses considering both the populations of total 
and tracked MUs. In this case, the tracked population can be used as a 
validation of the results observed in the total population (Valli et al., 
2023). Alternatively, if the tracked population of MUs is sufficiently 
large and representative, the analysis can be exclusively performed on 
the tracked MUs. This elegant approach allows for the precise detection 

of single MU changes over time, offering valuable insights into the dy
namics and adaptations of the neuromuscular system (Casolo et al., 
2020). 

Recently, MUs tracking has also been employed for the identification 
of the same MUs within the same recording session (Valli et al., 2023) 
with an XCC threshold ≥ 0.9 because this condition doesn’t need to 
account for a different placement of the recording grid or for changes in 
MUAPs due to interventions, as previously proposed (Maathuis et al., 
2008). 

8. Analyse central MUs properties 

Sections 8 and 9 will introduce a number of fundamental parameters 
for the analysis of MUs properties that are often tuned based on 
empirical observations, personal experience and experimental needs. 
Therefore, the proposed values should only be considered as represen
tative examples that do not constitute standards. Indeed, this necessity 
of flexibility is embraced by the openhdemg framework, which allows the 
user to fully customise any implemented function based on specific 
needs (as demonstrated in the code implementation). 

The definitions of the various properties presented in section 8 and 9 
are based on recent consensus statements. For more comprehensive 
explanations, readers are directed to (Gallina et al., 2022; Martinez- 
Valdes et al., 2023; McManus et al., 2021). 

MUs RT/DERT and DR are often referred as “central” properties due 
to their close relation with the discharge behaviour of the innervating 
motoneurons (Heckman and Enoka, 2004). Indeed, these variables 
reflect the intrinsic properties of each motoneuron and the integrated 
modulatory stimuli it receives, making them of primary interest in the 

Fig. 6. Motor units tracking. The shape and spatial representation of motor units (MUs) action potentials (MUAPs) shape allows for the recognition of the same MU 
within and between recording sessions. The estimation of smooth MUAPs is performed via averaging of all the MUAPs representations at each discharge event of the 
investigated MU (A). The tracking procedure is performed via two-dimensional cross-correlation analysis of the MUAPs representation (B, C, D). In these example 
figures, the MUAPs have been estimated from the single differential spatial filtering. The visualisation of the overlapping MUAPs of tracked pairs is fundamental for 
the validation of the cross-correlation analysis and must be always performed, regardless of the cross-correlation coefficient (XCC) valueb (C, D). Number, N; 
maximum voluntary contraction, MVC. 
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study and characterisation of the neural control of voluntary muscle 
force production (Heckman and Enoka, 2012). 

MU RT and DERT are simply defined as the force level at which a 
motor unit begins and ends to discharge action potentials repetitively. 
Therefore, for the analysis of MUs RT and DERT, the presence of an 
auxiliary input signal representing the participant’s muscle force is 
fundamental. The auxiliary input signal can be expressed in different 
units of measurement (e.g., V, mV, Kg, N, Nm) and it is often reported in 
both absolute and normalised terms (i.e., as % MVC). 

In practical terms, the estimation of these two parameters can be 
simply performed by identifying the first and last element in the array 
containing the times of discharge of each MU, and then extracting the 
value for the auxiliary input signal at the corresponding instants 
(Fig. 7A). 

MUs DR is defined as the number of action potentials discharged per 
second by a single MU. However, given its variability during contractile 
tasks, it is common practice to visualise the instantaneous DR, which is 
obtained dividing the sampling rate by the ISI between two consecutive 
discharges (Fig. 7A). Of note, MUs DR is expressed as pulses per second 
(PPS), unlike typical frequency units. 

In order to reduce this variability and to obtain a more robust esti
mation, MUs DR is usually analysed and reported as the average 
instantaneous DR over a number of consecutive discharges. MUs DR can 

be estimated within different phases of a voluntary contraction, such as 
in the recruitment phase, derecruitment phase and the steady-state 
phase. For recruitment and derecruitment, it is necessary to find a 
compromise between robustness and sensitivity (Del Vecchio et al., 
2020). This is often achieved by averaging the intervals generated by 
few (e.g., 3–5) consecutive discharges at the beginning and at the end of 
the contraction (Fig. 7A) (Del Vecchio et al., 2019a; Valli et al., 2023). 
During the steady-state phase, all firings can be averaged (Škarabot 
et al., 2023). However, if the steady-state phase is long (e.g., > 20–25 s), 
the estimation of MUs DR is affected by the physiological decline in DR, 
especially for MUs with lower recruitment thresholds (Pascoe et al., 
2014). In such cases, it is possible to limit the estimation of MUs DR to a 
fixed number of discharges (e.g., 20–50) at the beginning of the steady- 
state phase. 

9. Analyse peripheral MUs properties 

MUCV and amplitude of the action potentials are often referred to as 
“peripheral” properties, as they primarily depend on the morphology 
and biology of the innerved muscle fibres (Casolo et al., 2023). There
fore, these two parameters have significant physiological relevance in 
the investigation of aspects concerning the generation and propagation 
of the MUAPs in response to the motoneuron discharges (Blijham et al., 
2006; Campanini et al., 2009). 

MUCV represents the speed at which the MUAPs propagate along the 
sarcolemma of the muscle fibres belonging to single MUs and it is 
considered a “size principle parameter” due to its linear association with 
MUs RT and with muscle fibre diameter (Andreassen and Arendt- 
Nielsen, 1987; Casolo et al., 2023; Del Vecchio et al., 2017). 

MUAP amplitude is considered an important parameter for inferring 
the size of single MUs, but it must be noticed that estimation from sur
face HD-sEMG recordings presents high variability. Indeed, MUAP 
amplitude is considerably influenced by muscle architecture, subcu
taneous tissue thickness and proximity of the MU, among other factors. 
Although this value can be informative, the direct estimation of MUs size 
from measures of MUAP amplitude is not generally recommended 
(Martinez-Valdes et al., 2023). MUAP amplitude can be quantified using 
various measures, including peak-to-peak distance or root-mean-square 
of the MUAPs. When reported alongside MUCV, MUAP amplitude can be 
calculate on the same MUAPs and channels used for MUCV estimation 
(Del Vecchio et al., 2017). 

The estimation of the MUAPs for the analysis of peripheral MUs 
properties is usually performed via spike-triggered averaging of the EMG 
signal as previously described. For the estimation of MUCV, the spike- 
triggered averaging is usually computed on the double differential 
derivation of the EMG signal along the direction of the muscle fibres. 
This spatial filtering decreases the presence of non-propagating com
ponents and attenuates the end-of-fibre effect, thus enhancing the rep
resentation of MUAPs propagation (Fig. 8A–C) (Gallina et al., 2022). The 
double differential signal is calculated over three adjacent channels of 
the grid by subtracting the EMG signal in the first channel from twice the 
EMG signal in the second channel, and then subtracting the EMG signal 
in the third channel. 

Given the definition of MUCV as a size principle parameter, the spike 
triggered average for this analysis is usually calculated over a number of 
discharges that provide a balance between the smoothing in the MUAPs 
(improved by a higher number of averaged samples) and the represen
tation of the MUCV value at the recruitment phase. Although there is no 
reference value, the actual literature seems to favour the computation of 
the spike-triggered average over the first 20–50 discharges at recruit
ment (Casolo et al., 2023; Martinez-Valdes et al., 2018). 

On the generated MUAPs, the estimation of MUCV is performed via 
maximum likelihood estimation of the time delay over a number of 
channels with specific characteristics. Given its complexity, the tech
nical implementation of the maximum likelihood estimation cannot be 
explained adequately in this tutorial and the reader is encouraged to 

Fig. 7. Analysis of central motor units properties. Motor units (MUs) recruit
ment threshold (RT) and derecruitment threshold (DERT) are estimated as the 
force value (which can be expressed both in absolute and relative terms) at 
which the MU begins or stops to discharge action potentials repetitively. In this 
example, MUs discharge rate (DR) is estimated as the average value of a number 
of consecutive discharges at recruitment, derecruitment and during the entire 
steady-state phase. Based on the criteria used to manually determine the in
clusion and exclusion of firings, the results of these analyses can vary signifi
cantly. Therefore, it is necessary to consistently adopt the same criteria for the 
manual editing of MUs discharges in order to have consistent and reliable re
sults from the analysis of central MUs properties. Pulses per second, PPS; 
maximum voluntary contraction, MVC; interspike intervals, ISIs. 
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read specific articles on the topic (Farina et al., 2002; Farina et al., 
2000). 

The identification of channels for estimating MUCV involves a 
manual selection process. It requires the visual examination of adjacent 
channels within a column of the grid to identify those that show the 
clearest propagation of the action potential and exclude the innervation 
zone (identified as the inversion of the action potential shapes and of 
their direction of propagation). The choice of the channels is supported 
by the cross-correlation value between adjacent pairs. This cross- 
correlation analysis helps in identifying pairs with strong similarities 
in their MUAP patterns, indicating consistent propagation characteris
tics. Additionally, a minimum cross correlation threshold is often 
employed to ensure the acceptability of pairs. Similarly to MUs tracking, 
a threshold ≥ 0.8 is expected to yield most reliable estimations, although 
a cross-correlation threshold ≥ 0.7 is also often adopted (Škarabot et al., 
2023). A minimum of 2 channels are technically sufficient for MUCV 
estimation via maximum likelihood. However, it is strongly recom
mended to include 3 or more channels to increase the accuracy of the 
estimates. 

It is important to note that the physiological range of MUCV during 
voluntary contractions typically falls between 2 and 8 m/s (Beretta- 
piccoli et al., 2019; Farina et al., 2002). Any values outside of this range 
are likely to be the result of errors in data collection (e.g. electrodes 

misalignment) or analysis (e.g., wrong selection of the channels) and 
should be disregarded or further investigated. 

Given the complexity of the selection of appropriate channels, and 
the necessity of visual inspection, the user is encouraged to refer to 
Fig. 8D–F for a clear presentation of this procedure. 

10. Final remarks and conclusions 

This tutorial provides a detailed explanation of crucial steps for the 
analysis of MUs properties from decomposed HD-sEMG recordings. 
Furthermore, it introduces the possibility to perform MUs analyses with 
openhdemg, an efficient tool that can lower the barriers to the imple
mentation of the HD-EMG technique thanks to its user-friendly struc
ture, extensive documentation, and flexible architecture easily 
accessible to researchers with varying levels of programming 
experience. 

openhdemg is an opensource framework in continuous expansion and 
will continue to evolve based on user feedback and emerging research 
needs, fostering collaboration and knowledge sharing within the HD- 
EMG community. 

Fig. 8. Analysis of peripheral motor units properties. The estimation of motor units (MUs) conduction velocity (MUCV) is usually performed on the MUs action 
potentials (MUAPs) representation estimated from the double differential spatial filtering of the raw EMG signal (A, B, C). MUCV represents the speed at which the 
MUAPS propagate along the sarcolemma of the muscle fibres (D). For the reliable estimation of MUCV, it is fundamental to select the largest number of adjacent 
channels (in the direction of muscle fibres, represented in columns in the openhdemg interface) showing a clear propagation of action potentials and high cross- 
correlation coefficients (XCC). In the selection of the channels, it is necessary to avoid the MUAPs presenting the end-of-fibres effect (extinction of action poten
tials) (E) and the innervation zone (inversion in the propagation direction) (F), as these will significantly alter the estimation of the MUCV value. 

G. Valli et al.                                                                                                                                                                                                                                    



Journal of Electromyography and Kinesiology 74 (2024) 102850

12

Funding 

No funding has been received both for the manuscript and for the 
development of the openhdemg framework. 

Author contributions 

All the authors approved the final version of the manuscript, agree to 
be accountable for all aspects of the work in ensuring that questions 
related to the accuracy or integrity of any part of the work are appro
priately investigated and resolved. All persons designated as authors 
qualify for authorship, and all those who qualify for authorship are lis
ted. GV conceptualised and designed openhdemg and the tutorial. GV 
implemented the functions for electromyography data handling, visu
alisation, editing and analysis. PR implemented the graphical user 
interface. FN provided technical support and supervision for the devel
opment of the analysis algorithms. AC tested the functions and the 
graphical user interface and provided guidance for the implementation 
of missing functionalities. GDV provided overall direction and organi
sation of the project. GV drafted the manuscript with the support of AC, 
and all the authors revised it. GV maintains the GitHub and PyPI re
positories and supervises the future development of openhdemg. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Andreassen, S., Arendt-Nielsen, L., 1987. Muscle fibre conduction velocity in motor units 
of the human anterior tibial muscle: A new size principle parameter. J. Physiol. 391, 
561–571. https://doi.org/10.1113/JPHYSIOL.1987.SP016756. 

Beretta-piccoli, M., Cescon, C., Barbero, M., Antona, G.D., 2019. Reliability of surface 
electromyography in estimating muscle fiber conduction velocity : A systematic 
review. J. Electromyogr. Kinesiol. 48, 53–68. https://doi.org/10.1016/j. 
jelekin.2019.06.005. 
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