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Abstract
Membrane filtration processes have been used to treat landfill leachate. On the other hand, closing the leachate treatment loop 
and finding a final destination for landfill leachate membrane concentrate (LLMC) – residual stream of membrane systems – is 
challenging for landfill operators. The re-introduction of LLMC into the landfill is typical; however, this approach is critical as 
concentrate pollutants may accumulate in the leachate treatment facility. From that, leachate concentrate management based on 
resource recovery rather than conventional treatment and disposal is recommended. This work comprehensively reviews the state-
of-the-art of current research on LLMC management from leachate treatment plants towards a resource recovery approach. A 
general recovery train based on the main LLMC characteristics for implementing the best recovery scheme is presented in this 
context. LLMCs could be handled by producing clean water and add-value materials. This paper offers critical insights into LLMC 
management and highlights future research trends.

Keywords
Concentrated leachate, landfill leachate, membrane concentrate, nanofiltration, reverse osmosis, resource recovery

Received 31st January 2022, accepted 25th May 2022 by Associate Editor David E. Ross.

1 School of Chemistry, Inorganic Processes Department, Universidade 
Federal do Rio de Janeiro, Rio de Janeiro, Brazil

2 Department of Civil, Environmental and Architectural Engineering, 
University of Padova, Padova, Italy

3 Applied Research Management, Municipal Company of Urban 
Cleaning, Rio de Janeiro, Brazil

4 Department of Sanitary and Environment Engineering, State 
University of Rio de Janeiro, Rio de Janeiro, Brazil

Corresponding authors:
Ronei de Almeida, School of Chemistry, Inorganic Processes 
Department, Universidade Federal do Rio de Janeiro, 149 Athos da 
Silveira Ramos Avenue, laboratory I-124, Rio de Janeiro, RJ 21941-
909, Brazil. 
Email: ronei@eq.ufrj.br

Juacyara Carbonelli Campos, School of Chemistry, Inorganic 
Processes Department, Universidade Federal do Rio de Janeiro, 149 
Athos da Silveira Ramos Avenue, Laboratory I-124, Rio de Janeiro, RJ 
21941-909, Brazil. 
Email: juacyara@eq.ufrj.br

1116212WMR0010.1177/0734242X221116212Waste Management & ResearchAlmeida et al.
review-article2022

Review Article

Introduction

Landfill leachate (LFL) contains a wide range of pollutants of 
varying concentrations, from high values for organic matter, 
nutrients and inorganics to low values for emerging contaminants 
(e.g. persistent organic pollutants, pharmaceuticals, personal care 
products and plastic additives) (Busch et al., 2010; Clarke et al., 
2015; Ramakrishnan et al., 2015). Hence, its treatment remains a 
major socio-environmental and economic issue on the municipal 

solid waste management chain. Treatment of LFL must meet the 
wastewater disposal requirements established by regulatory 
authorities. Moreover, considering that the LFL physicochemical 
composition undergoes spatial and temporal variations, success-
ful and efficient treatment must be ensured in both the active and 
post-closure landfill periods (Fan et al., 2006; Stegmann, 2018).

The conventional technologies for leachate treatment are bio-
logical and physicochemical processes or their combination in 
integrated or sequential schemes (Abbas et al., 2009; Kurniawan 
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et al., 2010). Conventional biological systems alone cannot sig-
nificantly treat methanogenic leachate, which contain contami-
nants resistant to biodegradation (Torretta et al., 2016). In 
addition, high ammonia concentrations cannot be removed suc-
cessfully by biological treatment, such as activated sludge, aer-
ated lagoons, sequence batch reactor or trickling filters (Mojiri 
et al., 2021). Therefore, the option of advanced technologies 
should be considered. In this regard, membrane-based technolo-
gies, that is, nanofiltration (NF) and reverse osmosis (RO), are 
considered the most reliable and effective methods for leachate 
treatment (Chaudhari and Murthy, 2010; Chianese et al., 1999; 
Cingolani et al., 2017; de Almeida et al., 2020a, 2020b; Linde 
et al., 1995; Šír et al., 2012).

In contrast, to close the loop of the LFL treatment and to find 
a final destination for the landfill leachate membrane concentrate 
(LLMC) – residual stream of the membrane filtration process – is 
a critical issue, and LLMC management is a challenging task. 
Several technologies have been proposed and investigated to 
manage the membrane concentrate, including recirculation 
(Calabrò et al., 2010; Chamem et al., 2020; He et al., 2015), natu-
ral evaporation (Cossu et al., 2018), solidification/stabilization 
(S/S) (Hunce et al., 2012), chemical coagulation (Long et al., 
2017), electrocoagulation (EC) (Fernandes et al., 2019), ozona-
tion (Shah et al., 2017), advanced oxidation processes (AOPs) 
(e.g. Fenton, photo-Fenton, anodic oxidation) (Fernandes et al., 
2017; Hong et al., 2017; Soomro et al., 2020) and thermal treat-
ment (Zhang et al., 2019). The recirculation of the LLMC onto 
landfill cells is the conventional approach, similar to leachate 
recycling to adjust moisture content and degrade organic pollut-
ants in landfills (Calabrò and Mancini, 2012; Grossule and 
Lavagnolo, 2020; Sohoo et al., 2019). However, some critical 
issues such as failures of landfill stability and accumulation of 
pollutants in the leachate treatment facility can emerge as nega-
tive impacts linked to this practice. Before the study carried out 
by Henigin (1995), the consequences of the reinjection of con-
centrated leachate into the landfill body were under-discussed. In 
recent years, there has been an increasing amount of literature on 
the effects of this procedure (Calabrò et al., 2018; Chamem et al., 
2020; Morello et al., 2016; Talalaj, 2015a; Talalaj and Biedka, 
2015). Nonetheless, the published studies show contrasting con-
clusions. Therefore, further research in this area is still of high 
importance.

Several other reviews already exist, which do excellent work 
in describing LFL treatment processes (Abuabdou et al., 2020; 
Costa et al., 2019; Gao et al., 2014; Luo et al., 2020; Renou et al., 
2008; Wiszniowski et al., 2006), utilization of membrane-based 
technologies for wastewater treatment (Kamali et al., 2019) and 
treatment technologies for membrane concentrate volume mini-
mization (Joo and Tansel, 2015; Subramani and Jacangelo, 2014). 
Readers are guided towards these contributions for further back-
ground information. Recently, Keyikoglu et al. (2021) reviewed 
the state-of-the-art of technologies for the treatment of LLMCs. 
Among existing methods, they paid more attention to AOPs. 
However, these techniques cannot effectively handle the high 

salinity of the LLMC and, therefore, are mainly applied as a pre-
treatment step rather than a stand-alone treatment. Besides, AOPs 
are associated with high installation and operational expenses, 
and the possible generation of intermediates with higher toxicity 
during the LLMC treatment also represents a limitation for their 
consolidation on a full-scale application.

As aforementioned, several approaches could be adopted for 
the management of LLMCs. Considering the demands of effi-
cient water reuse, carbon and nutrients from LLMCs or from LFL 
itself, efforts have been focused on extracting add-value products 
from leachate concentrates (e.g. inorganic salts and biofertilizers) 
(Gu et al., 2019; Kurniawan et al., 2021; Li et al., 2015). At pre-
sent, a review dealing with the management of LLMCs focusing 
on resource recovery has not been published yet. This work com-
prehensively reviews the state-of-the-art of current research on 
membrane concentrates management from landfill leachate treat-
ment plants (LLTPs) towards a resource recovery approach. 
Lastly, within a circular bioeconomy context, a general recovery 
train based on the main LLMC characteristics for implementing 
the best recovery route is presented.

Materials and methods

The databases, including Web of Science, Scopus and Engineering 
Village, were explored. The following keywords were combined 
to find the scientific literature: ‘landfill leachate’, ‘nanofiltration’, 
‘reverse osmosis’, ‘membrane concentrate’ and ‘concentrated lea-
chate’. The screening was undertaken using the eligibility and 
exclusion criteria to include the works relevant to the research 
topic. Eligibility criteria consisted of selecting articles that deal 
with NF concentrate (NFC) and RO concentrate (ROC) treatment 
and management options. In contrast, excluding articles published 
in a language other than English and papers that do not deal with 
LLMC management was part of the exclusion criteria.

The present article is structured as follows: first, we discussed 
the management of LFL emphasizing its treatment processes by 
NF and RO processes. Second, the main characteristics of NFC 
and ROC from LLTPs are introduced. Third, a critical analysis of 
LLMC destination practices and treatment systems are presented. 
Fourth, resource recovery from LLMCs covering water reuse 
technologies and material extraction, that is, organic fertilizers, 
nutrients, inorganic salts recovery and add-value products is 
comprehensively reviewed. Current trends and challenges are 
addressed. Last, a management diagram for the best resource 
recovery route from LLMCs is proposed.

LFL management

The composition of LFL varies depending on the gravimetric 
composition of landfilled waste, landfill age and mode of its 
operation, landfill status (i.e. active or closed), site conditions 
(e.g. climate, site geometry, soil properties and hydrogeology), 
among others (El-Fadel et al., 2002; Farquhar, 1989). The typi-
cal LFL contains a significant amount of biodegradable and 
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non-biodegradable organics, inorganic compounds and xenobi-
otic organic compounds (Kulikowska and Klimiuk, 2008; 
Vaccari et al., 2019). Recent studies identified other pollutants 
such as pharmaceuticals, plasticizers and microplastics in 
untreated and treated leachate samples from both active and 
closed landfills (He et al., 2019; Su et al., 2019; van Praagh 
et al., 2019). Thus, a considerable amount of literature about 
this topic can be expected in the forthcoming years. Nevertheless, 
major concerns of the LFL are ammonia nitrogen (NH3-N), 
salts (e.g. chloride, sulphate, carbonate and bicarbonate) and 
organic matter – reported as 5-day biochemical oxygen demand 
(BOD5), chemical oxygen demand (COD) and total organic car-
bon (Ehrig and Robinson, 2010; Iskander et al., 2018b).

According to published studies (Costa et al., 2019; Kurniawan 
et al., 2006, 2010), the landfill age plays an important role in 
leachate characteristics; therefore, LFL can be classified into 
three categories on an age basis: young, intermediate and mature 
(Table 1). Overall, biodegradable organic matter (evaluated by 
BOD5) reduces over time, and leachate organic matter stabilizes 
(Kjeldsen et al., 2002; Luo et al., 2020). In other words, the 
BOD5/COD ratio (biodegradability index) decreases as the land-
fill age increases. The biodegradability index can even be more 
diminutive in tropical regions compared to others of temperate 
climate. The warmer conditions tend to boost microbial activity, 
which accelerates organic matter stabilization; thus, a high con-
centration of non-biodegradable compounds such as humic sub-
stances (HSs) can also be a concern in the short term for landfills 
located in tropical regions (Lebron et al., 2021). Besides, as 
stated earlier, the composition of landfilled residues can affect 
LFL characteristics; for instance, in regions where waste separa-
tion, pre-treatment and recycling of organic fraction are effective, 
inorganic leachate parameters such as total dissolved solids 
(TDS), conductivity and chloride may be more relevant (de 
Almeida and Campos, 2020).

Several methods for LFL treatment have been in use, such as 
co-treatment with sewage on wastewater treatment plants 
(Brennan et al., 2017; Dereli et al., 2021); recirculation of lea-
chate into the landfill body (Bae et al., 2019; Beaven and Knox, 
2018); constructed wetlands (Bakhshoodeh et al., 2020); physic-
ochemical processes – coagulation-flocculation (C/F), chemical 
precipitation, chemical oxidation, air stripping, carbon adsorp-
tion and AOPs (Deng and Englehardt, 2006; Fernandes et al., 
2015; Ferraz et al., 2013; Foo and Hameed, 2009; Lins et al., 
2015); and biological processes – aerated lagoons, sequencing 
batch reactor process, activated sludge process, membrane bio-
reactor, biofilms in rotating biological contactors and trickling 
filters (Ahmed and Lan, 2012; Chelliapan et al., 2020; El-Gohary 
and Kamel, 2016; Robinson, 2019).

Conventional treatments of LFL are generally classified into 
three major groups: (1) biological processes (aerobic or anaero-
bic), (2) physicochemical processes and (3) a combination of bio-
logical and physicochemical processes (Luo et al., 2020). 
Biological treatment is often used to remove biodegradable 
organics and total nitrogen due to its reliability, simplicity and 
high cost-effectiveness (Ehrig et al., 2018). On the other hand, 
physical and chemical processes can be effective as a pre-treat-
ment for leachate’s biological degradation since it helps to reduce 
the content of non-biodegradable substances, which can compro-
mise the efficiency of the biological treatment (Mojiri et al., 
2021). Recently, low-cost treatment schemes have been tested, 
including pre-treatment with biomass bottom ash (chemical pre-
cipitation) followed by microalgae remediation, which shows an 
excellent removal of leachate pollutants. Besides, it could enable 
the valorization of treatment residues (i.e. biomass and sludge) 
through the production of biofuels and add-value materials 
(Viegas et al., 2021). Figure 1 depicts the performance of differ-
ent leachate treatment processes according to the landfill age, 
that is, young, intermediate and mature.

Table 1. Typical LFL physicochemical composition according to the landfill age in temperate and tropical regions. Adapted 
from Costa et al. (2019), Kurniawan et al. (2006, 2010) and Lebron et al. (2021).

LFL age and leachate composition in 
temperate regions (years)

LFL age and leachate composition in tropical 
regions (years)

Parameters
0–5  
(young)

5–15 
(intermediate)

>15 
(mature)

0.5–2 
(young)

1.7–2.1 
(intermediate)

7.2–14.4 
(mature)

pH 3–6 6–7.5 7.5–9.0 7.8–8.5 6.2–8.3 7.3–8.4
BOD5 (mg L−1) 10,000–25,000 500–4000 <500 275–453 1–7068 1–12,766
COD (mg L−1) 15,000–40,000 1000–20,000 <1000 1230–6027 164–17,440 576–21,137
BOD5/COD 0.5–1 0.1–0.5 <0.1 – 0.006–0.3 0.002–0.3
Biodegradability Medium–high Medium Low – Low Low
NH3-N (mg L−1) 1500–4250 50–700 <30 526–1787 21.1–1120 133–2808
TDS (mg L−1) 10,000–25,000 2000–10,000 <1000 – 70–5885 310–3480
Conductivity (mS cm−1) 15–41.5 6–14 – 8.90–10.87 0.677–14.59 3.92–25.63
Chloride (mg L−1) 1000–3000 100–2000 <100 2499–4204 – –
Sulphate (mg L−1) 500–2000 50–1000 <50 – – –

BOD5: 5-day biochemical oxygen demand; COD: chemical oxygen demand; LFL: landfill leachate; NH3-N: ammonia nitrogen; TDS: total 
dissolved solid.
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As mentioned before, several technologies are available for 
LFL treatment, and each of them has its merits and limitations. 
The selection of the best treatment route depends mainly on the 
LFL composition and economic feasibility. As leachate com-
position undergoes spatial and seasonal variation, treatment 
strategies cannot be standardized. Every scenario is unique, 
and treatment approaches should vary accordingly (Mukherjee 
et al., 2015).

From a techno-economic point of view, NF and RO seem to 
be the most promising and efficient methods among the existing 
technologies. NF and RO, either as a foremost or as a polishing 
step in a leachate treatment chain, have shown to be an essential 
technology to meet the most restrictive standards for water dis-
charge or reuse (Chen et al., 2021b). NF and RO processes can 
(1) provide high-quality treated leachate (Chen et al., 2021b); (2) 
reduce the environmental footprint and size of the LLTP (modu-
lar design/installation) (Jamaly et al., 2014; Peter-Varbanets 
et al., 2009); (3) be automated and easily scaled (Peter-Varbanets 
et al., 2009); and (4) be easily moved from site to site (Kumano 
and Fujiwara, 2008). Since the late 1980s, the use of RO has 
become a proven technology in use for LFL treatment. In 2018, 
there were over 300 leachate treatment RO plants installed world-
wide (Balkema et al., 2018). For this reason and considering the 

scope of the present article, the following section focuses on NF/
RO processes applied to the treatment of LFL.

NF and RO

NF and RO are high-pressure-driven membrane filtration pro-
cesses. NF/RO systems generate two output streams, which are 
named permeate and concentrate. The permeate is the treated liq-
uid, and the concentrate, also known as retentate, is the residual 
stream (Baker, 2012).

NF membranes have pore sizes in the range of 0.5–2 nm, 
which corresponds to molecular weight cut-off (MWCO) of 100–
500 Da. NF is also described as a process that removes particles 
and dissolved compounds smaller than 2 nm (Mohammad et al., 
2015). Similarly, the RO process uses a physical mechanism, in 
which the operating pressure must be kept higher than the solu-
tion osmotic pressure. The transport mechanism across the RO 
membrane follows the dissolution/diffusion model, where both 
solvent and solute dissolve in the dense surface layer of the  
membrane and diffuse separately due to the chemical potential 
gradient of each species. In wastewater treatment systems, RO 
membranes are primarily used to remove low molecular mass 
solutes such as salts and heavy metals (Baker, 2012; Wilf, 2014).

Figure 1. Performance of different leachate treatment processes according to the landfill age. Based on Luo et al. (2020).
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NF process can remove colloids, low-molecular-weight 
organic matter and dissolved salts. However, NF membranes 
generally allow monovalent ions such as sodium and chloride to 
pass through while achieving high rejection for organic matter 
and suspended solids (Abdel-Fatah, 2018). On the other hand, 
RO membranes can separate monovalent/divalent ions and small 
neutral molecules. Both systems can separate organic and inor-
ganic compounds from the influent, producing water with low 
levels of dissolved solids content (Yang et al., 2020). From the 
perspective of LFL treatment, they are the major membrane tech-
niques used in LLTPs (Chen et al., 2021b).

The standard operating mode of full-scale NF/RO systems is 
cross-flow with high internal flow rate concentrate recirculation. 
Typical NF/RO system modules include tubular, spiral wound, 
hollow fibre and disc tube (Yang et al., 2020). Due to their modu-
lar configuration, these modules are available in standardized 
containers from various suppliers and adapted to each landfill 
site (ISWA, 2019). RO systems are generally used in a stand-
alone mode, and depending on the effluent requirements, several 
steps can be combined, where leachate gets filtered in two or 
more stages before final discharge. On the other hand, the NF 
process is usually applied as a post-treatment step of biological or 
physicochemical processes into the LFL treatment chain (de 
Almeida et al., 2020c).

NF and RO have been widely applied in full-scale LFL treat-
ment projects (Chen et al., 2021b; Di Maria et al., 2018; Lebron 
et al., 2021). A body of scientific research recognizes their impor-
tance for the LFL treatment (Anna Tałałaj et al., 2021; Dolar 
et al., 2016; Mariam and Nghiem, 2010; Ramaswami et al., 2018; 
Smol and Włodarczyk-Makuła, 2017), and several studies have 
operated NF/RO in pilot and full-scale application (Table 2), 
demonstrating the membrane technology maturity. For example, 
according to Argun et al. (2020), the NF process used as a final 
step of an LFL facility located in Turkey is essential to meet the 
local leachate disposal limits. The NF system is composed of 60 
spiral wound modules, polyethersulfone membranes. It operates 
at pump pressure <18 bar, recovery rate of 85% and permeate 
flux of 16 L m−2 h−1. COD, NH3-N, TDS and colour removal effi-
ciencies are, on average, 84%, 70%, 51% and >99%, respec-
tively. Several full-scale RO systems are also documented in 
other studies that looked at the RO process (Cingolani et al., 
2018; Rukapan et al., 2012; Theepharaksapan et al., 2011).  
In Poland, a 72 m3 d−1 LLTP has performed the disc-tube RO 
system at an operating pressure of 65 bar, permeate flux of up to 
50 L m−2 h−1 and recovery of 75%. Treatability results showed 
removal efficiencies of BOD5, COD and NH3-N greater than 
90% (Talalaj, 2015b).

However, two major issues can be identified as drawbacks 
for the implementation of membrane filtration processes:  
(1) membrane fouling, which decreases the permeate flux  
and water quality, and (2) concentrate stream management. 
Membrane fouling requires extensive pre-treatment or chemical 
cleaning of the membrane, resulting in a short lifespan of mem-
branes. This fact is still the bottleneck problem in membrane 

promotion and application, as fouling can also increase opera-
tional costs. In general, before NF/RO filtration, there are pre-
treatment steps to remove suspended solids and colloids and, 
consequently, prevent fouling and biofilm growth on the mem-
brane surface (Jamaly et al., 2014).

Finally, the management of LLMCs is a challenge that must 
be deal with. The development of technologies and process 
breakthroughs in the water desalination field have helped to 
tackle the concentrate management issue in LLMC areas. 
There is a pool of patented technologies to improve the overall 
feed water recovery, aiming to reduce concentrate volume and 
achieve minimal liquid discharge (MLD) or zero liquid dis-
charge (ZLD) (Joo and Tansel, 2015; Subramani and Jacangelo, 
2014). However, their high costs linked mainly with energy 
requirements limit the implementation of full-scale ZLD sys-
tems. Furthermore, it is important to note that MLD/ZLD sys-
tems are associated with unintended environmental impacts as 
a result of their high energy demand and carbon footprint. 
Other major issues of MLD/ZLD systems include fouling, 
scaling and expensive metallic materials (Voutchkov and 
Kaiser, 2020). Therefore, future research to addresses these 
drawbacks are needed.

LFL membrane concentrate 
management

LLMC characteristics

Different factors can affect the composition of concentrate 
streams from LLTPs, including leachate characteristics, pre-
treatment applied, additional chemicals used, that is, fouling/
biofouling prevention chemicals or reagents used for pH con-
trol, and treatment configurations (Ladewig and Asquith, 2012; 
Van Der Bruggen et al., 2003). These influence factors have 
been found in the analysis of NFC and ROC from the LLTP in 
Xiamen (China), where concentrate streams were collected 
from two different leachate treatment configurations. The NFC 
contained a high amount of refractory organics; conversely, 
recalcitrant contaminants in the ROC were lower because most 
of these were removed by pre-treatment processes used in the 
treatment chain (Chu et al., 2020). From that, it is presumable 
that the LLMC composition can vary depending on the LLTP’s 
defined treatment scheme.

As NF and RO are the preferred membrane processes for lea-
chate treatment, the main characteristics of NFC and ROC from 
LLTPs reported in various studies are summarized in Table 3. It 
must be emphasized that this table intends to highlight the char-
acteristics of the main concentrate streams generated in LLTPs 
(i.e. NFC and ROC), focusing on the reported values instead of 
the treatment scheme that generated the concentrate stream. For 
instance, the values of some parameters like NH3-N and total 
Kjeldahl nitrogen (TKN) have a wide range since, in some cases, 
nitrogen can be removed by biological process in the leachate 
treatment chain, confirming what was discussed above.
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As can be seen from Table 3, NFCs/ROCs are rich in some 
heavy metals such as copper, zinc, lead and nickel (up to 
9.26 mg Cu L−1, 6,656 mg Zn L−1, 56.97 mg Pb L−1 and 3.182 mg  
Ni L−1), which can cause environmental pollution and potential 
bioaccumulation in living organisms and human body resulting 
in adverse effects (Briffa et al., 2020). Besides, priority pollutants 
such as toluene, ethylbenzene, chlorobenzene and dibutyl phtha-
late were also identified in LLMC samples. These chemicals are 
highly toxic pollutants, representing an environmental hazard 
(Zhang et al., 2013).

The BOD5 and COD concentrations in LLMCs range from  
2.6 to 17,000 mg L−1 and 1281 to 49,521 mg L−1, respectively. 
BOD5/COD ratios are in the range of 0.002–0.34, indicating 
low biodegradability. The differences between LFL and LLMC, 
such as non-biodegradable content and organic matter composi-
tion, were investigated in three LLTPs. HSs, including humic 
acid (HA) and fulvic acid (FA), accounted for the highest frac-
tion of organic matter in LLMCs, ranging from 61.7% to 69.2% 
(Zhang et al., 2013). Chan et al. (2007) stand out that high-
molecular-weight and non-biodegradable compounds are 
removed mainly by membrane processes and accumulate in  
the residual stream. He et al. (2015) reported that concentrates 
from a full-scale NF-plant had an average COD of 5357 mg L−1, 
a value about twofold higher than that found in the LFL 
(2623 mg L−1).

A COD of 6200 mg L−1 was found in concentrates from an NF 
full-scale plant in Odayeri Sanitary Landfill, Istanbul (Turkey). 
From the same site, concentrations of ammonia (110 mg L−1), 
TKN (1000 mg L−1) and chloride (10,000 mg L−1) were recorded 
(Top et al., 2011). Similar concentrations were found in NFCs 
from landfills in Shenzhen and Beijing (China) (3450 mg COD L−1, 
80 mg TNK L−1 and 2519 mg Cl− L−1) (Li et al., 2016). Previous 
studies have also confirmed that NFC and ROC are heavily pol-
luted by organic and inorganic compounds (Mojiri et al., 2017; 
Xiong et al., 2014; Xu et al., 2017).

Similarly, as shown in Table 3, a high concentration of salts 
(evaluated by conductivity) is found in ROCs – values range 
from 10,500 to 98,000 µS cm−1. Kallel et al. (2017) reported that 
ROCs from an LLTP located in Tunisia contained high levels  
of TDS (66,900 mg L−1), chloride (30,768 mg L−1), sodium 
(15,400 mg L−1) and potassium (9600 mg L−1). Similar findings 
have been reported by Hendrych et al. (2019). ROCs from 
Erzurum landfill (Turkey) were also characterized by high levels 
of BOD5 and COD, reaching values up to 4800 mg L−1 and 
8882 mg L−1, respectively (Hunce et al., 2012).

Conventional management of LLMCs

Conventional membrane concentrate management from LLTPs 
can be categorized into two main groups: (1) disposal and (2) 
treatment. The former includes natural evaporation and recircula-
tion to the landfill body, and the latter involves processes aiming 
at pollutants removal. These two approaches are critically dis-
cussed in the following items.

Disposal

The disposal of LLMC streams into the landfill body is the sim-
plest and cheapest method. In general, LLMCs are accumulated 
in lagoons where physicochemical processes occur, and depend-
ing on climatic conditions, there is a moderate reduction of the 
concentrate volume. Afterwards, the concentrate is injected onto 
the waste mass by vertical and/ or horizontal drains (Calabrò 
et al., 2018; ISWA, 2019; Robinson, 2005). Before the work of 
Henigin (1995), the consequences of concentrate injection were 
under-discussed. Many scientific researches were published in 
the last two decades. However, literature findings have revealed 
contrasting conclusions; therefore, this practice’s sustainability is 
not a consensus.

Robinson (2005) presented monitoring data of a German 
landfill that operated a RO system for 1 year, returning the con-
centrate to the landfill. The study showed that ROC infiltration 
increased COD, ammonia and conductivity of the generated lea-
chate, which immediately affected the RO performance. Similar 
results were found by Talalaj (2015a) and Talalaj and Biedka 
(2015). On the other hand, 15-year monitoring data of an Italian 
landfill revealed a moderate change in leachate composition 
(slight increase in NH4

+, Cl− and SO4
−2) and leachate quantity 

(i.e. leachate volume increased). However, RO treatment perfor-
mance was not impacted (Calabrò et al., 2018). In a previous 
study at the same Italian site, Calabrò et al. (2010) observed a 
moderate rise in COD, nickel and zinc concentrations; on the 
other hand, no significant change in leachate quantity was identi-
fied in this case. Table 4 summarizes the main findings of LLMC 
infiltration monitoring studies found in the relevant literature.

In summary, the literature shows that the consequences of 
concentrate disposal to landfills are site specific. If adopted as a 
concentrate management strategy, proper engineering design 
must be done by monitoring site conditions. For example, in Rio 
de Janeiro State (Brazil), according to the recently sanctioned 
law number #9055/2020, landfill managers can recirculate the 
LLMC to the landfill body up to 1/3 of waste streams from the 
LLTP, that is, the by-products of the leachate treatment chain 
(e.g. sludge and LLMC) disposed of into the landfill body cannot 
exceed 1/3 in volume or mass (Rio de Janeiro State Governor, 
2020). However, it should be stated that the concentrate recircu-
lation may be only a temporary solution resulting in never-ending 
re-introduction of pollutants as concentrate contaminants may 
eventually accumulate in LLTPs. Moreover, this practice should 
be no longer acceptable within a circular and sustainable waste-
water management system, if resources from LLMC streams can 
be extracted and recovered.

Treatment

LLMC treatment options include physicochemical processes 
(e.g. C/F, EC, adsorption, AOPs, ozonation and S/S) (An et al., 
2012; Chen et al., 2019; He et al., 2021; Hong et al., 2017; Kallel 
et al., 2017; Ren et al., 2021; Top et al., 2011; Wang et al., 2020), 
biological methods (Yang et al., 2018) and thermal processes, 
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including membrane distillation (MD) – a thermally driven mem-
brane filtration technique (Chen et al., 2021a; Yue et al., 2007; 
Zhang et al., 2019, 2020) or even combinations of them (Ding 
et al., 2021; Woo et al., 2019). Several treatment technologies 
have been proposed and assessed in laboratory investigations; 
however, full-scale project data are scarce, and research is needed 
to cover this aspect. Some of LLMC treatment procedures and 
their salient features are summarized in Table 5.

Physicochemical processes are among the most investigated 
treatment route. C/F, EC and adsorption are low-cost techniques 
with good removal efficiencies. However, they are primarily 
applied as a pre-treatment step rather than a stand-alone tech-
nology because of their low salinity removal. In contrast, 
although AOPs and ozonation can produce a high-quality 
treated concentrate, these processes have high installation and 

operational costs, limiting a full-scale implementation. 
Similarly, thermal processes are associated with expensive 
operating costs, which contributes to few large-scale projects.

Biological techniques stand out in terms of simplicity and low 
cost. However, due to the high salinity and poor concentrate bio-
degradability, they are not recommended for the treatment of 
LLMCs. A novel biological method for LLMCs treatment has 
been investigated in a laboratory study. Yang et al. (2018) evalu-
ated a named co-bioevaporation (coBE) process mixing LLMCs 
with food waste (FW). In coBE, the concentrate is evaporated by 
the metabolic heat released from aerobic microbial degradation 
of organic compounds. Under optimal operating conditions 
(1:1.1 (m/m) mixing ratio of LLMC and FW and 0.035 m3 h−1 
airflow per kg TS), 96.7% of water was removed by consuming 
96.5% of VS contained in the mixture during five cycles of 

Table 4. Main findings of LLMC infiltration studies.

Scale Salient features Main findings References

Lab German landfill
Experimental landfill cells
20 months of monitoring

The LFL quality remained equal with and without infiltration of 
LLMCs

Henigin 
(1995)

Full German landfill
12 months of monitoring

ROC infiltration increased COD, ammonia and conductivity of 
the leachate
Changes in leachate composition affected the RO performance

Robinson 
(2005)

Full Italian landfill
Infiltration of 20 m3 LLMC d−1

30 months of monitoring

No significant change in the leachate quantity
Moderate increase in COD, nickel and zinc of the generated 
leachate
Possible reduction of methane content from the biogas stream

Calabrò et al. 
(2010)

Full Brazilian landfill
Infiltration of 9.6 m3 ROC h−1

4 months of monitoring

No significant change in the methane content from the biogas 
stream

Zanon et al. 
(2013)

Full Polish landfill
Infiltration of ~375 m3 ROC per 
month
8 months of monitoring

ROC infiltration increased COD, ammonia, conductivity and 
sulphates of the leachate
The increase in leachate conductivity affected the COD 
removal via RO treatment

Talalaj and 
Biedka (2015)

Lab Italian landfill
Infiltration of 17 LLMC litres 
during the study period
123 days of monitoring

No change in the LFL quantity
No consistent changes in COD emissions and methane 
production
LLMC infiltration increased NH4

+ of the generated leachate

Morello et al. 
(2016)

Full Landfill in Bosnia-Herzegovina
83 days of monitoring

Increase in conductivity and decrease in pH values
Increased the landfill gas flow and methane content in the 
short term

Dzolev and 
Vujic (2016)

Lab Chinese landfill
Simulated landfill cells filled with 
1-, 5- and 15-year age wastes
Infiltration of 72 ROC litres during 
the study period
24 days of monitoring

Increase of organics and ammonia in leachate from the 1-year 
waste landfill cell
Moderate increase in organics, salinity and heavy metals in 
leachate from the 5-year waste landfill cell

Wang et al. 
(2017)

Full Italian landfill
15 years of monitoring
The infiltrated LLMC 
corresponded to 30% of the 
generated leachate

LFL quantity increase in 10 years of LLMC infiltration monitoring
Moderate increase in NH4

+, Cl− and SO4
−2 of the generated 

leachate
Reduction of heavy metals concentration
Changes in leachate composition did not affect RO treatment 
performance

Calabrò et al. 
(2018)

Full Tunisian landfill
Infiltration of 8 m3 ROC d−1 during 
5 years and 10 years of monitoring

Reduction of biogas generation and methane content Chamem 
et al. (2020)

COD: chemical oxygen demand; LFL: landfill leachate; LLMC: landfill leachate membrane concentrate; RO: reverse osmosis; ROC: reverse 
osmosis concentrate.
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operation (Yang et al., 2018). However, coBE is time-consuming 
and requires energy input for aeration, increasing the footprint 
and operational costs. Recently, the authors proposed intermittent 
aeration as an energy-saving strategy and found that at a regime 
of 10 min on/20 min off, more than 50% of energy could be saved 
with similar treatability results (Liu et al., 2021). Even though the 

coBE process seems promising, more research is needed to opti-
mize the technique and assess its techno-economic feasibility in 
large-scale applications. Besides, air pollutant emissions from 
this process are a significant source of pollution; therefore, car-
bon footprint and related environmental impacts should also be 
considered in future investigations.

Table 5. LLMC treatment technologies and their salient features.

Treatment 
technology

Important 
parameter

Salient features Reference

Physicochemical C/F Chemicals and 
pH

Low cost
Insufficient removal efficiencies
Requires addition of chemicals
Requires sludge management

Long et al. (2017)

EC Electrode type, 
current intensity 
and time

Good removal efficiencies
High-tech and automated system
No chemical needed
Requires energy input

Top et al. (2011)

Adsorption Adsorbent dose 
and time

Low cost
Insufficient removal efficiencies
Adsorbent regeneration is needed

Hong et al. (2017)

Fenton oxidation Chemicals, pH 
and time

Low cost
Requires addition of chemicals
Possible change in ecotoxicity
Requires sludge management

Yazici Guvenc and 
Varank (2021)

Photo-Fenton Chemicals 
dose, radiation 
intensity, pH and 
time

Increase concentrate biodegradability
Requires addition of chemicals
Requires sludge management
Possible change in ecotoxicity

Li et al. (2016)

Ozonation Ozone dose and 
time

Increase concentrate biodegradability
High cost
Possible changes in ecotoxicity

Chen et al. (2019)

S/S Mixing ratio 
(LLMC/aggregate)

Low cost
Time-consuming process
Non-destructive technique
Volume of treated concentrate increases

Kallel et al. (2017)

Biological Co-bioevaporation Mass ratio and 
aeration

Efficient removal of water and organics
Requires energy input
Time-consuming process
Gaseous emissions

Yang et al. (2018)

Algal treatment Culture, aeration 
and light intensity

High nutrients removal
Requires low energy
Low cost
Pre-treatment required
Time-consuming process

Woo et al. (2019)

 Incineration LLMC’s 
properties, 
residence time, 
temperature and 
turbulence

High reduction of concentrate volume
High energy demand
Equipment corrosion
Requires flue gas treatment system and 
management of the residual stream

Ren et al. (2019), 
Tow et al. (2021)

Thermal Submerged 
combustion 
evaporation

Energy input and 
time

High reduction of concentrate volume
High energy demand
Equipment corrosion
Requires management of the residual 
stream

Zhang et al. (2019)

MD Energy input and 
permeate flux

High water quality
High reduction of concentrate volume
High energy demand
Equipment corrosion
Membrane fouling susceptibility

Chen et al. (2021a)

C/F: coagulation/flocculation; EC: electro-coagulation; LLMC: landfill leachate membrane concentrate; MD: membrane distillation; S/S: solidi-
fication/stabilization.
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Resource recovery options

The development of sustainable and cost-effective methods for 
LLMCs treatment combining resource recovery processes is a 
promising field of research. LLMC components that would be 
infiltrated on the landfill waste mass could be extracted and trans-
formed into valuable products such as organic fertilizer and solid 
salts with commercial value or used for energy purposes. This sec-
tion summarizes the literature on concentrated leachate treatment 
techniques and their application in LLMCs’ resource recovery.

Reclaimed water

Typically, 50–80% of the NF/RO feed is recovered as water. The 
maximization of high-quality water recovery during the LFL 
treatment through membrane processes can reduce the concen-
trate volume and guarantee high reclaimed water production 
(Iskander et al., 2017b). As mentioned earlier, several patented 
technologies to improve feed water recovery based on MLD  
and ZLD strategies are available. However, these systems are 
high capital costs and energy-intensive, which hampers their 
implementation in LLTPs. For example, Panagopoulos and 

Haralambous (2020) assessed two different scenarios consider-
ing the MLD and ZLD framework. The MLD scheme comprises 
membrane-based technologies, and the ZLD is membrane and 
thermal-based. At the freshwater recovery of 84.60% (MLD sys-
tem) and 98.15% (ZLD system), the energy consumption of 
MLD and ZLD systems was estimated at 5.40 and 10.43 kWh m−3, 
respectively.

On the other hand, multi-stage RO has proved to improve per-
meate recovery and reduce specific energy demand when less 
than five stages are used (Judd, 2017). Cingolani et al. (2018) pro-
posed a three-stage RO system (RO1, RO2 and RO3) to maximize 
water recovery of LFL treatment and reach standards for water 
discharge or reuse. The water recovery was optimized to >90% 
following RO1 and RO2 stages, while the RO3 step was needed 
to achieve boron and nitrogen local requirements for reuse.

Another approach beyond concentrate minimization would be 
treating LLMC streams to accomplish minimal concentrate dis-
posal producing high-quality water. In this regard, a microbial 
desalination cell (MDC) was studied to treat the concentrated 
leachate from a forward osmosis (FO) system. The FO concen-
trate was desalinated in the MDC and the treated concentrate 
was returned to the FO for further water extraction (Figure 2). 

Figure 2. Schematic diagram of the FO–MDC system. Reprinted from Iskander et al. (2018a) with permission from Elsevier 
(license number: 5117181379011).
AEM: anion exchange membrane; CEM: cation exchange membrane; FO: forward osmosis; MDC: microbial desalination cell.
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FO water recovery increased from 51.5% to 83.5% when oper-
ated along with the MDC system at the hydraulic retention time 
of 10 h (Iskander et al., 2018a).

It should be highlighted that FO technology has received 
increased attention for water recovery due to its low energy 
requirements and the low fouling propensity of FO membranes 
(Li et al., 2019). The FO technology uses the osmotic pressure 
gradient to transport freshwater through the membrane. In this 
process, a draw solution (DS) with high salinity creates an 
osmotic pressure difference, leading water to flow from the feed 
effluent across the semipermeable FO membrane. Further separa-
tion of the diluted DS is required after the FO process to obtain 
reclaimed water as a product (Shaffer et al., 2015).

CaCl2, Ca(NO3)2, NaCl and thermolytic solutes based on 
ammonia and carbon dioxide, similar to NH4HCO3, are the most 
DS employed for FO applications (Achilli et al., 2010). At the 
end of the FO filtration, the DS is recovered and recycled back 
to the FO unit while the permeate may need further treatment for 
its direct discharge or reuse (Wu et al., 2018). The energy con-
sumption of FO systems without DS regeneration is notably 
lower (0.2–0.9 vs 10–14 kWh m−3) (Voutchkov and Kaiser, 
2020); therefore, from an energy-efficient and resource recovery 
point of view, the selection of a fertilizer draw solute for FO 
application can be an attractive strategy. Li et al. (2017) investi-
gated a FO system using NH4HCO3 (3 mol L−1) as the DS to treat 
LFL. FO recovery was higher than 90%, and the water product 
met the regulatory standards for agricultural fertigation. In 
another study, Qin et al. (2016) proposed to use the recovered 
NH4HCO3 (2 mol L−1) as DS in a hybrid-FO system for water 
recovery from LFL.

Humic substances

As discussed earlier, LLMCs are rich in refractory organic com-
pounds, mainly consisting of HSs – high molecular weight 
compounds (300–10,000 Da) with phenolic, carboxylic and 
alkoxy groups along with the occasional presence of esters and 
quinones (Gu et al., 2019; Lima et al., 2017; Xu et al., 2017). In 
agriculture, HSs are used as organic fertilizer and play a key 
role in improving soil proprieties (e.g. soil physical structure, 
nutrient retention and water-holding capacity), increase soil 
organic content and microbial diversity, and boost fertilizer 
efficiency. Due to its high salinity, the LLMC cannot be applied 
directly as an HS-containing liquid fertilizer (Ye et al., 2019). 
Thus, the enrichment and extraction of HSs from LLMCs have 
raised strong interest.

To date, the main methods for HS extraction from LFL are 
chemical precipitation and membrane filtration. Chemical pre-
cipitation requires low pH (pH < 2), and therefore, the recovered 
product is not suitable for direct soil applications. Membrane 
processes have been used for the efficient extraction of HSs (Gu 
et al., 2019). Overall, ultrafiltration (UF) and NF membranes 
with MWCO ranges of 200–1000 Da and 1–10 kDa are the pri-
mary techniques to fractionate these compounds (Xu et al., 

2017; Ye et al., 2019, 2020). However, tight NF membranes can 
jeopardize the purification process for producing liquid ferti-
lizer. The high salt rejection of NF membranes can result in 
excessive salts in the target product (i.e. concentrate stream) 
when the NF process is applied for desalination. On the other 
hand, UF membranes have wide pore sizes and enable almost 
unrestricted passage of inorganic salts, failing to efficiently frac-
tionate salts and humic compounds due to inadequate rejection 
of substances of low molecular weight (300–3500 Da) such as 
FAs (Ye et al., 2019).

Xu et al. (2017) employed two-stage tight UF (MWCO =  
1000 Da) for extracting HSs from leachate concentrate. At  
the end of the concentration process, organic content was 
45,370 mg HS L−1. With the addition of nutrient macroelements 
in the obtained liquor, the recovered stream could be used as 
liquid fertilizer. The authors estimated the economic benefit of 
the HS-containing soluble fertilizer production at 4672 USD m−3. 
This value could offset production costs, including operating 
and purchase costs of macronutrients and generates an attractive 
profit margin.

To efficient fractionating and desalting of NFCs, Ye et al. 
(2019) propose to use loose NF membrane with MWCO of 
860 Da, which takes the merits of both NF and UF membranes. 
At a concentration factor of 9.6, the HS content was enriched 
from 1765 to 15,287 mg L−1 with about 86% desalting efficiency. 
As a water-soluble fertilizer, the recovered liquor stimulated the 
seed germination and enhanced the growth of green mungbean 
plants, presenting no phytotoxicity. In recent work, the same 
research group proposed an integrated bio-inspired self-polymer-
ization procedure to tailor loose NF proprieties for efficient frac-
tionation of HSs and desalination. Using the modified loose NF 
(298 Da), the LLMC was preconcentrated by a factor of 10.0 
without permeate recirculation into the feed. Subsequently, a dia-
filtration step was performed to demineralize the pre-treated 
LLMC. The bio-inspired membrane showed superior selectivity 
between HSs and inorganic salts. The concentration of HSs was 
enriched from 1779.4 to 17,247.1 mg L−1 and desalting efficiency 
of 99.5% was achieved, resulting in high HS purity (i.e. 98.3%) 
for potential liquid fertilizer applications (Ye et al., 2020).

Table 6 depicts recovering schemes for organic components 
extraction of concentrated leachate.

It should be underlined that membrane concentrates may have 
a certain level of toxic pollutants (e.g. heavy metals and xenobi-
otic organic compounds), which may hinder the direct reuse of 
the recovered HS as organic fertilizer; thus, further purification 
will be needed. An interesting work investigated the use of 
encapsulated HAs in alginate beds extracted from anaerobic sew-
age sludge to allow controlled and slow release of HSs in the soil. 
The agronomic tests showed that the dry biomass of the treated 
plants was remarkably higher than that for non-treated plants. 
The encapsulation of HAs within alginate beads could immobi-
lize toxic compounds as well as reduce the amount of added 
product, ensuring a proper dose of HAs in the soil at lower opera-
tional costs (Cristina et al., 2020).
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Following another recovery approach, the recalcitrant sub-
stances in LLMC streams could be reused for energetic proposes. 
Ben Hassen-Trabelsi et al. (2020) investigated the co-pyrolysis 
of ROC and sewage sludge to recycle organics as biofuels. At 
optimum conditions (mixture of 30:70 ROC/sewage sludge, 
550°C and 10°C min−1 as heating rate), the process produced 
high energy gas (12.29 MJ kg−1), which could be at least employed 
as an energy source for pyrolytic conversion.

Nutrients

Nitrogen (N) and phosphorus (P) are the major nutrients that are 
present in LFL. Ammonia nitrogen is one of the main LFL pol-
lutants and therefore most of the LLTPs are designed to remove 
N. As contaminants, N and P stimulate excessive plant and algal 
growth, leading to waterbody eutrophication and associated 
adverse impacts. NH3-N removal of LFL has been extensively 
studied (Antwi et al., 2020; Costa et al., 2021; de Almeida et al., 
2019; Genethliou et al., 2021). As resources, N and P are criti-
cal macronutrients for crops and hence are key components for 
fertilizer production. Besides, phosphate shortage linked to 
food security has intensified interest in P recovering of waste-
water. In NFC and ROC, the ammonia nitrogen concentration is 
generally high, reaching levels of 3273–8300 mg L−1 (Table 3); 
such levels are high enough to shift the focus from removal to 
recovery.

Stripping technology and chemical precipitation are the main 
methods for nutrients recovery from wastewater. Stripping tech-
nology is based on the ammonia gas–liquid equilibrium in an 
aqueous solution. In an alkaline environment, usually pH from 
10.5 to 11.5 at 25°C, the balance of ammoniacal nitrogen in 
leachate tends to produce more ammonia than ammonium 
(NH4

+
(aq) + OH−

(aq) ↔ NH3(g)↑ + H2O(l)) (Campos et al., 2013). 
Ammonia is a water-soluble gas. Thus, passing an air stream 
through the wastewater, the ammonia concentration reaches the 
gas–liquid equilibrium in the system and ammonia can be 

recovered from the stripped gas. The primary factors affecting 
ammonium stripping are pH, airflow and temperature. High-
temperature water vapour can be used as the air stream to boost 
the ammonia mass transfer. The stripping gas must be allocated 
into an acid solution for recovery purposes, so ammonia is recov-
ered as an ammonium salt like NH4Cl and (NH4)2SO4. The recov-
ered salt can be reused in different industrial and commercial 
applications (Campos et al., 2013; Kurniawan et al., 2021; Xiang 
et al., 2020).

However, full-scale applications of ammonia stripping may 
be costly, making nitrogen recovery from membrane concen-
trates unfeasible. dos Santos et al. (2020) estimated the total 
cost of ammonia recovery from concentrated leachate at 
51.64 USD m−3. This cost was mainly dependent on the price of 
the tower (in which the mass transfer occurs), chemicals for 
absorption and electricity consumption. In each scenario, a 
detailed techno-economic evaluation should be performed, con-
sidering the process energy demand, system robustness, prod-
uct quality and local market demands (Kurniawan et al., 2021).

In the precipitation method, nutrients are recovered via stru-
vite precipitation. Struvite (MgNH4PO4 ⋅ 6H2O) is a phosphate 
mineral and can be used as a slow-release fertilizer or raw mate-
rial for the chemical industry. In struvite precipitation, an alkaline 
solution is obtained either by the addition of alkali solution or 
aeration stripping of carbon dioxide, followed by the introduction 
of magnesium salts for MgNH4PO4 ⋅ 6H2O formation, which has 
a 1:1:1 molar ratio of ammonium (NH4

+), phosphate (PO4
−3) and 

magnesium (Mg+2). When the concentrations of NH4
+, PO4

−3 and 
Mg+2 exceed their solubility limit, struvite formation recovers 
both N and P from leachate (Li et al., 2019). The main drawback 
is that, in general, struvite precipitation requires external magne-
sium and phosphorus to promote struvite crystallization. As lea-
chate contain less magnesium and phosphate ammonium, a large 
amount of chemicals may be required. Besides, P recovery is 
ideal at a pH higher than 9.5, requiring the addition of an alkaline 
solution (Kurniawan et al., 2021).

Table 6. Recovery schemes for HSs extraction from concentrated leachate.

Recovery scheme Target resource Product applications Main findings Reference

UF HSs Liquid fertilizer High fractioning of HS, salts and 
heavy metals

Yue et al. (2011)

Coagulation + centrifugation 
 + sun drying

HA and FA* Soil conditioning Recovered material enhanced 
germination and growth of 
soybeans

Yang and Li (2016)

Two-stage tight UF HSs Liquid fertilizer Economic benefit/attractive 
margin profit

Xu et al. (2017)

Loose NF HSs Water-soluble fertilizer Liquid fertilizer application 
promoted plant growth with no 
phytotoxicity

Ye et al. (2019)

FO + chemical precipitation Humic acid Fertilizer component Possible application as soil 
stabilizer or fertilizer component

Iskander et al. (2019)

Bio-inspired loose 
NF + diafiltration

HSs Liquid organic fertilizer High HS concentration and 
desalting efficiency

Ye et al. (2020)

*Recovery from the dewatering effluent of thermally treated sludge (raw effluent: 2180 ± 82 mg HA L−1 and 1317 ± 96 mg FA L−1).
FA: fulvic acid; FO: forward osmosis; HA: humic acid; HS: humic substance; NF: nanofiltration; UF: ultrafiltration.
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Moreover, struvite precipitation is susceptible to interference 
by heavy metals and some inorganic ions such as Ca+2, K+, Fe+3 
and CO3

-2, which also reduces the purity of the recovered 
mineral. Therefore, a compromise between process control and 
cost-effectiveness is needed to ensure the product quality and the 
process sustainability with more economic benefits (Li et al., 
2019; Xiang et al., 2020). According to Kurniawan et al. (2021), 
P recovery from waste streams is hardly carried out because 
the cost of the recovered P is higher than that of natural rock-
phosphate and the current technologies have a long cost recovery 
time of up to 7 years.

Recently, techniques such as microbial electrolysis, MD and 
FO have been proposed for nutrients recovery of LFL (Qin 
et al., 2016; Xie et al., 2016; Zico et al., 2021). Considering the 
demerits of each technology, the hybridization of these pro-
cesses with existing precipitation methods could benefit nutri-
ents reclamation from waste streams. Hybrid systems could 
improve nutrient recovery efficiency and integrate different 
resource platforms, making nutrient recovery cost-effective and 

more attractive to be an option for valorization of LLMC 
streams (Xie et al., 2016).

A submerged FO process linked to struvite precipitation was 
proposed to focus on both water and nutrient extraction. Three 
arrangements were tested to determine the optimal configura-
tion about effects of struvite recovery on the FO performance 
(Figure 3): FO – calcium pre-treatment – struvite precipitation 
(A1), calcium pre-treatment – FO – struvite precipitation (A2) 
and calcium pre-treatment – struvite precipitation – FO (A3). The 
A2 system was the optimum arrangement in terms of FO perfor-
mance. Calcium pre-treatment mitigated FO membrane fouling 
and improved the purity of the obtained struvite. The submerged 
FO system efficiently recovered water from the leachate and 
reduced its volume by 37%. The recovered mineral in chemical 
precipitation had a similar crystal structure and composition to 
that of standard struvite. The proposed system recovered about 
4.34 kg struvite and 366 kg of water per m3 of treated leachate in 
optimum conditions. The net profit was estimated at 0.80 USD m−3 
(Wu et al., 2018).

Figure 3. Schematic diagram of three systems for different arrangements of FO process, calcium pre-treatment and struvite 
precipitation. A1: FO – calcium pre-treatment – struvite precipitation, A2: calcium pre-treatment – FO – struvite precipitation 
and A3: calcium pre-treatment – struvite precipitation – FO. Reprinted from Wu et al. (2018) with permission from Elsevier 
(license number: 5121960273804).
FO: forward osmosis.
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Inorganic salts

NFC and ROC from LLTPs contain valuable inorganic ions such 
as Na+, K+ and Cl−, often located at levels higher than 890, 210 
and 1280 mg L−1, respectively (Table 3). Some of these inorganic 
species like potassium ions are scarce and therefore could exist a 
driving force behind their possible extraction. Other elements 
like chloride ions could be recovered as mixed salts or even 
transformed into high add-value products. Therefore, in this sce-
nario, mineral reclamation of waste streams could make leachate 
treatment more sustainable and potentially economical (Huang 
et al., 2020; Le Dirach et al., 2005; Li et al., 2015).

At present, few published studies focus on mineral recovery 
from concentrated leachate. Most of the researches has investi-
gated mineral extraction from sea-water brines. For example, 
Mohammadesmaeili et al. (2010) applied RO and isothermal 
evaporation to manage lima-soda pre-treated concentrate from 
desalination plants. The proposed system recovered freshwater 
and produced mixed solid salt (i.e. Na2SO4 and NaCl) with poten-
tial resale value. However, it should be noted that the current 
energy demand of thermal-based technologies (7.7–72 kWh m−3) 
can hinder field applications (Panagopoulos, 2021). Therefore, 
more studies are still needed to evaluate the process economics 
considering the influence factors of each situation.

A combined process composed of cation-exchange membrane 
electrolysis and chemical precipitation was developed to simulta-
neously treat NFCs and recover K+ and Cl− ions as commercial 

by-products. The combined system exhibited excellent treatabil-
ity results and allowed efficient recovery of gaseous chlorine and 
potassium-containing struvite. However, a preliminary economic 
analysis showed that the net profit of products resale would not 
offset the system’s operating costs, which were most associated 
with the high electricity consumption of the electrochemical pro-
cess (Li et al., 2015).

In another work, through a simple chemical precipitation 
method, antichlors of Bi(III) containing oxides with quantum 
dots or two-dimensional structures were synthesized and then 
mixed with spinel ferrites (M-Fe3O4) and titanium dioxide (TiO2) 
to combine with Bi2O3 for magnetic recycling and photocatalysis 
improvement. The constructed antichlor was then used to treat 
concentrated leachate. Under optimum conditions, Cl− removal 
efficiencies ranged from 60% to 90%. The treatment of concen-
trated leachate with the antichlors led to the formation of 
Bi-precipitates that contained coated BiOCl on the residual 
Bi2O3/TiO2 structure. This by-product was recovered and further 
used to treat the dechlorinated leachate. It was concluded that due 
to the excellent photocatalytic activity of the recovered material 
under UV–vis-near-infrared irradiation, better than that of com-
mercial BiOCl in the mineralization of methyl orange, they could 
be used as a photocatalyst for the degradation of organic com-
pounds of dechlorinated wastewater (Huang et al., 2020). Figure 4 
shows a schematic illustration of the overall experiment. This 
research provides insights into chlorine removal techniques and 
the potential production of commercial photocatalytic materials. 

Figure 4. Illustration of the concentrated leachate treatment with constructed antichlors along with the recovery of Cl-related 
by-products. Reprinted from Huang et al. (2020) with permission from Elsevier (license number: 5122441160351).



Almeida et al. 279

Further research in this field could help finding alternatives for 
the valorization of membrane concentrates and other chlorinated 
effluents.

Future perspectives and management 
diagram for resource recovery

Environmental concerns and resources depletion are expected to 
accelerate greener and sustainable practices. Most of the litera-
ture findings are based on laboratory studies, showing that LLMC 
resource recovery systems are at the embryonic stage. At present, 
few technologies appear to be techno-economically applicable 
at a commercial scale, and some critical aspects (e.g. energy 
demand and process robustness) still need to be solved. 
Considering that future researches are required, we propose a 
recovery train to select the best recovery route. The proposed dia-
gram can be helpful to define and test the overall performance of 
the selected recovery route. In general, a sequential scheme for 
concentrate valorization should include volume reduction with 
the recovery of clean water, followed by extraction of add-value 
materials. As discussed earlier, different types of LFL and applied 
membrane treatment will result in different organic, salt and 

nutrient contents in the LLMC. Figure 5 shows the recovery train 
for implementing the best management route based on the main 
characteristics of LLMCs.

The recovery scheme’s first step incorporates FO for water 
reclamation. The FO process appears the most promising tech-
nology for volume reduction and water recovery from membrane 
concentrates. As FO permeate stream is not clean water but a 
diluted DS, a regeneration step is required. The hybrid FO-RO 
process is more energy efficient than standalone FO; therefore, 
coupling these processes helps save energy and reduce opera-
tional costs (Singh et al., 2021).

After volume reduction, a membrane-based process, that is, 
tight UF or loose NF, can fractionate heavily organic streams, 
recovering HSs as liquid fertilizer. A desalting process should be 
employed if either FO concentrate stream or UF/NF permeate has 
high salinity. Thermal-based technologies such as thermal evapo-
ration and crystallization are the preferred systems for the valori-
zation of saline effluents (Panagopoulos, 2021). However, high 
energy consumption and operational expenses can hamper its 
implementation in LLTPs. A renewable energy source such as 
biogas, commonly available in landfills, could produce energy 
input for desalting systems. In addition, mixed salts (e.g. NaCl, 

Figure 5. General recovery train for the selection of resource recovery route.
FO: forward osmosis; LLMC: landfill leachate membrane concentrate; NF: nanofiltration; RO: reverse osmosis; UF: ultrafiltration.
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Na2SO4, CaCl2 and MgCl2) resale can generate net profit and 
make them more economically attractive.

The tertiary step is optional if the quality of the concentrate 
stream is acceptable to be recycled back to the beginning of 
LLTP or sent to the FO-RO system for further water recovery. 
On the other hand, high nutrient loads imply that instead of 
being moved back to the beginning of LLTP, struvite could be 
precipitated out and sold as fertilizer. The treated effluent could 
then be recycled to the beginning of LLTP, reducing the efflu-
ent’s nutrient load.

The proposed recovery train intends to recommend LLMC 
management based on resource recovery approaches rather than 
treatment and disposal. Recommended technologies in the dia-
gram are not limited to those described here. For example, emerg-
ing resource recovery systems have been tested in laboratory 
studies, and further research on pilot scale is expected for its 
implications and economic feasibility. Bioelectrochemical sys-
tems (BESs) have grabbed attention for simultaneous nutrient 
reclamation and energy production from leachate (Iskander et al., 
2018a; Qin et al., 2016). Iskander et al. (2017a) demonstrated 
that a BES producing 0.123 kWh m−3 could treat LFL. Hybrid 
processes involving BESs coupled to FO might be promising to 
recover both water and chemicals, improving FO efficiency with 
less energy consumption. Low-cost phytoremediation systems 
can be implemented as a polishing step for nutrients and heavy 
metals removal depending on the concentrate composition. 
Harvested biomasses are useful for bioenergy production (biogas, 
biofuels, combustion for energy recuperation and heating) 
(Gomes, 2012; Wijekoon et al., 2021). Thus, energy recovery can 
further improve the proposed system’s overall economic and 
commercial viability.

The following aspects are recommended during the assess-
ment of the defined resource recovery framework: (1) Material 
balance aiming to describe the resource recovery route in a quan-
titative way before its implementation; (2) detailed analysis of 
product quality, applicability and local market demand for the 
recovered material and (3) evaluation of potential impacts of the 
management route through a life cycle analysis perspective.

Conclusions

The state-of-the-art of current research about membrane con-
centrates from LLTPs was critically examined in this article. 
Although LLMC recycling into the landfill body is the conveni-
ent management option, a more sustainable strategy is recom-
mended. A general recovery train for implementing the best 
LLMC recovery route was proposed within this context. Low 
energy demand and membrane fouling propensity have made 
FO indispensable for volume reduction and water reclamation 
of concentrate streams. Material extraction (e.g. fertilizers and 
inorganic salts) from the FO-treated effluent could generate net 
profit and increase the system’s economic feasibility. However, 
few technologies appear to be techno-economically applicable 
at a commercial scale, and some critical aspects (e.g. energy 

requirements and process robustness) still need to be solved. 
Future studies should focus on developing novel integrated sys-
tems combining benefits of each recovering technology, scale-
up, techno-economic evaluation of recovering processes and 
assessment based on a life cycle perspective (i.e. environmental 
impacts and carbon footprint). Besides, the extraction of non-
conventional add-value products (e.g. catalysts and bio-fuels) 
via existing or novel technologies is a promising area for future 
investigations.
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