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Abstract

This paper studies a priori and regularity estimates of Evans-Krylov type in Hölder spaces
for fully nonlinear uniformly elliptic and parabolic equations of second order when the
operator fails to be concave or convex in the space of symmetric matrices. In particular,
it is assumed that either the level sets are convex or the operator is concave, convex or
close to a linear function near infinity. As a byproduct, these results imply polynomial
Liouville theorems for entire solutions of elliptic equations and for ancient solutions to
parabolic problems.

Cet article étudie les estimations a priori et de régularité de type Evans-Krylov dans
les espaces de Hölder pour les équations complètement non linéaires, uniformément ellip-
tiques et paraboliques du second ordre, lorsque l’opérateur ne parvient pas à être concave
ou convexe dans l’espace des matrices symétriques. En particulier, on suppose que soit les
ensembles de niveaux sont convexes, soit l’opérateur est concave, convexe ou proche d’un
fonction linéaire proche de l’infini. En tant que sous-produit, ces résultats impliquent des
théorèmes de Liouville polynomiaux pour les solutions entières d’équations elliptiques et
pour les solutions anciennes de problèmes paraboliques.
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1. Introduction

In this paper, we study interior regularity properties in C2,α and C1,1 spaces for
solutions u of fully nonlinear elliptic and parabolic equations of the form

F (D2u) = 0 in B1 (1)

and
F (D2u)− ∂tu = 0 in Q1 := B1 × (−1, 0], (2)

under the assumption that F : Sn → R, Sn being the space of n×n symmetric matrices,
is uniformly elliptic/parabolic, meaning that

λ∥N∥ ≤ F (M +N)− F (M) ≤ Λ∥N∥,∀N ≥ 0, (3)

where ∥N∥ = sup|x|=1 |Nx| and Λ ≥ λ > 0. The main peculiarity of the present article
is that F is not assumed concave or convex in Sn. Instead, we assume only convexity of
the superlevel (sublevel) sets, which means that F is quasiconcave (resp. quasiconvex),
or, alternatively, we impose some asymptotic concavity properties, namely F = F (M)
is concave (resp. convex or “close to a linear function”) when M is large. For parabolic
equations (2) in two-space variables, we do not impose any assumption other than (3) as
in the one-dimensional space setting [39]. We also discuss the case in which the elliptic-
ity constants are close to each other, meaning that they satisfy a Cordes-type condition:
this avoids to impose any concavity condition on F and allows to consider any space
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dimension.
When F is concave (resp. convex), the Evans-Krylov theorem [26, 40] combined with
C1,1 estimates give an a priori C2,α estimate in terms of the sup-norm of the unknown
function, valid also for viscosity solutions by the results in [14, 15]. The main underlying
idea behind the C2,α estimates is that any pure second derivative uee is a subsolution (by
the concavity of the operator) of a linear equation in nondivergence form, to which one
can apply the Krylov-Safonov weak Harnack inequality. This and the functional relation
given by the equation provide a two-side control on the oscillation of D2u, see e.g. the
proof of the a priori estimate given by L.C. Evans in [3] and the shorter one provided in
[13].
The second major chapter in the theory regards Calderón-Zygmund estimates proved in
the paper [14], see also [25] for a refinement, which gave a counterpart of the classical
maximal Lq-regularity for linear elliptic equations. Extensions to the parabolic case of
the aforementioned results were studied first in [28], then in [67, 68].
When F is assumed only uniformly elliptic or parabolic, solutions may fail to be smooth
and the best regularity known under this sole assumption is the C1,α regularity, cf. [14]
and [66]. Roughly speaking, the main idea is that any directional derivative ue solves a
linear uniformly elliptic equation in nondivergence form, and hence ue (or the first-order
incremental quotient) is Hölder continuous by the Krylov-Safonov regularity theory. In
this direction, N. Nadirashvili and S. Vlăduţ [53, 52, 64] exhibited counterexamples in
dimension n ≥ 5 to the smoothness (of class C2) of solutions, see also [16, 61] for related
counterexamples in the parabolic case. To decide whether all solutions to uniformly el-
liptic equations in dimensions n = 3 and n = 4 are classical remains at this stage an
open problem, whilst in dimension n = 2 solutions of fully nonlinear uniformly elliptic
equations are always classical, both in the elliptic [54, 17, 29] and in the parabolic case
[1, 61], see Theorem 6.1 for another proof of the result for viscosity solutions. We refer
to [29] for a complete account on the theory. Other than this progress, we mention that
C2,α estimates can be achieved when the equation is close to be linear: this can be done
assuming the uniform ellipticity combined with Cordes-Landis type conditions on the
ellipticity constants (i.e. when Λ

λ ≤ 1 + c(n)), see Theorem 6.5 in [60] and [4, 34, 69].
This result however is still unknown in the parabolic setting. Some other C2,α estimates
have been obtained by compactness arguments in [33] under the validity of a polynomial
Liouville theorem, or when ∥u∥L∞ is small (the so-called case of flat solutions), cf. [59]
and [2].
Nonetheless, even though in the uniformly elliptic setting solutions may fail to be smooth,
some low integrability of D2u can be expected even without further assumptions than
(3): this is the object of the Evans-Lin W 2,ϵ estimates [27, 50], see also Proposition 7.4
in [15] or [14] for a complete account. Moreover, recent works addressed high regularity
estimates for semisolutions of elliptic equations under one-side geometric requirements,
cf. [7, 6].

A significant problem in the theory is thus to determine some structural conditions on
F other than the uniform ellipticity (in between concavity or convexity and no hypothe-
ses) that guarantee higher order C2,α and W 2,p estimates, cf. p. 574 in [9]. Important
results in this direction can be found in [17, 9, 70, 19, 58] for fully nonlinear uniformly
elliptic equations having a special structure in the context of C2,α estimates. See also
[43, 42, 24] for Calderón-Zygmund estimates under relaxed convexity conditions. Recent
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works have been devoted to obtain high-order estimates in C1,α and W 2,p through the
so-called recession operator, where F is assumed to be concave or convex only at the
ends of Sn. This is done for instance in [62, 57, 47, 48] and the references therein. We
also refer to the works by N.V. Krylov et al, cf. [44], for related assumptions and more
references.
Our main results are inspired from an observation made by B. Andrews in [1], who
pointed out that the convexity of the level sets of F as a function of M is sufficient to
derive a priori Evans-Krylov estimates for fully nonlinear equations (see also p. 575 of
[9]). This slightly weakens the requirement of the Evans-Krylov theorem. In particular,
in Theorem 6 of [1] an Evans-Krylov estimate was proved for fully nonlinear uniformly
parabolic equations under the assumption that F ∈ C2 and

Fij,klMijMkl ≤ 0 for all M ∈ Sn satisfying FijMij = 0, Fij =
∂F (M)

∂mij
, Fij,kl(M) =

∂2F (M)

∂mkl∂mij
.

Here, starting from this remark, we prove an a priori Evans-Krylov estimate for fully
nonlinear uniformly elliptic equations that are quasiconcave (resp. quasiconvex) in D2u
by means of an increasing transformation that makes the operator concave (resp. convex).
More precisely, if u solves (1), then we find a function ψ : R → R increasing with ψ(0) = 0
such that u solves

G(D2u) = ψ(F (D2u)) = 0,

whereG is concave and uniformly elliptic with ellipticity constants depending on ∥D2u∥C(B1).
This implies the C1,1 to C2,α estimates in the stationary case by the aforementioned re-
sults due to Evans and Krylov. Then, following Section 9 in [15], by the Bernstein
method we prove a priori C1,1 estimates providing a control on the size of the C2,α norm
in terms of the sup-norm of the unknown, i.e.

∥u∥C2,α(B 1
2
) ≤ C(n, λ,Λ, ∥u∥C(B1), |F (0)|).

This is done in Section 3 and complements the results of [1] in the elliptic setting.
The parabolic counterpart of the above a priori C2,α estimate with respect to the
parabolic distance for solutions to (2) is more delicate, see Section 5. Indeed, it is
worth remarking, as already done in [1], that the previous transformation does not allow
to convert the quasiconcave parabolic equation into a concave fully nonlinear parabolic
PDE. Indeed, (2) is not the same as the equation

ψ(F (D2u))− ∂tu = 0.

To do this, we exploit again an idea of B. Andrews [1], see also the earlier paper [31]
and the more recent [61], and prove the estimate by regarding (2) as an elliptic problem
with a Hölder right-hand side. This step can be performed once one knows that ∂tu is
space-time Hölder continuous. Then, an interpolation argument and the elliptic result
provide the full a priori estimate of the form

∥∂tu∥Cα,α/2(Q 1
2
) + ∥D2u∥Cα,α/2(Q 1

2
) ≤ C(n, λ,Λ, ∥u∥C(Q1), |F (0)|).

We also prove regularity estimates for viscosity solutions in Sections 4 and 7. To do this,
in the elliptic case we follow the classical route by [15] and prove that for quasiconcave
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operators the convexity of superlevel sets is enough to conclude that the second order
differential quotients are still subsolutions (in the viscosity sense) of a Pucci’s extremal
equation. In the parabolic case, we again regard the equation as elliptic and exploit the
previous stationary result. Then, one is only left to prove the time-Hölder continuity
of second derivatives. The latter follows either adapting the two-dimensional arguments
from [1, 61] or via an interpolation argument. For equations in two-space variables and
for those satisfying Cordes conditions, such an approach provides space-time C2,α esti-
mates without any additional condition on F other than (3), cf. Section 6.1 and Section
6.2.

We conclude the paper with C2,1 estimates for fully nonlinear parabolic models that
are concave/convex or close to a hyperplane at infinity. We mention that a priori C2,1

estimates have been partially investigated in [37] in the concave case, where a one-side
second derivative estimate is proved. Here, we address this issue by the (parabolic) Bern-
stein method, following [46]. This analysis extends a work by L. Caffarelli and Y. Yuan
[17], and also completes the result in the more classical concave setting.
Our results are also complemented with the derivation of C2,α and W 2,p estimates for
equations with right-hand sides depending on x using a perturbation argument due to L.
Caffarelli [14, 15]. Here the idea is to import the regularity properties from those valid
for the corresponding homogeneous equation with constant coefficients.
We also discuss some polynomial Liouville theorems for entire solutions of elliptic equa-
tions and ancient solutions of parabolic equations, as it is done for the Laplace and the
Heat equation, cf. [18, 29]. We believe it would be worth investigating such issues in the
context of Riemannian manifolds, where curvature conditions play a crucial role.

Notation. We denote by Br(x) the ball of center x and radius r. When x0 = 0 we simply
write Br.
Qr(x, t) is the parabolic cylinder Br(x)× (t−r2, t), and we write Qr when (x, t) = (0, 0).
We denote, given Ω an open set, by ∂par(Ω× (a, b)) the parabolic boundary of a set.
We denote by |u|0;Ω the sup-norm of u, i.e. ∥u∥C(Ω) (both in the elliptic and the parabolic
case).
ue and uee will denote the first- and second derivatives with respect to a unitary direction
e ∈ Rn.
oscΩu denotes the oscillation of u on Ω
Let Q ⊂ Ω× (0, T ) and α ∈ (0, 1). We denote by d((x, t), (y, s)) = |x− y|+ |t− s| 12 the
parabolic distance and

• Cα,α/2(Q), α ∈ (0, 1] the space of those u : Q→ R such that

∥u∥Cα,α/2(Q) := |u|0;Q + [u]Cα,α/2(Q) = |u|0;Q + sup
(x,t),(y,s)∈Q,
(x,t)̸=(y,s)

|u(x, t)− u(y, s)|
dα((x, t), (y, s))

;

• C1+α,(1+α)/2(Q) the space of those u whose spatial gradient exists classically and
endowed with the norm

∥u∥C1+α,(1+α)/2(Q) := |u|0;Q + |Du|0;Q + sup
(x,t),(y,s)∈Q,
(x,t)̸=(y,s)

|u(x, t)− u(y, s)|
d1+α((x, t), (y, s))

.

5



In particular, any u ∈ C1+α,(1+α)/2(Q) is such that each component of Du belongs
to Cα,α/2(Q) and u is Hölder continuous with exponent (1 + α)/2 in the time
variable;

• C2+α,1+α/2(Q) the space of functions u such that

∥u∥C2+α,1+α/2(Q) := |u|0;Q +

n∑
i=1

∥uxi
∥C1+α,(1+α)/2(Q) + ∥∂tu∥Cα,α/2(Q).

This can also be expressed by saying that D2u belongs to Cα,α/2(Q) and ∂tu
belongs to Cα,α/2(Q), and can be obtained by means of Remark 8.8.7 in [41]. In
this case we can consider the space C2+α,1+α/2(Q) equipped with the norm

∥u∥C2+α,1+α/2(Q) := |u|0;Q + |Du|0;Q + ∥D2u∥Cα,α/2(Q) + ∥∂tu∥Cα,α/2(Q).

For more properties on these spaces we refer to [41]. Furthermore, we denote by

∥u∥C2,1(Q) :=
∑

2i+j≤2

|∂itDj
xu|0;Q.

Throughout this paper the ellipticity constants λ,Λ are fixed, and a constant will be
called universal when depends on λ,Λ and the dimension n. C will denote a generic
positive constant depending on the data, that may differ in each inequality.

For F = F (M), M ∈ Sn, we denote by Fij(M) = ∂F (M)
∂mij

and Fij,kl(M) = ∂2F (M)
∂mkl∂mij

.

When (3) holds for the time-dependent problem (2) we call F uniformly parabolic.
From now on, the summation convention over repeating indices is implicitly understood.

Acknowledgements. The author wishes to thank Martino Bardi and Cristina Gi-
annotti for fruitful discussions and for providing many references on fully nonlinear equa-
tions, Kevin R. Payne for several pointers to references for Special Lagrangian equations
and Xavier Ros-Oton for a comment on the regularity result for fully nonlinear ellip-
tic equations in two variables. He is also grateful to the anonymous reviewer for the
invaluable comments and a careful review, which meant a significant improvement of
the first version of the manuscript. The author is member of the Gruppo Nazionale
per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Isti-
tuto Nazionale di Alta Matematica (INdAM). The author was partially supported by
the INdAM-GNAMPA Project 2022 “Proprietà quantitative e qualitative per EDP non
lineari con termini di gradiente”, the INdAM-GNAMPA Project 2023 “Problemi vari-
azionali/nonvariazionali: interazione tra metodi integrali e principi del massimo” and by
the King Abdullah University of Science and Technology (KAUST) project CRG2021-
4674 “Mean-Field Games: models, theory and computational aspects”.

2. Preliminary definitions

2.1. Concavity and related notions

We collect some tools from convex analysis, referring for more details to Chapter 3
of [5]. We recall that a function u : Ω → R is called quasiconcave if its domain and all
superlevel sets

Sα(u) = {x : u(x) ≥ Υ}, Υ ∈ R are convex.
6



In particular, a function is quasiconcave if and only if its domain is convex and the
following Jensen’s inequality holds

u(θx+ (1− θ)y) ≥ min{u(x), u(y)} ,∀x, y ∈ Ω, θ ∈ [0, 1].

Similarly, a function is quasiconvex if −u is quasiconcave, i.e. the sublevel sets are convex.
For a quasiconvex u it holds

u(θx+ (1− θ)y) ≤ max{u(x), u(y)} ,∀x, y ∈ Ω, θ ∈ [0, 1].

Recall that the superlevel sets of a concave function are convex, but the converse does not
hold: for instance, the function ex is not concave on the real line (it is strictly convex), but
the superlevel sets are convex. In particular, a concave function is also quasiconcave, but
the converse does not hold. In fact, it can be proved that the function u(x1, x2) = x1x2
on R2

+ is neither concave nor convex, but it is quasiconcave on its domain.
If u : Rn → R is differentiable, then u is quasiconcave if and only if the domain of u is
convex and for all x, y ∈ Ω we have

u(y) ≥ u(x) =⇒ Du(x) · (y − x) ≥ 0.

Moreover, when u : Ω → R is twice differentiable, if u is quasiconcave then for all x ∈ Ω
and all y ∈ Rn one has

y ·Du = 0 =⇒ D2uy · y ≤ 0. (4)

This implies that when Du = 0 we have D2u ≤ 0, while in the case Du ̸= 0 the above
condition implies that D2u is negative semidefinite on the orthogonal complement (Du)⊥

(having dimension n − 1). The latter entails that D2u can have at most one positive
eigenvalue.
We have the following second-order characterization of quasiconcave functions:

Lemma 2.1. A twice differentiable function u : Ω → R is quasiconcave if and only if
there exists σ ∈ R such that

D2u+ σDu⊗Du ≤ 0,

where (x⊗ y)ij = xiyj, x, y ∈ Rn.

Given a function F ∈ Sn → R with F = F (M), this can be extended to a function
defined on the space of real n×nmatrices through the extension F (M) = F ( 12 (M+MT )).
Then F is a real-valued function of the n × n variables mij . Moreover, DF (M) · N =
Fij(M)Nij , M,N ∈ Sn.
For a uniformly elliptic functional F = F (M) satisfying (3) (not necessarily of class C1)
we say that it is quasiconcave (resp. quasiconvex) if it is a quasiconcave (quasiconvex)
function of M ∈ Sn, namely for all M1,M2 ∈ Sn and θ ∈ [0, 1] we have

F ((1− θ)M1 + θM2) ≥ min {F (M1), F (M2)} (≤ max {F (M1), F (M2)}).

The second-order characterization (4) then reads as follows when F ∈ C2:

Fij,klMijMkl ≤ 0 for all M ∈ Sn satisfying FijMij = 0.

We point out that the latter condition is the one imposed in Theorem 6 of [1] to prove
Evans-Krylov estimates. Lemma 2.1 then implies the following result when specified to
functions over symmetric matrices:
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Lemma 2.2. A twice differentiable function F : Sn → R, F = F (M), is quasiconcave
in the space of symmetric matrices if and only if it is quasiconcave as a function of n×n
variables. Moreover, it is quasiconcave if and only if there exists σ ∈ R such that for all
M ∈ Sn

Fij,klMijMkl + σFijFklMijMkl ≤ 0.

Example 2.3. Consider the operator

F (M) :=

n∑
i=1

arctanλi(M)

and the fully nonlinear equation

n∑
i=1

arctanλi(D
2u) = f(x) (5)

with |f(x)| ≥ π
2 (n− 2). This is known as Special Lagrangian equation with supercritical

phase. It was proved in Lemma 8.1 of [12], see also Lemma 2.1 in [71],[32] or Lemma 2.1
in [20] that if F is seen as a function of the eigenvalues, i.e. F = f(λ) = f(λ1, ..., λn),
then

{λ ∈ Rn :
∑
i

arctanλi ≥
π

2
(n− 2)}

is a convex set. Therefore, the set

Σ := {M ∈ Sn : F (M) ≥ Υ},Υ ≥ π

2
(n− 2)

is convex, cf. Corollary 2.3 in [20], which implies that the operator F in (5) is quasicon-
cave provided that |f(x)| ≥ π

2 (n− 2).

2.2. Viscosity solutions of fully nonlinear equations

We recall the following notion of viscosity solution:

Definition 2.4. A continuous function u in Ω is a viscosity subsolution (resp. superso-
lution) of (1) in Ω when the following conditions are satisfied:
If x0 ∈ Ω, φ ∈ C2(Ω) and u− φ has a local maximum at x0, then

F (D2φ(x0)) ≥ 0

(resp. u−φ has a local minimum at x0, then F (D
2φ(x0)) ≤ 0). u is a viscosity solution

if it is both a subsolution and a supersolution in the viscosity sense.

By Proposition 2.4 in [15], it is equivalent to replace φ with a paraboloid. Similar
definitions hold for the parabolic equation (2), cf. [67, 68, 35].
We now introduce two classes of solutions that are important to prove C1,1 estimates.

Definition 2.5. Let F be a continuous function in Ω and λ ≤ Λ two positive constants.
We denote by S(λ,Λ, f) the space of continuous functions u in Ω that are subsolutions
of the Pucci’s maximal equation

M+
λ,Λ(D

2u) = f(x) in the viscosity sense in Ω,
8



where
M+

λ,Λ(M) = sup
λIn≤A≤ΛIn

Tr(AM)

is the Pucci’s maximal operator. Similarly, S(λ,Λ, f) the space of continuous functions
u in Ω that are supersolutions to the Pucci’s minimal equation

M−
λ,Λ(D

2u) = f(x) in the viscosity sense in Ω,

where
M−

λ,Λ(M) = inf
λIn≤A≤ΛIn

Tr(AM)

is the Pucci’s minimal operator.

Similar definitions continue to hold for parabolic equations, cf. [67, 68].

3. A priori estimates for quasiconcave elliptic equations

3.1. From C1,1 to C2,α estimates: the case of smooth operators (and smooth solutions)

In this section we prove an a priori C2,α estimate depending on the C1,1 norm of
the unknown function for classical solutions to the Hessian equations F (D2u) = 0 under
the assumption that F ∈ C2 and it is a quasiconcave function in the space of symmetric
matrices. This exploits a suitable transformation that allows to inherit this level of
regularity from the Evans-Krylov theorem for concave functionals. This was already
observed by B. Andrews in [1] for the case of quasilinear functions F , i.e. when F is both
quasiconcave and quasiconvex, meaning that its level sets (and not only the superlevel
sets) are convex. A similar increasing transformation has been recently used even in the
setting of Special Lagrangian equations with supercritical phases, cf. Corollary 2.3 in
[20].

Theorem 3.1. Let F ∈ C2 be quasiconcave and uniformly elliptic, i.e.

λ|ξ|2 ≤ Fijξiξj ≤ Λ|ξ|2,

with F (0) = 0. Let
u ∈ C2(B1) satisfy F (D

2u) = 0 in B1.

Then we have the a priori estimate

∥u∥C2,α(B 1
2
) ≤ C,

where α ∈ (0, 1) and C are universal constants, i.e. depend on n, λ,Λ, but C depends
also on ∥u∥C1,1(B 3

4
).

Proof. We prove that there exists a function ψ : R → R with ψ(0) = 0 and ψ ∈ C2 such
that ψ(F ) : Sn → R is concave and u solves ψ(F (D2u)) = 0 in B1. We heavily use that
F ∈ C2 to exploit the second order characterization of quasiconcave functions. Indeed,
if F is quasiconcave we have that there exists σ ∈ R such that for any M ∈ Sn it holds

Fij,klMijMkl ≤ σFijFklMijMkl.
9



We define for k > 0 to be selected the function ψ : R → R as

ψ(r) = −e−kr + 1.

It is immediate to see that ψ is increasing and ψ(0) = 0 if and only if r = 0. We set

G(M) = ψ(F (M)).

We first observe that if u solves F (D2u) = 0 with F (0) = 0, then it solves G(D2u) = 0
in the same domain. We now check that F is uniformly elliptic with ellipticity constants
depending on D2u (and hence on ∥u∥C1,1). Indeed

Gij = ψ′(F )Fij ;

Gij,kl = ψ′′(F )FijFkl + ψ′(F )Fij,kl.

Since
ψ′(r) = ke−kr and ψ′′(r) = −k2e−kr

we get
Gij,kl = ke−kF (Fij,kl − kFijFkl)

and hence for all M ∈ Sn

Gij,klMijMkl = ke−kF (Fij,klMijMkl − kFijFklMijMkl) .

Then, if we choose k ≥ max{σ, 0} we get

Gij,klMijMkl = ke−kF (Fij,klMijMkl − kFijFklMijMkl)

≤ ke−kF (Fij,klMijMkl − σFijFklMijMkl) ≤ 0.

This implies that G ∈ C2 is concave. Moreover

Gij,klξiξj = ψ′(F )Fijξiξj for all ξ ∈ Rn.

Since F is uniformly elliptic with ellipticity constants λ,Λ, then G is uniformly elliptic
with ellipticity constants λψ′(F ) and Λψ′(F ), which in turn depend on |D2u|0;B3/4

. We
are then in position to apply the classical result of L.C. Evans [26], see also Theorem 6.1
in [15] and [44], to the C2 solution of G(D2u) = 0 in B1, where G is a concave operator,
and conclude the desired estimate.

3.2. A priori C1,1 estimates through the Bernstein method and some consequences

We first prove a key result, as in [15], which says that ue solves a linear equation in
nondivergence form, while uee is a subsolution to a linear equation, the second one being
valid under quasiconcavity assumptions.

Lemma 3.2. Let F = F (M) : Sn → R be quasiconcave, F ∈ C2 and such that F (0) = 0.
Consider the Hessian equation

F (D2u(x)) = 0 in Ω.

Then, setting L := aij(x)∂ij = Fij(D
2u(x))∂ij with λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, the

following statements hold:
10



(i) If u ∈ C3(Ω) then
Lu ≤ 0 and Lue = 0 in Ω.

(ii) If u ∈ C4(Ω) then
Luee ≥ 0 in Ω.

Proof. Let ψ(t) = F ((1 − t)D2u). We have ψ(0) = 0, ψ(1) = F (0) = 0. Since F is
quasiconcave, it follows that ψ ≥ 0 in [0, 1]. Therefore, by the first-order conditions,
being F ∈ C1 and ψ(1) = ψ(0), we get

0 ≤ ψ′(0) · (1− 0) = Fij(D
2u(x))(−∂iju(x)) = −Lu

Differentiating the equation F (D2u(x)) = 0 we get Lue = 0. This proves (i).
To prove (ii) we use that for a quasiconcave F by Lemma 2.2 there exists a constant
σ ∈ R such that for all M ∈ Sn

Fij,kl(D
2u(x))MijMkl ≤ σFij(D

2u(x))Fkl(D
2u(x))MijMkl.

Thus, we differentiate once more the equation to find, using that Lue = 0

0 = Luee+Fij,kl(D
2u(x))(ue)ij(ue)kl ≤ Luee+σFij(D

2u(x))Fkl(D
2u(x))(ue)ij(ue)kl = Luee.

Alternatively, instead of using Lemma 2.2, one can exploit the characterization (4) for
quasiconcave functions to conclude

DF (D2u) ·D2ue = Fij(D
2u)(ue)ij = Lue = 0 =⇒ Fij,kl(D

2u(x))(ue)ij(ue)kl ≤ 0.

Remark 3.3. The previous lemma continues to hold when u ∈ C2 using difference quo-
tients instead of derivatives [10].

We also need the following result that is a consequence of the uniform ellipticity (no
other assumptions on F are required), cf. Lemma 6.4 in [15].

Lemma 3.4. If F (M1) = F (M2) = 0 and F is uniformly elliptic, then

λ

Λ + λ
∥M2 −M1∥ ≤ ∥(M2 −M1)

+∥ = sup
e∈Rn,|e|=1

(eT (M2 −M1)e)
+.

We prove the following C1,1 interior estimates for quasiconcave nonlinear C2 func-
tionals F

Theorem 3.5. Let F be quasiconcave, uniformly elliptic, F ∈ C1 with F (0) = 0. Let
u ∈ C3(B1) be such that F (D2u) = 0 in B1. Then

|Du|0;B1/2
≤ CoscB1

u.

If, in addition, F ∈ C2 and u ∈ C4, we have the estimate

|D2u|0;B1/2
≤ CoscB1

u.

Here, C is a universal constant, depending only on n, λ,Λ.
11



Proof. The proof is the same as that in [15], we sketch it here for reader’s convenience.
Define, for δ > 0 to be chosen later, the auxiliary function

z = δ(M − u)2 + η2|Du|2 ∈ C2(B1) ,M = sup
B1

u.

where η is an appropriate cut-off function. One proves by the maximum principle that
supB 1

2

z ≤ δ(oscB1
u)2 by observing that for δ chosen large enough and a positive constant

C > 0
Lz ≥ 2δλ|Du|2 − C|Du|2 ≥ 0.

To prove the second derivative estimate one can consider, for a unitary direction e ∈ Rn

and µ > 0 to be chosen later, the function

h = µu2e + η2(u+ee)
2 ∈ C2(B1) ,

where v+ = max{v, 0} is the positive part of v. A similar calculation that requires to
differentiate the equation twice and exploits Luxk

= 0 together with Luee ≥ 0 (see
Lemma 3.2) leads now to

Lh ≥ 0

in the set {x ∈ B1 : uee(x) > 0} and for µ large. Therefore this implies the one-side
bound

u+ee ≤ C in B 1
2
.

Using the equation F (D2u) = 0 together with Lemma 3.4 (applied with M2 = D2u and
M1 = 0, using also F (0) = 0), we get a two-side bound on D2u.

Remark 3.6. An observation made in [10] allows to weaken the requirement u ∈ C4 by
using difference quotients and work with viscosity solutions. The basic idea relies on
considering z of the following form

z = η2
(
u(x+ he)− u(x)

h

)2

+ δ

∫ 1

0

u2(x+ the) dt,

where the full derivatives have been replaced by a difference quotient and the zeroth
order term has been replaced with an average value of u2 in the direction of e.

Corollary 3.7. Let F be quasiconcave, uniformly elliptic, F ∈ C2 with F (0) = 0. Let u
be a classical solution of F (D2u) = 0 in Rn. Assume that

|u(x)| ≤ C(1 + |x|γ) , γ < 2, x ∈ Rn.

Then, u must be a polynomial of degree at most ⌊γ⌋ = 1, i.e. u is at most an affine
function. In particular, if either γ ∈ (0, 1) (i.e. u has sublinear growth) or γ = 0 (i.e. u
is bounded), then u must be a constant.

Proof. The proof follows from the gradient and Hessian bounds stated for solutions of
F (D2u) = 0 in BR.

|Du|0;BR/2
≤ C

R
oscBR

u,

12



|D2u|0;BR/2
≤ C

R2
oscBR

u.

This can be done adjusting the previous proof as in [38]. Alternatively, it is enough to
observe that if u solves F (D2u) = 0, then v(x) = 1

ρu(ωx) solves

ω2

ρ
F
( ρ

ω2
D2v

)
= 0,

where the constant in front of F allows to preserve the uniform ellipticity of the starting
equation. Therefore, the estimates in BR follow by scaling.

An immediate consequence of Theorem 3.1 and the previous C1,1 a priori estimates is
a C2,α a priori estimate. Note that this statement is much weaker than that of Theorem
6.6 in [15], since it is not stated for viscosity solutions, although it is valid under slightly
weaker assumptions on F compared with [15, Theorem 6.6] and [15, Corollary 9.4] (i.e.
we are assuming only convexity of the superlevel sets).

Corollary 3.8. Let F be quasiconcave and satisfy F ∈ C∞. Let u ∈ C2(B1) be a
solution of F (D2u) = 0 in B1. Then u ∈ C∞(B1) and

∥u∥C2,α(B 1
2
) ≤ C(n, λ,Λ, |u|0;B1 , |F (0)|).

Proof. The proof follows combining Theorem 3.1 with the C1,1 a priori estimate from
Theorem 3.5. The smoothness of u ∈ C∞ follows from the bootstrap argument in
Proposition 9.1 of [15] since F itself is smooth.

The previous estimate leads to the following polynomial Liouville theorem, as in the
case of the Laplace equation, cf. [18, 29].

Corollary 3.9. Let F be quasiconcave, uniformly elliptic, F ∈ C2 with F (0) = 0. Let u
be a classical solution of F (D2u) = 0 in Rn. Assume that

|D2u| ≤ C.

Then, u must be a polynomial of degree at most 2.

4. C2,α regularity estimates for viscosity solutions of quasiconcave equations

In this section we prove that viscosity solutions to quasiconcave equations F (D2u) = 0
satisfy interior C2,α estimates for some universal α ∈ (0, 1) in terms of |u|0;B1 . Our main
result reads as follows, and extends Theorem 6.6 in [15] under weaker conditions on F .

Theorem 4.1. Let F be quasiconcave, continuous (with no other smoothness assump-
tions) and uniformly elliptic, and u be a continuous viscosity solution to F (D2u) = 0 in
B1. Then u ∈ C2,α(B 1

2
) and

∥u∥C2,α(B 1
2
) ≤ C,

where 0 < α < 1 and C are universal constants. C here also depends on |u|0;B1
and

|F (0)|.
13



Remark 4.2. We can always reduce, for any uniformly elliptic F (not necessarily concave
or quasiconcave), to F (0) = 0 in proving Theorem 4.1, cf. Remark 1 in Section 6.2 of
[15].

To prove Theorem 4.1 we start by proving C1,1 regularity estimates for viscosity
solutions. The main result to prove this level of regularity is the following

Theorem 4.3. Let F be uniformly elliptic, continuous and quasiconcave. Let u ∈ C(B1)
be a viscosity solution to

F (D2u) = 0 in B1. (6)

Then, it satisfies the regularity estimate

[u]C1,1(B 1
2
) ≤ C(|u|0;B1

+ |F (0)|).

Following the path outlined in [15], the proof of this result requires to show that
second order differential quotients belong to S(λ,Λ, 0) when F is quasiconcave. This is a
consequence of the following two results (note that only the second one requires concavity
assumptions on F )

Theorem 4.4. Let F be uniformly elliptic, u be viscosity subsolution to (6) in Ω and v
be a viscosity supersolution of (6) in Ω. Then

u− v ∈ S(λ/n,Λ) in Ω.

Proof. This is proved in Theorem 5.3 of [15]. Alternatively, one can proceed using the
doubling variable argument [21, 35] and exploit the uniform ellipticity.

Corollary 4.5. Let u be a viscosity solution to (6). Let h > 0 and e ∈ Rn with |e| = 1.
Then

u(x+he)−u(x) ∈ S(λ/n,Λ) = S(λ/n,Λ, 0)∩S(λ/n,Λ, 0) in Ωh := {x ∈ Ω : dist(x, ∂Ω) > h}.

Proof. This is a consequence of Theorem 4.4 and the fact that v(x) = u(x + he) is a
viscosity solution to F (D2u) = 0 in Ωh.

The next result exploits quasiconcavity properties on F and shows that any convex
combination of two subsolutions is still a subsolution.

Theorem 4.6. Let F be uniformly elliptic, continuous and quasiconcave, and let u, v be
viscosity subsolutions to (6). Then

w = θu+ (1− θ)v, θ ∈ (0, 1),

is a viscosity subsolution to F (D2u) = 0 in B1.

Proof. The proof is easy when u, v are classical subsolutions. Indeed, by the Jensen’s
inequality for quasiconcave functions it follows that

F
(
D2 (θu+ (1− θ)v)

)
≥ min{F (D2u), F (D2v)} ≥ 0.

In the general case the proof is a consequence of the following fact: if uε denotes the
sup-convolution of u and uε the inf-convolution, and also u is a viscosity subsolution to

14



F (D2u) = 0, then for δ > 0 small enough (uε+δ)δ ∈ C1,1 and is a viscosity subsolution of
the same equation, so that one can proceed as in the smooth setting, see e.g. Proposition
4.6 and Remark 4.8 of [22]. Alternatively, one can proceed following the same steps of
Theorem 5.8 of [15]: it is enough to see that w = θuε+(1−θ)vε, µ ∈ (0, 1), is a viscosity
subsolution to F (D2w) = 0. Let p be a paraboloid touching the graph of θuε +(1− θ)vε

from above at x0. We prove that F (D2p) ≥ 0. Define

z(x) = p(x) + δ|x− x0|2 − δr2 − (θuε + (1− θ)vε).

A standard argument that uses the ABP maximum principle (using Lemma 3.5 in [15]
and arguing as in Theorem 5.3 of [15]) implies that there exists x1 ∈ B such that uε, vε

and z are punctually second order differentiable at x1, and

D2
(
p+ δ|x− x0|2 − (θuε + (1− θ)vε)

)
(x1) ≥ 0. (7)

Moreover, F (D2uε) ≥ 0 and F (D2vε) ≥ 0. Since F is quasiconcave we have

F
(
D2 (θuε + (1− θ)vε)

)
≥ min{F (D2uε), F (D2vε)} ≥ 0

This implies by (7) and the uniform ellipticity (actually, degenerate ellipticity is enough)
that

F (D2p+ 2δIn) ≥ 0

Letting δ → 0, since F is continuous, we get F (D2p) ≥ 0.

The next corollary shows what we already observed for smooth functionals in Lemma
3.2: the pure second derivatives uee (or better the second order differential quotients)
are a subsolution to a linear equation in nondivergence form (resp. a Pucci’s extremal
equation).

Corollary 4.7. Let F be quasiconcave and u be a continuous viscosity solution to (6).
Then

∆2
heu =

u(x+ he) + u(x− he)− 2u(x)

h2
∈ S(λ/n,Λ, 0) in B 1

2
.

In particular, if u ∈ C2(Q1), then

uee ∈ S(λ/n,Λ, 0)

Proof. We write for θ = 1
2

u(x+ he) + u(x− he)− 2u(x)

2
=

1

2
(u(x+ he) + u(x− he))− u(x),

which is by Theorem 4.4 the difference of a viscosity subsolution and a supersolution of
F (D2w) = 0. The result follows then from Theorem 4.6, since 1

2 (u(x+ he) + u(x− he))
is a viscosity subsolution.

Proof of Theorem 4.3. The result follows from Corollary 4.7 and using statement (2) in
Theorem 4.8 (the local maximum principle) of [15]. We detail part of the proof following
the one in Theorem 6.6 in [15]. To do this, one observes that when F is quasiconcave
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there exists a supporting hyperplane (by above) to the graph of F at 0 ∈ Sn. Indeed, it
is enough to apply the Hahn-Banach theorem to the open convex set

{(M, ξ) ∈ Sn × R : F (M) > ξ}

(recall that F is a quasiconcave function when the superlevel sets are convex). This
implies that there exists a linear functional L on the space of symmetric matrices, i.e. of
the form L(M) = Tr(AM) for some constant coefficient matrix A such that λIn ≤ A ≤
ΛIn (that we may assume to be the Laplacian by Lemma 6.1 in [30]) such that L(0) = 0
and L(M) ≥ F (M) for any M ∈ Sn.
Therefore, since F (D2u) = 0 in the viscosity sense in B1 and ∆φ = L(D2φ) ≥ F (D2φ)
for any φ ∈ C2, we immediately see that u solves ∆u ≥ 0 in the viscosity sense in
B1. Then, we can continue the proof with the program outlined in [15] to prove the
C1,1 regularity estimate, see also [8], exploiting now Corollary 4.7 valid for quasiconcave
operators instead of the more classical Corollary 5.10 in [15].

We now state the following extension of Theorem 6.1 in [15].

Theorem 4.8. Let F be quasiconcave and let

u ∈ C1,1(B1) satisfy F (D
2u) = 0 in B1.

Then u ∈ C2,α(B 1
2
) and

∥u∥C2,α(B 1
2
) ≤ C,

where α ∈ (0, 1) and C are universal constants. Here C depends on ∥u∥C1,1(B 3
4
).

Proof. Having the C1,1 estimates of Theorem 4.3 at our disposal, we can exploit the
increasing exponential transformation of Theorem 3.1. In this case, one can check that
if u solves F (D2u) = 0 in the viscosity sense, then u solves in the viscosity sense the
concave equation G(D2u) = ψ(F (D2u)) = 0. Also, since ψ is increasing and u ∈ C1,1,
then G continues to be uniformly elliptic (where now the ellipticity constants do not
depend on ∥u∥C1,1 by Theorem 4.3). Therefore, the result follows from the regularity
estimate in Theorem 6.1 in [15] stated for viscosity solutions.

We are now ready for the proof of the full C2,α estimate for viscosity solutions

Proof of Theorem 4.8. The proof follows combining Theorem 4.3 with Theorem 4.8.

Remark 4.9. The same results in Corollaries 3.7 and 3.9 hold for viscosity solutions using
the regularity estimate in Theorem 4.1.

4.1. Estimates for more general equations by perturbation

As a byproduct of a perturbation argument of L. Caffarelli we get the following
interior pointwise C2,α estimate for equations with Cα right-hand side.
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Theorem 4.10. Let F = F (x,M) be uniformly elliptic, quasiconcave, continuous in x
and such that F (0, 0) = f(0) = 0. Let also f be a continuous function. Suppose that
ᾱ ∈ (0, 1) is the constant of the C2,ᾱ estimate for the homogeneous equation of Theorem
4.1. Assume also that α ∈ (0, ᾱ), r0 > 0, C1, C2 > 0,(

1

|Br|

∫
Br

β̃n

) 1
n

≤ C1r
−α
0 rα,

(
1

|Br|

∫
Br

|f |n
) 1

n

≤ C2r
−α
0 rα, ∀r ≤ r0.

where

β̃(x) = sup
M∈Sn

|F (x,M)− F (0,M)|
∥M∥+ 1

and u be a viscosity solution of

F (x,D2u) = f(x) in Br0 .

Then u ∈ C2,α at the origin.

Proof. The result is a consequence of Theorem 8.1 in [15] and Theorem 4.1.

Finally, the previous C1,1 regularity estimates for the frozen equation F (x0, D
2u) = 0

imply W 2,q estimates for x-dependent equations of the form F (x,D2u) = f(x) ∈ Lq,
q > n − ε, where ε > 0 is a universal parameter depending on n,Λ/λ, again as a
consequence of a result of L. Caffarelli [15] and L. Escauriaza [25], cf. Theorem 7.1 and
the subsequent Remark 3 in [15]. This is done by an assumption that measures the
oscillation of x in the critical space Ln, see (8).

Theorem 4.11. Let u be a bounded viscosity solution to

F (x,D2u) = f(x) in B1.

Assume that F (x, 0) = 0 in B1, F continuous in x and uniformly elliptic in M ∈ Sn

and that F (x0,M) is quasiconcave in M ∈ Sn for any x0 ∈ B1. Assume also that f is
continuous. Let also ce be the constant such that for any x0 ∈ B1

∥w∥C1,1(B 1
2
) ≤ cZ .

Let also q be such that q̄(n, λ,Λ) < q < ∞ and f ∈ Lq(B1), q̄ being the Escauriaza’s
exponent. Then there exist positive constants β0 and C depending on n, λ,Λ, cZ and q
such that if (

|Br(x0)|−1

∫
Br(x0)

β(x, x0)
n dx

) 1
n

≤ β0, (8)

β(x, x0) = sup
M∈Sn/{0}

|F (x,M)− F (x0,M)|
∥M∥

,

for any ball Br(x0) ⊂ B1, then u ∈W 2,q(B 1
2
) and

∥u∥W 2,q(B 1
2
) ≤ C(∥u∥L∞(B1) + ∥f∥Lq(B1)).
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Remark 4.12. As pointed out in [14], one can allow discontinuous dependence on the
operator F with respect to x and only measurable right-hand sides f by considering Lp-
viscosity solutions. Results in this direction can be found in the papers [11, 23, 36, 56].

Remark 4.13. We believe that the first- and second derivatives bounds obtained by the
Bernstein method in Section 3 hold even for more general equations with lower order
terms as in [65] under natural structural conditions on F = F (x, u,Du,D2u). These
typically hold when the growth in the gradient variable is at most quadratic. In fact,
it is well-known that C1,α estimates for such general equations hold without concavity
assumptions and under much weaker regularity conditions than [65], cf. [55, 63]. Once
C1,α regularity is established, higher C2,α estimates can be achieved by bootstrapping
and exploiting the results of this and the previous sections by regarding the lower order
terms as a right-hand side g(x) for an equation of the form

G(x,D2u) = g(x).

5. A priori C2+α,1+α/2 estimates for parabolic quasiconcave equations

We start with an extension of Theorem 6 in [1] for parabolic Hessian equations. We
give here a slightly different proof resorting to an interpolation inequality of [45]. Note
that the next result holds for more general operators than those in [1], where it was
assumed that F is quasilinear (i.e. both quasiconcave and quasiconvex). However, as
already pointed out in [1], here we cannot directly use a monotone transformation as in
the stationary case to extract information from a concave parabolic equation. Indeed,
the equation F (D2u) − ∂tu = 0 is not the same as ψ(F (D2u)) − ∂tu = 0 and we need
some extra work.

Theorem 5.1. Let F ∈ C2 be quasiconcave and uniformly parabolic, i.e.

λ|ξ|2 ≤ Fijξiξj ≤ Λ|ξ|2.

Let
u ∈ C4,2(Q1) be a solution of F (D2u)− ∂tu = 0 in Q1 = B1 × (−1, 0].

Then u ∈ C2+α,1+α
2 (Q 1

2
) and

∥u∥
C2+α,1+α

2 (Q 1
2
)
≤ C,

where α ∈ (0, 1) and C are universal constants, with C depending also on ∥u∥C2,1(Q1)
.

Proof. The idea of the proof follows the observation of B. Andrews [1] in the two-
dimensional case, see also the recent work [61]. Here we simplify the argument using
a space-time interpolation inequality. This was also used earlier by C. Gutiérrez and
Q. Huang to prove a priori estimates for parabolic Monge-Ampère equations [31], cf.
Theorem 2.3 therein. By the smoothness of F in the range of D2u and differentiating in
time, it is immediate to see that ∂tu solves the linear PDE

Fij(D
2u(x, t))∂ij(∂tu)− ∂t(∂tu) = 0.
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We are then in position to apply the parabolic Krylov-Safonov Hölder regularity result,
cf. Theorem 7 in [1], and obtain that ∂tu is space-time Hölder continuous with the
following estimate

[∂tu]Cγ,
γ
2 (Q 3

4
)
≤ C|∂tu|0;Q1

.

To estimate D2u(x, t) in the x-variable we freeze the time variable and consider the
parabolic problem as a stationary equation with ∂tu as a right-hand side. That is,
v(x) = u(x, t) solves

G(D2v(x)) = ϕ(x), G(D2v(x)) = F (D2u(x, t)), ϕ(x) = ∂tu(x, t).

By the elliptic result in Theorem 4.1 (combined with the fact that ∂tu is Hölder con-
tinuous in space and it is thought as a Hölder continuous right-hand side of an elliptic
problem) on each time slice we have ∥D2u(·, t)∥Cι(B1/2) ≤ C uniformly in t for some

positive constant C (that depends on |D2u|0;B1
) and some ι ∈ (0, 1). It remains to show

that D2u is Hölder continuous in time. Differentiating the equation with respect to a
unitary direction e we have

Fij(D
2u(x, t))∂ij(ue)− ∂t(ue) = 0.

As before, we obtain for some σ ∈ (0, 1)

[Du]
Cσ, σ

2 (Q 1
2
)
≤ C|Du|0;Q1

.

This implies that
|Du(x, t1)−Du(x, t2)| ≤ C|t1 − t2|

σ
2

and for fixed t by the elliptic result we have

|D2u(x1, t)−D2u(x2, t)| ≤ C|x1 − x2|ι,

where the constant here depends in particular on ∥u∥C1,1 and |∂tu|0;Q1 , so on the full
C2,1 norm of u. Using Lemma 3.1 p. 78 in [45] applied to Du we get that

|D2u(x, t1)−D2u(x, t2)| ≤ C|t1 − t2|
σι

2(1+ι) ,

which concludes the proof because of the equivalence (see e.g. p. 120 of [41]) between
the Hölder seminorm [u]Cα,β(Q1) defined with respect to the parabolic distance and

[u]′Cα,β(Q1)
= sup

x,y∈B1,
x ̸=y

|u(x, t)− u(y, t)|
|x− y|α

+ sup
t,s∈(−1,0),

t ̸=s

|u(x, t)− u(x, s)|
|t− s|β

.

Remark 5.2. The regularity requirement u ∈ C4,2 can be weakened to C2,1 using incre-
mental quotients, see for instance [29] or Lemma 14.6 in [49].

One can also reach C∞ regularity by classical Schauder estimates if F is smooth
and u ∈ C2+α,1+α

2 . Note that no concavity-type assumptions in the matrix variable are
required to perform this step.
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Proposition 5.3. Let α ∈ (0, 1) and u ∈ C2,1(Ω× (t1, t2)) be a solution of

F (x, t,D2u)− ∂tu = f(x, t) in Ω× (t1, t2).

Assume that F ∈ C∞(Ω × (t1, t2) × Sn) is uniformly elliptic and f ∈ C∞(Ω × (t1, t2)).
Then u ∈ C∞(Ω× (t1, t2)).

Proof. The proof uses maximal Lq-regularity and Schauder estimates for linear parabolic
equations with continuous or Hölder continuous coefficients, we refer to Lemma 14.11 in
[49] for details.

We can now conclude the following result which, in the concave case, gives a weaker
statement than those in [68].

Corollary 5.4. Let F be quasiconcave and satisfy F ∈ C∞. Let u ∈ C2,1(Q1) be a
solution of F (D2u)− ∂tu = 0 in Q1. Then u ∈ C∞(Q1) and

∥u∥
C2+α,1+α

2 (Q 1
2
)
≤ C(n, λ,Λ, ∥u∥C2,1(Q1), |F (0)|).

Proof. This is a consequence of Proposition 5.3 and the previous a priori Evans-Krylov
estimates.

Remark 5.5. The previous estimate can be reduced to

∥u∥
C2+α,1+α

2 (Q 1
2
)
≤ C(n, λ,Λ, |u|0;Q1 , |F (0)|)

with the aid of the a priori C2,1 estimates via the Bernstein method, see Corollary 8.7.

6. Regularity estimates for fully nonlinear parabolic equations without con-
cavity assumptions

6.1. Equations in two space variables

The same proof of Theorem 5.1 leads to the following regularity estimate for fully
nonlinear parabolic equations in dimension 2+1 without any assumption on the operator
other than the uniform ellipticity, see Remark 6.2 for more details.

Theorem 6.1. Let u : B1 × (−1, 0] → R, B1 ⊂ R2, and u be a viscosity solution to

F (D2u)− ∂tu = 0 in Q1.

Assume that F is uniformly parabolic (no other assumptions are required). Then for
some α ∈ (0, 1) we have the regularity estimate

∥∂tu∥Cα,α/2(Q 1
2
) + ∥D2u∥Cα,α/2(Q 1

2
) ≤ C(|u|0;Q1

+ |F (0)|),

where C depends on λ,Λ.
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Proof. This follows combining the elliptic result by L. Nirenberg [54] (stated for viscosity
solutions) with a perturbation argument of L. Caffarelli, cf. Section 8.1 in [15], to show
the Schauder estimate for the equation

F (D2u) = f(x) in B1.

with f ∈ Cα. See Theorem Appendix A.1 for some details of the proof. This can be
done once we know that ∂tu ∈ Cα,α/2 for some α > 0. If we now freeze the time variable,
viewing ∂tu as the right-hand side of the above fully nonlinear elliptic equation, and
using that f(x) = ∂tu(·, t) ∈ Cα(B 3

4
) by [68], one has that D2u(·, t) exists in classical

sense and is Hölder continuous in B 1
2
. Therefore, in view of the interpolation argument

in Theorem 5.1 and the space-time Hölder continuity of Du obtained in [68] for viscosity
solutions, one has the time-Hölder continuity of D2u, which concludes the proof.

Remark 6.2. The a priori estimate for the fully nonlinear elliptic equation F (D2u) = 0 in
B1 ⊂ R2 without neither concavity nor convexity hypotheses is due to L. Nirenberg [54],
see also Theorems 4.9 and 4.26 in [29]. This argument consists in writing the equation
satisfied by w = uee as an equation in divergence form with measurable coefficients of
the form div(A(x)Dw) = 0 in B1. Then by the De Giorgi-Nash result w ∈ Cα(B 1

2
).

This is stated for viscosity solutions in [61]: since we were not able to find a proof in the
literature, we decided to provide it in the appendix in Theorem Appendix A.1.
Another proof was obtained in Remark 2 of [17] using a different argument and assuming
F ∈ C2: it relies on observing that w is a subsolution, for a suitable K > 0, to the
equation

Fij∂ij(e
Kw) = 0.

This idea in [17] is the counterpart, in the concave case, of the fact that uee is a sub-
solution to a certain nondivergence equation, but it has the advantage to remove the
concavity hypothesis. In the parabolic setting it was first studied in [1] and recently
stated for viscosity solutions in Proposition 1.5 of [61]. The above proof slightly shorten
[1], though our estimate is stated for simpler equations independent of x, t,Du.

Remark 6.3. It is worth remarking that fully nonlinear parabolic equations in one-space
variables were treated in [39], see also Section XIV.7 of [49], without concavity assump-
tions in the second derivatives.

6.2. Equations satisfying Cordes-type conditions

We conclude with a result that does not impose any concavity condition on the
operator, but rather a restriction on the ratio among the ellipticity constants, meaning
that the fully nonlinear equation is close to be a linear PDE in nondivergence form.
Notably, no dimensional restrictions are required as in the previous section. Such a result
appeared in [69] in the form of a pointwise estimate for stationary equations and in [4]
under more restrictive regularity hypotheses on F , while the earlier paper [34] proved
an interior estimate that we use here to derive its parabolic analogue. We refer also to
the statement of Theorem 6.5 in [60]: the next theorem extends it to time-dependent
equations.
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Theorem 6.4. Let F be continuous and uniformly parabolic, and suppose that

Λ

λ
< 1 +

1

80n
2−

7
2 (n+2)2 .

Let u ∈ C(Q1) be a viscosity solution to F (D2u) − ∂tu = 0. Then u ∈ C2+α,1+α
2 (Q 1

2
)

for some α > 0 and
∥u∥

C2+α,1+α
2 (Q 1

2
)
≤ C,

where α ∈ (0, 1) and C are universal constants, with C depending also on |u|0;Q1 and
|F (0)|.

Proof. The proof is the same as that in Theorem 5.1 and consists in regarding the
parabolic equation as an elliptic one, exploiting again that ∂tu ∈ Cα,α2 along with the
elliptic result in Proposition 6.1 and Example 6.2 of [34] valid under the Cordes-type

condition Λ
λ < 1 + 1

80n2
− 7

2 (n+2)2 .

Remark 6.5. As noted at p.17 of [60], the counterexamples in [52] (see in particular
[51]) hold when Λ/λ is large, and thus Theorem 6.4 does not contradict the results in
[51, 52, 53].

7. C2+α,1+α/2 regularity estimates for parabolic quasiconcave equations

We prove the following parabolic version of Theorem 4.1 for the equation

F (D2u)− ∂tu = 0 in Q1 = B1 × (−1, 0]. (9)

Theorem 7.1. Let F be continuous, quasiconcave and uniformly parabolic. Let also
u ∈ C(Q1) be a viscosity solution to (9). Then u ∈ C2+α,1+α

2 (Q 1
2
) for some α > 0 and

∥u∥
C2+α,1+α

2 (Q 1
2
)
≤ C,

where α ∈ (0, 1) and C are universal constants, with C depending also on |u|0;Q1 and
|F (0)|.

The proof makes use of the same idea of the a priori estimate proved in Theorem
5.1, namely, being ∂tu ∈ Cα,α/2 for some small α for any uniformly parabolic equation
(without any concavity assumption), we regard the equation as an elliptic equation with
a Hölder continuous source. In particular, we use the following

Theorem 7.2. Let u ∈ C(Q1) be a viscosity solution to (9) with F uniformly parabolic.

Then, for some α > 0 small depending on n, λ,Λ we have u ∈ C1+α, 1+α
2 (Q 1

2
) and it

holds the regularity estimate

∥∂tu∥Cα, α
2 (Q 1

2
)
+ ∥Du∥

Cα, α
2 (Q 1

2
)
≤ C(|u|0;Q1

+ |F (0)|),

where the constant C is universal.
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Proof. The proof can be found in Theorems 4.8 and 4.9 of [68], and it is based on the
fact that the first-order difference quotients (in space to estimate Du, and in time to
estimate ∂tu) belong to the class S(λ,Λ, 0) = S(λ,Λ,−F (0)) ∩ S(λ,Λ,−F (0)). Thus
one can apply Theorems 4.15 and 4.16 of [67] to deduce the desired regularity.

Once the elliptic result and ∂tu ∈ Cα,α2 are known, we conclude the following

Proposition 7.3. Let u ∈ C(Q1) be a viscosity solution to (9) with F uniformly parabolic
and quasiconcave. Then D2u(·, t) exists and is Hölder continuous for any fixed value of
t. Moreover, we have

∥D2u(·, t)∥Cα(B 3
4
) ≤ C(n, λ,Λ, |u|0;Q1 , |F (0)|).

Proof. Since ∂tu exists in classical sense and belongs to Cα,α2 , one can freeze time and
regard the equation as an elliptic equation with Hölder continuous right-hand side. In
view of the elliptic result we have the existence and the interior Cα regularity of D2u(·, t).

Finally, we are only left to prove the time-Hölder continuity of D2u. To this aim, we
proceed as in [1] and [61] to prove the main result

Proof of Theorem 7.1. The proof is the same of Proposition 1.5 in [61], see also Sections
3.3 and 3.4 in [1]. Alternatively, one can exploit the interpolation argument used to prove
the parabolic a priori estimate.

Remark 7.4. One can also state a parabolic version of the perturbation results in Section
4.1 using those of [67, 68] as well as an application to fully nonlinear parabolic PDEs

with lower order terms by means of the C1+α, 1+α
2 results in [68].

8. Other estimates for fully nonlinear parabolic equations concave at infinity

We prove here some C2,1 estimates for fully nonlinear parabolic equations under some
(different) concavity assumptions at infinity. These extend a result by L. Caffarelli and
Y. Yuan [17] to parabolic equations.

Theorem 8.1. Let F be concave (respectively convex) at infinity, or close to a linear
function at infinity, i.e. it satisfies one of the following conditions

(i) Fij,kl(M)NijNkl ≤ 0 for N ∈ Sn (resp. ≥ 0) when ∥M∥ ≥ ν > 0;

(ii) ∥D2F (M)∥ ≤ δ
∥M∥ when ∥M∥ ≥ ν, ν > 0 and a small δ > 0.

Let also F be uniformly parabolic, F ∈ C2. Let u ∈ C4,2(Q1) be such that F (D2u)−∂tu =
0 in Q1. Then

∥u∥C2,1(Q1/2) ≤ C(oscQ1
u+ |F (0)|+ ν)

Here, C is a universal constant, depending only on n, λ,Λ.
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Proof. We follow [46], see also [37]. Take χ ∈ C2(Q1) such that 0 ≤ χ ≤ 1 in Q 3
4
, χ = 1

in Q 1
2
and χ ≡ 0 on ∂parQ 3

4
satisfying

0 ≤ |Dχ|2

χ
+ ∥D2χ∥+ |∂tχ| ≤ C

where C depends only on the dimension n.
We first discuss the case (i), assuming without loss of generality that F is concave when
∥D2u∥ is large. We consider in A := Q 3

4
∩ {x ∈ Q 3

4
: uee > ν} the function

h = χ2(uee)
2 + µu2e.

We have
Fij(D

2u)∂ijue − ∂tue = 0 (10)

and
Puee := Fij(D

2u)∂ijuee − ∂tuee = −Fij,kl(D
2u)∂ijue∂klue. (11)

Since F is concave when ∥D2u∥ is large, the right-hand side in (11) is nonnegative, so

Fij(D
2u)∂ijuee − ∂tuee ≥ 0 when ∥D2u∥ ≥ ν.

We drop the dependence on D2u on F and compute Ph = Fij∂ijh− ∂th, using that

0 ≤ χ ≤ 1;

Pue = 0, Puee ≥ 0 when ∥D2u∥ ≥ ν;

uee = Due · e ≤ |Due|.

We have

Ph = 2u2eeFij∂iχ∂jχ+ 2χu2eePχ+ 8χueeFij∂iχ∂juee + 2χ2Fij∂juee∂iuee

+ 2χ2ueePuee + 2µPue + 2µFij∂iue∂jue

≥ 2u2eeFij∂iχ∂jχ+ 2χu2eePχ+ 8χueeFij∂iχ∂juee + 2χ2Fij∂juee∂iuee + 2µFij∂iue∂jue

≥ 2λu2ee|Dχ|2 + 2χu2eePχ− 8Λχuee|Dχ||Duee|+ 2χ2λ|Duee|2 + 2µλ|Due|2

≥ 2λu2ee|Dχ|2 + 2χu2ee(Pχ+ µλ)− 8Λχuee|Dχ||Duee|+ 2χ2λ|Duee|2.

We now take µ large so that

|Pχ| ≤ µλ

2
.

Indeed, this is possible since

|Pχ| ≤ ∥DF∥∥D2χ∥+ |∂tχ| ≤ CΛ
√
n+ C = C(Λ

√
n+ 1)

by taking

µ ≥ 2C

λ
(Λ

√
n+ 1).
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This implies, using also the weighted Young’s inequality,

Ph ≥ 2λu2ee|Dχ|2 + χu2eeµλ− 8Λχuee|Dχ||Duee|+ 2χ2λ|Duee|2

≥ 2λu2ee|Dχ|2 + χu2eeµλ− 8Λ

(
εu2ee|Dχ|2 +

χ2|Duee|2

ϵ

)
+ 2χ2λ|Duee|2

≥ (2λ− 8Λε)u2ee|Dχ|2 + u2eeµλ
|Dχ|2

C
+ χ2|Duee|2

(
2λ− 8Λ

ε

)
= u2ee|Dχ|2

(
2λ− 8Λε+

µλ

C

)
+ χ2|Duee|2

(
2λ− 8Λ

ε

)
≥ u2ee|Dχ|2

(
µλ

C
− 8Λε

)
+ χ2|Duee|2

(
2λ− 8Λ

ε

)
.

We first choose ε so that

µλ

C
− 8Λε =

µλ

2C
=⇒ ε =

µλ

16ΛC
.

Choosing µ large so that

2λ− 8Λ

ε
= 2λ− 128Λ2C

µλ
≥ 0,

and hence we can choose µ once for all such that

µ ≥ max

{
2C

λ
(Λ

√
n+ 1),

64Λ2C

λ2

}
,

to have Ph ≥ 0 on the set where uee > ν. Therefore, we conclude that on A the auxiliary
function h is a solution of the following differential inequality in nondivergence form

Ph ≥ 0.

We can thus apply the maximum principle on the set A, observing that

A 3
4
= (B 3

4
∩ {x ∈ B 3

4
: uee(t) > ν})×

(
− 9

16
, 0

)
:=W ×

(
− 9

16
, 0

)
and

∂W ⊆ ∂B 3
4
∪ {x ∈ B 3

4
: uee(t) = ν}.

Therefore

∂parA 3
4
≡
[
∂W ×

(
− 9

16
, 0

)]
∪
[
W ×

{
t = − 9

16

}]
⊆
[
(∂B 3

4
∪ {x ∈ B 3

4
: uee(t) = ν})×

(
− 9

16
, 0

)]
∪
[
W × {t = − 9

16
}
]

≡
[
∂B 3

4
×
(
− 9

16
, 0

)]
∪ {(x, t) ∈ Q 3

4
: uee(t) = ν}) ∪

(
B 3

4
×
{
t = − 9

16

})
∪
{
(x, t) ∈ B 3

4
×
{
t = − 9

16

}
: uee(t) > ν

}
25



and by the maximum principle (using that χ ≡ 0 on ∂parQ 3
4
)

sup
A
h ≤ sup

∂parA
h ≤ µ sup

Q 3
4

(ue)
2 + ν2.

Moreover
sup
A
h ≥ sup

Q 1
2

(u+ee)
2.

A similar calculation for the function z = δ(M − u)2 + η2|Du|2 (or alternatively the
estimate for viscosity solutions in [68]), gives the estimate

sup
Q 1

2

(u+ee) ≤ C̃

(
µ sup

Q1

|u|+ ν

)
.

The estimate on the full Hessian follows by the equation, using the uniform ellipticity,
Lemma 3.4 and the estimate on |∂tu|0;Q1 from [68], see also [31]. Indeed, the same
arguments of Lemma 6.4 in [15] show that when F (D2u)− ∂tu = 0, then

F (0) ≤ F (D2u) + Λ∥(D2u)+∥ − λ∥(D2u)−∥ ≤ |∂tu|0;Q1 + (Λ + λ)∥(D2u)+∥ − λ∥D2u∥

This implies

∥D2u∥ ≤ λ+ Λ

λ
∥(D2u)+∥+ 1

λ
|∂tu|0;Q1

+
|F (0)|
λ

Moreover, we have
∥(D2u)+∥ = sup

e∈Rn,|e|=1

(D2ue · e)+,

so

∥D2u∥ ≤ λ+ Λ

λ
· sup
e∈Rn,|e|=1

(D2ue · e)+ +
1

λ
|∂tu|0;Q1

+
|F (0)|
λ

.

We now consider the case (ii) where ∥D2F (D2u)∥ ≤ δ(n,λ)
∥D2u∥ when ∥D2u∥ ≥ ν, ν > 0. We

consider the function h defined as

h = µ
∑
e∈Γ

u2e + χ
∑
e∈Γ

(u+ee)
2,

where

Γ =

{
e1, ..., en,

1√
2
(ei ± ej), 1 ≤ i < j ≤ n

}
.

This can be done in view of Lemma 17.13 of [30]. We compute again Fij∂ijh− ∂th using
now that

Pue = 0, Puee = −Fij,kl(D
2u)∂ijue∂klue.
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Ph =
∑
e∈Γ

[
2u2eeFij∂iχ∂jχ+ 2χu2eePχ+ 8χueeFij∂iχ∂juee + 2χ2Fij∂juee∂iuee + 2χ2ueePuee

]
+ 2µ

∑
e∈Γ

(uePue + Fij∂iue∂jue)

≥ 2µλ
∑
e∈Γ

|Due|2 +
∑
e∈Γ

[
−2χ2ueeFij,kl∂ijue∂klue + 2u2eeFij∂iχ∂jχ

+2χu2eePχ+ 8χueeFij∂iχ∂juee + 2χ2Fij∂juee∂iuee
]

= 2µλ
∑
e∈Γ

|Due|2 +
∑
e∈Γ

[
u2ee(2Fij∂iχ∂jχ+ 2χPχ)

]
+ χ2

∑
e∈Γ

[
2Fij∂juee∂iuee − 2ueeFij,kl(D

2u)∂ijue∂klue
]
− 8Λ

∑
e∈Γ

(
εu2ee|Dχ|2 +

χ2|Duee|2

ϵ

)
≥ 2µλ

∑
e∈Γ

|Due|2 +
∑
e∈Γ

u2ee
[
2λ|Dχ|2 + 2χPχ

]
+ χ2

∑
e∈Γ

[
2λ|Duee|2 − 2δ∥D2ue∥2

]
− 8Λ

∑
e∈Γ

(
ϵu2ee|Dχ|2 +

χ2|Duee|2

ϵ

)
.

We now choose

ϵ =
8Λ

λ

so that the previous term becomes

2µλ
∑
e∈Γ

|Due|2 +
∑
e∈Γ

u2ee

[(
2λ− 64Λ2

λ

)
|Dχ|2 − 2χ|Pχ|

]
+ χ2

∑
e∈Γ

[
λ|Duee|2 − 2δ∥D2ue∥2

]
≥ 2µλ

∑
e∈Γ

|Due|2 +
∑
e∈Γ

|Due|2
[(

2λ− 64Λ2

λ

)
C − 2C

]
+ χ2

∑
e∈Γ

[
λ|Duee|2 − 2δ∥D2ue∥2

]
=
∑
e∈Γ

|Due|2
[
2µλ+

(
2λ− 2− 64Λ2

λ

)
C

]
+ χ2

∑
e∈Γ

[
λ|Duee|2 − 2δ∥D2ue∥2

]
.

One then chooses µ large such that

µ ≥

(
64Λ2−2λ+2

λ

)
C

2λ

and δ small to conclude Ph ≥ 0 on the set where {x ∈ Q 3
4
: uee > ν}. By the parabolic

maximum principle, arguing as before, we obtain

sup
A 3

4

h ≤ µn2 sup
Q 3

4

|Du|2 + n2ν2.

Again, the full two-side estimate on the Hessian |D2u|0;Q 1
2

follows using the uniform

ellipticity and the estimate on |∂tu|0;Q1 along with the estimate for supQ 3
4

|Du|2 both in
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terms of |u|0;Q1 , which are valid without concavity conditions. We then conclude

|D2u|0;Q 1
2

≤ C(n, λ,Λ)(|u|0;Q1
+ ν).

Remark 8.2. The previous results can be extended to operators F = F (t,M) assuming
only measurability in the time-variable, see [37].

Remark 8.3. When (i) holds with ν = 0, i.e. F is concave, the full a priori estimate
in C2,1 by the Bernstein method is new. J. Kovats [37] proved a one-side bound when
F = F (t,M) is concave in Sn and measurable in t. In that case, it is sufficient to note
that on the set where uee ≤ 0 we have Ph ≥ 0, so Ph ≥ 0 on the whole cylinder, where
one can directly apply the maximum principle.

Remark 8.4. Examples of (stationary) operators that satisfy the previous assumptions
(i)-(ii) or related conditions can be found in [17, 34].

Remark 8.5. A similar condition as (ii) has been used in Theorem 1.3 of [34] to prove
Sobolev regularity estimates of viscosity solutions. Moreover, the estimates in Theorem
8.1 can be derived for less regular solutions in C2,1. It remains an open problem, even in
the stationary setting of [17], to prove a regularity estimate valid for viscosity solutions,
along with an Evans-Krylov theorem, under the assumptions (i) and (ii) of Theorem 8.1.

Remark 8.6. Parabolic C1,1 estimates can be used to prove W 2,1
p estimates for non-

homogeneous equations on the line of Theorem 4.11. This can be done by means of the
results in [67].

In the concave/convex case the previous result combined with the Evans-Krylov es-
timate give the following weaker version of the C2+α,1+α/2 estimate for fully nonlinear
concave parabolic equations than [68]:

Corollary 8.7. Let F be concave and F ∈ C∞. Let u ∈ C2,1(Q1) be a solution to
F (D2u)− ∂tu = 0 in Q1. Then u ∈ C∞ and

∥u∥C2+α,1+α/2(Q 1
2
) ≤ C(|u|0;Q1 + |F (0)|).

Following [18], given γ > 0, we let Pγ(Rn) be the space of ancient solutions to the
fully nonlinear parabolic equation F (D2u) − ∂tu = 0 in QR = BR × [−R2, 0], so that
there exists a constant Cu such that

sup
QR

|u| ≤ Cu(1 +R)γ .

Then,Hγ(Rn) is the space of solutions to F (D2u) = 0 having growth at most γ ≥ 0. This,
together with the Bernstein bound for first derivatives, implies the following Liouville
result for ancient solutions to parabolic equations under the assumption that F is either
concave, convex or close to a linear function near infinity. The result appears to be new
even in the more classical concave/convex case.

Corollary 8.8. Let F be uniformly parabolic and F (0) = 0. Assume that F is either
concave/convex or concave/convex/close to a linear function at infinity. If γ < 1, then
Pγ(Rn) = {constant functions}. If γ < 2 we have Pγ(Rn) = Hγ(Rn).
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Proof. Consider first the case γ < 1. It is sufficient to rescale the estimate in Theorem
8.1 for equations defined in QR and obtain

|Du|0;QR/2
≤ C

R
(|u|0;QR

+ ν).

Indeed, if u solves F (D2u)− ∂tu = 0 in QR, then ũ(x, t) = u(Rx,R2t) solves

F̃ (D2ũ)− ∂tũ = 0 in Q1, F̃ (M) = R2F

(
1

R2
M

)
,

where F̃ is uniformly elliptic with the same ellipticity constants of F . This implies that

R|Du|0;QR/2
= |Du|0;Q1/2

≤ C(|u|0;Q1
+ ν) = C(|u|0;QR

+ ν).

The conclusion follows by sending R → ∞ in the gradient bound, using the growth
condition on u to see that u must be constant in space. Therefore D2u(x, t) = 0 and,
using the equation, ∂tu = F (D2u) = F (0) = 0, so u must also be constant in time.
To prove the second statement, it is enough to exploit the time-derivative bound

sup
QR/2

|∂tu| ≤
C

R2
(|u|0;QR

+ ν) .

Therefore, by sending R → ∞, it follows that u is constant in time and the thesis is
proved.

Appendix A. Regularity estimates for viscosity solutions of fully nonlinear
elliptic equations in two variables

The main aim of this section is to prove the following extension of L. Nirenberg’s
result [54] for viscosity solutions. The statement is taken from Theorem 2.4 in [61], see
also Theorem 6.2 in [60] and Theorems 4.9 and 4.26 in [29]:

Theorem Appendix A.1. Let u : B1 → R, B1 ⊂ R2, and u be a continuous viscosity
solution to

F (D2u) = f(x) in B1.

Assume that F : S2 → R is uniformly elliptic (no other assumptions are required) and
f ∈ Cα(B1). Then for some small α ∈ (0, 1) we have the regularity estimate

∥u∥C2,α(B 1
2
) ≤ C(|u|0;B1

+ ∥f∥Cα(B1)),

where α and C depend on λ,Λ.

Proof. We start with the homogeneous case f = 0. In this setting the proof makes use
of the a priori C2,α estimate in Theorem 4.9 of [29] up to the boundary [30], and the
method of continuity to show the existence of C2,α solutions for the Dirichlet problem{

F (D2u) = 0 in B1,

u = g on ∂B1,
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with any given boundary datum g ∈ C(∂B1). These have been achieved for instance in
Section 17.3 of [30], Theorems 17.10 and 17.12. Note that having F : S2 → R uniformly
elliptic is enough since the uniform ellipticity implies the increasing monotonicity and the
Lipschitz continuity in the matrix entry, as pointed out in Theorem 4.9 of [29]. Once the
existence of a smooth solution is established, one can conclude that the desired regularity
estimate holds for viscosity solutions by means of the uniqueness of solutions, see e.g.
Corollary 5.4 in [15].
To conclude, the estimate in the non-homogeneous case follows by the perturbation
argument in Theorem 8.1 of [15], which makes use of the regularity estimate for the
homogeneous problem.
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Obšč., 16:329–346, 1967.

[40] N. V. Krylov. Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR
Ser. Mat., 46(3):487–523, 670, 1982.

[41] N. V. Krylov. Lectures on elliptic and parabolic equations in Hölder spaces, volume 12 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 1996.

[42] N. V. Krylov. On the existence of W 2
p solutions for fully nonlinear elliptic equations under relaxed

convexity assumptions. Comm. Partial Differential Equations, 38(4):687–710, 2013.
[43] N. V. Krylov. On the existence of W 2

p solutions for fully nonlinear elliptic equations under either
relaxed or no convexity assumptions. Commun. Contemp. Math., 19(6):1750009, 39, 2017.

[44] N. V. Krylov. Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations,
volume 233 of Mathematical Surveys and Monographs. American Mathematical Society, Providence,
RI, 2018.

[45] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and quasilinear equations of
parabolic type. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society,
Providence, R.I., 1968. Translated from the Russian by S. Smith.

[46] E. M. Landis. Second order equations of elliptic and parabolic type, volume 171 of Translations of
Mathematical Monographs. American Mathematical Society, Providence, RI, 1998.

31



[47] M. Lee. Weighted Orlicz regularity estimates for fully nonlinear elliptic equations with asymptotic
convexity. Commun. Contemp. Math., 21(4):1850024, 29, 2019.

[48] M. Lee and J. Ok. Hessian estimates for fully nonlinear equations via the large-M -inequality
principle. J. Math. Anal. Appl., 501(1):Paper No. 123953, 30, 2021.

[49] G. M. Lieberman. Second order parabolic differential equations. World Scientific Publishing Co.,
Inc., River Edge, NJ, 1996.

[50] F.-H. Lin. Second derivative Lp-estimates for elliptic equations of nondivergent type. Proc. Amer.
Math. Soc., 96(3):447–451, 1986.

[51] N. Nadirashvili, V. Tkachev, and S. Vladut. A non-classical solution to a Hessian equation from
Cartan isoparametric cubic. Adv. Math., 231(3-4):1589–1597, 2012.
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