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Abstract
In this work, we extend the quantum optimal control theory of molecules subject to laser pulses to the case of molecules 
close to plasmonic metal nanoparticles. Explicitly including the nanoparticle dielectric response in the system Hamiltonian, 
the electronic dynamics for the molecule in the presence of the laser pulse is coupled with the polarization dynamics of 
the nanoparticle itself. A characteristic feature of a plasmonic environment is that it both amplifies the laser pulse field and 
introduces nonlocal time effects (a behavior of inherent interest for the quantum optimal control theory), impacting on the 
shape of the optimized light pulse. The optimal control theory is formulated using a genetic algorithm; numerical examples 
of a target molecule and nanoparticles of different shapes are presented and discussed.

Keywords Molecular nanoplasmonics · Optimal control theory · Genetic algorithms

1 Introduction

Quantum optimal control theory (QOCT) [1–3] allows one 
to exploit the knowledge of a system to suitably shape, both 
in time and space, an external perturbation able to control 
the system itself to achieve a desired response (e.g. a specific 
excited state, a specific product in a chemical reaction, a 
desired many-body quantum state, etc.). In this approach, the 
optimal laser pulse is calculated a priori from the assumed 
system’s Hamiltonian [4–9]; such a strategy has been applied 
in several fields ranging from photochemistry to quantum 
gate synthesis [4, 5, 7, 8, 10–16] and, specifically for our 
interest, ab initio calculations and femtosecond experiments 
on systems with complex multidimensional potential energy 

surfaces, allowing identifying specific Hamiltonian informa-
tion and optimal laser pulses, as well as to bring the system 
into the desired target state [17–19]. Applications of optimal 
control theory in single-molecule spectroscopy studies are of 
great interest, and quantum optimal control theory has been 
successfully applied to gas phase molecules. Nevertheless, 
less efforts have been devoted to broadening the possible 
external environment conditions (e.g. presence of a solvent) 
for molecular systems to be studied, which would allow the 
experimental applications to be increased, which can benefit 
from such laser pulse optimization procedure. Some studies 
focused on targeting specific vibronic molecular states in 
condensed phases using density matrix theory to introduce 
dissipative coupling with an external bath [11, 20, 21], and 
on accounting for fluctuations in molecular geometry due 
to electrostatic interaction with the molecular dipoles of 
the solvent [11, 22]; our efforts have instead been devoted 
to include the effect of the environment in the optimiza-
tion problem. We developed a theory for optimal control of 
molecules immersed in a solvent, where the optimal con-
trol problem must account for both the interaction of the 
molecular system with the external control field and the 
polarization interaction of the same system with the exter-
nal medium (i.e., the so-called reaction field problem) [23]. 
We extended the well-established Rabitz algorithm [6, 8, 9], 
which returned very satisfactory results, with an accuracy 
similar to that obtained in vacuo [23].
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In this paper, we modified and extended our approach to 
systems in which the molecule is in proximity of the plas-
monic nanostructure (i.e., a metal nanoparticle (NP)). We 
chose this system because plasmon resonances of metal 
nanoparticles give rise to the so-called optical nanoantenna 
effect, locally enhancing the field within the nanoscale and 
giving rise to new phenomena, such as surface-enhanced 
Raman scattering, surface-enhanced infrared absorption, and 
metal-enhanced fluorescence [24]. This work may also be 
of interest for optimal control of polaritonic chemistry sys-
tems [25–29], promising to manipulate the photochemistry 
of molecules [30, 31]. Nanoparticles properties are particu-
larly interesting when coupled to ultrafast lasers, which can 
be optimized via quantum optimal control, as they might 
be able to probe and manipulate photochemical phenomena 
at a single-molecule level, such as excited-state dynamics, 
high-harmonic generation, and photosynthetic energy-trans-
fer pathways. Inverse design of the entire system (including 
the nature and shape of the nanoparticle) has been recently 
proposed [32].

Here we treat the metal NP as a polarizable continuum 
body with a realistic shape, characterized by an empirical 
frequency-dependent dielectric function. NP is described 
through PCM-NP [33, 34], an extension of the polarizable 
continuum model (PCM) [35], in its time-dependent ver-
sion [36].

All calculations were performed with the TDPlas soft-
ware [36], and we implemented an interface between our 
optimal control software (OCpy [37]) and TDPlas, which 
are now able to share information at each time step of 
propagation.

As already mentioned, in our implementation for the 
study of solvated systems the optimization was performed 
relying on the theoretical approach proposed by Rabitz’s 
group; here we explored a different optimization proce-
dure, which we already used to transfer the study of optimal 
control problems on quantum computers [38]. Due to the 
promising performance of machine learning in the field of 
multiparameter optimization, we chose to adopt a machine 
learning optimization scheme, notably a genetic algorithm 
(GA), that has a long tradition in quantum optimal control 
[39–41]. During the development of the genetic optimizer, 
we compared the performance of the genetic algorithm with 
both Rabitz theory and other optimization procedures with 
very satisfactory results [38]. We therefore decided to apply 
the same optimization procedure to the problem in hand, to 
avoid the need for a new theoretical extension of the Rab-
itz algorithm for the specific case of metal nanoparticles 
and any other future application. The comparison between 
Rabitz and GA optimizers applied to this specific system, 
where the presence of the nanoparticle amplification effect 
allows for smaller optimal fields, made us realize that mini-
mizing the field intensity without losing the performance 

on the population transfer is the more complex part of the 
optimization. For this reason, a specific strategy was tested 
to minimize the field within GA.

The paper is organized as follows: In Sect. 2, we pre-
sent the theoretical formalism; in particular, in Sect. 2.1 
we review a suitable form of the QOCT for isolated mol-
ecules; in Sect. 2.1.1 we briefly explain the structure of a 
genetic algorithm and how it is applied to our particular 
case; the treatment of the effect of nanoparticles on the mol-
ecule when influenced by and external field is presented in 
Sect. 2.2. Then, we provide details on the computational 
approaches (section 3), and we present the numerical results 
(Sect. 4). Conclusions are given in Sect. 5.

2  Theory

2.1  Quantum optimal control theory with genetic 
algorithms

Quantum optical control theory (QOCT) has been actively 
developed since the mid-1980s [4, 5, 7]. Generally speak-
ing, the problem deals with the evolution of a dynamical 
quantum system under the influence of a suitably shaped 
laser pulse, capable of driving the system from an initial 
state at t = 0 where �(0) = �0 to a final state �(T) = �T 
corresponding to a chosen final time t = T  . The final state 
should maximize the expectation value of a chosen opera-
tor Ô . In this work, we will focus on the particular case 
of optimal population transfer: given a molecular system 
in the initial state, we look for the shape of the laser pulse 
of length t = T � capable of maximizing the population of a 
specific target excited state. Note that in general T ′ is taken 
to be equal to T (i.e., the target state is obtained at the end 
of the pulse), but here we are considering the more general 
case of T > T ′ , i.e., the target state should be obtained at a 
later stage than the end of the pulse. As will be clear in the 
numerical section, this is a requirement to accommodate for 
the field dynamics induced by the nanoparticle dielectric 
response. In other words, we allow for time-nonlocal effect 
of the laser pulse on the system dynamics. The optimal field 
can be obtained maximizing the following unconstrained 
objective functional.

Here Ô = �Ψ⟩⟨Ψ� is the projector operator on the excited 
target state �Ψ⟩ and the second term is a penalization factor 
that discourages the optimization algorithm to move towards 
high-fluency fields; ��a(T)⟩ stands for the value of the state 
vector whose evolution is driven by a field Ēa(t) and the 
vector a specifies the set of control parameters. Finally, the 

(1)J[a] = ⟨𝜓a(T)�Ô�𝜓a(T)⟩ − ∫
T �

0

𝛼(t)�Ea(t)�2dt
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time-dependent factor �(t) modulates the penalty and allows 
one to enforce a given envelope of the laser pulse, which can 
be needed, e.g., when the optimal problem has to be solved 
for a particular experimental set-up. The value of �(t) , which 
in this paper is always set equal to a constant to facilitate 
comparison and comprehension of the results, is one of the 
parameters that allows one to choose the balance between 
the importance of maximizing the excited-state population 
and minimizing the field.

The molecule is treated quantum-mechanically, and the 
time-dependent Schrödinger equation for the system is:

where Ĥ is the system Hamiltonian without the interaction 
with the external field, Ēa(t) is the external control field, and 
̂̄𝜇 is the electric dipole operator of the molecule. As we are 
interested in studying the polarization effect of plasmonic 
NP on the molecule, here Ĥ implicitly includes the elec-
trostatic interaction between NP and the molecule. Details 
on how to write this term of the Hamiltonian are given in 
Sect. 2.2. Equation 2 is explicitly written in the length gauge 
(other gauges are also possible) [42]. Note that atomic units 
are used throughout this work. Different approaches are 
available to optimize the objective functional J (Eq. 1) with 
different pros and cons depending on the system under study 
and the purpose of optimization [2]. A notable example is 
represented by the well-established Rabitz algorithm [8], 
which we have already adopted to solve optimal control 
problems for systems of molecules in vacuo and in solution 
and which shows excellent convergence properties in both 
cases [23]. With the purpose of applying optimal control 
theory to different systems and environments, we decided 
to adopt a different optimization procedure from the one 
proposed by Rabitz, relying on the broad and established 
field of machine learning (ML) in general and the genetic 
algorithm (GA) in particular. Although we developed the 
GA optimizer to solve optimization problems on quantum 
computers, where the Rabitz procedure does not allow us to 
exploit the peculiar characteristic of such hardware, the ML 
approach can be easily applied to the problem of molecule 
in proximity to plasmonic nanoparticles. If we had used the 
Rabitz theory in our system, we should have theoretically 
derived specific evolutionary equations for the new system 
Hamiltonian Ĥ , similarly to what we did for the study of 
solvated molecules [23], and then implemented them in our 
software. On the other hand, GA does not need any spe-
cific derivation for the new environment, as the optimiza-
tion procedure is the same regardless of the Hamiltonian. In 
the following, we briefly review the structure of a genetic 
algorithm.

(2)i
𝜕𝜓(t)

𝜕t
= [Ĥ − Ēa(t) ⋅ ̂̄𝜇]𝜓(t)

2.1.1  Genetic algorithms

The term genetic algorithms is due to the inspiration these 
optimization strategies draw from the process of developing 
new species that takes place in nature [43]. Given a function 
f(a) (the fitness function) to be maximized depending on the 
variables collected in the vector a, the idea is to generate 
(either by an educated guess or at random) different sets 
a (each of which is termed an individual ), thus forming a 
population of individuals, carrying only the best ones (that 
is, those that maximize the fitness f(a)) to the next genera-
tion (that is, optimization iteration) until an optimal result 
is obtained. The new generation of individuals is obtained 
from the previous one by applying three operations: i) 
selection (the process of selecting the individuals on whose 
parameters the next generation will be built), ii) recombi-
nation (two individuals are chosen randomly between the 
selected ones and their amplitudes are mixed to give a new 
set a) and iii) mutation (values of the parameters within each 
individual are randomly modified following some predefined 
rules). Despite the number of choices needed to set up an 
evolutionary procedure, most of the optimization problems 
are robust with respect to a large interval of values for the 
parameters a, with the difference between different choices 
translating mainly in a faster or slower convergence towards 
the optimal solution. Details on our specific choices for these 
processes are given in Sect. 3.

To implement the procedure, we need to define the set 
of control parameters aI  that explicitly define the shape of 
the external perturbation (the field) for each individual I to 
optimize the evolution of our system. To obtain such a para-
metric dependence, we wrote the laser pulse as:

where ū𝛼 is a unit vector with direction specified by the index 
� running over the three Cartesian components. Here, the 
field takes the form of a sum over different harmonics with 
frequency �j =

j�

T
 , where T is the time duration of the laser 

pulse. The subscript a emphasizes the parametric depend-
ence on the set of amplitudes, which ultimately are our set 
of control parameters. We chose to use predetermined �j 
values corresponding to Fourier frequencies, which have the 
advantage of describing a field which starts and ends at zero 
(provided it has no constant component a0 ), thus more eas-
ily obtained with an experimental apparatus. Moreover, if a 
specific frequency range has to be considered due to particu-
lar experimental limitations, this is easily accomplished by 
choosing the terms to include in the summation of Eq. 3. To 
perform the optimization, each of the generated individuals 
is rated according to its fitness. In our case, it is easy to see 
how the fitness function corresponds to the functional J. It 

(3)ĒI
�
(t) =

∑

𝛼

ū𝛼

[
aI
0,𝛼

+

M∑

j

aI
j,𝛼
sin

(
j𝜋t

T

)]
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may be worth noticing that alternative optimization algo-
rithms implemented the optimization of frequencies and 
amplitudes, to allow one to reach the global optimal solu-
tion [44]. Due to the simple structure of genetic algorithms, 
it would have been possible to include the frequencies in the 
optimization procedure, at the price of increasing the num-
ber of optimization parameters. Beware that in optimizing 
frequencies, the main and more expensive difference with 
respect to our procedure is not searching for their final opti-
mal values but rather their final optimal number. As a matter 
of fact, with a fixed number of frequencies, if the amplitude 
of one of them does not influence the electronic excitation, 
as often is the case, it is anyway difficult for the genetic 
algorithm to set its amplitude to zero, as it should happen to 
minimize the field intensity. Practically, that frequency(ies) 
will show small but different from zero amplitudes, which 
increase the final intensity of the field and worsen the overall 
optimization procedure, in a way that is similar to an overfit-
ting problem. Similarly, optimizing the frequencies values 
together with the amplitudes setting their fixed number a 
priori would end in having a very dense range of frequencies 
corresponding to the values that affect the final result more, 
all with amplitudes different from zero. To partially solve 
this issue without greatly increasing the complexity of the 
algorithm, we added a fourth step after the selection, recom-
bination and mutation processes where the amplitudes have 
a probability P0 to be set to 0. This probability is the sec-
ond parameter, together with the value of � in Eq. 1, which 
allows us to work specifically to minimize the field. The 
third parameter, which, similarly to P0 exists only in genetic 
optimization, is the maximum absolute value allowed for the 
amplitudes, which acts as a boundary of the explored space.

Our purpose was to find a simple algorithm capable of 
providing satisfactory results for our specific system. It is 
always true that, when necessary, different parameters and 
evolution strategies can be adopted.

2.2  Polarizable model for plasmonic nanoparticle

The electrostatic problem related to the interaction between 
the NP and the molecule is treated through PCM-NP, whose 
details are reported in previous works [36, 45]. Here, we 
briefly summarize the main features of the model used to 
write the final interaction Hamiltonian in eq. (2) we need to 
implement the genetic algorithm. The electrostatic problem 
is formulated in terms of the apparent surface charge density 
defined on the nanoparticle surface; such density is deter-
mined by an integral equation that can be solved through 
discretization of the surface into small finite elements called 
tesserae within the boundary element method (BEM) [34]. 
The NP is characterized by a frequency-dependent dielectric 
function that can be included by analytical equations as the 
Drude–Lorentz’s or the Debye’s [36] or by the empirical 

one [45]. This approach has been successfully applied to 
investigate localized surface plasmons for nontrivial geom-
etries [33, 34, 45–49]. Computing the polarization charges 
on each tessera allows us to calculate the effect of the NP 
polarization on the molecule. (More details are given later.)

From a theoretical viewpoint, we can often describe 
localized surface plasmons and the associated electric field 
enhancement with classical electromagnetic modeling, 
neglecting however quantum [50] and nonlocal effects [51]. 
The metal nanoparticle is treated as a continuum body polar-
izable within the quasi-static approximation (i.e., in the limit 
of the electric field wavelength much larger than the NP), 
describing the NP with the PCM-NP model [34] an exten-
sion of the polarizable continuous model (PCM) [35]. The 
quasi-static approximation implies that retardation effects 
are not included, which is a valid assumption for small nan-
oparticles when the interaction between different parts of 
the NP is almost instantaneous [52, 53]. In this case, Max-
well equations reduce to a time-dependent Poisson equa-
tion for an electrostatic potential whose gradient provides 
the electric field. Upon the dimension of the NP increasing 
toward the electromagnetic field wavelength, the quasi-static 
description is worsening in accuracy and retardation effect 
needs to be included. In these conditions, one has to solve 
the complete set of Maxwell equations, as proposed by Mie 
[54, 55] for spherical NPs.

This model provides a suitable framework for perform-
ing quantum mechanical calculations including polarization 
effects on the molecule due to the presence of a nearby NP 
and has been also extended to layered surfaces [56]. When 
the system is under the influence of an external electrostatic 
perturbation, the metal NP is polarized by both the external 
field itself and the electromagnetic field generated by the 
time-varying electronic charge density of the molecule. As 
a response, the nanoparticle generates two electric fields, 
called, respectively, the reflected (or scattered) field Ēref and 
the polarization field Ēpol, [57, 58] that act on the molecule 
(see Fig. 1).

In the quasistatic limit, these fields are associated with 
electrostatic potentials generated on the surface of the NP 
[33, 42]. Following the standard integral equation formalism 
and the boundary elements method (IEF-BEM), these two 
electrostatic potentials can be written as originated by a set 
of reflected charges qref (t) due to the incident electric field 
and polarization charges qpol(t) that account for the presence 
of a nearby molecule. The frequency-dependent PCM-NP 
equations for the charges generated on the surface tesserae 
are written as:

(4)qpol(�) = Q(�)V(�)

(5)qref (�) = Q(�)V
inc
(�)
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where Q(�) accounts for the positions of the tesserae, their 
area, and the metal dielectric function, V(�) is the potential 
generated on the tesserae by the component of the molecu-
lar charge distribution oscillating at the frequency � (as a 
result of the combined action of the incident, reflected and 
polarization fields) and Vinc(�) is the analogous potential 
associated, in the quasi-static approximation, with the inci-
dent electric field Ēinc(𝜔) . Charges qref and qpol are located in 
the geometric centers of the tesserae in which the surface of 
NP is discretized [33]. The calculation of the time-dependent 
charges requires a model to describe the dielectric function 
of the NP; different models are available, and in this paper 
we adopted both the Drude–Lorentz (DL) equation for the 
dielectric function which reads: [59]

and an empirical dielectric function modeled on experimen-
tal data [36, 45, 60]. Based on a free electron treatment of 
metal conduction, the DL model is adequate but does not 
fully conform to the dielectric properties of realistic metallic 
NP media [61]. The main drawback of the DL model is that 
it includes a single electronic transition, while real metal 
involves free-electron behaviors as well as (in general) mul-
tiple interband transitions. For this reason, we used the DL 
model to perform some tests on a two-level system, while 
for the final calculations we decided to use a different model 
we developed, which allows the study of plasmonic NPs that 

(6)�(�) = 1 +
A

�2

0
− �2 − i��

feature any general and physically sound dielectric func-
tion, relying only on the knowledge of discrete values of the 
frequency-dependent, complex dielectric function �(�) , e.g., 
coming from measurements or ab initio calculations [45].

Independently from the form of the dielectric function, 
the NP-molecule interaction is described by an additional 
term in the Hamiltonian that includes the electromagnetic 
interaction with the reflected field Ēref and the polarization 
field Ēpol . If we make explicit these two terms and their 
dependence from the charges, Eq. 2 becomes:

where the time dependence of the charges on the NP surface 
is obtained by the Fourier transform of equation 4 [36, 45]. 
Here, Ĥ0 is the Hamiltonian of the isolated molecule, �̂ is 
the dipole operator, V̂ is a vector operator representing the 
electrostatic potential of the molecule at the representative 
points on the surface of the NP where the apparent charges 
qref and qpol are also located. In particular, qpol depends on 
the electrostatic potential originating from the molecule at 
all previous instants, which causes a nonlinear and nonlocal 
time evolution problem [60]. The theory behind the calcu-
lation of the charges can be found in [36, 45]. Once we are 
able to calculate the charges and write the Hamiltonian, the 
evolution of the wavefunction is also determined, and we 
can perform the optimization thanks to the genetic algorithm 
without further theoretical derivations.

3  Computational approach

3.1  Molecule and nanoparticle descriptions

N-methyl-6-quinolone (MQ) is an interesting system with 
peculiar photophysical properties [62], already studied in the 
framework of optimal control in vacuo [63] and solvent [23]. 
As stated in these studies, the electrical pulse to excite this 
system to the first excited state must be very short (approxi-
mately 6 fs.) to avoid nuclear relaxation. A � -pulse (i.e., a 
light pulse able to take all the ground-state population in the 
excited state for a two-level system) [9] of such duration was 
shown to be ineffective in obtaining the desired selectivity 
in the target excited state. Optimal control in vacuo already 
proved to solve this issue in Ref. [63], and we have already 
extended this result to the solvent case using Rabitz opti-
mization coupled with PCM theory [23]. Here, proximity 
of a nanoparticle does not allow the system to be optimized 
in times shorter than 6 fs, as the amplification effect of the 
nanoparticle has its own damping time, related to the nature 
(e.g., the DL damping rate � ) and size of the nanoparticle 
and the position of the molecule. During that time, even 

(7)i
𝜕𝜓(t)

𝜕t
= [Ĥ0 + (qref (t) + qpol(t)) ⋅ V̂ − Ēa(t) ⋅ ̂̄𝜇]𝜓(t)

Fig. 1  Sketch of the electric fields acting on a molecule close to 
a nanoparticle. Ēinc is the incident electric field associated with the 
control laser pulse; Ēref is the result of the “reflection” (scattering) 
of such incident field by the nanoparticle and Ēpol is the electric field 
produced by the polarization induced in the nanoparticle by the oscil-
lating molecular charge density. The surface discretization of the nan-
oparticle is also shown; the center of each mesh element (tessera) i is 
occupied by a point charge qref ,i acting as a source of Ēref and a point 
charge qpol,i acting as a source of Ēpol (see the text for their defini-
tions)
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if the external pulse intensity is 0, the molecule still feels 
the nanoparticle reflected field and consequently evolves. 
Nevertheless, we chose this system because it allows us to 
compare the results and performances obtained with those 
obtained in vacuo and solvent. Specific choices regarding 
the system and the amplification, depending on the desired 
results, will be studied in future work.

The MQ structure is obtained by relaxing the geometry 
with Gaussian G09 [64] using a 6-31 G(d) basis set at the 
Hartree–Fock level of theory. The two NPs considered in 
this work are a silver nanorod 10 nm long and a silver nanoe-
llipsoid with semiaxes equal to 3 nm and 5 nm, see Fig. 2. 
Both NPs have a larger dimension along the x-axes, and 
the aromatic rings of the molecule lie in the xy plane with 
the closest C atom at a distance of around 2.5 Å from the 
surface of the NP. The portion of the NP surface closer to 
the molecule has been refined with smaller tesserae in order 
to improve the description of the NPs in the most relevant 
region. The NPs mesh has been generated with gmsh [65] 
discretizing the rod surface with 610 tesserae and the ellip-
soid surface with 760 tesserae. The Rakic [66] dielectric 
function has been parametrized to be used in calculations, as 
detailed in ref. [45]. In the preliminary test on the two-level 
system, we described the dielectric function of an ellipti-
cal NP with the Drude–Lorentz model [36] with parameters 
specifically crafted for the test we were performing (Sect. 4).

The CIS excited electronic states of MQ in the presence of 
the nanoparticle reaction (i.e., image) field have been calcu-
lated with a locally modified version of GAMESS [67]. The 
many-electron basis set �ΦI⟩ is limited to the Hartree–Fock 
ground state and to the lowest 10 CIS excited states deter-
mined in the presence of the nanoparticle reaction field. To 
check the suitability of using 10 excited states, we performed 
some test optimal control procedures with 15 excited states, 
and the results obtained were equivalent in terms of both the 
optimal field and the final state of the molecule.

3.2  Wavefunction evolution under the external 
laser pulse

The duration of the external laser pulse T ′ is set equal to 250 
a.u., i.e. ≈ 6 fs. Due to the persistent oscillating polarization 
of the nanoparticle, propagation is carried out without an 

external field until the nanoparticle field acting on the mol-
ecule vanishes, t = T being the overall propagation time. The 
additional time T − T � is different depending on the shape 
of the nanoparticle and the model used to describe its elec-
trostatic behavior. Details on the different choices are given 
in Sect. 4. In our implementation, the wavefunction �(t) is 
propagated through a second-order Euler method. For the 
large systems (10 states), the propagation timestep for cal-
culations in vacuo, both with Rabitz and genetic optimizer, 
was kept fixed at 0.01 a.u. (i.e. ≈ 2 ⋅ 10−4 fs) while, since 
calculations performed for the nanoparticle systems are 
computationally more demanding, in this case, we decided 
to perform the optimization with a timestep of 0.1 a.u. to 
fasten the procedure and obtain a reasonable estimate of the 
optimal field. We then restarted the calculation using the 
optimized field with a final timestep of 0.01 a.u. Our results 
show that the field obtained with the first time step is also 
optimized for the calculations with timestep 0.01 a.u. and 
that the calculations performed with dt = 0.1 a.u. are a reli-
able approximation of our final result. For this reason, since 
we performed a series of tests on a two-level system (Sec. 
Results) to discuss the amplification effect of the nanopar-
ticle, we kept the timestep fixed at 0.1 a.u.. Other, more 
robust, propagation methods are possible (e.g., operator 
splitting technique in Ref. [63]); nevertheless, the choice of 
Euler propagator was done to keep the procedure as simple 
as possible and focus on the extension to the nanoparticle 
environment.

3.3  Genetic algorithm optimization

Concerning the mimicking of the evolution process, as dis-
cussed in Sect. 2.1, three main traits are usually considered: 
selection, recombination, and mutation, each amenable to 
different computational choices. We briefly describe such 
choices in the following. A more detailed description is 
given in [38]. Moreover, as stated in Sect. 2.1.1, we added 
a fourth step which allows one to set to zero the amplitudes 
that we perform after mutation.

Selection This step can be implemented in GA in different 
ways [40, 68]; we chose to build the next generation on top 
of the best individuals.

Fig. 2  a Mesh of the ellipsoidal 
NP close to the MQ molecule, 
and b mesh of the nanorod close 
to the MQ molecule
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Recombination Two individuals are randomly chosen 
between the selected ones, and their amplitudes are mixed 
to give a new vector. In our algorithm, each amplitude in the 
final new vector has a probability of 0.5 coming from one or 
the other parent. As a consequence, recombining the same 
two individuals a second time does not give the same child.

Mutation In our implementation, mutation is performed 
with a certain probability by adding a random number to 
each amplitude of each individual. Each random number is 
extracted from a Gaussian distribution specified by a value 
of mean � and standard deviation � . While we kept � = 0, 
we varied the value of � for different optimization runs to 
ensure a sufficient exploration of the parameter landscape 
and then a convergence towards a final result.

Frequencies optimization As already mentioned, it is very 
difficult for the standard algorithm to eliminate useless fre-
quencies by setting their amplitudes to zero. For this reason, 
after mutation, each frequency was given a probability P0 to 
be set to zero. In principle, this step slows the optimization 
process, as it is completely independent from any system 
information learned in the previous iterations, which means 
that amplitudes of useful frequencies are sometimes set to 
zero and the corresponding individual is then discarded in 
the next selection step. Nevertheless, our tests demonstrate 
that, in our case, this step improves the overall optimization 
results without slowing the optimization procedure.

The number of individuals was kept fixed at 80. At 
each iteration, 20 individuals were selected and recom-
bined into random couples to generate a new set of 20 
individuals. For the 10 states calculations, we performed 
two subsequent optimization runs (and a third single prop-
agation at a smaller timestep for the nanoparticle system), 
which, respectively, favor exploration of the landscape and 
convergence towards the optimized solution. The value 
of the standard deviation � in the mutation step depends 
on other optimization parameters (see next paragraph); 
generally speaking, � must be smaller during convergence 
than during exploration. For the two-level system, where 
the purpose was to study the amplification effect, we per-
formed only the exploratory run. Although in calculations 
performed with the Rabitz algorithm the only way to con-
trol the field intensity is through the parameter �(t) , when 
using genetic optimization it is also possible to impose a 
threshold for the absolute value of the field amplitudes, as 
an effective way to limit the field intensity and speed up 
the convergence to the desired result. To show the effects 
of this choice, we performed calculations with different 
values for the maximum amplitudes, both for the system 
in vacuo and with the nanoparticle. The mutation param-
eter � was set always one order of magnitude smaller than 
the amplitude limit for the exploration run and two order 
of magnitude smaller for the convergence run, a simple 

choice that allows comparison of results on different sys-
tems. Finally, in the implementation it is also possible 
to choose between three different shapes for �(t) and to 
impose different values of the penalization factor �0 , which 
can be useful if the purpose is to reproduce the behavior 
of a specific experimental apparatus [23].

The comparison between Rabitz and genetic optimizers 
in vacuo was made with a constant value of �(t) = 10 a.u. 
as this was the best result obtained with the Rabitz opti-
mizer [23]. In the other calculations, where we compare 
genetic optimizations in different environments and with 
different values of the maximum amplitude limit, we kept 
�(t) = 1 a.u.. Finally, as explained in the previous section, 
in genetic optimization, there is a final step after mutation 
that sets the amplitudes equal to 0 with a certain probabil-
ity P0 . In all the calculations, P0 is set equal to 0.1 besides 
the comparison in vacuo between Rabitz and genetic opti-
mizations, where P0 = 0 to facilitate the comparison.

The shape of the field for the genetic algorithm is the 
one in Eq. 3, and starting amplitudes were initialized ran-
domly in the desired range. The shape of the field for the 
Rabitz optimization is free, and the starting shape is a 
constant field of amplitude (0.01, 0.01, 0.01) a.u. [23].

These particular choices of iterations and parameters for 
the optimization procedure were made specifically for the 
problem under study, with the main purpose of allowing a 
straightforward comparison between different calculations, 
and do not claim to be general or optimal. The procedure 
and parameters can be modified and improved to fit spe-
cific problems [38].

4  Results and discussion

In this section, we present numerical applications of the 
QOCT-PCM-NP method to the study of laser pulse for 
the optimal population of selected excited states of MQ 
in proximity of two nanoparticles of different shapes: an 
ellipsoid and a rod.

Results comparing optimization performed in vacuo 
with the Rabitz and the genetic algorithms can be found 
in the Supporting Information. Overall, the two algorithms 
give very similar performances, and we feel confident to 
use the GA moving to the study of more complex systems.

4.1  2‑level system

Here we present a set of results obtained on the MQ mol-
ecule considering only the ground state and the first excited 
state. In all these calculations, we describe the electrostatic 
of the nanoparticle with the Drude–Lorentz model and craft 
its parameters (A and �0 mainly, see Eq. (6)) in such a way 
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that the plasmonic frequency of the nanoparticle is resonant 
(or not) with the excitation energy of the molecule. The pur-
pose is to verify the amplification effect of the nanoparticle 
comparing the results obtained for the system in vacuo and 
the two systems with and without resonance between the 
nanoparticle plasmon frequency and the molecule. �0 = 0 
a.u. (reducing the DL model to the Drude model) has been 
chosen in all cases. From Fig. 3, we can understand the 
behavior of the system and the effect of the nanoparticle. In 
Fig. 3a, we plotted the x component of the scattered field of 
the nanoparticle under the influence of the optimized exter-
nal field in the resonant case; we oriented the MQ molecule 
in such a way that the 0 to 1 transition moment is along the 
x direction, and both the ellipsoid and the rod are oriented 
with the main axes also along x. After optimization, the x 
component of the laser pulse field is the strongest, even if 
the optimal field is nonzero also in the y and z components, 
and it is also the one in which the scattered field lasts for 
longer time. In Fig. 3b, the behavior of the two-state popula-
tion during propagation for the system with the nanoparticle 
and the plasmonic frequency resonant with the molecular 
excitation is shown.

Remarkably, the laser field lasts 250 a.u. ( ≈ 6 fs), but 
Fig. 3a) shows how the nanoparticle scattered field is active 
up to 700 a.u. (≈ 17 fs) and how, accordingly, populations 
continue to evolve in time under its influence. We can inter-
pret this behavior, due to the dielectric polarization dynamic 
of the nanoparticle, as a time nonlocality of the light pulse 
effects. This is rather peculiar to the system under investi-
gation and of interest for quantum optimal control theory.

To take into account such nonlocality effects, we propa-
gated the system for 750 a.u., which means 250 a.u. ( ≈ 6 fs) 
with the external field active plus 500 a.u. ( ≈ 12 fs) after the 
external field is ended. We do the same for both the resonant 

and nonresonant systems, as the nanoparticle field influences 
the molecule in both cases. As it is possible to see from the 
populations plot in Fig. 3b, when the field amplitudes are 
given a higher limit, the enhancement effect of the nanopar-
ticle is unessential to achieve the optimization target. The 
latter could be easily achieved in 250 a.u. ( ≈ 6 fs) but, as the 
chosen propagation time is longer, the population oscillates 
while the algorithm tries to reduce the field. In other words, 
for high-intensity pulses the presence of the nanostructure 
makes the optimization process less straightforward. On 
the contrary, when the field is forced to be smaller, the NP 
amplification is fully exploited and the optimal result is 
obtained only after the entire 250 plus 500 a.u..

In Table 1, results with different amplitudes are com-
pared. While with amplitude limit of 0.005 a.u. (and larger) 
the optimizations reach a satisfactory result for the three 
environments, with maximum amplitude 0.001 a.u., it is the 
presence of the nanoparticle which allows one to reach the 
desired final state, while the optimization fails in vacuo. This 
is in agreement with the behavior of the population in Fig. 3 
which, as we said, needs all the 750 a.u. time span to reach 
the excited state. As a consequence, the time needed by the 
system to reach the optimal population follows the time scale 
of the local field generated by the NP rather than the incident 
field time duration. Therefore, including retardation effects 
on the dynamics of the NP polarization may be significant in 
the optimization process when quasi-static conditions are not 
satisfied, since the local field generated by the NP can have 
additional timescales. Finally, for amplitudes values below 
0.0005 a.u. only the system where the NP plasmon is in 
resonance with the molecular excitation succeeds in reach-
ing the target state. This is an important demonstration of 
the role of the resonant condition and the NP enhancement.

Fig. 3  a x component of nanoparticle reflected field obtained with 
the 0.005 a.u. threshold for the amplitude absolute values. The corre-
sponding incident field (not shown) is identically null from t=250 a.u. 

on. b QM excited state population for a propagation done with the 
optimized fields obtained with 0.005 a.u. and 0.001 a.u. thresholds for 
the amplitudes absolute values
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Finally, concerning the field constraints, in the resonant 
case it is easy to see how, when the amplitudes are allowed 
to be up to 0.005 a.u., the final field intensity is more than 
one order of magnitude larger than in the other two cases. As 
we said, even if in principle the optimization should reduce 
the field, practically the useless components of the field (e.g. 
the ones along z in this case) have amplitude values different 
from 0, fluctuating within a small range of values. As we 
mentioned, to reduce this problem, we introduced a further 
step in our optimization, which set the amplitudes to 0 with 
a certain probability. Its effect is evident in the case of the 
0.001 a.u. constraint: results for the same optimization with 
the same number of iterations without the additional optimi-
zation step are shown in brackets in Table 1, and it is possi-
ble to see how the results on the excited state population are 
the same, while the field fluency is much larger (0.0005 a.u. 
vs. 0.0001 a.u.). This means that with this choice of strategy 
involving the additional optimization step, we do not lose 
performance (i.e. the result on the population is the same in 
the same number of iterations), but we improve the result on 
the field. For this reason, we adopted the same strategy in 
the study of the entire system.

4.2  10 level system

Here we finally compare the results obtained for the sys-
tem optimized in vacuo and close to two nanoparticles of 

different shapes, elliptic and rod-like. To facilitate compre-
hension and comparison between the different calculations, 
we report in Fig. 4a schematic summary of the calculations 
performed. While in the previous section we discussed the 
first two systems presented (MQ in vacuo and close to an 
elliptic NP described with Drude-Lorentz model for the 
dielectric function, Table 1), in this section we are going to 
describe the results obtained with the empirical model for 
the dielectric function of Ag on the ellipsoid and rod-like NP 
systems (Table 2). Similarly to what we did for the two-level 
system, we want to propagate the system under the influence 
of the external field and the NP scattered field. We prelimi-
nary observe that neither the silver rod nor the silver ellipsoi-
dal NPs have the longitudinal plasmon resonance frequency 
matching the molecular excitation energies, since the former 
is around 2 −2.2 eV while the latter is around 3eV. Yet, both 
NPs have interband transitions at such energies, that, without 
providing essential enhancements, can moderately affect the 
local field. In particular, plotting the NP scattered fields one 
finds that the ellipsoidal and rod-like NPs behave differently, 
with the scattered field of the rod lasting almost three times 
the ellipsoid one: for this reason the optimization (propaga-
tion) will be carried for 250 + 1000 a.u ( ≈ 30 fs) for the 
ellipsoid and 250 + 3000 a.u. ( ≈ 80 fs) for the rod.

Both for the ellipsoid and the rod we also try to shape the 
field to obtain the optimal solution in 6 fs instead than 30 or 
80 fs, to see what happens if we do not exploit the NP ampli-
fication which takes place after the external field ends. In the 
latter case, the numerical results reported in Table 2 are the 
population value after 6 fs with the optimal field. It must be 
clear that if we carry on the propagation of the same system, 
the value of the population keeps evolving under the influ-
ence of the NP-scattered field; we did not report the final 
value (i. e. the convergence one, when the scattered field 
of the NP vanishes) as the optimal (maximum) value of the 
population is the one obtained at the end of the optimization. 
The purpose of this calculations is to allow a comparison 
with the optimization performed with longer times.

In Fig. 5a, we plotted the population during the 1250 a.u. 
(30fs) propagation with the optimized field in the case of 
the ellipsoid NP with maximum amplitude 0.002 a.u.. The 
optimization works perfectly exploiting the NP amplifica-
tion effect, as can be seen comparing this result with the 
one obtained for the 250 a.u. (6 fs) optimization (dashed line 
in Fig. 5a), which reach a maximum population of 0.73. In 
Table 2, results for the two optimization done imposing an 
amplitude limit of 0.005 a.u. are also presented, showing 
how, similarly to what happens in the 2-level system, in this 
case the amplitude limit allows a successful optimization 
result on the final population both for the 6 fs and 30 fs 
optimizations (250 a.u. vs. 250+1000 a.u.), at the price of a 
larger value of the optimized field.

Table 1  Optimization results for MQ in vacuo and close to a plas-
monic nanoparticle with different constraints on the maximum abso-
lute values of the field amplitudes

 In brackets, the results obtained with a different optimization proce-
dure (see text for details). “NP resonance” refers to DL parameters 
yielding a NP plasmonic resonance at the frequency of the molecu-
lar excitation (in particular, A = 0.058 a.u. and �0 = 0 a.u.); “NP out 
of resonance” refers to DL parameters not yielding such a condition 
( A = 0.08a.u. and �0 = 0 a.u.). T ′ and T are the duration of the laser 
pulse and the time where the population is calculated, respectively

Max amplitude
(a.u.)

Vacuum NP resonance NP out of reso-
nance

(T � = 250 a.u) (T � = 250 a.u.) (T � = 250 a.u.)

(T = 250 a.u) (T = 250 + 500 
a.u.)

(T = 250 + 500 
a.u.)

0.005 J 0.87 0.99 0.99
Pop 0.88 0.99 0.99
Field 0.01 0.0063 0.0097

0.001 J 0.06 0.99 (0.99) 0.89
Pop 0.06 0.99 (0.99) 0.89
Field 0.0006 0.0001 (0.0005) 0.0008

0.0005 J 0.02 0.99 0.30
Pop 0.02 0.99 0.30
Field 0.0002 0.0001 0.0002
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The result on the rod, on the other hand, is quite differ-
ent (Figs. 5b and 2). Imposing 0.005 a.u. as limit for the 
amplitudes allows to optimize the field both at the shorter 
and longer time scales, but in both cases the optimization 
happens in the first 250 a.u. ( ≈ 6 fs), which means that the 
NP-scattered field is not exploited in the last 3000 a.u.. 
Moreover, if we ask for amplitudes smaller than 0.002 a.u. 
the optimization in longer time performs definitely worst 
than the short one, with the additional optimization time 
that worsen the optimization process. Apparently, the con-
trollability of the rod system by the 250 a.u. laser pulse on 

the long time scale is limited, at least is less than what hap-
pens for the ellipsoid. To provide a rational to this behavior, 
in Fig. 6 we plot the Fourier transform of the sum of the 
optimized incident field with the NP-reflected field in the 
absence of the MQ molecule. For the ellipsoid, the results 
of the maximum amplitude equal to 0.002 a.u. is used. Since 
this provides unsatisfactory results for the rod, for the latter 
we use the maximum amplitude equal to 0.005 a.u. case. The 
vertical line is the position of the MQ first-level excitation 
energy. It is easy to see how in the ellipsoid case the NP 
field (although not the plasmonic one, responsible for the 

Fig. 4  Schematic summary of 
the calculations performed

Fig. 5  QM excited state population for a propagation done with the optimized fields obtained with the 0.002 a.u. threshold for the amplitude 
maximum value for a) ellipsoid and b rod-shaped NP
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peak around 2 eV) is resonant with the transition, while this 
is not true for the rod, explaining the different behavior of 
the two systems.

5  Conclusions

In this study, we extended the QOCT to the case of mol-
ecules close to plasmonic nanostructures. We have used a 
model where the molecule is treated with a quantum chem-
istry approach, keeping thus all its complexity, and the 
nanoparticle is described through its empirical frequency-
dependent dielectric function. Both the reflected (also named 
scattered) and the image fields due to the nanoparticle are 
included in our treatment. The present work extends the 

recently developed QOCT-PCM [23] to the PCM-NP mod-
eling of the nanoparticle in the time domain [69]. To solve 
the QOCT problem, here we rely on a gradient-free opti-
mizer based on genetic algorithm, whose performances have 
been benchmarked against the standard Rabitz’s algorithm 
for molecules in vacuo and in solution [23]. The advan-
tage of the approach is that it can be directly applied to the 
target goal function (the population of a given electronic 
excited state) without the need to derive a new goal func-
tional accounting for the mutual molecular wavefunction and 
nanoparticle polarization time evolution at each step.

The results show that indeed the investigated systems can 
be controlled leading to the selective population of a target 
excited state. The scattered field generated by the nanopar-
ticle can be beneficial to this goal: when the plasmonic reso-
nance matches the molecular excitation frequency, smaller 
incident field intensities are needed than in vacuo or outside 
resonance. Our results also highlighted how, in the pres-
ence of plasmonic nanoparticles, the electronic dynamics 
should be followed for a time related to the plasmon lifetime 
rather than for the pulse duration only. In other words, the 
control pulse is not optimize to provide the desired target 
immediately after its end, but rather to set the following 
plasmon+molecule dynamics to reach the desired results 
to a later time, when the plasmon has fully decayed and 
cannot affect anymore the molecular electronic dynamics. 
Plasmonic lifetimes are typically within 1-10fs, which then 
set the minimal time scale for the QOC process to occur, 
even for shorter control pulses. We would like to remark 
that the theory presented here neglects two phenomena that 
may be relevant. The first is that we are neglecting the pos-
sible decoherence of the molecular electronic state during 
the wavefunction evolution. This is common to many QOC 

Table 2  Optimization results for MQ close to plasmonic nanoparti-
cles in the shape of an ellipsoid and a rod with different constraints 
on the maximum absolute values of the field amplitudes

In all cases, the duration of the laser pulse T ′ is set to 250 a.u. “pop” 
refers to the population of the target state at the final propagation time 
T; “field” is the value of the field integral appearing in Eq. 1 for the 
optimal pulse

 T (a.u.)  Max ampl (a.u.)  J Pop  Field (a.u.)

Ellipsoid 250 0.005 0.94 0.99 0.05
250+1000 0.005 0.95 0.99 0.04
250 0.002 0.72 0.73 0.01
250+1000 0.002 0.97 0.98 0.01

Rod 250 0.005 0.94 0.99 0.05
250+3000 0.005 0.94 0.99 0.05
250 0.002 0.97 0.98 0.01
250+3000 0.002 0.71 0.72 0.01

Fig. 6  Fourier transform of the x component of the optimal field for 
the ellipsoid and rod-shaped NP. For the ellipsoid, the case with max-
imum amplitude 0.002 a.u. is considered, for the rod the larger maxi-
mum amplitude of 0.005 a.u. is instead considered. In both cases, the 

duration of the pulse T � = 250 a.u., while T = 250 + 1000 a.u. for 
the ellipsoid and T = 250 + 3000 a.u. for the rod. The red line is the 
energy of the MQ first-level transition
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approaches, and it is justified as long as the dynamics is 
short compared to electronic decoherence times; existing 
estimates (tens of fs) [70] show that this is an achievable 
regime, but the interaction with the plasmon may reduce 
the coherence time. The second is that the presented theory 
is semiclassical with respect to the plasmonic description, 
i.e., it does not account for the quantized nature of plasmons. 
When the molecular population in the excited state is sen-
sibly different from 0 (which is certainly the case at some 
point in the QOC process), its plasmon-induced decay is 
not correctly accounted for (M.Romanelli, G. Dall’Osto and 
S. Corni, in preparation). Again, this is not a problem only 
as long as the plasmon-induced decay is long compared to 
the QOC process. Overall, the present work contributes to 
extend the theoretical and computational tools available for 
quantum optimal control theory, towards still largely unex-
plored setups.
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