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How the hand has shaped sign 
languages
Michele Miozzo1* & Francesca Peressotti2,3

In natural languages, biological constraints push toward cross-linguistic homogeneity while linguistic, 
cultural, and historical processes promote language diversification. Here, we investigated the effects 
of these opposing forces on the fingers and thumb configurations (handshapes) used in natural sign 
languages. We analyzed over 38,000 handshapes from 33 languages. In all languages, the handshape 
exhibited the same form of adaptation to biological constraints found in tasks for which the hand has 
naturally evolved (e.g., grasping). These results were not replicated in fingerspelling—another task 
where the handshape is used—thus revealing a signing-specific adaptation. We also showed that the 
handshape varies cross-linguistically under the effects of linguistic, cultural, and historical processes. 
Their effects could thus emerge even without departing from the demands of biological constraints. 
Handshape’s cross-linguistic variability consists in changes in the frequencies with which the most 
faithful handshapes to biological constraints appear in individual sign languages.

Natural languages allow humans to communicate an infinite number of ideas accurately and fast. Remarkably, 
this feat is achieved by organs like the brain, the tongue or the ear not originally designed for language but 
coopted for it. Biologically, natural languages are subject to the limitations of neuronal computation and of the 
systems enabling their production and comprehension. Anatomical, physiological, and neuronal constraints 
have dictated what aspects are permissible in the language, excluding, for example, aspects like speech sounds 
outside a perceivable acoustic range. The effects of these biological constraints have been proposed to extend 
to permissible aspects, determining the likelihood with which they appear in a language1–5. Aspects optimally 
satisfying the biological constraints would be favored, while less fitting aspects should be fairly uncommon and 
likely to be replaced as languages change over time6. As the outcome of species-specific evolution and human 
genetics, biological constraints would impact any language users, and the universality of their effects would 
push toward cross-linguistic uniformity. But natural languages vary extensively—they are designed to manifest 
themselves in multiple forms and change due to culture processes and historical events (e.g., migrations, social 
stratifications). Biological constraints would oppose such variation.

Competing forces are therefore at play—one promoting uniformity, the other variation—and the organization 
reached by natural languages throughout their evolution corresponds to the equilibrium point of these forces6–8. 
Determining the effects of biological constraints is therefore a critical question not only for explaining why 
natural languages have emerged in their current form, but also for understanding language variation caused by 
linguistic, social, and cultural processes. This question was addressed in the present study from the perspective of 
the sign languages used by millions of signers around the world9 that are unique for relying on the fingers and the 
thumb as primary medium. Humans move the digits (i.e., the fingers and the thumb) with a degree of flexibility 
and dexterity unparalleled in other primates, conferring them the ability to make very fine movements, powerful 
grips, and sophisticated interactions with objects10,11. In signing, bio-mechanic and functional properties unique 
to human fingers and the thumb have been coopted for a novel task—to express signs.

Signs are the fundamental units of signing, functionally equivalent to the words of spoken language. Like 
words, they map onto specific meanings, vary for grammatical class, and change in form to fit into phrases and 
sentences according to the (morphological, syntactic) rules of a specific language12. Signs unfold in space one 
after the other, and are made either by one hand (usually the dominant one) or two hands13 (Fig. 1). Sign can 
be distinguished one from the other by the movement, orientation, and position of the hand within the signer’s 
peripersonal space, and by the handshape14—i.e., the configuration taken by the fingers and the thumb. In some 
handshapes, one or more digits are selected by having a different configuration, yet in other handshapes all the 
digits are given the same configuration15,16, as illustrated in Fig. 1. The fingers and the thumb vary in a similar way 
in manual activities of everyday life, moving independently or in synchronized fashion, and taking configurations 
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shared either by some or all digits. Investigations in movement science that examined the selection of an indi-
vidual digit and the coordination of multiple digits have shed light on the anatomical and neuronal constraints 
underlying the selection of one and multiple digits17,18. Their findings motivated our choice of focusing here on 
the handshape. We therefore examined to what extent the handshape conforms to the constraints identified in 
movement science.

Control of individual digits was examined in laboratory studies by instructing participants to move a specific 
digit19,20 or to apply force with only one digit21,22. Movement and force were not confined to the instructed digit 
but were observed in other digits too, although with appreciable differences among digits. The thumb showed 
the greatest autonomy, followed—in this order—by the index, little, middle, and ring fingers19. Variation in digit 
individuation has been explained as reflecting the anatomical and neural organization of the human hand17,23,24. 
For example, the thumb owns its autonomy to a distinct musculature25 and a distinct cortical representation in 
primary motor cortex (M1)26. Anatomical structures that mechanically couple the fingers include the soft tissue 
in the web space between the fingers, the interconnections between the tendons of the extrinsic muscles, and the 
muscle bellies of the extrinsic muscles24. The mechanical and neuronal features limiting finger autonomy facili-
tate finger coupling, though with graded effects across fingers. Kinematics and neurophysiological studies have 
shown that immediately neighboring fingers are most closely correlated24,27,28. In a post-mortem investigation 

Figure 1.   The signs in Panel (A) were made by the dominant hand and vary for handshape: in (1)–(5) the 
thumb or one or more fingers differ in shape from the other digits; in (6) the four fingers are identically shaped. 
The signs in Panel (B) were made by both hands; dominant and non-dominant hands are shaped identically (1) 
or differently (2). The sign in Panel (C) includes two handshapes, the first occurring at the beginning of the sign, 
the second at the end of it. Panel (D): frame-by-frame view of one of the videos we analyzed. The video showed 
one sign, and started and ended with the signer in resting position. Numbers correspond to recording time (in 
s). Enlarged pictures show the two configurations scored for this sign. Pictures of the signs are from the website 
Spread the Sign55.
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of the human hand, traction to the extensor tendon of any given finger resulted in the extension of all fingers, 
although the effect was scaled, depending on proximity to the finger to which the traction was applied29. The 
same graded pattern emerged using an in vivo technique designed to isolate the contribution of mechanical and 
neural sources, respectively24. Further evidence suggesting a neural source was found by recording the EMG 
activity of the flexor digitorum profundus (FDP), the only muscle attaching to the distal phalanx of each of the 
four fingers30. In several compartments of the FDP, activity appeared not only during the flexion of a specific 
finger, but also during the flexion of its immediate neighbor finger. Furthermore, in multiple extrinsic muscles, 
the strongest short-term synchronous firing of two motor units appeared in neighboring digits28.

The easiest configurations to program and execute on mechanical and neural grounds are those in which, 
like in grasping, all fingers, moving simultaneously, take an identical shape31. The simultaneous movement and 
identical shaping of all fingers is facilitated by the presence of anatomical structures mechanically coupling the 
fingers23. Controlling each of the 15 joints forming the hand, which collectively afford approximately 20 degrees 
of freedom24,31, is computationally demanding. Configurations formed by identically shaped fingers simplify 
neural processing, consistent with data from kinematic analyses, contact forces, electromyography (EMG)23,32, 
and naturalistic recordings during everyday activities33 showing that coordinated patterns (synergies) underlie 
the synchronous movements of all fingers with no needs to independently control each joint.

Collectively, the findings from movement science have revealed that the digit configurations optimally sat-
isfying the mechanic and neuronal constraints in tasks for which the hand has naturally evolved are the ones in 
which (a) the one selected digit is either the thumb or the index, (b) neighboring fingers are coupled, and (c) all 
fingers are identically shaped. The same preferences should be observed with the handshape, if mechanic and 
neuronal constraints have similar effects here. We tested this hypothesis by examining the handshapes of over 
28,000 signs in 33 languages, focusing on the frequencies with which different types of handshapes occurred. 
Constraints derived from human genetics and the species-specific evolution of the hand are a vehicle for cross-
language uniformity. As another means to assess the strength of the constraints, we examined the similarity 
existing among handshapes from geographically distant and historically unrelated languages34,35. Linguistic 
theories have explained various aspects of sign languages in terms of digit control12,13,15,16,36,37. Our investigation, 
however, departs from prior linguistic studies in two ways. First, data on digit control in non-linguistic tasks 
were used as predictors of the handshape. Second, we analyzed a far larger number of languages—our corpus of 
33 languages is the largest to date.

The handshape could demand a larger use of less conforming configurations, thus showing a lesser degree 
of adaptation to mechanic and neuronal constraints than the one observed with non-linguistic tasks. One pos-
sible reason for its weaker adaptation is that the cross-linguistic uniformity resulting from biological constraints 
could contrast cross-linguistic variation. Clear and successful communication also depends on variability—a too 
small handshape vocabulary might not allow building the sign languages presently used. This might be especially 
limiting for sign languages, which make extensive use of iconicity38,39. In many signs, hands are shaped, moved 
or positioned to visualize key properties of the concepts they represent, as with the sign bike produced in many 
languages by circling the hands shaped as fists. If handshapes conforming more closely to biological constraints 
could not be iconic, iconicity would have driven the selection of less faithful handshapes. But it is also possible 
that some biological constraints were overcome in sign language. Extensive hand use in a task as demanding as 
signing could have weakened some of the effects of mechanic and neuronal constraints, as has been found with 
piano players who demonstrated greater finger individuation40,41. Furthermore, sign languages are typically 
acquired at a later age relative to spoken languages, because most of deaf infants have hearing parents and are 
therefore exposed late to signs42. Limitations that would have made complex handshapes difficult to the younger 
child, would be no longer present at an older age, so that the effects of those limitations could be tempered with 
the handshape. Despite these plausible reasons for lessening the biological constraints, it is equally possible that 
these constraints are not bendable, so that the adaptation of the handshape would not differ from the one found 
with non-linguistic tasks. An objective of our study is to clarify the bendability of the constraints.

Establishing whether adaptation differs between the handshape and non-linguistic tasks has implications 
also for characterizing the language variation originating from linguistic, social, and cultural processes. Our 
data would help us understand if lessening the biological constraints is a necessary condition for the emergence 
of language variation driven by these processes. Despite their contrasting effects, these opposing forces may not 
always compete for the same resources. With respect to sign language, this means that linguistic, social, and 
cultural processes would affect other aspects than the handshape. A crucial challenge we face in understanding 
the interaction of these opposing forces is therefore to show that the handshape varies as an effect of linguistic, 
social, and cultural processes. The cross-linguistic approach of our study provided an opportunity to tackle this 
issue. The sign languages we examined have been grouped in distinct language families based on their history 
and linguistic characteristics34,35. We examined if handshapes varied systematically across these language families, 
and considered this type of finding as showing that handshapes change under the pressure of linguistic, social, 
and cultural processes.

Different types of analyses were conducted on the handshapes from 33 sign languages to address the ques-
tions examined in our study. The extent to which the handshape conforms to the biological constraints was 
investigated in two ways. First, we examined if the finger configurations favored in non-linguistic tasks were 
preferred to the same degree in the 33 languages. Second, we investigated if individual handshapes occurred 
in similar frequencies across languages, thus conforming to the cross-linguistic consistency expected from the 
biological constraints. To investigate whether the biological constraints underlying the handshape are bendable, 
we turned to another linguistic system using the handshape—fingerspelling. We therefore analyzed the extent to 
which the finger configurations favored in non-linguistic tasks were also preferred in fingerspelling. Finally, to 
establish whether handshape cross-linguistic variability resulted from linguistic, social, and cultural processes 
we attempted to reconstruct the language families of the 33 sign languages from handshape data.
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Results
Digit selection in signing.  Research on the movement of the fingers and the thumb in non-linguistic 
tasks has revealed aspects in the selection of one, two, and multiple digits that reflected mechanical and neural 
constraints17,18. We examined if these aspects appeared in signing and therefore the frequencies with which digits 
were selected in sign languages mirrored findings from the movement of the fingers and the thumb in non-
linguistic contexts. Analyses were based on the percentages with which handshapes occurred in the 33 languages 
(total percentages) or in each of these languages (language percentages).

(a)	 One digit selection The various measures that have been used to determine how independently each digit 
moves revealed a precise hierarchy19–24. The thumb was the most autonomous, followed by the index, little, 
middle, and ring fingers. We examined if the same hierarchy appeared in handshapes in which a digit was 
selected. When selected, the thumb or a finger was shaped differently from the other four digits for being, 
for example, relatively more flexed or extended (Fig. 1A). We calculated an independence score for each 
digit in the handshape, which corresponded to the total percentage of handshapes in which the digit was 
selected—i.e., it was shaped differently relative to the other four digits. Independence scores revealed the 
same hierarchy observed in studies of digit movement: the thumb was the most selected (28.7%), followed 
by the index finger (12.6%), middle and short fingers came next (0.8%), the ring finger last (0.03%). This 
ranking appeared in the 33 languages (data are reported in SI A4). Correlations were used to determine 
how closely digit selection in the handshape mirrored the independence with which digits moved. Specifi-
cally, our independence scores were correlated with four measures of digit individuation available from 
published studies of hand movement19,33. Although we did not analyze how digits moved to generate the 
handshapes, movement measures represented a suitable proxy, as handshapes were typically realized by 
moving the selected digit. Two of the measures we used were from Häger-Ross and Schieber19. They were 
obtained by instructing participants to move one digit a time, and quantified the degree to which the non-
instructed digits either moved (individuation index) or remained still (stationarity index). The other two 
measures, from Ingram et al.33, were based on hand movements in everyday activities; one corresponded 
to the percentage of variance that in a linear reconstruction of digit angular velocities was unexplained by 
the movements of the other four digits; the other was the percentage of time during which a digit moved 
independently. Independence scores derived from handshapes were strongly correlated with each of these 
measures (mean r = 0.916)—in fact, as high as among these measures themselves (mean r = 0.913; Table 1).

(b)	 Digit pairing Kinematics and neurophysiological studies have shown that immediately neighboring fingers 
were most closely correlated24,27,28. In signing, this topography of finger interaction would have tended to 
favor the coupling of adjacent fingers. In two tests of this prediction, pairs of neighboring fingers were 
compared to pairs of distant fingers, and language percentages were analyzed (language percentages are 
reported in SI A5). The first test examined if both fingers in the pair were selected—i.e., they were shaped 
differently than the non-selected fingers and the thumb (Fig. 1A). Two fingers were more often selected 
together if adjacent (means 2.8% vs. 0.2%; t(32) = 23.48, p < 0.001; Fig. 2). The second test analyzed if the 
two fingers in the pair were identically shaped—e.g., they were both closed or curved. This occurred more 
often with neighboring than distant fingers (means 41.6% vs. 33.9%; t(32) = 55.69, p < 0.001; SI A5; Fig. 2).

Data on finger coupling were obtained in Ingram et al.33 by recording finger movements in daily activities. 
The time during which, in all pairs, the two fingers moved together in Ingram et al.33 was correlated with the 
percentages of handshapes in which, in all pairs, the two fingers were identically shaped. The two measures were 
strongly correlated in all languages (mean r = 0.865; range = 0.654–0.911).

Handshapes in which a finger and the thumb were both selected were quite common, with a total percentage 
of 26.9%. The movement-time analyses of Ingram et al.33 revealed that the thumb is more likely to be paired 
exclusively with the index finger rather than any other finger. A similar preference appeared in our corpus: the 
thumb was paired mostly with the index finger (87.2%). In all handshapes in which the thumb and the index 
finger were selected, the non-selected fingers (middle, ring, and little) were identically shaped, a finding showing 
strong coupling among these three fingers. In these handshapes, the middle, ring, and little fingers could have 
functioned in synergy as a unit, a profitable feature in light of results showing that these are the most strongly 
coupled fingers28.

Table 1.   Correlation coefficients (rs) of correlations between different measures of digit individuation.

Independence score/
signing Individuation index19 Stationary index19

% Unexplained 
variance33 Movement Time33

Individuation index19 0.821

Stationary index19 0.903 0.953

% Unexplained 
variance33 0.998 0.835 0.924

Movement time33 0.943 0.845 0.954 0.963

Independence score/
fingerspelling 0.411 0.770 0.557 0.408 0.356
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	 (iii)	 Multiple-digit selection The analyses of the handshapes requiring multiple-digit selection were of two 
kinds. The first type of analysis concerned the incidence of handshapes in which the four fingers were 
identically shaped. They represented the most common type of handshape in each of the 33 languages 
(mean 55.9%; range 47.3–63.2%), a result aligning with the movement-time analyses of Ingram et al.33 
that showed that the configurations in which the fingers moved in synergy were the most frequent in 
daily activities. In the second type of analysis, handshapes were compared to grasping, a movement 
requiring multiple-digit selection and coordination that has been extensively investigated43. A distinc-
tion has been drawn between power and precision grasps on kinematic, phylogenetic, and ontogenetic 
grounds43–46. In power grasps, which are evolutionary more primitive and appear earlier in human 
development, all digits are flexed around the object to provide high stability. An example of power 
grasp is handshaking. Precision grasps, used for manipulating small objects, require independent finger 
movements and fine control—as when plucking a flower that the thumb and the index finger are placed 
opposite to each. We identified 13 handshapes with the same digit configurations of the grasps listed in 
the GRASP Taxonomy47, a comprehensive classification of every static hand posture that allows holding 
an object securely with one hand. (Grasp-like handshapes are shown in SI A6.) Handshapes replicating 
the configurations of power grasps were much more common across languages relative to those that 
were similar to precision grasps (means 13.4% vs. 4.3%; t(32) = 25.89, p < 0.001; data reported in SI A7), a 
finding revealing a preference for signs requiring less digit individuation and hand control31. The relation 
between grasp-like handshapes and the corresponding grasps was further investigated by examining the 
correlation between the language percentages of these handshapes and the frequency and duration of 
the corresponding grasps in daily activities reported in Bullock et al.48,49 Strong correlations were found 
with frequency (mean r = 0.715; range 0.584–0.866) and duration (mean r = 0.817; range 0.621–0.915).

Digit selection in fingerspelling.  It is possible that the strong correlations observed with the handshape 
would emerge with any tasks requiring fine motor control. To address this question, we turned to fingerspelling, 
a linguistic task in which a manual alphabet is used to represent the letters of a writing system, typically when 
sign equivalents are lacking. The manual alphabets presently used in signer communities across the world vary 
by employing one hand or two hands, and in representing different alphabets (e.g., Latin or Arabic)35. Despite 
their differences, the handshape is a fundamental component of all alphabets. To produce the letters forming 
the words, fingers are thus selected and shaped with precision and speed comparable to signing. Notably, some 
handshapes are used in both signing and fingerspelling. The terms letter handshapes and sign handshapes were 
used to refer to the handshapes observed in fingerspelling and signing, respectively.

We scored the letter handshapes (n = 1947) of 63 manual alphabets from different writing systems (Latin, 
Cyrillic, Greek, Arabic, Hebrew, or Korean), using the same method employed with sign handshapes (manual 
alphabets and sources are listed in SI A8). Of the 108 distinct handshapes identified among letters, 90.7% were 
also found among signs—a result further confirming the similarities of the digit configurations used in finger-
spelling and signing. The analyses on the selection of one, two and multiple digits conducted with sign hand-
shapes were replicated with letter handshapes. Similarities with respect to non-language tasks were found with 
finger pairing. Compared to two distant fingers, two immediately neighboring fingers were more likely to be 
selected together (9.2% vs. 0.9%; χ2(1) = 416.10, p < 0.001) or identically shaped (72.3% vs. 39.1%; χ2 = 1307.42, 
p < 0.001). Furthermore, the percentages of letter handshapes in which the two fingers were identically shaped 
correlated strongly (r = 0.974) with the time during which the two fingers moved together in Ingram et al.33 Dif-
ferences appeared, however, with handshapes requiring one-digit selection. Independence scores were calculated 
for each digit in the letter handshapes. Independence scores correlated relatively weakly with the measures of digit 

Figure 2.   Percentages of handshapes in which two fingers were selected (left) or identically shaped (right) in 
the sign. Adjacent pairs included neighboring fingers; Non-adjacent pairs were formed by distant fingers. Two 
fingers were more likely to be selected or identically shaped if they were immediate neighbors (ps < 0.001). 
2 = index finger, 3 = middle finger, 4 = ring finger, 5 = little finger.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11980  | https://doi.org/10.1038/s41598-022-15699-1

www.nature.com/scientificreports/

individuation obtained in non-linguistic tasks (Table 1). These weak correlations reflected major differences in 
digit individuation ranking. While the thumb was the most independent digit in non-linguistic tasks, the index 
finger was the most selected digit in fingerspelling (16.9%); furthermore, the thumb was selected as frequently 
as the little finger (6.0% vs. 6.1%). Additional differences emerged with grasp-like handshapes. Not only they 
were less frequent among letter handshapes than sign handshapes (8.2% vs. 23.1%; χ2(1) = 236.17, p < 0.001), 
but they also correlated less strongly with the frequency (r = 0.423 vs. 0.715) and duration (r = 0.624 vs. 0.817) 
of the corresponding grasps in daily activities48,49.

Overall, the findings from fingerspelling indicated that the strong correlations that emerged with sign hand-
shapes are not reproducible in some manual tasks, suggesting that the effects of mechanic and neural constraints 
can be weakened.

Cross‑linguistic variation.  Language statistics can provide further evidence on the effects of biological 
constraints underpinning the handshape. Biological constraints are expected to have similar effects across the 33 
languages we examined. In this respect, handshapes showed marked similarities. First, cumulative frequencies 
patterned very similarly and revealed the predominance, in every language, of a few handshapes (Fig. 3A). Sec-
ond, 35 common handshapes were found in all 33 languages; their total percentage was equal to 89.2%, and they 
were distributed very similarly cross-linguistically (Fig. 3B). Furthermore, the same handshapes were the most 
frequent in almost any of the languages (Fig. 3D). Third, language percentages were strongly correlated between 
any of the language pairs (mean r = 0.925; range 0.799–0.986; Fig. 4). These correlations remained equally strong 
in analyses restricted to the 35 common handshapes that we conducted to rule out that the high correlations 
resulted from the absence of some handshapes in most languages (mean r = 0.891; range 0.651–0.980).

Handshapes most faithful to the mechanic and neural constraints included those in which the fingers were 
identically shaped, and the most independent digits (thumb and index finger) selected. They represented 85.6% 
of the handshapes in the 33 languages, and corresponded to 31/35 common handshapes. Conformity to those 
constraints would have made the most frequently occurring handshapes less permeable to linguistic and cultural 

Figure 3.   (A) Each line shows the cumulative frequencies for the handshapes in one of the 33 languages. 
The 160 handshapes found in the 33 languages are ordered on the x axis according to their ranking in each 
language. The 160th handshape is always the most frequent; the specific handshape on each ranked position 
may vary from one language to another. Cumulative frequencies were similarly distributed across languages. (B) 
Frequencies of the handshapes (n = 35) observed in all of the 33 languages. Each column shows one handshape; 
the dots in a column correspond to the frequency of the handshape in the 33 languages. Handshapes had 
frequencies that patterned similarly across languages. (C) Coefficient of variation (a standardized measure 
of dispersion) was inversely correlated (r = − 0.434, p < 0.001) with the percentages with which handshapes 
occurred in the 33 languages (Handshape Total %). (D) Colors indicate which of these handshapes was 
among the four most frequent handshapes in each language. With only 6 exceptions (colored in black) these 
handshapes ranked top four. Pictures of the signs are from the website Spread the Sign55.
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pressure specific to each language, and consequently less likely to vary across languages. Pressure—and vari-
ance—would be evident especially with less frequent handshapes. In other words, handshape frequency and 
handshape variance would be negatively correlated. The degree to which a handshape varied (in percentage) 
across languages was estimated using the coefficient of variation, a standardized measure of dispersion cor-
responding to the ratio of standard deviation to the mean. Coefficients of variation were negatively correlated 
with total percentages (r = − 0.434, p < 0.001; Fig. 3C; data are reported in SI A10), thus revealing that variability 
increased as handshape frequencies decreased.

Language families.  A hierarchical cluster analysis was conducted on the handshape frequencies in the 
33 sign languages to determine if modern sign languages grouped in ways that reflected their history and cul-
tural similarity. Our goal was not to reconstruct the evolution of sign languages nor to map the chronology of 
language changes, goals that have been pursued in computational historical linguistics by employing other sta-
tistical tools than the hierarchical cluster analysis50. Rather, as a technique for dividing a dataset into groups of 
similar objects51, the hierarchical cluster analysis suited our specific goal of determining whether similarities in 
the cross-linguistic variation of handshapes mirror historical and cultural relations.

Although the development of individual sign languages has not been fully mapped out, historical circum-
stances and geographical proximity appear to be crucial34,35. In some historical contexts, for example, signers 
from other countries were instrumental in exposing local deaf communities to sign languages, a type of language 
contact that happened between sign languages like French and American52, Italian and Argentinian53, or Swed-
ish and Portuguese34. It has been proposed, on linguistic and historical grounds, that most of the languages we 
analyzed belong to one of these three language groups: one formed by languages historically tied to French, one 
grouping central European languages, and one related to Northern European languages34,35. Chinese, Taiwanese, 
and Japanese sign languages evolved independently of these language families34. The three major groups that 
emerged from the hierarchical cluster analysis correspond to each of these language families, as shown in Fig. 5. 
Within each group, the more similar languages tended to be historically, geographically, or culturally related. 
For example, Russian sign language was similar to sign languages used in nearby countries (e.g., Ukraine or 
Lithuania). Other languages (e.g., Taiwanese and Japanese) were more weakly associated with these families, 
reflecting their relative isolation34. The hierarchical cluster analysis also revealed similarities that do not seem 
to be historically based. Indian, Urdu, and Turkish sign languages are not historically linked to sign languages 
related to the French sign language54,55,56, nor there is evidence associating Japanese sign language to the sign 

Figure 4.   The heat map shows the correlation coefficients resulting from correlating the frequencies of the 
160 handshapes between each language pair. Handshape frequencies were strongly correlated across languages 
(mean r = 0.925; range 0.799–0.986).
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languages of the Northern European family34. While these incongruencies show that our hierarchical cluster 
analysis did not provide a comprehensive historical reconstruction, they further suggest that our analysis detected 
similarities in the cross-linguistic distribution of handshapes not rooted in language history.

General discussion
An adaptive strategy to deal with the speed and precision with which the fingers and the thumb are moved and 
positioned in signing would likely favor those handshapes that can be easily articulated. Our results revealed that 
these are indeed the handshapes preferred across languages. But they also showed that these preferences closely 
mirrored those observed in non-linguistic tasks, which in turn reflected mechanical and neural constraints17,18,31. 
In both cases, the most independent digits tended to be selected, the immediate neighbor fingers tended to be 
paired, and the most common configurations were those in which all fingers were identically shaped. Further-
more, measures of digit independence and finger coupling obtained in non-linguistic tasks proved to be reliable 
predictors of the handshapes observed in 33 languages. The handshape thus demonstrates an adaptation to 
biological constraints that is remarkably similar to that found in tasks for which the hand naturally evolved. This 
strong similarity appears not because other forms of adaptation cannot arise—in fingerspelling, the handshape 
deviates from those constraints. The handshape’s adaptation seems to be a potentially favorable outcome rather 
than an inevitable one.

Even if not based on movement, our results overlapped consistently with results from digit movement. These 
strong similarities could have emerged because we analyzed categorical descriptions inherently associated with 
the movements made by the joints to bring the fingers and the thumb into their positions in the handshape. For 
example, similarities with handshapes in which the thumb was selected would have resulted from moving the 
thumb. We should also observe that digit movements are organized along properties like digit selection or finger 
coupling upon which the system we used for handshape categorization52 is based. As we specifically examined 
these properties, digit-movement data were naturally suited to unveil similarities with the handshape.

Beside large commonalities, there were also two noticeable discrepancies between signing and the data on 
natural hand movement of Ingram et al.33. In signing, the four fingers formed synergetic patterns more fre-
quently (60% vs. 42%) and individual digits were selected more often (38% vs. 17%). Both differences reflected 
an increase of faithful digit configurations. Configurations with identically shaped fingers are computationally 
the least demanding31, while the increase in digit individuation resulted from a larger use of the thumb and the 
index finger, the most independent digits22,24. These findings show that there are instances in which the handshape 
conforms to biological constraints even more strongly than non-linguistic tasks.

The scale of our study allowed exploring the statistics of the handshape. Cross-linguistically, handshapes were 
very similar in terms of frequencies and distribution (Figs. 3, 4). These statistical properties are the foreseeable 
outcomes of biological constraints. Strong cross-linguistic similarities are indeed expected from constraints 
reflecting human genetics and the evolution of the human hand that are universal. Biological constraints would 

Figure 5.   The dendrogram illustrates the three language families revealed by the hierarchical cluster analysis 
that was conducted on the handshape frequencies of 33 languages. Languages were historically related to French 
(blue) or Northern-European languages (red), or they were part of the central-European group (green).
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also drive the high incidence in the language of the most faithful handshapes. They indeed accounted for most of 
the handshapes in 33 languages (85.6%) and most of the types of handshapes observed in all of those languages 
(31/35). And as expected by the effects of biological constraints, the frequencies of the most faithful handshapes 
were highly consistent across languages (Fig. 3C).

The strong cross-linguistic similarity we observed has not prevented the handshape to diversify in ways 
determined by their linguistic, historical, and cultural specificity34,35. The linguistic families we were able to 
reconstruct from the handshape (Fig. 5) highlight the contribution of linguistic, social, and cultural processes 
to determining what handshapes surface in each language. The cross-linguistic variation driven by these pro-
cesses co-exits with the handshape’s close adaptation to biological constraints. This has likely limited the type of 
cross-linguistic variation that could emerge with the handshape. The strict conformity to biological constraints 
has probably precluded forms of language diversification that involve selecting the less faithful handshapes or 
selecting only some of the favored handshapes in a given language. A more viable option would be to maximize 
the presence of the most faithful handshapes while changing slightly the incidence of each of these handshapes 
across languages—a form of language variation that is distributional and statistical in nature.

Less faithful handshapes are rather common in fingerspelling. It is perhaps not a coincidence that the hand-
shape conforms to the biological constraints less in fingerspelling—a product of culture and explicit learning—
than in natural sign languages. As the elements of a codified writing system acquired in institutionalized forms, 
manual letters are standardized and difficult to change. By contrast, being part of natural languages, signs are 
more malleable, as described, for example, with iconicity. Several examples have been documented of signs that 
were originally iconic and then became increasingly more abstract53. The same process has not been observed 
with manual letters, whose iconicity persists35. There is certainly an advantage to preserve their iconicity, as it 
would facilitate their recognition53. But what was gained in recognition was lost in motor control.

The four most common handshapes, shown in Fig. 3D, amounted collectively to 34.7% of the handshapes we 
analyzed. Their astounding frequency seems justifiable from a motor-control perspective—index finger selection 
and identical finger configuration make them maximally conforming to biological constraints. However, limiting 
the handshape repertoire to these four handshapes would have impacted the efficacy of communication. Sign 
languages tolerate handshapes of such frequencies, because signs can also be distinguished by the movement, 
position, and orientation of the hand14. To the extent that sign multidimensionality ensures a rich lexical diver-
sification, handshapes closely conforming to biological constraints could emerge even in very high frequencies. 
Linguistic contexts in which conformity to biological constraints would compromise communication efficacy 
would be less permeable to those constraints. This could be one of the reasons for which fingerspelling conforms 
less to biological constraints. Its more limited use of movement, position, and orientation and its greater reliance 
on the handshape35 could have in part determined its reduced conformity.

As Ejaz et al.26 reported in their neuroimaging study, the spatial organization of finger-specific activity in M1 
was predicted by the statistics of natural hand movement from Ingram et al.33 That the same statistics correlated 
closely with our data would lead one to speculate that the same cortical organization is recruited for signing. 
Although this conclusion needs empirical corroboration, it is worth highlighting that the functional similarities 
we found between signing and hand movement would make a shared cortical representation more plausible. 
Developmentally, a shared representation would yield some advantages. First, because hand movement and 
signing would reinforce the development of the same cortical organization. Second, because it would temper 
the effect of delayed acquisition of signing. Most deaf children do not have signing parents and are therefore 
exposed to signing at later age than that at which their hearing peers are exposed to spoken language42. This 
delay would be less consequential if the cortical organization initially shaped by hand usage is later shared with 
signing—which could represent another reason for the handshape’s strong adaption to the biological constraints.

In conclusion, by analyzing 33 sign languages, we showed that handshapes exhibit the same form of adaptation 
to biological constraints found in tasks for which the hand has naturally evolved, and found considerably high 
consistency across sign languages in the use of handshapes closely fitting biological constraints. Nonetheless, 
such stringent biological constraints have not prevented sign languages to differentiate among each other as a 
consequence of linguistic, cultural, and historical processes.

Methods
We selected 800 concepts that varied for semantic field and concreteness/abstractness, and were represented by 
words and signs from several grammatical categories (nouns, verbs, adjectives, adverbs). We conducted a search 
of online sign language dictionaries to identify sign languages with > 85% of those concepts available, a criterion 
met by 33 languages (22 European, 6 Asian, 3 American, 2 Australasian). Signs were found, across languages, for 
an average of 97.6% concepts (range 87.3–100%). If multiple signs were listed in a dictionary entry, all variants 
were included. We excluded 221 signs, because a word was fingerspelled (54%), a sentence was used to describe 
the concept (39%), or the sign was not perfectly visible on the video (6%). 28,343 signs were analyzed, an average 
of 859 signs per language (range 677–1192).

Online dictionaries showed the sign corresponding to one concept only per video. Some signs were com-
pounds formed by two or more signs, the equivalent of the word football or blackboard. Most of the signs were 
produced only by the dominant hand (49.0%; Fig. 1A); in 2-hand signs, the two hands were shaped identically 
(30.6%; Fig. 1B1) or differently (20.4%; Fig. 1B2). We analyzed the handshapes of the dominant hand, because 
it articulates more handshapes and its handshapes are of greater variety and complexity13,37. Within a sign, the 
dominant hand produced one handshape (76.4%; Fig. 1A) or two handshapes (23.6%; Fig. 1C). Before beginning 
to sign, signers stood in front of the camera with the hands in resting position. Digit configuration changed con-
tinuously between resting position and the fully formed handshape, or while moving from one handshape to the 
next in signs with multiple handshapes. We only analyzed the configuration of the handshape, not configurations 
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prior to it. Signs have typically only one movement12, which provides clear spatial and temporal boundaries 
of the sign, as can be seen in the examples in Fig. 1D. All video-recordings could be viewed at reduced speed. 
Handshapes were classified according to the Hamburg Notation System for Sign Languages57 that was developed 
to describe all handshapes from any language. The transcription obtained for each handshape specified if the 
fingers and the thumb were selected or spread, as well as their shape (extended, bent, flattened, hook, or closed). 
The thumb or a finger was classified as selected if it was shaped differently from the other digits. Orientation was 
ignored, so were short, fast, repetitive movements such as wiggling. Handshapes that were repeated within a sign 
were only scored once. Two people with knowledge of a sign language independently scored the handshapes. Dis-
crepancies were rare (0.1%) and consistently resolved. The signs we analyzed were formed by 38,035 handshapes 
performed with the dominant hand, an average of 1153 handshapes per language (range 870–1505). Within 
this corpus of handshapes, we identified 160 distinct configurations using the classification system described 
above. Only 35/160 (21.8%) of distinct configurations were found in all languages. We analyzed the percentages 
with which handshapes occurred in the 33 languages (total percentages) or in each of these languages (language 
percentages). Signs, web sources, and data on individual languages are reported in Supplementary Information 
A1–A3; the distinct configurations are shown in Supplementary Information B. Handshapes were also classified 
by number of selected digits (Fig. 1A). A digit was scored as selected if it differed in shape from the other four 
digits. When one digit was selected, it was either a finger or the thumb, whereas the two selected digits were 
either two fingers, or a finger and the thumb. In three-selected-digit handshapes, the selected digits (two fingers 
and the thumb) were shaped differently from the other two fingers that were closed.

As with words, a sign can be produced slightly differently across individuals and linguistic contexts (e.g., 
due to co-articulation)12,15,16. Variability was neglected in our vocabulary-based investigation, a limitation not 
impacting our conclusions concerning biological constraints. Let’s illustrate this point with an example from digit 
individuation, a type of evidence examined to investigate the biological constraints. The index finger was classified 
as selected if it was extended while the other fingers and the thumb were flexed. Even if extension and flexion 
can each vary in this handshape, the index finger must be relatively more extended—an invariable aspect whose 
violation results in the incorrect articulation of the sign. It was invariable aspects like this that were examined 
for digit individuation—as well as for the other results concerning the biological constraints.

The hierarchical cluster analysis was conducted on the percentages of occurrence of the 160 distinct hand-
shapes found in each of the 33 languages, using SPSS® software58. The selected cluster method was Between Group 
Linkage; the selected measure option was Squared Euclidean Distances.

Data availability
Analyzed data are reported in Supplementary Information A; examples of the handshapes found in the 33 sign 
languages are included in Supplementary Information B.
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