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ABSTRACT
Remote sensing techniques have proved its e!cacy for the impervious surface mapping, which is 
a signi"cant indicator of urbanization process and environmental status. However, systematic and 
random errors in the existing methods still impact the reliability of subpixel impervious surface estimation, 
generating compounded errors when conducting multitemporal monitoring. The compounded errors of 
the conventional methods often signi"cantly impact the temporal consistency of the results. In this study, 
a novel method based on a straightforward pixel change detection approach was put forward to improve 
the estimation of multitemporal impervious surface area. Two experimental areas located in Rome in Italy 
and Shenzhen in China were chosen to testify the generality of the proposed method to estimate 
di#erent types of impervious surfaces worldwide. By reducing the compounded errors, the proposed 
method demonstrated its e!ciency in achieving higher accuracy in both study areas without involving 
extensive data sources and intensive manual tasks. Compared with the conventional classi"cation and 
regression tree algorithm, the overall mean average error and root mean square error of this study 
declined by more than 15.55% and 8.63%, respectively, and R2 increased from approximately 0.93 to 0.96. 
The proposed method also drastically reduced the standard deviation of the multitemporal percent ISA of 
the stable pixels. The accurate change estimation of percent ISA has been a fundamental but challenging 
issue associated with monitoring and understanding the urban environment. Therefore, our proposed 
method, with its improved ability to estimate impervious surface change both spatially and temporally, 
can provide accurate information required for urban environment research.
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1 Introduction

Rapid population growth has occurred in urban areas 
globally. Since the 1990s, the worldwide urban popula-
tion has increased from 2.3 billion or 43% of the total 
global population to 4.4 billion (56.2%). This number is 
predicted to reach 60% by 2030 (UNHabitat 2020, 
2016). The concentration of a massive population in 
urban areas inevitably leads to urban expansion, which 
greatly in$uences the environment in urban areas 
(Jiaqiang et al. 2019; Limin et al. 2003; Huidong et al. 
2022). However, monitoring urban expansion is chal-
lenging due to the heterogeneous distribution of the 
urban landscape, especially when compared with nat-
ural areas (Duran, Musaoglu, and Seker 2006; Wu 2004; 
Stow and Chen 2002). Traditional pixel-level remote 
sensing methods are insu!cient for monitoring envir-
onmental change in rapidly urbanizing areas (Ridd 
1995; Weng 2012).

Impervious surface is an indicator that can quanti-
tively measure the urbanization impacts. As a key 
environmental indicator, it presents a unique perspec-
tive for measuring urbanization and its e#ects (Arnold 
and James Gibbons 1996). Impervious surface refers 
to material that cannot be in"ltrated by water. In 
urban areas, it is mainly comprised of anthropogenic 
elements, including building roofs, parking lots, and 
drive/walk ways. The urban environment can be 
strongly impacted by the intensi"cation of impervious 
surfaces in many ways, such as vegetation reduction 
(Phinn et al. 2002; Dipanwita et al. 2021), waterlog-
ging (Dams et al. 2013; Huafei et al. 2018), water 
quality degradation (Schueler 1994; Luo et al. 2018; 
Salerno, Gaetano, and Gianni 2018), and the heat 
island e#ect (Mathew, Khandelwal, and Kaul 2016; 
Yuan and Bauer 2007; Sekertekin and Zadbagher 
2021).
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Urban environmental research now requires higher 
e!ciency and accuracy of impervious surface estima-
tion. Ground measurement approaches, such as GPS 
based "eld survey, are time-consuming and costly 
(Weng 2012). Hence, the remote sensing technique 
has rapidly gained prominence in impervious surface 
studies since the 2000s because of its ability to cover 
more areas at lower "nancial costs (Bauer et al. 2004; 
Weng 2012; Sinha, Santra, and Santra Mitra 2020). Per- 
pixel methods, such as post-classi"cation process 
(Dougherty et al. 2004), remote sensing indicator 
(Piyoosh and Ghosh 2017; Wang and Mingshi 2021), 
imagery transformation (Cablk and Minor 2003), and 
classi"cation decision tree algorithm (Zhang, Zhang, 
and Lin 2014), have been developed and applied for 
mapping impervious surfaces. However, because of 
the coarse spatial resolution and high heterogeneity 
of urban landscape, the pixels of the low/medium 
remote sensing imagery (>30 m) are greatly mixed 
with multiple landcover types (Chen et al. 2021), 
usually with signi"cant impacts on the per-pixel 
method accuracy (Dengsheng, Moran, and Hetrick 
2011; Limin et al. 2003). Although high-resolution 
imagery can drastically reduce the mixing problems, 
data accessibility is limited, especially for multitem-
poral monitoring over an extended period (Huang 
et al. 2021; Hsieh, Lee, and Yu Chen 2001). 
Alternatively, easily accessed medium-resolution ima-
gery, such as the Sentinel and Landsat series, have 
already formed long-term observations of the earth 
surface. In order to overcome the mixed pixel pro-
blem, subpixel methods have been continuously 
developed and improved to estimate the percent 
ISA using medium-resolution imageries (Dengsheng, 
Moran, and Hetrick 2011).

Compared with other conventionally used subpixel 
methods, such as linear spectral mixture analysis 
(Ridd 1995) or linear regression (Shao and Liu 2014), 
the classi"cation and regression tree (CART) is capable 
of estimating the non-linear relationship between the 
independents and target variables (Yang et al. 2003). 
The CART algorithm can estimate percent ISA through 
a rule-based model that continuously separates each 
parent node into two child nodes, which are regarded 
as potential parent nodes for the next separation 
(Breiman et al. 1984). The rule-based algorithm for 
predicting target variables is recursively modi"ed 
according to sample data. Huang and Townshend 
(2003) made signi"cant advancements by replacing 

the single target variable with a linear regression 
model for each subset, enabling the CART algorithm 
to predict continuous variables. This improvement 
was based on a reasonable assumption: while 
a single linear model may not be applicable to the 
entire dataset, it can be suitable for each sub-dataset 
with normal distributions and low intraclass di#er-
ences, which are well classi"ed by Breiman’s algo-
rithm. Yang et al. (2003) obtained sample impervious 
surface data by overlapping the high-resolution ima-
gery to grids with a resolution of 30 m, and 
calculated percent ISA using the CART algorithm. It 
is frequently modeled by using plots of "ner resolu-
tion imageries for producing sample and validation 
data, and coarser resolution imageries for estimating 
the percent ISA of one city or metropolitan area. CART 
has been further employed by Xian and Crane (2005), 
Yang et al. (2009), Jungho et al. (2012), and Cao et al. 
(2019) to estimate percent ISA based on various sets 
of medium-resolution imagery. The US National Land 
Cover Database (NLCD) has applied CART as the pri-
mary method for estimating impervious surface area 
since 2006 (Xian and Homer 2010). Being capable of 
estimating the non-linear relationship between inde-
pendent and target variables, CART is thought to out-
perform linear regression models with higher 
prediction accuracy (Yang et al. 2003; Wang et al. 
2018).

However, the compounded error remains a major 
problem of multitemporal impervious surface estima-
tion using conventional subpixel methods, including 
CART (Deng and Zhu 2020). Compounded error is 
accumulated by each phase’s errors from the change 
detection (Pilon 1988). Previous studies noted that for 
both the pixel-based and subpixel method, each 
phase’s systematic and random errors were often 
compounded in the "nal multitemporal results 
(Lamar, McGraw, and Warner 2005; Zhu 2017). The 
false temporal variation which disagrees with the 
actual earth surface change process can be frequently 
observed in previous studies, even those using a high- 
precision subpixel model (Dengsheng, Moran, and 
Hetrick 2011; Powell et al. 2007; Wu et al. 2017; Yao 
et al. 2020). Additionally, previous studies on imper-
vious surface change are often conducted with tem-
poral intervals of "ve or more years, which are 
insu!cient to detect the earth surface’s temporary 
but remarkable change during rapid urbanization 
processes, such as construction sites and temporary 
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vegetation (Liu et al. 2019). It is also infeasible to 
de"ne the exact time the permanent change occurs 
with a relatively long temporal interval. Therefore, 
Zhu (2017) suggested that conventional subpixel 
methods were generally not suitable for change 
detection. Researchers have reduced the temporal 
inconsistency problem in recent pilot studies using 
a continuous change detection (CCD) model (Deng 
and Zhu 2020; Liu et al. 2019). However, a CCD model 
requires dense stacks of multitemporal cloud-free 
imageries, which are often not available in many 
humid regions, such as the subtropical humid mon-
soon zone. The imaging conditions of these regions 
are often inadequate to produce the required seaso-
nal imagery datasets.

This study proposes a novel method to improve 
multitemporal ISA estimation in an attempt to solve 
the aforementioned problems. Based on straightfor-
ward remote sensing change detection in order to 
reduce multitemporal inconsistency, the estimation 
of percent ISA is improved both spatially and tempo-
rally. The proposed method is objective, reliable, and 
reproducible without extensive data sources and 
intensive manual tasks. The proposed method also 
aiming to accurately estimate multitemporal percent 

ISA in areas with limited access to cloud-free ima-
geries, and further generate reliable basic data for 
environmental research on urban planning, microcli-
mate, water cycle, and other relevant issues.

2 Materials and methods

2.1 Study area

In this study, by selecting the two experimental areas 
located in Rome, Italy and Shenzhen, China, the gen-
erality of the proposed method to estimate multitem-
poral impervious surfaces worldwide was validated 
(Figure 1). Each area covered 225 km2 and encom-
passed the intensely developed urban area of the city 
centers. Rome and Shenzhen are among the largest 
cities in the European Union and China, respectively. 
The population of Rome at the time of this study was 
4.2 million, and Shenzhen was 18 million (ISTAT, 
Italian National Institute of Statistics 2021; Shenzhen 
Statistics Bureau 2021). A diversity of impervious sur-
faces were distributed throughout the study areas, 
from modern skyscrapers to historical building com-
plexes over three thousand years old. Shenzhen has 
been under a rapid urbanization process over the last 

Figure 1. Location of the study areas in Rome (Italy) and Shenzhen (China). Landsat 8 OLI imageries of 2021 are color infrared 
composited and displayed together with a typical sample point and validation and sample area.
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ten years, while Rome has remained relatively stable. 
Thus, the two cities are representative examples of 
di#erent development stages. The distribution pat-
terns of non-impervious and impervious surfaces are 
also highly heterogeneous in both study areas. 
Various landcovers such as farmland, aquaculture 
pond, grassland, mountain vegetation, coastal wet-
land, and waterbodies were incorporated within the 
coverage.

2.2 Study data and pre-processing

Annual Landsat 8 OLI imageries (path/row: 191/31, 
122/44) covering the study areas in Rome and 
Shenzhen were acquired to form the basic data 
source (Table 1). In this study, the imageries of Rome 
were acquired during summer in most of the years, 
forming a seasonal-consistent dataset. However, the 
severe cloud coverage substantially a#ected the 
accessibility of the cloud-free imageries of Shenzhen. 
Although we managed to collect the annual dataset 
of Shenzhen, the imageries were of di#erent seasons. 
Therefore, it was feasible to evaluate data source 
limitation and seasonal e#ect on the proposed 
method by comparing the results of the two cities. 
All Landsat 8 OLI imageries were projected into the 
Transverse Mercator Projection System. The Earth 
Resources Observation and Science Center of the 
United States Geological Survey (USGS) performed 
geometric and radiometric corrections with high 
accuracy. Atmospheric correction was conducted 
using Land Surface Re$ectance Code (LaSRC). 
According to the Tasseled Cap Transformation (TCT) 
wetness component, the waterbody was excluded to 
reduce misestimation as a pre-processing step. In 
addition, small plots of QuickBird imageries (resolu-
tion: 0.6 m) covering a limited range of the study area 
in Rome (13 June 2013 and 6 July 2021) and Shenzhen 
(12 March 2013 and 1 February 2021), were acquired 
to generate the indispensable sample and validation 
data (Figure 1).

In order to produce supplementary data, two 
"eld surveys were conducted on the impervious 
surfaces in Rome and Shenzhen city centers in 
June 2017 and March 2021, respectively. 
Additionally, two sets of landcover data with 
a resolution of 30 m, GlobeLand30 and 
ChinaCover, were also collected as auxiliary data 
for pixel change detection. GlobeLand30 was 

developed and published by the Ministry of 
Natural Resources of China (Jun, Ban, and 
Songnian 2014). This dataset provides global cov-
erage with high accuracy (Gao et al. 2020). The 
production of ChinaCover was led by the Institute 
of Remote Sensing and Digital Earth (RADI) under 
the Chinese Academy of Sciences (CAS), involving 
the collaborative e#orts of other CAS institutes. 
Part of the data was edited as an atlas and pub-
lished by Bingfang (2017).

2.3 Pixel change detection based on remote 
sensing indicators

The normalized di#erence impervious surface index 
(NDISI) and the TCT greenness component were used 
to detect the pixel’s buildup area or vegetation 
changes. Unlike the normalized di#erential buildup 
and bare soil index (NDBSI) or other indexes related 
to soil or bare lands, NDISI was developed to reduce 
the mixture of soil and impervious surfaces. As 
a convenient remote sensing-based indicator, NDISI 
is closely related to the buildup intensity of the pixels 
(Hanqiu 2010; Santra et al. 2022). It was calculated 
using the following equation: 

NDISI à ρTIR � MNDWI á ρNIR á ρSWIR1=3Ö Üâ ä
ρTIR á MNDWI á ρNIR á ρSWIR1=3Ö Üâ ä (1) 

Where ρNIR,ρSWIR1, and ρTIR are Landsat 8 OLI imagery’s 
bands 5, 6, and 11. The modi"ed normalized di#er-
ence water index (MNDWI) can be calculated by the 
following equation (Hanqiu 2006): 

MNDWI à
ρgreen � ρSWIR1

ρgreen á ρSWIR1
(2) 

Where ρgreen and ρSWIR1 are respectively the bands 3 
and 6 of Landsat 8 OLI imagery.

Both NDVI and the greenness of TCT are widely 
used for vegetation monitoring (Xiaoyang et al. 

Table 1. Main data source.
Location 
(path/row) Acquire date

Location 
(path/row) Acquire date

Rome, Italy 
(191/31)

12 August 2013 Shenzhen, 
Chnia 
(122/44)

29 November 2013
21 December 2014 16 November 2014

17 July 2015 18 October 2015
19 July 2016 7 February 2016
6 July 2017 23 October 2017

25 July 2018 12 February 2018
26 June 2019 14 November 2019
30 July 2020 18 February 2020

11 March 2021 5 December 2021
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2002). Previous research has indicated that the green-
ness of TCT can provide additional detail interpreta-
tions of vegetation and more sensitive monitoring of 
the vegetation change compared with NDVI 
(Samarawickrama, Piyaratne, and Ranagalage 2017; 
Michael et al. 2016). According to Baig et al. (2014), 
the TCT greenness component of the Landsat 8 OLI 
imagery should be calculated as: 

Greenness à �0:2941ρblue � 0:243ρgreen � 0:5424ρred
á 0:7276ρNIR á 0:0713ρSWIR1
� 0:1608ρSWIR2

(3) 

Where ρblue,ρgreen,ρred,ρNIR,ρSWIR1, and ρSWIR2, are the 
corresponding bands 2–7 of the Landsat 8 OLI 
imagery.

Due to the diversity of landcover distribution in 
urban areas, most pixels of the medium-resolution 
imagery are basically mixed by impervious surface, 
vegetation and soil (Ridd 1995). Therefore, pixel 
change detection in urban areas should focus on 
changes related to these key features. This study 
used these two indicators instead of a conventional 
single band-based method to improve the detection 
of the pixel’s buildup area or vegetation changes 
(Song et al. 2001). Previous studies have grouped 
pixels into ten levels based on normalized remote 
sensing indicators for further analysis of environmen-
tal issues, such as vegetation change and soil erosion 
(Adilson et al. 2021; Suzuki, Nomaki, and Yasunari 
2001; Karaburun 2010). A similar level system was 

applied in our study. After being normalized, the 
two indicators were classi"ed into ten levels for each 
pixel. If one pixel’s levels of NDISI and the TCT green-
ness component both remained unchanged during 
the entire study period, a changing period was not 
de"ned and the pixel was marked as stable 
(Figure 2a). Otherwise, a period with di#erent levels 
from the start to the end year was detected as 
a changing period. Any pixels with two or more chan-
ging periods were marked as changing pixels 
(Figure 2b).

Based on the high-resolution imageries, it is pro-
blematic to classify the pixels with only one changing 
period as either stable or changed (Figure 3). 
Landcover data (GlobeLand30 for Rome and 
ChinaCover for Shenzhen) was therefore applied to 
assist in de"ning the classes of these pixels. Only two 
landcover maps at the start and end years were 
needed to classify these pixels instead of using land-
cover data for all years of possible change periods. 
A 3*3 moving window was used to improve the sen-
sibility of the multitemporal change detection.

2.4 Multitemporal estimation of impervious 
surface

2.4.1 CART
The CART algorithm generates tree models and rule 
sets to estimate the target variables. The independent 
variables are recursively partitioned into subsets 
based on sample data, until the total residual sum 

Figure 2. The multitemporal change pathway of NDBSI and TCT greenness component of two typical sample pixels: (a) a stable pixel of 
intensified buildup area in the east of the Rome study area; and (b) a pixel changed from evergreen broadleaf forest to buildup area in 
the south of Shenzhen study area. Refer to Figure 1 for the location of the typical sample pixels.
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square (RSS) of all the subsets is minimized. The kth 
subset’s RSS is determined as follows: 

RSSk à
Xià1

Nk

ŷ � �yÖ Ü (4) 

where Nk is the quantity of samples in the kth subset, 
ŷ the predicted value of the target variable, and �y the 
actual value of the target variable (Breiman et al. 
1984). However, based on the above equation, the 
predicted value (ŷ) of this algorithm will be the mean 
value of each subset’s actual value (�y), which are 
single values. Therefore, this algorithm is not able to 
predict the precise variations within the subsets. 
Huang and Townshend (2003) employed a linear 
regression function determined by least square 
regression to calculate the predicted variables for 
each subset. Although a linear model may not be 
globally applicable to the entire dataset, it can be 
suitable for each subset with normal distributions 
and little intraclass di#erences which Breiman’s algo-
rithm has e#ectively classi"ed. Therefore, the complex 
correlations between percent ISA and spectral re$ec-
tance can be theoretically explored by CART.

In this study, eight validation/sample areas were 
randomly located throughout each study area 
(Figure 1). Each validation and sample area covered 
1.37 km2, corresponding to 1521 Landsat 8 OLI ima-
gery pixels. Next, 12,168 or half of the pixels in the 
validation/sample areas were randomly determined 
to create sample data, while the rest assessed the 
accuracy. Notably, the validation and sample areas 
were adequately covered by buildup area and bare 
lands, which enabled the CART algorithm to distin-
guish impervious surfaces based on their spectral and 
spatial features. Object-oriented classi"cation and 
visual interpretation were then combined to process 
the high-resolution imageries of 2013 and 2021 for 
the validation and sample areas, producing binary 
impervious versus non-impervious maps of the two 
years. Misclassi"cations brought by water brink, build-
ing and tree shadow, and tiny patch of vegetation 
were manually modi"ed after visual examination and 
interpretation. The unchanged areas were de"ned 
based on the "eld survey to enable the pixel in 
these areas to provide accurate validation and sample 
data for the entire study period. CART was then 
applied to estimate the percent ISA in both study 

Figure 3. The procedure of pixel change detection based on remote sensing indicators.
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areas. The CART algorithm of this study was created 
using Cubist, an e#ective R package tool that can 
construct tree models with linear regression models 
in its terminal leaves (http://www.rulequest.com).

2.4.2 Improving impervious surface estimation for 
stable and changed pixels
Percent ISA was estimated once all pixels in the study 
area were classi"ed as stable or changed via the method 
discussed above (Figure 3). The stable pixels’ percent ISA 
remained unchanged from 2013 to 2021 (Figure 2a). 
Therefore, each stable pixel’s percent ISA was calculated 
by CART based on the spectral re$ectance of the ima-
geries throughout the study period. The changing and 
stable periods had already been de"ned for each chan-
ged pixel. Similar to the stable pixels, the percent ISA in 
each stable period of the changed pixels should remain 
unchanged and be estimated using the spectral re$ec-
tance of the imageries of the corresponding stable per-
iod. The percent ISA for each year in change periods was 
assigned based on the corresponding imagery’s spectral 
re$ectance individually by di#erent CART algorithms.

The compounded errors of conventional CART 
have been remarkably reduced by the proposed 
method in this study. Speci"cally, 10.52% of all pixels 
in the study areas were de"ned as stable pixels, and 
71.88% were de"ned as changing pixels with one or 
more stable periods. Therefore, the percent ISA of 
these pixels was estimated using the spectral re$ec-
tance of at least two Landsat OLI imageries, which 
substantially reduced the random errors caused by 
instantaneous imaging conditions. Altogether, the 
multitemporal percent ISA of 82.40% of the pixels in 
the study areas was reasonably improved based on 
change detection.

2.4.3 Accuracy assessment
Throughout each study area, 6084 points were ran-
domly selected to assess the accuracy (Figure 1). In 
this study, Several error analysis approaches and indi-
cators, such as scatter plot, the residual error (RE), the 
root-mean-square error (RMSE), and the mean abso-
lute error (MAE), were employed to assess the accu-
racy of the percent ISA estimation.

The scatter plot is often applied to assess the esti-
mation accuracy in previous impervious studies (Wu 
and Murray 2003; Xuefei and Weng 2009; Liao et al. 
2021; Deng and Zhu 2020; Wang et al. 2018). To form 
this straightforward accuracy assessment tool, the 

actual value is placed on one axis and the estimated 
value on the other. Based on it, the linear "tting 
function and R2 can be derived by conventional lin-
ear regression.

RE, the discrepancy of the actual and 
estimated percent ISA is respectively calculated for 
all the validation pixels. It is calculated by the follow-
ing equation: 

RE à ŷ � �y (5) 

where, ŷ and �y are the estimated and actual percent 
ISA, respectively.

RMSE and MAE can be derived from the calculation 
of RE. In existing environmental research, RMSE is one 
of the most commonly used accuracy assessment 
indicators. It is derived using the following equation: 

RMSE à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n�1
Xià1

n
ŷ � �yÖ Ü2

vuut (6) 

where, n is the number of validation data, ŷ and �y the 
estimated and actual values. When analyzing errors 
with RMSE, the values with larger RE have more 
weight than those with smaller RE. On the contrary, 
the errors of each validation pixel have equal weight 
when assessing accuracy using MAE (Chai and Draxler 
2014). Therefore, it is regarded as a more explicit and 
spontaneous indicator than RMSE (Willmott and 
Matsuura 2005). MAE can be obtained by the follow-
ing formula: 

MAE à n�1
Xià1

n
ŷj � �yj (7) 

where, n indicates number of validation data, ŷ and �y 
indicate the estimated and actual values, respectively.

3 Results

3.1 Multitemporal percent ISA estimation by the 
improved method and overall accuracy assessment

Figures 4 and 5 show the impervious surface changes 
in the two study areas during the study period esti-
mated by the proposed method. Aggregately distrib-
uted high-density impervious surfaces are "nely 
delineated, as revealed by the estimated results. At 
the same time, small plots of low-density (<30%) 
impervious surfaces and complex-distributed 
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medium-density (30% – 70%) impervious surfaces 
were also markedly demonstrated by the estimated 
results.

The multitemporal changes of the impervious sur-
faces with di#erent densities are geographically logi-
cal and temporally continuous. The distribution 
of percent ISA in Rome presented typical spatial fea-
tures of the compact city. The percent ISA varied from 
high density in the city center to low density in sub-
urban areas, while the percent ISA distributions of 
Shenzhen indicated a more complex spatial morphol-
ogy. The high-density impervious surfaces were seg-
mented by large mountain forest areas, forming 
a multi-center city’s spatial feature. In Shenzhen 
(2021), 73.68% of the pixels were estimated as imper-
vious surfaces with very high density (percent ISA 
greater than 0.9) or non-impervious surfaces (percent 
ISA less than 0.1), while this was 51.56% in Rome in 

2021. From 2013 to 2021, the distribution and density 
of impervious surfaces in Rome generally remained 
stable. Only 0.97% of the study area, covering 
2.18 km2, had a percent ISA increase of more than 
0.5 during the study period. These areas were dis-
persed primarily within the suburban areas. The 
impervious surfaces of Shenzhen expanded and 
increased much more remarkably from 2013 to 
2021, especially in the northern Shenzhen. It was 
found that 3.51% of Shenzhen, covering 7.93 km2, 
had a percent ISA increase of more than 0.5 during 
the study period.

Based on the estimated results of percent ISA, this 
method is able to quantitively analyze the multitem-
poral change of percent ISA. The mean percent ISA of 
Rome increased slightly from 0.459 to 0.475 during 
the study period (Figure 6a). In Shenzhen, 
a noticeable increase from 0.315 to 0.341 was 

Figure 4. Map of Rome’s multitemporal percent ISA (2013–2021) estimated by the improved method.
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observed. The increasing annual rates of the 
mean percent ISA recorded in Rome and Shenzhen 
were 0.44% and 0.99%, respectively. The standard 
deviation (STD) of percent ISA for Rome and 
Shenzhen increased from 0.378 to 0.383 and 0.395 

to 0.410, respectively. This result demonstrates the 
growing spatial heterogeneity of the impervious sur-
faces of both study areas (Figure 6b). The 
mean percent ISA of Shenzhen was lower at times 
than that of Rome due to the large water body areas 

Figure 5. Map of Shenzhen’s multitemporal percent ISA (2013–2021) estimated by the improved method.

Figure 6. ISA statistics: (a) mean percent ISA; and (b) standard deviation (STD) of percent ISA.
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and mountain vegetation in the city center. However, 
in Shenzhen, the STD of percent ISA and its increasing 
speed have both been higher, indicating that the 
distribution of impervious surfaces in Shenzhen has 
become increasingly heterogeneous by 2021.

To create comparative results, a conventional 
CART was conducted based on the same sample 
datasets for every other year of the studied period. 
Scatterplots showed the overall accuracy of the 

estimated percent ISA by the proposed method 
and conventional CART against actual percent ISA, 
based on the randomly selected validation data 
(Figure 7). Both methods gained acceptable accu-
racy, with a slope approximate to 1 and an intercept 
close to 0. Compared with conventional CART, the R2 

of the improved method remarkably increased from 
0.93 to 0.96 and 0.92 to 0.95, respectively, for the 
estimation of 2013 (Figure 7 a,b) and 2021 (Figure 7 

Figure 7. Scatterplots of percent ISA estimation by the improved multitemporal method and conventional CART in 2013 (a and b), 
2021 (c and d), and 2015–2019 (e and f) for Rome and Shenzhen.
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c,d). Notably, the conventional CART’s percent ISA 
estimation for Shenzhen in 2021 recorded 
a relatively low R2. This is likely because of the high 
heterogeneity of impervious surfaces (Figure 6b). 
With the proposed multitemporal method, the accu-
racy of the percent ISA estimation of Shenzhen in 
2021 was remarkably improved. Overall, fewer con-
spicuously misestimated pixels, a higher R2, and 
a more optimized "tting curve were observed, in 
addition to being temporally consistent with the 
impervious estimation of other years in the study 
period (Figure 7 a,e).

The stable pixels in the validation areas were de"ned 
based on the "eld survey and the high-resolution ima-
geries acquired in 2013 and 2021. Therefore, these pixels 
can provide a valid accuracy assessment for percent ISA 
during the entire study period. There were 5,117 and 
4,028 stable pixels in Rome and Shenzhen validation 
areas, respectively. The stable validation pixels were 
randomly and equally (approximately) divided into 
three groups to assess the accuracy of percent ISA 
estimation in 2015, 2017, and 2019 (Figure 7 e,f). The 
results demonstrated a noticeable improvement for the 
proposed method, with R2 increasing from 0.94 to 0.96, 
which was similar to the results in 2013 and 2021. It is 
worth noting that the stable validation pixels in 
Shenzhen (red point in Figure 7) clustered at both 
ends of the trend lines. This is because there were 
more high-density and non-impervious surfaces in 
Shenzhen compared with Rome, where low/medium- 
density impervious surfaces were relatively more distrib-
uted. This distribution is more remarkable for the valida-
tion points of Shenzhen between 2015–2019 (Figure 7 e, 
f) as only stable pixels, whose percent ISA were more 
likely to be very high or very low, were used for validat-
ing accuracy in this period. Further, the accuracy assess-
ment for the percent ISA estimation in 2015–2019 was 

not fully su!cient compared with 2013 and 2021 due to 
the absence of the changing pixels in the validation 
dataset.

Noticeable improvement can also be con"rmed 
through quanti"able error analysis methods such as 
MAE and RMSE (Tables 2 and 3). The overall MAE of 
improved estimation in 2013 and 2021 was reduced 
by 15.55% and 16.60%, respectively. The overall RMSE 
of improved estimation in 2013 and 2021 was 
reduced by 8.63% and 21.28%, respectively. Notably, 
the improvement is remarkable when the estimation 
of conventional CART exhibits greater errors. For 
example, the MAE of the conventional CART’s estima-
tion of Rome in 2013 reached the highest value of 
4.57. It was reduced to 4.19 with the improved 
method. The RMSE of the conventional CART’s estima-
tion of Shenzhen in 2021 was also relatively high, with 
the improved method resulting in a decline from 7.04 
to 4.98.

3.2 Improvement of stable/changing 
pixel’s percent ISA estimation

In order to quantitively analyze the improvement of 
the stable pixel’s percent ISA estimation by the pro-
posed method, the STD of each stable pixel’s 
multitemporal percent ISA estimation was calculated 
and statistically analyzed into a boxplot (Figure 8). 
Ideally, the STD of any stable pixel’s 
multitemporal percent ISA should be 0 because the 
impervious density has been unchanged during the 
study period. Notably, the proposed method accu-
rately de"ned 6,425 (70.26%) of all stable pixels in 
the validation areas. The boxplot indicated that the 
proposed method’s median, mean, and upper quar-
tile of the STD were lowered by 0.01, 0.01, and 0.02, 
respectively, compared with the conventional CART. 

Table 2. Accuracy comparison of the improved method and conventional CART (2013).
MAE (%) RMSE (%)

Rome Shenzhen Overall Rome Shenzhen Overall

CART 4.57 2.57 3.57 7.24 5.56 6.40
Improved Method 4.19 2.34 3.01 6.52 4.82 5.85

Table 3. Accuracy comparison of the improved method and conventional CART (2021).
MAE (%) RMSE (%)

Rome Shenzhen Overall Rome Shenzhen Overall
CART 4.37 3.06 3.68 7.01 7.04 7.03
Improved Method 3.91 2.32 3.07 6.09 4.98 5.53

1416 W. FAN ET AL.



Thus, the general improvement of the stable 
pixels’ percent ISA estimation can be con"rmed. It is 
also worth mentioning that the maximum and the 
most extreme outlier were remarkably reduced by 
0.05 and 0.10, respectively, demonstrating the pro-
posed method’s conspicuous advantage of correcting 
the exceedingly misestimated percent ISA.

Table 4 shows the accuracy of percent ISA estima-
tion varying with the number of change periods. MAE 
and RMSE of pixels without change periods (stable 
pixels) were both very low, indicating that the 
improvements of stable pixels’ percent ISA estimation 
were remarkable. Both MAE and RMSE increased with 
the number of change periods. Notably, the estima-
tion accuracy of the pixels with four or more change 
periods was very close to that of the conventional 
CART (Table 3).

Figure 9(a) represents the multitemporal percent 
ISA of a typical stable pixel with a very high imper-
vious density estimated by the proposed method and 
conventional CART. The high-resolution imageries 
demonstrate that the impervious surfaces in this 

pixel remained completely stable during the study 
period. However, multitemporal $uctuation 
of percent ISA that disagreed with the actual earth 
surface change process still occurred in the CART- 
estimated results. This false $uctuation of the stable 
pixels can be observed throughout the study areas, as 
well as in previous research. Using the proposed 
improved method, the false $uctuation was pro-
foundly removed for the stable pixels.

Furthermore, the consistency of percent ISA esti-
mation with validation data was also improved for the 
changed pixel (Figure 9b). The conventional CART 
algorithm estimated percent ISA with high accuracy 
in 2021 and prior to 2017. However, it showed 
a steady increase during the stable period between 
2018 and 2020, which was not consistent with the 
validation data and corresponding high-resolution 
imageries. In comparison, the stable period of the 
changed pixel was correctly de"ned based on the 
pixel change detection of the proposed method, lead-
ing to the accurate multitemporal percent ISA estima-
tion that correlated with the actual earth surface 
change process.

4 Discussion

In recent years, non-linear models have been continu-
ously implemented to estimate percent ISA with ade-
quate accuracy for a single temporal phase (Jungho 
et al. 2012; Shao et al. 2015; Feng and Fan 2021). 
Capable of estimating the non-linear relationship, 
CART has been widely acknowledged for its outper-
formance over the linear regression model (Yang et al. 
2003; Wang et al. 2018). However, one of the major 
problems of multitemporal percent ISA estimation 
using conventional subpixel methods, including 
CART, is the compounded errors accumulated by 
each phase’s systematic and random errors (Deng 
and Zhu 2020). The false temporal variations that is 
in discordance with the actual earth surface change 
process are discerned from the CART-estimated 
results in both the current study and previous 
research (Dengsheng, Moran, and Hetrick 2011; 
Powell et al. 2007; Wu et al. 2017; Yao et al. 2020).

Higher accuracy in both study areas was achieved 
without involving extensive auxiliary data and inten-
sive manual tasks. In this study, we required approxi-
mately 6,000 sample pixels covering 1.22% of each 
study area to generate the essential sample data for 

Figure 8. Boxplot showing probability distribution of STD of 
stable pixel’s multitemporal percent ISA estimated by the pro-
posed method and the conventional CART.

Table 4. Accuracy comparison of a different number of change 
periods (2021).

Number of Change Periods

0 1 2 3 4–8 Overall
MAE (%) 1.89 2.67 2.89 3.41 3.54 3.07
RMSE (%) 3.34 5.33 6.01 6.88 6.99 5.53
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building the CART algorithm. Moreover, recognizing 
the unchanged areas makes most of the sample data 
valid for the entire study period. Hence, su!cient 
stable sample pixels are accessible even in the study 
area of Shenzhen, one of the world’s most rapidly 
expanding cities. Therefore, the proposed method 
can be used globally with much less labored visual 
interpretation of the high-resolution imageries, which 
was often conducted individually for each study per-
iod in previous research.

Recent research has improved multitemporal percent 
ISA estimation based on a dense stack of multitemporal 
cloud-free imageries (Deng and Zhu 2020; Liu et al. 
2019). However, this is often not available for coastal 
cities. In this study, the city of Shenzhen, which is located 

in the subtropical humid monsoon zone, was selected as 
a study area. As severe cloud coverage substantially 
a#ected data accessibility, only one cloud-free imagery 
was available for most study years. The season of the 
imageries acquired for Shenzhen was completely di#er-
ent. Therefore, the proposed method’s applicability to 
estimate percent ISA in areas with poor atmospheric 
conditions was fully tested. Although imageries in di#er-
ent seasons have been applied to Shenzhen, the accu-
racy was not lower than in Rome (Tables 2 and Table 3), 
where a much higher seasonally consistent data source 
is available. This also shows that the in$uence of the 
seasonal e#ect on the performance of the proposed 
method shall be negligible. Despite having 
a substantially lower requirement for cloud-free 

Figure 9. The multitemporal percent ISA change of two typical sample pixels: (a) a stable pixel of intensified buildup area in the east of 
Rome study area; and (b) a pixel changed from evergreen broadleaf forest to buildup area in the south of the Shenzhen study area. 
Refer to Figure 1 for the location of the two typical sample pixels and Figure 2 for the spectral change pathway of both pixels.
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imageries, the proposed method can estimate 
multitemporal percent ISA with comparable accuracy 
to the most current method (Table 5).

Shenzhen has experienced a rapid urbanization 
process over the last ten years, while Rome has 
remained relatively stable. The historic district of 
Rome has been covered with impervious surfaces of 
di#erent densities for thousands of years. In this 
study, the “eternal” impervious surfaces of the 
Colosseum with high density and the Roman Forum 
with low/medium density, and together with sur-
rounding areas were accurately estimated by the pro-
posed method. The changes in ISA in these areas are 
inconspicuous from 2013 to 2021 (Figure 10). The 
other study area covers the Futian CBD, Shenzhen, 
one of China’s most prosperous city centers 
(Figure 11). Built between 2009 and 2017, Ping An 
International Finance Center is the fourth-tallest 
supertall skyscraper in the world and China’s second- 
tallest building. The proposed method estimated that 
the percent ISA of the corresponding pixels increased 

steadily following the construction of the skyscraper, 
as well as the south tower and other neighboring 
buildings. This also shows that the proposed method 
signi"cantly reduced the errors related to arti"cial 
bare lands, which are often mixed with impervious 
surfaces in linear models (Guiying et al. 2020). This 
distinguishment is not only based on the slight di#er-
ence in spectral characteristics of the buildup area 
and arti"cial bare lands, but it also relies more on 
the temporal features. Generally, impervious surfaces 
are changeless once constructed, while the presence 
of bare lands is relatively temporary. In Rome and 
Shenzhen, arti"cial bare soil changes into impervious 
surfaces. Thus, pixel change detection in the pro-
posed method could further reduce the mixture pro-
blem through temporal features. The precise 
estimation in the dramatically changing area has pro-
ven the proposed method’s ability to monitor the 
actual earth surface change process.

Furthermore, many previous studies estimated 
multitemporal percent ISA based on the presumption 

Table 5. Accuracy comparison of the proposed method and continuous subpixel monitoring based on CCD.
MAE % RMSE % Number of Imageries Location Reference

Random Forest 6.10 12.82 20 Gwadar, Pakistan Bian et al. (2019)
Continuous subpixel monitoring based on CCD 4.64 7.32 165 Broome County, US Deng and Zhu (2020)
Proposed method 3.91 6.69 9 Rome, Italy /

Figure 10. Multitemporal percent ISA estimation for the Colosseum and Roman Forum areas in Rome (photo by Jin Wang in 2017).
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that the process of impervious surface expansion and 
extensi"cation is monodirectional (Song et al. 2016). 
Direct inter-multitemporal calibration and adjustment 
of the original estimation results are often involved in 
producing the "nal results (Dengsheng, Moran, and 
Hetrick 2011). However, this assumption may not be 
universally valid, especially for locations with intensive 
arti"cial modi"cation and temporary impervious change 
(Figure 12). In this study, one of the validation and 
sample areas in the center of Shenzhen covered many 
pixels where the buildup area was demolished 

(Figure 12). Before 2021, the southwestern part of the 
validation and sample area was the Xiang Mi Hu Holiday 
Resort, once the largest and the most well-equipped 
resort in China. However, the resort was demolished, 
and the land was consolidated to construct the future 
CBD according to an urban renewal project of the muni-
cipal government (Futian District City Renewal and Land 
Development Bureau), leading to the dramatic decrease 
in percent ISA for the southwestern part. The proposed 
method analyses the multitemporal percent ISA based 
on an objective detection of the pixel’s spectral change 

Figure 11. Multitemporal percent ISA estimation in Futian CBD, Shenzhen (photo by Jin Wang in 2021).

Figure 12. Multitemporal percent ISA estimation of a validation and sample area in Shenzhen. Dramatic percent ISA decrease in the 
southwestern part occurred with the massive demolition of the buildup area in 2021.
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rather than empirical assumptions, thus can authenti-
cally record the impervious surface’s atypical change. 
Therefore, the proposed method can be used to monitor 
the shrinking cities, which has lately gained greater 
interest.

Another advantage of the proposed method is its 
high transferability and expansibility. For further 
improvement, available multi-source data, such as 
nighttime light imageries, POI data, and RS-based pro-
ducts, can be integrated as supplementary data for 
pixel change detection. Given that the proposed 
method requires less mass sample data, optimizing 
pixel change detection based on multi-source data 
may also result in improvements. By achieving high 
accuracy in estimating the variability of impervious 
surfaces, including historic districts, modern residential 
areas and contemporary skyscrapers, the proposed 
method was thoroughly tested by the two study 
areas. The impervious surfaces of Shenzhen have 
increased and intensi"ed signi"cantly in the past ten 
years, which challenges the percent ISA estimation’s 
accuracy. This study also overcomes the data accessi-
bility problem for Shenzhen caused by unfavorable 
weather conditions. Therefore, the proposed method 
is transferable to di#erent cities throughout the world.

Notably, cloud-free imageries are unavailable dur-
ing the entire year for a few cities located in severely 
rainy areas, such as tropical rainforests. As a result, 
multitemporal percent ISA estimation of these areas 
during a relatively long period may have to be con-
ducted based on only a few imageries. Although esti-
mating the stable pixels’ percent ISA will not be greatly 
a#ected, the estimation of the change pixels’ stable 
periods would be in$uenced. This is because short- 
term stable periods would undermine the proposed 
method’s primary advantage in reducing the com-
pounded errors based on multitemporal imageries.

Another limitation of this study may be closely 
related to the systematic error of the CART algorithm, 
which often overrates the impervious surfaces with 
low density and underrates those with high density 
(Wang et al. 2018; Deng and Zhu 2020). It can 
decrease the coe!cient of x of the "tting curve’s 
function for the accuracy assessment (Figure 7).

5 Conclusion

This study proposed a novel method that improves 
the multitemporal estimation of percent ISA based 

on a straightforward pixel change detection 
approach. The compounded errors of multitemporal 
estimation were remarkably reduced with 
a minimum data source and tolerable manual 
tasks, which prove the proposed method to be 
objective, reliable, and reproducible. Compared 
with the conventional method, the overall MAE 
and RMSE of the proposed method decreased by 
more than 15.55% and 8.63%, respectively, and R2 

rose from approximately 0.93 to 0.96. The proposed 
method also remarkably reduced the STD of 
multitemporal percent ISA of the stable pixels. This 
method can also be employed to estimate the 
change of impervious surfaces in shrinking cities or 
coastal cities with limited remote sensing data 
sources.

Accurate change estimation of percent ISA has 
been a challenging research issue for many years 
due to temporal and spatial complexity. By improv-
ing the ISA estimation based on an optimized 
stable/change pixel detection, reliable fundamental 
data for environmental research can be accessed. 
More improvements may occur by further reducing 
the CART algorithm’s systematic error. Other 
approaches, including intelligent optimizing the 
sample datasets or deep learning applications to 
improve the poorly estimated pixels, may be helpful 
for future studies.

Acknowledgements

We are grateful to Prof. Changshan Wu, University of 
Wisconsin-Milwaukee for commenting and titling the manu-
script. This work was supported by the National Natural 
Science Foundation of China (No. 42001365, 42001286), the 
Fundamental Research Foundation of Shenzhen Technology 
and Innovation Council (Project No. KCXFZ202002011006298).

Disclosure statement

No potential con$ict of interest was reported by the author(s).

Funding

This work was supported by the National Natural Science 
Foundation of China [42001286]; National Natural Science 
Foundation of China [42001365]; Fundamental Research 
Foundation of Shenzhen Technology and Innovation Council 
[KCXFZ202002011006298].

GISCIENCE & REMOTE SENSING 1421



ORCID

Wei Fan http://orcid.org/0000-0002-0508-523X
Paolo Tarolli http://orcid.org/0000-0003-0043-5226
Jin Wang http://orcid.org/0000-0003-2584-9644

Data availability statement

The medium-resolution remote sensing imagery used for this 
study can be acquired via USGS (https://earthexplorer.usgs.gov). 
GlobeLand30 product as ancillary land census data can be 
acquired via the o!cial website run by the Ministry of Natural 
Resources of China (http://www.globallandcover.com/home_en. 
html).

References

Adilson, B., N. N. Imai, L. E. Christovam, M. L. B. T. Galo, 
A. M. G. Tommaselli, and E. Honkavaara. 2021. “Analysis of 
Trends and Changes in the Successional Trajectories of 
Tropical Forest Using the Landsat NDVI Time Series.” 
Remote Sensing Applications: Society and Environment 24: 
100622. doi:10.1016/j.rsase.2021.100622.

Arnold, C. L.,sJr, and C. James Gibbons. 1996. “Impervious 
Surface Coverage: The Emergence of a Key Environmental 
Indicator.” Journal of the American Planning Association 
62 (2): 243–258. doi:10.1080/01944369608975688.

Baig, M. H. A., L. Zhang, T. Shuai, and Q. Tong. 2014. “Derivation 
of a Tasselled Cap Transformation Based on Landsat 8 
at-satellite Re$ectance.” Remote Sensing Letters 5 (5): 
423–431. doi:10.1080/2150704X.2014.915434.

Bauer, M. E., N. J. Heinert, J. K. Doyle, and F. Yuan. 2004. 
Impervious Surface Mapping and Change Monitoring 
Using Landsat Remote Sensing. Paper presented at the 
ASPRS annual conference proceedings, Denver, Colorado.

Bian, J., L. Ainong, J. Zuo, G. Lei, Z. Zhang, and X. Nan. 2019. 
“Estimating 2009–2017 Impervious Surface Change in 
Gwadar, Pakistan Using the HJ-1A/B Constellation, GF-1/2 
Data, and the Random Forest Algorithm.” ISPRS International 
Journal of Geo-Information 8 (10): 443. doi:10.3390/ijgi8100443.

Bingfang, W. 2017. Land Cover Atlas of the People’s Republic of 
China (1:1000000). Beijing, China: SinoMaps Press.

Breiman, L. I., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. 
“Classi"cation and Regression Trees (CART).” Encyclopedia of 
Ecology 40 (3): 358.

Cablk, M. E., and T. B. Minor. 2003. “Detecting and Discriminating 
Impervious Cover with high-resolution IKONOS Data Using 
Principal Component Analysis and Morphological Operators.” 
International Journal of Remote Sensing 24 (23): 4627–4645. 
doi:10.1080/0143116031000102539.

Cao, S., H. Deyong, W. Zhao, M. You, Y. Chen, and Y. Zhang. 2019. 
“Monitoring Changes in the Impervious Surfaces of Urban 
Functional Zones Using multi-source Remote Sensing Data: 
A Case Study of Tianjin, China.” GIScience & Remote Sensing 
56 (7): 967–987. doi:10.1080/15481603.2019.1600110.

Chai, T., and R. R. Draxler. 2014. “Root Mean Square Error 
(RMSE) or Mean Absolute Error (Mae)?–arguments against 
Avoiding RMSE in the Literature.” Geoscienti"c Model 
Development 7 (3): 1247–1250. doi:10.5194/gmd-7-1247- 
2014.

Chen, R., L. Xiaodong, Y. Zhang, P. Zhou, Y. Wang, L. Shi, 
L. Jiang, F. Ling, and D. Yun. 2021. “Spatiotemporal 
Continuous Impervious Surface Mapping by Fusion of 
Landsat Time Series Data and Google Earth Imagery.” 
Remote Sensing 13 (12): 2409. doi:10.3390/rs13122409.

Dams, J., J. Dujardin, R. Reggers, I. Bashir, F. Canters, and 
O. Batelaan. 2013. “Mapping Impervious Surface Change 
from Remote Sensing for Hydrological Modeling.” Journal 
of Hydrology 485 (485): 84–95. doi:10.1016/j.jhydrol.2012.09. 
045.

Deng, C., and Z. Zhu. 2020. “Continuous Subpixel Monitoring of 
Urban Impervious Surface Using Landsat Time Series.” 
Remote Sensing of Environment 238: 110929. doi:10.1016/j. 
rse.2018.10.011.

Dengsheng, L., E. Moran, and S. Hetrick. 2011. “Detection of 
Impervious Surface Change with Multitemporal Landsat 
Images in an urban–rural Frontier.” ISPRS Journal of 
Photogrammetry and Remote Sensing 66 (3): 298–306. 
doi:10.1016/j.isprsjprs.2010.10.010.

Dipanwita, D., S. K. P. Atiqur Rahman, A. Kundu. 2021. 
“Impervious Surface Growth and Its inter-relationship with 
Vegetation Cover and Land Surface Temperature in 
peri-urban Areas of Delhi.” Urban Climate 37: 100799. 
doi:10.1016/j.uclim.2021.100799.

Dougherty, M., R. L. Dymond, S. J. Goetz, C. A. Jantz, and 
N. Goulet. 2004. “Evaluation of Impervious Surface 
Estimates in a Rapidly Urbanizing Watershed.” 
Photogrammetric Engineering & Remote Sensing 70 (11): 
1275–1284. doi:10.14358/PERS.70.11.1275.

Duran, Z., Musaoglu, N., Seker, D. Z. 2006.“Evaluating urban 
land use change in historical peninsula, Istanbul, by using 
GIS and remote sensing.“ Fresenius Environmental Bulletin 
15: 1018-4619.

Feng, S., and F. Fan. 2021. “Impervious Surface Extraction Based 
on Di#erent Methods from Multiple Spatial Resolution 
Images: A Comprehensive Comparison.” International 
Journal of Digital Earth 14 (9): 1148–1174. doi:10.1080/ 
17538947.2021.1936227.

Futian District City Renewal and Land Development Bureau. 
“Urban Renewal Unit Plan of Xiang Mi Hu Holiday Resort, 
Xiang Mi Hu Sub-district, Futian District, Shenzhen.” http:// 
www.sz.gov.cn/szzt2010/wgkzl/jcgk/jcygk/zdzcjc/content/ 
post_9259551.html .

Gao, Y., L. Liu, X. Zhang, X. Chen, M. Jun, and S. Xie. 2020. 
“Consistency Analysis and Accuracy Assessment of Three 
Global 30-m land-cover Products over the European Union 
Using the LUCAS Dataset.” Remote Sensing 12 (21): 3479. 
doi:10.3390/rs12213479.

Guiying, L., L. Longwei, L. Dengsheng, W. Guo, and W. Kuang. 
2020. “Mapping Impervious Surface Distribution in China 
Using multi-source Remotely Sensed Data.” Giscience & 

1422 W. FAN ET AL.

https://earthexplorer.usgs.gov
http://www.globallandcover.com/home_en.html
http://www.globallandcover.com/home_en.html
https://doi.org/10.1016/j.rsase.2021.100622
https://doi.org/10.1080/01944369608975688
https://doi.org/10.1080/2150704X.2014.915434
https://doi.org/10.3390/ijgi8100443
https://doi.org/10.1080/0143116031000102539
https://doi.org/10.1080/15481603.2019.1600110
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.3390/rs13122409
https://doi.org/10.1016/j.jhydrol.2012.09.045
https://doi.org/10.1016/j.jhydrol.2012.09.045
https://doi.org/10.1016/j.rse.2018.10.011
https://doi.org/10.1016/j.rse.2018.10.011
https://doi.org/10.1016/j.isprsjprs.2010.10.010
https://doi.org/10.1016/j.uclim.2021.100799
https://doi.org/10.14358/PERS.70.11.1275
https://doi.org/10.1080/17538947.2021.1936227
https://doi.org/10.1080/17538947.2021.1936227
http://www.sz.gov.cn/szzt2010/wgkzl/jcgk/jcygk/zdzcjc/content/post_9259551.html
http://www.sz.gov.cn/szzt2010/wgkzl/jcgk/jcygk/zdzcjc/content/post_9259551.html
http://www.sz.gov.cn/szzt2010/wgkzl/jcgk/jcygk/zdzcjc/content/post_9259551.html
https://doi.org/10.3390/rs12213479


Remote Sensing 57 (4): 543–552. doi:10.1080/15481603.2020. 
1744240.

Hanqiu, X. 2006. “Modi"cation of Normalised Di#erence Water 
Index (NDWI) to Enhance Open Water Features in Remotely 
Sensed Imagery.” International Journal of Remote Sensing 
27 (14): 3025–3033. doi:10.1080/01431160600589179.

Hanqiu, X. 2010. “Analysis of Impervious Surface and Its Impact 
on Urban Heat Environment Using the Normalized 
Di#erence Impervious Surface Index (NDISI).” 
Photogrammetric Engineering & Remote Sensing 76 (5): 
557–565. doi:10.14358/PERS.76.5.557.

Hsieh, P. F., L. C. Lee, and N. Yu Chen. 2001. “E#ect of Spatial 
Resolution on Classi"cation Errors of Pure and Mixed Pixels 
in Remote Sensing.” Geoscience and Remote Sensing, IEEE 
Transactions on 39 (12): 2657–2663. doi:10.1109/36.975000.

Huafei, Y., Y. Zhao, F. Yingchun, and L. Li. 2018. “Spatiotemporal 
Variance Assessment of Urban Rainstorm Waterlogging 
A#ected by Impervious Surface Expansion: A Case Study of 
Guangzhou, China.” Sustainability 10 (10): 3761. doi:10.3390/ 
su10103761.

Huang, M., N. Chen, D. Wenying, M. Wen, D. Zhu, and J. Gong. 
2021. “An on-demand Scheme Driven by the Knowledge of 
Geospatial Distribution for large-scale high-resolution 
Impervious Surface Mapping.” Giscience & Remote Sensing 
58 (4): 562–586. doi:10.1080/15481603.2021.1909304.

Huang, C., and J. R. G. Townshend. 2003. “A Stepwise 
Regression Tree for Nonlinear Approximation: 
Applications to Estimating Subpixel Land Cover.” 
International Journal of Remote Sensing 24 (1): 75–90. 
doi:10.1080/01431160305001.

Huidong, L., Y. Zhou, G. Jia, K. Zhao, and J. Dong. 2022. “Quantifying 
the Response of Surface Urban Heat Island to Urbanization Using 
the Annual Temperature Cycle Model.” Geoscience Frontiers 
13 (1): 101141. doi:10.1016/j.gsf.2021.101141.

ISTAT, Italian National Institute of Statistics. 2021. “Resident 
Population on 1st January: Roma Province.” In.

Jiaqiang, D., F. Qing, S. Fang, W. Jinhua, H. Ping, and Z. Quan. 2019. 
“E#ects of Rapid Urbanization on Vegetation Cover in the 
Metropolises of China over the Last Four Decades.” Ecological 
Indicators 107: 105458. doi:10.1016/j.ecolind.2019.105458.

Jun, C., Y. Ban, and L. Songnian. 2014. “Open Access to Earth 
land-cover Map.” Nature 514 (7523): 434. doi:10.1038/ 
514434c.

Jungho, I., L. Zhenyu, J. Rhee, and L. J. Quackenbush. 2012. 
“Impervious Surface Quanti"cation Using a Synthesis of 
Arti"cial Immune Networks and decision/regression Trees 
from multi-sensor Data.” Remote Sensing of Environment 
117: 102–113. doi:10.1016/j.rse.2011.06.024.

Karaburun, A. 2010. “Estimation of C Factor for Soil Erosion 
Modeling Using NDVI in Buyukcekmece Watershed.” Ozean 
Journal of Applied Sciences 3 (1): 77–85.

Lamar, W. R., J. B. McGraw, and T. A. Warner. 2005. 
“Multitemporal Censusing of a Population of Eastern 
Hemlock (Tsuga Canadensis L.) from Remotely Sensed 
Imagery Using an Automated Segmentation and 
Reconciliation Procedure.” Remote Sensing of Environment 
94 (1): 133–143. doi:10.1016/j.rse.2004.09.003.

Liao, W., Y. Deng, L. Miao, M. Sun, J. Yang, and X. Jianhui. 2021. 
“Extraction and Analysis of Finer Impervious Surface Classes 
in Urban Area.” Remote Sensing 13 (3): 459. doi:10.3390/ 
rs13030459.

Limin, Y., G. Xian, J. M. Klaver, and B. Deal. 2003. “Urban 
Land-Cover Change Detection through Sub-Pixel 
Imperviousness Mapping Using Remotely Sensed Data.” 
Photogrammetric Engineering & Remote Sensing 69 (9): 
1003–1010. doi:10.14358/PERS.69.9.1003.

Liu, C., Q. Zhang, H. Luo, Q. Shuhua, S. Tao, X. Hanzeyu, and 
Y. Yao. 2019. “An E!cient Approach to Capture Continuous 
Impervious Surface Dynamics Using spatial-temporal Rules 
and Dense Landsat Time Series Stacks.” Remote Sensing of 
Environment 229: 114–132. doi:10.1016/j.rse.2019.04.025.

Luo, Y., Y. Zhao, K. Yang, K. Chen, M. Pan, and X. Zhou. 2018. 
“Dianchi Lake Watershed Impervious Surface Area Dynamics 
and Their Impact on Lake Water Quality from 1988 to 2017.” 
Environmental Science and Pollution Research 25 (29): 
29643–29653. doi:10.1007/s11356-018-2967-1.

Mathew, A., S. Khandelwal, and N. Kaul. 2016. “Spatial and 
Temporal Variations of Urban Heat Island E#ect and the 
E#ect of Percentage Impervious Surface Area and Elevation 
on Land Surface Temperature: Study of Chandigarh City, 
India.” Sustainable Cities and Society 26: 264–277. doi:10. 
1016/j.scs.2016.06.018.

Michael, S., J. G. P. W. Clevers, S. Carter, J. Verbesselt, 
V. Avitabile, H. Vu Quang, and M. Herold. 2016. 
“Performance of Vegetation Indices from Landsat Time 
Series in Deforestation Monitoring.” International Journal of 
Applied Earth Observation and Geoinformation 52: 318–327. 
doi:10.1016/j.jag.2016.06.020.

Phinn, S., M. Stanford, P. Scarth, A. T. Murray, and P. T. Shyy. 
2002. “Monitoring the Composition of Urban Environments 
Based on the vegetation-impervious surface-soil (VIS) Model 
by Subpixel Analysis Techniques.” International Journal of 
Remote Sensing 23 (20): 4131–4153. doi:10.1080/ 
01431160110114998.

Pilon, P. G. 1988. “An Enhanced Classi"cation Approach to 
Change Detection in semi-arid Environments.” 
Photogramm. Eng. Remote Sens 54: 1709–1716.

Piyoosh, A. K., and S. Kumar Ghosh. 2017. “Semi-automatic 
Mapping of Anthropogenic Impervious Surfaces in an 
urban/suburban Area Using Landsat 8 Satellite Data.” 
GIScience & Remote Sensing 54 (4): 471–494. doi:10.1080/ 
15481603.2017.1282414.

Powell, R. L., D. A. Roberts, P. E. Dennison, and L. L. Hess. 2007. 
“Sub-pixel Mapping of Urban Land Cover Using Multiple 
Endmember Spectral Mixture Analysis: Manaus, Brazil.” 
Remote Sensing of Environment 106 (2): 253–267. doi:10. 
1016/j.rse.2006.09.005.

Ridd, M. K. 1995. “Exploring a VIS (vegetation-impervious 
surface-soil) Model for Urban Ecosystem Analysis through 
Remote Sensing: Comparative Anatomy for Cities.” 
International Journal of Remote Sensing 16 (12): 2165–2185. 
doi:10.1080/01431169508954549.

Salerno, F., V. Gaetano, and T. Gianni. 2018. “Urbanization and 
Climate Change Impacts on Surface Water Quality: 

GISCIENCE & REMOTE SENSING 1423

https://doi.org/10.1080/15481603.2020.1744240
https://doi.org/10.1080/15481603.2020.1744240
https://doi.org/10.1080/01431160600589179
https://doi.org/10.14358/PERS.76.5.557
https://doi.org/10.1109/36.975000
https://doi.org/10.3390/su10103761
https://doi.org/10.3390/su10103761
https://doi.org/10.1080/15481603.2021.1909304
https://doi.org/10.1080/01431160305001
https://doi.org/10.1016/j.gsf.2021.101141
https://doi.org/10.1016/j.ecolind.2019.105458
https://doi.org/10.1038/514434c
https://doi.org/10.1038/514434c
https://doi.org/10.1016/j.rse.2011.06.024
https://doi.org/10.1016/j.rse.2004.09.003
https://doi.org/10.3390/rs13030459
https://doi.org/10.3390/rs13030459
https://doi.org/10.14358/PERS.69.9.1003
https://doi.org/10.1016/j.rse.2019.04.025
https://doi.org/10.1007/s11356-018-2967-1
https://doi.org/10.1016/j.scs.2016.06.018
https://doi.org/10.1016/j.scs.2016.06.018
https://doi.org/10.1016/j.jag.2016.06.020
https://doi.org/10.1080/01431160110114998
https://doi.org/10.1080/01431160110114998
https://doi.org/10.1080/15481603.2017.1282414
https://doi.org/10.1080/15481603.2017.1282414
https://doi.org/10.1016/j.rse.2006.09.005
https://doi.org/10.1016/j.rse.2006.09.005
https://doi.org/10.1080/01431169508954549


Enhancing the Resilience by Reducing Impervious Surfaces.” 
Water Research 144: 491–502. doi:10.1016/j.watres.2018.07. 
058.

Samarawickrama, U., D. Piyaratne, and M. Ranagalage. 2017. 
“Relationship between NDVI with Tasseled Cap Indices: 
A Remote Sensing Based Analysis.” International Journal of 
Innovative Research in Technology 3 (12): 13–19.

Santra, A., A. Kumar, S. S. Mitra, and D. Mitra. 2022. “Identi"cation 
of Built-Up Areas Based on the Consistently High 
Heat-Radiating Surface in the Kolkata Metropolitan Area.” 
Journal of the Indian Society of Remote Sensing 50: 1–15.

Schueler, T. R. 1994. “The Importance of Imperviousness.” 
Watershed Protection Techniques 1 (3): 100–111.

Sekertekin, A., and E. Zadbagher. 2021. “Simulation of Future 
Land Surface Temperature Distribution and Evaluating 
Surface Urban Heat Island Based on Impervious Surface 
Area.” Ecological Indicators 122: 107230. doi:10.1016/j.eco 
lind.2020.107230.

Shao, Y., G. L. Li, E. Guenther, and J. B. Campbell. 2015. 
“Evaluation of Topographic Correction on Subpixel 
Impervious Cover Mapping with CBERS-2B Data.” IEEE 
Geoscience and Remote Sensing Letters 12 (8): 1675–1679. 
doi:10.1109/LGRS.2015.2419135.

Shao, Z., and C. Liu. 2014. “The Integrated Use of DMSP-OLS 
Nighttime Light and MODIS Data for Monitoring large-scale 
Impervious Surface Dynamics: A Case Study in the Yangtze 
River Delta.” Remote Sensing 6 (10): 9359–9378. doi:10.3390/ 
rs6109359.

Shenzhen Statistics Bureau. 2021. “Communiqué of the 
Seventh National Population Census (Shenzhen).” 1: 1.

Sinha, S., A. Santra, and S. Santra Mitra. 2020. “Semi-automated 
Impervious Feature Extraction Using built-up Indices 
Developed from space-borne Optical and SAR Remotely 
Sensed Sensors.” Advances in Space Research 66 (6): 
1372–1385. doi:10.1016/j.asr.2020.05.040.

Song, X.-P., J. O. Sexton, C. Huang, S. Channan, and 
J. R. Townshend. 2016. “Characterizing the Magnitude, 
Timing and Duration of Urban Growth from Time Series of 
Landsat-based Estimates of Impervious Cover.” Remote 
Sensing of Environment 175: 1–13. doi:10.1016/j.rse.2015.12. 
027.

Song, C., C. E. Woodcock, K. C. Seto, M. Pax Lenney, and 
S. A. Macomber. 2001. “Classi"cation and Change 
Detection Using Landsat TM Data: When and How to 
Correct Atmospheric E#ects?” Remote Sensing of 
Environment 75 (2): 230–244. doi:10.1016/S0034-4257(00) 
00169-3.

Stow D. A., and Chen, D. Mei. 2002. “Sensitivity of multitem-
poral NOAA AVHRR data of an urbanizing region to land- 
use/land-cover changes and misregistration.“ Remote 
Sensing of Environment 80 (2): 297–307. doi:10.1016/S0034- 
4257(01)00311-X

Suzuki, R., T. Nomaki, and T. Yasunari. 2001. “Spatial Distribution 
and Its Seasonality of Satellite-derived Vegetation Index 
(NDVI) and Climate in Siberia.” International Journal of 
Climatology: A Journal of the Royal Meteorological Society 
21 (11): 1321–1335. doi:10.1002/joc.653.

UNHabitat 2016. “World Cities Report 2016: Urbanization and 
Development - Emerging Futures.”

UNHabitat 2020. “World Cities Report 2020.”
Wang, Y., and L. Mingshi. 2021. “Urban Impervious Surface 

Automatic Threshold Detection Model Derived from 
Multitemporal Landsat Images.” IEEE Transactions on 
Geoscience and Remote Sensing 60: 1–21.

Wang, J., W. Zhifeng, W. Changshan, Z. Cao, W. Fan, and 
P. Tarolli. 2018. “Improving Impervious Surface Estimation: 
An Integrated Method of Classi"cation and Regression Trees 
(CART) and Linear Spectral Mixture Analysis (LSMA) Based on 
Error Analysis.” GIScience & Remote Sensing 55 (4): 583–603. 
doi:10.1080/15481603.2017.1417690.

Weng, Q. 2012. “Remote Sensing of Impervious Surfaces in the 
Urban Areas: Requirements, Methods, and Trends.” Remote 
Sensing of Environment 117: 34–49. doi:10.1016/j.rse.2011. 
02.030.

Willmott, C. J., and K. Matsuura. 2005. “Advantages of the Mean 
Absolute Error (MAE) over the Root Mean Square Error 
(RMSE) in Assessing Average Model Performance.” Climate 
Research 30 (1): 79–82. doi:10.3354/cr030079.

Wu, C. 2004.“Normalized spectral mixture analysis for monitor-
ing urban composition using ETM+ imagery.“ Remote 
Sensing of Environment 93 (4): 480–492. doi:10.1016/j.rse. 
2004.08.003

Wu, C., and A. T. Murray. 2003. “Estimating Impervious Surface 
Distribution by Spectral Mixture Analysis.” Remote Sensing of 
Environment 84 (4): 493–505. doi:10.1016/S0034-4257(02) 
00136-0.

Wu, K., D. Qian, Y. Wang, and Y. Yang. 2017. “Supervised 
sub-pixel Mapping for Change Detection from Remotely 
Sensed Images with Di#erent Resolutions.” Remote Sensing 
9 (3): 284. doi:10.3390/rs9030284.

Xian, G., and M. Crane. 2005. “Assessments of Urban Growth in 
the Tampa Bay Watershed Using Remote Sensing Data.” 
Remote Sensing of Environment 97 (2): 203–215. doi:10. 
1016/j.rse.2005.04.017.

Xian, G., and C. Homer. 2010. “Updating the 2001 National Land 
Cover Database Impervious Surface Products to 2006 Using 
Landsat Imagery Change Detection Methods.” Remote 
Sensing of Environment 114 (8): 1676–1686. doi:10.1016/j. 
rse.2010.02.018.

Xiaoyang, Z., C. Barker Schaaf, M. A. Friedl, A. H. Strahler, F. Gao, 
and J. C. F. Hodges. 2002. MODIS Tasseled Cap 
Transformation and Its Utility. Paper presented at the IEEE 
International Geoscience and Remote Sensing Symposium, 
Toronto, Canada.

Xuefei, H., and Q. Weng. 2009. “Estimating Impervious Surfaces 
from Medium Spatial Resolution Imagery Using the 
self-organizing Map and multi-layer Perceptron Neural 
Networks.” Remote Sensing of Environment 113 (10): 
2089–2102. doi:10.1016/j.rse.2009.05.014.

Yang, L., C. Huang, C. G. Homer, B. K. Wylie, and M. J. Coan. 
2003. “An Approach for Mapping large-area Impervious 
Surfaces: Synergistic Use of Landsat-7 ETM+ and High 
Spatial Resolution Imagery.” Canadian Journal of Remote 
Sensing 29 (2): 230–240. doi:10.5589/m02-098.

1424 W. FAN ET AL.

https://doi.org/10.1016/j.watres.2018.07.058
https://doi.org/10.1016/j.watres.2018.07.058
https://doi.org/10.1016/j.ecolind.2020.107230
https://doi.org/10.1016/j.ecolind.2020.107230
https://doi.org/10.1109/LGRS.2015.2419135
https://doi.org/10.3390/rs6109359
https://doi.org/10.3390/rs6109359
https://doi.org/10.1016/j.asr.2020.05.040
https://doi.org/10.1016/j.rse.2015.12.027
https://doi.org/10.1016/j.rse.2015.12.027
https://doi.org/10.1016/S0034-4257(00)00169-3
https://doi.org/10.1016/S0034-4257(00)00169-3
https://doi.org/10.1016/S0034-4257(01)00311-X
https://doi.org/10.1016/S0034-4257(01)00311-X
https://doi.org/10.1002/joc.653
https://doi.org/10.1080/15481603.2017.1417690
https://doi.org/10.1016/j.rse.2011.02.030
https://doi.org/10.1016/j.rse.2011.02.030
https://doi.org/10.3354/cr030079
https://doi.org/10.1016/j.rse.2004.08.003
https://doi.org/10.1016/j.rse.2004.08.003
https://doi.org/10.1016/S0034-4257(02)00136-0
https://doi.org/10.1016/S0034-4257(02)00136-0
https://doi.org/10.3390/rs9030284
https://doi.org/10.1016/j.rse.2005.04.017
https://doi.org/10.1016/j.rse.2005.04.017
https://doi.org/10.1016/j.rse.2010.02.018
https://doi.org/10.1016/j.rse.2010.02.018
https://doi.org/10.1016/j.rse.2009.05.014
https://doi.org/10.5589/m02-098


Yang, L., L. Jiang, H. Lin, and M. Liao. 2009. “Quantifying 
sub-pixel Urban Impervious Surface through Fusion of 
Optical and InSAR Imagery.” GIScience & Remote Sensing 
46 (2): 161–171. doi:10.2747/1548-1603.46.2.161.

Yao, N., C. Huang, J. Yang, C. C. Konijnendijk van den Bosch, 
M. Lvyi, and Z. Jia. 2020. “Combined E#ects of Impervious 
Surface Change and large-scale A#orestation on the Surface 
Urban Heat Island Intensity of Beijing, China Based on 
Remote Sensing Analysis.” Remote Sensing 12 (23): 3906. 
doi:10.3390/rs12233906.

Yuan, F., and M. E. Bauer. 2007. “Comparison of Impervious 
Surface Area and Normalized Di#erence Vegetation Index as 

Indicators of Surface Urban Heat Island E#ects in Landsat 
Imagery.” Remote Sensing of Environment 106 (3): 375–386. 
doi:10.1016/j.rse.2006.09.003.

Zhang, Y., H. Zhang, and H. Lin. 2014. “Improving the 
Impervious Surface Estimation with Combined Use of 
Optical and SAR Remote Sensing Images.” Remote 
Sensing of Environment 141: 155–167. doi:10.1016/j.rse. 
2013.10.028.

Zhu, Z. 2017. “Change Detection Using Landsat Time Series: 
A Review of Frequencies, pre-processing, Algorithms, and 
Applications.” ISPRS Journal of Photogrammetry and Remote 
Sensing 130: 370–384. doi:10.1016/j.isprsjprs.2017.06.013.

GISCIENCE & REMOTE SENSING 1425

https://doi.org/10.2747/1548-1603.46.2.161
https://doi.org/10.3390/rs12233906
https://doi.org/10.1016/j.rse.2006.09.003
https://doi.org/10.1016/j.rse.2013.10.028
https://doi.org/10.1016/j.rse.2013.10.028
https://doi.org/10.1016/j.isprsjprs.2017.06.013

	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Study data and pre-processing
	2.3 Pixel change detection based on remote sensing indicators
	2.4 Multitemporal estimation of impervious surface
	2.4.1 CART
	2.4.2 Improving impervious surface estimation for stable and changed pixels
	2.4.3 Accuracy assessment


	3 Results
	3.1 Multitemporal percent ISA estimation by the improved method and overall accuracy assessment
	3.2 Improvement of stable/changing pixel’s percent ISA estimation

	4 Discussion
	5 Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	Data availability statement
	References

