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General summary 

Traditional cheeses, especially those with protected geographical indications, are highly 

susceptible to food fraud due to consumers' willingness to pay a premium for authentic and 

traditional products. To combat this issue, reliable food authentication methods are 

essential. This PhD thesis focuses on the study and performance evaluation of the 

authentication methods used for cheese geographical origin verification, including 

chemical, physical, and DNA-based approaches. The first study, a literature review, 

highlighted that isotope and elemental fingerprinting methods had consistent accuracy in 

cheese origin authentication and emphasized the need for more research to assess the 

discriminative power of other methods, such as near-infrared spectroscopy, nuclear 

magnetic resonance, and DNA-based techniques. DNA-based techniques, particularly 

metabarcoding, showed promising results for origin authentication, but metagenomics, 

which offers a detailed view of the cheese microbiota down to the strain level, presented 

greater potential for enhancing authentication capabilities. 

The second study focused on mountain Caciotta cheese, employing shotgun metagenomics 

and volatilomics to understand the factors contributing to cheese typicity and diversity. 

Geographical origin, alongside factors like curd cooking temperature, pH, salt 

concentration, and water activity, played a significant role in shaping the cheese's distinctive 

characteristics. Notably, viral communities exhibited higher biodiversity and effectively 

discriminated cheese origins. Among the dominant bacteria, Streptococcus thermophilus 

displayed higher intraspecific diversity and stronger associations with cheese origin 

compared to Lactobacillus delbrueckii. The study also identified non-starter lactic acid bacteria 

and phages specific to each origin, providing valuable insights into the cheese's unique 

microbial composition. The volatilome of mountain Caciotta cheese showcased prominent 

levels of alcohols and ketones, with distinct differences in the relative abundances of 

enzymes linked to flavor development, further contributing to its typicity. 

Lastly, a multi-omics approach for cheese origin authentication was explored, incorporating 

shotgun metagenomics, volatilome analysis, near-infrared spectroscopy, stable isotopes, 

and elemental analysis. DNA-based analysis, particularly viral communities, achieved high 
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classification accuracy rates compared to bacterial communities. Volatile organic 

compounds demonstrated potential for clustering cheese according to its origin, while near-

infrared spectroscopy showed moderate classification accuracy. Elemental composition 

analysis revealed significant variations in elements related to dairy equipment, 

macronutrients, and rare earth elements across different origins, leading to the highest 

performances in origin authentication. 

This work does have some limitations that could spur future research in cheese science and 

origin authentication, including the absence of culture-based microbiological analysis and 

the need for further investigations employing different classification models. Additionally, 

future research is encouraged to explore diverse traditional cheese varieties and 

geographical locations to validate the findings extensively. The integration of innovative 

tools, such as miniaturized vibrational spectroscopy devices and blockchain systems, holds 

promise for enhancing food authentication practices. 

In conclusion, this study underscores the potential of multi-omics techniques, particularly 

metagenomics and volatilomics, in cheese origin authentication. The case study focusing on 

mountain Caciotta cheese provides valuable insights into the role of geographical factors in 

shaping the characteristics of artisanal cheeses. Overall, this research can contribute to the 

preservation of cultural heritage and economic sustainability in mountainous regions 

through robust authentication systems for traditional cheese products. 
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Résumé général 

Les fromages traditionnels, en particulier ceux bénéficiant d'indications géographiques 

protégées, sont très vulnérables à la fraude alimentaire en raison de la volonté des 

consommateurs de payer un supplément pour des produits authentiques et traditionnels. 

Pour lutter contre ce problème, des méthodes fiables d'authentification alimentaire sont 

essentielles. Cette thèse se concentre sur la valutation dell'état actuel des méthodes 

d'authentification utilisées pour vérifier l'origine géographique des fromages, notamment 

les approches chimiques, physiques et basées sur l'ADN. La première étude, une revue de 

la littérature, a mis en évidence que les méthodes d’analise isotopique et des éléments 

présentaient une précision constante dans l'authentification de l'origine des fromages et a 

souligné la nécessité de davantage de recherches pour évaluer le pouvoir discriminant 

d'autres méthodes, telles que la spectroscopie proche infrarouge, la résonance magnétique 

nucléaire et les techniques basées sur l'ADN. Les techniques basées sur l'ADN, comme le 

métabarcodage, ont montré des résultats prometteurs pour l'authentification de l'origine du 

fromage, mais la métagénomique, qui offre une vue détaillée de la microbiote du fromage 

jusqu'au niveau des souches, présente un potentiel plus élevé pour améliorer les capacités 

d'authentification. 

La deuxième étude s'est concentrée sur le fromage Caciotta de montagne, en utilisant la 

métagénomique à la methode shotgun et la volatilomique pour comprendre les facteurs 

contribuant à la typicité et à la diversité du fromage. L'origine géographique, ainsi que des 

facteurs tels que la température de coagulation du caillé, le pH, la concentration en sel et 

l'activité de l'eau, ont joué un rôle significatif dans la formation des caractéristiques 

distinctives de la microbiote du fromage. Notamment, les communautés virales ont montré 

une biodiversité plus élevée et ont efficacement discriminer les origines des fromages. Parmi 

les bactéries dominantes, Streptococcus thermophilus a montré une plus grande diversité 

intraspécifique et des associations plus fortes avec l'origine du fromage par rapport à 

Lactobacillus delbrueckii. L'étude a également identifié des bactéries lactiques non démarreurs 

et des phages spécifiques à chaque origine, fournissant des informations précieuses sur la 

composition microbienne unique du fromage. Le volatilome du fromage Caciotta de 
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montagne a présenté des niveaux élevés d'alcools et de cétones, avec des différences 

distinctes dans les abondances relatives des enzymes liées au développement du goût, 

contribuant ainsi davantage à sa typicité. 

Enfin, une approche multi-omique pour l'authentification de l'origine du fromage a été 

explorée, en intégrant la métagénomique, l'analyse du volatilome, la spectroscopie proche 

infrarouge, les isotopes stables et l'analyse élémentaire. L'analyse basée sur l'ADN, en 

particulier les communautés virales, a atteint des taux de précision de classification élevés 

par rapport aux communautés bactériennes. Les composés organiques volatils ont 

démontré le potentiel de regrouper le fromage en fonction de son origine, tandis que la 

spectroscopie proche infrarouge a montré une précision de classification modérée. L'analyse 

de la composition élémentaire a révélé des variations significatives dans les éléments liés à 

l'équipement laitier, aux macronutriments et aux terres rares entre différentes origines, 

conduisant aux meilleures performances en termes d'authentification de l'origine. 

Ce travail présente certaines limites qui pourraient stimuler la recherche future dans le 

domaine de la science du fromage et de l'authentification de l'origine, notamment l'absence 

d'analyses microbiologiques basées sur la culture et la nécessité de mener d'autres enquêtes 

utilisant différents modèles de classification. De plus, des recherches futures sont 

encouragées pour explorer diverses variétés traditionnelles de fromages et des lieux 

géographiques différents afin de valider les résultats de manière approfondie. L'intégration 

d'outils innovants, tels que des dispositifs de spectroscopie vibrationnelle miniaturisés et 

des systèmes de blockchain, promet d'améliorer les pratiques d'authentification alimentaire. 

En conclusion, cette étude met en évidence le potentiel des techniques multi-omiques, en 

particulier la métagénomique et la volatilomique, dans l'authentification de l'origine du 

fromage. L'étude de cas axée sur le fromage Caciotta de montagne fournit des informations 

précieuses sur le rôle des facteurs géographiques dans la formation des caractéristiques des 

fromages artisanaux. Dans l'ensemble, cette recherche contribue à la préservation du 

patrimoine culturel et à la durabilité économique dans les régions montagneuses grâce à 

des systèmes d'authentification solides pour les produits de fromage traditionnels. 
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Riassunto generale 

La disponibilità dei consumatori a pagare un premium price per prodotti come i formaggi 

tradizionali, in particolare quelli con indicazioni geografiche protette, li rende altamente 

suscettibili alle frodi alimentari. Per combattere questo problema, sono essenziali metodi 

affidabili di autenticazione degli alimenti. Questa tesi di dottorato si concentra sullo studio 

e valutazione delle performance dei metodi di autenticazione utilizzati per la verifica 

dell'origine geografica del formaggio, inclusi approcci chimici, fisici e basati sul DNA. Il 

primo studio, una review della letteratura scientifica, ha evidenziato che l’analisi degli 

elementi e degli isotopi avevano un'accuratezza costante nell'autenticazione dell'origine del 

formaggio e ha sottolineato la necessità di ulteriori ricerche per valutare il potere 

discriminante di altri metodi, come la spettroscopia nel vicino infrarosso, la risonanza 

magnetica nucleare e tecniche basate sul DNA. Le tecniche basate sul DNA, in particolare il 

metabarcoding, hanno mostrato risultati promettenti per l'autenticazione dell'origine, ma la 

metagenomica, che offre una visione dettagliata del microbioma del formaggio fino al livello 

del ceppo, potrebbe avere un potenziale maggiore per migliorare le capacità di 

autenticazione. 

Il secondo studio si è concentrato sulla Caciotta di montagna, impiegando metagenomica e 

volatiloma per comprendere i fattori che contribuiscono alla tipicità e alla diversità 

microbiologica del formaggio. L'origine geografica, insieme a fattori come la temperatura di 

cottura della cagliata, il pH, la concentrazione di sale e l'attività dell'acqua, hanno giocato 

un ruolo significativo nel plasmare le caratteristiche distintive del microbioma del 

formaggio. In particolare, le comunità virali hanno mostrato una maggiore biodiversità e 

hanno discriminato efficacemente le origini del formaggio. Tra i batteri dominanti, 

Streptococcus thermophilus ha mostrato una maggiore diversità intraspecifica e associazioni 

più forti con l'origine del formaggio rispetto a Lactobacillus delbrueckii. Lo studio ha anche 

identificato batteri lattici non starter e fagi specifici per ciascuna origine, fornendo preziose 

informazioni sull’unicità della composizione microbica del formaggio. Il volatiloma della 

Caciotta di montagna presentava livelli elevati di alcoli e chetoni, con nette differenze nelle 
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abbondanze relative di enzimi legati allo sviluppo dei composti aromatici che 

contribuiscono alla formazione dei suoi caratteri tipici. 

Infine, è stato esplorato un approccio multi-omico per l'autenticazione dell'origine del 

formaggio, che incorpora la metagenomica shotgun, l'analisi del volatiloma, la spettroscopia 

nel vicino infrarosso, gli isotopi stabili e l'analisi elementare. L'analisi basata sul DNA, in 

particolare le comunità virali, ha raggiunto tassi di accuratezza della classificazione elevati 

e migliori rispetto alle comunità batteriche. I composti organici volatili hanno dimostrato 

un buon potenziale per classificare il formaggio in base alla sua origine, mentre la 

spettroscopia nel vicino infrarosso ha mostrato una moderata precisione di classificazione. 

L'analisi della composizione elementare ha rivelato variazioni significative negli elementi 

relativi alle attrezzature casearie, ai macronutrienti e alle terre rare per le diverse origini, 

portando migliori prestazioni nell'autenticazione dell'origine. 

Questo lavoro presenta alcune limitazioni che potrebbero stimolare la ricerca futura nella 

scienza del formaggio e nell'autenticazione dell'origine, tra cui l'assenza di analisi 

microbiologiche basate sui metodi classici di coltura microbiologica e la necessità di ulteriori 

indagini che utilizzino diversi modelli di classificazione. Inoltre, si incoraggia la futura 

ricerca ad esplorare diverse varietà di formaggi tradizionali e provenienti da più aree 

geografiche per convalidare ulteriormente i risultati ottenuti. L'utilizzo di innovativi, come 

dispositivi di spettroscopia vibrazionale miniaturizzati e sistemi blockchain, dovrebbero 

essere altresì considerate al fine di migliorare le pratiche di autenticazione degli alimenti e 

combattere le frodi. 

In conclusione, questo studio sottolinea il potenziale delle tecniche multi-omiche, in 

particolare la metagenomica e la volatiliomica, nell'autenticazione dell'origine del 

formaggio. La Caciotta di montagna, oggetto di questo caso studio, fornisce preziosi spunti 

sul ruolo dei fattori geografici nel plasmare le caratteristiche dei formaggi tradizionali. Nel 

complesso, questa ricerca può contribuire alla conservazione del patrimonio culturale e alla 

sostenibilità economica nelle regioni montuose attraverso robusti sistemi di autenticazione 

per i prodotti caseari tradizionali. 
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General introduction  

Cheese is a widely consumed dairy product. In 2021, the global market value of cheese stood 

at roughly 77.6 billion U.S. dollars, a number which is projected to exceed the 113 billion 

U.S. dollar mark by 2027 (Imarc, 2022). Cheese production has been increasing slightly with 

each consecutive year since 2015 and about half of all the cheese made in 2021 was produced 

by the European Union (USDA, 2022). However, as a wide variety of cheese is known, 

linked to the use of different milk types, process and know-how, differences in market value 

of different cheese types exist. In agreement with a societal demand for less processed and 

traditional foods, cheeses benefiting a traditional image are well considered and can have a 

higher economic value. As example, in Poland 68% of interviewed consumers declared that 

they would always choose traditional cheese (Roślinnie Jemy, 2021) while in Italy 70.1% of 

interviewed consumers declare that the place of origin is the most important element that 

would characterize their choice (Pilone et al., 2015).  

The European Union is committed to protecting geographical indications to preserve the 

unique qualities of products linked to their geographical origin and traditional methods of 

production. Since the introduction of Council Regulations in 1992 (EEC No. 2081/92 and No. 

2082/92), the European Union has introduced a range of quality schemes including 

Protected Designation of Origin (PDO), Protected Geographical Indication (PGI), and 

Traditional Speciality Guaranteed (TSG), as well as the optional quality term “Mountain 

Product” (EU Parliament and Council Regulation No. 1151/2012, art. 31, and Regulation No. 

665/2014). Additionally, there are international and national voluntary certifications, such 

as the EU organic certification (Council Regulation EEC No. 2092/91, currently under EU 

Regulation 2018/848 of the European Parliament and of the Council) and national organic 

labels in some EU countries (e.g., Agriculture Biologique in France), that aim to improve 

environmental sustainability and animal welfare. 

These quality schemes offer a range of benefits, including premium pricing directly 

benefiting the producers, positive socio-economic impacts for territories and a variety of 

ecosystem services such landscape and environmental preservation and safeguarding of 
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biodiversity and cultural knowledge (Mancini and Donati, 2013; Deselnicu et al., 2013; 

Arfini et al., 2019). In light of these benefits, recent projects have highlighted the potential 

for food quality schemes to promote more sustainable production patterns (Arfini and 

Bellassen, 2019). At the same time, consumers benefit from food quality schemes in terms of 

assurance of high-quality standards, informed choices, fair competition, and reliable 

information. Studies have explored consumers' preferences for food quality schemes, 

including their willingness to pay for products with food quality labels compared to 

conventional ones (Menapace et al., 2011; Aprile et al., 2012; Garavaglia and Mariani, 2017; 

Santeramo and Lamonaca 2020). For instance, Spanish consumers are more willing to pay 

similar price premiums for PDO and organic cheese than for reduced-fat-content cheese. 

Another area of study has been consumer interest in geographical indications combined 

with the optional quality term “Mountain Product”, with consumers showing positive 

attitudes towards this label and its combination with PDO (Sanjuan and Khliji, 2016; 

Menozzi et al., 2022). This reflects a growing focus on protecting natural resources and 

supporting small farmers and local traditions. As geographical indication quality is 

recognised and appreciated by consumers, their willingness to pay higher prices for this 

type of product (Figure 1) is often an attraction for fraudulent action such as origin 

mislabelling (García-Hernández et al., 2022).  
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Figure 1. Differences in average price of PDO cheese in comparison to conventional cheese.  

 

In particular, when food frauds are related to food categories such as protected designation 

of origin (PDO) or mountain products, they affect crucial ecosystems, decreasing the 

products’ value, and compromising the economic and social sustainability of the 

production. The European food legislator has implemented a strict traceability system based 

on product labelling and protected the value of these products. However, the 

implementation of these systems needs appropriate testing methods to protect the 

consumer against frauds and to ensure their trust (Barcaccia et al., 2015). In this context, 

implementing a system to authenticate food origin and evaluate their quality may provide 

additional tools to counteract the problem. 

Food authentication is the process that verifies that a food is in compliance with its label 

description (Danezis et al., 2016). This may include production methods (e.g. conventional 

vs. organic), processing technologies (e.g. use of raw vs. pasteurised milk) and origin. The 
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origin of the cheeses may have its identity related to the edaphoclimatic conditions 

established by the environment, in which the climate influences the composition and quality 

of the raw material used (Silva et al., 2022). The location where the cheese is produced and 

the herd management can also affect the composition of the milk microbiota, leading to 

unique biochemical changes in the cheese (Reuben et al., 2023). Furthermore, the use of local 

ingredients and traditional know-how in the cheesemaking processes can contribute to a set 

of characteristics that are specific to the region, associated with the "terroir" notion that 

reflects the essence of the area where it was made (Karoui et al., 2005a; Karoui et al., 2005b). 

Various methods have been employed to authenticate cheese origin. These can be classified 

in chemical, physical and DNA-based. Chemical methodologies frequently employed in 

cheese origin authentication include the analysis of stable isotope ratio, trace elements, fatty 

acids and volatile organic compounds. On the other hand, physical methods include 

infrared spectroscopy and nuclear magnetic resonance. While these methods have largely 

been used for food authentication, other methods based on the food-associated microbiota 

and its metabolism are developing. 

In this context, DNA-based methods refer to the possibility of creating a molecular 

fingerprint based on the cheese microbiome. Cheese microbiome can be seen as a complex 

assembly of microorganisms that originate from farmland and are shaped through 

cheesemaking technology and storage/ripening conditions until consumer consumption 

(Cardin et al., 2022). Metabarcoding and shotgun metagenomics sequencing are two DNA 

based techniques able to produce consistent amounts of data using low sample quantities. 

These analyses have seen a continuous decrease of cost per sample (Komarova et al., 2020), 

making them a useful tool to characterize microbial community and identify microbial 

signatures. Many authors have reported a greater potential in microbial community 

description using metabarcoding and metagenomics than phenotypical analysis, since 

multiple microorganisms as bacteria, virus, fungi and archaea can be detected in the same 

analysis (Sattin et al., 2016; Kamilari et al., 2019; Afshari et al., 2020). The application of 

metabarcoding or shotgun metagenomics sequencing could offer other interesting benefits 
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allowing to authenticate dairy products (i.e. specific “house” signature) and to investigate 

their quality at the same time.  

Cheese microbiota diversity and the possibility of establishing a microbial signature from 

different processing environments, named “house microbiota”, have been described by 

multiple authors (Bokulich and Mills, 2013; Calasso et al., 2016). However, despite detailed 

bacterial community characterization, most of the researchers have focused only on 16S 

rRNA marker and only few of them have combined DNA and metabolomic analysis. 

Moreover, it is well known that the 16S rRNA marker can discriminate bacteria up to the 

family/genus level, while cheese has complex microbiota in which strains from bacteria, 

fungi and viruses might play a key role in microbiota dynamics. These disadvantages can 

be overcome by shotgun metagenomics (Quince et al., 2017). This method, via the analysis 

of all the genetic material available in the sample, can assess the taxonomic classification of 

bacteria, fungi and virus (Ranjan et al., 2016). Moreover, shotgun metagenomics offers 

multiple advantages in comparison with metabarcoding, since no amplification step is 

required and all the genetic material in the sample is used for genome reconstruction to 

reach a deeper taxonomic assignation, potentially to the strain level (Ranjan et al., 2016; 

Quince et al., 2017). Moreover, beyond the diversity information, microbial functionalities 

can be accessed. 

Nevertheless, few studies have employed shotgun metagenomics to characterize and/or 

investigate the possibility to authenticate cheese origin. Parente et al. (2020) highlighted the 

need for more research to understand dairy microbiota, since 50% of the published works 

have used 24 samples or less. Hence, the use of shotgun metagenomics, combined with a 

systematic sampling for at least two years is needed to gain a deeper understanding of the 

microbial community and achieve the goal of food origin authentication (Montel et al., 2014; 

Medina et al., 2019). 

 

In the framework of this PhD work, we used typical mountain Caciotta cheese to investigate 

the performances of different origin authentication methods including shotgun 

metagenomics as well as volatilome which is an aspect of the microbiota expression. 
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Caciotta is a type of Italian cheese that is made from raw cow's milk. It is a traditional, short-

medium ripened cheese characterized by dark ivory rind color and yellow-pale core (Figure 

2A)(Bancalari et al., 2020). The production of Caciotta from northern Italy mountain area is 

often based on small-scale dairy employing traditional methods. Indeed, mountain areas 

(Figure 2B) such as Alti Pascoli della Lessina and Trento province are known and recognized 

for their cheesemaking history (Apolito 2018). 

 

Figure 2. (a) Picture of typical Caciotta cheese. (b) Map of the origin of mountain Caciotta 

producers that was investigated in this study. Producer 1 is located in the Giudicarie 

Esteriori area while producers 2 and 3 are located in the Trento province. Producers 4 and 5 

are located in the Alti Pascoli della Lessinia area. 

Overall, the scientific questions addressed by this work were as follow: 

- What are the main ecological drivers of typical Caciotta cheese produced in different 

regions with similar cheesemaking know-how? 

- Is the cheese microbiome stable along time? Is it possible to identify considerable 

changes in cheese microbiome according to season or year? 

- Can cheese microbiome be used as an authentication marker? 

-     What are the performances of shotgun metagenomics, volatilome, near infrared 

spectroscopy, stable isotope ratio and trace element analysis in authenticating the origin 

of typical mountain cheese? 
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Herein, the first chapter of this document is focused on a comprehensive literature review 

about geographical origin authentication methods, considering dairy frauds, European 

legislature and typicity definition. The second chapter is focused on the characterization of 

viral and bacterial communities of typical mountain Caciotta cheese and its associated 

volatilome. The following chapter reports a preliminary investigation on the ability of 

shotgun metagenomics data and volatilome analysis in authenticating cheese origin by 

using a cross-validated spatial partial least square discriminant analysis model. In 

conclusion, a general comparison of physical, chemical, and DNA-based methods for origin 

authentication will be provided.  
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Chapter 1: What methods can be used to authenticate cheese 

origin? 

In this chapter the available origin authentication methods are discussed. The choice of 

origin authentication method is influenced by economic and legal considerations, as well 

as reported cases of frauds. While the chapter aims to provide a general introduction of 

the frauds, geographic indications and typicity terminology, the main body reports a 

critical view of the recent 179 papers dealing with origin authentication. Among the 

reported definition “Mountain product”, which identifies “products for which the raw 

material and the feedstuffs for animals come essentially from mountain areas and, in the 

case of processed products, the processing also takes place in mountain areas” (EU 

Parliament and Council Regulation No. 1151/2012) will be further considered in the 

characterization of typical Caciotta cheese (Chapter 2) and in the authentication of its 

origin (Chapter 3). Chemical, physic, and DNA-based methods are described by providing 

the main analytical principles as well as authentication performances of cheese origin. 

Since DNA-based methods are emerging in this field, pivotal considerations on the factors 

affecting cheese microbiota (i.e. the consortium of prokaryotic, eukaryotic and viral 

populations inhabiting cheese) are provided. In the end, an overall consideration of the 

described methods and future perspectives aims to orient the reader toward the most 

suitable way to authenticate cheese origin. 

The following is a review published in the journal foods.  
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Abstract: Food fraud, corresponding to any intentional action to deceive purchasers and gain an
undue economical advantage, is estimated to result in a 10 to 65 billion US dollars/year economical
cost worldwide. Dairy products, such as cheese, in particular cheeses with protected land- and
tradition-related labels, have been listed as among the most impacted as consumers are ready to
pay a premium price for traditional and typical products. In this context, effcient food authen-
tication methods are needed to counteract current and emerging frauds. This review reports the
available authentication methods, either chemical, physical, or DNA-based methods, currently used
for origin authentication, highlighting their principle, reported application to cheese geographical
origin authentication, performance, and respective advantages and limits. Isotope and elemental
fngerprinting showed consistent accuracy in origin authentication. Other chemical and physical
methods, such as near-infrared spectroscopy and nuclear magnetic resonance, require more studies
and larger sampling to assess their discriminative power. Emerging DNA-based methods, such as
metabarcoding, showed good potential for origin authentication. However, metagenomics, providing
a more in-depth view of the cheese microbiota (up to the strain level), but also the combination of
methods relying on different targets, can be of interest for this feld.

Keywords: cheese; geographical origin; authentication; next-generation sequencing; volatilome;
isotopic analysis; trace element analysis; infrared fngerprinting

1. Introduction

The shared defnition of food fraud relates to intentional illegal acts performed by
food value chain operators for economic gain [1]. More specifcally, in the framework of the
European agri-food chain legislation, food fraud is defned as “any suspected intentional
action by businesses or individuals for the purpose of deceiving purchasers and gaining
undue advantage therefrom, in violation of the rules referred to in Article 1(2) of Regulation
(EU) 2017/625” [2]. Behind the term “food fraud”, multiple practices designed to deceive
purchasers, which are categorized under the following denominations: (i) substitution,
(ii) concealment, (iii) dilution, (iv) unapproved enhancement, (v) counterfeit, (vi) grey
market/forgery, and fnally, (vii) mislabeling, exist. Substitution corresponds to total or
partial replacement of a food, including ingredients or nutrients, with one of lower value.
Concealment hides the low quality of food ingredients or food products. Dilution is self-
explanatory and corresponds to the action of mixing a high-value ingredient with a lower
one, while unapproved enhancement improves food quality by adding undeclared or un-
known ingredients. These four food fraud types are grouped under the term “adulteration”.
Counterfeit refers to the infringement of Intellectual Property Rights via replication of a
product or its packaging, while grey market or forgery corresponds to production, theft,
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and diversion involving unauthorized sales of foodstuffs. The latter generally concerns
products for which production agreements or quotas exist or geographical restrictions ap-
ply. Finally, mislabeling corresponds to distorted information or false claims on packaging
or labels [3].

The global estimated value of food frauds each year ranges from 10 to 65 billion US
dollars, without considering potentially related losses [1]. Indeed, unfair competition may
not only result in economic losses for honest producers and retailers but could also impact
food safety and quality, public health, and society at a large scale, thus impeding a perfectly
accurate estimation of food fraud socio-economic impacts [4,5].

In recent years, dairy products have been systematically listed among the most com-
mon food frauds [6–11], with cheese being the most prevalent [11,12]. In this case, fraudu-
lent documentation and adulteration/substitution were the most frequent events [12,13].
Between 2000 and 2018, the HorizonScan program (a subscription-based service monitoring
global food integrity issues, including brand identity) reported 245 cases of dairy frauds,
from which 51% were characterized by fraudulent documentation [12]. Similar fndings
were reported by Montgomery et al. [13], who stated that cheese fraudulent documen-
tation accounted for 74% of total fraud cases (n = 98) between 2015 and 2019 [10,11]. In
this context, actions against food fraud are taken by inspecting agencies, producers, and
retailers [14–17]. Nevertheless, the increased complexity of a globalized supply chain can
impair fraud incidents from being detected.

The term “authenticity” for food products is associated with the fact that there is
a “match between the food product characteristics and the corresponding food product
claims” [18]. In this context, cheeses are defned as ripened or unripened soft, semi-hard,
hard, or extra-hard products, obtained by milk protein coagulation using rennet, other
suitable coagulating agents, or processing technologies, and have whey protein/casein
ratios that do not exceed that of milk [19]. Cheese quality is often linked to value descriptors
such as environmental welfare standards, production methods, and safety claims, but also
geographical origin [20].

As for the term “typicity”, it is defned by the unique combination of natural and
human factors associated with a specifc terroir [21]. Cheese typicity (i.e., the recognizable
organoleptic traits associated with a given cheese) is acquired from the specifc raw materi-
als used, traditional tools, and the encountered environmental and production conditions,
cheese-making process, and geographical area [22]. At the European level, linked to this
typicity, certain cheeses can be recognized with distinctive labels, such as Protected Desig-
nation of Origin (PDO), which indicates that the products were entirely manufactured in
a defned geographical area, Protected Geographical Indication (PGI), which correlates a
geographical area with at least one of the product transformation steps, and Traditional
Specialties Guaranteed (TGS), that highlights a traditional aspect for food products without
any link to a specifc geographical area. Other labels, such as “product of island farming” or
“mountain product”, can also be found [23–25]. A strong societal demand currently exists
for natural, local, traditional, and authentic foods. Authentic food quality is recognized
by the consumer to have a higher added value, but this higher value increases the risk
for fraud, in particular fraudulent documentation including omission or irregular use of
geographical origin and failure to adopt suitable traceability systems (i.e., corresponding to
mislabeling) [13,26]. At the European level, Regulation [27] established the implementation
of a comprehensive traceability system within food businesses and required a suitable
documentation system to identify the product along the food chain, while Regulation [28]
(Art. 26) requires labeling “country of origin” for products such as Geographical Indication
and meat or products, for which mislabeling would mislead the consumer. Moreover, the
increasing consumer demand for natural, local, and traditional foods has led to national
laws, such as in Italy and Spain, regulating how to label the geographical origin of milk and
milk derivatives [29,30]. Accordingly, geographical origin, described as a “specifc location”
that serves to designate a product origin such as territory of a member, region, or locality
in a given territory [31] (Art. 22), has crucial relevance in dairy products. The need for food
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authentication methods is driven by different actors. This includes producers and retailers
for whom food fraud induces economical losses, public authorities that verify compliance
with agri-food chain legislation, and fnally, the consumer, to ensure trust when buying a
product. While, in the past, authentication analyses focused on evaluating a single molecule
or single parameters, nowadays, these methods are evolving from targeted to untargeted
approaches. This enables the description of multiple product features and characteristics to
provide a way to develop fngerprints for cheese geographical origin authentication. This
is particularly relevant for protected land- and tradition-related labeled cheeses that are
often incriminated in food frauds due to their high economical value.

Two different strategies can be employed to authenticate cheese origin. The frst one
involves exploring the relationship between the biological and/or chemical components,
assuming that their proportions are constant for a particular cheese at a specifc time
during production or shelf-life. In this context, it seems clear that pattern recognition
methods (e.g., such as principal component analysis (PCA) and orthogonal projections
to latent structures discriminant analysis (OPLS-DA)) create unique classes, potentially
differentiating typical and fraudulent products [32]. The second strategy aims to fnd
specifc chemical or biological components which can be used as markers for traditional
cheese authentication (e.g., mass spectrometry analysis, such as stable isotope ratio and
trace elements) that can all refect cheese chemical composition. DNA-based methods for
authentication are also emerging in the dairy sector, as shown recently by the work of
Kamilari et al. [33], who used cheese microbiota metabarcoding for this purpose. However,
for authentication of geographical origin, methods such as isotopic profles [34] are gener-
ally preferred. As food labeling systems are constantly evolving, in parallel with legislation
(e.g., Regulation [2]), analytical tests and technical control measures need to be improved
and updated to counteract present and emerging fraud systems [35].

In this context, this review (based on 167 articles published over the last 27 years) aims
to present methods, either physical and chemical or DNA-based, that are currently used
for cheese geographical origin authentication, highlighting their principle, application,
discriminative power, and advantages and limits, as well as to present future perspectives
in this analytical feld.

2. Chemical and Physical Methods for Cheese Origin Authentication

Polyphasic chemical and physical analysis approaches are now more common than
single-parameter descriptions (i.e., dry matter, total protein, salt content) [36] to decipher
cheese composition profles. This is reinforced by the fact that cheese characterization,
based on general chemical parameters, does not effciently discriminate cheese geographical
origin, as recently shown for water buffalo mozzarella by Salzano and colleagues [37].
That is why multiple signals are analyzed to acquire specifc insight into typical cheese
characteristics connected with its origin. Isotope and trace element fngerprinting methods
have been considered as reference methods; however, other chemical and physical analyses
can be used for geographical origin authentication.

2.1. Stable Isotope Ratio Mass Spectrometry

Stable isotope ratio mass spectrometry (IRMS) is among the most common methods for
food geographical origin authentication [3]. It detects natural isotopic abundance of light
and heavy stable isotopes, which mostly depend on climatic or geographical conditions
(mainly latitude and altitude). The stable isotope ratio is also affected by biological and
environmental interactions, and thus geographical product origins can be differentiated
even if these have a high degree of similarity. Elements are called isotopes when their atoms
are made by the same number of protons but a different number of neutrons, yielding a
different atomic mass than the normal element [38]. Stable isotopes are non-radioactive
isotopes and do not decay rapidly to form other elements.
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Usually, stable isotope analysis is expressed as a ratio using an international standard
to calculate it (Equation (1)):

δ‰ = (RSample − RStandard)/RStandard ∗ 1000 (1)

where R is the ratio between heavy and light isotopes [39]. The results of stable isotope
ratios are always expressed as a percentage (‰—per mille unit) of international standard
samples received from international organizations such as Vienna-Pee Dee Belemnite (V-
PDB) for δ13C, Aria (AIR) for δ15N, Vienna—Standard Mean Ocean Water (V-SMOW) for
δ2H and δ18O, and Vienna—Canyon DiabloTriolite (V-CDT) for δ34S [40].

IRMS has been widely used for cheese origin authentication [41–43] and many stable
and unstable isotope ratios have been investigated. Among them, 13C/12C, 15N/14N,
2H/H, 18O/16O, and 34S/32S elements are the most commonly used, while 87Sr/86Sr,
44Ca/40Ca, 44Ca/42Ca, and 206Pb/204Pb are occasionally reported [38,44]. For cheese
authentication, IRMS is based on predictable and reproducible responses of stable isotopes
to typical factors such as geographical origin, animal origin, seasonality, and manufacturing
processes [38]. Animal feed was shown to have the highest impact on δ13C and δ15N,
while δ2H is heavily infuenced by the animal diet, and its combination with δ18O is
mainly impacted by geographical origin and seasonality [38,41]. δ34S is mostly linked to
geographical origin, i.e., soil geology, and it is not correlated with other stable isotope
ratios [45]. On the contrary, further studies are still needed to gauge the effect of cheese-
making on stable isotope ratios [38] as different results on these ratios in milk and cheese
have been reported. They suggested either no major difference between milk and cheese
obtained after milk processing [41,43] or a partial impact [34,42]. Considering isotope
abundances in different organic macromolecules, the casein fraction has been reported to
be the most reliable for origin authentication [39].

In general, possible effects of the cheese-making process on stable isotope ratios could
be related to fat removal (in particular, the glycerol fraction), curd acidifcation, curd
clotting (e.g., use of a commercial starter vs. natural milk cultures), curd washing, curd
heat treatment (e.g., 50 ◦C), and salt washing/brining, while ripening time has not yet been
reported to impact their composition [38,46]. For the casein stable isotope ratio of milk,
the corresponding cheese did not show any signifcant differences for δ13C, δ15N, and δ2H,
but an unexplained and signifcant difference (p < 0.001) was reported for δ18O in typical
pressed-cooked cheese [41]. The authors suggested a relevant fractionation in the animal in
comparison with the feed, but a lack of isotopic fractionation during cheese-making [41].
However, Bontempo et al. [34] obtained a different isotopic ratio comparing milk and
corresponding Mozzarella di Bufala Campana PDO for δ2H and δ18O. Further studies on
milk and corresponding cheeses obtained through different processes and technologies
may provide additional insight into the eventual changes of stable isotope ratios during
cheese-making. Table 1 reports the advantages and limitations of stable isotope ratio mass
spectrometry for cheese origin authentication.

Table 1. Advantages and limitations of stable isotope ratio mass spectrometry for cheese origin
authentication.

Advantages Reference Limitations Reference

Isotope ratio such as 18O, 2H, and 34S have a predictable
and reproducible response toward geographical origin

[38] Unclear effect of cheese-making on stable isotope ratio [34,43]

Elevate correct classifcation rate [42] High operating cost [47]
Consistent accuracy in origin authentication [34,41,42] 13C and 15N are highly affected by animal feed [41]

From an applied point of view, IRMS was used to discriminate the origin of two typical
mountain cheeses from Italy [41]. The authors combined δ13C, δ15N, δ2H, and δ18O from
the casein fraction to build a canonical discriminant model that, after cross-validation,
was able to correctly classify 96% of the milk and cheese samples. In Brazil, Silva and
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colleagues [42] analyzed δ13C, δ15N, δ2H, and δ18O from the water fraction of milk and
cheese. After using the δ2H and δ18O in a linear regression model, they were able to
discriminate milk and cheese samples according to their production area. In another study,
Pillonel and colleagues [48] showed that the combined measurement of δ13C, δ15N, δ18O,
and δ 34S/32S of the casein fraction authenticated Swiss vs. French Raclette cheeses.

In summary, isotope fngerprinting has proven to be reliable for the geographical
origin authentication of typical cheeses. It is worth noting that stable isotope ratio analyses
are already used as a traceability tool for some PDO cheeses such as Grana Padano and
Parmigiano Reggiano (Regulation (EU) No. 1151/2012, amendment 2017/C 358/10 and
2018/C 132/07). This method is also often combined with trace element determination
using inductively coupled plasma-mass spectrometry (ICP-MS) or inductively coupled
plasma-atomic emission spectroscopy (ICP-AES).

2.2. Inductively Coupled Plasma

Cheese elemental fngerprinting is also currently used for origin authentication using
inductively coupled plasma methods (ICP-MS or ICP-AES). These analyses rely on electro-
magnetic plasma to induce atom ionization (MS) or excitation (AES), to detect the different
elements. Four main steps, including sample introduction and aerosol generation, plasma
ionization/excitation, signal discrimination, and detection are used in ICP-MS and ICP-
AES [44]. While MS analyzes ionized elements, AES detects light emitted by excited atoms.
For cheese geographical origin authentication, ICP-MS is the preferred choice since it is a
rapid, multi-element analysis able to quantify trace (ppm–ppb) or ultra-trace (ppb–ppq)
elemental concentrations [49]. As elemental composition is mainly affected by geological
and pedological traits, multiple factors can affect the element content in cheese, such as
animal breed, feed vegetation, drinking water, and mineral supplementation [49,50]. Possi-
ble effects of cheese-making on cheese elements could derive from the clotting agent, curd
acidifcation, manufacturing equipment, curd washing, and salt washing/brining [34,51].
Indeed, some authors reported that exclusion of Cu2+ and Zn2+ in multivariate analysis
was necessary since a high transfer rate of these elements from dairy equipment to cheese
was expected [52]. Table 2 reports the advantages and limitations of inductively coupled
plasma for cheese origin authentication.

Table 2. Advantages and limitations of inductively coupled plasma-mass spectrometry for cheese
origin authentication.

Advantages Reference Limitations Reference

Elemental composition is mainly affected by
geological and pedological traits [49] Animal feed and mineral supplementation affect

elements’ composition [50]

Low operation costs with good analytical performance [47] Some elements such as Cu2+ and Zn2+ are highly
affected by dairy equipment

[52]

Fast and multi-element analysis [44] Requires careful sample preparation [39]

Elemental fngerprinting data obtained by Danezis and colleagues [50] have provided
useful insights for an understanding of multiple element variations, including rare earth
and precious metals, occurring in Greek Graviera cheeses obtained from 9 different regions
(n = 105 samples). These authors analyzed 61 different elements, including rare earth (Dy,
Er, Eu, Nd, Pr, Sc, Sm, Y, Yb), precious metals (Au, Pd, Re, Ru), ultra-trace elements (Nb,
Ta, Tl, W, Zr), and trace elements (Ag, Al, Bi, Cd, Cu, Mo, Ni, Pb), and found signifcant
differences according to cheese origin. They were able to correctly classify 92.1% of the
tested cheeses (21 traditional and 9 commercial cheeses) using discriminant analysis [53].
The model was built on 65 elements, but the most signifcant variables were Ce, Dy, Eu, Gd,
Ho, La, Nd, Pr, Sm, Tb, Y, Yb, Pd, As, Ba, Co, Fe, Ga, Mo, Ni, Ti, Zr, Ca, and P. Even if the
authors did not perform any cross-validation, their results showed that ICP-MS was useful
for cheese origin authentication, achieving high correct classifcation rates. According to
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the same study, rare earth elements seemed to signifcantly increase the discriminatory
power of ICP-MS.

As previously stated, a combination of IRMS and ICP-based methods can also be used.
For example, IRMS (for the casein fractions) and ICP-MS achieved high performance for
cheese origin classifcations. This was shown for semi-cooked typical Italian alpine cheeses,
namely Asiago, Fontina, Toma, Vezzena Montasio, Spressa, and Puzzone (n = 109). The
use of Ba, Ca, Cu, Ga, K, Mg, Rb, Zn, δ13Ccasein, δ15Ncasein, δ13Cglycerol, and δ18Oglycerol as
predictive variables in canonical discriminative analysis was able to correctly classify 94%
of the tested samples [52]. Another example was for authentication of PDO Parmigiano Reg-
giano vs. 11 imitation cheeses from different origins [54]. In their process, Camin et al. [54]
used variables selected by the Random Forest algorithm (δ13Ccasein, δ2Hcasein, δ15Ncasein,
δ34Scasein, and Sr, Cu, Mo, Re, Na, U, Bi, Ni, Fe, Mn, Ga, Se, and Li) to create a supervised
two-class model that was able to correctly classify 98.3% of the 265 hard cheese samples.
Lastly, Nečemer and colleagues [51] discriminated different Slovenian cheese origins by
combining P, S, K, Cl, Ca, Zn, and δ13Ccasein and δ15Ncasein contents, and a high correct
classifcation rate (97%) confrmed that the dual IRMS/ICP-MS approach provided robust
data to authenticate cheese geographical origins.

2.3. Infrared Spectroscopy

Spectroscopic analyses, including near-infrared (NIR) and mid-infrared (MIR), are
based on the selective interaction of infrared beams with food molecules [55]. The in-
frared region includes a wide energy range (800 nm–1 mm, 12,500–10 cm−1) and spec-
trophotometers can only evaluate a fraction of the wavelength, such as NIR (800–2500 nm,
12,500–4000 cm−1), MIR (2.5–25 µm, 4000–400 cm−1), and far-infrared (25–1000 µm,
400–10 cm−1) [56]. Although infrared spectroscopy mainly involves vibrational energy,
NIR incorporates both electronic and vibrational spectroscopy, while MIR mainly moni-
tors molecular vibrations and far-infrared contains rotatory and vibrational movements.
NIR spectroscopy mainly refects the absorption information of overtone and combination
tone of chemical bond vibrations of hydrogen-containing groups (C–H, O–H, N–H, and
S–H) that refect the anharmonic constant and the high-frequency vibration of the funda-
mental stretching of a XH bond (i.e., second overtone transition of C–H and O–H in the
1050–1400 nm region) [55,56]. Bands in the NIR region are weak or very weak, making this
region markedly different from the others, but at the same time, more diffcult to analyze.
However, compared to the MIR region, OH and NH stretching bands of monomeric and
polymeric species are better separated and differentiate free terminal functional groups
from those within the molecule [56]. On the other hand, MIR spectroscopy is a highly sen-
sitive method in which polar functional groups such as C=O, OH, and C–S exhibit intense
bands. These bands, combined with other specifcities of this region, such as stronger bands
from antisymmetric vs. symmetric stretching, make this analysis useful for molecular
fngerprinting [56].

In food fngerprints, spectroscopic techniques have gained popularity since these
are fast, solvent-free, automatic, non-destructive, non-invasive, inexpensive, and can be
used as a multiparameter analysis [49]. In general, NIR spectroscopy (in refectance or
transmittance mode) is more often used than MIR spectroscopy for food analysis as it
requires less sample preparation and can be easily used for in-feld analysis [57].

Cheese has proven to be a challenging matrix for infrared spectroscopic analysis as it is
non-homogeneous (e.g., crystalline structure, holes) and numerous cheese types exist [58].
Nevertheless, many studies on cheese characterized and correctly predicted the chemical
composition, manufacturing technique, ripening time, seasonality, and feeding system
of milk-producing animals [59–62]. On the other hand, only a limited number of studies
have focused on cheese origin authentication, possibly connected to the initial inability
to differentiate milk geographical origin using infrared spectroscopic techniques [63] and
sample size needed to validate the analysis [61]. Table 3 reports the advantages and
limitations of infrared spectroscopy for cheese origin authentication.
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Table 3. Advantages and limitations of infrared spectroscopy for cheese origin authentication.

Advantages Reference Limitations Reference

May identify peculiar spectral differences connected
with cheese origin [57] Requires large sample size for calibration [64]

Fast, solvent-free, automatic, non-destructive,
non-invasive, inexpensive, and can be used as a
multiparameter analysis

[49] Fingerprints may not detect less concentrated
molecules connected with geographical origin [57]

Minimal sample preparation [58]
Lack of studies on the analysis and
quantifcation the main sources of absorbance
variation at each wavelength for cheese

[65]

According to Niermöller and Holroyd [64], studies conducted on a reduced sample
size (n < 60) reported weak calibration for NIR spectra since, according to the multivariate
model employed for the chemometrics analysis, sample size should be higher; in fact,
PLS may require hundreds of samples per category. In another study, NIR spectroscopy
correctly classifed 96% of cheese samples from pasture-fed and conserved-forage-fed (hay
or grass silage) dairy cattle [66]. More recently, NIR was used (850 to 1048 nm wavelength
region) for a cheese model obtained from different dairy systems, and 67.1% of samples
were correctly classifed after applying a cross-validation (LDA model) [62]; however, the
aim was not to discriminate the geographical origin of the tested samples. In a study
comparing MIR and NIR spectroscopy performances, Karoui et al. [67] correctly classifed
86.6% and 85.7% of 91 Emmental PDO cheeses obtained from Switzerland, France, Finland,
Germany, and Austria using factorial discriminant analysis, thus highlighting MIR and NIR
performances to discriminate cheeses produced with a similar process but with different
geographic origins. In another study, Karoui et al. [68] used two MIR regions (3000–2800
and 1500–900 cm−1) to successfully authenticate PDO Gruyère and L’Etivaz cheese, and
90.5% and 90.9% of samples were correctly classifed using a factorial discriminant analysis.

In conclusion, although some studies have tested NIR and MIR spectroscopy to
authenticate cheese origins, it is still diffcult to conclude to what extent these techniques
can be applied given the relatively low number of samples used in these studies [61,65]. In
this context, further work on larger sample sizes for diverse cheese categories will likely
improve the discriminatory power of these methods.

2.4. Nuclear Magnetic Resonance

Another spectroscopic analysis based on selective interactions between electromag-
netic radiation and sample molecules is nuclear magnetic resonance (NMR). Generally,
NMR uses radio frequency pulses to induce magnetic resonance nuclei-oriented transitions
in an external magnetic feld. When electromagnetic radiation hits nuclei, oriented nuclei
move from lower to higher energy status or resonant nuclei. Subsequently, nuclei emit
energy to return to the lower energy status, producing free induction decay [69]. The de-
tected energy produces an absorbance signal, expressed in ppm, obtained from the ratio of
standard molecules (e.g., 3-(trimethylsilyl)-propionate-d4). NMR, based on nuclei magnetic
angular momentum—spin—is characterized by the azimuthal quantum number (I). Only
nuclei with an even number of neutrons and an odd number of protons can be detected
by their magnetic angular momentum (e.g., 12C and 16O have I = 0, while 1H and 13C
have I > 1). Different NMR methods have already been employed in food authentication.
However, considering cheese geographical origin authentication, 1H high-resolution magic
angle spinning (HRMAS) NMR is the most commonly used technique [70,71]. For example,
Shintu and Caldarelli [71] applied a discriminant analysis using unsaturated fatty acid,
aspartic acid, serine, and olefnic proton signals to classify the geographical origin of 20 Em-
mental cheeses from Austria, Finland, France, Germany, and Switzerland. They correctly
classifed 89.5% of samples after cross-validation. Mazzei and Piccolo [70] successfully
identifed Mozzarella di Bufala Campana PDO cheese origin. The studied cheeses were
obtained in the same region but from two different provinces, namely Salerno and Caserta.
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These authors applied a discriminant analysis model based on four metabolites linked to
milk processing (β-galactose, β-lactose, acetic acid, and glycerol) and, after cross-validation,
100% of samples were correctly classifed. Similarly, Consonni and Cagliani [72] correctly
differentiated 93.5% of Italian Parmigiano Reggiano PDO cheeses from foreign eastern
European “Grana type” cheeses by applying a PLS-DA model on leucine, isoleucine, lactate,
butanoate, and acetate. The same authors also discriminated Parmigiano Reggiano PDO
cheeses based on their ripening times. However, no cross-validation was performed to test
the developed model.

The simultaneous analysis of proteins, lipids, and other metabolite fractions by 1H
HRMAS NMR offers great opportunities for cheese geographical origin authentications [73].
Moreover, NMR offers multiple advantages, such as simple sample preparation, multiple
metabolite quantifcations, high experimental reproducibility, and it is also non-destructive.
Nevertheless, some limits should be considered, such as high cost for acquisition and
maintenance, and higher limits of detection (typically, 10 to 100 times) when compared
to gas chromatography-mass spectrometry [73,74]. Table 4 reports the advantages and
limitations of nuclear magnetic resonance for cheese origin authentication.

Table 4. Advantages and limitations of nuclear magnetic resonance for cheese origin authentication.

Advantages Reference Limitations Reference

Allows to obtain detailed information on cheese metabolites [44] Extremely high cost of acquisition [73]
May identify biomarkers related to geographical origin [73] High detection limits [74]
Minimal sample preparation [49] Complex calibration [73]

2.5. Gas Chromatography-Based Fatty Acid Analysis

Recently, fatty acid analysis has been investigated for cheese origin authentication
purposes. Fatty acids are lipid components formed by carboxylic acids with saturated or
unsaturated aliphatic carbon chains [75]. Generally, fatty acid analysis is based on four
sequential steps: extraction, derivatization, chromatographic separation, and detection [75].
The analytical reference method for fatty acid analysis is gas chromatography (GC), which
is usually combined with fame ionization detectors [76]. For GC, analytes are vaporized in
a heated chamber and transported by high-pressure inert gas (e.g., N2, He) through the
stationary phase (i.e., column material), where selective interaction leads to compound
separation [77]. Subsequently, based on their retention index, compounds are eluted into
the hydrogen fame of the detector, creating an electrical signal [78].

Fatty acid analysis to authenticate milk origin has already been reported [79]. These
authors were able to effciently authenticate the geographical origin of milk as the combina-
tion of different feeding strategies, herd and farm management practices (leading to distinct
feed fatty acid profles), grazing, breeding, animals’ genetics, animals’ rumen microbiota,
and difference in lactation days varied considerably according to geographic locations. In
traditional cheese, milk fatty acid profles are also impacted by manufacturing practices
(e.g., use of Cynara cardunculus L. as a coagulating agent), cheese microbiota (see the section
on DNA-based methods for cheese origin authentication), and ripening times [80,81]. For
example, fatty acid profles were used and correctly authenticated the producer origins of
Serra da Estrela PDO cheeses from Portugal, even within a limited production area [76].
These authors used 12 fatty acids, namely caproic, caprylic, undecanoic, lauric, pentade-
canoic, palmitic, palmitoleic, heptadecanoic, oleic, linoleic trans-isomer, heneicosanoic,
and arachidonic acids, in a linear discriminant model to achieve an 88% correct classif-
cation rate after cross-validation. Higher classifcation rates (95% after cross-validation)
were also reported by Margalho et al. [82] using 13 fatty acids for 11 artisanal cheeses
produced in 5 major geographical regions in Brazil (sample size n = 402). Similarly, high
classifcation percentages were also achieved by Danezis et al. [83], who analyzed 101 PDO
and 11 non-PDO cheeses from Greece. These authors used pH, moisture, fat, NaCl, and
linoleic acid contents to correctly discriminate the PDO from non-PDO cheeses (excluding
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similar hard PDO cheese) and achieved 100% correct classifcations. Although high correct
classifcation rates were obtained by Margalho et al. [82] and Danezis et al. [83] for cheese
origin authentication, the analyzed cheeses greatly differed in terms of physical aspect
(i.e., spread, soft, semi-hard, and hard), fat content, and ripening time. In recent studies
dealing with origin authentication of similar traditional cheeses, the correct classifcation
rates reported by Reis Lima et al. [76], Gatzias et al. [84], and Vatavali et al. [85] were,
respectively, 88%, 88.2%, and 91.1%.

2.6. Gas Chromatography-Based Volatilome Analysis

Among the different strategies to authenticate cheese origin, volatile organic com-
pound (VOC) analysis has gained attention as volatile compounds, which result from
cheese microbiota metabolic activities, are an important component of cheese typicity.
Indeed, through glycolysis, proteolysis, and lipolysis, cheese microbiota produce a wide
range of VOCs. These include aldehydes, ketones, alcohols, esters, lactones, hydrocarbons,
free fatty acids (n < 10 carbon atoms), sulfur compounds, and amines that provide the
typical cheese aroma [86–88]. In this context, GC-MS is most commonly used to analyze
cheese volatilomes (see Medina et al. [89] for technical details on cheese VOC analysis
using GC-MS).

Using volatile fngerprinting, Pillonel et al. [90] discriminated country of origin for
both PDO and non-PDO Emmental cheeses based on butan-2-one, 3-hydroxybutanone,
butan-2-ol, and octene concentrations by principal component analysis (PCA). The con-
centrations of 21 other volatile compounds also showed at least one signifcant differ-
ence connected with their origin. Cheese origin discrimination relied on the fact that
volatile profles varied both qualitatively and quantitatively according to their country or
region of origin [90]. For example, PDO Emmental from Switzerland was differentiated
from Polish and French Emmental cheeses based on free-fatty acid qualitative composi-
tion (2-methyl butanoic acid for PDO Emmental cheese compared with 3-methylbutanoic
acid in French and Polish Emmental ones) and relative abundance (such as nonanoic
acid), alcohol presence/absence (3 methylbut-2-en-1-ol presence only in Swiss Emmen-
tal), as well as other aliphatic hydrocarbons, ketones, aldehydes, and esters. More re-
cently, Pluta-Kubica et al. [91] also differentiated Emmental cheese origin based on their
VOC profles.

Similarly, Salzano et al. [37] used GC-MS to authenticate water buffalo mozzarella
PDO cheese from the non-PDO versions. Both milk and cheese samples were analyzed,
and differences were highlighted for both matrices using partial least squares discriminant
analysis (PLS-DA). Variable importance in projection (VIP) analysis selected the 15 highest
scored variables. Among them, talopyranose, 2,3-dihydroxypropyl icosanoate, sorbose,
4-phenyl glutamic acid, oxalic acid, and galactose were the most prevalent in typical
PDO mozzarella, while tagatose, lactic acid dimer, ribitol, dodecyl thioglycolate, n-acetyl
glucosamine, valine, and diethylene glycol were more abundant in non-PDO mozzarella.
These authors concluded that the combination of multiple practices, such as forage from
the same region, natural milk starters with both LAB and yeast instead of citric acid, and
different packaging, all impacted the volatilome of the fnal product. These differences
could thus explain what distinguished the water buffalo mozzarella produced according to
PDO rules vs. those not following such guidelines (i.e., non-PDO mozzarella).

Another study authenticated Pecorino cheese origins, namely Pecorino Romano PDO,
Pecorino Sardo PDO, and Pecorino di Farindola (certifed by the Slow Food Foundation) [92].
The authors compared VOC fngerprints by a linear discriminant analysis (LDA) and
PLS-DA model. The most infuential variables in the LDA model were 2-methyl butyl iso-
valerate, butan-2-one, butyl butanoate, ethyl acetate, nonan-2-one, and propan-2-one, while
in the PLS-DA model, VIP analysis identifed 14 relevant compounds, namely, butan-2-one,
pentan-2-ol, ethyl acetate, dicaprylyl ether, propanoic acid, 3-methylbutan-1-ol, propan-2-
ol, ethyl decanoate, heptan-2-ol, butan-2-ol, butyl butanoate, pentan-2-one, ethanol, and
2-methylpropanoic acid. Only six compounds were common to the two tested models.
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Considering that both models yielded similar classifcation performances (total classifca-
tion rate of 87.5% after cross-validation), differences in the most infuential variables linked
to origin authentication were related to the index score value applied in the VIP analysis.
Indeed, while the authors used an index score of 1, a previous study by Salzano et al. [37]
used a higher value (i.e., 1.5) to select variables of interest and obtain a high correct classi-
fcation rate for water buffalo mozzarella. Noteworthy, Vatavali et al. [85] only classifed
47.5% of Graviera cheese origins, and thus the discriminative power of VOC profles for
cheese authentication could vary considerably according to the considered cheese type.

GC-MS fngerprints can also be exploited to identify biomarkers connected with
specifc attributes of traditional products, such as animal feed requirements. Indeed,
Caligiani et al. [93] validated a method to quantify cyclopropane fatty acids (e.g., dihy-
drosterculic acid) as biomarkers for cows fed with corn silage. PDO cheeses such as
Parmigiano Reggiano, Fontina, Comté, and Gruyère do not permit silage to be used in cow
feed, and thus the absence of cyclopropane fatty acids in such cheeses may confrm correct
feeding management.

Another feed-associated fraction of cheese VOCs are terpenoids. Terpenoids are a
highly diversifed class of naturally occurring organic compounds or phytochemicals, also
called isoprenoids. These are derived from isoprene units and produced by dicotyledon
plants [88]. In Slovenian cheeses, VOC analysis discriminated cheeses into 4 clusters (aver-
age silhouette 0.764) according to their geographical origin and based on 9 monoterpenes,
namely, α-pinene, camphene, α-phellandrene, β-pinene, 3-carene, 2-carene, limonene,
tricyclene, and γ-terpinene [94]. In a similar way, Turri et al. [88] identifed signifcant dif-
ferences in 10 terpenes between pasture-producer of Historic Rebel cheese, and the results
suggested that allo-ocimene, α-terpinolene, α-pinene, and δ-3-carene could be possible
biomarkers to differentiate cheese origin. Overall, these studies highlighted that volatilome
analysis can be an interesting tool for cheese origin authentication, although classifcation
rate performances can vary among cheese varieties.

Another approach to directly analyze volatile compounds is the electronic nose (e-nose).
This analytical technology, designed to mimic the human olfactory system [95], has gained
interest in food authentication as it is highly correlated with consumer perception [96].
A typical e-nose comprises the sampling system, a set of non-selective sensors or mass
spectrometer (MS), and a pattern-recognition system [97,98]. Nowadays, different sensors
are used, such as metal-oxide semiconductors, conducting polymers, and piezoelectric
crystal sensors [99]. In the case of cheese origin authentication, only a limited number
of studies reported an e-nose strategy. For example, Pillonel et al. [90] obtained similar
classifcation rates using a PCA model to evaluate Emmental cheese origins (90%). In
the case of Pecorino cheeses, an e-nose and artifcial neural network approach correctly
classifed 96.5% of Pecorino di Fossa PDO cheeses (n = 18) and Pecorino cheeses of other
origins (n = 48) [100]. In conclusion, while different authors have reported e-noses to
authenticate foods subjected to different frauds, including geographical origin [98,101,102],
only a limited number of studies concerned cheese origin authentication. Table 5 reports
the advantages and limitations of VOC analysis for cheese origin authentication.

Table 5. Advantages and limitations of volatilome analysis for cheese origin authentication.

Advantages Reference Limitations Reference

High resolution, short separation time, high sensitivity,
and low cost [32] High dependency on ripening time [103,104]

Measures correlated with cheese quality [87] Highly impacted by extraction methods [89]
Fingerprint profile with discrete correct classification rate [92,105] High variability of correct classifcation rate [37,85,92]

Some important attributes that may impact the effciency of this approach to discrimi-
nate cheese origin are provided. One important attribute to differentiate cheese is ripening
time [106]. Typical cheeses are sold according to a minimum ripening time. However,
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according to the initial extent of ripening, signifcant changes may occur during shelf-
life. Contamination during portioning, inadequate temperature usage during transport,
light exposure, and storage conditions may impact VOC profles. In this context, specifc
VOC fractions, such as terpenoids, combined with VOC and microbiota correlations, may
overcome possible changes in VOC profles at the retailing stage. However, to our best
knowledge, no studies have evaluated the effect of retail on cheese origin authentication.

3. DNA-Based Methods for Cheese Origin Authentication

As previously mentioned, the metabolic activities of cheese microbiota play a cru-
cial role in the development of cheese typicity. For geographical origin authentication,
microbiota fngerprinting is therefore of high interest as traditional and artisanal cheeses
are produced with a more diversifed microbiota associated with the cheese-making pro-
cess (e.g., use of raw milk, starter, brine, equipment and materials, and ripening rooms).
Distinct differences in the composition of this complex microbiota, composed of Gram-
positive and -negative bacteria, fungi, archaea, and viruses, could be used for cheese
origin authentication.

The frst study on cheese microbiota using high-throughput sequencing (HTS) was
performed by Quigley et al. [107] on traditional cheeses. Since then, numerous studies
have been published on many aspects linked to cheese quality and typicity. While cheese
microbial diversity was traditionally investigated using culture-dependent methods, hence
overlooking unculturable or subdominant species, nowadays, culture-independent meth-
ods (HTS) have unraveled this diversity and provided further means to connect microbiota
composition to cheese quality and typicity, but also origin. This success is due to the
availability of new sequencing platforms, bioinformatic pipelines, and a continuous de-
crease in cost. Among high-throughput sequencing, amplicon sequencing—or selective
amplifcation of polymorphic genes across their hypervariable regions—is the most widely
reported in the scientifc literature [108]. In this context, the use of DNA metabarcoding
(also known as metagenetics) to study cheese microbiota was proposed as a tool for cheese
origin authentication [33].

To perform DNA metabarcoding, cheese samples are frst homogenized, then total
DNA is most frequently extracted using commercial kits, ad hoc protocols, or a combination
thereof [109–111]. Hypervariable regions of taxonomically relevant genes (e.g., 16S rDNA
for bacteria and archaea, ITS, 18S rDNA, 26S rDNA for fungi) are amplifed by PCR
reactions, while a second amplifcation step tags amplicons with specifc DNA fragments—
barcodes—and dedicated adapters for the fnal sequencing step using next-generation
technologies (e.g., Illumina, Pacbio, Iontorrent, or Nanopore). For further details on
sampling, library preparation, and sequencing platforms, the reviews by Hugerth et al. [112]
and Tilocca et al. [113] are suggested.

Typically, 16S rDNA and ITS (internal transcribed spacer) markers, targeting bac-
teria and fungi, respectively, are employed to generate compositional data describing
microbial taxa and their relative abundance in cheese microbial communities. After se-
quencing, two complementary but different ways can be used for amplicon clustering
from quality-checked data, namely, operational taxonomic units (OTUs) and amplicon
sequencing variants (ASVs) [114]. On one hand, pipelines such as QIIME and IMNGS build
sequence clusters based on their similarity (usually using a similarity cutoff of 97%) to ob-
tain OTUs [115,116]. On the other hand, ASVs are obtained with the DADA2 pipeline (also
available in QIIME2) by inferring biological sequences in a sample, and discerning sequence
variant differences down to a single nucleotide [117,118]. Subsequently, taxonomic assign-
ment is performed using a specifc classifer tool (BLAST, RDP, UCLUST, SortMeRNA)
against various reference databases, such as Greengenes, SILVA, and UNITE [119,120].
Generally, clustered OTUs/ASVs are analyzed from the phylum to the genus level since
they can be less precise at the species level [121]. Identifed taxa can be divided into domi-
nant, subdominant, and rare sequences, representing 40% to 90%, 1% to 0.01%, or 0.01% to
0.0001% of reads per sample, respectively [122].
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Using these DNA methods to determine cheese microbiota composition, literature
data have shown that the core is usually dominated by lactic acid bacteria (LAB) [123],
including starter and non-starter lactic acid bacteria (NSLAB), while in the case of cheese
with edible rinds, rinds are usually dominated by salt-tolerant fungi and bacteria from
the Actinomycetota, Bacillota, and Pseudomonadota phyla. Cheese microorganisms can be
deliberately inoculated into the milk or on the cheese surface as starter or secondary
cultures, but may also originate from multiple reservoirs, including raw milk (i.e., for
raw milk cheeses), brine or salt, or dairy environments (cheese-making equipment and
ripening shelves). A distinctive case corresponds to raw milk cheeses as cheese microbiota
can be differentiated according to the amount of starter cultures employed during cheese-
making and the origin of the raw milk used, at the farm level [124]. Since milk quality
depends on many factors (e.g., animal health status, breed, lactation stage, teat skin,
hides, feces management, farm dimension, feeding system, season, farm staff hygiene, and
management), recent longitudinal studies have connected some of the main characteristics
with farm origin [125–127]. Indeed, for raw milk cheeses, cheese microbiota can be directly
impacted by raw milk microbiota [107], thus, both microbiota can be used for cheese origin
authentication. Generally, most protected land- and tradition-related labeled cheeses are
produced from raw milk, and the complex microbiota encountered in raw milk directly
infuences the unique cheese sensorial properties appreciated by consumers. As an example,
in the EU, among the 284 cheeses recognized for their typicity, over 180 are raw milk
cheeses ([128] https://ec.europa.eu/info/food-farming-fsheries/food-safety-and-quality/
certifcation/quality-labels/geographical-indications-register/ accessed on 3 October 2022).
Besides raw milk, traditional tools/equipment and the dairy environment are also shaping
cheese microbiota at both species and strain levels. In fact, some key species may originate
from the dairy environment [129]. In addition, as reported by Bokulich and Mills [130]
and Calasso et al. [131] for LAB, different strains of a given species can colonize the dairy
environment, and thus, the cheese. More recently, Sun et al. [132] determined that in-house
microbiota were essential in shaping Bethlehem (PA, USA), a Saint-Nectaire-type cheese
produced without starters by traditional methods. Using 16S rRNA amplicon sequencing
and SourceTracker (a bioinformatic tool based on Bayesian inference that estimates the
proportion of different sources contributing to a designated microbial community) [133],
these authors identifed wooden vats—used for overnight ripening—as a major source of
desirable LAB that shaped cheese microbiota from acidifcation to ripening. Similar fndings
were reported by Montel et al. [134], who highlighted that traditional cheeses have complex
and rich microbiota infuenced by traditional equipment. Indeed, traditional cheeses
are produced using cheese-making practices that tend to increase microbial diversity via
contact with diverse microorganisms originating from dairy equipment [135]. Moreover,
differences in cheese-making technologies (e.g., use of natural milk or whey culture rather
than commercial starters, use of rennet or clotting agents, curd cooking, draining process,
salting) and farm practices (e.g., type of housing, silage, grassland) between different
production areas can also shape the cheese microbial community [136]. Considering these
factors, we can question whether traditional cheeses can be differentiated based on their
origin and if the main factors that affect cheese microbiota complexity and diversity play a
signifcant role.

3.1. Main Factors Affecting Cheese Microbial Diversity

In this context, in a recent study by Kamimura et al. [137], the microbiota of 578 tradi-
tional Brazilian cheeses were analyzed with amplicon sequencing. Bacterial communities
were distinctly clustered with PCA by cheese type and regional origins while, at the genus
level, hierarchical cluster analysis separated production regions. These authors were thus
able to identify specifc origin-related microbiota. The core microbiota of Brazilian tradi-
tional cheeses displayed different relative abundances and oligotypes (i.e., closely related
but distinct bacterial taxa) of LAB belonging to the Enterococcus, Lactococcus, Streptococcus,
Leuconostoc, and Lactobacillus sensu lato genera, as well as other taxa belonging to the Enter-
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obacteriaceae family and Staphylococcus genus. Within the same regional area, microbiota
analysis differentiated the origin—Cerrado, Araxà, Canastra, Campos des Vertenes, and
Serro—of traditional cheeses produced with a similar natural whey starter and ripening
period (17 and 22 days). These fndings were in agreement with those of another study that
analyzed 97 samples of Minas artisanal cheese from 6 different producers located in the
same region [138]. Starter cultures, consisting of Streptococcus, Lactococcus, and Lactobacillus
sensu lato spp., constituted the core microbiota in all farms. However, signifcant differ-
ences in family- and genus-level bacterial community relative abundances were observed
between the studied farms due to environmental factors such as geographical location.
Even when dominant genera may be inferred to the natural whey cultures used, meta-
analysis from amplicon sequencing data of traditional artisanal cheeses from Italy, Belgium,
and Kalmykia indicated differences in bacterial structures between cheeses produced in
different geographic areas (unweighted PCoA cluster MANOVA, p < 0.001 [139]). Those
produced using natural milk cultures showed improved acidifcation without an effect on
the typical cheese microbiota. Indeed, at the end of the ripening period, cheese origins
clustered according to producer facilities (PCoA on Bray–Curtis) [140].

Another study was performed by Zago et al. [136]. In this case, 118 Grana Padano
samples were analyzed after 7–8 months of ripening and a common core microbiota com-
posed of Lactobacillus-, Lactococcus-, Lacticaseibacillus-, Limosilactobacillus-, and Streptococcus-
dominant genera was observed. More precisely, differences in bacterial abundance, richness,
and evenness were found for dominant and sub-dominant groups according to production
region, a result also confrmed by PERMANOVA beta-diversity analysis. The authors also
identifed specifc species that could be linked to several production areas; however, no
species biomarkers were identifed regardless of production area and non-metric multidi-
mensional scaling did not show any clear clustering profle.

Some cheeses are produced in very small geographical zones by a limited number of
producers. This is the case for Plaisentif and Historic Rebel cheeses from the mountainous
regions in Italy, that are only produced during specifc seasons (violet blooming season and
grazing season) by 14 and 12 producers, respectively [88,122]. Both are raw milk cheeses
produced without starter adjunction. Bacterial amplicon sequencing analysis (16S rDNA
V4 region) for Plaisentif cheese identifed dominant genera and, more importantly, differ-
ences in bacterial community profles between producers thus detected fraudulent starter
additions in some cheeses [122].

Based on a similar analysis for Historical Rebel cheese, the core microbiota was
composed of 5 different genera—Streptococcus, Lactobacillus, Lactococcus, Leuconostoc, and
Pediococcus—with Streptococcus relative abundances ranging from 60% to 85% [88]. Richness
and other alpha-diversity parameters differed among producers as well as in multivariate
analysis (PCoA on unweighted Unifrac), and based on the observed signifcant differences,
pasture area could be linked to the different Historic Rebel cheese producers.

3.2. Climatic and Environmental Condition

Another factor that can impact microbial communities of traditional cheeses are the
climatic and dairy environment conditions that are directly associated with geographi-
cal origins. This was observed for traditional Chinese Rushan cheese produced using
Chaenomeles sinensis boiled extract as a clotting agent in three different regions. Even if the
same UHT milk and production equipment were used, geographical origins signifcantly
impacted the relative abundance of 12 dominant genera, namely Lactobacillus, Acineto-
bacter, Acetobacter, Lactococcus, Enterobacter, Moraxella, Enterococcus, Streptococcus, Kocuria,
Staphylococcus, Chryseobacterium, and Exiguobacterium [141], and is likely related to specifc
house microbiota and open-air drying. This result was also confrmed by PCoA clusters
and Anosim analysis.

As typical cheese microbiota can be in part acquired from the specifc raw materials
used, traditional tools, environmental and production conditions, cheese-making process,
and geographical area, a comparison between traditional and industrial cheeses may pro-
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vide additional information to authenticate cheese origin. Noteworthy, some authors have
reported that commercial starters, inoculated at ~106 CFU/mL, prevent resident microbiota
from developing, especially during ripening [124,142]. Overall, milk pasteurization, use
of similar commercial starters, similar industrial equipment, and standardized recipes for
cheese production are crucial factors that decrease cheese microbial complexity and biodi-
versity and lead to highly standardized productions. These directly deplete the unicity of
the matrix, and thus lower variance is detected (Figure 1). This hypothesis is in accordance
with the study by Kamilari et al. [143], in which a signifcant decrease in bacterial diversity
was observed in industrially produced Haloumi cheeses vs. artisanal products. However,
the microbial diversity observed for artisanal Haloumi cheeses could not link them to their
producers’ geographical origins. In another study, aiming to authenticate cheese origin at
the producer level, no distinction could again be made [144].
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3.3. Cheese Ripening

Cheese ripening is another factor that affects microbial community diversity and
cheese typicity. Ripening can be considered as a selection process that leads to cheese
microbial composition changes. According to Gobetti et al. [123], intentionally added mi-
croorganisms used in cheese-making include primary starters (natural milk culture, natural
whey culture, or lyophilized commercial starters), secondary or adjunct LAB starters, and
milk autochthonous microbiota (NSLAB and others). These are the main ripening agents in
intermediate to long ripening times, which mainly explain the observed diversity and typic-
ity of the produced cheeses. The relationship between primary starters and NSLAB during
maturation is well-known and involves a progressive reduction of the former in favor of
the latter. The role of NSLAB is crucial in maturation and the development of the typical
characteristics of traditional cheese. In this case, useful insights can be gained by comparing
the genomic features of primary starters for the presence of genes involved in the metabolic
pathways important for cheese maturation. While primary starters have important genetic
features for the utilization of lactose—mainly connected with their acidifcation ability—
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NSLAB possess many more genes coding for peptidases, peptide transporters within cells,
and amino acid catabolism, that can represent an advantage during cheese maturation [145].
Moreover, compared to primary starters, NSLAB tend to adapt better to the hostile condi-
tions of the cheese ripening environment, such as temperature, salt content, pH, and redox
potential. In fact, NSLAB can adopt alternative metabolic pathways to produce energy
from unconventional sources while resisting acid conditions. Therefore, NSLAB present
in raw milk at a suffcient inoculum to colonize ripened raw milk cheeses, or acquired
from the house microbiota, could be an indicator of geographical origin at the producer
level. Beyond NSLAB, other microorganisms belonging to various groups can infuence
cheese ripening. This is the case of fungal communities in many traditional cheeses, such
as Queijo de Azeitão in Portugal [146], Tomme d’Orchies in France [110], and Robiola di
Roccaverano in Italy [147]. Indeed, fungal communities are well-known for their decisive
role in favor and texture of white and blue-veined mold-ripened cheeses due to lipolytic,
proteolytic, and glycolytic activities, leading to high production of aromatic ketones and
alcohols [134,148,149]. Generally, fungal species such as Penicillium camemberti, Penicillium
roqueforti, Debaryomyces hansenii, Kluyveromyces marxianus, Candida catenulata, Galactomyces
geotrichum, and Mucor lanceolatus are either deliberately added as technological adjunct
cultures or present in the production environment [149–152]. Nevertheless, in traditional
cheeses, fungal communities were reported to be more diverse than the used starter but, at
the same time, not connected with geographical origin [109,146]. Table 6 reports advantages
and limitations of amplicon sequencing for cheese origin authentication.

The mentioned studies showed that in traditional cheeses, the combination of artisanal
cheese-making, specifc raw materials, and characteristic environmental conditions shape
microbial community diversity according to geographical origin. Most analyses conducted
using 16S rDNA amplicon sequencing discriminated cheese origin, although taxonomic
classifcation was still limited to genus/family-level descriptions and only a few cheese
types per study were considered. To further assess the unicity of typical cheeses against
food fraud, more in-depth studies, including meta-analyses on all available cheese data and
increased depth of microbial population descriptions (e.g., metagenomics), are of interest.

Table 6. Advantages and limitations of HTS amplicon sequencing for cheese origin authentication.

Advantages Reference Limitations Reference

Time- and cost-effective processing of large
sample numbers [153] Analyses could be biased by sample processing, DNA

extraction methods, and equimolar library preparation [154]

Consolidated pipeline for data analysis [155] PCR amplifcation steps include errors, e.g., PCR specifcity
and variation of 16S rRNA copy number per genome [108]

Identifcation of taxonomic groups associated with
typical favor and cheese-making technology [156] Under- or over-estimation of microbial community diversity [112,155]

Allows improvement of cheese-making to ensure
safety while preserving typicity [137] Lack of absolute abundance [157,158]

Evaluation of core microbiome describing
facility-associated microbial groups [130,131] Limited and uneven taxonomic resolutions [159,160]

May pinpoint new biotypes [143]
DNA amplicon sequencing typically does not discriminate
between live and dead microorganisms (except if DNA
stains such as propidium monoazide are used)

[87]

4. Conclusions and Perspectives

Geographical origin authentication is an important safeguard for food quality and
safety but also from an economical point of view as it enables consumer protection and
provides technical support to enforce national and international legislations [49]. Applying
elemental and isotopic characterization, volatilome or microbiota analysis to typical prod-
ucts can protect them from food fraud and improve registration processes and marketing
decision-making [161]. Nevertheless, our knowledge on authentication methods is far from
complete. Indeed, most studies and methodologies employed to authenticate cheese origins
only provide qualitative answers (e.g., does the method discriminate origin?) and often lack
quantitative assessment (to what extent can different cheese origins be discriminated from
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each other?). This is probably connected to the complexity of commonly used multivariate
models such as PLS, PLS-DA, and LDA, and the use of specifc algorithms (e.g., Random
Forest, VIP) for variable selection and the need for internal or interlaboratory external and
cross-validations.

Chemometrics approaches differ among analytical technologies. In this case, infrared
methods—especially NIR spectroscopy—have consistently been applied together with
chemometrics analysis to achieve good classifcation rates after cross-validation, but the
number of samples employed for authentication purposes was often limited. Stable isotope
ratios combined with trace element analysis have been shown to be the most accurate
methods to authenticate cheese origin, since available studies reported consistent statistical
analysis and modeling with high correct classifcation rates after cross-validation. Never-
theless, the actual discriminative power of the method for closely distant cheese producers
remains unknown. Moreover, the impact of animal feeding and the high cost per sample
must be considered. Considering that many production disciplinaries declare a minimum
amount of local forage in animal feed, one possible strategy to increase cheese typicity
and improve authentication using stable isotopic and elemental metabolomics would be to
increase the use of local feed or use grazing.

Regarding DNA-based methods, amplicon sequencing can discriminate cheese geo-
graphical origin. However, some important considerations to assess traditional cheese ori-
gin are related to metabarcoding approach limitations. Indeed, microbial species and strains
that originate from the dairy environment and that characterize traditional product origins
could be key biomarkers for cheese authentication. In this context, shotgun metagenomics
offers multiple advantages in comparison with amplicon metabarcoding, since no amplif-
cation step is required and all the genetic material in the sample is used for genome recon-
struction to reach a deeper taxonomic assignation, potentially to the strain level [162,163].
For example, StrainPhlAn uses unique gene family markers and sample-specifc consensus
sequences to infer strain-level genotypes from different environments [164]. Considering
that cheese is formed by microorganisms of different domains, appropriate sequencing
depths would directly provide insight on bacteria, fungi, and viruses in the same analysis.
These tools could thus be applied to milk, starters, and typical cheeses to obtain accurate
DNA-based fngerprints to effciently authenticate product origin [164]. This approach
may help explore new traceability systems based on crucial components of fermented
products, such as their virome [165]. Moreover, shotgun metagenomic analyses of gene
richness, as a possible indicator of microbial community adaptation to different stress con-
ditions, would be useful to reconstruct metabolic pathways connected with specifc cheese
traits, such as volatile compound production and metabolites that characterize typical
cheeses. In this sense, integrated systems biology, combining metabolomics and metage-
nomics, could improve our knowledge on this subject, as only a few studies to date have
combined both techniques [88,156,166]. While microbiota-based studies have compared
typical and non-typical products, some omics approaches reported differences between
typical and industrial products, thus making it diffcult to clearly determine the factors
that characterize typical food products. Artifcial intelligence approaches, such as deep
learning and machine learning, should be taken into consideration to improve classifcation
rates and better-differentiate authentic and fraudulent products [167]. Overall, further
research focused on comparing how well DNA-based analyses perform in comparison to
the actual reference analyses (i.e., isotope fngerprinting and trace element analysis) used to
authenticate cheese origin is needed. A combined approach, using isotope fngerprinting
or trace element analysis and metagenomics, to obtain the highest discriminative power for
cheese geographical origin authentication could also be of interest.

Author Contributions: M.C. (Marco Cardin), E.C. and J.M. conceptualized the layout of the review;
M.C. (Marco Cardin) wrote the original draft, created the associated Tables and Figures, and edited
the manuscript; B.C. contributed to the manuscript on cheese fraud and methodological aspects; E.N.
contributed to physical and chemical aspects, and M.C. (Monika Coton) to volatilome aspects; J.M.
contributed to DNA-based methods, and E.C. supervised the work and contributed to all aspects,

32



Foods 2022, 11, 3379 17 of 24

including writing—review and editing; B.C., E.N. and E.C. obtained the funding. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was completed in the framework of Marco Cardin’s Ph.D. grant funded by the
Università degli Studi di Padova (Italy) and the Université de Bretagne Occidentale (France). Funding
number 20192413451/ISCR_D1.

Data Availability Statement: Not applicable.

Conficts of Interest: The authors declare no confict of interest.

References
1. Robson, K.; Dean, M.; Haughey, S.; Elliott, C. A Comprehensive Review of Food Fraud Terminologies and Food Fraud Mitigation

Guides. Food Control 2021, 120, 107516. [CrossRef]
2. Regulation (EU) No. 625/2017 of the European Parliament and of the Council of 15 March 2017 on Offcial Controls and Other

Offcial Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health
and Plant Protection Products, 95, 1–95. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32017R0625&from=EN (accessed on 3 October 2022).

3. Eurofns Analytics France. FoodIntegrity Handbook: A Guide to Food Authenticity Issues and Analytical Solutions, 1st ed.; Morin, J.-F.,
Lees, M., Eds.; Eurofns Analytics France: Nantes, France, 2018. [CrossRef]

4. Spink, J.W. The Current State of Food Fraud Prevention: Overview and Requirements to Address ‘How to Start?’ And ‘How
Much Is Enough?’. Curr. Opin. Food Sci. 2019, 27, 130–138. [CrossRef]

5. Rocchi, B.; Romano, D.; Sadiddin, A.; Stefani, G. Assessing the economy-wide impact of food fraud: A SAM-based counterfactual
approach. Agribusiness 2020, 36, 167–191. [CrossRef]

6. Moore, J.C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated
Adulteration from 1980 to 2010. J. Food Sci. 2012, 77, R118–R126. [CrossRef]

7. Everstine, K.; Spink, J.; Kennedy, S. Economically Motivated Adulteration (EMA) of Food: Common Characteristics of EMA
Incidents. J. Food Prot. 2013, 76, 723–735. [CrossRef] [PubMed]

8. Hong, E.; Lee, S.Y.; Jeong, J.Y.; Park, J.M.; Kim, B.H.; Kwon, K.; Chun, H.S. Modern Analytical Methods for the Detection of Food
Fraud and Adulteration by Food Category: Adulterated Food Categories and Their Analytical Methods. J. Sci. Food Agric. 2017,
97, 3877–3896. [CrossRef] [PubMed]

9. Breitenbach, R.; Rodrigues, H.; Brandão, J.B. Whose Fault Is It? Fraud Scandal in the Milk Industry and Its Impact on Product
Image and Consumption—The Case of Brazil. Food Res. Int. 2018, 108, 475–481. [CrossRef]

10. Europol-Interpol Operation Results in Global Seizures of Fake and Illicit Food—OPSON VII [Media Release] 2019. Available
online: https://www.europol.europa.eu/publications-events/publications/operation-opson-vii-analysis-report (accessed on
2 October 2022).

11. Europol-Interpol Operation Results in Global Seizures of Fake and Illicit Food—OPSON IX [Media Release] 2021. Available online:
https://www.europol.europa.eu/cms/sites/default/fles/documents/opson_ix_report_2021_0.pdf (accessed on 2 October 2022).

12. Gimonkar, S.; E. Van Fleet, E.; Boys, K.A. Dairy Product Fraud. In Food Fraud; Elsevier: Rockville, MD, USA, 2021; pp. 249–279.
[CrossRef]

13. Montgomery, H.; Haughey, S.A.; Elliott, C.T. Recent Food Safety and Fraud Issues within the Dairy Supply Chain (2015–2019).
Glob. Food Secur. 2020, 26, 100447. [CrossRef]

14. European Commission. The EU Food Fraud Network and the System for Administrative Assistance—Food Fraud. 2018. Available
online: https://ec.europa.eu/food/system/fles/2020-05/ff_ffn_annual-report_2018.pdf (accessed on 2 October 2022).

15. BRCGS, British Retail Consortium Global Standards Global Food Safety Standard (Issue 8) British Retail Consortium Global
Standards. 2018. Available online: https://www.brcgs.com/search-results/global-standard-for-food-safety-issue-8/p-616/
(accessed on 2 October 2022).

16. FSSC 22000, Foundation Food Safety System Certifcation 22000 FSSC 22000 Scheme Version 5. Available online: https://www.
fssc22000.com/ (accessed on 2 October 2022).

17. GFSI, Global Food Safety Initiative Tackling Food Fraud through Food Safety Management Systems. GFSI 2018. Available online:
https://mygfsi.com/wp-content/uploads/2019/09/Food-Fraud-GFSI-Technical-Document.pdf (accessed on 2 October 2022).

18. European Committee for Standardization with the CEN Workshop Agreement (CEN WS/86) (Work Item Number WS086002)—
Authenticity and Fraud in the Feed and Food Chain—Concepts, Terms, and Defnitions (Reference CWA 17369:2019). Available
online: https://www.nbn.be/shop/nl/zoeken/?k=%20CWA%2017369:2019 (accessed on 2 October 2022).

19. Codex Alimentarius International Food Standard. General Standard for Cheese. 1978. Available online: https://www.fao.org/
fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%
252FStandards%252FCXS%2B283-1978%252FCXS_283e.pdf (accessed on 2 October 2022).

20. Valletta, M.; Ragucci, S.; Landi, N.; Di Maro, A.; Pedone, P.V.; Russo, R.; Chambery, A. Mass Spectrometry-Based Protein and
Peptide Profling for Food Frauds, Traceability and Authenticity Assessment. Food Chem. 2021, 365, 130456. [CrossRef]

33

http://doi.org/10.1016/j.foodcont.2020.107516
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0625&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0625&from=EN
http://doi.org/10.32741/fihb
http://doi.org/10.1016/j.cofs.2019.06.001
http://doi.org/10.1002/agr.21633
http://doi.org/10.1111/j.1750-3841.2012.02657.x
http://doi.org/10.4315/0362-028X.JFP-12-399
http://www.ncbi.nlm.nih.gov/pubmed/23575142
http://doi.org/10.1002/jsfa.8364
http://www.ncbi.nlm.nih.gov/pubmed/28397254
http://doi.org/10.1016/j.foodres.2018.03.065
https://www.europol.europa.eu/publications-events/publications/operation-opson-vii-analysis-report
https://www.europol.europa.eu/cms/sites/default/files/documents/opson_ix_report_2021_0.pdf
http://doi.org/10.1016/B978-0-12-817242-1.00014-2
http://doi.org/10.1016/j.gfs.2020.100447
https://ec.europa.eu/food/system/files/2020-05/ff_ffn_annual-report_2018.pdf
https://www.brcgs.com/search-results/global-standard-for-food-safety-issue-8/p-616/
https://www.fssc22000.com/
https://www.fssc22000.com/
https://mygfsi.com/wp-content/uploads/2019/09/Food-Fraud-GFSI-Technical-Document.pdf
https://www.nbn.be/shop/nl/zoeken/?k=%20CWA%2017369:2019
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B283-1978%252FCXS_283e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B283-1978%252FCXS_283e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B283-1978%252FCXS_283e.pdf
http://doi.org/10.1016/j.foodchem.2021.130456


Foods 2022, 11, 3379 18 of 24

21. Vandecandelaere, E.; Arfni, F.; Belletti, G.; Marescotti, A.; Allaire, G.; Cadilhon, J.; Casabianca, F.; Damary, P.H.G.; Estève,
M.; Hilmi, M.; et al. Uniendo Personas, Territorios y Productos. Guía para Fomentar la Calidad Vinculada al Origen y las
Indicaciones Geográfcas Sostenibles. FAO 2010. Available online: https://agritrop.cirad.fr/596230/1/ID596230.pdf (accessed on
2 October 2022).

22. Picon, A. Cheese Microbial Ecology and Safety. In Global Cheesemaking Technology; Papademas, P., Bintsis, T., Eds.; John Wiley &
Sons, Ltd: Chichester, UK, 2017; pp. 71–99. [CrossRef]

23. Regulation (EU) No. 1151/2012 of the European Parliament and of the Council of 21 November 2012 on Quality Schemes for Agricultural
Products and Foodstuffs; Offcial Journal of the European Union: Brussels, European Union; Volume 343, pp. 1–29. Available online:
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:343:0001:0029:en:PDF (accessed on 3 October 2022).

24. Regulation (EU) No. 665/2014 of the European Parliament and of the Council of 11 March 2014 on Supplementing Regulation (EU) No
1151/2012 of the European Parliament and of the Council with Regard to Conditions of Use of the Optional Quality Term ‘Mountain
Product’; Offcial Journal of the European Union: Brussels, European Union; Volume 179, pp. 23–25. Available online: https:
//eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0665&rid=6 (accessed on 3 October 2022).

25. European Commission. Joint Research Centre. Institute for Prospective Technological Studies. EU Island Farming and the Labelling of Its
Products; Publications Offce: Luxembourg, European Union, 2013.

26. Sidali, K.L.; Capitello, R.; Manurung, A.J.T. Development and Validation of the Perceived Authenticity Scale for Cheese Specialties
with Protected Designation of Origin. Foods 2021, 10, 248. [CrossRef] [PubMed]

27. Regulation (EU) No. 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying down the General Principles
and Requirements of Food Law, Establishing the European Food Safety Authority and Laying down Procedures in Matters of Food Safety;
Offcial Journal of the European Communities: Brussels, European Union, 1 February 2002. Available online: https://www.fsai.
ie/uploadedFiles/Legislation/Food_Legisation_Links/General_Principles_of_Food_Law/Consol_Reg178_2002.pdf (accessed on
3 October 2022).

28. Regulation (EU) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information
to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and
repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC
of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No
608/2004 Text with EEA relevance; Offcial Journal of the European Communities: Brussels, European Union; Volume 020. Available
online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 3 October 2022).

29. Decreto del Ministero delle Politiche Agricole Alimentari e Forestali del 9 dicembre 2016 Indicazione Dell’origine in Etichetta
della Materia Prima per il latte e i Prodotti Lattieri Caseari, in Attuazione del Regolamento (UE) n. 1169/2011, Relativo alla
Fornitura di Informazioni sugli Alimenti ai Consumatori. GU Repubblica Italiana n. 15 del 19.01.2017. Available online:
https://www.gazzettauffciale.it/eli/id/2017/01/19/17A00291/sg (accessed on 2 October 2022).

30. Real Decreto 1181/2018, de 21 de Septiembre, Relativo a la Indicación del origen de la leche Utilizada como Ingrediente en el
Etiquetado de la Leche y los Productos Lácteos. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2018-12837
(accessed on 4 October 2022).

31. WTO. Uruguay Round Agreement: TRIPS. In Part II—Standards Concerning the Availability, Scope and Use of Intellectual Property
Rights, Section 3: Geographical Indications; World Trade Organization: Geneva, Switzerland, 1994. Available online: https:
//www.wto.org/english/docs_e/legal_e/trips_e.htm#part2 (accessed on 4 October 2022).

32. Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authenti-
cation. Food Rev. Int. 2020, 36, 384–427. [CrossRef]

33. Kamilari, E.; Tomazou, M.; Antoniades, A.; Tsaltas, D. High Throughput Sequencing Technologies as a New Toolbox for Deep
Analysis, Characterization and Potentially Authentication of Protection Designation of Origin Cheeses? Int. J. Food Sci. 2019,
2019, 1–15. [CrossRef] [PubMed]

34. Bontempo, L.; Barbero, A.; Bertoldi, D.; Camin, F.; Larcher, R.; Perini, M.; Sepulcri, A.; Zicarelli, L.; Piasentier, E. Isotopic and
Elemental Profles of Mediterranean Buffalo Milk and Cheese and Authentication of Mozzarella Di Bufala Campana PDO: An
Initial Exploratory Study. Food Chem. 2019, 285, 316–323. [CrossRef] [PubMed]

35. Ruth, S.M.v.; Granato, D. Food Identity, Authenticity and Fraud: The Full Spectrum. Foods 2017, 6, 49. [CrossRef]
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Chapter 2: Characterization of typical mountain Caciotta cheese 

The aim of this chapter is to investigate the ecological drivers of the microbiome of typical 

Caciotta cheese produced in different regions with similar cheesemaking know-how. As 

traditional cheeses are recognized for their diverse and distinctive sensory properties 

(Montel et al., 2014), Caciotta cheese from mountain areas is renowned and appreciated by 

consumers because of its typical flavour. The connection between the cheese microbiota 

and its sensory attributes is an ongoing subject of investigation, especially when 

employing a multi-omics approach (Afshari et., 2020). The composition and activity of the 

cheese microbiota, influenced by factors such as the type of starter cultures used, the 

environment, and the ageing conditions, can directly affect the volatilome of the cheese 

(Gobbeti et al., 2018). Changes in the microbial populations and in their functional 

potential can lead to different production of volatile compounds, resulting in changes in 

the aroma and flavour profile of the cheese. Shotgun metagenomics and headspace gas 

chromatography mass spectrometry techniques were combined to better understand the 

complex interactions between the cheese microbiota, its functional potential and the 

observed volatilome. In this context, this study examined how biotic and abiotic factors 

shape traditional mountain Caciotta cheese microbiome and contribute to the 

development of its typical flavour. Our results could help in the development of improved 

cheese production techniques, selection of starter cultures, and understanding the factors 

influencing the flavor characteristics of different cheese varieties.  
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Abstract 

Traditional products are particularly appreciated by consumers and among these products, 

cheese is a major contributor to the Italian mountainous area economics. In this study, 

shotgun metagenomics and volatilomics were used to understand the biotic and abiotic 

factors contributing to mountain Caciotta cheese typicity and diversity. Results showed that 

the geographical origin of cheese played a significant role; however, curd cooking 

temperature, pH, salt concentration and water activity also had an impact. Viral 

communities exhibited higher biodiversity and discriminated cheese origins. Among the 

most dominant bacteria, Streptococcus thermophilus showed higher intraspecific diversity 

and closer relationship to cheese origin when compared to Lactobacillus delbrueckii. However, 

despite a few cases in which the starter culture was phylogenetically separated from the 

most dominant strains sequenced in the cheese, starter cultures and dominant cheese strains 

clustered together suggesting substantial starter colonization in mountain Caciotta cheese. 

The Caciotta cheese volatilome contained prominent levels of alcohols and ketones, 

accompanied by lower proportions of terpenes. Volatile profile not only demonstrated a 

noticeable association with cheese origin but also significant differences in the relative 

abundances of enzymes connected to flavor development. Moreover, correlations of 

different non-homologous isofunctional enzymes highlighted specific contributions to the 

typical flavor of mountain Caciotta cheese. Overall, this study provides a deeper 

understanding of the factors shaping typical mountain Caciotta cheese, and the potential of 

metagenomics for characterizing and potentially authenticating food products.   

43



 
 

1. Introduction 

Dairy production is a major contributor to the Italian mountain area economy, cheese 

production being a principal part of the regional gastronomical culture. Moreover, the place 

of origin of food products is also a powerful attraction for consumers (Paxson 2010). For 

example, cheeses produced in a traditional way in specific areas (e.g. “product of island 

farming” or “mountain product”) are purchased by consumers who associate them with 

unique typical sensorial characteristics and traditional know-how. Consumers are also 

ready to pay a premium price for these products.  

Cheese typicity results from a combination of factors, including the milk type used for 

production, manufacturing practices such as the addition of natural whey or starter 

cultures, the use of traditional equipment, ripening conditions and the geographical origin 

(Kamilari et al., 2019; Cardin et al., 2022). Much emphasis has been given to cheese origin 

and, in Europe, this can be linked to the Protected Designation of Origin (PDO), Protected 

Geographical Indication (PGI) and Traditional Specialities Guaranteed (TGS) labels. 

However, knowledge regarding whether microbial patterns associated with regional 

production practices exist in ripened cheeses remains limited (Kamilari et al., 2022) and 

comparison with other factors shaping cheese microbiota are scarce. 

If the environmental microbiome can be a source for cheese spoilage and pathogenic 

microorganisms (Possas et al., 2021), environmental microbiota can also harbor beneficial 

microorganisms such as non-starter lactic acid bacteria and fungi important for cheese 

ripening (Tilocca et al., 2020). Microbial populations can be introduced with raw milk, 

starters and traditional equipment. They are then further selected during cheesemaking 

processing and hygiene practices and might become resident when appropriate niches are 

found (Alegría et al., 2009; Calasso et al., 2016). Many researchers have studied cheese 

microbiota diversity and hypothesized a microbial signature exists from different 

processing environments, named “house microbiota” (Calasso et al., 2016; Gobbetti et al., 

2018). However, despite detailed microbial community characterization, most researchers 

mainly focused on 16S rRNA markers using metagenetics, and only few of them have 
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combined DNA and metabolomic approaches. Moreover, the taxonomic resolution of 

metagenetics is uneven and can, for a large number of taxa, discriminate microorganisms 

up to the genus level, while cheese is constituted of a complex microbiota in which many 

bacterial, fungal and viral strains might play a key role in microbiota dynamics (Cardin et 

al., 2022). In this context, a different and more in-depth method to study microbial 

communities is to use shotgun metagenomics, in which total DNA in a sample is sequenced 

(Usyk et al., 2023). Many issues of amplicon sequencing, such as introduction of biases due 

to amplification and inability to study microorganisms such as viruses, can be overcome 

with shotgun metagenomics since all DNA present in the sample is fragmented and 

sequenced without previous amplification (Abellan-Schneyder et al., 2021; Maske et al., 

2021). Shotgun metagenomics can provide the opportunity to study this microbiota at an 

unprecedented depth (De Filippis et al., 2021).  

Caciotta is a type of Italian cheese made from cow's milk. It is a traditional, short-medium 

(from 15–20 days to 6 month) ripened cheese characterized by a cylindrical shape (4 to 8 cm 

high and 8 to 16 cm in diameter), weighs usually 1 kg, has a dark ivory colored rind and 

pale-yellow core (Bancalari et al., 2020). The production of Caciotta in the northern Italian 

mountain area is often based on small-scale dairy farms that use traditional methods. 

Mountain areas such as Alti Pascoli della Lessina and Trento province are well known and 

recognized for their cheesemaking history, especially Caciotta, Monteveronese and Spressa 

delle Giudicarie cheeses (Apolito 2018). Cheeses from such mountain areas harbor highly 

diverse microbiota (Carafa et al., 2019). However, scant information is available using high 

throughput sequencing approaches in traditional mountain cheese production (Turri et al., 

2021).  

In this study, we combined shotgun metagenomics and volatilomics to investigate the 

factors shaping the microbiota and aroma of typical mountain Caciotta cheese. 
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2. Materials and Methods 

2.1 Cheesemaking and sample collection 

Overall, 42 Caciotta cheeses were sampled in triplicate from 5 closely located producers (51 

± 26 km range) from Trentino Alto-Adige and Veneto mountain regions belonging to Alti 

Pascoli della Lessinia, Giudicarie esteriori and Trento province areas (Supplementary 

Figure 1). Raw milk collected from four milking sessions, which included a full day's milk, 

as well as the previous evening's milk and the following day's morning milk, was stored at 

8-10°C before use (2 days total). Milk was heated to 37°C then lyophilized starter or natural 

milk culture (i.e. through backslopping) was added. After 40 minutes, the milk mass was 

heated to 39°C and animal rennet was added. The curd was manually broken into rice/corn-

sized pieces, cooked for 15 minutes at 43, 44 or 45 °C and placed in perforated molds. 

Cheeses were pressed 24 hours to drain whey. Molds were removed and cheeses were salted 

by dry-salt washing for two days or immersed in brine (20% NaCl w/v) for four days. 

Ripening was performed at 12-14°C and 80% relative humidity for a duration of 60±14 days. 

Table 1 summarizes the cheesemaking practices employed in mountain Caciotta cheese 

production. 
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Table 1. Summary of the cheesemaking practices employed in mountain Caciotta cheese 

production 

Origin 

Cooking 

temperature 

(°C) 

Starter type 
Salting 

method 

Ripening 

days 

Producer 1 44 

Natural milk culture and 

lyophyized starter 

(Lyofast, Sacco, Italy) 

Salt 

washing 
64 

Producer 2 44 Natural milk culture Brine 54 

Producer 3 43 

Lyophilized starter 

(T1/CD and TB1/B -D, 

Bioagro, Italy) 

Brine 70 

Producer 4 45 

Lyophilized starter (CO-

02, Chr. Hansen, 

Denmark) 

Brine 60 

Producer 5 45 

Lyophilized starter 

(TCC-20 and MC-18, 

Chr. Hansen, Denmark 

Brine 52 

Cheeses, obtained from milk during the cold (October to May) and warm periods (June to 

September) of 2020 and 2021, were sampled at the end of the ripening period. Core cheese 

samples of 2.5 g and 150 mg were employed for volatilomic and metagenomic analyses as 

described by Penland et al. (2021) and Carraro et al. (2011), respectively. Three biological 

replicates were obtained for each of the above-mentioned analyses yielding a total of 126 

samples.  

2.2 Chemical characterization 

For chemical analyses, namely pH, salt content, water activity and humidity, a slice of 

cheese of around 50 g (from crust to core) was homogenized using a knife mill (Retsch 

Grindomix GM200, Hann, Germany). For pH determination, 2 g of sample were diluted 

with distilled water (1/10, w/v) and homogenized for 30 sec at 8,000 rpm with a T10 Ultra-

Turrax (IKA-Werke, Staufen, Germany). The homogenate was centrifuged for 5 min at 2,000 

rpm (Eppendorf 5804, Hamburg, Germany) then paper filtered (Whatman grade 1, Fisher 

Scientific Italia, Rodano, Italy) and pH was measured on the filtrate using a Hanna HI5221 
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pH meter (Ronchi di Villafranca Padovana, Italy). Salt content was determined using the 

Volhard method (AOAC, 1990), while residual moisture was determined gravimetrically by 

oven-drying a 10 g sample at 103°C until constant weight. Water activity was determined 

using a dew point hygrometer (AquaLab 4 TEV; Decagon Devices, Pullman, WA, USA). 

Each measure was done in duplicate.  

2.3 Shotgun metagenomics 

Total DNA was extracted using the DNeasy PowerSoil kit (Qiagen, Hilden, Germany) 

following manufacturer's instructions. After extraction, DNA quantity was determined 

using a Qubit dsDNA HS Assay (Invitrogen, Life Technologies, Italy). Libraries were 

prepared using the Nextera XT DNA Sample Preparation Kit (Illumina, Inc., San Diego, 

USA) and IDT for Illumina Nextera DNA UD Indexes. Final libraries were assembled in 

equimolar pools. Quality was checked with an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Palo Alto, CA) and quantified using a Qubit Assay Kit HS. Subsequently, 

libraries were sequenced by UC Davis Genome Center (California, US) using a NOVASEQ 

Sp500 platform (250 bp forward and reverse for ~8 million reads per sample). A total of 1.1 

billion reads were generated from the sequencing service. Raw reads were checked for their 

quality using the FASTQC software (v.0.11.9, Brown et al., 2017). Subsequently, the 

bioBakery3 platform was used for quality control, contaminant depletion (KneadData), 

taxonomic (MetaPhlAn 3) assignment and functional (HUMAnN 3) profiling (Beghini et al., 

2021). Low quality, repetitive sequence and adapters were removed with KneadData. A 

quality score cut-off of 35 was used. High quality microbial reads were taxonomically 

profiled using MetaPhlAn3, an assembly free taxonomic profiler (Segata et al., 2012; Beghini 

et al., 2021). This computational tool mapped the quality-controlled shotgun reads to a 

database of unique clade-specific marker genes (read-based profiling) with high 

discriminatory power, estimating the relative abundance of each microbial clade in the 

samples with species-level resolution (Segata et al., 2012; Beghini et al., 2021). Bowtie2, a fast 

DNA aligner, was used by MetaPhlAn3 to map the metagenomic reads against the unique 
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clade-specific marker genes. MetaPhlAn3 viral profiles were obtained using the –add_viruses 

command to profile potential DNA viruses in the samples.  

HUMAnN 3 was applied to assess the functional aspect of genes and pathways in sample 

metagenomes by utilizing the native UniRef90 annotations from the pangenomes of species 

analyzed by ChocoPhlAn. Gene abundance was reported in reads per kilobase. This was 

achieved by computing the sum of the alignments scores (i.e. number of matches to the 

reference gene) for all alignments for a gene family and normalizing it taking into 

consideration the alignments for a single sequence to multiple reference genes. Alignments 

that did not meet the e-value, identity and coverage thresholds were not included in the 

analysis (Beghini et al., 2021).  

Strain level diversity of the most abundant bacterial species from cheese and starter (i.e. 

Streptococcus thermophilus and Lactobacillus delbrueckii) was investigated with StrainPhlAn 3 

and PanPhlAn 3 (Truong et al., 2017; Beghini et al., 2021) which uses the core gene families 

to generate precise markers for the genetic characterization at the strain level (Beghini et al., 

2021). Inferred branch supports from the phylogenetic tree were constructed with 1,000 

bootstrap replicates based on parsimony splits as implemented in SplitsTree 4.0 (Huson and 

Bryant, 2006). Computational performances were optimized with UFBoot2 (Hoang et al., 

2018), while graphical representation was elaborate using iTol v6 (Letunic, and Bork, 2021). 

All raw sequence data in read-pairs format were deposited in the National Centre for 

Biotechnology Information (NCBI) in the Sequence Read Archive (SRA) under the project 

PRJNA922379 and PRJNA922380, for cheese samples and starter cultures, respectively. 

2.4 Volatilome analysis 

Headspace thermal desorption coupled with gas chromatography (GC) mass spectrometry 

(MS) was performed using HiSorb probes desorbed with UNITY-xr (both from Markes 

International, UK) combined with a 5977B GC-MS (Agilent Technologies, US). Cheese was 

placed in 2.5 ml vials and headspace sampled using an HiSorb Agitator at 40°C and 200 rpm 

for one hour. After sampling, probes were thermodesorbed using UNITY-xr at 280°C for 12 
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min and purge flow of 50 ml/min for 1 min.  Flow path was set at 200°C with trap low at 

25°C and trap high at 290°C. Injection in the GC was performed using a low split 5 ml/min 

flow. A DB-5ms capillary column 60 m × 250 μm × 0,25 μm (Agilent Technologies, US) was 

used. The oven temperature program was as follows: initial 40°C held for 2 min, then 

ramped 3°C/min up to 180°C, and again ramped 20°C/min up to 260°C for 5 min, and finally 

held for 6 min. The constant flow rate of helium carrier gas was 1 mL/min. The MS analyses 

were done in a full scan mode (TIC mode), with a scan range of 33 to 350 amu.  Molecules 

were identified using the in-built National Institute of Standards and Technology library 

(identification criteria >85% ion profile match). Forty-four standard molecules were injected 

to validate detected peaks (Supplementary Table S1). Semi-quantitative analysis was 

performed with the MassHunter quantitative analysis workstation (v.11.1, Agilent 

Technologies, US).  

2.5 Statistical analyses 

Statistical analyses and visual representations of microbiome taxonomic abundance and 

functional activity were assessed with MicrobiomeAnalyst (v. 2.0, Dhariwal et al., 2017; 

Chong et al., 2020), an online tool designed to facilitate the statistical analysis, interactive 

visualization and meta-analysis of microbiome data. Low abundance taxa were filtered 

according to mean abundance values and interquartile range of 10%. Alpha-diversity was 

calculated using Shannon and Chao1 indices. Kruskal–Wallis test was used to compare 

indices and taxa relative abundance. Beta-diversity was assessed using permutational 

multivariate analysis of variance (PERMANOVA) to test factor effects on microbial 

communities, while visual representation was obtained with non-metric multidimensional 

scaling (NMDS). Significant factors (p<0.05) yielding high pseudo F-ratio were evaluated 

using pairwise comparison. Jaccard and Bray-Curtis distances were evaluated to test 

compositional dissimilarities between presence/absence or presence and relative abundance 

of detected species. 

Statistical analysis of volatile organic compounds (VOCs) was performed in R version 4.0.5 

(R Foundation for Statistical Computing, Vienna, Austria). Peaks from validated molecules 
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were integrated and normalized using total area normalization. Relative abundance of each 

compound was compared using Kruskal–Wallis test. For multivariate analysis, integrated 

peaks were first log transformed and then normalized using total area normalization. 

Principal component analysis was used for visual representation. Euclidean distances were 

used in one-way PERMANOVA, while pair-wise comparison was performed only on the 

significant factor yielding the highest pseudo F-ratio. All p-values from multiple 

comparisons were adjusted with the Benjamini & Hochberg (1995) correction method. 

Barplots of functional activity were obtained using the humann_barplot function of 

HUMAnN 3 (Beghini et al., 2021). Correlations between gene abundances and VOCs were 

calculated with Spearman's rank correlation coefficient (Best and Roberts, 1975). The 

analysis was limited to strong (⍴>0.5 and ⍴<-0.5) and significant (FDR-corrected p-values 

<0.05) correlations for the three most abundant VOCs for each class of compounds 

(Benjamini and Hochberg, 1995). From these, the top 2 and bottom 2 correlations were 

reported. When strong correlations were not available, ⍴ limits were reduced to 0.15 or -0.3 

corresponding to weak and modest correlations. 
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3. Results 

3.1 Physico-chemical composition of Caciotta cheese 

The physico-chemical properties of Caciotta cheese - pH, water activity, salt content and 

humidity - are shown in Table 2.  

Table 2. Chemical characterization of Caciotta cheese from mountain areas. 

Parameter  Mean±SD  Median  1st quartile  3rd quartile 

pH  5.55±0.17  5.52  5.32  5.99 

Water activity  0.95±0.01  0.955  0.928  0.969 

Salt (g/100 g)  1.99±0.40  2.02  1.44  2.94 

Humidity (%)  37.57±6.82  35.6  30.7  50.58 

These parameters showed some variability between samples. For example, in Caciotta 

cheese, optimal acidification is considered to be achieved when the curd pH is between 5.20 

and 5.40. In this study, at the end of the ripening period, observed pH values ranged from 

5.32 to 5.99 reflecting different acidification kinetics and thus microbial metabolism. Similar 

technological importance is given to salt content which directly affects water activity and 

microbial growth. Salt concentration varied between 1.44 and 2.94 g/100 g of Caciotta. 

Similarly, water activity varied from 0.928 to 0.965 according to the considered cheese. On 

the other hand, the variation in cheese humidity was in agreement with the “semi-hard 

cheese” classification and salt concentration. The distribution of pH, water activity values 

and salt content were further considered to study their effects on bacterial and viral 

community structure. 

3.2. Taxonomical diversity using metagenomics 

The sequencing of the cheese sample DNA yielded a total of 1.1 billion reads. After quality 

filtering 7,087,825 ± 3,722,973 high quality reads per sample were obtained. Two replicates 

from two distinct samples presented very different compositions in comparison with the 
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other corresponding replicates and were discarded. Bacterial reads accounted for 53.73 ± 

41.84% of total reads while viral reads accounted for 46.27 ± 41.89%. A total of 75 bacterial 

and 84 viral species were identified using MetaPhlAn. From these, only 57 bacterial and 58 

viral species were kept after data filtering in MicrobiomeAnalyst. Bacterial community 

consisted of 5 phyla, 5 classes, 11 order, 16 families and 26 genera. Among them, the phyla 

Bacillota, class Bacilli, order Lactobacillales, family Lactobacillaceae and genus Streptococcus, 

Lactococcus, Lentilactobacillus were the most represented and diverse (i.e. number of 

associated species). The most abundant bacterial species were Streptococcus thermophilus 

(73.58%) and Lactobacillus delbrueckii (21.37%) followed by Lactococcus lactis (0.92%), 

Leuconostoc pseudomesenteroides (0.83%), Lactobacillus helveticus (0.70%) and Leuconostoc 

mesenteroides (0.59%).  

The viral community was composed of 2 phyla, 2 classes, 11 families and 25 genera. Among 

them, the phyla Uroviricota, class Caudoviricetes, family “unclassified Caudoviricetes” and 

Aliceevansviridae and genus “unclassified Caudoviricetes”, Moineauvirus, Brussowvirus were 

the most represented and diverse. The most abundant viral species were Streptococcus virus 

phiAbc2m (18.26%), Streptococcus phage TP778L (16.95%), Streptococcus virus DT1 

(16.82%), Streptococcus virus 7201 (8.15%), Lactobacillus phage A2 (6.22%), Streptococcus 

virus Sfi21 (5.67%), Lactococcus phage bIL310 (3.71%) and Lactobacillus phage Lrm1 

(3.10%). 

Considering starter cultures, DNA sequencing yielded a total of 340 M reads from which 

8.08 ± 0.08 M high quality reads per sample were obtained. Four bacterial species were 

identified using MetaPhlAn. After data filtering in MicrobiomeAnalyst, only S. thermophilus 

(85.60%) and L. delbrueckii (14.40%) were found to compose cheese starter cultures. Natural 

milk cultures were characterized by the sole presence of S. thermophilus.  

3.3 Factors affecting bacterial and viral beta-diversity 

Multiple categorical variables, based on the distribution of the chemical parameters (Table 

2) and origin, sampling season and year, use of lyophilized starter or natural milk culture 
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as well as curd cooking temperature, were investigated (Supplementary Table S2). 

PERMANOVA based on Bray-Curtis and Jaccard distances was performed on bacterial and 

viral cheese communities (Table 3). 

Table 3. PERMANOVA of Caciotta cheese bacterial and viral species based on Bray-Curtis 

and Jaccard distances. 

m.o.  Distance  Variable  Pseudo F 
ratio 

p
value  Distance  Pseudo F 

ratio 
p
value 

Bacteria  BrayCurtis 

Origin  19.48  0.001 

Jaccard 

14.33  0.001 

Cooking 
Temperature   12.92  0.001  10.82  0.001 

Ripening days  12.32  0.001  9.75  0.001 

Salt  8.22  0.001  6.33  0.001 

Water activity  5.90  0.001  4.94  0.001 

Starter  5.39  0.001  4.74  0.001 
Season  4.61  0.001  4.01  0.001 
Salting  4.56  0.004  4.83  0.001 
pH  3.65  0.001  3.72  0.001 
Year  1.62  0.096  2.11  0.021 

Virus  BrayCurtis 

Origin  22.35  0.001 

Jaccard 

17.38  0.001 

Cooking 
Temperature  17.97  0.001  13.56  0.001 

Salting  17.01  0.001  15.60  0.001 

Ripening days  15.69  0.001  12.04  0.001 

pH  5.32  0.001  4.74  0.001 
Salt  4.69  0.001  4.75  0.001 

Water activity  3.72  0.001  3.40  0.001 

Season  2.69  0.044  2.25  0.041 
Year  0.83  0.488  1.32  0.201 
Starter  0.66  0.611  3.17  0.006 

Many factors shaped the microbial communities of typical Caciotta cheese. Bacterial 

community composition (i.e. presence/absence of bacterial species) was significantly 

affected by all the tested factors. Among these, origin, cooking temperature and ripening 

time presented the highest pseudo F-ratio, indicating the largest separation between the 

investigated groups. On the other hand, salting method, pH, and sampling year had the 

lowest pseudo F-ratio and the investigated groups were less separated. Similar results were 
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obtained after the comparison of composition and relative abundance (Bray-Curtis distance) 

except that the “sampling year” factor did not significantly affect the bacterial community 

structure. 

Viral communities of Caciotta cheese were significantly different in composition and 

relative abundance according to origin, cooking temperature, salting, ripening days, pH, 

salt concentration and water activity. The “sampling year” and “starter type” were non-

significant factors. Similar results were obtained for compositional data (Jaccard distances), 

although only sampling year was found to not affect the presence or absence of viral species 

in Caciotta cheese (p=0.201). As for bacterial communities, origin and cooking temperature 

presented the highest pseudo F-ratio in the viral communities. These two factors were 

further investigated through qualitative (NMDS) and quantitative (pairwise 

PERMANOVA) methods to understand if microbial communities were differently affected 

within groups. 

Qualitative estimation on the effect of origin was performed using NMDS based on Bray-

Curtis distances (Figure 1).  

 

Figure 1. Non-metric multidimensional scaling plot based on Caciotta cheese origin, 

showing the similarities among cheeses from different producers by investigating (a) 

bacterial (stress value 0.212) and (b) viral (stress value 0.125) species using Bray-Curtis 

distances. 

Clusters of cheeses organized according to producer location were observed for both 

bacterial and viral communities. Viral communities presented narrower clusters for each 

cheese origin in comparison to the bacterial ones. On the other hand, while bacterial 
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communities showed a separation between regions of origin (Producer 4 and Producer 5 

being in Veneto while the other producers were located in Trentino Alto-Adige), a similar 

separation could not be observed for the viral communities. 

A posteriori test, using pairwise PERMANOVA confirmed that bacterial communities 

(Supplementary Table S3) centroids (i.e. location in multivariate space that represent the 

average value of all species) were significantly different in terms of composition and relative 

abundance for producers from different regions. Moreover, no significant differences were 

observed in the comparison between Producer 1 and, Producer 2 or Producer 3, and 

between Producer 4 and Producer 5 (Figure 1a). The results of pairwise PERMANOVA 

using Jaccard distance were analogous to those obtained using the Bray-Curtis dissimilarity. 

On the other hand, a posteriori test on viral communities (Supplementary Table S3) showed 

that viral communities were significantly different in relative abundance and composition 

for each of the investigated origins. 

Also, the cooking temperature was shown to affect bacterial and viral communities 

(Supplementary Figure S2). Significant changes in composition and relative abundance of 

bacterial and viral communities were observed for the “cooking temperature” parameter 

(Supplementary Table S4). While all the pairwise comparisons between the 43, 44, and 45°C 

cooking temperatures resulted in significantly different centroids for viral species 

communities, the pairwise comparison between 44 and 45°C did not show significance in 

the bacterial communities. 

3.4 Alpha Diversity 

The effect of origin was further investigated by considering species diversity within the 

sample (Figure 2). Chao 1 (estimator of total richness) and Shannon (estimator of richness 

and evenness) indices were used to compare cheese diversity (Figure 2 b & 2d). 
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Figure 2. Summary of alpha diversity of typical mountain Caciotta cheese. (a) Relative 

abundance of bacterial communities at species level according to origin; (b) Chao 1 and 

Shannon index of bacterial species; (c) relative abundance of viral communities at species 

level according to origin; (d) Chao 1 and Shannon index of viral species. 

For both microbial communities, Chao 1 and Shannon indices significantly differed 

according to cheese origin (Kruskal–Wallis test; p<0.001). Both indices presented higher 

values for viral communities in comparison to the bacterial ones. 

3.5. Taxonomic composition of microbial communities 
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A total of 45 bacterial and 44 viral species were found to have a significantly different mean 

relative abundance (Kruskal–Wallis test, p< 0.05) according to their origin. Among bacterial 

species, both starter (i.e. S. thermophilus and L. delbrueckii) and non-starter lactic acid bacteria 

(such as Lactococcus raffinolactis, Lactilactobacillus curvatus, Lentilactobacillus parabuchneri, 

Leuconostoc pseudomesenteroides and Lactobacillus brevis) significantly differed in relative 

abundance (Supplementary Table S5). Other components of the secondary microbiota (i.e. 

non-inoculated microbiota that develops during the late stages of ripening) were only found 

for some origins, as for example Lactiplantibacillus paraplantarum, Lentilactobacillus buchneri 

and Lactococcus piscium. As starter lactic acid bacteria were the most abundant bacterial 

species, associated bacteriophages, such as Streptococcus phage TP 778L, Streptococcus 

virus DT1, Streptococcus virus phiAbc2 and Lactobacillus phage A2, were the most 

abundant and significantly differed according to Caciotta origin (Supplementary Table S6). 

Other bacteriophages connected to the infection of species belonging to the Enterobacteriaceae 

family were found to significantly differ as well. 

3.6 Intraspecific diversity 

Using phylogenetic analysis, we further studied the most abundant species (S. thermophilus 

and L. delbrueckii) to characterize their strain diversity. A PhyloPhlAn and the following 

StrainPhlAn analysis of S. thermophilus yielded a total of 160 samples (124 cheese and 36 

starters), while in the strain analysis of L. delbrueckii, 59 cheese and 24 starter culture samples 

were discarded due to the low number and/or poor quality of the reconstructed markers, 

yielding 77 samples. In the analyzed samples, the evolutionary relationship for each of these 

two species showed complex patterns for mountain Caciotta cheese.  
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Figure 3. Intraspecific analysis of Streptococcus thermophilus in mountain Caciotta cheese. (a) 

Phylogenetic analysis on 160 Streptococcus thermophilus strains from mountain Caciotta 

cheese (124) and starters employed during cheesemaking (36). The inner circle represents 

the cheese or starter matrix, while the external circle reports the sample origins. Major 

clusters from I to X were identified through bootstrap values. Phylogenetic analysis was 

performed using PhyloPhlAn and StrainPhlAn. Bootstrap was assessed with IqTree and the 

graphical representation of phylogenetic trees was obtained using iTOL. (b) Principal 

coordinate analysis (PCoA) of strain dissimilarities was created in the BioBakery 

environment using distmat function and Kimura correction method.  

In Fig 3a, bootstrap values showed 10 major clusters characterized by different levels of 

strain diversity. Clusters II, III, IV, VII, VIII, IX and X showed limited diversity within 

themselves. Notably, strains occurring in mountain Caciotta cheese were clustered together 

at high bootstrap support with the starter strains from either natural milk or lyophilized 

starter cultures indicating their establishment and implication in the cheese production 

process. This was the case for the II, IV, VII, VIII, IX, X clusters but not for cluster I (Fig 3a) 

in which the starter strains were different from those actually observed in the cheese. 

Moreover, for these cheeses, the relationship between the cheese and the producer was 

evident. On the other hand, some samples grouped independently of the employed starter 

or the cheese origin (Fig 3a, III, V, VI). This phenomenon can be clearly noticed in the strain 

diversity multivariate analysis (PCoA) (Fig 3b). Cheese and starter strains tended to cluster 

according to their origin (as shown by the confidence intervals of the ellipses).  
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The analysis of L. delbrueckii strains showed a different pattern. Most of the strain diversity 

was shared among the samples (Fig 4a, Cluster I) and only a few small groups were 

differentiated (Fig 4a, Clusters II, III, IV). In a similar way, the multivariate analysis (Fig 4b) 

showed completely overlapped confidence intervals and few separated samples. 

 

   Figure 4. Intraspecific analysis of Lactobacillus delbrueckii in mountain Caciotta cheese. (a) 

Phylogenetic analysis on 77 Lactobacillus delbrueckii strains from mountain Caciotta cheese 

(65) and starters employed during the cheesemaking (12). The inner circle represents the 

cheese or starter matrix, while the external circle reports the sample origins. Major clusters 

from I to IV were identified through bootstrap values. Phylogenetic analysis was performed 

using PhyloPhlAn and StrainPhlAn. Bootstrap was assessed with IqTree and the graphical 

representation of phylogenetic trees was obtained using iTOL. (b) Principal coordinate 

analysis (PCoA) of strain dissimilarities was created in the BioBakery environment using 

distmat function and Kimura correction method. 

3.7 Volatile organic compounds of Caciotta cheese 

Mountain Caciotta cheese presented a complex volatilome from which frequent molecules 

were selected for the following validation. Forty-four VOCs, including 14 alcohols, 4 

aldehydes, 8 ketones, 3 carboxylic acid, 2 fatty acids, 6 esters, 4 terpenes and 3 hydrocarbons 

were validated by injecting pure standards (Supplementary Table S1). The most abundant 

VOCs in typical mountain Caciotta cheese corresponded to acetic acid (14.45%), butan-2-ol 

(8.99%), 3-methyl-butan-1-ol (8.49%), butan-2-one (7.69%), ethanol (7.61%) and 3-

hydroxybutan-2-one (6.92%). Among the investigated molecules, only the mean values of 
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3-hydroxybutan-2-one and 1-acetophenyletanone were not significantly different according 

to Caciotta origin (Kruskal–Wallis test; Supplementary Table S7). For all the other 

compounds, a significant effect of Caciotta origin was found (Supplementary Table S7). 

Further PERMANOVA analysis (supplementary Table S8) confirmed that origin 

significantly affected the VOCs of typical Caciotta cheese. However, all tested factors 

actually significantly affected the cheese volatile profile. The origin, pH and season had the 

highest pseudo F-ratio, while the year, curd cooking temperature and starter type showed 

the lowest values. Pairwise PERMANOVA analysis showed that each producer of typical 

mountain Caciotta cheese presented a more or less unique VOC profile. 

 

Figure 5. Principal component analysis plot based on Caciotta volatile organic compounds 

showing the effect of cheese origin. Asterisks (*) represent group centroids. 
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Finally, as shown in Figure 5 in which a PCA plot of the volatile profiles of Caciotta cheeses 

according to their origin is represented, cheese volatile profiles from each producer grouped 

well together, indicating relatively stable volatile profiles over sampling times and between 

batches, with the exception of those from producer 3.  The confidence ellipses of producers 

4, 5 and 1 overlapped together indicating quite similar overall volatile profiles while cheese 

samples from producer 2 showed distinct volatile profiles from those of producers 4 and 5.  

3.8 Functional aspects linked to volatilome 

From a functional point of view, analysis of the gathered metagenomics data yielded a total 

of 26,360 genes that presented different associations with Caciotta microbiota. Among them, 

1,750 genes were unclassified, 2,462 belonged to S. thermophilus and 412 genes were 

associated with L. delbrueckii. The remaining functional annotations were associated with 

other components of the cheese microbiota. For example, L. lactis, L. pseudomesenteroides and 

L. helveticus were found to be associated with 551, 415 and 334 genes, respectively. In order 

to link the obtained metagenomics data to an actual impact of the microbial metabolism, we 

focused our analysis on enzymes associated with cheese flavor during cheesemaking and 

ripening and thus linked this to the determined volatilomes (Supplementary Table S10). For 

this analysis, we created various metabolic classes in which associated EC were pooled. The 

“proteases and aminopeptidases” class (e.g. serine proteinases, endopeptidases, proline 

peptidases) was represented by 778 EC (enzyme commission number), while 2987 EC were 

associated with the “generic amino acid degradation” (e.g. keto acid dehydrogenase, acyl 

kinase) class, 277 EC were associated with “cysteine and methionine degradation” (e.g. 

homocysteine S-methyltransferase, cystathionine beta lyase) class, 126 EC were associated 

with “citrate fermentation” (e.g. citrate lyase, acetolactate synthase) class and 115 EC were 

associated with “lipid metabolism” (e.g. triglycerides esterase, glycerol ester hydrolases). 

Among them, 530 EC were found to have significantly different relative abundances 

according to cheese origin (Supplementary Table S11). The most represented classes were 

those corresponding to “generic amino acid degradation” (344 EC) and “proteases and 
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aminopeptidases “(111 EC) while “cysteine and methionine metabolism” (47 EC), “citrate 

metabolism” (18 EC) and “lipid metabolism” (10 EC) were less frequent.  

 

Figure 6. Barplot of gene abundances and microorganism contribution describing functional 

diversity for the five investigated metabolic classes grouped according to Caciotta origin, 

namely a) “Amino acid metabolism”, b) “Citrate fermentation”, c) “Cysteine and 

methionine metabolism”, d) “Lipid metabolism” and e) “Generic amino acid metabolism”. 

Relative contribution is expressed as the percentage of reads assigned per kilobase (RPK).  

We further investigated the functional diversity of typical Caciotta cheese through barplots 

of genes and associated microorganisms (Fig. 6). Among the investigated classes, it was 
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possible to notice microbiota functional differences connected to Caciotta origin. Generally, 

it was observed that S. thermophilus exhibited the highest potential for various metabolic 

activities in typical Caciotta. The “proteases and aminopeptidases” class (Fig. 6a) of 

producers 4 and 5 were primarily characterized by the strong contribution of L. delbrueckii 

and L. helveticus. On the other hand, producers 1, 2, and 3 showed a larger contribution from 

those belonging to L. lactis and L. pseudomesenteroides. Similarly, L. helveticus strongly 

contributed to the “citrate fermentation” class (Fig. 6 b) of producer 4 and 5. The highest 

contribution from L. lactis was linked to Producers 1 and 3, while producer 1 and 5 shared 

a considerable contribution from L. parabuchneri. The greatest diversity in the “citrate 

fermentation” class was observed for producers 3, 4, and 5. 

Regarding the “cysteine and methionine metabolism” class (Fig. 6c), L. delbrueckii and L. 

helveticus strongly contributed to the functional potential of Caciotta in producers 4 and 5. 

L. parabuchneri showed noticeable relative contributions across most origins. Higher 

contributions were seen in producers 4 and 5 compared to producers 1 and 3. Producer 2 

had a negligible contribution to this class from this microorganism. For the “lipid 

metabolism” class (Fig. 6d), both S. thermophilus and L. delbrueckii made similar 

contributions in producers 4 and 5. Producers 1 and 3 showed high contributions from L. 

pseudomesenteroides and L. lactis, respectively, while producer 2 lipid metabolism 

contribution was predominantly connected to S. thermophilus. Similar trends in 

microorganism functional contributions were observed for the “generic amino acid 

degradation” class (Fig. 6e). In this class, the highest contributions were observed from S. 

thermophilus and L. delbrueckii, with minor contributions from L. parabuchneri, L. lactis, and 

L. helveticus in producers 4 and 5. Producers 1, 3 and 2 were characterized by the 

contributions of L. lactis, L. pseudomesenteroides, and Leuconostoc mesenteroides, respectively. 

Lastly, we used Spearman's correlation to link bacteria, gene abundances and VOCs (Fig. 7 

and Supplementary Table S12).  
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Figure 7. Heatmap of all significant Spearman correlations (FRD <0.05) describing the 

relationship between volatiles and a) bacterial species, b) “Amino acid metabolism”, c) 

“Citrate fermentation”, d) “Cysteine and methionine metabolism”, e) “Lipid metabolism” 

and f) “Generic amino acid metabolism”. 

The correlation between taxa relative abundance and VOCs (Fig. 7a) highlighted that 

NSLAB such as L. paraplantarum, Propionibacterium freudenreichii, L. helveticus and 

Enterobacterales, like Hafnia paralvei, presented strong correlations with the most abundant 

VOCs of Caciotta cheese, namely alcohols and ketones. Similarly, the sum of each EC 

belonging to the defined class was used to further evaluate the metabolic correlation 
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between microorganisms and VOCs (Fig. 7 b-f). Analogous results were observed for all the 

investigated classes with the exception of the “lipid metabolism” one.   

We obtained a considerable number of significant correlations and decided to focus on the 

three most abundant VOCs for each of the investigated classes (excluding terpenoids). 

Overall, acetic acid was significantly correlated with 28 EC, propionic acid with 41 EC, 

butanoic acid with 34 EC, butan-2-ol with 61 EC, ethanol with 116 EC, 3-methylbutan-1-ol 

with 69 EC, butan-2-one with 78 EC, 3-hydroxybutan-2-one with 91 EC, butan-2,3-dione 

with 11 EC, ethyl acetate with 44 EC, ethyl butanoate with 35 EC, ethyl hexanoate with 55 

EC, cyclopentane with 56 EC, toluene with 40 EC, xylene with 74 EC, hexanoic acid with 17 

EC, octanoic acid with 46 EC, benzaldehyde with 82 EC, nonanal with 68 EC and 3-

methylbutanal with 99 EC. We found a total of 76 strong correlations from which the most 

and least represented classes were “generic amino acid degradation” and “citrate 

fermentation”, with 58 and 1 correlations, respectively. We further focused our attention on 

the five most abundant alcohols and ketones which are usually associated with typical 

Caciotta flavor.   

Butan-2-ol exhibited negative correlations with EC 2.3.1.189 (keto acid dehydrogenase) and 

EC 1.1.1.313 (D-hydroxy acid dehydrogenase), while positively correlating with EC 2.3.1.242 

and EC 2.3.1.118 (both keto acid dehydrogenase). P. freudenreichii and Pseudomonas 

fluorescens were associated with the genes that showed negative correlations, whereas 

Enterobacter cloacae, Raoultella ornithinolytica, Hafnia alvei, Lactococcus lactis, Escherichia coli,  

and Klebsiella michiganensis demonstrated a positive association with butan-2-ol. 

In the case of 3-methyl-butan-1-ol, it displayed negative correlations with EC 1.1.1.291 (D-

hydroxyacid dehydrogenase) and EC 4.4.1.11 (Cystathionine-Gamma-lyase), while 

showing positive correlations with EC 4.1.1.59 (acetolactate decarboxylase) and EC 1.1.1.405 

(D-hydroxyacid dehydrogenase). Among identified microorganisms, Acinetobacter johnsonii, 

L. delbrueckii, and Escherichia coli were associated with the genes showing negative 

correlations, whereas L. plantarum demonstrated a positive association with this compound. 
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Concerning butan-2-one, it exhibited negative correlations with EC 1.1.1.105 (Alcohol 

dehydrogenase) and EC 1.1.1.202 (D-hydroxyacid dehydrogenase), while positive 

correlations were observed with EC 1.1.1.91 and EC 2.3.1.86 (both D-hydroxyacid 

dehydrogenase). L. lactis, L. plantarum, L. parabuchneri, and Pseudomonas simiae were 

associated with the negatively correlated genes, while Bifidobacterium mongoliense was 

positively associated with this VOC. 

3-Hydroxybutan-2-one was negatively correlated with EC 4.4.1.11 (cystathionine-gamma-

lyase) and positively with EC 1.1.1.301 (D-hydroxyacid dehydrogenase), EC 2.7.2.7 

(acylkinase), and EC 1.1.1.62 (D-hydroxyacid dehydrogenase). Genes showing negative 

correlations belonged to L. delbrueckii, Escherichia coli and Raoultella terrigena , while those 

with positive correlations belonged to Enterococcus gilvus, Enterococcus faecalis, and L. lactis. 

Finally, ethanol was negatively correlated with EC 1.1.1.291 (D-hydroxy acid 

dehydrogenase) and EC 3.4.24.11 (Metalloproteinases), while showing positive correlations 

with EC 3.4.22.49 (cysteine proteinase) and EC 2.3.1.109 (keto acid dehydrogenase). Among 

the associated microorganisms, Acinetobacter johnsonii and B. mongoliense harbored genes 

showing negative correlations, while Limosilactobacillus fermentum, Pseudomonas simiae and 

Acinetobacter johnsonii harbored those with positive correlations. 
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4. Discussion 

In this study, we used “omics” approaches, namely metagenomics and volatilomics, to 

study bacterial and viral communities, and volatilomes of typical mountain Caciotta cheese. 

This pinpointed the factors significantly shaping the microbiota and volatile profile of this 

traditional Italian cheese. As for the metagenomic aspects, the Caciotta bacterial microbiota 

was similar to previous studies (Calasso et al. 2016). It was mainly dominated by the 

Lactobacillaceae family, Streptococcus, Lactococcus, Lentilactobacillus genera and S. thermophilus, 

L. delbrueckii, L. lactis and L. pseudomesenteroides species. S. thermophilus and L. delbrueckii, 

often present in lyophilized cultures used in cheesemaking, or selected during the 

thermization and incubation process of natural milk cultures, were found to represent 

nearly 90% of bacterial relative abundance. However, the remaining fraction of bacterial 

communities showed a more diverse population mainly characterized by non-starter lactic 

acid bacteria.  

Concerning viral communities, to our knowledge, the Caciotta virome has never been 

explored. To do so, we limited our study to DNA viruses of typical mountain Caciotta 

cheese without using previous enrichment procedures as described by Walsh et al. (2020) 

and Yang et al. (2021). We noticed high variability of viral relative abundances possibly 

connected with phage propagation during cheesemaking. Bacteriophages play a significant 

role in cheese microbiota, especially regarding their ability to potentially harm the bacteria 

involved in the fermentation process (Mayo et al., 2021). Indeed, bacteriophages are obligate 

intracellular parasites that require specific bacterial hosts for their replication. Our findings 

support previous research that identified the presence and high relative abundance of 

Streptococcus, Lactobacillus and Lactococcus phages when these genera were detected in 

starters and cheese (Walsh et al., 2020; Queiroz et al., 2023). 

To investigate how different biotic and abiotic factors shape the microbial communities of 

raw milk Caciotta cheese, we used PERMANOVA. We found cheese origin had the highest 

impact on the microbiota and volatilomes of raw milk Caciotta cheese from mountain areas 

among other tested factors. In particular, while bacterial microbiota significantly differed 
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among producers from different areas, viromes formed characteristic assemblages for each 

considered producer. Moreover, viral microbiota appeared more stable during the sampled 

years compared to the bacterial one. The potential connection between the stability of 

bacteriophages in cheese and their origin might be attributed to their ubiquitous presence, 

their selection through cheesemaking practices and their ability to withstand the typical 

cleaning methods used in cheese production environments (Paillet et al., 2022; Queiroz et 

al., 2023). 

Considering the other factors affecting Caciotta microbiota such as curd cooking 

temperature, pH, salt concentration and water activity, the observed significant differences 

could be explained by the variation of the cheesemaking know-how among producers. 

Cheesemaking induces heat-related, acidic, osmotic, and oxidative stresses on 

microorganisms and is responsible for modification in heat load, pH, water activity (aw), and 

redox potential gradients in the matrix (Beresford et al., 2001). These factors are known to 

shape bacterial and viral communities in different ways contributing to how specific origin 

connected communities are shaped (Cardin et al., 2022). This could explain the highest 

pseudo-F value obtained for the origin factor.  

We also characterized strain diversity of typical Caciotta cheese focusing on the most 

abundant bacterial species, namely S. thermophilus and L. delbrueckii. Strains occurring in 

mountain Caciotta cheese were often phylogenetically similar to those from the starter (i.e. 

either natural milk culture or lyophilized starter) indicating their establishment and 

implication in the cheese production process. Our findings regarding strain diversity 

showed comparable trends to those observed by Sommerville et al. (2022) for S. thermophilus 

and L. delbrueckii in the starter culture and Swiss hard cheese. This indicates a significant 

presence of strains originating from the used starter, resulting in limited biodiversity as 

noted in the study by Piquerras et al. (2021). However, we observed a diverse volatile profile 

of Caciotta cheese suggesting a relevant contribution of the NSLAB population of Caciotta 

cheese.  
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Bacterial communities have been reported to establish specific patterns in the cheesemaking 

environment contributing to typical aromas (Calasso et al., 2016); therefore, we also 

explored the Cacciotta volatilome as a direct result of microbiota metabolism. Concerning 

volatile profiles, some of the investigated Caciotta cheese VOCs were previously reported 

by Bancalari et al. (2020). Similarly, the main alcohols and ketones, such as butan-2-ol, 3-

methyl-butan-1-ol, butan-2-one, ethanol and 3-hydroxybutan-2-one, represented the most 

abundant volatiles in typical Caciotta cheese. These compounds are often associated with 

odor descriptors such as sweet apricot, fermented, fruity, ethereal, alcoholic and sour milk, 

which combined with other components of the volatilome create the typical aromatic profile 

of this mountain cheese. Unfortunately, we could not compare the concentrations of 

volatiles since the method we used was semi-quantitative. Since all Caciotta producers 

grazed their herds, we investigated the terpenoids VOC fraction, namely p-cymene, D-

limonene, camphene and 3-carene (Supplementary Table S7). We found that terpenoid 

relative abundances differed according to cheese origin. Moreover, some terpenoids such as 

p-cymene and 3-carene were not systematically detected for all origins. These results are in 

agreement with the study of Turri et al. (2021). They showed that the association of pasture-

producers had significantly different terpenoids fractions linked to the cheese origin. 

 

Interestingly, using metagenomics, we had a clear view of both microbial diversity data and 

metabolic functions. Our study aimed to assess the functional capabilities of Caciotta cheese 

microbiota, with a specific focus on enzymes influencing flavor. We discovered significant 

variations in the relative abundances of these enzymes, along with distinct profiles of 

associated microorganisms linked to the cheese origins. In this context, we specifically 

analysed genes associated with aromatic compounds synthesis, which were directly related 

to the most abundant VOCs. We reported the most significant and strong correlations 

identified between non-homologous isofunctional enzymes and the most abundant VOCs. 

Among them we found that D-hydroxy acid dehydrogenase, identified as EC 1.1.1.405, EC 

1.1.1.291 and EC 1.1.1.62, was positively and negatively correlated with many volatiles. In 

particular, the enzymes were positively correlated to hexanoic acid, benzaldehyde and 
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ethanol while negatively correlated to 3-hydroxybutan-2-one, butane-2,3-dione, and ethyl 

hexanoate. Generally, the class of EC 1.1.1- enzymes are zinc proteins which act on primary 

or secondary alcohols or hemi-acetals with very broad specificity thus could explain the 

obtained results. These enzymes were previously described for L. fermentum (Hossain 2022). 

This species was among the most frequently associated microorganisms with these 

enzymes. 

An interesting case is that of EC 3.4.24.11 and ethanol. The enzyme was associated with B. 

mongoliense (metalloproteinases assigned to “amino acid metabolism” class, ⍴=-0.5114 p-

value <0.001). It hydrolyses protein and peptide substrates preferentially on the carboxyl 

side. It is known that the antiporter/decarboxylase systems constitute indirect proton 

pumps and play an important role as energy sources (Fernandez and Zuniga, 2006) and this 

could explain the observed negative correlation.  
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5. Conclusions 

Overall, using a combined microbiota and volatilome omics approach, we performed an in-

depth characterization of the typical mountain Caciotta cheese, a raw milk cheese produced 

in the Italian alpine area.  

Many factors significantly affected the microbiota and volatilome structure among the 

studied biotic and abiotic factors. Cheese origin was a significant driver for bacterial and 

viral communities as well as for volatilome differences. Overall, viral communities showed 

higher biodiversity and narrowed sample clusters that could be used for future in depth 

analysis on cheese origin authenticity. As origin was the major driver for the observed 

differences, further studies should evaluate the performance of origin authentication by 

comparing bacterial and viral communities, and volatilome.  
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Supplementary materials - Ecological diversity and associated volatilome of typical 

mountain Caciotta cheese from Italy 

 

Figure S1. Map of the origin of mountain Caciotta producers. Producer 1 is located in 

Giudicarie Esteriori area while Producer 2 and Producer 3 are located in Trento province. 

Producer 4 and Producer 5 are located in Alti Pascoli della Lessinia area. 

 

 
 

  

(a) (b) 

Figure S2. Non-metric multidimensional scaling plot based on curd cooking temperature, 

showing the similarities among cheeses cooked at different temperatures by investigating 

(a) bacterial and (b) viral species using Bray-Curtis distances. 
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Table S1. Investigated volatile organic compounds in Caciotta cheese 

Family Compound  
Formul

a 

MW 

(g/mol

) 

Bibliograph

y RT 

EIC 

(m/z

) 

CAS 

n° 

Odor 

descriptor

* 

Alcohols 

Ethanol C2H6O 46.07 421-496 31 
64-17-

5 
Alcoholic 

Propan-1-ol C3H8O 60.10 524-572 45 
71-23-

8 

Alcoholic, 

fermented, 

fusel 

Butan-1-ol C4H10O  74.12 660-684 56 
71-36-

3 

Fusel oil, 

sweet 

balsam, 

whiskey 

Butan-2-ol C4H10O 74.12 570-603 134 
78-92-

2 

Sweet 

apricot 

2-methyl-propan-1-ol  C4H10O 74.12 594-654 43 
78-83-

1 

Ethereal, 

winey, 

cortex 

3-Methylbutan-1-ol  C5H12O 88.15 706-738 55 
123-

51-3 

Fermented

, fruity, 

pungent 

2-Methylbutan-1-ol C5H12O  88.15 718-740 57 
137-

32-6 

Ethereal, 

fusel, 

alcoholic 

Butane-2,3-diol C4H10O2 90.12 747.5-824 45 
513-

85-9 

Fruity, 

creamy, 

buttery 

Pentan-2-ol C5H12O  88.15 664-704 59 
584-

02-1 

Sweet, 

herbal, 

nutty 

Hexan-1-ol C6H14O 102.17 841-871 69 
111-

27-3 

Green, 

fruity, 

pear 

Heptan-2-ol C7H16O 116.20 877-924 45 
543-

49-7 

Fresh 

lemon, 

grass, weet 

floral  

Octan-1-ol C8H18O  130.23 1052-1093 56 
111-

87-5 

Waxy, 

green, 

orange 

Nonal-1-ol C9H20O 144.25 1149-1168 56 
143-

08-8 

Fresh 

clean, 

fatty, rose 

Nonal-2-ol C9H20O 144.25 1084-1100 56 
628-

99-9 

Waxy, 

green, 

creamy 

2-Phenylethanol C8H10O 122.16 1080-1150 91 
60-12-

8 

Floral, 

sweet, 

rosey 
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Aldehyde

s 

3-Methylbutanal C5H10O 86.13 615-665 58 
590-

86-3 
Malty 

Benzaldehyde C7H6O 106.12 921-1005 105 
100-

52-7 
Almond 

Octanal C8H16O 128.21 977-1036 43 
124-

13-0 

Green, 

herbal, 

fresh, fatty 

Nonanal C9H18O 142.24 1081-1128 82 
124-

19-6 

Fatty, 

waxy 

Carboxyli

c acids 

Acetic acid C2H4O2 60.05 594-648 60 
64-19-

7 

Pungent 

vinegar 

Propionic acid C3H6O2 74.08 684-743 74 
79-09-

4 

Pungent, 

acidic, 

cheesy 

Butanoic acid C4H8O2 88.11 775-830 60 
107-

92-6 

Sharp, 

acetic, 

cheese 

Esters 

Ethyl acetate C4H8O2 88.105 577- 616 70 
141-

78-6 

Ethereal, 

fruity, 

sweet 

Ethyl butanoate C6H12O2 116.16 778-793 71 
105-

54-4 

Fruity, 

juicy, 

pineapple 

3-Methylbutyl acetate  C7H14O2 130.18 843-884 70 
123-

92-2 

Fruity, 

green, ripe 

Ethyl hexanoate C8H16O2 144.21 976-1011 88 
123-

66-0 

Sweet, 

fruity, 

pineapple 

Ethyl octanoate C10H20O2 172.26 1175-1194 88 
106-

32-1 

Fruity, 

winey 

3-methylbutyl hexanoate  C11H22O2 186.29 1253-1238 70 
2198-

61-0 

Fruity, 

banana, 

apple, 

Fatty 

acids 

Hexanoic acid C6H12O2 116.16 951-1013 87 
142-

62-1 

Fruity, 

fatty, sour 

Octanoic acid C8H16O2 144.21 1154-1209 73 
124-

07-2 

Oily, 

rancid, 

capric 

Ketones 

Propan-2-one  C3H6O 58.08 469-475 43 
67-64-

1 

Solvent, 

ethereal, 

apple 

Butan-2-one C4H8O 72.11 543-587 43 
78-93-

3 

Acetone-

like, 

ethereal, 

fruity 

Butane-2,3-dione   C4H6O2 86.09 550-619 86 
431-

03-8 
Buttery 

3-Hydroxybutan-2-one  C4H8O2 88.11 662-714 45 
513-

86-0 
Sour milk 
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Pentane-2,3-dione C5H8O2 100.12 650-681 43 
600-

14-6 

Pungent, 

sweet, 

butter 

Heptan-2-one C7H14O 114.19 846.9-880 114 
110-

43-0 

Fruity, 

green 

banana 

1-phenylethanone  C8H8O 120.15 1039-1068 105 
98-86-

2 

Sweet, 

pungent, 

hawthorn 

Nonan-2-one C9H18O 142.24 1066-1093 58 
821-

55-6 

Fresh, 

sweet, 

green 

Terpens 

2,2-dimethyl-3-

methylidenebicyclo[2.2.1]heptane

  

C10H16 136.23 941-980 93 
79-92-

5 

Woody, 

herbal, fir, 

needle 

3,7,7-trimethylbicyclo[4.1.0]hept-

3-ene  
C10H16 136.23 N.D. 93.1 

13466

-78-9 

Citrus, 

terpenic, 

herbal 

1-methyl-4-propan-2-ylbenzene  C10H14  134.22 1011-1037.54 119.2 
99-87-

6 

Fresh, 

citrus, 

terpene 

(4R)-1-methyl-4-prop-1-en-2-

ylcyclohexene  
C10H16 136.23 N.D. 68 

5989-

27-5 

Citrus, 

orange, 

fresh, 

sweet 

Others 

Cyclopentane C5H10 70.13 553.7-687 42.1 
287-

92-3 
Petroleum 

Toluene C7H8 92.14 755-770 91 
108-

88-3 
Sweet 

1,4-xylene C8H10 106.16 847-882 91 
106-

42-3 
NA 

MW: molecular weight, RT: retention time. * odor descriptor associated with the compounds according to Thegoodscentscompany database 

(http://www.thegoodscentscompany.com).  
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Table S2. Tested factors reporting groups levels and sample population 

for the tested volatile organic compounds, bacterial and viral 

communities. 

Variable Levels 
Sample 

population 
Variable Levels 

Sample 

population 

Origin 

Producer 1 21 

Salt (g/100 

g) 

1.30 to 1.53 

g 
21 

Producer 2 25 
1.54 to 1.90 

g 
26 

Producer 3 27 
1.91 to 2.10 

g 
33 

Producer 4 24 
2.11 to 2.45 

g 
32 

Producer 5 27 
2.46 to 3.06 

g 
12 

pH 

5.30 to 5.45 32 

Water 

activity 

0.914 to 

0.930 
18 

5.46 to 5.60 57 
0.931 to 

0.948 
30 

5.61 to 5.81 23 
0.949 to 

0.960 
39 

5.81 to 6.00 12 
0.961 to 

0.969 
37 

Season 

Cold 

period 
65 

Salting 

metod  

Brine  103 

Hot period 59 
Salt 

washing 
21 

Sampling year 

2020 65 

Starter 

Lyofized  97 

2021 59 

Natural 

milk 

culture 

27 

Cooking 

temperature 

43°C 27 

Ripening 

days 

44 to 54 

days 
53 

44°C 45 
55 to 72 

days 
56 

45°C 52 
73 to 91 

days  
15 
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Table S3. Pairwise PERMANOVA test on microbial beta diversity of typical 

mountain Caciotta cheese based on cheese origin.  

m.o. 

Distanc

e 

method 

Group 1 Group 2 
Sampl

e size 

Permutation

s 

Pseud

o F 

ratio 

p-

valu

e 

Bacteri

a 

Bray-

Curtis 

Producer_1

  

Producer_

2 
46 999 1.86 0.238 

Producer_1

  

Producer_

3 
48 999 1.77 0.216 

Producer_1

  

Producer_

4 
45 999 53.01 0.001 

Producer_1

  

Producer_

5 
48 999 25.96 0.001 

Producer_2

  

Producer_

3 
49 999 33.23 0.001 

Producer_2

  

Producer_

4 
49 999 33.23 0.001 

Producer_2

  

Producer_

5 
52 999 19.47 0.001 

Producer_3

  

Producer_

4 
51 999 64.58 0.001 

Producer_3

  

Producer_

5 
51 999 64.58 0.001 

Producer_4

  

Producer_

5 
51 999 0.28 0.603 

Jaccard 

Producer_1

  

Producer_

2 
46 999 2.11 0.107 

Producer_1

  

Producer_

3 
48 999 1.88 0.118 

Producer_1

  

Producer_

4 
45 999 39.06 0.001 

Producer_1

  

Producer_

5 
48 999 24.30 0.001 

Producer_2

  

Producer_

3 
49 999 26.27 0.001 

Producer_2

  

Producer_

4 
49 999 26.27 0.001 

Producer_2

  

Producer_

5 
52 999 17.66 0.001 

Producer_3

  

Producer_

4 
51 999 44.79 0.001 

Producer_3

  

Producer_

5 
51 999 44.79 0.001 

Producer_4

  

Producer_

5 
51 999 2.44 0.107 
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Virus 

Bray-

Curtis 

Producer_1

  

Producer_

2 
46 999 25.55 0.001 

Producer_1

  

Producer_

3 
48 999 20.74 0.001 

Producer_1

  

Producer_

4 
45 999 21.48 0.001 

Producer_1

  

Producer_

5 
48 999 37.98 0.001 

Producer_2

  

Producer_

3 
49 999 19.29 0.001 

Producer_2

  

Producer_

4 
49 999 19.29 0.001 

Producer_2

  

Producer_

5 
52 999 3.97 0.016 

Producer_3

  

Producer_

4 
51 999 66.86 0.001 

Producer_3

  

Producer_

5 
51 999 66.86 0.001 

Producer_4

  

Producer_

5 
51 999 13.52 0.001 

Jaccard 

Producer_1

  

Producer_

2 
46 999 19.34 0.001 

Producer_1

  

Producer_

3 
48 999 14.66 0.001 

Producer_1

  

Producer_

4 
45 999 11.84 0.001 

Producer_1

  

Producer_

5 
48 999 28.64 0.001 

Producer_2

  

Producer_

3 
49 999 25.52 0.001 

Producer_2

  

Producer_

4 
49 999 25.52 0.001 

Producer_2

  

Producer_

5 
52 999 4.15 0.010 

Producer_3

  

Producer_

4 
51 999 48.74 0.001 

Producer_3

  

Producer_

5 
51 999 48.74 0.001 

Producer_4

  

Producer_

5 
51 999 18.16 0.001 
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Table S4. Pairwise PERMANOVA test on microbial beta diversity of 

typical mountain Caciotta cheese based on curd cooking temperature. 

m.o. 

Distanc

e 

method 

Group 

1 

Group 

2 

Sampl

e size 

Permutation

s 

Pseudo 

F ratio 

p-

value 

Bacteri

a 

Bray-

Curtis 

43°C 44°C 72 999 15.96 0.003 

43°C 45°C 79 999 12.64 0.003 

44°C 45°C 97 999 0.40 0.536 

Jaccard 

43°C 44°C 72 999 12.82 0.002 

43°C 45°C 79 999 11.73 0.002 

44°C 45°C 97 999 1.64 0.189 

Virus 

Bray-

Curtis 

43°C 44°C 72 999 18.67 0.002 

43°C 45°C 79 999 25.53 0.002 

44°C 45°C 97 999 6.09 0.009 

Jaccard 

43°C 44°C 72 999 15.93 0.001 

43°C 45°C 79 999 19.85 0.001 

44°C 45°C 97 999 9.04 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87



 
 

 

Table S5. Kruskal–Wallis test of bacterial species relative abundance (%) 

based on typical mountain Caciotta cheese origin. 

Species 
Producer 

1 

Producer 

2 

Producer 

3 

Producer 

4 

Produce

r 5 

p-

value 

Streptococcus 

thermophilus 
95.04 90.71 91.76 48.81 47.68 <0.001 

Lactobacillus 

delbrueckii 
0.15 6.14 0.08 45.46 47.78 <0.001 

Leuconostoc 

mesenteroides 
0.53 1.85 0.43 0.35 0.07 0.158 

Hafnia paralvei 0.04 0.33 0.002 0.45 0.04 0.102 

Loigolactobacillus 

coryniformis 
0 0.25 0.03 0 0.02 <0.001 

Acinetobacter 

johnsonii 
0.01 0.12 0.10 0 0.31 <0.001 

Lactococcus 

raffinolactis 
0.01 0.08 0 0 1.37 <0.001 

Lactiplantibacillus 

plantarum 
0.16 0.05 0.39 0.09 0.18 0.078 

Lactococcus lactis 1.47 0.05 2.77 0.22 0.21 0.029 

Latilactobacillus 

curvatus 
0 0.05 0.06 0.01 0.01 0.050 

Lentilactobacillus 

parabuchneri 
0.50 0.04 0.91 0.42 0.33 <0.001 

Leuconostoc 

pseudomesenteroides 
1.56 0.04 2.26 0.25 0.04 0.010 

Enterococcus gilvus 0.01 0.03 0.08 0 0 0.002 

Streptococcus 

parauberis 
0 0.03 0 0 0.01 <0.001 

Lactobacillus sakei 0 0.01 0.02 0 0 <0.001 

Lactococcus piscium 0 0.01 0 0 0 0.013 

Citrobacter braakii 0 0.01 0.01 0.00 0.00 0.112 

Escherichia coli 0 0.01 0 0 0.02 <0.001 

Moraxella osloensis 0 0.004 0 0 0 0.004 

Lactobacillus brevis 0.002 0.005 0.02 0.11 0.01 0.048 

Raoultella terrigena 0 0.002 0.36 0 0 <0.001 

Enterobacter cloacae 

complex 
0 0.002 0.14 0 0.00002 <0.001 

Enhydrobacter 

aerosaccus 
0 0.001 0 0 0 0.124 

Pediococcus 

pentosaceus 
0.07 0.00 0.00 0.07 0.00 <0.001 

Brevibacterium 

aurantiacum 
0 0.0005 0 0 0.0001 0.591 

Brevibacterium 

linens 
0.0008 0.0004 0 0 0.00001 0.309 

Enterococcus italicus 0 0.00005 0 0.0004 0 <0.001 

Bifidobacterium 

mongoliense 
0.18 0 0.05 0.96 0.17 <0.001 
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Propionibacterium 

freudenreichii 
0.14 0 0 0.85 0 0.017 

Leuconostoc citreum 0.11 0 0.01 0 0.02 <0.001 

Lentilactobacillus 

parafarraginis 
0.01 0 0 0 0.02 <0.001 

Enterococcus durans 0.01 0 0 0 0.002 0.092 

Lentilactobacillus 

buchneri 
0.01 0 0 0 0 <0.001 

Schleiferilactobacillu

s harbinensis 
0.005 0 0.01 0.04 0.03 0.124 

Lacticaseibacillus 

rhamnosus 
0.0003 0 0 0 0.02 0.027 

Acinetobacter 

ursingii 
0 0 0.01 0 0 0.027 

Chryseobacterium 

carnipullorum 
0 0 0 0 0.01 0.124 

Chryseobacterium 

jejuense 
0 0 0 0 0.00 0.027 

Enterococcus faecalis 0 0 0 0.003 0.01 0.011 

Enterococcus 

malodoratus 
0 0 0.01 0.01 0 0.223 

Hafnia alvei 0 0 0.06 0.004 0 0.003 

Klebsiella 

michiganensis 
0 0 0.01 0 0 <0.001 

Lactiplantibacillus 

paraplantarum 
0 0 0 0.001 0 <0.001 

Lactobacillus 

helveticus 
0 0 0 1.89 1.15 <0.001 

Lactobacillus 

kefiranofaciens 
0 0 0 0 0.05 <0.001 

Lactococcus petauri 0 0 0 0.01 0 <0.001 

Lentilactobacillus 

diolivorans 
0 0 0 0 0.04 <0.001 

Loigolactobacillus 

bifermentans 
0 0 0 0 0.01 <0.001 

Macrococcus 

caseolyticus 
0 0 0 0.0002 0.01 0.027 

Pseudomonas 

fluorescens group 
0 0 0 0 0.002 <0.001 

Pseudomonas simiae 0 0 0 0 0.02 <0.001 

Raoultella 

ornithinolytica 
0 0 0.06 0 0 0.027 

Rothia sp 0 0 0 0 0.001 <0.001 

Staphylococcus 

aureus 
0 0 0 0 0.01 <0.001 

Streptococcus 

agalactiae 
0 0 0 0 0.02 0.027 

Streptococcus 

lutetiensis 
0 0 0 0 0.18 <0.001 
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Table S6. Kruskal–Wallis test of viral species relative abundance (%) based on 

typical mountain Caciotta cheese origin. 
Species Producer 1 Producer 2 Producer 3 Producer 4 Producer 5 p-value 

Streptococcus virus 

DT1 
0.01 35.46 0.97 19.54 31.22 <0.001 

Streptococcus 

phage TP 778L 
56.37 23.05 0.09 0.04 0.80 <0.001 

Streptococcus virus 

phiAbc2 
0 21.79 1.37 42.10 20.63 <0.001 

Lactobacillus phage 

A2 
11.59 5.34 10.57 0.23 2.86 <0.001 

Lactobacillus phage 

J1 
4.37 3.77 6.79 0.01 0.41 <0.001 

Streptococcus virus 

7201 
0.02 3.22 1.12 22.07 10.27 <0.001 

Streptococcus virus 

Sfi21 
0 3.03 0.80 15.56 6.13 <0.001 

Lactococcus phage 

bIL285 
0.70 1.11 2.07 0.01 0.57 <0.001 

Lactococcus phage 

bIL312 
3.48 0.61 6.89 0.16 1.92 <0.001 

Lactobacillus phage 

Sha1 
0.34 0.57 0.25 0.02 2.95 <0.001 

Lactobacillus phage 

Lrm1 
3.99 0.54 8.54 0.13 2.75 <0.001 

Salmonella phage 

Fels1 
0 0.50 0 0 0.0002 0.591 

Lactococcus phage 

bIL286 
2.87 0.13 2.16 0.02 0.75 <0.001 

Escherichia phage 

HK639 
0 0.11 6.46 0.0002 0.03 0.002 

Lactococcus phage 

bIL311 
0.56 0.11 4.44 0.002 1.92 <0.001 

Lactococcus phage 

bIL309 
1.52 0.09 3.61 0.01 0.83 <0.001 

Enterobacteria 

phage HK225 
0 0.08 0.20 0 0 0.004 

Lactococcus phage 

BM13 
0.02 0.06 0.38 0.01 0.76 <0.001 

Streptococcus 

phage TP J34 
0 0.05 0 0 0 <0.001 

Lactococcus phage 

bIL310 
4.40 0.05 11.43 0.04 3.46 <0.001 

Enterobacteria 

phage P4 
0 0.05 0.15 0 0.00004 0.010 

Enterococcus phage 

phiEf11 
0 0.05 0 0.0008 0 0.180 

Enterobacteria 

phage mEp237 
0 0.04 0.50 0 0.0004 0.005 

Lactococcus phage 

phiLC3 
1.33 0.04 2.68 0.002 2.13 <0.001 
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Lactococcus phage 

ul36 
0.59 0.03 1.74 0.02 0.42 0.001 

Salmonella phage 

SSU5 
0 0.025 0.16 0 0.17 0.003 

Lactococcus phage 

P335 sensu lato 
0.45 0.02 3.67 0.01 0.39 <0.001 

Lactococcus phage 

r1t 
0.25 0.01 1.34 0.002 0.24 <0.001 

Lactococcus phage 

TP901 1 
1.12 0.007 1.04 0.0004 0.98 <0.001 

Lactococcus phage 

BK5 T 
1.11 0.01 2.06 0.01 0.97 <0.001 

Enterobacterial 

phage mEp390 
0 0.005 0 0 0 0.017 

Lactococcus phage 

Tuc2009 
0.74 0.002 0.98 0.0003 0.14 <0.001 

Escherichia virus 

P2 
0 0.0009 0 0 0 0.092 

Enterobacteria 

phage mEp460 
0 0.00 0.03 0 0.01 0.517 

Lactococcus phage 

1706 
0 0.0004 0 0.001 0.19 0.239 

Stx2 converting 

phage 1717 
0 0.0003 0.15 0 0.01 0.783 

Salmonella virus 

Epsilon15 
0 0.0003 0.03 0 0.001 0.046 

Enterobacteria 

phage mEp235 
0 0.0003 2.36 0 0.11 0.004 

Escherichia virus 

P1 
0 0.0002 0 0 0.03 0.114 

Escherichia phage 

D108 
0 0 0.02 0 0.04 0.316 

Acinetobacter virus 

133 
0 0 0 0 0.20 0.124 

Enterobacteria 

phage phiP27 
0 0 0 0 0.02 <0.001 

Lactobacillus 

prophage Lj771 
0 0 0 0 0.15 0.027 

Salmonella virus 

PsP3 
0 0 0.12 0 0 0.005 

Lactococcus virus 

bIL67 
0.0009 0 7.71 0 0.003 <0.001 

Streptococcus virus 

SPQS1 
0 0 0 0 0.01 <0.001 

Mycobacterium 

virus Papyrus 
0 0 0 0.001 0 <0.001 

Streptococcus virus 

O1205 
0 0 0.003 0 0 0.124 

Enterobacteria 

phage ES18 
0 0 0.01 0 0.01 0.256 

Lactobacillus phage 

LF1 
0 0 0 0 0.32 <0.001 
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Lactobacillus phage 

LcNu 
4.03 0 5.29 0.0002 1.75 <0.001 

Lactobacillus phage 

phiGb1 
0 0 0.06 0 0 0.124 

Lactobacillus phage 

phig1e 
0.09 0 0.01 0 3.16 <0.001 

Lactobacillus 

prophage Lj928 
0 0 0 0 0.15 0.005 

Microbacterium 

phage Min1 
0.01 0 0 0.0004 0 0.056 

Streptococcus 

phage SMP 
0 0 0 0.003 0 <0.001 

Lactococcus phage 

340 
0.03 0 0 0 0.02 <0.001 

Musca hytrovirus 0 0 0 0 0.05 0.124 
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Table S7. Kruskal–Wallis test of investigated volatile organic compound relative 

abundance (%) based on typical mountain Caciotta cheese origin. 
Volatile organic 

compound 
Producer_1 Producer_2 Producer_3 Producer_4 Producer_5 

p-

value 

Acetic acid 17.82 8.85 12.74 18.46 14.37 <0.001 

Ethanol 11.51 9.62 7.63 5.32 3.96 <0.001 

Cyclopentane 8.23 4.70 6.50 4.22 3.53 0.015 

Ethyl acetate 7.76 1.52 6.04 3.25 6.76 <0.001 

Butanoic acid 7.71 2.15 3.52 4.06 5.66 <0.001 

Ethyl butanoate 7.14 2.22 1.95 4.07 3.11 <0.001 

Toluene 4.08 3.04 2.60 1.59 0.94 <0.001 

Butane-2,3-dione  3.96 3.70 4.47 3.85 0.86 0.028 

Pentan-2-ol 3.88 3.02 0.98 2.48 0.77 0.004 

Ethyl hexanoate 3.55 8.18 1.46 2.18 2.35 <0.001 

3-Hydroxybutan-2-

one 
3.31 6.16 12.83 9.18 3.14 0.196 

Xylene 3.19 2.86 2.18 1.79 0.97 <0.001 

Butan-2-one 2.96 0.57 1.88 16.13 16.92 <0.001 

3-methyl-butan-1-ol 2.95 20.15 11.49 3.56 4.31 <0.001 

1-

acetophenyletanone 
1.58 0.85 1.28 1.06 0.54 0.083 

Hexanoic acid 1.15 0.44 0.94 0.89 1.42 <0.001 

Butan-2-ol 1.14 1.70 10.35 7.99 23.78 <0.001 

Butan-1-ol 0.91 0.14 0.16 0.87 0.23 <0.001 

2-Methyl-propan1-ol 0.78 5.51 3.06 0.36 0.31 <0.001 

Propan-1-ol 0.72 0.42 0.64 1.42 3.44 <0.001 

Propionic acid 0.71 0.20 0.31 2.32 0.25 <0.001 

Benzaldehyde 0.58 0.48 0.40 0.37 0.17 <0.001 

Octanoic acid ethyl 

ester 
0.53 0.09 0.20 0.37 0.36 <0.001 

Heptan-2-one 0.49 2.09 0.27 0.49 0.27 0.019 

2-methylbutan-1-ol 0.45 1.70 1.49 0.72 0.33 <0.001 

Heptan-2-ol 0.42 1.24 0.21 0.27 0.22 0.001 

Hexan-1-ol 0.40 0.23 0.12 0.11 0.09 <0.001 

p-cymene 0.37 0.05 0.01 0 0 <0.001 

Nonanal 0.31 0.19 0.19 0.13 0.09 <0.001 

Butane-2,3-diol 0.30 1.56 1.03 0.12 0.04 <0.001 

Acetone 0.26 0.06 0.96 1.21 0 <0.001 

D-limonene 0.20 0.20 0.14 0.08 0.04 <0.001 

Octanoic acid 0.15 0.11 0.27 0.09 0.14 0.001 

3-Methylbutanal 0.15 0.37 0.22 0.11 0.06 <0.001 

Nonan-2-one 0.12 1.34 0.11 0.04 0.04 <0.001 

3-Methylbutyl 

acetate 
0.08 0.10 0.05 0.48 0.21 <0.001 

Camphene 0.07 0.09 0.05 0.02 0.01 <0.001 

Octan-1-ol 0.05 0.05 0.03 0.03 0.02 <0.001 

Nonal-1-ol 0.03 0.04 0.01 0.03 0.04 <0.001 

Octanal 0.01 0 0.01 0.01 0.01 <0.001 

Nonan-2-ol 0.01 0.01 0.01 0.01 0.01 <0.001 

3-carene 0.01 0.01 0 0 0.02 0.021 

2-Phenylethanol 0 3.79 1.21 0.26 0.21 <0.001 

93



 
 

3-Methylbutyl 

hexanoate 
0 0.20 0.002 0 0 <0.001 

 

 

 

 

 

 

Table S8. PERMANOVA of Caciotta cheese 

volatile organic compounds.  

Variable 
Pseudo F-

ratio 
p-value 

Origin 13.43 0.001 

pH 7.08 0.001 

Season 7.06 0.001 

Salt 6.87 0.001 

Water activity 6.23 0.001 

Salting 5.69 0.002 

Ripening days 3.97 0.001 

Year 3.27 0.011 

Cooking temperature 2.59 0.025 

Starter 2.57 0.017 
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Table S9. Pairwise PERMANOVA test on volatile organic 

compounds of typical mountain Caciotta cheese based on origin 

factor. 

Distance 

method 
Group 1 Group 2 

Sampl

e size 

Permutation

s 

Pseud

o F-

ratio 

p-

valu

e 

Euclidea

n 

Producer_1

  

Producer_

2 
46 999 5.98 0.002 

Producer_1

  

Producer_

3 
48 999 5.41 0.001 

Producer_1

  

Producer_

4 
45 999 23.06 0.001 

Producer_1

  

Producer_

5 
48 999 15.13 0.001 

Producer_2

  

Producer_

3 
49 999 24.24 0.001 

Producer_2

  

Producer_

4 
49 999 24.24 0.001 

Producer_2

  

Producer_

5 
52 999 21.08 0.001 

Producer_3

  

Producer_

4 
51 999 19.15 0.001 

Producer_3

  

Producer_

5 
51 999 19.15 0.001 

Producer_4

  

Producer_

5 
51 999 19.15 0.001 
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Table S10. Selection of enzyme commision number for focused functional analysis.  

Metabolism Enzyme type 

Enzyme 

commisio

n number 

(EC) Reference 

Proteases and 

amminopeptidase 

Cell-wall bound proteinase 3.4.21.96 

Liu et al., 2010; Coll-Marqués et 

al., 2020 

Serine Proteinases 3.4.21.- Kieliszek et al., 2021 

Cysteine Proteinases 3.4.22.- Kieliszek et al., 2021 

Aspartyl proteinases 3.4.23.- Kieliszek et al., 2021 

Metalloproteinases 3.4.24.- Kieliszek et al., 2021 

Threonine peptidase 3.4.25.- Kieliszek et al., 2021 

Aminopeptidase 3.4.11.2 

Liu et al., 2010; Broadbent et al., 

2011; Stressler et al., 2013 

Unique aminopeptidases 3.4.11.18 

Liu et al., 2010; Broadbent et al., 

2011 

Unique aminopeptidases 
3.4.11.7 

Liu et al., 2010; Broadbent et al., 

2011 

Unique aminopeptidases 3.4.19.3 

Liu et al., 2010; Broadbent et al., 

2011 

endopeptidase 3.4.24.- 

Liu et al., 2010; Broadbent et al., 

2011 

dipeptidase 3.4.13.– 

Liu et al., 2010; Broadbent et al., 

2011 

tripeptidase 3.4.11.4 

Liu et al., 2010; Broadbent et al., 

2011 

Proline peptidase 
3.4.14.11 

Liu et al., 2010; Broadbent et al., 

2011; Stressler et al., 2013 

Proline peptidase 3.4.11.5 

Liu et al., 2010; Broadbent et al., 

2011 

Proline peptidase 3.4.11.5 

Liu et al., 2010; Broadbent et al., 

2011 

Proline peptidase 3.4.11.5 

Liu et al., 2010; Broadbent et al., 

2011 

Proline peptidase 3.4.11.9 

Liu et al., 2010; Broadbent et al., 

2011 

Proline peptidase 3.4.11.9 

Liu et al., 2010; Broadbent et al., 

2011 

Generic aminoacid degradation 

Branched-chain 

aminotransferase 2.6.1.42 Liu et al., 2008 

Aromatic aminotransferase 2.6.1.57 Liu et al., 2010 

Aspartate aminotransferase 2.6.1.1 Guillot et al., 2003 

Glutamate dehydrogenase 1.4.1.2 Liu et al., 2010 

Keto acid decarboxylase 2.3.1.16 Liu et al., 2010 

Alcohol dehydrogenase 1.1.1.1 Guillot et al., 2003 

Aldehyde dehydrogenase 1.1.1.169  Liu et al., 2010 

Keto acid dehydrogenase 

complex 1.8.1.4 Guillot et al., 2003 

Keto acid dehydrogenase 

complex 1.2.4.4 Fernandez and Zuniga, 2006 
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Keto acid dehydrogenase 

complex 2.3.1.- Guillot et al., 2003 

Branched Chain 

phosphotransacylase 2.3.1.19 Christiansen et al., 2008 

Acylkinase 2.7.2.- Guillot et al., 2003 

D-hydroxyacid dehydrogenase 1.1.1.- Hossain et al., 2022 

L-hydroxyacid dehydrogenase 1.1.1.- Hossain et al., 2022 

Esterase A 3.1.1.1 Liu et al., 2010 

Cysteine and methionine 

degradation 

Serine acteyltranferase 2.3.1.30 Liu et al., 2008 

O-acetylserine sulfhydrolase 2.5.1.47 Christiansen et al., 2008 

Cystathionine beta lyase 4.4.1.8 den Besten et al., 2010 

Cystathionine Gamma lyase 4.4.1.1 Dobric et al., 1988 

Cystathionine beta synthase 4.2.1.22 Matoba et al., 2020 

Cystathionine gamma synthase 2.5.1.48 Benavides et al., 2016 

Homocysteine S-

methyltransferase 2.1.1.10 Jang et al., 2017 

Homocysteine 

methyltransferase 2.1.1.14 Christiansen et al., 2008 

Homoserine O-

succinyltransferase 2.3.1.46 Christiansen et al., 2008 

O-acetylhomoserine 

sulfhydrolase 2.5.1.49 Liu et al., 2012 

Citrate fermentation 

Citrate lyase 4.1.3.6 Guillot et al., 2003 

Acetolactate decarboxylase 4.1.1.5 Hossain et al., 2022 

Acetolactate synthase 2.2.1.6 Hossain et al., 2022 

Oxaloacetate decarboxylase 4.1.1.112 Kim et al., 2020 

Lipids metabolism 
Triglycerides esterase 3.1.1.2 Holland et al., 2005 

Glycerol ester hydrolases 3.1.1.3 Medina et al., 2004 

 

Table S11. Kruskal–Wallis test of investigated genes abundance (expressed as logarithm of reads assigned per 

kilobase) of typical mountain Caciotta cheese origin. Only significantly different genes are reported. 

Gene Function 

Metabolis

m 

Associated 

m.o.  

Produc

er 1 

Produc

er 2 

Produc

er 3 

Produc

er 4 

Produc

er 5 

p-

values 

1.1.1.1 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,57 -1,6 -1,62 -1,75 -1,81 <0.001 

1.1.1.1 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,57 -1,60 -1,62 -1,75 -1,81 <0.001 

1.1.1.1 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,60 -1,52 -1,66 -1,94 -2,02 <0.001 

1.1.1.1 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,60 -1,52 -1,66 -1,94 -2,02 <0.001 

1.1.1.1 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -4,59 -3,86 -5,91 -3,59 -4,74 0,001 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,06 -2,46 -4,62 -1,61 -1,54 <0.001 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,81 -1,72 -1,80 -1,92 -2,07 <0.001 
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1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,81 -1,72 -1,80 -1,92 -2,07 <0.001 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,70 -2,42 -2,77 -2,45 <0.001 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,70 -2,42 -2,77 -2,45 <0.001 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,15 0,00 -4,63 -3,42 -4,04 <0.001 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

helveticus 0,00 0,00 0,00 -2,81 -3,02 <0.001 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,09 -4,50 -3,05 -4,10 -3,94 0,003 

1.1.1.10

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,18 -4,99 -3,14 -4,21 -4,46 <0.001 

1.1.1.13

0 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -5,00 -4,09 -5,53 -3,80 -4,96 

0,0022

04 

1.1.1.13

3 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,33 -2,38 -2,18 -2,23 -2,48 <0.001 

1.1.1.13

3 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,33 -2,38 -2,18 -2,23 -2,48 <0.001 

1.1.1.13

3 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,89 -1,91 -2,00 -2,35 -2,20 <0.001 

1.1.1.13

3 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,89 -1,91 -2,00 -2,35 -2,20 <0.001 

1.1.1.13

3 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,44 -5,26 -3,47 -4,52 -3,05 0,003 

1.1.1.13

3 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,31 -5,44 -3,30 -4,35 -4,90 

0,0027

04 

1.1.1.16

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,72 -1,56 -1,67 -1,80 -1,78 <0.001 

1.1.1.16

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,72 -1,56 -1,67 -1,80 -1,78 <0.001 

1.1.1.16

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,75 -2,07 -1,88 -2,11 -2,30 <0.001 

1.1.1.16

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,75 -2,07 -1,88 -2,11 -2,30 <0.001 

1.1.1.16

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,47 0,00 -5,02 -3,65 -4,41 <0.001 

1.1.1.16

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,55 -4,52 -2,97 0,00 -4,69 <0.001 

1.1.1.16

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,29 -4,29 -3,12 -4,06 -4,76 <0.001 
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1.1.1.17 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii 0,00 -3,28 -5,70 -2,41 -2,29 <0.001 

1.1.1.17 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,38 -4,87 -3,16 -4,29 -4,14 <0.001 

1.1.1.17

9 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,60 0,00 -4,92 -3,70 -4,48 <0.001 

1.1.1.18

8 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,48 0,00 -4,79 -3,81 -4,46 <0.001 

1.1.1.19

3 
Alcohol 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,51 -5,41 -3,57 -4,51 -4,48 0,004 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,11 -2,12 -2,23 -2,21 -2,37 <0.001 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,11 -2,12 -2,23 -2,21 -2,37 <0.001 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,94 -1,91 -2,20 -2,18 <0.001 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,94 -1,91 -2,20 -2,18 <0.001 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,17 -3,20 -5,40 -2,48 -2,47 <0.001 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,17 0,00 -4,66 -3,47 -4,17 <0.001 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,30 -4,84 -3,16 -4,12 -4,21 <0.001 

1.1.1.20

5 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,67 -5,45 -3,44 -4,47 -4,87 <0.001 

1.1.1.21

8 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,88 -1,86 -2,05 -2,35 -2,27 <0.001 

1.1.1.21

8 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,88 -1,86 -2,05 -2,35 -2,27 <0.001 

1.1.1.21

8 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,30 -2,47 -2,14 -2,27 -2,37 <0.001 

1.1.1.21

8 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,30 -2,47 -2,14 -2,27 -2,37 <0.001 

1.1.1.21

8 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,64 -2,84 -4,99 -2,04 -1,89 <0.001 

1.1.1.22 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,07 -2,07 -2,62 -2,03 -2,53 <0.001 

1.1.1.22 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,42 -5,53 -3,16 -3,59 -2,71 <0.001 

1.1.1.23 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,51 0,00 -4,87 -3,69 -4,43 <0.001 
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1.1.1.23 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,39 -4,89 -3,23 -4,56 -4,59 <0.001 

1.1.1.23 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,60 0,00 -3,54 -4,76 -5,81 <0.001 

1.1.1.23 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,80 -1,82 -1,86 -2,08 -2,20 <0.001 

1.1.1.25 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,47 -4,96 -3,20 -4,44 -4,30 <0.001 

1.1.1.25 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,58 -4,44 -3,42 -4,33 -4,89 <0.001 

1.1.1.25 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,57 -2,27 -2,40 -2,10 -2,60 <0.001 

1.1.1.25 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,57 -2,27 -2,40 -2,10 -2,60 <0.001 

1.1.1.25 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,85 -1,93 -1,91 -2,81 -2,15 <0.001 

1.1.1.25 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,85 -1,93 -1,91 -2,81 -2,15 <0.001 

1.1.1.26 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,49 0,00 -5,16 -3,65 -4,66 <0.001 

1.1.1.27 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,60 -2,79 -4,68 -2,02 -1,88 <0.001 

1.1.1.27 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -2,91 -4,45 -2,60 -3,68 -3,64 <0.001 

1.1.1.27 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,51 -5,14 -3,41 -4,36 -4,96 <0.001 

1.1.1.27 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,60 -2,49 -2,51 -2,68 -2,73 <0.001 

1.1.1.27 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,60 -2,49 -2,51 -2,68 -2,73 <0.001 

1.1.1.27 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,79 -1,84 -1,86 -2,05 -2,09 <0.001 

1.1.1.27 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,79 -1,84 -1,86 -2,05 -2,09 <0.001 

1.1.1.27

4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,68 -2,92 -4,73 -2,14 -2,02 <0.001 

1.1.1.27

4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,71 -4,44 -2,69 -3,96 -4,69 <0.001 

1.1.1.27

6 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,27 0,00 -4,93 -3,50 -4,37 <0.001 

1.1.1.27

6 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,14 -1,84 -2,50 -5,13 -2,59 <0.001 
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1.1.1.28 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,08 -2,31 -4,36 -1,49 -1,41 <0.001 

1.1.1.28 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,12 -4,87 -2,88 -4,04 -4,72 <0.001 

1.1.1.29

0 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,58 -3,74 -6,20 -2,91 -2,89 <0.001 

1.1.1.29

0 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,94 -1,95 -1,94 -2,11 -2,16 <0.001 

1.1.1.29

0 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,94 -1,95 -1,94 -2,11 -2,16 <0.001 

1.1.1.29

0 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,31 -2,34 -2,60 -2,55 <0.001 

1.1.1.29

0 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,31 -2,34 -2,60 -2,55 <0.001 

1.1.1.29

2 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,53 -1,58 -1,57 -1,82 -1,82 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,35 0,00 -4,90 -3,64 -4,38 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -5,16 -4,02 -5,53 -3,70 -4,88 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,82 -3,08 -5,10 -2,17 -2,10 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,70 -5,47 -3,50 -4,97 -5,13 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,15 -2,15 -2,18 -2,35 -2,41 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,15 -2,15 -2,18 -2,35 -2,41 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,88 -1,90 -1,91 -2,10 -2,14 <0.001 

1.1.1.3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,88 -1,90 -1,91 -2,10 -2,14 <0.001 

1.1.1.31 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,66 -4,77 -3,22 -4,20 -4,36 <0.001 

1.1.1.31

7 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,00 0,00 -4,37 -3,19 -3,94 <0.001 

1.1.1.32

9 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,55 -4,81 -3,43 -4,54 -5,28 <0.001 

1.1.1.34

6 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,34 0,00 -4,89 -3,64 -4,30 <0.001 

1.1.1.36 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,40 -5,08 -3,35 -4,48 -4,63 <0.001 
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1.1.1.36 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,81 -1,72 -1,80 -1,92 -2,07 <0.001 

1.1.1.36 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,81 -1,72 -1,80 -1,92 -2,07 <0.001 

1.1.1.36 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,70 -2,42 -2,77 -2,45 <0.001 

1.1.1.36 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,70 -2,42 -2,77 -2,45 <0.001 

1.1.1.36

3 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,55 -4,93 -3,35 -4,30 -5,32 <0.001 

1.1.1.37 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,05 -4,66 -3,08 -4,25 -4,20 <0.001 

1.1.1.4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,43 0,00 -5,01 -3,73 -4,42 <0.001 

1.1.1.4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,21 -4,83 -2,96 -4,01 -4,15 <0.001 

1.1.1.4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,72 -1,68 -1,66 -2,28 -1,99 <0.001 

1.1.1.4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,72 -1,68 -1,66 -2,28 -1,99 <0.001 

1.1.1.4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,97 -2,04 -2,24 -1,95 -2,28 <0.001 

1.1.1.4 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,97 -2,04 -2,24 -1,95 -2,28 <0.001 

1.1.1.42 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,32 -2,36 -2,37 -2,54 -2,63 <0.001 

1.1.1.42 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,32 -2,36 -2,37 -2,54 -2,63 <0.001 

1.1.1.42 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,23 -2,15 -2,11 -2,35 -2,98 <0.001 

1.1.1.42 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,23 -2,15 -2,11 -2,35 -2,98 <0.001 

1.1.1.44 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -3,92 0,00 -4,58 -3,13 -3,87 <0.001 

1.1.1.44 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,63 -2,84 -4,85 -2,06 -1,93 <0.001 

1.1.1.44 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,29 -4,77 -3,10 -4,02 -4,06 <0.001 

1.1.1.44 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,55 0,00 -3,35 -4,41 -5,57 <0.001 

1.1.1.47 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,02 -3,98 -2,91 -3,64 -4,38 <0.001 

102



 
 

1.1.1.49 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,28 0,00 -5,00 -3,54 -4,36 <0.001 

1.1.1.49 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,67 -2,90 -5,17 -2,09 -2,02 <0.001 

1.1.1.49 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,10 -4,84 -3,30 -4,40 -4,47 <0.001 

1.1.1.60 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,58 -4,96 -3,33 -4,39 -4,74 <0.001 

1.1.1.76 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,83 -3,60 0,00 -2,42 -2,53 <0.001 

1.1.1.77 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -4,91 -3,99 -5,61 -3,68 -4,78 <0.001 

1.1.1.85 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,05 -5,72 -3,58 -4,83 -4,71 <0.001 

1.1.1.85 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,64 -5,07 -3,51 -4,54 -5,20 <0.001 

1.1.1.85 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,99 -1,83 -1,87 -2,09 -2,14 <0.001 

1.1.1.85 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,99 -1,83 -1,87 -2,09 -2,14 <0.001 

1.1.1.85 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,15 -2,55 -2,56 -2,77 -2,72 <0.001 

1.1.1.85 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,15 -2,55 -2,56 -2,77 -2,72 <0.001 

1.1.1.86 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,34 0,00 -4,98 -3,60 -4,31 <0.001 

1.1.1.86 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,25 -4,85 -3,06 -4,28 -4,16 <0.001 

1.1.1.86 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,03 -2,04 -2,23 -2,27 <0.001 

1.1.1.86 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,03 -2,04 -2,23 -2,27 <0.001 

1.1.1.86 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,03 -2,05 -2,23 -2,27 <0.001 

1.1.1.86 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,03 -2,05 -2,23 -2,27 <0.001 

1.1.1.88 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,73 -3,11 -5,59 -2,29 -2,24 <0.001 

1.1.1.88 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,50 -5,28 -3,25 -4,34 -4,33 <0.001 

1.1.1.88 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,59 -5,43 -3,42 -4,26 -4,90 <0.001 
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1.1.1.88 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,96 -1,99 -2,31 -2,24 <0.001 

1.1.1.88 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,96 -1,99 -2,31 -2,24 <0.001 

1.1.1.88 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,20 -2,26 -2,30 -2,33 -2,49 <0.001 

1.1.1.88 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,20 -2,26 -2,30 -2,33 -2,49 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,39 0,00 -4,70 -3,65 -4,42 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,40 -2,63 -4,71 -1,79 -1,68 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,19 -5,24 -3,26 -4,36 -4,55 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,64 -4,69 -3,43 -4,49 -4,78 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,98 -1,98 -2,00 -2,17 -2,22 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,98 -1,98 -2,00 -2,17 -2,22 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,04 -2,06 -2,23 -2,26 <0.001 

1.1.1.94 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,04 -2,06 -2,23 -2,26 <0.001 

1.1.1.95 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,21 0,00 -4,50 -3,41 -4,17 <0.001 

1.1.1.95 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,58 -2,93 -5,06 -2,07 -2,02 <0.001 

1.1.1.95 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,24 -5,07 -3,17 -4,12 -4,19 <0.001 

1.1.1.95 
D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,13 -5,12 -2,94 -3,97 -4,92 <0.001 

1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,94 -1,93 -1,98 -2,24 -2,24 <0.001 

1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,94 -1,93 -1,98 -2,24 -2,24 <0.001 

1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,21 -2,21 -2,27 -2,46 -2,49 <0.001 

1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,21 -2,21 -2,27 -2,46 -2,49 <0.001 

1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,54 0,00 -4,80 -3,67 -4,43 <0.001 
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1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -4,93 -3,97 -5,46 -3,70 -4,73 0,001 

1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,32 -4,77 -3,10 -4,13 -4,10 <0.001 

1.8.1.4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,64 -4,97 -3,52 -4,60 -5,41 <0.001 

2.1.1.10 

Homocysteine S-

methyltransferas

e 

Cysteine 

methionine 

degradation 

Lactobacillus 

delbrueckii -4,67 -3,77 -5,96 -2,99 -2,79 <0.001 

2.1.1.14 

Homocysteine 

methyltransferas

e 

Cysteine 

methionine 

degradation 

Bifidobacteriu

m mongoliense -4,43 0,00 -5,01 -3,74 -4,49 <0.001 

2.1.1.14 

Homocysteine 

methyltransferas

e 

Cysteine 

methionine 

degradation 

Lactobacillus 

delbrueckii -4,91 -2,73 -4,97 -1,98 -1,86 <0.001 

2.1.1.14 

Homocysteine 

methyltransferas

e 

Cysteine 

methionine 

degradation 

Lactobacillus 

helveticus 0,00 0,00 0,00 -2,88 -3,19 <0.001 

2.1.1.14 

Homocysteine 

methyltransferas

e 

Cysteine 

methionine 

degradation 

Lactococcus 

lactis -3,38 -4,89 -3,01 -4,24 -4,17 <0.001 

2.1.1.14 

Homocysteine 

methyltransferas

e 

Cysteine 

methionine 

degradation 

Leuconostoc 

pseudomesente

roides -3,67 -4,82 -3,55 -4,33 -4,95 <0.001 

2.1.1.14 

Homocysteine 

methyltransferas

e 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,10 -0,95 -1,11 -1,18 -1,52 <0.001 

2.1.1.14 

Homocysteine 

methyltransferas

e 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,95 -1,99 -2,00 -2,01 -2,13 <0.001 

2.2.1.6 
Acetolactate 

synthase 

Citrate 

fermentatio

n 

Bifidobacteriu

m mongoliense -3,90 0,00 -4,34 -3,09 -3,84 <0.001 

2.2.1.6 
Acetolactate 

synthase 

Citrate 

fermentatio

n 

Lactococcus 

lactis -2,94 -4,50 -2,83 -3,86 -3,81 <0.001 

2.2.1.6 
Acetolactate 

synthase 

Citrate 

fermentatio

n 

Leuconostoc 

pseudomesente

roides -3,61 -5,57 -3,48 -4,49 -4,94 <0.001 

2.2.1.6 
Acetolactate 

synthase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -1,97 -1,97 -2,00 -2,19 -2,23 <0.001 

2.2.1.6 
Acetolactate 

synthase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -1,97 -1,97 -2,00 -2,19 -2,23 <0.001 

2.2.1.6 
Acetolactate 

synthase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -2,12 -2,16 -2,16 -2,34 -2,37 <0.001 

2.2.1.6 
Acetolactate 

synthase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -2,12 -2,16 -2,16 -2,34 -2,37 <0.001 

2.3.1.1 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,89 -1,85 -1,89 -2,18 -2,16 <0.001 

2.3.1.1 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,89 -1,85 -1,89 -2,18 -2,16 <0.001 

2.3.1.1 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,07 -2,11 -2,20 -2,32 <0.001 

105



 
 

2.3.1.1 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,07 -2,11 -2,20 -2,32 <0.001 

2.3.1.1 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,48 -4,98 -3,26 -4,58 -4,40 <0.001 

2.3.1.1 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,45 -5,02 -3,31 -4,45 -5,30 <0.001 

2.3.1.11

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,54 0,00 -4,92 -3,75 -4,45 <0.001 

2.3.1.11

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -5,38 -4,25 -5,43 -4,02 -5,04 0,009 

2.3.1.12

8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,16 0,00 -4,75 -3,39 -4,18 <0.001 

2.3.1.12

8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,43 -4,94 -3,34 -4,26 -4,25 0,001 

2.3.1.15

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,02 -2,05 -2,04 -2,23 -2,21 <0.001 

2.3.1.15

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,02 -2,05 -2,04 -2,23 -2,21 <0.001 

2.3.1.15

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,08 -2,07 -2,11 -2,37 -2,46 <0.001 

2.3.1.15

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,08 -2,07 -2,11 -2,37 -2,46 <0.001 

2.3.1.15

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,70 -2,94 -4,99 -2,17 -2,04 <0.001 

2.3.1.15

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,39 -5,51 -3,48 -4,65 -4,44 

0,0038

04 

2.3.1.15

7 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,61 -4,46 -3,57 -4,32 -5,09 <0.001 

2.3.1.16 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -4,68 -3,75 0,00 -3,44 -4,68 <0.001 

2.3.1.17

9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,63 -3,10 -4,99 -2,26 -2,18 <0.001 

2.3.1.17

9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,04 -2,07 -2,24 -2,29 <0.001 

2.3.1.17

9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,04 -2,07 -2,24 -2,29 <0.001 

2.3.1.17

9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,04 -2,07 -2,24 -2,29 <0.001 

2.3.1.17

9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,04 -2,07 -2,24 -2,29 <0.001 

2.3.1.17

9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,26 -4,82 -3,13 -4,00 -4,13 <0.001 
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2.3.1.17

9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,56 -5,02 -3,41 -4,34 -4,78 <0.001 

2.3.1.18 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -5,04 -3,38 -5,86 -2,51 -2,50 <0.001 

2.3.1.18 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,17 -5,05 -3,14 -4,94 -4,09 <0.001 

2.3.1.18

0 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,74 -3,06 -5,00 -2,24 -2,15 <0.001 

2.3.1.18

0 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,22 -2,22 -2,21 -2,45 -2,48 <0.001 

2.3.1.18

0 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,22 -2,22 -2,21 -2,45 -2,48 <0.001 

2.3.1.18

0 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,97 -2,03 -2,20 -2,22 <0.001 

2.3.1.18

0 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,97 -2,03 -2,20 -2,22 <0.001 

2.3.1.18

0 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,90 -5,06 -3,28 -4,12 -4,38 <0.001 

2.3.1.18

0 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,30 -4,93 -3,12 -4,22 -4,79 <0.001 

2.3.1.18

1 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,57 0,00 -4,91 -3,70 -4,51 <0.001 

2.3.1.18

3 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,44 0,00 -4,77 -3,68 -4,43 <0.001 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,14 -2,33 -2,22 -2,62 -2,52 <0.001 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,14 -2,33 -2,22 -2,62 -2,52 <0.001 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,90 -1,84 -1,95 -2,00 -2,09 <0.001 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,90 -1,84 -1,95 -2,00 -2,09 <0.001 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,70 -2,97 -5,24 -2,15 -2,06 <0.001 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,54 0,00 -5,30 -3,73 -4,54 <0.001 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,41 -5,24 -3,42 -4,79 -4,40 0,002 

2.3.1.23

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,58 -4,34 -3,42 -4,05 -5,10 0,001 

2.3.1.26

6 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,05 -2,06 -2,07 -2,26 -2,27 <0.001 
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2.3.1.26

6 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,05 -2,06 -2,07 -2,26 -2,27 <0.001 

2.3.1.26

6 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,90 -1,91 -1,93 -2,11 -2,14 <0.001 

2.3.1.26

6 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,90 -1,91 -1,93 -2,11 -2,14 <0.001 

2.3.1.26

6 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,72 -5,66 -3,66 -4,70 -4,81 <0.001 

2.3.1.26

6 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,52 -4,22 -3,31 -4,38 -4,87 <0.001 

2.3.1.27

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,72 -3,01 -4,92 -2,18 -2,13 <0.001 

2.3.1.27

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,84 -1,90 -1,96 -2,04 -2,20 <0.001 

2.3.1.27

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,84 -1,90 -1,96 -2,04 -2,20 <0.001 

2.3.1.27

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,16 -2,11 -2,07 -2,40 -2,27 <0.001 

2.3.1.27

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,16 -2,11 -2,07 -2,40 -2,27 <0.001 

2.3.1.27

4 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,55 -4,77 -3,26 -4,30 -4,34 <0.001 

2.3.1.27

5 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,92 -1,94 -1,95 -2,19 -2,18 <0.001 

2.3.1.27

5 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,92 -1,94 -1,95 -2,19 -2,18 <0.001 

2.3.1.27

5 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,42 -2,44 -2,40 -2,64 -2,63 <0.001 

2.3.1.27

5 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,42 -2,44 -2,40 -2,64 -2,63 <0.001 

2.3.1.27

5 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,41 -5,81 -3,18 -4,30 -4,19 <0.001 

2.3.1.30 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,64 -1,53 -1,56 -1,86 -1,82 <0.001 

2.3.1.30 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,64 -1,53 -1,56 -1,86 -1,82 <0.001 

2.3.1.30 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,93 -2,00 -2,08 -2,14 -2,19 <0.001 

2.3.1.30 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,93 -2,00 -2,08 -2,14 -2,19 <0.001 

2.3.1.30 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -3,28 -2,57 -4,50 -1,74 -1,64 <0.001 
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2.3.1.30 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

helveticus 0,00 0,00 0,00 -3,26 -3,58 <0.001 

2.3.1.30 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,00 -5,11 -3,26 -4,38 -4,42 <0.001 

2.3.1.31 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,12 -2,10 -2,11 -2,36 -2,36 <0.001 

2.3.1.31 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,12 -2,10 -2,11 -2,36 -2,36 <0.001 

2.3.1.31 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,09 -2,06 -2,07 -2,32 -2,35 <0.001 

2.3.1.31 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,09 -2,06 -2,07 -2,32 -2,35 <0.001 

2.3.1.31 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,79 -5,04 -3,39 -4,57 -4,51 <0.001 

2.3.1.31 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,64 -6,15 -3,62 -4,44 -4,92 <0.001 

2.3.1.35 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,89 -1,85 -1,89 -2,18 -2,16 <0.001 

2.3.1.35 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,89 -1,85 -1,89 -2,18 -2,16 <0.001 

2.3.1.35 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,07 -2,11 -2,20 -2,32 <0.001 

2.3.1.35 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,07 -2,11 -2,20 -2,32 <0.001 

2.3.1.35 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,48 -4,98 -3,26 -4,58 -4,40 <0.001 

2.3.1.35 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,45 -5,02 -3,31 -4,45 -5,30 <0.001 

2.3.1.39 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,23 -2,60 -2,60 -2,74 -2,34 <0.001 

2.3.1.39 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,23 -2,60 -2,60 -2,74 -2,34 <0.001 

2.3.1.39 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,88 -1,77 -1,81 -1,99 -2,20 <0.001 

2.3.1.39 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,88 -1,77 -1,81 -1,99 -2,20 <0.001 

2.3.1.39 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,77 -3,10 -5,15 -2,24 -2,16 <0.001 

2.3.1.39 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,51 -4,27 -3,38 -4,29 -4,86 <0.001 

2.3.1.39 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,38 -4,88 -3,14 -4,38 -4,13 <0.001 
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2.3.1.41 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,43 0,00 -5,01 -3,69 -4,48 <0.001 

2.3.1.46 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii 0,00 -3,34 -4,74 -2,47 -2,38 <0.001 

2.3.1.47 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -4,92 -4,06 0,00 -3,86 -4,84 <0.001 

2.3.1.51 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,64 -3,04 -4,95 -2,21 -2,14 <0.001 

2.3.1.51 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,01 -2,00 -2,24 -2,26 <0.001 

2.3.1.51 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,00 -2,01 -2,00 -2,24 -2,26 <0.001 

2.3.1.51 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,18 -2,18 -2,18 -2,42 -2,44 <0.001 

2.3.1.51 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,18 -2,18 -2,18 -2,42 -2,44 <0.001 

2.3.1.51 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,71 -5,68 -3,54 -4,39 0,00 <0.001 

2.3.1.54 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,98 -1,98 -2,01 -2,06 -2,28 <0.001 

2.3.1.54 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,98 -1,98 -2,01 -2,06 -2,28 <0.001 

2.3.1.54 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,01 -2,04 -2,05 -2,43 -2,24 <0.001 

2.3.1.54 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,01 -2,04 -2,05 -2,43 -2,24 <0.001 

2.3.1.54 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,56 0,00 -5,02 -3,75 -4,48 <0.001 

2.3.1.54 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,27 -4,84 -3,10 -4,03 -4,14 <0.001 

2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,11 -2,30 -2,32 -2,52 -2,58 <0.001 

2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,11 -2,30 -2,32 -2,52 -2,58 <0.001 

2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,08 -1,98 -2,00 -2,19 -2,19 <0.001 

2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,08 -1,98 -2,00 -2,19 -2,19 <0.001 

2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,66 -3,00 -5,02 -2,16 -2,07 <0.001 

2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,55 0,00 -4,85 -3,70 -4,49 <0.001 
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2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,48 -5,45 -3,26 -4,43 -4,31 <0.001 

2.3.1.8 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,52 -5,20 -3,51 -4,64 -4,98 <0.001 

2.3.1.81 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,80 -5,87 -3,03 -4,85 -3,55 <0.001 

2.3.1.86 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,43 0,00 -5,01 -3,69 -4,48 <0.001 

2.3.1.89 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,63 -3,01 -5,09 -2,14 -2,11 <0.001 

2.3.1.89 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,98 -1,99 -2,18 -2,19 <0.001 

2.3.1.89 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,96 -1,98 -1,99 -2,18 -2,19 <0.001 

2.3.1.89 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,95 -1,99 -1,99 -2,17 -2,20 <0.001 

2.3.1.89 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,95 -1,99 -1,99 -2,17 -2,20 <0.001 

2.3.1.89 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,19 -5,26 -3,24 -4,20 -4,41 <0.001 

2.3.1.89 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,59 -5,84 -3,52 -4,43 -4,89 <0.001 

2.3.1.9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,69 -3,08 -5,21 -2,24 -2,17 <0.001 

2.3.1.9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,48 -5,01 -3,11 -4,09 -4,47 <0.001 

2.3.1.9 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation Hafnia paralvei -5,05 -4,07 0,00 -3,76 -4,80 0,001 

2.3.1.n2 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,67 -5,62 -3,52 -4,47 -5,04 <0.001 

2.3.1.n3 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,39 -2,65 -4,73 -1,84 -1,71 <0.001 

2.3.1.n3 
Keto acid 

dehydrogenase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,78 -5,33 -3,48 -4,75 -5,01 

0,0005

01 

2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation Hafnia paralvei -4,67 -3,92 0,00 -3,68 -4,43 0,004 

2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation 

Lactobacillus 

delbrueckii -4,69 -3,03 -4,37 -2,19 -2,12 <0.001 

2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation 

Lactococcus 

lactis -3,31 -4,87 -2,98 -3,98 -3,91 <0.001 

2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation 

Leuconostoc 

pseudomesente

roides -3,65 -3,63 -3,27 -4,71 -4,35 0,03 
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2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,87 -1,78 -1,91 -1,97 -2,07 <0.001 

2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,87 -1,78 -1,91 -1,97 -2,07 <0.001 

2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,75 -1,83 -1,76 -2,13 -2,05 <0.001 

2.5.1.47 
O-acetylserine 

sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,75 -1,83 -1,76 -2,13 -2,05 <0.001 

2.5.1.48 
Cystathionine 

gamma synthase 

Cysteine 

methionine 

degradation 

Leuconostoc 

pseudomesente

roides -3,57 -5,48 -3,47 -4,38 -5,00 <0.001 

2.5.1.48 
Cystathionine 

gamma synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -3,43 -3,38 -3,18 -3,32 -3,32 <0.001 

2.5.1.48 
Cystathionine 

gamma synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -3,43 -3,38 -3,18 -3,32 -3,32 0,005 

2.5.1.48 
Cystathionine 

gamma synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,76 -1,75 -1,77 -1,97 -2,00 <0.001 

2.5.1.48 
Cystathionine 

gamma synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,76 -1,75 -1,77 -1,97 -2,00 0,005 

2.5.1.49 

O-

acetylhomoserin

e sulfhydrolase 

Cysteine 

methionine 

degradation 

Bifidobacteriu

m mongoliense -4,59 0,00 -4,97 -3,74 -4,39 <0.001 

2.5.1.49 

O-

acetylhomoserin

e sulfhydrolase 

Cysteine 

methionine 

degradation 

Lactobacillus 

delbrueckii -4,74 -3,34 -5,87 -2,55 -2,43 <0.001 

2.5.1.49 

O-

acetylhomoserin

e sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,22 -2,04 -2,29 -2,22 -2,40 <0.001 

2.5.1.49 

O-

acetylhomoserin

e sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,22 -2,04 -2,29 -2,22 -2,40 <0.001 

2.5.1.49 

O-

acetylhomoserin

e sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,09 -2,28 -2,10 -2,86 -2,50 <0.001 

2.5.1.49 

O-

acetylhomoserin

e sulfhydrolase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,09 -2,28 -2,10 -2,86 -2,50 <0.001 

2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,71 -1,88 -1,83 -2,14 -1,95 <0.001 

2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,71 -1,88 -1,83 -2,14 -1,95 <0.001 

2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,84 -1,69 -1,75 -1,86 -2,09 <0.001 

2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,84 -1,69 -1,75 -1,86 -2,09 <0.001 

2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,45 -2,74 -5,19 -1,93 -1,86 <0.001 

2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation Hafnia paralvei -4,80 -3,94 -5,75 -3,67 -4,66 0,002 
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2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -2,98 -4,65 -2,94 -3,74 -3,88 0,002 

2.6.1.1 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,62 -6,23 -3,44 -4,46 -5,22 <0.001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,94 -1,87 -1,89 -2,17 -2,23 <0.001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,94 -1,87 -1,89 -2,17 -2,23 <0.001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,12 -2,29 -2,30 -2,36 -2,38 <0.001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,12 -2,29 -2,30 -2,36 -2,38 <0.001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,40 0,00 -5,16 -3,75 -4,47 <0.001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation Hafnia paralvei -5,11 -4,35 -5,64 -4,04 -4,86 0,001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,36 -5,15 -3,25 -4,33 -4,22 0,001 

2.6.1.11 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,58 -5,19 -3,41 -4,33 -5,13 <0.001 

2.6.1.16 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,83 -1,83 -1,88 -2,09 -2,15 <0.001 

2.6.1.16 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,83 -1,83 -1,88 -2,09 -2,15 <0.001 

2.6.1.16 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,97 -2,76 -2,72 -3,17 -2,89 <0.001 

2.6.1.16 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,97 -2,76 -2,72 -3,17 -2,89 <0.001 

2.6.1.16 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,74 -3,02 -5,19 -2,19 -2,11 <0.001 

2.6.1.16 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,58 0,00 -4,85 -3,71 -4,44 <0.001 

2.6.1.16 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -4,17 -5,59 -3,30 -4,21 -4,42 <0.001 

2.6.1.19 

Aspartate 

aminotransferas

e 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,67 -5,40 -3,50 -4,42 -5,62 <0.001 

2.6.1.42 

Branched-chain 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,97 -1,94 -1,95 -2,15 -2,17 <0.001 

2.6.1.42 

Branched-chain 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,97 -1,94 -1,95 -2,15 -2,17 <0.001 

2.6.1.42 

Branched-chain 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,12 -2,18 -2,19 -2,41 -2,44 <0.001 
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2.6.1.42 

Branched-chain 

aminotransferas

e 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,12 -2,18 -2,19 -2,41 -2,44 <0.001 

2.6.1.42 

Branched-chain 

aminotransferas

e 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,60 0,00 -4,91 -3,68 -4,41 <0.001 

2.6.1.42 

Branched-chain 

aminotransferas

e 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,35 -4,60 -3,12 -4,15 -4,23 <0.001 

2.6.1.42 

Branched-chain 

aminotransferas

e 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,65 -5,36 -3,50 -4,39 -5,03 <0.001 

2.7.1.39 
Homoserine 

kinase 

Cysteine 

methionine 

degradation 

Lactobacillus 

delbrueckii -4,65 -2,98 -5,03 -2,15 -2,04 <0.001 

2.7.1.39 
Homoserine 

kinase 

Cysteine 

methionine 

degradation 

Lactococcus 

lactis -3,41 -5,26 -3,28 -4,40 -4,30 <0.001 

2.7.1.39 
Homoserine 

kinase 

Cysteine 

methionine 

degradation 

Leuconostoc 

pseudomesente

roides -3,68 -5,98 -3,63 -4,62 -5,23 0,001 

2.7.1.39 
Homoserine 

kinase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,93 -1,83 -2,06 -1,94 -1,99 <0.001 

2.7.1.39 
Homoserine 

kinase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,93 -1,83 -2,06 -1,94 -1,99 0,003 

2.7.1.39 
Homoserine 

kinase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,04 -2,27 -2,00 -2,83 -2,88 <0.001 

2.7.1.39 
Homoserine 

kinase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,04 -2,27 -2,00 -2,83 -2,88 0,003 

2.7.2.1 Acylkinase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,77 -2,93 -4,99 -2,09 -2,06 <0.001 

2.7.2.1 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,87 -1,87 -1,89 -2,08 -2,10 <0.001 

2.7.2.1 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,87 -1,87 -1,89 -2,08 -2,10 <0.001 

2.7.2.1 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,25 -2,25 -2,42 -2,46 <0.001 

2.7.2.1 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,24 -2,25 -2,25 -2,42 -2,46 <0.001 

2.7.2.1 Acylkinase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,14 -4,52 -2,89 -3,96 -3,93 <0.001 

2.7.2.1 Acylkinase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,36 -4,96 -3,19 -4,24 -4,68 <0.001 

2.7.2.11 Acylkinase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,64 -3,05 -5,24 -2,24 -2,14 <0.001 

2.7.2.11 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,02 -2,04 -2,21 -2,06 -2,35 <0.001 

2.7.2.11 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,02 -2,04 -2,21 -2,06 -2,35 <0.001 
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2.7.2.11 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,05 -1,95 -2,56 -2,20 <0.001 

2.7.2.11 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,03 -2,05 -1,95 -2,56 -2,20 <0.001 

2.7.2.11 Acylkinase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,55 -4,87 -3,32 -4,75 -4,32 0,0005 

2.7.2.11 Acylkinase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,60 -4,49 -3,39 -4,16 -4,79 0,0006 

2.7.2.2 Acylkinase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,14 -5,12 -3,50 -4,35 -4,12 0,018 

2.7.2.3 Acylkinase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,72 -2,98 -4,83 -2,18 -2,14 <0.001 

2.7.2.3 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -1,72 -1,73 -1,77 -1,94 -1,99 <0.001 

2.7.2.3 Acylkinase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,58 0,00 -5,02 -3,83 -4,59 <0.001 

2.7.2.3 Acylkinase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,57 -4,97 -3,43 -4,28 -5,11 <0.001 

2.7.2.3 Acylkinase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,30 -4,96 -3,19 -4,21 -4,11 <0.001 

2.7.2.4 Acylkinase 

Generic 

amino acid 

degradation 

Lactobacillus 

delbrueckii -4,65 -2,89 -4,84 -2,04 -2,02 <0.001 

2.7.2.4 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,09 -2,09 -2,10 -2,28 -2,32 <0.001 

2.7.2.4 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,09 -2,09 -2,10 -2,28 -2,32 <0.001 

2.7.2.4 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,09 -2,08 -2,10 -2,28 -2,32 <0.001 

2.7.2.4 Acylkinase 

Generic 

amino acid 

degradation 

Streptococcus 

thermophilus -2,09 -2,08 -2,10 -2,28 -2,32 <0.001 

2.7.2.4 Acylkinase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,11 0,00 -4,42 -3,34 -4,05 <0.001 

2.7.2.4 Acylkinase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,65 0,00 -3,54 -4,64 -5,01 0,0005 

2.7.2.8 Acylkinase 

Generic 

amino acid 

degradation 

Bifidobacteriu

m mongoliense -4,61 0,00 -5,00 -3,84 -4,47 <0.001 

2.7.2.8 Acylkinase 

Generic 

amino acid 

degradation 

Lactococcus 

lactis -3,50 -5,07 -3,23 -4,32 -4,34 <0.001 

2.7.2.8 Acylkinase 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,55 -6,05 -3,36 -4,39 -4,75 <0.001 

3.1.1.1 Esterase A 

Generic 

amino acid 

degradation 

Leuconostoc 

pseudomesente

roides -3,59 -5,59 -3,53 -4,57 -5,09 0,0006 
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3.1.1.29 Arylesterase 

Lipid 

metabolism 

Bifidobacteriu

m mongoliense -4,45 0,00 -4,91 -3,70 -4,30 <0.001 

3.1.1.29 Arylesterase 

Lipid 

metabolism 

Lactobacillus 

delbrueckii -4,66 -2,81 -5,02 -2,03 -1,90 <0.001 

3.1.1.29 Arylesterase 

Lipid 

metabolism 

Lactococcus 

lactis -3,54 -4,95 -3,25 -4,53 -4,11 <0.001 

3.1.1.29 Arylesterase 

Lipid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,57 0,00 -3,39 -4,60 -4,74 <0.001 

3.1.1.29 Arylesterase 

Lipid 

metabolism 

Streptococcus 

thermophilus -1,94 -1,91 -1,94 -2,13 -2,15 <0.001 

3.1.1.29 Arylesterase 

Lipid 

metabolism 

Streptococcus 

thermophilus -1,94 -1,91 -1,94 -2,13 -2,15 <0.001 

3.1.1.29 Arylesterase 

Lipid 

metabolism 

Streptococcus 

thermophilus -2,14 -2,13 -2,13 -2,32 -2,34 <0.001 

3.1.1.29 Arylesterase 

Lipid 

metabolism 

Streptococcus 

thermophilus -2,14 -2,13 -2,13 -2,32 -2,34 <0.001 

3.1.1.31 
Triacylglycerol 

lipase 

Lipid 

metabolism 

Bifidobacteriu

m mongoliense -4,14 0,00 -4,65 -3,35 -4,14 <0.001 

3.1.1.31 
Triacylglycerol 

lipase 

Lipid 

metabolism 

Lactobacillus 

delbrueckii -4,96 -3,08 -5,04 -2,26 -2,17 <0.001 

3.4.11.1

8 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,80 -1,80 -1,83 -2,03 -2,09 <0.001 

3.4.11.1

8 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,80 -1,80 -1,83 -2,03 -2,09 <0.001 

3.4.11.1

8 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,50 -2,51 -2,52 -2,68 -2,61 <0.001 

3.4.11.1

8 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,50 -2,51 -2,52 -2,68 -2,61 0,003 

3.4.11.1

8 
unique 

aminopeptidases 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,42 -2,81 -4,73 -2,02 -1,93 <0.001 

3.4.11.1

8 
unique 

aminopeptidases 

Amino acid 

metabolism 

Lactococcus 

lactis -3,35 -4,75 -3,17 -4,08 -4,19 <0.001 

3.4.11.1

8 
unique 

aminopeptidases 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,60 -4,91 -3,44 -4,53 -5,24 <0.001 

3.4.11.2 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,09 -2,08 -2,14 -2,37 -2,42 <0.001 

3.4.11.2 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,09 -2,08 -2,14 -2,37 -2,42 <0.001 

3.4.11.2 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,24 -2,22 -2,28 -2,50 -2,48 <0.001 

3.4.11.2 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,24 -2,22 -2,28 -2,50 -2,48 <0.001 

3.4.11.2 Aminopeptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,69 -2,87 -4,84 -2,07 -1,95 <0.001 

3.4.11.2 Aminopeptidase 

Amino acid 

metabolism 

Lactococcus 

lactis -3,41 -4,80 -3,17 -4,19 -4,19 <0.001 

3.4.11.2

4 Aminopeptidase 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,57 -5,26 -3,43 -4,52 -5,09 0,0005 

3.4.11.4 Tripeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,18 -2,12 -2,04 -2,42 -2,45 <0.001 

3.4.11.4 Tripeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,18 -2,12 -2,04 -2,42 -2,45 <0.001 

3.4.11.4 Tripeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,08 -2,13 -2,34 -2,32 -2,35 <0.001 
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3.4.11.4 Tripeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,08 -2,13 -2,34 -2,32 -2,35 <0.001 

3.4.11.4 Tripeptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,35 -2,55 -4,76 -1,75 -1,69 <0.001 

3.4.11.4 Tripeptidase 

Amino acid 

metabolism 

Lactococcus 

lactis -3,31 -4,91 -3,11 -4,11 -4,11 <0.001 

3.4.11.4 Tripeptidase 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,62 0,00 -3,53 -4,63 -4,96 <0.001 

3.4.11.5 
Proline 

peptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,42 -2,57 -4,42 -1,76 -1,63 <0.001 

3.4.11.7 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,89 -1,86 -1,91 -2,17 -2,21 <0.001 

3.4.11.7 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,89 -1,86 -1,91 -2,17 -2,21 0,01 

3.4.11.7 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,23 -2,30 -2,31 -2,40 -2,41 <0.001 

3.4.11.7 
unique 

aminopeptidases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,23 -2,30 -2,31 -2,40 -2,41 0,01 

3.4.11.7 
unique 

aminopeptidases 

Amino acid 

metabolism 

Lactococcus 

lactis -3,95 -4,99 -3,22 -4,10 -4,42 <0.001 

3.4.11.7 
unique 

aminopeptidases 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,67 -5,64 -3,44 -4,71 -5,32 <0.001 

3.4.11.9 
Proline 

peptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,53 -2,88 -5,06 -2,08 -1,98 <0.001 

3.4.11.9 
Proline 

peptidase 

Amino acid 

metabolism 

Lactococcus 

lactis -3,52 -5,39 -3,65 -5,63 -4,52 0,006 

3.4.11.9 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,12 -2,02 -2,10 -2,53 -2,26 <0.001 

3.4.11.9 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,12 -2,02 -2,10 -2,53 -2,26 <0.001 

3.4.11.9 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,05 -2,17 -2,13 -2,16 -2,41 <0.001 

3.4.11.9 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,05 -2,17 -2,13 -2,16 -2,41 <0.001 

3.4.13.1

8 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,00 -1,93 -2,01 -2,21 -2,24 <0.001 

3.4.13.1

8 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,00 -1,93 -2,01 -2,21 -2,24 <0.001 

3.4.13.1

8 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,26 -2,31 -2,32 -2,55 -2,58 <0.001 

3.4.13.1

8 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,26 -2,31 -2,32 -2,55 -2,58 <0.001 

3.4.13.1

8 Dipeptidase 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,58 0,00 -4,88 -3,68 -4,51 <0.001 

3.4.13.2

0 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,00 -1,93 -2,01 -2,21 -2,24 <0.001 

3.4.13.2

0 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,00 -1,93 -2,01 -2,21 -2,24 <0.001 

3.4.13.2

0 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,26 -2,31 -2,32 -2,55 -2,58 <0.001 

3.4.13.2

0 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,26 -2,31 -2,32 -2,55 -2,58 <0.001 

3.4.13.9 Dipeptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,29 -2,66 -4,64 -1,84 -1,74 <0.001 
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3.4.13.9 Dipeptidase 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,49 -4,34 -3,44 -4,40 -5,39 <0.001 

3.4.14.1

1 
Proline 

peptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,69 -3,03 -4,82 -2,21 -2,13 <0.001 

3.4.14.1

1 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,96 -1,86 -1,86 -2,12 -2,13 <0.001 

3.4.14.1

1 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,96 -1,86 -1,86 -2,12 -2,13 <0.001 

3.4.14.1

1 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,05 -2,24 -2,34 -2,34 -2,48 <0.001 

3.4.14.1

1 
Proline 

peptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,05 -2,24 -2,34 -2,34 -2,48 <0.001 

3.4.14.1

1 
Proline 

peptidase 

Amino acid 

metabolism 

Lactococcus 

lactis -3,46 -5,66 -3,61 -4,86 -4,60 0,006 

3.4.14.1

1 
Proline 

peptidase 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,67 -5,41 -3,53 -4,70 -5,15 <0.001 

3.4.19.3 
unique 

aminopeptidases 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,90 -3,14 -5,30 -2,27 -2,26 <0.001 

3.4.19.3 
unique 

aminopeptidases 

Amino acid 

metabolism 

Lactococcus 

lactis -2,95 -4,64 -3,16 -3,23 -4,00 <0.001 

3.4.19.3 
unique 

aminopeptidases 

Amino acid 

metabolism 

Leuconostoc 

mesenteroides -3,13 -3,44 -3,47 -3,30 -4,24 0,05 

3.4.21.1

07 
Other 

Proteinases 

Amino acid 

metabolism Hafnia paralvei -4,74 -4,04 -5,54 -3,74 -5,13 <0.000 

3.4.21.1

07 
Other 

Proteinases 

Amino acid 

metabolism 

Lactococcus 

lactis -3,74 -4,91 -3,26 -4,21 -4,32 <0.001 

3.4.21.5

3 
Other 

Proteinases 

Amino acid 

metabolism Hafnia paralvei -4,98 -3,94 -5,21 -3,75 -4,86 0,006 

3.4.21.5

3 
Other 

Proteinases 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,78 -3,03 -4,95 -2,21 -2,16 <0.001 

3.4.21.5

3 
Other 

Proteinases 

Amino acid 

metabolism 

Lactococcus 

lactis -3,41 -5,01 -3,25 -4,27 -4,13 <0.001 

3.4.21.5

3 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,54 -2,55 -2,54 -2,70 -2,72 <0.001 

3.4.21.5

3 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,54 -2,55 -2,54 -2,70 -2,72 <0.001 

3.4.21.5

3 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,83 -1,85 -1,87 -2,06 -2,09 <0.001 

3.4.21.5

3 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,83 -1,85 -1,87 -2,06 -2,09 <0.001 

3.4.21.8

3 
Other 

Proteinases 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,59 0,00 -5,14 -3,79 -4,55 <0.001 

3.4.21.8

8 
Other 

Proteinases 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,25 0,00 -4,78 -3,56 -4,22 <0.001 

3.4.21.8

8 
Other 

Proteinases 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,65 -2,95 -4,96 -2,14 -2,06 <0.001 

3.4.21.8

8 
Other 

Proteinases 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,63 -5,49 -3,57 -4,60 -5,30 <0.001 

3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,60 -1,55 -1,61 -1,80 -1,80 <0.001 

3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,60 -1,55 -1,61 -1,80 -1,80 <0.001 

3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,11 -2,25 -2,15 -2,44 -2,47 <0.001 
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3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,11 -2,25 -2,15 -2,44 -2,47 <0.001 

3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,59 0,00 -4,82 -3,59 -4,33 <0.001 

3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,76 -3,15 -4,86 -2,40 -2,36 <0.001 

3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Lactococcus 

lactis -4,23 -5,04 -3,33 -4,33 -4,38 <0.001 

3.4.21.8

9 
Other 

Proteinases 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,30 -4,94 -3,08 -4,23 -5,01 <0.001 

3.4.21.9

2 
Other 

Proteinases 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,26 0,00 -4,41 -3,36 -4,12 <0.001 

3.4.21.9

2 
Other 

Proteinases 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,61 -2,86 -5,07 -1,97 -1,97 <0.001 

3.4.21.9

2 
Other 

Proteinases 

Amino acid 

metabolism 

Lactococcus 

lactis -3,39 -4,81 -3,13 -4,49 -4,07 <0.001 

3.4.21.9

2 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,83 -1,79 -1,82 -2,05 -2,07 <0.001 

3.4.21.9

2 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,83 -1,79 -1,82 -2,05 -2,07 <0.001 

3.4.21.9

2 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,34 -2,34 -2,32 -2,53 -2,55 <0.001 

3.4.21.9

2 
Other 

Proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,34 -2,34 -2,32 -2,53 -2,55 <0.001 

3.4.21.9

6 
Cell-wall bound 

proteinase 

Amino acid 

metabolism 

Lactococcus 

lactis -3,25 -4,72 -2,82 -3,30 -3,90 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,24 -2,23 -2,25 -2,52 -2,51 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,24 -2,23 -2,25 -2,52 -2,51 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,92 -1,94 -1,95 -2,12 -2,16 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,92 -1,94 -1,95 -2,12 -2,16 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,48 0,00 -4,75 -3,79 -4,44 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,64 -2,41 -4,37 -1,66 -1,54 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Lactococcus 

lactis -3,46 -5,06 -3,27 -4,45 -4,33 <0.001 

3.4.22.4

0 Aminopeptidase 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,63 -5,33 -3,28 -4,83 -5,93 <0.001 

3.4.23.3

6 
Aspartyl 

proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,90 -1,88 -1,93 -2,20 -2,19 <0.001 

3.4.23.3

6 
Aspartyl 

proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,90 -1,88 -1,93 -2,20 -2,19 <0.001 

3.4.23.3

6 
Aspartyl 

proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,07 -2,06 -2,11 -2,39 -2,37 <0.001 

3.4.23.3

6 
Aspartyl 

proteinases 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,07 -2,06 -2,11 -2,39 -2,37 <0.001 

3.4.23.3

6 
Aspartyl 

proteinases 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,55 -2,97 -4,75 -2,18 -2,16 <0.001 

3.4.23.3

6 
Aspartyl 

proteinases 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,44 0,00 -4,69 -3,59 -4,31 <0.001 

3.4.24.1

1 
Metalloproteinas

es 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,54 0,00 -4,93 -3,66 -4,41 <0.001 
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3.4.24.1

3 
Metalloproteinas

es 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,98 -1,90 -1,94 -2,17 -2,19 <0.001 

3.4.24.5

7 
Metalloproteinas

es 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,67 -2,90 -4,91 -2,09 -2,01 <0.001 

3.4.24.5

7 
Metalloproteinas

es 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,86 -1,95 -1,82 -2,00 -2,31 <0.001 

3.4.24.5

7 
Metalloproteinas

es 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,86 -1,95 -1,82 -2,00 -2,31 <0.001 

3.4.24.5

7 
Metalloproteinas

es 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,17 -2,08 -2,47 -2,61 -2,18 <0.001 

3.4.24.5

7 
Metalloproteinas

es 

Amino acid 

metabolism 

Streptococcus 

thermophilus -2,17 -2,08 -2,47 -2,61 -2,18 <0.001 

3.4.25.2 
Threonine 

peptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,62 -2,97 -5,15 -2,13 -2,06 <0.001 

4.1.1.5 
Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 

Bifidobacteriu

m mongoliense -4,42 0,00 -4,94 -3,76 -4,55 <0.001 

4.1.1.5 
Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 

Lactococcus 

lactis -3,32 -4,78 -2,99 -4,00 -4,06 <0.001 

4.1.1.5 
Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 

Leuconostoc 

pseudomesente

roides -3,36 -5,23 -3,24 -4,63 -4,94 <0.000 

4.1.1.5 
Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -2,19 -2,15 -2,10 -2,34 -2,43 <0.001 

4.1.1.5 
Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -2,19 -2,15 -2,10 -2,34 -2,43 <0.001 

4.1.1.5 
Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -1,95 -1,96 -2,04 -2,28 -2,25 <0.001 

4.1.1.5 
Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 

Streptococcus 

thermophilus -1,95 -1,96 -2,04 -2,28 -2,25 <0.001 

4.1.3.6 Citrate lyase 

Citrate 

fermentatio

n Hafnia paralvei -5,04 -3,88 -5,78 -3,62 -4,89 0,002 

4.1.3.6 Citrate lyase 

Citrate 

fermentatio

n 

Lactobacillus 

helveticus 0,00 0,00 0,00 -3,04 -3,36 <0.001 

4.1.3.6 Citrate lyase 

Citrate 

fermentatio

n 

Leuconostoc 

mesenteroides -3,78 -2,70 -3,26 -3,95 -4,09 0,03 

4.1.3.6 Citrate lyase 

Citrate 

fermentatio

n 

Leuconostoc 

pseudomesente

roides -3,42 -6,00 -3,76 -4,32 -5,09 <0.000 

4.2.1.22 
Cystathionine-

beta-synthase 

Cysteine 

methionine 

degradation 

Lactobacillus 

brevis -4,89 -4,98 -4,65 -3,33 -4,49 <0.001 

4.2.1.22 
Cystathionine-

beta-synthase 

Cysteine 

methionine 

degradation 

Lactobacillus 

delbrueckii -3,61 -3,43 -4,66 -3,04 -3,04 <0.001 

4.2.1.22 
Cystathionine-

beta-synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,15 -1,93 -1,98 -2,20 -2,22 <0.001 

4.2.1.22 
Cystathionine-

beta-synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,15 -1,93 -1,98 -2,20 -2,22 <0.001 

4.2.1.22 
Cystathionine-

beta-synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,46 -2,46 -2,50 -2,67 -2,71 <0.001 
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4.2.1.22 
Cystathionine-

beta-synthase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,46 -2,46 -2,50 -2,67 -2,71 <0.001 

4.4.1.1 
Cystathionine-

Gamma-lyase 

Cysteine 

methionine 

degradation 

Leuconostoc 

pseudomesente

roides -3,56 0,00 -3,35 -4,20 -4,96 <0.000 

4.4.1.16 
Cystathionine-

Gamma-lyase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,90 -1,91 -1,96 -2,12 -2,16 <0.001 

4.4.1.16 
Cystathionine-

Gamma-lyase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -1,90 -1,91 -1,96 -2,12 -2,16 <0.001 

4.4.1.16 
Cystathionine-

Gamma-lyase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,13 -2,14 -2,11 -2,34 -2,36 <0.001 

4.4.1.16 
Cystathionine-

Gamma-lyase 

Cysteine 

methionine 

degradation 

Streptococcus 

thermophilus -2,13 -2,14 -2,11 -2,34 -2,36 <0.001 

4.4.1.8 
Cystathionine 

beta-lyase 

Cysteine 

methionine 

degradation 

Lactobacillus 

delbrueckii -4,58 -2,90 -4,93 -2,06 -2,01 <0.001 

4.4.1.8 
Cystathionine 

beta-lyase 

Cysteine 

methionine 

degradation 

Leuconostoc 

pseudomesente

roides -3,92 -6,14 -3,82 -4,73 -5,47 <0.001 

6.3.4.13 Dipeptidase 

Amino acid 

metabolism 

Lactobacillus 

delbrueckii -4,68 -3,05 -5,29 -2,23 -2,18 <0.001 

6.3.4.13 Dipeptidase 

Amino acid 

metabolism 

Bifidobacteriu

m mongoliense -4,51 0,00 -4,97 -3,68 -4,47 <0.001 

6.3.4.13 Dipeptidase 

Amino acid 

metabolism 

Lactococcus 

lactis -3,41 -4,99 -3,25 -4,57 -4,24 <0.001 

6.3.4.13 Dipeptidase 

Amino acid 

metabolism 

Leuconostoc 

pseudomesente

roides -3,68 -5,96 -3,47 -4,71 -5,40 <0.001 

6.3.4.13 Dipeptidase 

Amino acid 

metabolism 

Streptococcus 

thermophilus -1,65 -1,67 -1,70 -1,86 -1,91 <0.001 
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Table S12. Correlation between the three most abundant volatile organic compounds (VOC), genes and associated microrganism. 

Only the strongest significant correlations are reported. 

Family VOC Gene Associated m.o.  Enzyme 

Metabolis

m 

Correlatio

n 

Significanc

e  

Carboxyli

c acids 

Acetic acid 2.3.1.20 Acinetobacter johnsonii 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.6593 0.04 

Acetic acid 3.1.1.24 

Acinetobacter johnsonii, 

Lacticaseibacillus 

rhamnosus , Pseudomonas 

fluorescens Arylesterase 

Lipids 

metabolism -0.5070 0.04 

Acetic acid 1.1.1.18 

Lactiplantibacillus 

plantarum,Propionibacteri

um freudenreichii, 

Lactobacillus diolivorans 

Alcohol 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.3185 0.04 

Propionic acid 

1.1.1.21

9 

Lactococcus lactis, 

Pseudomonas fluorescens,  

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.4131 0.05 

Propionic acid 1.1.1.31 

Lactococcus lactis, 

Pseudomonas simiae, 

Lacticaseibacillus 

rhamnosus  

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.3086 0.03 

Propionic acid 3.4.25.1 

Propionibacterium 

freudenreichii 

Threonine 

peptidase 

Amminoaci

d 

metabolsim 0.7279 0.008 

Propionic acid 

2.3.1.18

9 

Propionibacterium 

freudenreichii, 

Pseudomonas simiae, 

Escherichia coli 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.6441 0.01 

Butanoic acid 2.3.1.88 Lactobacillus otakiensis 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5385 0.05 

Butanoic acid 1.2.4.4 

Lactiplantibacillus 

plantarum,Propionibacteri

um freudenreichii, 

Enterococcus faecalis 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5253 0.01 

Butanoic acid 4.4.1.11 

Lactobacillus delbrueckii, 

Citrobacter braakii, 

Raoultella terrigena 

Cystathionine-

Gamma-lyase 

Cyst meth 

degradatio

n 0.6321 0.03 

Alcohols 

Butan-2-ol 

2.3.1.18

9 

Propionibacterium 

freudenreichii, 

Pseudomonas fluorescens  

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.7333 0.04 

Butan-2-ol 

1.1.1.31

3 

Propionibacterium 

freudenreichii, 

Pseudomonas fluorescens  

D-hydroxy acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.7000 0.03 

Butan-2-ol 

2.3.1.24

2 

Enterobacter cloacae, 

Raoultella ornithinolytica, 

Hafnia alvei  

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.5139 0.03 

Butan-2-ol 

2.3.1.11

8 

Lactococcus lactis, 

Escherichia coli, Klebsiella 

michiganensis 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.5903 0.01 

Ethanol 

1.1.1.29

1 Acinetobacter johnsonii 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5944 0.04 

Ethanol 

3.4.24.1

1 

Bifidobacterium 

mongoliense 

Metalloproteinas

es 

Amminoaci

d 

metabolsim -0.5114 0.005 
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Ethanol 

3.4.22.4

9 

Limosilactobacillus 

fermentum  

Cysteine 

Proteinases 

Amminoaci

d 

metabolsim 0.8095 0.02 

Ethanol 

2.3.1.10

9 

Pseudomonas simiae, 

Acinetobacter johnsonii 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.7176 <0.001 

3-methyl-

butan-1-ol 

1.1.1.29

1 Acinetobacter johnsonii 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.8112 0.009 

3-methyl-

butan-1-ol 4.4.1.11 

Lactobacillus delbrueckii, 

Escherichia coli 

Cystathionine-

Gamma-lyase 

Cyst meth 

degradatio

n -0.6250 0.02 

3-methyl-

butan-1-ol 4.1.1.59 

Lactiplantibacillus 

plantarum 

Acetolactate 

decarboxylase 

Citrate 

fermentatio

n 0.6948 0.005 

3-methyl-

butan-1-ol 

1.1.1.40

5 

Lactiplantibacillus 

plantarum 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.5654 0.01 

Ketones 

Butan-2-one 

1.1.1.10

5 Lactococcus lactis 

Alcohol 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.7357 <0.001 

Butan-2-one 

1.1.1.20

2 

Lactiplantibacillus 

plantarum,Lentilactobacill

us parabuchneri, 

Pseudomonas simiae 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5989 <0.001 

Butan-2-one 1.1.1.91 

Bifidobacterium 

mongoliense 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.6018 <0.001 

Butan-2-one 2.3.1.86 

Bifidobacterium 

mongoliense 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.5762 <0.001 

3-

Hydroxybuta

n-2-one 4.4.1.11 

Lactobacillus delbrueckii, 

Escherichia coli, Raoultella 

terrigena 

Cystathionine-

Gamma-lyase 

Cyst meth 

degradatio

n -0.5874 0.05 

3-

Hydroxybuta

n-2-one 

1.1.1.30

1 Enterococcus gilvus 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.8929 0.01 

3-

Hydroxybuta

n-2-one 2.7.2.7 

Enterococcus gilvus, 

Enterococcus faecalis Acylkinase 

Generic 

amino acid 

degradatio

n 0.6848 0.003 

3-

Hydroxybuta

n-2-one 1.1.1.62 Lactococcus lactis 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.6059 0.005 

Butane-2,3-

dione  

1.1.1.34

6 

Bifidobacterium 

mongoliense, Enterobacter 

cloacae, Pediococcus 

pentosaceus 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5128 0.03 

Butane-2,3-

dione  4.4.1.13 Lactococcus lactis 

Cystathionine-

Gamma-lyase 

Cyst meth 

degradatio

n 0.9364 <0.001 

Butane-2,3-

dione  1.1.1.62 Lactococcus lactis 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.6818 0.04 

Butane-2,3-

dione  1.1.1.18 

Propionibacterium 

freudenreichii, 

Alcohol 

dehydrogenase 

Generic 

amino acid 0.6313 0.005 
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Streptococcus parauberis, 

Klebsiella michiganensis 

degradatio

n 

Esters 

Ethyl acetate 

1.1.1.36

9 

Lactiplantibacillus 

plantarum,Lacticaseibacillu

s rhamnosus , Lactobacillus 

diolivorans 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.6424 0.04 

Ethyl acetate 3.1.1.24 

Acinetobacter johnsonii, 

Lacticaseibacillus 

rhamnosus , Hafnia alvei Arylesterase 

Lipids 

metabolism -0.6333 0.01 

Ethyl acetate 

3.4.22.4

9 

Limosilactobacillus 

fermentum  

Cysteine 

Proteinase 

Amminoaci

d 

metabolsim 0.7381 0.05 

Ethyl acetate 4.4.1.11 

Lactobacillus delbrueckii, 

Citrobacter braakii, 

Escherichia coli 

Cystathionine-

Gamma-lyase 

Cyst meth 

degradatio

n 0.6036 0.03 

Ethyl 

butanoate 

1.1.1.36

9 

Lactobacillus diolivorans, 

Lacticaseibacillus 

rhamnosus , Streptococcus 

parauberis 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.7517 0.02 

Ethyl 

butanoate 3.1.1.24 

Lacticaseibacillus 

rhamnosus , Pseudomonas 

fluorescens, Acinetobacter 

johnsonii Arylesterase 

Lipids 

metabolism -0.5551 0.02 

Ethyl 

butanoate 1.1.1.47 

Leuconostoc 

pseudomesenteroides, 

Enterococcus faecalis, 

Leuconostoc citreum 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.1730 0.02 

Ethyl 

butanoate 4.4.1.16 

Streptococcus 

thermophilus, Raoultella 

terrigena 

Cystathionine-

Gamma-lyase 

Cyst meth 

degradatio

n 0.1706 0.02 

Ethyl 

hexanoate 

1.1.1.36

9 

Lacticaseibacillus 

rhamnosus , 

Lactiplantibacillus 

plantarum,Lactobacillus 

diolivorans 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.7608 0.01 

Ethyl 

hexanoate 1.1.1.62 Lactococcus lactis 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5530 0.01 

Ethyl 

hexanoate 

1.1.1.37

3 

Citrobacter braakii, Hafnia 

paralvei 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.3828 0.04 

Ethyl 

hexanoate 

3.4.24.1

3 Streptococcus thermophilus 

Metalloproteinas

es 

Amminoaci

d 

metabolsim 0.3140 0.02 

Others 

Cyclopentane 
1.1.1.31

3 

Propionibacterium 

freudenreichii, 

Pseudomonas fluorescens 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.4719 0.05 

Cyclopentane 

1.1.1.18 

Lacticaseibacillus 

rhamnosus , 

Propionibacterium 

freudenreichii, 

Bifidobacterium 

mongoliense 

Alcohol 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.3149 0.05 

Cyclopentane 

1.1.1.53 

Lentilactobacillus 

parabuchneri, Lactobacillus 

parafarraginis, 

Limosilactobacillus 

fermentum  

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.2934 0.01 

Cyclopentane 
1.1.1.27

6 

Lactobacillus brevis, 

Bifidobacterium 

mongoliense 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.2365 0.01 
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Toluene 

2.3.1.18

9 

Glutamicibacter sp BW77, 

Propionibacterium 

freudenreichii  

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5490 0.03 

Toluene 3.1.1.10 

Lacticaseibacillus 

rhamnosus , Acinetobacter 

johnsonii Esterase A 

Generic 

amino acid 

degradatio

n -0.5276 0.03 

Toluene 

2.3.1.10

9 

Raoultella terrigena, 

Pseudomonas fluorescens, 

Escherichia coli 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.6467 0.002 

Toluene 

1.1.1.10

5 Lactococcus lactis 

Alcohol 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.5053 0.03 

Xylene 

3.1.1.11 

Escherichia coli, Klebsiella 

michiganensis Esterase A 

Generic 

amino acid 

degradatio

n -0.6256 0.02 

Xylene 
2.3.1.18

9 

Propionibacterium 

freudenreichii, 

Pseudomonas fluorescens 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5711 0.02 

Xylene 
1.1.1.27

1 

Enterobacter cloacae 

complex 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.8571 0.03 

Xylene 
1.1.1.10

5 Lactococcus lactis 

Alcohol 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.5421 0.02 

Fatty 

acids 

Hexanoic acid 

1.1.1.40

5 

Lactiplantibacillus 

plantarum 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.6015 0.02 

Hexanoic acid 3.4.25.1 

Propionibacterium 

freudenreichii 

Threonine 

peptidase 

Amminoaci

d 

metabolsim -0.5851 0.04 

Hexanoic acid 4.4.1.11 

Lactobacillus delbrueckii, 

Escherichia coli, Raoultella 

terrigena 

Cystathionine-

Gamma-lyase 

Cyst meth 

degradatio

n 0.7500 0.02 

Hexanoic acid 

1.1.1.29

1 Acinetobacter johnsonii 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.6923 0.04 

 Octanoic acid 

1.1.1.90 

Lentilactobacillus 

parabuchneri, Lactobacillus 

brevis, Lactobacillus 

kefiranofaciens 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.3301 0.04 

 Octanoic acid 

3.1.1.11 

Klebsiella michiganensis, 

Escherichia coli, Raoultella 

ornithinolytica Esterase A 

Generic 

amino acid 

degradatio

n 0.6256 0.04 

Aldehyde

s 

Benzaldehyde 1.1.1.83 Raoultella terrigena 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.8571 0.02 

Benzaldehyde 3.1.1.10 

Lacticaseibacillus 

rhamnosus , Klebsiella 

michiganensis, 

Acinetobacter johnsonii Esterase A 

Generic 

amino acid 

degradatio

n -0.5423 0.03 

Benzaldehyde 1.1.1.53 

Lentilactobacillus 

parabuchneri, 

Limosilactobacillus 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 0.3329 <0.001 
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fermentum, Lactobacillus 

parafarraginis 

degradatio

n 

Benzaldehyde 1.1.1.42 

Streptococcus 

thermophilus, Lactococcus 

lactis 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.3172 <0.001 

Nonanal 

2.3.1.18

9 

Propionibacterium 

freudenreichii, 

Pseudomonas fluorescens, 

Glutamicibacter sp BW77 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.6348 0.01 

Nonanal 1.1.1.91 

Bifidobacterium 

mongoliense 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5384 0.007 

Nonanal 2.3.1.79 

Enterococcus faecalis, 

Lactobacillus sakei, 

Lentilactobacillus buchneri 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.3684 <0.001 

Nonanal 1.1.1.53 

Lentilactobacillus 

parabuchneri, 

Limosilactobacillus 

fermentum , Lactobacillus 

parafarraginis 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.3089 <0.001 

3-

Methylbutana

l 

1.1.1.30

3 

Leuconostoc mesenteroides, 

Lactobacillus brevis, 

Leuconostoc 

pseudomesenteroides 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n -0.5176 0.03 

3-

Methylbutana

l 

1.1.1.27

1  Enterobacter cloacae 

D-hydroxyacid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.7857 0.05 

3-

Methylbutana

l 

2.3.1.18

9 

Propionibacterium 

freudenreichii, 

Glutamicibacter sp BW77, 

Pseudomonas fluorescens 

Keto acid 

dehydrogenase 

Generic 

amino acid 

degradatio

n 0.5686 0.02 
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Chapter 3:  Comparison of analytical methods for cheese origin 

authentication 

Dairy products hold a prominent position among the most common commodities 

vulnerable to food fraud, and within this category, protected land- and tradition-related 

labelled cheeses, such as those with a Protected Designation of Origin (PDO) or labelled as 

"mountain products," have become particularly susceptible to fraudulent activities. The 

reason behind this heightened risk lies in the high economic value of such cheeses. 

Consumers are willing to pay a premium for these types of traditional and typical cheeses 

due to their distinctive flavors, appealing appearance, and the perception of more natural 

and animal-friendly production attributes (Menozzi et al., 2022). The demand for these 

premium cheeses has created a lucrative market, making them an attractive target for 

unscrupulous actors seeking to capitalise on the opportunity presented by fraudulent 

practices. Mislabelling and fraudulent documentation are among the common methods 

used to deceive consumers and profit from the increased prices associated with authentic, 

region-specific cheeses. 

In response to this challenge, regulatory authorities, as well as cheese producers and 

manufacturers, have been compelled to take measures to ensure the authenticity of these 

valuable cheeses. Geographical origin authentication methods have emerged as important 

tools in this endeavour. These methods aim to verify the geographic origin of cheeses, 

thereby providing consumers with the assurance of authentic traditional products. Among 

the range of analytical techniques explored for cheese origin authentication, chemico-

physical analyses involving stable isotope ratios, trace elements, and fatty acid profiles have 

been traditionally employed. Additionally, newer approaches based on DNA-based 

methodologies and infrared analysis have garnered attention in recent years, offering 

promising avenues for enhancing the precision and efficiency of cheese origin 

authentication (Cardin et al., 2022). 

In this study, the effectiveness of several analytical methods for cheese origin 

authentication, including DNA shotgun metagenomics (bacterial and viral community 
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profiling), volatilome analysis, near infrared spectroscopy, element metabolomics, and 

stable isotope ratio analysis were evaluated. To achieve this, mountain Caciotta cheese and 

sPLS-DA models, a statistical method capable of handling high-dimensional datasets and 

classifying observations based on their features (Le Cao et al., 2011), were employed. 
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Abstract 

Origin authentication methods are pivotal in counteracting frauds and provide evidence for 

certification systems. For these reasons, geographical origin authentication methods are 

used to ensure product origin. This study focuses on the origin authentication of a typical 

mountain cheese origin using multi-omics approaches, including shotgun metagenomics, 

volatilome, near infrared spectroscopy, stable isotopes, and elemental analysis. DNA-based 

analysis revealed that viral communities achieved a higher classification accuracy rate (97.42 

± 2.58%) than bacterial communities (96.13 ± 4.02%). Notable non-starter lactic acid bacteria 

and phages specific to each origin were identified. Volatile organic compounds exhibited 

potential clusters according to cheese origin, with a classification accuracy rate of 90.0 ± 

11.11%. Near-infrared spectroscopy was used for cheese authentication, yielding a 76.0 ± 

31.57% classification accuracy rate. The models' performances were influenced by specific 

regions of the infrared spectrum, possibly associated with fat content, lipid profile, and 

protein characteristics. Furthermore, we analyzed the elemental composition of mountain 

Caciotta cheese and identified significant differences in elements related to dairy 

equipment, macronutrients, and rare earth elements among different origins. The 

combination of elements and isotopes showed a decrease in authentication performance 

(97.00 ± 3.09%) compared to the original element models, which were found to achieve the 

best classification accuracy rate (99.00 ± 0.01%). Overall, our findings emphasise the 

potential of multi-omics techniques in cheese origin authentication and highlight the 

complexity of factors influencing cheese composition. 
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1.  Introduction 

Dairy products are among the most common products concerned by food frauds. In 

particular, protected land- and tradition-related labelled cheeses (e.g. Protected Designation 

of Origin or “mountain product”) are subjected to food fraud (mainly mislabelling and 

fraudulent documentation) due to their high economic value. Indeed, consumers are more 

willing to pay higher prices for traditional and typical mountain cheeses due to their 

distinctive flavours and appearance but also their more natural and animal-friendly 

production attributes (Menozzi et al., 2022). For these reasons, geographical origin 

authentication methods are used to ensure product origin. In addition to chemical analyses, 

including stable isotope ratios, trace elements, and fatty acid profiles, emerging methods 

such as DNA-based methodologies and Near Infrared Spectroscopy are also investigated in 

this field (Cardin et al., 2022). However, to our knowledge, no comparative study has been 

conducted on the performances of chemico-physical analysis and DNA-based methods in 

authenticating cheese origin.  

The stable isotope ratios of hydrogen (δ2D), carbon (δ13C), nitrogen (δ15N), oxygen (δ18O) and 

sulphur (δ34S) found in animals and their derived products like milk and cheese are 

reflective of those present in their diet and drinking water (Camin et al., 2008; Chesson et 

al., 2010; Pianezze et al., 2020). Due to the correlation between the isotopic ratios of diet 

constituents and water with the local environment, the analysis of isotope ratios has been 

widely used to differentiate cheese originating from distinct geographical areas (Bontempo 

et al., 2011; Camin et al., 2004; Camin et al., 2008; Camin et al., 2012). Element analysis or 

elemental metabolomics is related analysis in origin authentication, that involves the 

quantification and characterisation of the concentration of chemical elements in biological 

samples (Zhang et al., 2018). The origin of cheese has a strong correlation with its elemental 

composition, primarily influenced by geological and pedological traits, rather than being 

solely determined by factors like animal breed, feed vegetation, and mineral 

supplementation (Bontempo et al., 2011; Camin et al., 2012; Danezis et al., 2020). This is 

supported by the high performances obtained by this method in origin authentication such 
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as 92.1% of correct classification rate for Greek Graviera (Danezis et al., 2020) that made this 

analysis and its combination with stable isotope ratio the reference method for cheese origin 

authentication (Camin et al., 2012; Camin et al., 2015).  

An emerging analysis in the origin authenticating field is Near Infrared Spectroscopy. 

Infrared analysis generates spectral data ranging from 800–2500 nm (near infrared) to 25–

1000 µm (far-infrared) that contains diverse chemical and physical information (Lei and Sun 

2019). This enables the use of Near Infrared Spectroscopy for authenticating the origin of 

cheeses, such as geographical origin, type of milk used, manufacturing process, quality 

parameters, composition data, and detecting any potential fraud through adulteration 

(Abbas et al., 2018; Medina et al., 2019). 

Lastly, the other two prominent analytical methods in origin authentication are volatilome 

and microbiota analysis. Volatile organic compound (VOC) analysis has emerged as a 

prominent method for authenticating cheese origin due to the significance of volatile 

compounds in defining cheese typicity (Pillonel et al., 2003). These compounds are 

produced by the metabolic activities of cheese microbiota during glycolysis, proteolysis, and 

lipolysis, resulting in a diverse array of VOCs.  

The metabolic activities of cheese microbiota are vital in shaping the distinct characteristics 

of cheese types. Cheese harbours a diverse microbiome that is composed of distinct and 

complex bacterial and viral communities. The diversity of microbial communities is 

influenced by the type of ecosystem in which they reside (Fierer and Jackson, 2006). 

Although cheese style is the primary predictor of rind microbiota (Wolfe et al., 2014), dairy 

farms and cheese-producing plants also play critical roles in defining cheese microbiota, 

which ultimately affects the quality of traditional cheeses (Goerges et al., 2008; Vacheyrou 

et al., 2011; Frétin et al., 2018). Microbial ecology studies have also highlighted how the 

combinations of different environmental factors, and cheese-making conditions and 

traditional know-how select specific microorganisms. Thus, DNA-based methods applied 

to microbiome analysis have also been suggested as potential tools to authenticate cheese 

geographical origin (Kamilari et al., 2019).  
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sPLS-DA (sparse partial least squares discriminant analysis) is a statistical method that can 

be used to analyze datasets with high dimensionality (large number of features) and identify 

patterns that can be used to differentiate between different groups or classes (Lê Cao et al., 

2011). It is based on partial least squares (PLS) regression, which is a technique that is used 

to model the relationship between a set of predictor variables (also known as features or 

characteristics) and a response variable. sPLS-DA is particularly useful when there are more 

predictor variables than observations, which can be a common problem in -omics datasets. 

sPLS-DA works by projecting the data into a lower-dimensional space (called a latent space) 

in a way that maximizes the separation between the different classes or groups. This is 

achieved by minimizing the residuals between the observed response variables and the 

predicted response variables, while also maximizing the variance explained by the latent 

variables (Chin, 1998) . The resulting model can then be used to classify new observations 

into one of the pre-defined groups based on their feature values. sPLS-DA is a relatively 

simple and computationally efficient method that has been applied to a wide range of 

problems, including metagenomics, metagenetics and multi -omics data (Le Cao et al., 2016). 

sPLS-DA has the advantage of being able to handle high-dimensional data and missing 

values, and is relatively easy to interpret compared to some other machine learning 

techniques (Chung and Keles, 2010).  

In this context, the aim of this study was to evaluate the discriminative power of DNA 

shotgun metagenomics (both bacterial and viral community profiling), volatilome, Near 

Infrared Spectroscopy, element metabolomics and stable isotopes ratio for cheese origin 

authentication. To do so, we used sPLS-DA models and adopted a case study approach to 

typical semi-hard raw milk Italian mountain cheeses (Caciotta). 
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2.  Methods 

2.1 Cheese sampling 

In total, 42 Caciotta cheeses were collected in triplicate from five closely situated producers 

(within a range of 51 ± 26 km) located in the mountainous regions of Trentino Alto-Adige 

and Veneto. These regions include Alti Pascoli della Lessinia, Giudicarie esteriori, and 

Trento province areas (Figure 1). In particular, producer 1 was 38 km, 30 km, 55 km, and 53 

km away from producers 2, 3, 4, and 5, respectively. The longest distances were observed 

for producer 2, who was 60 km, 92 km, and 94 km away from producers 3, 5, and 4, 

respectively. Lastly, producer 3 was 40 km and 42 km away from producers 4 and 5. 

Considering the origin altitudes, producers 2 and 3 were located at 1162 m and 1169 m above 

sea level, respectively, while producers 1, 4, and 5 were located at 628 m, 640 m, and 588 m 

above sea level, respectively. 

 

Figure 1. Map of the origin of mountain Caciotta producers. Producer 1 is located in 

Giudicarie Esteriori area while Producer 2 and Producer 3 are located in Trento province. 

Producer 4 and Producer 5 are located in Alti Pascoli della Lessinia area. 

Cheeses, of 2020 and 2021, were sampled at the end of the ripening period (60±14 days). 

Approximately 500 g of cheese were sampled from each producer. The obtained sample was 

divided into aliquots; 300 g were employed for NIR spectroscopy analysis, 150 g were 

employed for stable isotope and trace elements analysis. The remaining core cheese was 

homogenised using sterile equipment and 2.5 g and 150 mg weighed for volatile fatty acid 
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and DNA analyses, respectively. Three technical replicates were obtained for each of the 

above-mentioned analyses. The samples were stored at -80°C until analysis. 

2.2 Shotgun metagenomics 

Shotgun metagenomics data obtained from the previous characterization of typical 

mountain Caciotta cheese were employed to develop predictive sPLS-DA model to 

authenticate cheese origin. Briefly, for both Caciotta cheese and starters, the total DNA was 

extracted from the samples using the DNeasy PowerSoil kit according to the manufacturer's 

instructions (Qiagen, Hilden, Germany). The quantity of DNA was assessed using a Qubit 

dsDNA HS Assay (Invitrogen, Life Technologies, Italy). Libraries were constructed with the 

Nextera XT DNA Sample Preparation Kit (Illumina, Inc., San Diego, USA) and IDT for 

Illumina Nextera DNA UD Indexes. The libraries were combined in equimolar amounts and 

assessed for quality and quantity using the Agilent 2100 Bioanalyzer and Qubit Assay Kit 

HS, respectively. The sequencing was performed by UC DAVIS Genome Center (California, 

US) on a NOVASEQ Sp500 platform, generating 1.1 billion reads for cheese and 340 million 

reads for starters. The FASTQC software was used to assess the quality of the raw reads 

(v.0.11.9, Brown et al., 2017), which were then processed with the bioBakery3 platform for 

quality control, contaminant depletion, and taxonomic assignment using KneadData and 

MetaPhlAn 3 (Beghini et al., 2021). KneadData was used to remove low-quality, repetitive 

sequence, and adapter sequences with a quality score cut-off of 35. High quality microbial 

reads were taxonomically profiled using MetaPhlAn3, an assembly free taxonomic profiler 

(Segata et al., 2012; Beghini et al., 2021). All raw sequence data in read-pairs format were 

deposited in the National Centre for Biotechnology Information (NCBI) in the Sequence 

Read Archive (SRA) under the project PRJNA922379 and PRJNA922380, for cheese samples 

and starter cultures, respectively. 

2.3 Volatilome analysis 

The HiSorb probes were used in conjunction with UNITY-xr, both from Markes 

International (UK), to perform headspace thermal desorption coupled with gas 
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chromatography mass spectrometry (5977B GC-MS Agilent Technologies, US). The samples 

of cheese were placed in 2.5 ml vials and headspace was sampled using an HiSorb Agitator 

(Markes International UK) at 40°C and 200 rpm for one hour. The probes were 

thermodesorbed using UNITY-xr at 280°C for 12 minutes, and a purge flow of 50 ml/min 

for 1 minute was used. The flow path was set at 200°C with a trap low of 25°C and a trap 

high of 290°C, and injection in the GC was performed using a low split 5 ml/min flow. A 

DB-5ms capillary column 60 m × 250 μm × 0,25 μm (Agilent Technologies, US) was used for 

the analysis. The oven temperature program was set to initial 40°C held for 2 min, then 

ramped 3°C/min up to 180°C, and again ramped 20°C/min up to 260°C for 5 min, and finally 

held for 6 min. The constant flow rate of helium carrier gas was set to 1 ml/min. The MS 

analyses were done in a full scan mode (TIC mode), with a scan range of 33 to 350 amu. To 

validate detected peaks, forty-four standard molecules were injected. The MassHunter 

quantitative analysis workstation (v.11.1, Agilent Technologies, US) was used for semi-

quantitative analysis, with total peak area used for statistical analyses. 

2.4 Near infrared spectral acquisition 

A slice of cheese  of 300 g was ground with a Retsch Grindomix (Retsch GmbH, Haan, 

Germany) at 4000 rpm for 10 s after removal of 2 cm of crust all around. Ground cheese 

samples were analysed in triplicate using a FOSS DS-2500 scanning monochromator (FOSS 

NIRSystem, Hillerød, Denmark). Scans were recorded in reflectance mode (850–2500 nm at 

0.5-nm intervals) using a slurry cup with a quartz window (12.6 cm2 area) in 30 g aliquots. 

Spectral data were recorded as absorbance (A) calculated as log (1/R), where R represents 

reflectance, using WinISI4 software V4.10.0.15326 (FOSS Analytical A/S, Hillerød, 

Denmark). Before statistical analysis, spectra were exported to an Excel (Microsoft Office®, 

USA) spreadsheet and averaged before further chemometric modelling. 

2.5 Trace element analysis 

About 0.5 g of fresh cheese were acid digested using an UltraWAVE System (Milestone, 

Shelton, CT, USA) equipped with PTFE vials and following the method reported in Muňoz-
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Redondo et al. (2022). The mineral element profile (Li, Be, B, Na, Mg, Al, P, K, Ca, V, Cr, Mn, 

Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, 

Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Re, Hg, Tl, Pb, Bi and U) was quantified using an ICP-

MS (Agilent 7800, Agilent Technologies, Tokyo, Japan). Helium was used as collision gas in 

the Octopole Reaction System for the effective analysis of Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, 

Ni, Cu, Zn, Ga, Ge, As and Pd with a flow of 5 ml/min while for Se, Sn, Eu a flow of 10 

ml/min was used. Instrumental parameters were optimized to maximize sensitivity and 

reduce spectral interferences at each analytical batch following manufacturing guidelines. 

A solution of Sc, Rh and Tb was used as internal standard online for the correction of signal 

drift whereas a solution of in a known concentration was added to each sample before 

mineralization for volume correction. Each batch included, together with samples, a blank 

sample (only reagents) to assure cleanliness. The accuracy was verified using samples 

spiked with a known amount of a standard solution was used. The calculated recoveries 

ranged from 83 to 117% and were considered acceptable for the aim of this research. For the 

determination of the limits of quantification (LOQ), 10 blank samples were prepared and 

analyzed in a sequence and the calculated standard deviation obtained for each element was 

multiplied by 10. All the materials in contact with standard or samples during 

mineralization and analysis were washed with a 5% HNO3 solution and rinsed with 

ultrapure water (18.2 MΩ-cm, Millipore, Bedford, MA, USA). The moisture of each sample 

was quantified as the loss of weight in oven at 105°C. Elemental contents were expressed as 

percentage of dry matter (d.m.). 

2.6 Stable isotopes ratio 

The fresh cheeses were lyophilised. 4 g of freeze-dried cheese was extracted 3 times with 30 

mL of a petroleum ether: diethyl ether (2:1) mixture, homogenising with an Ultraturrax 

device (T25, IKA,  IKA GmbH, Staufen, Germany) (11500 rpm for 3 minutes) and using a 

centrifuge (e.g. 4100 rpm for 6 min) to separate the ether from the residue. A Soxhlet 

extractor (Merck KGaA, Darmstadt, Germany) was used as an alternative to extract fat. 

After lipid extraction, the skimmed cheese was warmed to 40 °C to remove any possible 
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residual ether. Then the residue was washed twice with 20 mL of water, centrifuging each 

time (e.g. 4100 rpm for 3 min). The residue, made up mainly of casein, was lyophilised and 

conserved at room temperature until analysis. 

All samples were weighted in silver and tin capsules for OH− and CNS− isotope 

measurements, respectively. The 15N/14N, 13C/12C and 34S/32S ratios were determined using an 

isotope ratio mass spectrometer (IRMS) (Isoprime, AP2003, GV Instruments Ltd, 

Manchester, UK) equipped with an elemental analyser (Vario EL III Elementar 

Analysensysteme GmbH, Hanau, Germany), while the 18O/16O and 2H/1H ratios were 

determined with an IRMS (Flash EA1112, Thermo Fisher Scientific, Bremen, Germany) 

equipped with a pyrolizer (TC/EA, Thermo Fisher Scientific, Bremen, Germany). 

In agreement with the IUPAC protocol (Brand et al., 2014) , the isotopic values are expressed 

in delta in relation to the international standard V−PDB (Vienna−Pee Dee Belemnite) for 

δ(13C), V−SMOW (Vienna−Standard Mean Ocean Water) for δ(2H) and δ(18O), V−CDT 

(Vienna−Canyon Diablo Troilite) for δ(34S) and Air (atmospheric N2) for δ(15N), following 

equation 1: 

                                     (1) 

where ref is the international measurement standard, sample is the analysed sample and 

iE/jE is the isotope ratio between heavier and lighter isotopes. The delta values are multiplied 

by 1000 and expressed commonly in units “per mil” (‰) or, according to the International 

System of Units (SI), in unit ‘milliurey’ (mUr). 

The isotopic values were calculated against two standards through the creation of a linear 

equation. The standards that have been used in the isotopic analyses were international 

reference materials or in−house working standards that have been calibrated against them. 

In particular, the international standards that have been used are: for 13C/12C, fuel oil NBS−22 

(δ(13C)=−30.03±0.05‰), sucrose IAEA−CH−6 (δ(13C)=−10.45±0.04‰) (IAEA−International 
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Atomic Energy Agency, Vienna, Austria), and L−glutamic acid USGS 40 

(δ(13C)=−26.39±0.04‰) (U.S. Geological Survey, Reston, VA, USA); for 15N/14N, L−glutamic 

acid USGS 40 (δ(15N)=−4.52±0.06‰) (U.S. Geological Survey, Reston, VA, USA), ammonium 

sulfate salts IAEA−N−1 (δ(15N)=+0.43±0.07‰) and IAEA−N−2 (δ(15N)=+20.41±0.12‰) and 

potassium nitrate IAEA−NO3 (δ(15N)=+4.7±0.2‰); for 34S/32S, USGS 42 (δ(34S)=+7.84±0.25‰), 

USGS 43 (δ(34S)=+10.46±0.22‰), Barium sulphate IAEA−SO−5 (δ(34S)=+0.5±0.2‰) and NBS 

127 (δ(34S)=+20.3±0.4‰); for 2H/1H fuel oil NBS−22 δ(2H)=−119.6±0.6‰) and Keratins CBS 

(Caribou Hoof Standard δ(2H)=−157±2‰) and KHS (Kudu Horn Standard δ(2H)=−35±1‰) 

from U.S. Geological Survey; for 18O/16O benzoic acid IAEA 601 (δ(18O)=+23.14±0.19‰) and 

benzoic acid IAEA 602 (δ(18O)=+71.28±0.36‰) from IAEA. 

Each reference material was measured in duplicate at the start and end of each daily group 

of analyses of samples (each sample was also analysed in duplicate). A control material was 

also included in the analyses of each group of samples, to check the efficiency of the 

measure. The maximum standard deviations of repeatability accepted were 0.3‰ for δ(13C) 

and δ(15N), of 0.4‰ for δ(34S), 0.5‰ for δ(18O) and of 3‰ for δ(2H). 

2.7 Statistical analysis 

Statistical analysis of microbial communities, volatile organic compounds, Near Infrared 

Spectroscopy, trace elements analysis and stable isotopes ratio were performed in R version 

4.0.5 (R Foundation for Statistical Computing, Vienna, Austria). Significance of the median 

was obtained with Kruskal-Wallis Rank Sum Test while multiple comparison was 

performed with pairwise Wilcoxon Rank Sum Tests. Obtained p-values were adjusted with 

Benjamini & Hochberg (1995) correction method. Trace elements distribution presented 

challenging problems connected with LOQ. In this instance we employed missing value 

substitution according to the results presented by Farnham et al. (2002). LOQ was divided 

by two to insert missing values. 

Unsupervised principal component analysis was used to investigate the datasets. sPLS-DA 

was employed to evaluate authentication performance (Le Cao et al., 2011). Centred log-
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ratio transformed relative abundance for bacterial and viral communities, peak abundances 

for volatilome analysis, wavelength absorbance for near infrared spectroscopy, elements 

and isotope concentration for trace elements and isotopes analysis were used with sPLS-DA 

model using mixOmics R package (Rohart et al., 2017). To avoid sampling biases and 

represent the true performances of the models, each dataset was sampled 10 times obtaining 

representative origins class for both training (75% of samples) and test (25% of samples) 

dataset. M-fold cross-validation (i.e. the process of dividing of dataset into M subsets and 

then, iteratively, using some of them to train the model while exploiting the others to 

evaluate its performance) of the training dataset was performed using 10 folds and 100 

repeats. The obtained models were used to predict the origin of the tested dataset. Average 

predictive performances were compared considering true positive (TP), true negative (TN), 

false positive (FP) and false negative (FN) ratios expressed through recall (Figure 2, 

Equation 2), precision (Figure 2, Equation 3), specificity (Figure 2, Equation 4) and 

classification accuracy rate (Figure 2, Equation 5) (Kassambara 2018; Bisutti et al., 2019). 

Figure 2, summarise the procedure used to obtain cross-validated models. 
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Figure 2. Procedure used to obtain and compare cross-validated sPLS-DA models. Each 

dataset was sampled 10 times obtaining representative origins class for both training (75% 

of samples) and test (25% of samples) dataset. 

Recall, precision, specificity and classification accuracy rate coefficient are commonly used 

performance metrics to compare the performance of predictive models. Each metric 

captures different aspects of the model's performance, and they are used in combination to 

provide a comprehensive evaluation of the model's effectiveness. Recall measures the 

proportion of true positive cases that were correctly identified by the model. Precision 

evaluates the proportion of true positive cases among all cases predicted as positive by the 

model. Specificity measures the proportion of true negative cases that were correctly 

identified by the model. It is a useful metric when the cost of a false positive error is high. 

Classification accuracy rate measures the proportion of correct predictions made by the 

model.  

In sPLS-DA models, the loading is a vector that represents the relationship between the 

predictor variables (e.g. taxa relative abundance) and the response variable (e.g. origin) that 

defines the class labels. The loading was calculated during the model fitting process and 

used to identify the variables that contribute the most to the separation of the classes in the 

data. The average loading importance was computed by extracting the loading value from 
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each model and then calculating the absolute value of each. Finally, the average of these 

absolute values was used to represent the 25 most important variables for the prediction.   
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3.  Results 

3.1 Bacterial and viral communities  

Caciotta microbiota showed a complex profile for both bacterial and viral communities. The 

univariate and multivariate analysis of the microbiota of typical Caciotta cheese has been 

previously outlined, including the results of the Kruskal-Wallis test, visual representation 

through non-metric multidimensional scaling, and permutational multivariate analysis of 

variance. Briefly, 45 bacterial and 44 viral species had significantly different mean relative 

abundance according to their origin. Starter (Steptococcus thermophilus and Lactobacillus 

delbrueckii) and non-starter lactic acid bacteria (e.g. Lactococcus raffinolactis, Lentilactobacillus 

parabuchneri, Lactiplantibacillus paraplantarum, and Propionibacterium freudenreichii) showed 

significant relative abundance differences. Some secondary microbiota components were 

only found in specific origins and a clear link between the cheese and its producer for several 

S. thermophilus strains was observed. Starter lactic acid bacteria were the most abundant, 

with associated bacteriophages like Streptococcus phage TP 778L, Streptococcus virus DT1, 

Streptococcus virus phiAbc2, and Lactobacillus phage A2 exhibiting the higher abundance 

and significant variations based on Caciotta origin. Both bacterial and viral communities 

formed clusters according to producer location. However, viral communities showed 

narrower clusters for each cheese origin and demonstrated significant differences in 

permutation analysis of variance. Bacterial communities tended to cluster based on regional 

area (i.e. producer 1, 2, 3, were separated from producer 4 and 5) as confirmed by 

permutation analysis. 

The potential of bacterial communities for authenticating Caciotta origin was evaluated 

using sPLS-DA models. The training models for the bacterial communities utilised a 

variable number of components, ranging from 9 to 15 and achieved a correct classification 

accuracy rate 99.89 ± 0.20%. The cross-validated outcomes are presented in Table 1. 
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Table 1. Summary table of bacterial communities’ sPLS-DA models performance 

based on true positive (TP), true negative (TN), false positive (FP) and false negative 

(FN) outputs. Recall, precision, specificity, and classification accuracy rate have been 

calculated according to Kassambara (2018). 

Origin/Parameter Recall Precision Specificity 

Classification accuracy 

rate (%)  

Producer 1 0.92 0.88 0.98 

96.13 ± 4.02 

 

Producer 2 0.97 0.98 0.99  

Producer 3 0.91 0.98 0.98  

Producer 4 1.00 0.98 1.00  

Producer 5 1.00 0.96 1.00  

 

Cross-validated models exhibit a slight decrease in performances compared to the training 

ones. Generally, recall, precision, and specificity presented high values for bacterial 

communities of Caciotta cheese. Producer 1 showed the lowest performances in origin 

authentication driven by the lowest value of precision while producer 3 had the lowest 

recall. Overall bacterial communities yielded a high value of classification accuracy rate 

96.13 ± 4.02%. The most important bacterial species in Caciotta origin authentication are 

shown in Figure 3. 
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Figure 3. Mean maximum importance score of the most important 25 bacterial species used 

in the sPLS-DA models.  

Most of the taxa with the highest scores were attributed to lactic acid bacteria. Among them 

the majority showed a significant difference in relative abundance connected to origin. 

Moreover, as previously noticed, origin specific non-starter lactic acid bacteria like 

Lactobacillus helveticus, Lactococcus raffinolactis and Propionibacterium freudenreichii presented 

the highest score for origin authentication.  

Viral communities constituted the second portion of the microbiota investigated to 

authenticate mountain Caciotta cheese. The training models for viral communities 

presented a lower number of components, from 7 to 12, and higher classification accuracy 

rate (99.92±0.16%) than the bacterial one. Also the cross-validated performances showed 
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higher values of recall, precision, specificity and classification accuracy rate than the 

bacterial one (Table 2).  

         

Table 2. Summary table of viral communities’ sPLS-DA models performance based 

on true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 

outputs. Recall, precision, specificity, and classification accuracy rate have been 

calculated according to Kassambara (2018). 

Origin/Parameter Recall Precision Specificity 

Classification accuracy rate 

(%) 

Producer 1 1.00 0.91 1.00 

97.42 ± 2.58 

Producer 2 0.95 0.98 0.98 

Producer 3 0.97 0.98 0.99 

Producer 4 1.00 0.98 1.00 

Producer 5 0.95 1.00 0.98 

 

Overall, viral communities models showed the highest performances for the authentication 

of producer 1, 4 and 5, while the lowest performances were observed for producer 2. The 

obtained classification accuracy rate was higher than bacterial communities yielding a 

correct classification of 97.42 ± 2.58% of the samples. The most important viral species used 

in the loadings of the model are shown in Figure 4.  
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Figure 4. Mean maximum importance score of the most important 25 bacterial species used 

in the sPLS-DA models.  

Generally, Streptococcus phages, Lactoccocus virus, Lactobacillus phages and Lactococcus 

phages were the taxa obtaining the highest score for origin prediction. Other important taxa 

were Salmonella virus, Mycobacterium virus and viruses affecting bacteria from 

Enterobacteriaceae family. 

3.2 Volatilome  

The analysis of volatile organic compounds in typical Caciotta cheese (both univariate and 

multivariate approaches) were already described in our previous work. These analyses 

included outcomes from the Kruskal-Wallis test, visual representations via principal 

components analysis, and permutational multivariate analysis of variance. Mountain 

Caciotta cheese presented a complex volatilome from which prominent levels of alcohols 

147



 
 

and ketones, accompanied by lower proportions of terpenes were observed. Cheese origin 

led to significant variations in the relative abundances of most investigated volatile organic 

compounds (i.e. ethanol, butan-2-ol, 3-methylbutan-1-ol, benzaldehyde, ethyl acetate, 3-

methylbutyl acetate, butan-2-one, heptan-2-one, octanoic acid, D-limonene) with the 

exclusion of 3-hydroxybutan-2-one and 1-acetophenyletanone. Additionally, certain 

terpenoids like p-cymene and 3-carene were not consistently found across all origins. The 

pairwise permutational analysis of variance revealed that each producer of typical 

mountain Caciotta cheese exhibited a distinctive VOC profile, varying to some degree from 

one another. 

The training models for the volatile organic compounds used a variable number of 

components, ranging from 9 to 15 and achieving a correct classification accuracy rate 99.87 

± 0.18%. The cross-validated outcomes are presented in Table 3. 

Table 3. Summary table of VOCs sPLS-DA models performance based on true 

positive (TP). true negative (TN), false positive (FP) and false negative (FN) 

outputs. Recall, precision, specificity, and classification accuracy rate have been 

calculated according to Kassambara (2018). 

Origin/Parameter Recall Precision Specificity 

Classification accuracy rate 

(%) 

Producer 1 0.98  0.82  0.99 

90.0±11.11 

Producer 2 0.9  0.98  0.97 

Producer 3 0.86  0.91  0.96 

Producer 4 0.93  0.82  0.98 

Producer 5 0.86  0.98  0.96 
 

Producer 2 showed the highest values of recall, precision and specificity compared to the 

other origins. Producers 1 and 4 had the lowest values of precision while producers 5 and 

3 had the lowest values of recall. Overall, high specificity values were observed for all the 

origins. The cross-validated model obtained a high value of correct accuracy rate 

90.0±11.11% but it was characterized by a high accuracy error as well. Figure 5 reports the 
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mean maximum score of the most important volatiles used in Caciotta origin 

authentication. 

 

Figure 5. Mean maximum importance score of the most important 25 VOCs used in the 

sPLS-DA models.  

Among the most important VOCs for authenticating mountain Caciotta origin, alcohols and 

ketones were the most prevalent classes, followed by esters, terpenes, fatty acids, and 

hydrocarbons. Esters such as 3-methylbutyl acetate and ethyl acetate showed the highest 

scores. Terpenes like D-limonene, p-cymene, and 3-carene significantly contributed to the 

model's performance, along with alcohols such as nonan-2-ol, 3-methylbutan-2-ol, and 

ethanol. Surprisingly, also 3-hydroxybutan-2-one and 1-acetophenyletanone were 

identified as important compounds for the authentication models.  
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3.3 Near infrared spectroscopy 

Absorbance values of typical Caciotta cheese were firstly investigated with principal 

components analysis (Figure 6).  

 

Figure 6. Principal component analysis of Caciotta’s absorbance in the Near Infrared region 

(850–2500 nm). 

Even though the unsupervised analysis of Caciotta cheese explained 90% of the variance in 

the first and second components, it did not reveal any clusters of samples related to their 

origin. The ability of NIRs data to authenticate Caciotta origin was further investigated with 

sPLS-Da models. The training models exhibited a wide range of components, varying from 

3 to 14. Nonetheless, they displayed encouraging classification performance, resulting in an 

average classification accuracy rate of 92.67±7.93%. Table 4 reports the average performance 

of the cross-validated models.  
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Table 4. Summary table of NIRs sPLS-DA models performance based on true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) 

outputs. Recall, precision, specificity, and classification accuracy rate have been 

calculated according to Kassambara (2018). 

Origin/Parameter Recall Precision Specificity 

Classification accuracy 

rate (%) 

Producer 1 0.95 0.68 0.98 

76.0 ± 31.57 

Producer 2 0.95 1.00 0.98 

Producer 3 0.55 0.65 0.88 

Producer 4 0.7 0.64 0.91 

Producer 5 0.65 0.93 0.9 

 

Cross-validated models exhibit a considerable decrease in performances compared to the 

training one. Producer 3 reported the lowest values of recall, precision and specificity, that 

connected to the precision and recall of producer 4 and 5 lead to a classification accuracy 

rate of 76 ± 31.57%. This model exhibited a high error in accuracy, which could be attributed 

to the low precision values observed for producer 1, 3, and 4. Given that a singular 

wavelength lacks significant information in comparison to NIR analysis regions, we 

assessed the 100 most crucial wavelengths for predicting the origin of Caciotta (Figure 7).  
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Figure 7. Average absorbance spectra of typical Caciotta cheese based on origin. Green bars, 

indicating the average importance value in prediction, were grouped in Region I, II and III. 

The wavelengths with the highest mean maximum importance score in the prediction of 

Caciotta origin formed three regions. Region I and III were characterized by three clusters 

around 1090, 1145, 1204 and 2230, 2310 and 2360 nm, respectively. Finally, Region II 

presented scattered important wavelengths around 1646, 1735, 1780 and 1870 nm. 

3.4 Element analysis  

The elemental analysis of Caciotta cheese showed different concentration profiles for 39 

elements while Be, Ga, Ge, Pd, Ag, Sn, Te, Dy, Ho, Tm, Hg and Tl presented concentrations 

inferior to LOQ for 90% of observations were excluded from the analysis. Table 5 reports 

elements concentration expressed as dry matter to correct the effects of different degrees of 

moisture and ripening. The results of the univariate analysis showed significant variations 

in element concentrations across different producers of Caciotta cheese. 
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Table 5. Pairwise Wilcoxon Rank Sum of element concentration in Caciotta cheese.  

Element Producer 1 Producer 2 Producer 3 Producer 4 Producer 5 

Al (ug/kg 

dm) 324.92±21,62a 504.15±81,75ab 143.47±12.88c 372.86±26.33ab 938.35±300.06b 

As (ug/kg 

dm) 0.5±0a 1.05±0.28a 0.5±0a 0.5±0a 1.20±0.34a 

B (ug/kg dm) 134.28±35.58ab 223.79±27.22a 143.52±11.94ab 125.74±23.08b 177.41±28.89ab 

Ba (ug/kg 

dm) 1556.72±14.52a 1366.10±193.27ab 975.13±87.36bc 963.81±23.08c 1045.59±111.25bc 

Bi (ug/kg dm) 0.1±0a 0.1±0a 3.11±0.86b 0.1±0a 0.1±0a 

Ca (g/kg dm) 12.31±0.08a 10.84±0.29ab 12.42±0.11a 11.59±0.13a 10.60±0.26b 

Cd (ug/kg 

dm) 0.31±0.02a 0.37±0.02a 0.32±0.01a 0.30±0.01a 0.32±0.01a 

Ce (ug/kg 

dm) 0.25±0.04a 0.36±0.06ab 0.04±0c 0.32±0.04ab 0.69±0.22b 

Co (ug/kg 

dm) 0.752±0.01a 1.52±0.09b 1.40±0.12b 1.85±0.09c 1.35±0.17b 

Cr (ug/kg 

dm) 5.32±0.46a 53.00±4.48b 10.56±1.76cd 7.38±0.76ac 16.78±0.74d 

Cs (ug/kg 

dm) 8.25±1.16a 10.98±1.43a 6.35±0.77a 1.62±0.07b 3.24±0.74b 

Cu (ug/kg 

dm) 

12240.97±1096
a 496.19±131.38b 307.96±21.92b 6078.50±221.11c 250.47±23.46b 

Er (ug/kg 

dm) 0.02±0a 0.03±0.006a 0.02±0a 0.02±0a 0.04±0.01a 

Eu (ug/kg 

dm) 0.09±0.006a 0.06±0.01ab 0.03±0b 0.03±0b 0.07±0.01ab 

Fe (ug/kg 

dm) 1036.84±36.94a 1687.78±120.29b 1078.63±82.21a 1148.50±50.54a 1511.33±122.53b 

Gd (ug/kg 

dm) 0.03±0a 0.03±0a 0.03±0a 0.03±0a 0.08±0.02a 

K (mg/kg 

dm) 1651.22±44ab 2424.96±180c 2107.02±159ac 1529.64±23d 1637.53±146bd 
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La (ug/kg 

dm) 0.12±0.01a 0.21±0.04ab 0.07±0.47c 0.23±0.03ab 0.39±0.11b 

Li (ug/kg dm) 2.75±0.16a 18.99±6.14b 1.36±0.47a 1.65±0.01a 3.03±0.87ab 

Mg (mg/kg 

dm) 0.43±0.01ab 0.49±0.01a 0.49±0.01a 0.44±0.01a 0.40±0.01b 

Mn (ug/kg 

dm) 198.15±5.99a 284.46±23.13b 262.56±7.00b 235.19±13.97b 213.28±22.63ab 

Mo (ug/kg 

dm) 252.45±12.49a 402.35±32.77b 249.34±12.00a 251.97±14.52a 257.83±10.08a 

Na (g/kg dm) 8.09±0.30a 11.69±0.80b 8.36±1.25ab 9.12±0.12a 9.31±0.49ab 

Nd (ug/kg 

dm) 0.11±0.01ab 0.15±0.02ac 0.03±0b 0.14±0.17ac 0.34±0,12c 

Ni (ug/kg 

dm) 1.25±0a 20.62±2.18b 3.58±1.07ac 4.33±0.61c 5.73±0.66c 

P (g/kg dm) 7.34±0.10a 6.58±0.15ab 7.31±0.16ab 7.20±0.19ab 6.83±0.09b 

Pb (ug/kg 

dm) 6.64±0.10a 2.59±0.27b 3.23±0.15b 3.55±0.25b 10.81±1.96a 

Pr (ug/kg 

dm) 0.02±0a 0.04±0.007b 0.02±0a 0.02±0a 0.08±0.03b 

Rb (ug/kg 

dm) 3375.65±276a 3888.21±626ab 5207.71±761b 1298.42±48c 1479.29±259c 

Re (ug/kg 

dm) 0.35±0.06a 0.57±0.21a 0.06±0.004bc 0.03±0b 0.17±0.05ac 

Sb (ug/kg 

dm) 0.21±0.01ab 0.21±0.01ab 0.18±0.01a 0.18±0.01a 0.28±0.01b 

Se (ug/kg 

dm) 93.40±8.13ab 160.86±23.89c 117.88±3.91a 94.56±5.71b 109.55±13,7ab 

Sm (ug/kg 

dm) 0.03±0a 0.03±0a 0.03±0a 0.03±0a 0,087±0.02b 

Sr (ug/kg dm) 3803.73±336ab 5359.01±271c 2789.52±41a 2848.11±52a 3641.18±257b 

U (ug/kg dm) 0.22±0.03a 0.09±0.02ab 0.15±0.02b 0.08±0.01b 0.35±0,04a 

V (ug/kg dm) 0.25±0a 2.07±0.71b 0.79±0.05ab 0.57±0.12a 1.43±0.58ab 

Y (ug/kg dm) 0.11±0.002a 0.15±0.03ab 0.04±0c 0.33±0.05b 0.32±0.08b 

154



 
 

Yb (ug/kg 

dm) 0.02±0b 0.04±0.004a 0.02±0b 0.02±0b 0.04±0.01a 

Zn (mg/kg 

dm) 43.03±1.19a 43.42±1.24ab 43.07±1,37a 51.85±1.20c 38.29±0.86b 

Each producer exhibits unique elemental signatures. The major differences were observed 

for Producers 1, 2, and 5, who presented significantly different concentrations of several 

elements compared to the other producers. We categorise the elements into four groups 

according to their potential ties to dairy equipments (i.e. Fe, Cu, Al, Ni, Cr), their 

classification as macronutrient (i.e. P, K, Ca, Mg, Na) or rare earth (i.e. Ce, Er, Eu, La, Yb), 

and “other elements”. Among the elements associated with dairy equipment, Producer 1 

exhibited the highest concentration of copper (Cu), while Producer 2 had the highest 

concentrations of iron (Fe) and nickel (Ni). Producer 4 showed the highest concentration of 

chromium (Cr), and Producer 5 had the highest concentration of aluminium (Al). In the 

macronutrients class, phosphorus (P) showed similar concentrations among producers, 

except for Producer 1 and Producer 5, which had the highest and lowest concentrations, 

respectively. Producer 2 had the highest sodium (Na) concentration compared to Producers 

1 and 3. Additionally, Producer 5 had the lowest concentrations of magnesium (Mg) and 

calcium (Ca). Among the rare elements, Producer 3 exhibited the highest cerium (Ce) 

concentration in comparison to Producers 1, 2, and 4 and Producer 5 showed significantly 

higher concentrations of europium (Eu) compared to Producers 1, 2, and 3. There were 

significant differences in concentration for the "other elements" as well. Producer 3 had the 

highest levels of manganese (Mn) and rubidium (Rb). Producers 1 and 5 exhibited higher 

concentrations of certain elements such as barium (Ba), lead (Pb), neodymium (Nd) and 

uranium (U). On the other hand, Producers 4 and 5 showed lower concentrations of cesium 

(Cs). Additionally, Producers 2 and 5 demonstrated higher concentrations of 

praseodymium (Pr) and strontium (Sr). 

We further examined the elemental composition of Caciotta cheese with unsupervised 

multivariate analysis based on principal component analysis (Figure 8). 
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Figure 8. Principal component analysis of Caciotta elemental composition.  

Caciotta cheeses from the same origin tended to cluster together. However, the confidence 

intervals of producer 2, 3 and 5 as well as producer 1 and 4 presented considerable 

overlapping area. The possibility of authenticating Caciotta origin was tested with the sPLS-

DA model for which the cross-validated results are reported in Table 6. The number of 

components in the training models varied from 9 to 15, suggesting a potential impact of 

dataset sampling. Nevertheless, this effect did not seem to affect the performances of these 

models, as they all achieved a 100% correct classification rate. 
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Table 6. Summary table of elements sPLS-DA models performance based on true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) 

outputs. Recall, precision, specificity, and classification accuracy rate have been 

calculated according to Kassambara (2018). 

Origin/Parameter Recall Precision Specificity 

Classification accuracy rate 

(%) 

Producer 1 1.00 1.00 1.00 

99.00 ± 0.01 

Producer 2 0.95 1.00 0.99 

Producer 3 1.00 0.95 1.00 

Producer 4 1.00 1.00 1.00 

Producer 5 1.00 1.00 1.00 

 

The cross-validated models (Table 6), on average, demonstrated a slightly lower but still 

excellent correct classification rate, achieving 99 ± 0.01% accuracy in correctly classifying 

Caciotta origin. For Producers 1, 4, and 5, the model achieved 100% recall, precision, and 

specificity, demonstrating its accurate classification of all samples from these areas. 

However, Producers 2 and 5 had recall, precision, and specificity values ranging from 0.95 

to 0.99, which led to a slight decrease in the model's performance. We further investigate 

which element characterized the performance of the obtained models through maximum 

importance score (Figure 9). 
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Figure 9. Mean maximum importance score of the most important 25 elements used in the 

sPLS-DA models.   

Among the most important elements for Caciotta origin authentication there were “other 

elements”such as cobalt, lead and arsenic. Elements associated with dairy equipment like 

chromium, copper and aluminium. Macronutrients like sodium and rare earth such as 

rhenium, ytterbium and cerium.    

3.5 Stable isotopes 

The median values with standard error of δ13C, δ15N, δ34S, δ18O and δ2D determined in the 

mountain Caciotta cheese are shown in Table 7. 

Table 7. Pairwise Wilcoxon Rank Sum of isotopes concentration in Caciotta cheese 

Origin 13C 15N 34S 18O 2D 

Producer 1 -25.70±0.11a 4.15±0.51ab 4.98±1.75a 7.50±1.64a -114.32±4.64a 

Producer 2 -23.46±0.15b 5.05±0.16ab 3.32±0.96a 5.82±1.84a -120.02±4.15b 

Producer 3 -24.13±0.14b 4.11±0.07ab 5.30±1.35a 6.71±1.31a -114.05±3.66c 

Producer 4 -22.95±0.05b 4.72±0.26a 4.84±1.42a 8.21±1.10a -109.02±2.07d 

Producer 5 -24.51±0.18b 4.52±0.09b 4.32±1.51a 7.86±0.87a -108.60±3.80e 
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Producer 1 showed a notably lower δ13C value compared to the rest of the producers. On 

the other hand, Producer 4 exhibited the higher δ15N value when compared to Producer 5. 

Overall, the δ34S values ranged from 3.32‰ to 5.30‰, but no significant differences were 

observed. Similarly, δ18O values, which ranged from 5.82‰ to 8.21‰, did not show 

significant variations based on cheese origin. Lastly, we noticed significant differences on 

the δ2D values for all the origins considered. The unsupervised analysis of stable isotope 

ratio is shown in Figure 10. 

 

Figure 10. Principal component analysis of Caciotta stable isotopes composition. 

The first two components of the principal component analysis accounted for 91% of the 

variability, but no distinct clusters of Caciotta cheese related to its origin were discernible. 

We proceeded to assess the potential for authenticating Caciotta origin using sPLS-DA. The 
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training models showed a slight variation in components, ranging from 3 to 4. However, 

upon comparison with the previously reported analysis, it became evident that the training 

model achieved the lowest classification performance, resulting in an average classification 

accuracy rate of 86.94 ± 5.34%. Table 8 reports the classification performances of the cross-

validated models.  

Table 8. Summary table of stable isotopes sPLS-DA models performance based on true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) outputs. 

Recall, precision, specificity and classification accuracy rate have been calculated 

according to Kassambara (2018). 

Origin/Parameter Recall Precision Specificity Classification accuracy rate (%) 

Producer 1 0.5  0.33  0.85 

65.00 ± 53.84 

Producer 2 0.90  0.62  0.96 

Producer 3 0.00  0.00  0.76 

Producer 4 1.00  0.91  1.00 

Producer 5 0.85  1.00  0.94 
 

We observed a dichotomy in the performance of sPLS-DA for cheese origin authentication. 

Cheeses from producer 4 and 5 demonstrated high recall, precision, and specificity values, 

indicating accurate classifications. However, as we moved to producers 2, 1, and 3, the 

classification performances gradually decreased. In particular, producer 3 exhibited a recall 

and precision of zero, indicating that the models were unable to correctly identify or predict 

any cheeses from this producer. However, the specificity was 0.76, suggesting that the 

model performed comparatively well in correctly identifying cheeses that did not originate 

from Producer 3. These factors influenced the classification accuracy rate, resulting in the 

lowest value and the highest accuracy error when compared to the other models. Figure 11 

shows the mean maximum importance score of the stable isotopes used in the sPLS-DA 

model.  
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Figure 11. Mean maximum importance score of the stable isotopes used in the sPLS-DA 

models. 

3.6 Combination of element analysis and stable isotopes 

Scientific literature reports that the combination of elements and stable isotopes can increase 

the origin authentication performance of cheese. Consequently, we merged the two datasets 

and proceeded to assess the performance of the models.  

The unsupervised analysis, conducted through principal component analysis, revealed 

significant differences when compared to individual analyses (Figure 12).   
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Figure 12. Principal component analysis of Caciotta stable isotopes and elements 

composition. 

The clusters observed in the elemental analysis were more separated. This effect was more 

appreciable for producers 2, 3 and 5 than producers 1 and 4. Nevertheless, the explained 

variability of the analysis decreased from 91% for stable isotopes and 90% for elements, 

respectively, to 57% when both analyses were combined.  

In the supervised analysis, the training models showed a decrease in the number of optimal 

components, ranging from 5 to 8, while achieving the same performance of elements 

analysis (100%). However, we did notice variations in the cross-validated models (Table 9).  
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Table 9. Summary table of combined elements and stable isotopes models performance 

based on true positive (TP). true negative (TN). false positive (FP) and false negative 

(FN) outputs. Recall. precision. specificity and classification accuracy rate have been 

calculated according to Kassambara (2018). 

Origin/Parameter Recall Precision Specificity Classification accuracy rate (%) 

Producer 1 1.00 1.00 1.00 

97.00 ± 3.09 

Producer 2 1.00 0.90 1.00 

Producer 3 0.95 1.00 0.98 

Producer 4 1.00 1.00 1.00 

Producer 5 0.9 0.94 0.97 

The origin authentication performance of producer 1 and 4 matched that of the elements 

models. As for producer 2, there was an improvement in recall and specificity, but the 

precision of the models decreased from 1 to 0.9. A similar trend was noticed for producer 3. 

The most significant decrease in performance was observed for producer 5. Overall, there 

was a slight decline in the classification accuracy rate, which was 97 ± 3.09%. The most 

important variables for the prediction (Figure 13) were similar to the elements models. We 

noticed a decrease in the importance of some elements such as lead and cobalt while other 

elements (e.g. copper and selenium) reported higher scores. There were some differences in 

the importances of δ15N, δ18O and δ34S as well. δ15N achieved a higher score than δ18O, while 

δ18O obtained a higher score than δ34S. However, the reverse order was observed for the 

stable isotopes models. 
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Figure 13. Mean maximum importance score of the stable isotopes and elements sPLS-DA 

models. 
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4.  Discussion 

Cheese origin (i.e. the combination of geographical origin and local environmental 

variables) has been reported to significantly affect cheese microbiota (Sun and D’Amico, 

2021; Kamilari et al., 2022; Reuben et al., 2023). In our previous study, we assessed the effect 

of different biotic and abiotic factors that shaped the microbiome of typical Caciotta cheese, 

finding that origin was the major contributor to the observed differences. A comparable 

effect was observed concerning the VOCs, highlighting the importance of microbiota's 

metabolic activity in the development of Caciotta's typicity. In this study, we further 

evaluate the microbiome's capability to authenticate cheese origin in a multi-omics 

environment. To achieve this, we compared it with both established reference analyses and 

emerging methods. Additionally, we used a two-year sampling period to assess the 

temporal stability of each method (Riedl et al., 2015). 

Among DNA-based methods, the classification accuracy rate of the viral communities 

outperformed the bacterial communities (97.42 ± 2.58 vs 96.13 ± 4.02%). For both 

communities, we noticed origin specific non-starter lactic acid bacteria, like Lactobacillus 

helveticus, Lactococcus raffinolactis and Propionibacterium freudenreichii, or phage, like 

Salmonella virus PsP3 and Enterobacteria phage ES18. Corroborating these findings, Dugat-

Bony et al. (2016) reported the presence of specific operational taxonomic units in one or 

several of the 12 analyzed cheese varieties, forming distinct patterns with the cheese 

production facility. Similarly, the taxa presented in our study showed the highest score in 

the prediction, suggesting their discrimination ability for origin authentication. 

To our knowledge, only another study has evaluated the performances of cheese microbiota 

in authenticating cheese origin (Kamilari et al., 2022). Our results showed lower prediction 

performances than those reported using Random Forest algorithm. In particular, the area 

under the curve (i.e. the ratio between specificity and sensitivity) was found to be equal to 

1, meaning that all the tested samples were correctly classified according to their origin. The 

differences between the two studies could be connected to potential overfitting of the 
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developed model and/or excessively small training dataset. More studies are needed to 

really assess the performances of DNA-based authentication methods.  

Volatile organic compounds showed potential clusters according to cheese origin. 

Classification accuracy rate of the predicted origin was 90.0 ± 11.11% with secondary 

alcohols, ketones, esters, terpenes, free fatty acids and hydrocarbons as most important 

volatile classes. Origin authentication using volatilome data reported different correct 

classification performances. A study on Pecorino Romano showed that 87.5% of samples 

were correctly classified after cross-validation while another study on Graviera cheese 

reported 47.5% of correctly classified samples (Di Donato et al., 2021; Vatavali et al., 2020). 

Our study was able to correctly classify 90.0 ± 11.11% of mountain Caciotta cheese 

suggesting that the discriminative power of VOC profile for cheese authentication could 

vary considerably according to the considered cheese type (Cardin et al., 2022). 

In many food fields, spectroscopic techniques have gained popularity since these are fast, 

solvent-free, automatic, non-destructive, non-invasive, inexpensive, and can be used as a 

multiparameter analysis. In this context, near infrared analysis is emerging in the food 

authentication field (Currò et al., 2022; Sammarco et al., 2023; Silva et al., 2022). However, 

considering cheese, no comparison of the performances of NIR spectrometry and DNA-

based methods or reference analysis exist. In our study, we use NIR spectroscopy to 

authenticate cheese origin obtaining a 76.0 ± 31.57% classification accuracy rate highlighting 

a considerable error in prediction’s accuracy. The performance of these models were 

primarily influenced by three areas of the IR spectrum, where we observed clustering of 

important wavelengths for the prediction. In region I and III the importance of the selected 

wavelength might be associated with different fat content and/or different lipidic profile. 

Indeed, Silva et al. (2022) reported that vibrational and rotational motions of C-H/C=O 

groups could be associated with different wavelengths ranging from 1200 to 1214 and 2234 

to 2348 nm. On the other hand, region II could be associated with a different protein 

profile/proteolytic activity, since the range from 1620 to 1700 nm is associated with the N-H 

bond (Alinovi et al., 2019). Considering the models performances, our results report lower 
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accuracy compared to the authentication of Emmental PDO (85.7%) or the discrimination of 

cheeses from different dairy systems (67.1%) (Karoui et al., 2005; Bergamaschi et al., 2020) 

possibly connected to the limited size of the investigated samples (Niemöller and Holroyd, 

2019). 

Elements in mountain Caciotta cheese showed characteristic signature for each producer. 

Significant differences were observed for elements connected with dairy equipment, 

macronutrient as well as rare earth and other elements. The elemental pathway from farm 

to the final food product is regulated by the bioavailability of elements, which is influenced 

by the elemental composition of soil, water, feed, and, subsequently, by animals and 

transformation process, such as cheesemaking for cheese (Danezis and Georgiou, 2022). In 

the case of mountain Caciotta cheese, this complex interplay could have been influenced by 

differences in soil composition between the Veneto and Trentino regions, the proximity of 

the pastures to roads, the traditional tools employed during cheesemaking, the variations 

in acidification curves and other factors. For example, the Pedemontana area of the Veneto 

region lies on limestone rocks and is characterized by normal salinity and 

alkaline/subalkaline acidity (ARPAV, 2020).  These factors are known to affect element 

availability for plants (Tyler and Olsson, 2001) and could therefore affect the composition 

of milk and cheese. Among the investigated elements, we noticed concentrations of some 

toxic metalloids above the limit of quantification (LOQ), which further prompted their 

selection for their importance in prediction. The maximum tolerable daily intake of 

inorganic arsenic and antimony are 0.002 and 0.006 mg/kg body weight, respectively (WHO, 

2011; WHO, 2022). Caciotta cheese has an average humidity of 37.57%. Considering that the 

highest concentrations observed for arsenic and antimony were 1.2 and 0.28 ug/kg of dry 

matter, respectively, we can exclude the potential harmful effects connected to the 

consumption of these cheeses.  

Elements cross-validated models demonstrated an excellent correct classification rate, 

achieving 99.00 ± 0.01% accuracy in correctly classifying Caciotta origin. Among the most 

important elements for the prediction we found a majority of “other elements” such as 
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cobalt, lead and arsenic, elements connected with dairy equipment (e.g. copper and 

aluminium), and rare earths such as cerium and europium which were found to 

significantly differ among origins. The high correct classification rate and low accuracy error 

are similar to the studies of Danezis et al. (2019 and 2020) who achieved 95.9% and 92.1% 

classification accuracy rate. Nevertheless, while rare earth had critical importance in these 

authors' models, their relevance in Caciotta authentication was lower than other elements.  

We investigated mountain Caciotta stable isotope ratios as a reference method for origin 

authentication. For both δ13C and δ15N, we found significant differences among some 

producers, while δ2H showed significant differences for all the considered origins. We 

further evaluate the ability of stable isotopes to authenticate Caciotta origin finding that 

cross-validated sPLS-DA models yielded poor performances in classification accuracy rate 

(65.00 ± 53.84%), characterized by a high error in accuracy. The ratio of stable isotopes is 

connected to isotopic fractionation phenomena, such as photosynthetic CO2 fixation 

pathways (Boutton et al., 1988) and the water cycle (O’Sullivan et al., 2022). Among the 

stable isotopes, δ13C and δ15N are most affected by animal feed, while δ2H is heavily 

influenced by the animal's drinking water. Additionally, the combination of δ2H with δ18O 

is mainly impacted by geographical origin and seasonality (Cardin et al., 2022). On the other 

hand, δ34S is primarily linked to geographical origin, specifically soil geology (Pianezze et 

al., 2020). However, we did not notice any significant difference between the δ18O and δ34S 

stable isotopes. Moreover, we noticed a considerable difference in the performance of our 

models compared to those described in the scientific literature. For instance, Bontempo et 

al. (2012) used a similar combination of isotopes and achieved a classification accuracy rate 

of 80% for the two origins of the investigated cheese types. Lastly, upon combining elements 

and isotopes, we observed a decrease in the authentication performances (97.00 ± 3.09%) 

compared to the original element models. These differences could be explained by the close 

distance between the investigated origins of mountain Caciotta cheese (range of 51 ± 26 km) 

that could affect isotope fractionation.  
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Conclusions 

DNA-based methods have been suggested as potential tools to authenticate cheese origin. 

However, no comparative work has assessed their performances in origin authentication. 

In this study, the discriminative power of shotgun metagenomics, volatilomics, near-

infrared spectroscopy, elements metabolomics, and stable isotope ratio were evaluated 

using sPLS-DA models and a mountain cheese case study obtained from 5 producers in a 

limited geographic area. The different analytical methods highlighted significant 

differences connected to origin and/or origin-specific features that could potentially 

discriminate against Caciotta origin. 

The overall classification accuracy rate varied from stable isotope ratio (65.00 ± 53.84%) to 

element analysis (99.00 ± 0.01%). DNA-based methods obtained appreciable classification 

accuracy, with the viral communities reaching the second most accurate method (97.42 ± 

2.58%), followed by the combination of stable isotopes and element analysis (97.00 ± 3.09%), 

and the bacterial communities (96.13 ± 4.02%). Average and below-average performances 

were obtained for near-infrared spectroscopy and stable isotope ratio analysis, possibly 

connected to the limited number of analyzed samples and the close proximity of cheese 

origin. 
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General discussion 

In the context of this PhD work, 167 articles published over the last 27 years were reviewed 

to present methods, either physical and chemical or DNA-based, that are currently used for 

cheese geographical origin authentication. The review highlighted their principles, 

applications, discriminative power, advantages, and limitations. Additionally, we identified 

knowledge gaps, such as the unknown discriminative power of the reference methods for 

closely distant cheese producers, the lack of quantitative assessment of DNA methods, and 

the unexplored possibility of using shotgun metagenomics for cheese origin authentication. 

Subsequently, we employed shotgun metagenomics and volatilomics to understand the 

biotic and abiotic factors contributing to the typicity and diversity of mountain Caciotta 

cheese. We characterized bacterial and viral communities, profiled the Streptococcus 

thermophilus and Lactobacillus delbrueckii strains, investigated their functional potential, and 

found correlations between Caciotta's volatile organic compounds (VOCs) and genes 

involved in five different metabolic classes. Lastly, we compared DNA-based methods with 

physico-chemical methods for origin authentication. We utilized mountain Caciotta cheese 

in a multi-omics approach framework, which included shotgun metagenomics, volatilome 

analysis, near-infrared spectroscopy, stable isotopes, and elemental analysis, to evaluate the 

authentication performance of these methods using sPLS-DA machine learning models. 

As part of this study, artisanal cheese from mountain areas was investigated as a case study 

to explore the capabilities of shotgun metagenomics and evaluate its ability to accurately 

authenticate cheese origin. Artisanal cheeses are gaining popularity worldwide, prompting 

regulatory bodies to develop guidelines and minimum requirements to safeguard their 

unique qualities and ensure consumer safety (Paxson, 2010; Barron et al., 2017). 

Consequently, verification of authenticity and standards of identity are being established in 

various countries and regions, providing support to producers and enabling regulatory 

inspections of these artisanal products (Barron et al., 2017; Wilkinson et al., 2017). 
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Geographical characteristics, such as soil, climate, and geography, play a decisive role in 

shaping the distinctive features of artisanal cheeses, along with the ingredients and starter 

cultures used (Barron et al., 2017). This combination of geographical factors is commonly 

referred to as "terroir," and its characterization is considered essential in defining the identity 

of artisanal foods, including cheeses (Paxson, 2010). In this context, we evaluate a specific 

landscape in the Veneto and Trentino regions' mountain areas. Italy, with 60% of its territory 

covered by mountains, stands as the biggest producer of EU mountain products 

(Euromontana, 2020), utilizing 47.50% of its agricultural area for mountain food production, 

amounting to €7,195 million (Santini et al., 2013). Mountain cheese plays a significant role 

in the cultural heritage of mountain areas and substantially contributes to the mountain 

economy (Mazzocchi et al., 2022). In this framework this research could be important for the 

preservation of the cultural heritage of mountain Caciotta cheese, and for protecting the 

economy of rural communities through different authentication systems. Nevertheless, our 

work has some relevant limitations driven by economic and time constraints, which may 

stimulate future research in this complex field. 

One limit of this research is the lack of culture-based microbiological analysis. In the context 

of metagenetics and metagenomics studies, there is a growing concern about the 

deficiencies in DNA-based methods, which involve uncharted sequences that could 

potentially be associated with known or unknown microorganisms. Recently, the concept 

of culturomics has gained popularity in microbiota studies (Lagier et al., 2012; Seng et al., 

2009; Nowrotek et al., 2019). The aim of culturomics is to identify and characterize a wide 

range of bacteria present in a sample (Lagier et al., 2012). This is achieved by plating serial 

dilutions of the sample on agar media with various culture conditions. After growth, each 

bacterial colony is isolated and identified using Matrix Assisted Laser Desorption 

Ionisation-Time of Flight (MALDI-TOF) mass spectrometry, providing taxonomic 

identification (Seng et al., 2009). If identification by MALDI-TOF is not possible, 16S rRNA 

amplification and sequencing are employed for identification. Culturomics allows to obtain 

living bacteria or intact viruses that could be investigated for different microbiological 

features (Martellaci et al., 2019); for example, each isolated colony could be tested for 
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cheesemaking attitudes such as VOCs production or isolated phages could be used against 

pathogenic bacteria during cheese production. Both shotgun metagenomics and 

culturomics complement each other (Lagier et al., 2018; Nowrotek et al., 2019). For example, 

the shotgun sequencing of microbial DNA enables the functional annotation of genes, 

offering valuable insights into the microbes' functional capabilities, which could be 

beneficial for their cultivation process. Ultimately, this approach enables the investigation 

of microbial competition, interactions, and the strategies they employ to thrive and survive 

within communities (Ferrocino et al., 2022). Combining these methods to study cheese, in 

particular traditional cheese, can significantly enhance our understanding of cheese 

microbiome and explore cheese diversity and typicity to unprecedented levels.  

Some considerations about our multi-omics geographical origin authentication study may 

arise from using only one cheese variety. We exclusively utilized mountain Caciotta cheese 

to compare different authentication methods due to its similar cheesemaking process, 

traditional tools employed, animals feeding systems, ripening days, sampling years, and 

close geographical locations. This approach was intended to challenge the employed 

methods in authenticating cheese origin. Furthermore, we observed no decrease in 

authentication performance across the investigated sampling years, suggesting stability in 

the obtained fingerprints for many of the investigated methods. These encouraging results 

could be further explored with different traditional cheese varieties (e.g., mountain and PDO 

cheese) and diverse geographical locations to validate the findings more extensively. In this 

context, a recent study employing 16S metabarcoding on 824 cheese samples spanning 58 

cheese types and 16 countries discovered diversity patterns in the cheese microbiota, 

influenced by geography and local environmental variables (Rueben et al., 2023). However, 

the limited discrimination power of metagenetics, combined with the analyses, was 

hindered by the use of different experimental approaches, the unavailability of deposited 

(sequence) data, a lack of consistent reporting, and the inability to develop authentication 

models. Future studies may consider investigating multiple cheeses using shotgun 

metagenomics to further validate bacterial and viral fingerprints. 
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In this elaborate NIRS yielded average performances in origin authentication, possibly 

connected to the limited number of investigated cheese (Niemöller and Holroyd, 2019). 

Considering the relatively low cost per analysis of this method, further studies should 

consider increasing the sample size of the investigated cheeses to gain a better assessment 

of these results. Moreover, we did not investigate emerging miniaturized vibrational 

spectroscopy devices. These devices integrate nano-engineered sensor components, 

customizable machine learning analysis, and data transmission and processing capabilities 

(Rodriguez-Saona et al., 2020). The miniaturization of these devices brings several 

advantages, including improved performance in terms of speed, portability, ruggedness, 

reduced power consumption, and compactness. Despite the lack of studies on cheese origin 

authentication, promising performances have been obtained in the authentication of whey 

protein, oil, spinach, among other foods (Peng and Wang, 2015; Basri et al., 2017; Sánchez et 

al., 2018). In addition, innovative tools (e.g., radio frequency identification, near field 

communication, and QR code technologies in combination with blockchain systems) can be 

commercially implemented to verify the processes and could aid in controlling the quality 

of foods (Violino et al., 2020).  

In our study, we mainly used PCA and sPLS-DA models to investigate and assess the 

performances of different methods for authenticating cheese origin. However, in the 

authentication field, different models could be used to classify samples. The aim of 

classification models is to develop a function that assigns a sample to a predefined class. 

Classification algorithms can be categorized as either discriminant analysis or class 

modeling. Discriminant algorithms function as two or multiclass classifiers, while class 

modeling algorithms are used for one-class classification models. Common class modeling 

algorithms include soft independent modeling of class analogy (SIMCA) and unequal 

dispersed classes (UNEQ), both of which assess whether a sample aligns with the 

characteristics of a single class of interest (Oliveri and Downey, 2012). On the other hand, 

discriminant algorithms establish boundaries between analyzed classes based on training 

samples. Well-known discriminant algorithms include linear discriminant analysis (LDA), 

partial least squares discriminant analysis (PLS-DA), quadratic discriminant analysis 
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(QDA), k nearest neighbors (kNN), and support vector machines (SVM). Additionally, there 

are other multivariate classification methods based on decision rules, such as decision trees 

(DT), random forests (RF), and artificial neural networks (ANN). In the realm of food 

analysis, Jiménez-Carvelo et al. (2019) categorized commonly used multivariate methods as 

conventional ones (PCA, PLS-DA, LDA, KNN, PARAFAC, SIMCA) and alternative data 

mining/machine learning methods from computer science (SVM, ANN, CART, J48, C5.0, 

Random Forest). The latter group of methods is sought after as data complexity increases 

due to advanced analytical techniques providing detailed physical-chemical parameter 

information.Various decision tree algorithms (CART, J48, C5.0, Random Forest), SVM, and 

ANNs have emerged from computer science, and some of them may be computationally 

intensive and lack a reproducible solution in certain cases. Despite being widely used in 

other artificial intelligence applications, their application in food science remains relatively 

limited (Jiménez-Carvelo et al., 2019; Chung et al., 2022). Future investigations should 

consider preliminary test using different algorithms in order to evaluate which model could 

be the most suitable for the method under investigation.  

Lastly, some consideration regarding the costs of the different analyses should be 

addressed. In our study, the cost per sample varied significantly from NIRS to stable 

isotopes analysis, while volatilomics, shotgun metagenomics, and element analysis fell in 

the middle of the cost scale. Nevertheless, the average cost per analysis of some methods is 

constantly decreasing. The cost of elemental screening is rapidly declining, with 

instruments getting smaller and sample throughput increasing, while at the same time, both 

the capital and operating costs of instrumentation and measurement are diminishing 

(Danezis et al., 2016). Also, DNA-based methods are presenting interesting opportunities. 

In various research areas, a cost reduction per sample was reported (Elliot et al., 2021; 

Sanders et al., 2022), which could facilitate future advancements in DNA-based methods for 

cheese origin authentication. For instance, Sanders et al. (2022) introduced a workflow for 

bacterial whole-genome sequencing using open-source labware and the OpenTrons robotics 

platform, effectively reducing costs to approximately $10 per genome.  
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General conclusion 

In the framework of this PhD work, aimed at better understanding the microbiological 

diversity of traditional cheeses and safeguarding consumers against food fraud, we tried to 

address four main scientific questions: i) What are the main ecological drivers of typical 

Caciotta cheese produced in different regions with similar cheesemaking know-how? ii) Is 

the cheese microbiome stable over time? Is it possible to identify considerable changes in 

the cheese microbiome according to season or year? iii) Can the cheese microbiome be used 

as an authentication marker? iv) What are the performances of shotgun metagenomics, 

volatilome, near-infrared spectroscopy, stable isotope ratio, and trace element analysis in 

authenticating the origin of typical mountain cheese? 

We reviewed the scientific literature and found that among the possible methods to study 

and authenticate traditional cheese, the emerging shotgun metagenomics could offer 

multiple advantages compared to traditional culture-based methods and metabarcoding. 

Subsequently, we employed shotgun metagenomics and volatilomics to investigate three of 

the main questions described herein. Results showed that the geographical origin of cheese 

played a significant role; however, curd cooking temperature, pH, salt concentration, and 

water activity also had an impact. Moreover, the two-year sampling period of this study 

allowed us to observe a stable microbial community in the investigated Caciotta cheese. 

Additionally, alongside the bacterial communities, we characterized the viral communities, 

which are another important and poorly described component of the cheese microbiome. 

Lastly, we developed sPLS-DA models to authenticate mountain Caciotta origin using a 

multi-omics approach. To the best of our knowledge, this is the first study that employed 

shotgun metagenomics, reference analytical methods such as stable isotope ratio and trace 

element analysis, spectroscopy analysis, as well as volatilomics to quantitatively evaluate 

and compare the performances of these methods. Overall, DNA-based analysis revealed a 

high classification accuracy rate for both viral (97.42 ± 2.58%) and bacterial communities 

(96.13 ± 4.02%), with the former bested only by elemental analysis models (99.00 ± 0.01%). 
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Our findings emphasize the potential of multi-omics techniques in cheese origin 

authentication and highlight the complexity of factors influencing cheese composition. 

Moreover, these results shed light on the world of DNA-based methods that, if future 

research validates them, could be employed to authenticate the origin of traditional cheeses. 
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