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ABSTRACT
Experimental observations unambiguously reveal quasi-frictionless water flow through nanometer-scale carbon nanotubes (CNTs). Classical
fluid mechanics is deemed unfit to describe this enhanced flow, and recent investigations indicated that quantum mechanics is required to
interpret the extremely weak water–CNT friction. In fact, by quantum scattering, water can only release discrete energy upon excitation of
electronic and phononic modes in the CNT. Here, we analyze in detail how a traveling water molecule couples to both plasmon and phonon
excitations within a sub-nanometer, periodic CNT. We find that the water molecule needs to exceed a minimum speed threshold of ∼50 m/s
in order to scatter against CNT electronic and vibrational modes. Below this threshold, scattering is suppressed, as in standard superfluidity
mechanisms. The scattering rates, relevant for faster water molecules, are also estimated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0182711

I. INTRODUCTION

Macroscale fluid-mechanics1 associates higher flow-resistance
with water passing through narrower tubes by virtue of enhanced
interface friction effects. However, when nm scales are approached,
striking deviations from macroscopic laws arise and ordered low-
dimensional water arrangements2–4 can emerge. Surprisingly, high
water-flow rates were repeatedly measured5–7 in carbon nanotubes
(CNTs), and a steep permeability increase8 was detected when
decreasing CNT radii. Already at the ∼10 nm scale, measured per-
meabilities can exceed no-slip Haagen–Poiseuille8–10 predictions by
two orders of magnitude, and discrepancies rapidly increase at even
smaller radii.

From a technological point of view, robust nanoscale enhanced
flow promises transformative impact in nanofluidics and selec-
tive fluid transport. Energy-efficient water filtration11 was proposed
based on CNT membranes, which could provide an ideal means for
the increasingly relevant issue of water purification/desalinization.12

Semi-classical molecular dynamics simulations could
predict4,9,10,13,14 finite permeability enhancement at lower
radii,4,9,10,13,14 which was attributed to curvature-dependent
incommensurateness4 between confined water and the CNT lattice
or to the collective burst motion13 of water molecules in a single file.
However, semi-classical permeabilities underestimate experimental

values by several orders of magnitude and do not exhibit8,10 the
expected low-radius divergence. Quantum effects are thus expected
to become increasingly relevant when CNT radii approach the nm
scale, i.e., when lateral confinement is more pronounced.

Based on Fermi’s golden rule, here we develop a truly quantum-
mechanical theory for the scattering between a water molecule and
both vibrational (phonons) and electronic (plasmon) modes of a
(5,5) CNT. These scattering channels are assumed15–17 to be respon-
sible for the main friction mechanisms since they can transfer energy
from water to the CNT. Shortly, if some energy is transferred from
water to CNT plasmons or phonons, the kinetic energy of water
diminishes, which determines an effective friction force.

II. METHODS AND PRELIMINARY INVESTIGATIONS
The (5,5) CNT has a radius of 3.41 Å and can accommo-

date a single water molecule in its section. In our previous work,15

we determined the preferential configurations of single and mul-
tiple water molecules in the CNT. The single water molecule is
preferentially located at the center of the CNT, with its dipole
moment aligned with the CNT longitudinal axis (see Fig. 1). The
stability of this configuration is attributed to the high polarizability
anisotropy of the CNT.15,18–20 By repeating this configuration along
the CNT axis, one can accommodate multiple water molecules.
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FIG. 1. Potential VW computed at equilibrium ionic positions (R̄ion) and in the
absence of electronic displacements (δρel = 0). The optimal configuration of a
single water molecule confined in the (5,5) CNT is shown earlier. The water
dipole is aligned with the CNT longitudinal axis. The green segment indicates the
length of the CNT unit cell. The small irregularities of the potential (of the order of
10−2 meV) are attributed to the intrinsic convergence limits of the DFT calculation,
while the main structure can be approximated by a sinusoidal function.

The efficiency of this configuration is due to the alignment of all
dipoles, although water–water interactions are non-covalent; elec-
trostatic and van der Waals forces determine water–water attrac-
tion. The configuration described so far is expected to largely
contribute to water transport, especially in low density regimes.
Hydrogen-bonded water pairs could form, but the energy gain of
this configuration with respect to non-bonded dimers amounts to
only 0.14 eV.15 Moreover, long H-bonded chains were found to
be unstable, suggesting again a preference for longitudinal-dipole
arrangements.

As a preliminary investigation, we computed the energy land-
scape VW of a water molecule moving along the CNT. First-principle
calculations were performed within the density functional theory
(DFT) framework, exploiting the Quantum Espresso21 suite. A water
monomer was introduced in a supercell containing eight replicas of
the CNT unit cell (with a total length of 19.7 Å), and the energy was
sampled by small consecutive displacements of the water molecule.
The semi-local Perdew–Burke–Ernzerhof22 functional was adopted,
and van der Waals interactions23 were accounted for by means of
the many-body dispersion24–26 (MBD) approach, thereby explic-
itly including collective polarization/depolarization effects at an
effective random phase approximation (RPA) level. Pseudopoten-
tials were introduced, and wavefunctions were expanded on a
plane-wave basis set with an energy cutoff of 50 Ry, while a vac-
uum space of 15 Å was introduced between lateral CNT periodic

replicas to minimize unwanted periodicity effects. The conver-
gence of our calculations was thoroughly tested in our previous15

work.
In the spirit of a perturbative theory, we focus on the motion of

a single water molecule along the CNT. Our results are thus expected
to be increasingly accurate at lower water densities. We approximate
water as a pointlike particle coupled to the CNT. The Hamilto-
nian that describes the one-dimensional motion of water along
the CNT is

HW = −
∂2

xW

2mW
+ VW(xW, Rion, δρel). (1)

Here xW and mW are the longitudinal coordinates of water (along
the CNT) and its mass, respectively, while the dependence of the
potential energy VW on CNT atom coordinates (Rion) and elec-
tronic charge variations (δρel) are explicited. We assume that the
CNT longitudinal axis is aligned with the x̂ axis, while the ŷ, ẑ
axes will be orthogonal to the CNT. In this expression, we implic-
itly adopted the Born–Oppenheimer approximation and identified
the equilibrium charge distribution with that obtained by DFT.
However, we underline that C atoms are free to move and elec-
tronic charges can be displaced (we will hereafter adopt a discretized
model for charge hopping from one atomic site to another within
the CNT).

III. SINGLE-PARTICLE WATER STATES
We diagonalize HW with a frozen optimal configuration (i.e.,

zero atomic and charge displacements). Atomic units are adopted
hereafter for simplicity. The potential energy is plotted in Fig. 1
as a function of xW and can be well approximated by a sinusoidal
function: VW(xW) ∼ V sin((Q/2)xW), where Q = 2π/L and L is
the CNT unit cell length (i.e., 2.46 Å). At the PBE + MBD level,
one obtains V ∼ 0.1 meV, i.e., the potential is extremely smooth.
We note that the accurate account of many-body vdW effects by
MBD diminishes the potential corrugation with respect to a pairwise
vdW correction15,27 (which predicts V ∼ 0.35 meV). In fact, MBD
is known to predict highly delocalized dipole fluctuations in low-
dimensional nanosystems,20,28 and this can smooth out the potential
energy surface.

Numerical diagonalization is straightforward, and the single-
particle energy eigenvalues are reported in Fig. 2 as a function of
the wave-vector q within the first Brillouin zone (BZ). The spec-
trum does not differ much from that of a free particle except for
irrelevant energy shifts and tiny gaps at the BZ edges. In practice,
one could unfold the bands (letting q go beyond the BZ), obtain-
ing a roughly parabolic dispersion where the speed of water can
be approximated as vW ≃ q/mW. One can thus approximate water
eigenstates as single plane waves with wavevector q. We also note
that the water velocities experimentally reported by Secchi et al.8 in
larger CNTs were in the 10 μm/s range, which corresponds to very
low q values (much smaller than Q/2, i.e., roughly corresponding
to 10−6Q).

If no atomic or charge displacement occurs, the above-
mentioned eigenstates remain unvaried during time evolution.
Hence, one needs to overcome the Born–Oppenheimer approxi-
mation and further include electronic displacements in order to
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FIG. 2. Spectrum of the water molecule immersed in the (5,5) CNT potential. A
comparison is given with the free-particle dispersion. Small deviations between the
two spectra are found close to the BZ edges (details in the inset), where a slight
gap opening is detected. Since the periodicity of the CNT potential is L′ = L/2, the
BZ is accordingly enlarged.

describe scattering processes. To account for vibrational and elec-
tronic degrees of freedom, one can Taylor-expand the potential
energy VW, starting from optimal ionic (R̄ion) and electronic
(δρel = 0) configurations (Fig. 3).

FIG. 3. (5,5) CNT: low-lying phonon modes, with linear dispersion close to q = 0.
Colored arrows indicate the atomic displacement for the corresponding modes.
(a) and (b) Are two degenerate transverse acoustic (TA) modes; (c) is the “twist”
acoustic (TW) mode; and (d) is the longitudinal acoustic (LA) mode.

IV. PHONON EXCITATIONS
We introduce here a first-order Taylor expansion of VW in the

ionic displacements, defined as δRion = Rion − R̄ion,

VW(xW, Rion, δρel = 0) = VW(xW, R̄ion, δρel = 0)

+∑
i
∂Ri,ion VW(xW, Rion,

× δρel = 0)∣Rion=R̄ion
δRi,ion

+ O(δR2
ion). (2)

The potential derivatives can be written in terms of ionic forces,
which can be straightforwardly computed by DFT: ∂Ri,ion VW
= −Fi,ion; hence, the last term in Eq. (2) can be written in compact
form as −Fi,ionδRi,ion. Repeated indices are considered contracted
from now on to simplify the notation (only in some specific cases
will summations be explicited for clarity).

We now recall that when small atomic displacements from the
CNT equilibrium geometry are considered, the CNT energy ECNT
(which could be obtained from DFT) can be approximated by a
bilinear expression,

ECNT(Rion) = ECNT,0 +
1
2

Mi,jCNTδRi,ionδRj,ion +O(δR3
ion), (3)

Mi,jCNT = ∂Ri,ion∂Rj,ion ECNT∣R̄ion
. (4)

Diagonalization of Mi,jCNT yields the collective vibrational modes
(phonons). The geometry of these phonon modes in the CNT is
expressed as δR̃ j(q) = (1/

√
N)S†

j,neiqlcLδRlc ,n,ion, where the overall
atomic index is now also split into an atomic index within the unit
cell (n) and a cell index (lc). Here, Sj,n is a unitary matrix acting on
unit cell coordinates, which determines the jth phonon geometry.
As will be seen later, we will carry out our calculations by initially
considering a box with finite length L∞ and eventually taking the
L∞ →∞ limit. This box will contain N replicas of the CNT unit cell,
and the N/L∞ ratio will be kept constant.

Analogous transformations are also performed on Fion, so
that F̃ j(xW, q) = (1/

√
N)S†

j,neiqlcLFn,lc ,ion(xW). After transforming to
collective coordinates, the term −Fi,ionδRi,ion can be expressed as

N−1

∑
q=0

F̃j(xW,−q)δR̃j(q). (5)

Describing CNT phonons as quantum harmonic oscillators
(QHO), the collective displacement operators can be finally rewrit-
ten in terms of QHO construction/annihilation operators,

δR̃j(q) = (ãj,q,ion + ã†
j,q,ion)/(2mCωj(q))1/2, (6)

where ωj(q) is the jth phonon frequency at wavevector q, and mC
is the C mass. Due to the ability to excite phonons, the term (5)
provides a coupling between water and the CNT lattice and enables
energy transfer between the two.

V. LOW-FREQUENCY PHONON MODES
Since we are interested in low-momentum water eigenstates

(corresponding to the low water speeds measured experimentally),
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energy transfers associated with friction should be accordingly small.
Hence, only low-frequency acoustic phonon modes will be explored,
while more energetic phonons will be discarded. In the (5,5) CNT,
one encounters four acoustic modes29,30 with vanishing frequen-
cies in the q→ 0 limit. These are the transverse acoustic (TA)
modes, which are doubly degenerate, a “twist” mode (TW), and
the longitudinal acoustic mode (LA). We note that in the q→ 0
regime, the dispersion of these modes is linear, so one can math-
ematically describe the spectra as ωj(q) = vjq, where the index
j labels the specific phonon mode and the parameters vj have
the dimensions of a velocity. From reported phonon spectra,30

we estimate the phonon velocities: vTA = 4.5 × 10−3a.u., vTW = 6.9
× 10−3a.u., and vLA = 9.7 × 10−3a.u., in fair agreement with similar
nanotubes.29 The geometries of these modes are reported in the lit-
erature29 and correspond to transversal ionic shifts along the two
directions ŷ and ẑ perpendicular to the CNT axis (TA), tangen-
tial atom displacements (TW; i.e., orthogonal to the CNT radius),
and longitudinal x̂ displacements (LA). Deviations from linearity
close to the BZ edge are irrelevant to the present study and can be
neglected.

VI. WATER–PHONON SCATTERING
We build upon our previous work,15 adopting Fermi’s golden

rule description of the scattering between water and CNT phonons.
Here, we will also explicitly integrate over reciprocal space, thereby
accounting for phonon dispersion. Fermi’s golden rule provides
a simple expression for the computation of transition rates. A
water molecule with initial wavevector kW,i interacts with phonons
via the coupling term given in Eq. (2) and is projected onto a
final state with wavevector kW,f. The transition rate is accordingly
expressed as

Γph
i−f = 2π∣⟨kW,f∣ − F†

i,ion∣kW,i⟩⟨1j,q∣δRi,ion∣0j,q⟩∣
2

× δ(Ei,W − Ef,W − ωj(q)), (7)

where ∣0j,q⟩, ∣1j,q⟩ are the groundstate and first excited state relative
to the jth phonon with wavevector q, while we recall that all repeated
indices are contracted. The delta function enforces energy conserva-
tion, namely that the energy lost by water must correspond to that
gained by phonon excitations. Here, we implicitly assume that the
CNT initially occupies the phononic ground state. However, this
assumption causes no loss of generality since excitation energies do
not depend on the initial state in QHOs.

We make use of the collective coordinates [see Eqs. (5) and (6)]
and further consider that when the jth phonon with wavevector qph

is excited, one has ⟨1 j,q∣ã†
j,q∣0 j,q⟩ = 1. Taking this into account, the

term within the modulus in Eq. (7) becomes

1
L∞
√

N∫
L∞/2

−L∞/2
dxWeiΔkWxW

∑
n
∑
q∈BZ

N−1

∑
lc=0

F0,n(xW − lcL)

× S†
j,ne−iq(lcL) 1

√
2ωj(q)mC

, (8)

where ΔkW = ki,W − kf,W (summations were explicited in this case
for clarity, and q is compatible with the chosen box). Since plane
waves are non-normalizable in infinite space, we restricted xW over

the finite interval [−L∞/2; L∞/2], as previously mentioned, even-
tually taking L∞ →∞. Since a finite number of unit cell replicas
(N) is contained in the box, we also impose that a finite water den-
sity is present in the CNT, namely that N′ molecules are present
within L∞ (all water molecules have the same momentum for sim-
plicity). We also note that Fn,lc ,ion can be Fourier transformed (in
the infinite box limit) as Fn,lc ,ion(xW) =

1
2π ∫dq f̃ n(q)eiq(xW−lcL), where

lattice periodicity is taken into account. After integration and recall-
ing that ∑N−1

lc=0 eiqlcL
= Nδq+mQ (with m as an integer), Eq. (8) finally

reduces to

Γph
i−f = 2π

N′

NL2 ∣ f̃ n(ΔkW)Sn,j
1

√
2ωj(ΔkW +mQ)mC

∣

2

× δ(Ei,W − Ef,W − ωj(q)). (9)

Taking the L∞ →∞ limit, the ratios N/L∞ and N′/N are kept
constant while excited phonon states are traced. In deriving the
above-mentioned equation, one finds that, in addition to energy
conservation, one also needs to conserve crystal momentum. In fact,
one has ki, W = kf, W + q +mQ, where m is an integer number. Since
momentum conservation holds up to integer multiples of Q, our
approach incorporates Umklapp processes.

At low ki, W, we approximate the energy spectrum of water
as free-particle dispersion (as justified earlier). Hence, energy
conservation can be expressed as

k2
i, W − k2

f, W

2mW
= ωj(q). (10)

Recalling that kf, W = ki, W − q −mQ, the above-mentioned equation
yields a relation between the initial water speed vi,W = ki, W/mw, the
phonon momentum q, and the parameter m,

vi, W =
ωj(q)

q +mQ
+

q +mQ
2mW

. (11)

Considering that in the relevant low-momentum regime, the
phonon dispersion is ωj(q) = vjq, one can examine the different
solutions that can be obtained by varying the integer parameter m.
At m = 0, one has vi, W ∈ [vj, vj +Q/2mW]. The allowed speed inter-
val drops down to vi, W ∈ [Q/2mW, vj/2 +Q/mW] for m = 1, and
the lower extreme of the interval subsequently grows monotonically
at higher m. This implies that scattering is only permitted when
vi, W > Q/2mW, i.e., above ∼50 m/s. The water molecule in the
CNT will accordingly experience finite friction forces only when
exceeding this critical velocity threshold.

Notably, the whole mechanism presents striking analogies with
superfluidity.34 In fact, a particle moving through a conventional
superfluid also experiences vanishing friction below a critical veloc-
ity due to the incompatibility between energy and momentum con-
servation. In the present case, the CNT acts as an effective superfluid
medium due to the quasi-linearity of its phononic and plasmonic
excitation spectrum.

We note that a straightforward estimate of the thermal mean
speeds in bulk water yields a value of a few hundred m/s, which
exceeds the critical velocity threshold. This suggests that thermal
water molecules should be able to scatter against the CNT. On the
other hand, energy losses are known to occur35 at the CNT entrance,
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which may effectively reduce water speeds and momentum fluctu-
ations. Further investigations are accordingly required in order to
determine the exact water speed distribution in narrow CNTs at
room temperature.

At high momenta, multiple solutions can be found, as reported
in Fig. 4 for m = 0, 1, 2, 3, which could imply higher scattering rates.
The need to numerically estimate the Fourier-transformed
interaction from DFT calculations implies that numerical
noise is unavoidably introduced in the present calculation.
The computed water–phonon scattering rates thus provide a
semi-quantitative estimate of the magnitude rather than accurate
benchmark solutions.

VII. PLASMON EXCITATIONS
The approach followed so far for phonon excitations can

be extended to plasmon modes, which are believed12,16 to pro-
vide the leading friction contribution at the quantum mechanical
level. In order to access the low-frequency plasmon spectrum, we
adopt a discretized effective RPA theory. When an electric poten-
tial ϕj is applied to the atomic site Rj,ion, the electronic charge
at the atomic site i varies according to the relation δρi = χijϕj,
where χij is the (discretized) density–density susceptibility. Fol-
lowing Ref. 31, we approximate the bare density–density response
function by nearest-neighbor terms χ0

i j = Bω−2
(δi j − 1/3hi j), where

hij = 1 if i and j are nearest neighbors and 0 otherwise. This sim-
ple choice is proven31 to predict the correct scaling for metallic
systems in the q→ 0 limit. Although the bare response func-
tion is based on a nearest-neighbor hopping formalism, the inter-
acting response eventually includes information about all inter-
atomic Coulomb couplings and exhibits the correct long-range
non-locality.

Since graphene32 is well characterized and is the constituent
material for CNT walls, we will extract the B parameter for a
2D graphene monolayer, subsequently accounting for the specific
geometry of the (5,5) CNT within our discretized approach. In
practice, the B parameter only controls the electron-hopping term,
while the structure and topology of the CNT are included explicitly,
determining the symmetry of the collective plasmon modes.

After the 2D Fourier transform, one obtains the q→ 0 limit

χ̃0
G(q) =

Bq2

6
√

3ω2 . (12)

From this expression for the bare susceptibility of graphene, one
obtains the RPA interacting response χ̃RPA

G = χ̃0
G(1 − χ̃0

Gṽ2D), where
ṽ2D(q) = 2π/q is the 2D Fourier transformed Coulomb interac-
tion. The poles of χRPA correspond to the plasmon frequencies,

ω(q) =
√

πBq/(3
√

3). This expression should match the finite-
temperature expression33 for monolayer graphene,

ω(q) =
√

KBT4 ln (2)q. (13)

By direct comparison, one obtains B = 12
√

3 ln (2)KBT/π. The tem-
perature will be fixed hereafter to T = 300 K, which is compatible
with water flow.

FIG. 4. Scattering rates, as defined in Eq. (8) for water–phonon scattering. N′/N
is fixed to 22 (low water density). When k i,W < Q/2, no scattering is permitted,
so all curves start above this boundary. In practice, scattering is only allowed at
high water speed. Components relative to the different phonon modes (TA, TW,
and LA) and relative to different crystal momenta are reported separately for com-
parison. When momentum is strictly conserved (black lines), the permitted water
momenta are extremely high. Lower k i,W (although still higher than Q/2 ∼ 0.7 a.u.)
is admitted when momentum is conserved up to integer multiples of Q. Given any
k i,W > Q/2, only a finite number of Q multiples are compatible with scattering.

Once the density response function is parameterized, one can
write the RPA equations for the charge fluctuations,

δρi = χ0
i jv(Ri,ion − Rj,ion)δρj , (14)

J. Chem. Phys. 159, 204709 (2023); doi: 10.1063/5.0182711 159, 204709-5

Published under an exclusive license by AIP Publishing

 06 D
ecem

ber 2023 15:57:02

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where v(Ri,ion − Rj,ion) is the real-space Coulomb coupling between
the ionic sites i and j, and χ0

i j is the density response matrix for
the CNT. Plasmons are computed as the self-sustaining charge
fluctuation modes that satisfy

[δij − χ0
i jv(Ri,ion − Rj,ion)]δρj = 0. (15)

Multiplying this equation by ω2 and performing a Fourier transform,
one obtains efficient numerical solutions for the plasmon spectrum.
We note that the coupling between plasmons and localized electrons
is neglected here since excitation of localized states is associated with
much higher frequencies (of the order of 0.5 a.u.).

The Coulomb interaction v(Ri,ion − Rj,ion) can be expressed in
matrix form as vij. Moreover, we can define χ′0 = χ0ω2. In matrix
notation, the RPA equation becomes

(χ′0v − ω2I)δρel = 0. (16)

Diagonalization of χ′0v can be made more efficient by matrix sym-
metrization. Here, χ′0 is a Hermitian matrix and can be diagonalized
by a transformation matrix O, O†χ′0O = χ′0diag.

By rescaling the density displacements δρ as δρ′

= O(χ′0diag)
−1/2O†δρ, one rewrites the RPA Eq. (16) as

ω2Iδρ′ = O(χ′0diag)
1/2O†vO(χ′0diag)

1/2O†δρ′. (17)

The eigenvalues of the Hermitian matrix Dpl

= O(χ′0diag)
1/2O†vO(χ′0diag)

1/2O† correspond to the squared eigenfre-
quencies of the collective charge displacement modes (plasmons):
M†DplM = Ωpl, where Ωpl,i j = δi jω2

pl,i. Here, the transforma-
tion matrix M accounts for the geometry of the corresponding
eigenmodes.

Results reported in Fig. 5 indicate that the dispersion of
the lowest band is quasi-linear at low momentum, in analogy to
the phononic case. Other bands will be discarded due to their
much higher energy, while the quasi-linear band could be fitted
by ωpl(q) ∼ vplq when q is sufficiently small. The fitted velocity is
vpl ∼ 0.3a.u. (about two orders of magnitude higher than the
phonon velocities). This result is in semi-quantitative agreement
with recent31 calculations.

We now note that the electrostatic energy due to charge
displacements can be written as

Upl =
1
2

δρ†
i vijδρj. (18)

After transformation, Eq. (18) reads (we drop indices for simplicity)

Upl =
1
2

δρ′†MM†DplMM†δρ′ =
1
2

δρ′†MΩplM
†δρ′. (19)

This potential corresponds to that of a quantum harmonic
oscillator with unitary mass and frequencies ωi, while M†δρ′

=M†O(χ′0diag)
−1/2O†δρ has the dimension of a length.

One can thus assume that the excitation of plasma modes can be
effectively described by a QHO model (with unitary mass), associat-
ing creation (a†

i,pl) and annihilation (ai,pl) operators to the plasmon
mode as follows:

(M†δρ′)i =
(ai,pl + a†

i,pl)
√

2ωi
. (20)

FIG. 5. Plasmon bands, obtained from the tight-binding model. Only the lowest
band is taken into consideration in the computation of scattering rates, since
very small energy transfer is expected from water. In the low-q regime (high-
lighted in red), the plasmon dispersion is approximately linear due to the quasi
one-dimensionality of the metallic CNT.

VIII. WATER–PLASMON SCATTERING
We recall that water has a permanent dipole moment dW

(oriented along x̂, with magnitude ∼1.85 D), which interacts with
the charge displacements occurring in the CNT via the Coulomb
coupling vCoul. Then, the water-charge coupling term

Hw−c = dW∂xWv(RW − Ri)δρi, (21)

can be re-expressed as

Hw−c = dW∂xWv(RW − Ri)O(χ′0diag)
1/2
i j O†Mjl

(al,pl + a†
l,pl)

√
2ωl

. (22)

Here we will only account for the lowest-energy plasmon mode, with
quasi-linear dispersion at q→ 0, so that the index l will only run over
this mode throughout the BZ. At a fixed q, the plasmon mode can be
expressed as

δρ̃pl(q) = (1/
√

N)(Mq†Oq
(χ′ q,0

diag )
−1/2Oq†

)lc ,neiqlcLδρlc ,n, (23)

where the overall atomic index is split, as before, into atomic index
within the unit cell (n) and cell index (lc), while the mode index
is omitted since only the first plasmon is kept into account (only
q-dependence remains). Creation/annihilation operators (ã†

q,pl, ãq,pl)
can be associated with this plasmon mode at each q in the BZ, as
shown in Eq. (20).

Making use of Fermi’s golden rule, we write the transition rate
as

Γpl
i−f = 2π∣⟨kW, f ∣dw(∂xWv)O

q
(χ′ q,0

diag )
1/2Oq†Mq

∣kW,i⟩

× ⟨1q∣
(ãq,pl + ã†

q,pl)
√

2ω1(q)
∣0q⟩∣

2δ(EW,i − EW, f − ω1). (24)

The delta function enforces energy conservation, so that the
energy lost by the water molecule should be transferred to the plas-
mon mode. One has to sum up all plasma states compatible with
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the transition within the BZ. In order to compute Γpl
i−f, one needs to

evaluate the squared modulus of the following integral:

dW
√

NL∞
∑

i,j
∫

L∞/2

−L∞/2
dxWeiΔkWxW

∑
q∈BZ

×
N−1

∑
lc=0

∂xWv(RW − Ri − lcLx̂)e−iqlcL
(χ′q)1/2

i j Mq
j1

1
√

2ω1(q)
.

In addition, in this case, the summations over q and lc were explicited
for clarity. Contracted indices i, j are restricted to the unit cell, while
q must again be compatible with the adopted box. The Coulomb
interaction can be Fourier-transformed (in the infinite-length
limit) as

v(RW − Ri − lcLx̂) =
1

2π ∫
dq′2K0

(q′R�i )e
iq′(xW−xi−lcL), (25)

where R�i is the modulus of the component of Ri orthogonal to
x̂, while xi is the x̂ component. The scattering rate can thus be
re-expressed after integration as

Γpl
i−f =

N′2π
NL2

RRRRRRRRRRRR

dW iΔkW2K0
(ΔkWR�n) e−i(kW+nQ)xn

× (χ′ΔkW+nQ
)

1/2
n j MΔkW+nQ

j1
1

√
2ω1(ΔkW + nQ)

∣

2

× δ(EW,i − EW,f − ω1). (26)

In addition, in this case, space integration/summation over unit cell
replicas ensures the conservation of crystal momentum, q = ΔkW
+ nQ.

Simultaneous conservation of energy and crystal momentum
strongly restricts the number of permitted scattering processes, in
analogy to the phonon case. To better understand this point, one can
again approximate the spectrum of water by the free particle spec-
trum EW(k) = k2

/(2mW). At the same time, the plasmon dispersion
close to q→ 0 can be reasonably well approximated as ωpl(q) ∼ vplq.
The ensuing constraint on water speeds is thus formally analogous
to the phononic case,

vi,W =
vplq

q +mQ
+

q +mQ
2mW

. (27)

Our theory thus predicts that both phonon and plasmon excita-
tions are effectively forbidden at low water speed. When water
speeds exceed Q/(2mW), instead, a finite number of scattering pro-
cesses (where momentum is shifted by different multiples of Q) are
allowed. As shown in Fig. 6, momentum transfer by multiples of Q is
heavily suppressed due to the fast decay of the Fourier-transformed
Coulomb interaction. Meanwhile, high vpl implies that scatter-
ing with momentum conservation can only occur at large water
speeds.

By comparison with phononic scattering rates, we thus evince
that, above the speed threshold, phonon modes contribute at larger
rates to the overall scattering, while plasmonic effects become dom-
inant at very high ki,W. Both plasmonic and phononic excitations
should thus be taken into account in order to account for the
different momentum regimes.

FIG. 6. Scattering rates, as defined in Eq. (26) for water–plasmon scattering. N′/N
is fixed to 22 (low water density). Below Q/2, no scattering is permitted, like in the
phononic case. In practice, scattering is only allowed at very high water speed.
Components relative to different crystal momenta are reported separately for com-
parison. When momentum is strictly conserved (black lines), the permitted water
momenta become even higher than in the phononic case due to the larger plasma
frequencies (high vpl). Corrugations in the curves indicate band crossing and are
outside the expected linear dispersion range. Scattering with the transfer of mul-
tiple Q is suppressed due to the fast decay of the Fourier-transformed Coulomb
coupling.

We also note that heavily non-linear plasmon and phonon
modes can also moderately contribute at ki,W > Q/2, as already
considered15 in our previous work.

IX. DISCUSSION
The present treatment, based on a single water molecule, is

valid in the low-density limit, where the energy scale of water–water
interactions is much smaller than the water–CNT energy transfer. A
more complete description of water–water interactions in the nar-
row (5,5) CNT would either require the introduction of correlated
many-body wavefunctions or a perturbative approach. This would
enable the description of water flow at higher density regimes, which
are certainly relevant from an experimental point of view and will be
the subject of future investigations.

Water–water couplings may store a certain amount of
energy, but convergence tests15 indicate a minor sensitivity of the
water–CNT potential to the water–water coupling.

We also note that in the (5,5) CNT, only a single water molecule
can be accommodated within the CNT transverse section. Con-
versely, in larger CNTs, collective mechanisms are expected to
acquire higher relevance. In the vanishing curvature limit, water
flow should eventually follow the quantum mechanical description
proposed12,16 for flat systems.

In the macroscopic limit, water molecules are known to exhibit
non-trivial radial velocity profiles, and water–water interactions
could participate in dissipation effects. The connection between bal-
listic flow and classical flow regimes at growing CNT radii can
depend on a combination of mechanisms, such as thermalization
and velocity distribution, which can enhance scattering amplitudes
or dissipation effects emerging within the fluid. We also mention
the abundance of low-energy degrees of freedom in water that can
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couple with the CNT. We also note that larger CNTs are also charac-
terized by softer vibrational modes that stem from the deformation
of the CNT walls. Local density variations in water could contribute
to these CNT deformations.

Since a wavepacket could provide a better description of
a traveling water molecule, we explicitly consider the following
superposition of plane waves:

∣ϕi⟩ =∑
k

Ck∣k⟩. (28)

When willing to estimate the scattering probability into a final state
∣k′⟩, one should compute the matrix elements

∑
k

Ck⟨k
′
∣H′∣k⟩, (29)

where H′ is the interaction term, which can either represent
water–phonon or water–plasmon couplings. These matrix elements,
already computed earlier, enable a straightforward estimate of
scattering rates.

We note that CNTs were proposed as an effective means for
the development of energy-efficient water filtration11,12 devices that
could effectively contrast increasingly severe shortages of clean-
water supplies. Highly efficient CNT membranes were already fab-
ricated6 by parallel stacks of CNTs immersed in a silicon nitride
matrix. Other potential nanofluidic applications include minimally
invasive and non-destructive injections through cellular membranes
or water delivery in artificial photosynthetic36 systems.

X. CONCLUSIONS
In conclusion, we provided a fully quantum mechanical

description of the scattering that arises when a water molecule
flows through a narrow (5,5) CNT. This scattering is ultimately
responsible for the friction force experienced by flowing water,
as it effectively implies energy-transfer from water to the CNT.
Both phononic and plasmonic degrees of freedom in the CNT are
taken into account by means of Fermi’s golden rule, while the
necessary parameters are obtained by first-principle density func-
tional theory calculations. We find that water can scatter against
the CNT only when its speed exceeds a critical value of ∼50 m/s,
which provides a relevant extension of conventional superfluid-
ity to standard CNTs. Here, the critical speed is smaller than
the average thermal velocity of bulk water at room temperature.
Hence, further analysis is demanded in order to precisely assess
the water-speed distribution in sub-nanometer CNTs and to fully
characterize the actual flow regime. When scattering takes place,
only a limited number of final states are available, and scattering
rates remain small. Phonon scattering dominates at lower momen-
tum transfers, while plasmon contributions dominate at larger
momenta. Both degrees of freedom should be accordingly taken into
account.
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