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We elaborate on the application of on shell and unitarity-based methods for evaluating renormalization
group coefficients, and generalize this framework to account for the mixing of operators with different
dimensions and leading mass effects. We derive a master formula for anomalous dimensions stemming
from the general structure of operator mixings, up to two-loop order, and show how the Higgs low-energy
theorem can be exploited to include leading mass effects. A few applications on the renormalization
properties of popular effective field theories showcase the strength of the proposed approach, which
drastically reduces the complexity of standard loop calculations. Our results provide a powerful tool to
interpret experimental measurements of low-energy observables, such as flavor violating processes or
electric and magnetic dipole moments, as induced by new physics emerging above the electroweak scale.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has passed
unclashed in several experimental tests in all its sectors.
The lack of heavy new physics (NP) at the LHC has firmly
established the SM as a very successful theory describing
the fundamental interactions of nature up to the TeV scale.
However, it is a common belief that the SM has to be
regarded as the low-energy description of a more funda-
mental theory emerging at a large, yet unknown, energy
scale Λ. New interactions can be then described by an
effective field theory (EFT) containing nonrenormalizable
operators that are invariant under the SM gauge group.
EFTs provide a very powerful and model-independent
approach to NP which does not rely on the details of
the underlying (unknown) high-energy theory but just on
its symmetries.
Predictions for physical processes are obtained by

evaluating matrix elements of the EFT Lagrangian at
energy scales accessible by collider experiments.
Therefore, the high-scale Lagrangian needs to be evolved
from the scale Λ down to the experimental scale E ≪ Λ.
Such a program can be carried out by computing the
anomalous dimension matrix of the higher-dimension
operators which control both the multiplicative renormal-
ization of operators as well as their mixing effects. In

particular, the latter provide important information on how
experimental bounds from one operator impact the Wilson
coefficients of other operators. This makes the evaluation of
EFT anomalous dimension matrices a crucial ingredient for
interpreting experimental results. A systematic and com-
prehensive computation of the one-loop anomalous dimen-
sion matrix has been carried out for a number of relevant
EFTs, such as the Standard Model EFT [1–4] or the
axionlike particle EFT [5,6], exploiting diagrammatic
and functional methods.
Recently, the calculation of anomalous dimensions has

been addressed also employing on shell and unitarity-based
techniques for scattering amplitudes [7–16]. One of the
most intriguing features of this approach is to make
manifest hidden structures with the appearance of non-
trivial zeros in the anomalous dimension matrix. The origin
of these vanishing elements has been traced back to
selection rules [17], helicity [18], operator lengths [19],
and angular momentum conservation [20].
Anomalous dimensions can be extracted from the ultra-

violet divergent part of amplitudes exploiting the general-
ized unitarity method [21–26] for assembling scattering
amplitudes from their unitarity cuts (see also [27], for
review). Therefore, unitarity cuts give a direct access to the
renormalization-scale dependence. In Ref. [7], it was
remarkably observed that anomalous dimensions can be
directly related to unitarity cuts. In particular, the disconti-
nuities of form factors of EFT operators can be calculated
via phase-space integrals and are related to the correspond-
ing anomalous dimensions. This method has been shown
to be particularly effective for computing anomalous
dimensions at two-loop order [11].
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So far, the method proposed in Ref. [7], has been
applied to derive the anomalous dimensions of nonrenor-
malizable massless theories including only mixing effects
among operators of the same dimension. However, the
nontrivial inclusion of mixings among operators with
different dimensions and leading mass effects, which
are of paramount importance in many popular EFT
extensions of the SM, has not been discussed so far in
this framework. The main motivation of this Letter is to
fill this gap. In particular, we generalize the method of
Ref. [7] providing a master formula which includes the
most general operator mixing contributions up to two-
loop order. Moreover, we show how to include leading
mass effects, still working in the massless limit, by
exploiting the Higgs low-energy theorem [28,29]. Few
applications of our methods are illustrated by means of the
renormalization of the axionlike particle EFT [30–32] and
the low-energy EFT of the SM below the electroweak
scale (LEFT) [4].

II. THE METHOD OF FORM FACTORS

In this section, we review the method of Ref. [7].
The fundamental objects we deal with are the form factors
of local gauge-invariant operators Oi of the Lagrangian
LEFT ¼ P

i ciOi=Λ½Oi�−4. These form factors are defined as

Fiðn; qÞ ¼
1

Λ½Oi�−4 hnjOiðqÞj0i; ð1Þ

which is a matrix element between an outgoing on shell
state hnj ¼ h1h1 ;…; nhn j and an operator Oi that injects an
additional off shell momentum q. In dimensional regulari-
zation, form factors depend on the renormalization scale μ
and satisfy the Callan-Symanzik equation

�
δijμ

∂

∂μ
þ ∂βi
∂cj

− δijγi;IR þ δijβg
∂

∂g

�
Fi ¼ 0; ð2Þ

where g collectively denotes the couplings related to the
renormalizable operators of our Lagrangian, while γi;IR is
the infrared anomalous dimension. The renormalization of
the operator Oi induced by Oj is described by

βiðfckgÞ≡ μ
dci
dμ

¼ γi←jcj; ð3Þ

where ci are the Wilson coefficients of the effective
Lagrangian LEFT.
Exploiting the analyticity of form factors, unitarity, and

the CPT theorem, it can be shown that an elegant relation
exists linking the action of the dilatation operator (D) to the
action of the S matrix (S) on form factors [7]:

e−iπDF�
i ¼ SF�

i ; ð4Þ

where S ¼ 1þ iM while D ¼ P
i pi · ∂=∂pi (the sum is

over all particles i). For a massless theory, in dimensional
regularization, the latter reduces to D ≃ −μ∂μ.
This allows one to connect Eqs. (2) and (4), thus relating

the infrared and ultraviolet anomalous dimensions to the
scattering matrix phase when applied to a form factor. In
particular, at one-loop order, it has been found that

�
∂βð1Þi

∂cj
− δijγ

ð1Þ
i;IR þ δijβ

ð1Þ
g

∂

∂g

�
Fð0Þ
i ¼ −

1

π
ðMFjÞð1Þ; ð5Þ

where the right-hand side of Eq. (5) corresponds to a sum
over all one-loop two-particle unitarity cuts

ðMFjÞð1Þð1;…; nÞ ¼
Xn
k¼2

X
fl1;l2g

Z
dLIPS2

×
X
h1;h2

Fð0Þ
j ðlh1

1 ;lh2
2 ; kþ 1;…; nÞ

×Mð0Þð1;…; k;lh1
1 ;lh2

2 Þ; ð6Þ

where Mðn;mÞ ¼ hnjMjmi and dLIPS2 is the (two-
particle) Lorentz invariant phase-space measure. The cor-
responding cut integral can be evaluated employing differ-
ent parametrizations, by angular integration [7–9,11,12], or
via Stokes’s theorem [10,26].

III. GENERAL OPERATOR MIXING

The mixing among operators of different dimensions is
required in many EFTs in order to capture the leading
effects to several observables. This feature can be elegantly
included within the method of form factors as we are going
to discuss.
The crucial observation is that, in the neighborhood of

the Gaussian fixed point (�), where ci ¼ 0 ∀ i, the
renormalization group equations for the Wilson coefficients
ci can be Taylor expanded as

μ
dci
dμ

¼
X
n>0

1

n!
γi←j1;…;jncj1…cjn

¼ γi←jcj þ
1

2
γi←j;kcjck þ…; ð7Þ

where

γi←j1;…;jn ¼
∂
nβi

∂cj1…∂cjn

����
�

ð8Þ

has a perturbative expansion in the couplings of the leading

order Lagrangian: γi←j1;…;jn ¼
P

l>0 γ
ðlÞ
i←j1;…;jn

.
Focusing on the most relevant case of a double operator

insertion, the key object we have to evaluate is γi←j;k.
A particularly convenient way to write it is the following:
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γi←j;k ¼
∂
2βi

∂cj∂ck

����
�
¼ ∂

∂ck

����
ck¼0

∂βi
∂cj

����
�;ck≠0

: ð9Þ

In fact, the last equality of Eq. (9) enables us to generalize
the master formula of Eq. (5) by simply differentiating it
with respect to a Wilson coefficient and then evaluating the
result at the Gaussian fixed point, where ck ¼ 0.
At one-loop order, we obtain the following expression:

�
γð1Þi←j;k − δij

∂γð1Þi;IR

∂ck

����
�
þ δij

∂βð1Þg

∂ck

����
�

∂

∂g

�
Fijð0Þ�

¼ −
1

π

∂

∂ck

����
ck¼0

ðMFjÞjð1Þ�;ck≠0; ð10Þ

which represents an important result of this Letter. Since we
are interested in mixing of operators with different dimen-
sions, hereafter, we focus on the case where j; k ≠ i∶

γð1Þi←j;kFijð0Þ� ¼ −
1

π

∂

∂ck

����
ck¼0

ðMFjÞjð1Þ�;ck≠0; ð11Þ

which can be generalized at two-loop order by properly
expanding Eq. (4) at the desired order. We find

γð2Þi←j;kFijð0Þ� ¼ −
1

π

∂

∂ck

����
ck¼0

ðReMReFjÞjð2Þ�;ck≠0

− γð1Þi←j
∂

∂ck

����
ck¼0

ReFijð1Þ�;ck≠0 − γð1Þi←j;kReFijð1Þ� :

ð12Þ

The extension of Eqs. (10), (11), and (12) with multiple
operator insertions γi←j1;…;jn is straightforward.

IV. LEADING MASS EFFECTS

As a natural consequence of operator mixing, chirality-
violating and preserving operators do generally mix under
the renormalization flow. In the case of EFTs defined below
the electroweak scale, the required chirality flip proceeds
through a fermion mass insertion. However, such a mass
dependence cannot be directly implemented in the massless
method of Ref. [7].
In order to circumvent this issue, we rely on the low-

energy Higgs theorem [28,29], which was originally
introduced to estimate the properties of a light Higgs boson
in analogy to how soft-pion theorems are used to study low-
energy pion interactions [33–36].
The key observation is that the fermionic Higgs inter-

actions in the SM can be written in the following form:

Lint
H ¼ −

�
1þ h

v

�X
f

mff̄f; ð13Þ

where the sum is over all fermions in the theory. In the
limit where the Higgs field h has a vanishing four-
momentum, ph → 0, h becomes a constant field, and its
effect is equivalent to redefining all mass parameters as
mf → mfð1þ h=vÞ. This immediately implies the follow-
ing low-energy theorem [28,29]:

lim
fphg→0

MðA→BþNhÞ¼
X
f

mN
f

vN
∂
N

∂mN
f
MðA→BÞ; ð14Þ

relating the amplitudes of two processes differing by N
insertions of zero momentum Higgs bosons. In practice,
whenever an amplitude requires N fermion mass insertions
not to vanish, we consider an equivalent amplitude entail-
ing N extra massless Higgs fields; see Fig. 1.
The number N can be determined as follows. By

dimensional analysis we argue that whenever the anoma-
lous dimension γi←j1;…;jn vanishes in the limit of massless
fermions, possible mass effects must be of order ðmf=ΛÞN,
where

N ¼ 4 − ½Oi� þ
Xn
k¼1

ð½Ojk � − 4Þ ð15Þ

is the superficial degree of divergence associated with the
loop diagram under consideration (see the Appendix for a
derivation). Notice that the number of needed Higgs
insertions coincides with the superficial degree of diver-
gence in Eq. (15) because scaleless integrals vanish in
dimensional regularization.
For N < 0, γi←j1;…;jn is trivially zero. For N ≥ 0, the

anomalous dimension is obtained by renormalizing the
operator ONh

i ¼ ðh=vÞNOi=N! instead of Oi.
The procedure outlined before is summarized in the

algorithm in Fig. 2.
Remarkably, the approximation of setting the Higgs

mass to zero is justified in our study since we are interested
in the evaluation of anomalous dimensions that are related
to the ultraviolet properties of a theory.

V. PHENOMENOLOGICAL APPLICATIONS

In this section, we discuss some applications of our
results. First, we illustrate how to separately deal with
either the mixing of operators with different dimensions or
leading mass effects in axionlike particle EFT [5,6,32].

FIG. 1. Diagrammatic representation of our method for massi-
fying amplitudes based on the low-energy Higgs theorem.
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Then, we show how to treat these effects simultaneously in
the context of the LEFT [4]. The most general effective
Lagrangian describing axionlike particle (ALP) inter-
actions with SM fields reads as [30–32]

Lϕ ¼ C̃γ
Λ
ϕFF̃ þ C̃g

Λ
ϕGG̃þ iYij

Pϕf̄iγ5fj

þ Cγ
Λ
ϕFF þ Cg

Λ
ϕGGþ Yij

Sϕf̄ifj; ð16Þ

where ϕ is the ALP field, Λ ≫ v ≈ 246 GeV is the EFT
cutoff scale, and f∈ fe; u; dg denotes SM fermions in the
mass basis. Moreover, G and F are the QCD and QED
field-strength tensors, while G̃ and F̃ are their duals.
The need for an appropriate treatment of leading mass

effects is evident in the renormalization of the operator
OS ¼ ϕf̄f as induced by Oγ ¼ ϕFF. Indeed, owing to the
chirality mismatch between the two operators, a mass
insertion would be necessary to obtain a non-null result.
This situation can be handled by renormalizing the operator
Oh

S ¼ ðh=vÞϕf̄f instead of ϕf̄f,

γijð1ÞS←γF
h
Sjð0Þ� ¼ −

1

π
ðMFγÞjð1Þ� ; ð17Þ

which is represented in Fig. 3. Summing up the three
contributions of Fig. 3, we obtain1

ðMFγÞjð1Þ� ð1−fi ;2−f̄j ;3ϕ;4hÞ¼−
3

2πΛ
mi

v
δije2Q2

fh12i: ð18Þ

Using

Fh
Sjð0Þ� ð1−fi ; 2−f̄j ; 3ϕ; 4hÞ ¼

1

v
h12i ð19Þ

one can then find the sought-after result,

γijð1ÞS←γ ¼ 3

2π2
mi

Λ
δije2Q2

f; ð20Þ

which agrees with Refs. [5,6,32].
As an example of the impact that two insertions of lower-

dimensional operators can have on a higher-dimensional
one, we will consider here the generation of the Weinberg
operator OW ¼ fabcGa

μρGb
ν
ρG̃cμν=3 as induced by the

simultaneous presence of the ALP-gluon couplings Og ¼
ϕGG and Og̃ ¼ ϕGG̃. According to the results of the
previous section, the anomalous dimension matrix element
for OW can be extracted by evaluating

γð1ÞW←g;g̃FWjð0Þ� ¼ −
1

π

∂

∂Cg

����
Cg¼0

ðMFg̃Þjð1Þ�;Cg≠0; ð21Þ

where

FWjð0Þ� ð1−ga ; 2−gb ; 3−gcÞ ¼
ffiffiffi
2

p

Λ2
fabch12ih23ih31i ð22Þ

is the form factor corresponding to the Weinberg operator
for three negative-helicity gluons. Remarkably, as shown in
Fig. 4, we need to calculate just one contribution, in
contrast with the standard diagrammatic method which
requires twelve one-loop diagrams. We find

ðMFg̃Þjð1Þ�;Cg≠0ð1−ga ; 2−gb ; 3−gcÞ ¼
3

ffiffiffi
2

p

πΛ2
gsCgfabch12ih23ih31i

ð23Þ

yielding in turn

γð1ÞW←g;g̃ ¼ −
3gs
π2

; ð24Þ

in agreement with the literature [32].
In our last example, we show how to treat simultaneously

the methods of the previous sections, by considering the
renormalization of the QCD theta term, which is associated
with the dimension-four pseudoscalar density Oϑ ¼ GG̃.
Focusing on dipole operators, the relevant dimension-five
LEFT Lagrangian reads as

Lð5Þ ⊃
af
Λ

OCM þ df
Λ
OCE; ð25Þ

FIG. 2. Algorithm for the computation of anomalous dimen-
sions that require N fermionic mass insertions not to vanish.

1We adopt the spinor-helicity formalism, where the spinor
inner product is defined as hiji ¼ ϵαβλ

α
i λ

β
j , where ϵαβ is the

SLð2;CÞ invariant Levi-Civita tensor, σ̄α̇αμ pμ
i ¼ λ̃α̇i λ

α
i and

σ̄α̇αμ ¼ ð1; σÞα̇α.
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where OCM is the chromomagnetic operator while OCE is
the chromoelectric one, defined as

OCM ¼ f̄σμνTafGa
μν; OCE ¼ if̄σμνγ5TafGa

μν: ð26Þ

In the limit of massless fermions, the anomalous dimension
γϑ←CM;CE vanishes. According to the previous discussion
on the low-energy Higgs theorem, possible mass effects
must be of order ðmf=ΛÞ2. Therefore, the required double
Higgs insertion can be accounted for by introducing the
O2h

ϑ ¼ ðh2=2v2ÞGG̃ operator, as shown in Fig. 5. Then,

γð1Þϑ←CM;CE can be extracted from

γð1Þϑ←CM;CEF
2h
ϑ jð0Þ� ¼ −

1

π

∂

∂df

����
df¼0

ðMFCMÞjð1Þ�;df≠0; ð27Þ

where

F2h
ϑ jð0Þ� ð1−ga ; 2−gb ; 3h; 4hÞ ¼ −

2i
v2

δabh12i2: ð28Þ

By taking into account permutations of external particles,
namely ð1−ga ↔ 2−

gb
Þ and ð3h ↔ 4hÞ, we obtain

ðMFCMÞjð1Þ�;df≠0ð1−ga ;2−gb ;3h;4hÞ¼
i

πΛ2

m2
f

v2
dfδabh12i2: ð29Þ

Inserting the above result in Eq. (27), we find

γð1Þϑ←CM;CE ¼ m2
f

2π2Λ2
; ð30Þ

in agreement with Ref. [4]. More extensive applications are
deferred to a companion study [37].

VI. CONCLUSIONS

We have generalized the application of on shell and
unitarity-based methods for evaluating renormalization
group coefficients, to account for the mixing of operators
with different dimensions and leading mass effects, which
play a fundamental role in the renormalization program of
several effective field theories.
In particular, we have derived a master formula account-

ing for operator mixings up to two-loop order, and shown
how to include leading mass effects, relying on the Higgs
low-energy theorem. Our findings have been validated by
reproducing well-established results of the literature, rel-
ative to popular effective field theories.
Our results can be applied to a number of new physics

scenarios, defined above the TeV scale, in order to analyze
their impact on low-energy observables (like flavor violat-
ing processes, electric and magnetic dipole moments, etc.)
occurring at or below the GeV scale. Such a large
separation of scales demands the inclusion of running
effects at two-loop order to obtain sensible predictions.
While this is a very challenging task when approached with
standard techniques, on shell and unitarity-based methods
offer a simpler, more efficient and elegant way to reach this
goal. Our work may constitute an additional milestone for
progressing along this direction.

FIG. 3. Diagrams contributing to the renormalization of the Oh
S ¼ ðh=vÞϕf̄f operator as induced by the Oγ ¼ ϕFF one. Here and in

the following figures, red and light-blue blobs refer to form factors and amplitudes, respectively.

FIG. 4. Diagrams contributing to the renormalization of the
Weinberg operator OW ¼ fabcGa

μρG
bρ
ν G̃cμν=3 as induced by the

operators Og ¼ ϕGG and Og̃ ¼ ϕGG̃. The factor of 3 on the
right-hand side stems from the permutation of the gluons.

FIG. 5. Diagrams contributing to the renormalization of the operator O2h
ϑ ¼ ðh2=2v2ÞGG̃ as induced by OCM and OCE.
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APPENDIX: EFT AND SUPERFICIAL DEGREE
OF DIVERGENCE

An n-particle amplitude related to the operator Oi and
entailing m interaction vertices with the operators
Oj1 ;…;Ojm , can be schematically written as

Mn ¼ Cj1 � � �Cjm

Z
d4k1 � � � d4kL

Nðfkg; fpgÞ
Dðfkg; fpgÞ α1 � � � αn;

ðA1Þ

where fpg are external momenta and:
(i) Cj1 ;…; Cjm are the Wilson coefficients correspond-

ing to the operators Oj1 ;…;Ojm such that

½Cjk � ¼ 4 − ½Ojk �: ðA2Þ

(ii) The L-loop integral has mass dimension

�Z
d4k1 � � � d4kL

Nðfkg; fpgÞ
Dðfkg; fpgÞ

�
¼ Dþ n∂ ðA3Þ

where D is the degree of divergence of Mn and n∂
the number of derivatives contained in Oi.

(iii) Depending on the bosonic/fermionic nature of the
particle, α1;…; αn ∈ f1; ϵμ; ϵ�μ; u; v; ū; v̄;…g. In the

fermionic case, writing the Dirac field as

ΨðxÞ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ek

p ðakue−ik·xþb†kve
ik·xÞ ðA4Þ

and taking the quantization condition fak; a†k0 g ¼
fbk; b†k0 g ¼ ð2πÞ3δð3Þðk − k0Þ, one finds that ½a� ¼
½b� ¼ −3=2 and ½u� ¼ ½v�≡ ½αfer� ¼ 1=2. Similarly,
one can also find that ½αbos� ¼ 0.

By taking into account the above points, we find that

½Mn� ¼
Xm
k¼1

ð4 − ½Ojk �Þ þ n∂ þDþ 1

2
nfer: ðA5Þ

The mass dimension of Mn can be inferred also from the
S-matrix element

h0jSjni ¼ ð2πÞ4δð4Þðp1 þ � � � þ pnÞiMn ðA6Þ

where ½S� ¼ 0 and ½jni� ¼ ½ð ffiffiffiffiffiffi
2E

p
a†Þnj0i� ¼ −n with

n ¼ nfer þ nbos, resulting in

½Mn� ¼ 4 − n: ðA7Þ

From Eqs. (A5) and (A7) and taking into account that

½Oi� ¼ nbos þ
3

2
nfer þ n∂; ðA8Þ

it finally follows that

D ¼ 4 − ½Oi� þ
Xm
k¼1

ð½Ojk � − 4Þ: ðA9Þ
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