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Abstract—The paper deals with a position sensorless
control for synchronous motor drive with an ease tuning
procedure and a reduced number of tunable parameters.
The rotating high frequency (HF) signals injection is imple-
mented and the elliptical shape of the HF induced current
trace is fitted by means of the least square (LS) algorithm.
The ellipse tilt is related to the rotor position and the latter
is estimated by processing the fitted coefficients of the
ellipse mathematical equation. The proposed LS algorithm
processes the measured currents, without the need to
filter them as occurs in conventional injection methods.
Furthermore, no motor parameters are required to tune
the proposed rotor position observer. The method was
validated throughout several experimental tests performed
on an interior permanent magnet (IPM) synchronous motor.

Index Terms—ellipse fitting, high-frequency (HF) rotating
injection, interior permanent magnet (IPM) motor, posi-
tion observer, sensorless control, synchronous reluctance
(SynR) motor

I. INTRODUCTION

SYNCHRONOUS motors are widely adopted in applica-
tions where high dynamic performance and high efficiency

are demanded. To achieve a satisfactory motor control, the
accurate rotor position is required and is usually obtained by
means of a mechanical sensor. However, the sensor and its
cabling reduce the drive reliability and increase the system
price and the motor frame. At standstill and in low speed
region, fundamental signals are null or their signal-to-noise
ratio is so small that ensuring a reliable estimate is trouble-
some. Observers based on fundamental components cannot be
effectively exploited [1], [2]. Rotor position can be detected
by processing the high frequency (HF) currents induced by HF
voltage signals superimposed to the fundamental components,
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provided that the rotor anisotropy is detectable [3]–[5]. HF
injection methods can be classified according to the reference
frame in which HF signals are injected. HF voltage injection
into the stator reference frame is usually referred to as rotating
signal injection [4], [6]–[8]. Techniques that rely on a HF
voltage signal injected in one of the estimated synchronous
reference frame axis, usually the d–axis [3], [5], [9], [10], are
named as pulsating signal injection.

Regardless of the reference frame chosen for HF voltage
injection, position estimation algorithms are based on the
modulation/demodulation theory, also known as heterodyne
principle. Rotating signal injection schemes demodulate the
negative–sequence carrier current through a synchronous refer-
ence filter [11] whereas pulsating injection techniques demod-
ulate the measured HF pulsating current along the estimated
q-axis [10]. The rotor position is retrieved by means of an
observer which is fed by the demodulated signal. The mod-
ulation/demodulation stage has to be accurately described to
design a proper observer which guarantees the desired perfor-
mance. It is not a trivial task and it has been effectively carried
out only for the pulsating signal injection scheme where the
whole estimator was described and experimentally verified
using exclusively the Laplace theory [3]. The heterodyne
principle leads to a frequency shift of filters transfer function
(TF) which is usually neglected by description methods which
blend together time and Laplace-domain expressions.

An accurate estimator modelling allows for achieving the
desired observer performance by means of a tailored observer
regulator and for keeping the control bandwidth independent
with respect to the motor working point [12]. The static gain of
the observer, then the closed–loop observer bandwidth, varies
as a function of motor inductances, thus motor parameters
must be properly identified to compensate their variations
[13]. Neglecting compensation or estimation errors, undesired
dynamic behaviour of the observer, and sometimes, stability
issues could arise. It is worth noting that motor saturation is
more pronounced with Interior Permanent Magnet (IPM) and
Synchronous Reluctance (SynR) motors which are inherently
the most suitable motors for the HF rotor position estimation
thanks to their high rotor anisotropy [14]. HF-based sensorless
schemes are affected by an estimation error due to cross-
differential inductance, which could heavy affect the control



performance. For a stable and reliable estimator behaviour,
compensation techniques must be implemented [5], [15], [16].

The demodulation process recovers the baseband signal by
shifting and filtering the spectrum of the measured currents.
High pass filters (HPF)s extract the HF current components
which are demodulated to get the baseband signal. In addition
to the baseband signals, the demodulated signals contain
sinusoidal terms at twice the modulation frequency which are
usually removed thanks to a low pass filter (LPF) [4], [9], [10].
Moreover, when the rotating signal injection is implemented,
a synchronous reference filter should be implemented to
remove the positive–sequence carrier current [11]. The cut–off
frequencies and the order of filters must be properly chosen as
a trade–off between filtering effectiveness and invasiveness on
the observer performance, which are opposing objectives. The
thorny issue of filters tuning is partially overcome by square
wave injection techniques which replace the conventional
injected sinusoidal signal with a square wave one [17]–[19].
The high injection frequency makes it possible to simplify the
demodulator by eliminating all filters except those that extract
HF signals from the measured currents. On the other hand,
the higher the injection frequency, the lower the signal-to-
noise ratio of the HF components with respect to the measured
currents, making accurate measurements crucial.

In this paper, a sensorless algorithm is proposed with
the aim of overcoming the above mentioned critical issues
related to the heterodyne-based sensorless techniques, namely,
a precise observer modelling, an accurate motor parameter
knowledge and the filters design. The rotating injection scheme
is exploited and the rotor position is retrieved via a direct
fitting of the measured current samples using the least square
(LS) algorithm. The induced HF current footprint has an ellip-
tical shape and its tilt is related to the rotor position [6], [7]. To
ease the observer design and to enhance the observer dynamic
with respect to [6], [7], required HPFs to centre the current
ellipse on the axes origin are removed. It is worth stressing that
the lack of filters has a twofold advantage, namely it simplifies
the development of the estimation algorithm and makes its
mathematical description smooth. The performance of the
proposed sensorless algorithm is independent from the motor
parameter knowledge in contrast to [4], [5], [9] since motor
parameters only affect the current trace size, not its tilt which is
related to the rotor position. An accurate machine identification
is no longer required. Finally, the proposed estimator is time–
domain defined thus its modelling is easier and the observer
regulator tuning is straightforward.

This paper enlarges the theoretical and experimental results
reported in [20]. An in-depth theoretical analysis, a compari-
son and more severe experimental results are reported. The
paper is organised as follows. The theoretical background
of the rotating injection sensorless technique is described in
Section II. The proposed algorithm is thoroughly explained in
Section III. The observer design is exhaustively discussed and
a regulator scheme is described in Section IV. A complete set
of experimental tests is reported in Section V, accompanied
by an in-depth discussion of the results.

II. THEORETICAL BACKGROUND

A. Motor equations

The voltage balance equations of a synchronous motor in
the stationary reference frame are:

uα = Rsiα +
dλα(iα, iβ , ϑme)

dt

uβ = Rsiβ +
dλβ(iα, iβ , ϑme)

dt

(1)

where uα, uβ are the stator voltages, iα, iβ are the stator
currents, λα and λβ are the flux linkages, Rs is the stator
resistance and ϑme = pϑm are electrical position, pole pairs
and mechanical position, respectively. It is worth highlighting
the explicit dependence of the flux linkages on the stator
currents and on the rotor position in (1). The flux linkages can
be described as a function of the apparent motor inductances
Lα and Lβ and the permanent magnet (PM) flux linkage Λmg,
namely:

λα(iα, iβ , ϑme) = Lα(iα, iβ , ϑme)iα + Λmg cos(ϑme)

λβ(iα, iβ , ϑme) = Lβ(iα, iβ , ϑme)iβ + Λmg sin(ϑme).
(2)

Replacing (2) in (1), the flux linkage derivatives with respect
of time result:

dλα
dt

= lα
diα
dt

+lαβ
diβ
dt

+ωme

(
dLα
dϑme

iα−Λmg sin(ϑme)

)
dλβ
dt

= lαβ
diα
dt

+lβ
diβ
dt

+ωme

(
dLβ
dϑme

iβ+Λmg cos(ϑme)

) (3)

where lα, lβ and lαβ are the differential motor inductances. To
lighten the mathematical notation, the explicit stator currents
and rotor position dependence have been hidden. In order
to exploit the inductances properties of synchronous motors,
differential inductances in the stationary reference frame can
be rewritten as a function of the meaningful differential
inductances ld, lq and ldq defined in the dq rotating reference
frame fixed to the rotor as follow:

lα = lΣ + l∆ cos(2ϑme)− ldq sin(2ϑme)

lβ = lΣ − l∆ cos(2ϑme) + ldq sin(2ϑme)

lαβ = l∆ sin(2ϑme) + ldq cos(2ϑme)

(4)

where lΣ
4
= (ld + lq)/2 is the dq differential inductance mean

value and l∆
4
= (ld − lq)/2 is the dq differential inductance

semi-difference value. Still, differential inductances ld, lq and
ldq depend on the operating point as much as the flux linkages
in (1).

B. Rotating voltage estimator

The rotating injection sensorless techniques retrieve the
rotor position by injecting two HF sinusoidal voltage signals
in the stationary reference, i.e.:

uh,α = Uh cos(ωht) uh,β = Uh sin(ωht) (5)

where Uh and ωh are the magnitude and the pulsation of the
injected sine waves. The HF signals (5) are superimposed
to the fundamental voltage reference (U∗α, U

∗
β) generated



by current controllers. HF currents induced by the voltage
injection are:

ih,α=Is

(
lΣ sin(ωht)+

√
l2∆+l2dq sin(2(ϑme−ϑ̄)−ωht)

)
ih,β=−Is

(
lΣ cos(ωht)+

√
l2∆+l2dq cos(2(ϑme−ϑ̄)−ωht)

)
(6)

where Is
4
= Uh/(ωh(ldlq− l2dq)) and ϑ̄ = 0.5 atan2(−ldq, l∆).

At the injection frequency, the resistive voltage drop is negli-
gible with respect to the inductive one, whereas the motional
voltage terms are disregarded due to the low operating speed.
The currents in (6) are composed of a positive–sequence com-
ponent, rotating at the pulsation ωh, and a negative–sequence
one. The former contains no information about the rotor
position whereas the latter one can be exploited to estimate the
electromechanical rotor position. To retrieve the rotor position
from the negative–sequence component of (6), heterodyne-
based schemes isolate the desired current harmonics by means
of filters. Hence, the spatial information contained in the phase
of the negative–sequence component can be extracted by using
a tracking observer.

The error signal ε which steers the rotor position observer
can be obtained by demodulating the HF currents (6) as follow:

ε = ih,α cos(−ωht+ 2ϑ̂me)− ih,β sin(−ωht+ 2ϑ̂me)

= Is

√
l2∆ + l2dq sin(2(ϑme − ϑ̂me − ϑ̄))

≈ 2Is

√
l2∆ + l2dq(ϑme − ϑ̂me − ϑ̄)

(7)

where ϑ̂me is the estimated rotor position and the sine function
is approximated with its argument since a small estimation
error is assumed. Finally, driving the demodulated signal (7)
to zero by means of an observer, the rotor position is estimated
and it can be exploited for the motor control. Let ϑ̃me =
ϑme − ϑ̂me be the estimation error, it is worth noting that the
stable point of the observer is affected by an estimation error
ϑ̃me = ϑ̄. The observer is unable to accurately track the rotor
position due to the non–zero cross–differential inductances ldq

since ldq 6= 0 entails ϑ̄ 6= 0.

III. ELLIPSE FITTING

The proposed method retrieves the rotor position by ex-
ploiting the trajectory described by the HF induced currents in
the stationary reference frame. HF currents in (6) describe an
elliptical trajectory centered on the fundamental current vector
(Iα, Iβ) and rotates at the electrical motor speed ωme. Its major
axis tilt corresponds to the electrical rotor position. In order
to retrieve it from the sampled currents, [6], [7] recursively
fit the best ellipse curve centered on the axes origin over
the sampled currents. Analogously to demodulation–based
methods, at first the measured currents are filtered by means of
a HPF to get a zero–centered ellipse. Then, the recursive least
square (RLS) algorithm is used to estimate the ellipse equation
coefficients that best fit the measurements. The approach in
[7] is computationally efficient but its tuning is troublesome
since the optimal forgetting factor in the RLS varies with the
operating motor speed and it can be set only through a trial

and error approach. Moreover, HPFs are not able to keep the
ellipse trajectory centered on the origin during transients with
a consequent worsening of the rotor position estimation.

The proposed method overcomes the above mentioned flaws
by fitting the current footprint with the implicit ellipse equa-
tion, without high–pass filtering. The implicit ellipse equation
is:

ai2α + biαiβ + ci2β + diα + eiβ = f (8)

where Θ = [a, b, c, d, e, f ]T is the vector of coefficients that
describes an ellipse in the αβ reference frame. It is worth
remembering that the αβ currents in (8) are composed by
both the fundamental currents (Iα, Iβ) and the HF induced
ones (ih,α, ih,β). The relationship between ellipse coefficients
Θ and the motor parameters is as follows:

a = l2Σ + l2∆ + l2dq + 2lΣ

√
l2∆ + l2dq cos(2(ϑme − ϑ̄))

b = 4lΣ

√
l2∆ + l2dq sin(2(ϑme − ϑ̄))

c = l2Σ + l2∆ + l2dq − 2lΣ

√
l2∆ + l2dq cos(2(ϑme − ϑ̄))

d = −(2aIα + bIβ) e = −(2cIβ + bIα) (9)

f =
U2

h

ω2
h

− aI2
α − bIαIβ − cI2

β

=
U2

h

ω2
h

− (l2Σ + l2∆ + l2dq)I2 − 2lΣ

√
l2∆ + l2dqI

2 cos(2ϑ̄)

where I =
√
I2
α + I2

β . See the Appendix for the proof.
The coefficients [a, b, c] are exclusively function of motor
inductances and rotor position whereas [d, e, f ] also depend
on fundamental currents. It is worth noting that the ellipse
tilt and, in turns, the rotor position is independent to the HF
currents magnitude and to the fundamental currents, provided
the ellipse trace is detectable. Hence, the rotor position ϑme

can be easily estimated by the ellipse coefficients [a, b, c], as
follow:

ϑme − ϑ̄ =
1

2
atan

b

a− c
(10)

where the rotor position differs from the actual one by the
angle ϑ̄, as in the demodulation–based estimation algorithms
(see Section II-B). A HF current–based estimation algorithm
suffers of the estimation error induced by the cross–differential
inductance and it could lead to stability issues of the sen-
sorless motor drive. To overcome this important flaw, some
compensation methods have been proposed [5], [15] or the
pulsating q-flux linkage can be demodulated to assure zero
tracking error [9]. Nevertheless, an in-depth analysis and its
compensation overcomes the purposes of this paper which
describes a new position estimation technique. From now on,
to ease the dissertation, the cross–differential inductance error
ϑ̄ will be neglected, i.e. ldq = 0 is assumed.

A. Least Square Algorithm

The proposed position estimation technique exploits the
least square (LS) algorithm to estimate the ellipse coefficients
Θ by minimising the sum of the squared distance between
the measured currents and the fitting model. The LS algorithm



solves overdetermined systems, hence N consecutive current
samples must be stored and processed together to find the
ellipse coefficients. N consecutive time step of (8) can be
rearranged in the matrix form as:

HΘ = y (11)

where:

H =


i2α,1 iα,1iβ,1 i2β,1 iα,1 iβ,1
i2α,2 iα,2iβ,2 i2β,2 iα,2 iβ,2

...
...

...
...

...
i2α,N iα,N iβ,N i2β,N iα,N iβ,N

 y =


f1

f2

...
fN

 .
(12)

The vector y is unknown since it is a function of motor
inductances (see (9)). To ease the estimation process, (11) can
be normalised with respect to y = fI which is considered
constant for the N stored current samples, since the small
current control bandwidth of a sensorless drive does not allow
for fast current variations. Hence, defining the new normalised
vector of ellipse coefficients ΘN = Θ/f , an its estimation can
be obtained as follow:

Θ̂N =
(
HTH

)−1
HT I. (13)

The sign of the term f depends on the motor operating point
since motor inductances saturate and fundamental current
vector magnitude varies. The estimated vector Θ̂N sign is
affected by the sign of f and, in turn, affects the rotor position
estimation (10) with a π–offset if f sign would be negative. To
overcome this issue, the normalised [â, ĉ] ellipse coefficients,
i.e. [âN , ĉN ] = [â, ĉ]/f̂ , must be ensured positive, hence:

if (âN < 0) then Θ̂N = −Θ̂N (14)

as [âN , ĉN ] are always concordant. Finally, it is worth noting
that the rotor position can be retrieved by using the estimated
vector Θ̂N since (10) is not affected by the normalisation
process.

The LS algorithm solves the overdetermined problem stated
in (11). To guarantee an accurate coefficients estimation, the
number of stored consecutive current samples processed by
the LS algorithm plays a crucial role and it has to be chosen
carefully as a trade–off between several requirements. First
of all, the stored samples number N must ensure that the
underlying problem (11) is, at least, a determined problem, i.e.
N must be equal to or greater than the number of unknown
parameters. Moreover, the more points are saved, the greater
the available current footprint on which to fit the ellipse
coefficients and the smaller the effects due to measurement
noise. On the contrary, if the rotor is moving, the stored
samples belong to several ellipse trajectories. The equation (8)
describes a fixed ellipse in the stationary reference frame and
it is related to a static position. It cannot take into account a
rotor movement, hence the rotor position estimation accuracy
may deteriorate. This issue will be addressed in Section III-B
and a compensation method will be proposed. Finally, a large
number of stored samples increases the computational burden
demanded to estimate the rotor position and may pose some
implementation issues on a real–time control board. As a rule
of thumb, the number of stored samples N can be chosen
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Fig. 1: The non–zero speed effect on the ellipse trajectory
and the compensation method are depicted. Diamonds show
ten consecutive iαβ current samples, each of which lies on a
different ellipse corresponding to a rotor position. icαβ shows
the compensated measured currents. The dashed blue and
red trajectories depict the estimated ellipses by fitting the
compensated samples and the measured ones, respectively.

as the maximum between the number of normalised ellipse
coefficients, i.e. 5, and the rounded towards infinity of the
ratio between the sampling frequency fs and the injection
frequency fh = ωh/(2π). It is worth noting that the latter
condition allows for describing an entire ellipse trajectory.

B. Compensation of ellipse distortion due to non-zero
speed

At standstill, the HF currents (6) draw a tilted ellipse in
the αβ reference frame. It can be fitted with the implicit
ellipse equation (8) by means of the LS algorithm described
in Section III-A and the rotor position is recovered. However,
when the motor is running, the stored current samples belong
to several ellipse trajectories, each describing a different rotor
position. The ellipse equation (8) is not able to properly de-
scribe the actual current footprint and the estimation accuracy
degrades. It downgrades more and more as the rotor speed
increases and this flaw is more emphasised when a large num-
ber of current samples are stored. It worth remembering that
injection–based sensorless techniques operate in the low speed
region and, considering the high frequency of the injected
voltage signals, this issue has a marginal effect. However, it
can be effectively compensated for reducing its detrimental
effect on the motor control.

The proposed compensation method updates the N consec-
utive stored current samples to the actual rotor position by
assuming a constant motor speed. The n-th current sample is
forward rotated in the stator reference frame by the electric
angle that the motor has swept in (n − 1) sampling time Ts,
namely:

icα,n= iα,n cos ((n−1)ω̂meTs)−iβ,n sin ((n−1)ω̂meTs)

icβ,n= iα,n sin ((n−1)ω̂meTs)+iβ,n cos ((n−1)ω̂meTs)
(15)



where icα,n and icβ,n are the compensated current samples and
n ∈ [0, N − 1]. A smaller n-index indicates a newer sampled
current. Fig. 1 shows an example of the proposed compen-
sation method that was carried out at ωme = 20π rad/s. The
fundamental current vector was Iαβ = 2 A and the electrical
rotor position was set to ϑme(k)=0.8042 rad. Diamond marks
represent N=10 consecutive current samples which describe
an entire ellipse curve. Each mark belongs to a different
rotor position, represented with the corresponding grey ellipse.
The center of each ellipse is depicted as well. To make the
figure more readable, only four ellipses associated to four rotor
positions are drawn. The estimated ellipse with the measured
samples is shown with the dash-dotted line. Its tilt and its
shape are misaligned with respect to the actual grey curves,
which leads to a rotor position estimation ϑ̂me = 1.0887 rad
that corresponds to an error of ϑ̃me = −0.2845 rad.

The ellipse distortion due to a non-zero rotor speed induces
a considerable estimation error. The proposed compensation
method perfectly estimates the rotor position, as depicted in
Fig. 1. Circle marks show the compensated current samples
icαβ with (15) and the dashed line is the fitted ellipse on icαβ
points. All marks lie on the ellipse curve associated to the most
recent rotor position and the fitted curve is overlapped to it.
The estimated rotor position is coincident with the real one,
i.e. ϑ̂me(k) = 0.8042 rad. Hence, the updated current samples
icαβ can replace the actual measurement iαβ in the LS matrices
to obtain an error–free rotor position estimation. Finally, it is
worth highlighting that the compensation strategy is based on a
steady-state assumption, but is also applied during transients.
The underlying hypotheses can still be assumed due to the
reduced control bandwidth of sensorless schemes which do
not allow fast transients and the low operating speeds.

C. Additional estimator feature
1) Ellipse centre estimation: The proposed algorithm pro-

cesses the measured currents without any filtering. The el-
liptical trajectory due to the HF currents is centred in the
fundamental current vector (Iα, Iβ) in the stationary reference
frame. The fitting equation (8) fully describes the current
footprint and the ellipse centre can be retrieved by the fitted
ellipse coefficients Θ̂N , as follow:

Îα =
b̂ê− 2ĉd̂

4âĉ− b̂2
Îβ =

b̂d̂− 2âê

4âĉ− b̂2
(16)

where (Îα, Îβ) is the estimated ellipse centre.
2) Measurement errors sensitivity analysis: Sensitivity

analysis with respect to current measurement errors, namely,
offset, gain and quantisation errors, is carried out. Only current
sensor gain mismatches can lead to a relevant estimation error
since the ellipse tilt, its shape and its center are affected.
For large gain mismatches, the anisotropy of the rotor may
even disappear. However, sensors are usually designed to show
a linear and constant behaviour in the entire measurement
range. Offset errors affect only the ellipse center, then position
estimation is insensible. Finally, the proposed algorithm is
robust against quantisation errors. Quantisation error can be
modelled as a random quantity added on ideal current values,

so the LS algorithm by simultaneously processing N current
samples is able to extract their mean value, neglecting it.

IV. REGULATOR TUNING

In conventional sensorless drives, the position estimator
performance relies on the observer tuning, which has to ensure
a fast and stable position estimation and a high disturbance
rejection capability [3]. An accurate motor magnetic model
is mandatory to tune the observer regulator and to achieve
satisfactory performance of the sensorless drive.

The proposed method overcomes this flaw and it no requires
the motor parameters knowledge. The ellipse fitting only
processes the measured currents and estimate the best elliptical
trajectory on the available data, without any tunable parameter.
Nevertheless, the rotor position estimation with (10) only
varies in the range [0, π] due to the ellipse symmetry over
π radian. It is a noisy estimation since is obtained by means
of a trigonometric function with an estimated coefficients ratio
as argument. In order to retrieve a smoother and in the proper
range [0, 2π] rotor position estimation, the sine and cosine of
the estimated electrical position can be computed starting from
the ellipse coefficients Θ̂, as follow:

cos(2ϑ̂me)=
â−ĉ√

b̂2+(â−ĉ)2

sin(2ϑ̂me)=
b̂√

b̂2+(â−ĉ)2

(17)

which feed a quadrature-PLL (Q-PLL), shown in Fig. 2. It
recovers the rotor position ϑ̂me from the trigonometric func-
tions and acts as a low–pass filter smoothing the estimation.
Detrimental effects due to electrical drive non-idealities and
current harmonics are kept at bay. A trade off between a
smoother estimate and the closed–loop observer bandwidth
must be met.

The relationship between the estimated rotor position ϑ̂me

by means of the LS algorithm and the PLL output, namely
ϑ̂′me, is a constant unitary gain due to the fact that the PLL
input vector, namely the sine and cosine components of the
estimated rotor position, has a constant unitary amplitude.
Compared to the classical demodulation approaches, no motor
parameters affect the Q-PLL dynamic and its input–output
transfer function W (s) is:

W (s) =
ϑ̂′me(s)

ϑ̂me(s)
=

REG(s)
s + REG(s)

(18)

where s is the Laplace variable and REG(s) stands for the Q-
PLL regulator. If a proportional–integral controller is chosen as
the regulator, its parameters can be set to place the closed–loop
poles to achieve a critical damping factor ξpll = 1/

√
2 and

a desired natural pulsation ωpll. To meet the aforementioned
requirement, the proportional Kp and integral Ki can be
chosen as:

Kp =
√

2ωpll Ki = ω2
pll. (19)

From now on, to ease the notation, the Q-PLL output ϑ̂′me

will be marked without the single quote mark, i.e. ϑ̂me. Fig. 3
depicts the whole proposed sensorless control scheme.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed position estimator algorithm was verified
throughout an extensive experimental stage. The tests were
performed on an IPM motor, whose parameters are reported
in Table I. The injection signal quantities are listed in Table II.
Current controllers were designed to achieve a bandwidth of
100 Hz. The sampling frequency was set equal to the switch-
ing one at 10 kHz and inverter dead-time was compensated
[21]. The current samples number N was set to 10 as it
allows describing an entire ellipse revolution. The algorithm
was implemented on a dSpace MicroLabBox platform. The
execution time of the whole electric drive control algorithm,
including the estimation method, current and speed regulators,
and space vector modulation, was equal to 27.5 µs for the
proposed algorithm, whereas it was equal to 23 µs for the
comparative method [4]. In the following, all the results are
expressed in per unit (p.u.) quantity. Current, speed and torque
are normalised with respect to their nominal values.

In order to prove the effectiveness of the proposed sensorless
control, three different bunch of tests were carried out. The
first tests were aimed at verifying the algorithm that compen-
sates the ellipse distortion due to a non-zero speed and the
estimation of the ellipse centre. These tests are reported in
Section V-A and Section V-B, respectively. A second bunch
of tests were designed to verify the dynamic performance
of the proposed sensorless algorithm, during speed and load
transient, and they are reported in Section V-C. Finally, the
comparison with a demodulation–based scheme [4] is reported
in Section V-D. In all experimental test, the motor under test
was speed controlled and both current and speed loops used
the estimated quantities. The active load was torque controlled.

A. Ellipse distortion compensation

A non-zero rotor speed spreads the N sampled current
points over a trajectory which does not describe an ellipse
with detrimental effects on the rotor position estimation. The
trajectory distortion is increasingly pronounced as the rotor
speed and the magnitude of the current vector increase. In
order to prove the effectiveness of the proposed compensation

TABLE I: Plate data of the motor under test

Parameter Symbol IPM

Resistance Rs 1.5 Ω
Pole pairs p 2
d-axis inductance ld 25 mH
q-axis inductance lq 110 mH
Permanent magnet Λmg 0.145 V s
Nominal current IN 3.9 A
Nominal torque TN 2.4 N m
Nominal speed ωN 4000 rpm

TABLE II: Sensorless parameters

Parameter Symbol

Injection pulsation ωh 2π1 000 rad/s
Injection magnitude Uh 60 V

algorithm described in Section III-B, a test was carried out
in the most critical conditions, namely high speed and rated
torque. It is worth noting that the speed was set to 10% of the
rated motor speed since it is considered the maximum speed
at which injection-based schemes operate.

Fig. 4 depicts two sequences of consecutive measured cur-
rent samples obtained with a time delay of 6 sampling periods.
Full diamonds are common current samples in both subfigures.
Despite the 10 measured samples should describe an entire
ellipse rotation, an arc of ellipse can be grasped in Fig. 4a
whereas the measured samples resemble an italic letter c in
Fig. 4b. This current footprint distortion is due to a non-zero
rotor speed, as each sample belongs to an elliptical trajectory
relative to a different rotor position. Thus, position estimation
is affected with detrimental effects. The tilt of the dash dotted
estimated ellipse in Fig. 4a differs considerably from the one
in Fig. 4b even if the rotor position is almost unchanged
(the time span between the two current sequences is 0.6 ms,
corresponding to 37.7·10−3radel ). This estimation error leads
to a position estimate that periodically varies around the actual
value and it can be noticed in Fig. 5 where the compensation
algorithm is disabled. With the compensation method disabled,
the estimation error considerably oscillates and a constant
offset appears.

The proposed algorithm compensates the speed–distortion
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Fig. 4: Two sequences of 10 current samples spaced by 6
sampling periods. Compensated samples are reported, as well.
Full diamonds are common samples in both time instants. Dot-
dashed and dashed trajectories show the estimated ellipses.
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Fig. 5: Proving of the compensation algorithm effectiveness.
At t=0.5 s, the compensation algorithm was disabled. Position
estimation error, motor speed and stator currents are reported,
as well.

effect on the measured current samples. In both subfigures
of Fig. 4, compensated samples describe an entire elliptical
trajectory and points are well approximated by the fitted
dashed curve. Moreover, in both Fig. 4a and Fig. 4b the
fitted ellipses tilt are very close as expected, while the non–
compensated ellipses tilts are quite different. Its consequence
is a more accurate and less oscillating rotor position estima-
tion, as Fig. 5 depicts. It is worth noting that a more precise
position estimation positively affects both the estimated motor
speed (Fig. 5b) and the motor currents (Fig. 5c and Fig. 5d)
and, in turn, the overall electric drive performance.

B. Fundamental Current Estimation - Ellipse Centre
The proposed algorithm estimates the ellipse centre (Iα, Iβ)

with respect to [6], [7] as well as the rotor position. Fig. 6
depicts the first two electrical periods of measured currents
recorded during the test described in Section V-A. They are
almost sinusoidal waves as the motor is rotating at 10%ωN , but
with some additional harmonics. Superimposed to fundamental
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Fig. 6: Measured stator currents and fundamental estimated
ones. An enlargement of the initial period is shown, as well.

components, there are the induced HF currents. The estimated
fundamental currents (Îα, Îβ) track with a good accuracy the
measured currents regardless of current harmonics, filtering
out the oscillating components without a phase lag.

C. Dynamic Performance Assessment

In this section, system performance was evaluated by means
of two tests (see Fig. 7), performed at standstill and at 10% of
the rated motor speed. In the non-zero speed case, the speed
reference varied as a 0.1-second ramp to reach the steady state
value. Moreover, to evaluate the control capability of reversing
the motor speed, the speed reference was changed according
to a 0.1-second slope ramp at t=2 s. Fig. 7a reports measured
and estimated motor speed for both tests, as well as the speed
reference. In both tests, a load torque double than the rated
one was applied to the motor with a ramp of 0.05 second
at 1 s. The measured torque is depicted in Fig. 7b for both
tests. The discrepancy in measured torque according to speed
sign has to be attributed to the viscous friction. The generated
torque must balance the active load torque, which is constant,
and the viscous friction one, which varies accordingly to the
motor speed. The performance is evaluated by means of the
position estimation error ϑ̃me, shown in Fig. 7c. Finally, d- and
q-currents are reported in Fig. 7d and Fig. 7e, respectively.

The dynamic performance of the proposed sensorless
scheme is satisfactory, both at zero and low motor speed. Fast
speed reference and load torque transients were applied to
the motor. Motor speed properly followed its reference and
stator currents shown no undesirable oscillation. The position
estimation error is always smaller than 0.25 rad, even during
transients. At twice the rated load, the estimation position error
was almost negligible as it is equal to ϑ̃me = −0.023 rad, as
the chosen motor shows a reduced cross–differential induc-
tance ldq. By computing the position error ϑ̄ due to motor
saturation at the operating point, it is equal to ϑ̄ = −0.028 rad
which is comparable to the obtained experimental error.

D. Method comparison

The performance comparison with an heterodyne–based
estimator scheme [4] is hereafter reported. Fig. 8 shows two
tests with a speed and torque reference profile equal to the
one used in Section V-C. To get a fair comparison, speed and
current regulators were unaltered in both tests and observers
were tuned to achieve the same bandwidth. Measured speeds
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Fig. 7: Speed, torque, position estimation error and stator
currents of dynamic tests. Two tests are reported with two
different operating speeds.

and torques are depicted in Fig. 8a and Fig. 8b, respectively.
The proposed method shown a slightly faster behaviour. Speed
tracked its reference with a higher accuracy and speed re-
sponse to load disturbance was faster. Moreover, it is worth
noting that when the load was released and the speed reference
was returned to zero, the proposed method exhibited a smooth
behaviour whereas the other one showed an oscillating trend,
which implies that some instability problem was arising. The
oscillating behaviour could be further noted in the estimation
error and in stator currents, which are reported in Fig. 8c,
Fig. 8d and Fig. 8e. Finally, the integral time square error
(ITSE), defined in (20), of the estimation position error for

both method is reported in Fig. 8f.

ITSE =

∫ t

0

ϑ̃2
me(t)dt (20)

The proposed scheme outperformed the other method in terms
of dynamic performance and in the ITSE-sense.

VI. CONCLUSIONS

The paper reports a novel rotor position estimation algo-
rithm based on the rotating signal injection scheme. Neither
HPF nor LPF are necessary in the observer algorithm. The
induced HF currents trace an elliptical trajectory centred on the
fundamental current vector. The HF current footprint is fitted
on the implicit ellipse equation by means of the LS algorithm
and the rotor position is directly retrieved. The rotor position or
its sine and cosine components are computed by manipulating
the estimated ellipse coefficients. A compensation method is
proposed to improve the rotor position estimation since a non-
zero rotor speed bends the theoretical HF current elliptical
footprint. Finally, a Q-PLL is implemented to filter the es-
timated rotor position. Its design was thoroughly discussed
and a tuning procedure was proposed. The main advantages
compared to heterodyne-based methods are:
- Estimator dynamic easy to describe, as it is defined entirely
in time–domain. Modelling issues related to the modula-
tion/demodulation process are overcome. In turns, an accurate
modelling helps to design a more effective speed regulator.
- Estimator open–loop gain is insensible to motor parameters.
This advantage is useful when considering general–purpose
applications, where the motor connected to the inverter is
unknown and self–commissioning techniques are usually re-
quired.
- It is easy to implement and tune.

An extensive experimental stage was carried out to verify
the performance of the proposed sensorless control, both at
standstill condition and at no-zero speed. The sensorless drive
was able to operate at the rated motor torque.

APPENDIX

The HF currents (6) can be rearranged to get the modulated
signals zc = cos(ωht− ϑme) and zs = sin(ωht− ϑme) as:

zc =
ωh

Uh

(
(lq sin(ϑme)− ldq cos(ϑme))ih,α−

((lq cos(ϑme) + ldq sin(ϑme))ih,β
)

zs =
ωh

Uh

(
(ld cos(ϑme)− ldq sin(ϑme))ih,α+

((ld sin(ϑme) + ldq cos(ϑme))ih,β
)
.

(21)

The HF currents can be rewritten as the difference between
the measured currents (iα, iβ) and their mean value (Iα, Iβ)
as:

ih,α = iα − Iα ih,β = iβ − Iβ . (22)

Replacing (22) in (21) and exploiting the Pythagorean identity
z2

c + z2
s = 1, the ellipse coefficients (9) are collected by

comparing the obtained equation with the ellipse one (8).
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