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Summary. The idea underlying the modal formulation of density-based clustering is to
associate groups with the regions around the modes of the probability density function
underlying the data. This correspondence between clusters and dense regions in the
sample space is here exploited to discuss an extension of this approach to the analysis
of social networks. Such extension seems particularly appealing: conceptually, the no-
tion of high-density cluster fits well the one of community in a network, regarded to as a
collection of individuals with dense local ties in its neighbourhood. The lack of a probabilis-
tic notion of density in networks is turned into a major strength of the proposed method,
where node-wise measures that quantify the role and position of actors may be used to
derive different community configurations. The approach allows for the identification of a
hierarchical structure of clusters, which may catch different degrees of resolution of the
clustering structure. This feature well fits the nature of social networks, disentangling a
different involvement of individuals in social aggregations.

1. Introduction

1.1. Background and motivation
Within large social communities, individuals sparsely interact with each others and usu-
ally set a tight relationship with a limited number of subjects. Interactions favour
individuals to aggregate into groups, where the relationships are stronger and the infor-
mation flow is more intense than outside.

The generating mechanism of these groups, albeit pervasive, is complex and often
difficult to be disclosed. On one hand, different kinds of relationship may be established,
from friendship to professional collaboration, each of them possibly with different levels
of intensity. On the other hand, aggregation may be driven by diverse, sometimes un-
observed, social mechanisms – homophily, popularity, ranking or influence. Depending
on the context, cohesive communities may be formed, where even relationships connect
each actor with most of other actors. This configuration characterizes, for instance, in-
dividual interactions, communication system, sport and team relationships (Carron and
Brawley, 2000). A different dynamic arises when one or few influential actors drive the
aggregation and shape the whole organization of the community (Ghalmane et al., 2019).
Examples of this latter behaviour are opinion or news spreading in online communities
where followers are attached to influencers (e.g. Wang et al., 2017b); epidemic diffusion
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where few prominent actors govern the outbreak (Medo et al., 2009), scientific collab-
orations and citations where communities develop around the so-called star scientists
(De Stefano et al., 2013). Here, the nature of leadership may be associated to various
roles which actors carve out within the groups, acting for instance as hubs or brokers.

In this context, Social network analysis (SNA) exploits the framework offered by
graph theory to translate these ideas into operational tools: any community is suitably
described by a graph where nodes represent the actors and the links between them their
interactions, possibly of different strength. A wide range of methods, among which cen-
trality or equivalence measures are just simple examples, have been spawned to express
notions of social role and position. A standard accounts is Wasserman and Faust (1994).

While the underlying scope to find groups in network may follow different routes,
these are usually defined as locally densely connected set of nodes. The correspondence
between groups of subjects and their inner connection density, as well as the possible role
of influential individuals within communities, suggest us to extend the ideas underlying
the density-based approach for clustering nonrelational data to the network framework.
The modal formulation of this approach associates clusters with the domains of attraction
of the modes of the density function underlying the observed data, namely clusters
correspond to dense regions of the sample space. While network data unarguably prevent
the definition of a probabilistic notion of a density function defined on the nodes, the
two notions of group are in agreement conceptually. Operationally, modal clustering
often resorts to graph theory to detect clusters, which further favours the extension of
this formulation to network data. As a fortunate side effect the modal approach allows
for the identification of a hierarchical structure of clusters, which may catch different
degrees of resolution of the clustering structure.

Based on these ideas, the aim of this work is to discuss a method to find clusters of
nodes within a network structure, while accounting for relationships of different strength.
Consistently with the cluster notion shared by the nonrelational density-based approach,
we focus on aggregation mechanisms driven by the attraction exerted by influential
actors, on the basis of different “leadership” roles as detected by means of alternative
node-wise measures. Note that this perspective is largely neglected by the inherent
literature, most focusing on the concept of mutual cohesiveness within communities.

The paper is organised as follows. After a brief review of clustering approaches for
networks, we overview the modal clustering formulation in metric spaces. Then, we
discuss its extension to network data, in both, the unweighted and weighted network
framework. The procedure is illustrated on some simple archetypal networks character-
ized by different community configurations, on a number of benchmark examples with
a known community structure, and on a comprehensively complex original dataset to
identify groups of researchers within the community of the Italian academic statisticians.
A discussion concludes the paper.

1.2. Overview of the related literature
Community detection refers to the general aim of partitioning networks in subsets of
nodes, which share some common properties and play similar roles in the relational
structure. Similarly to the nonrelational framework, this task is, in fact, far from being
accurately defined. Thus, while the general purpose usually translates into the task of
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identifying assortative groups with dense inner connections, a different perspective would
also include the search of disassortative structures with weaker interactions within, rather
than between communities.

The lack of a precise definition of cluster, along with the unsupervised nature of the
problem, have led on one hand to the proliferation of a voluminous amount of literature
on this topic and, on the other hand, to confusing taxonomies of methods designed for
the scope. A lack of a consistent terminology has determined expressions as network or
graph clustering, module, block or community detection to be either used interchangeably,
or carry slightly different, yet ambiguous, connotations. In this confounding panorama,
methods are easier classified on the basis of their technical details and algorithmic im-
plementations (e.g., Fortunato, 2010; Azaouzi et al., 2019), which yet disguises the more
relevant notion of cluster underlying them. Reviewing all these methods is then an awk-
ward task which we cannot engage without crossing over the scope of the paper. For
our purpose, we limit to set some boundaries by providing a coarse overview of the main
different goals and motivations for finding groups in networks, and refer back to the
insightful review of Rosvall et al. (2019), where the reader will find further details and
references. At the same time, we use the terms cluster, community, groups and so on
exchangeably in the rest of the paper.

The first, perhaps most widespread approach to find clusters in networks aims at
identifying densely interconnected nodes compared to the other nodes. Due to the
generality of this principle, methods differ in the way it is translated into operational
implementations. Several formulations rely on detection of actors or edges with high
centrality, as for instance, the very popular method of Girvan-Newman (GN, Newman
and Girvan, 2004), a divisive algorithm for undirected and unweighted graphs based on
edge-betweenness, afterwards generalized by Chen and Yuan (2006). Further methods
relying on a similar ground build on the optimisation of the cluster modularity (Danon
et al., 2005), so that each community will include a larger number of inner edges than
expected by chance. The Louvain method is unarguably one of the most popular rep-
resentative of this category (Blondel et al., 2008). The aforementioned methods result
in cohesive communities where transitivity is high and each actor is highly connected to
each other inside the group. Notwithstanding, the idea of high density within a group
may be also intended as the one arising in star-shaped clusters, where density is con-
centrated in the figure of some hubs attracting less prominent actors. Evidence of such
a theoretical mechanism of aggregation has been explained by Goyal et al. (2006) as a
combination of small-world behavior guided by the presence of interlinked stars. In fact,
this principle has been largely neglected by SNA, with the works of Kloster and Gleich
(2014), based on the local optimization of the so-called conductance and, to some extent,
Falkowski et al. (2007) representing an exception. This is also the route we follow.

A further facet of the clustering problem in networks, known as cut-based perspective,
aims at partitioning networks in a fixed number of balanced groups with a small number
of edges between them, and no guarantees about a possible denser structure of inner
connection. In this context, networks are often of a mesh- or grid-like form. Methods in
this class refer back to the seminal work of Kernighan and Lin (1970) and often build
on the spectrum of of the data. Examples are Pothen et al. (1990); Wang et al. (2017a).

The block-modeling approach follows a completely different purpose, relying on the
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fundamental concept of node equivalence, of which structural equivalence is the most
used. Disregarding the similarity of nodes, groups are here based on more general
patterns that include disassortative communities and include nodes that serve, within
the network, a similar structural role in terms of their connectivity profile. A first
formalization in terms of non-stochastic blocks can be found in Lorrain and White (1971),
while Holland et al. (1983) gave rise to the stochastic counterpart, later generalized to
the weighted framework (Aicher et al., 2015) and largely applied in various contexts See
Lee and Wilkinson (2019) for a recent review.

2. Clusters as dense sets

2.1. Modal clustering of non-relational data
Modal clustering delineates a class of methods for grouping non-relational data defined
on a metric, continuous space, and building on the concept of clusters as “regions of high
density separated from other such regions by regions of low density” (Hartigan, 1975,
p. 205) Formally, the observed data (x1, . . . , xn)′, xi ∈ Rd, i = 1, . . . , n, are supposed
to be a sample from a random vector with (unknown) probability density function f .
The modes of f are regarded to as the archetypes of the clusters, which are in turn
represented by their domain of attraction.

The practical identification of the modal regions may occur according to different
directions. One of them associates the clusters to disconnected density level sets of the
sample space, without attempting explicitly the difficult task of mode detection. The
key idea is that, when there is no clustering structure, f is unimodal, and any section of
f , at a given level λ, singles out a connected (upper) level set: L(λ) = {x ∈ Rd : f(x) ≥
λ}. Conversely, when f is multimodal, L(λ) may be either connected or disconnected,
depending on λ. In the latter case, it is formed by a number of connected components,
each of them associated with a region of the sample space including at least one mode
of f . Since a single section of f could not reveal all the modes of f , λ is moved along its
feasible range, giving rise to a hierarchical structure, known as the cluster tree, which
provides the number of connected components for each λ. Each leaf of the tree describes
a cluster core, defined as the largest connected component of the density level sets which
includes one mode. Figure 1 illustrates a simple example of these ideas: cluster cores
associated with the two highest modes are identified by the smallest λ larger than λ3,
while the smallest λ larger than λ1 identifies two connected components whose one is
the cluster core associated to the lowest mode.

Note that while the cluster tree resembles a dendrogram, the whole procedure cannot
be included in the class of hierarchical techniques. These explore, within the same run,
all the partitions with a number of clusters ranging from one to n, by subsequent splits
(divisive algorithms) or aggregations (agglomerative algorithms). Conversely, in the
cluster tree, the leaves are themsevels veritable clusters, instead of single observations,
and their number is then an estimate of the number of clusters. Hence, with respect to a
dendrogram, the cluster tree enjoys a different, more insightful interpretation. The height
of the leaves corresponds to the density level at which the associated mode appears, thus
providing an indication of the cluster prominence. Finally, the hierarchical structure of
the tree allows for catching possible different degrees of resolution of the clustering. In
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Fig. 1. A sample from three subpopulations and the associated contour set at a level λ0 (left).
The threshold λ0 defines a section of the trimodal underlying density function (center) and iden-
tifies two connected regions. On the right, the cluster tree indicates the number of connected
components for varying λ and the total number of clusters, corresponding to the leaves.

the example illustrated in Figure 1 the number of modes is three, but the two highest
ones pertain to the same macro-group, at a lower level of resolution, hence the leaves
associated to the two groups collapse to a single branch accordingly.

As the union of the cluster cores is not a partition of the sample space, unallocated
points are assigned to the cluster cores according to a supervised scheme of classification,
generally accounting for their density.

Operationally, clustering involves two main choices: first, a density estimator is re-
quired and this is typically selected among the nonparametric methods. Second, for each
examined threshold λ it is to establish whether the associated level set is connected and
what are its components. Since there is no obvious method to identify connected sets
in a multidimensional space, graph theory comes to this aid. A graph is built on the
sample points and the connected components of the subgraphs induced by the level sets
are then easily detected. The reader is referred to Menardi (2016) for further details
about modal clustering.

2.2. Modal clustering of social networks
2.2.1. Defining density on networks

For the current formulation, we regard to social networks as undirected graphs G =
{V, E} consisting of a set V = {v1, . . . , vn} of nodes – the actors of the network– and
a set E = {eij} of m links or edges, i 6= j = 1, . . . , n, representing relations between
pairs of nodes. Depending on the nature of the observed relationships, the elements of
E assume different forms: in binary networks the eij will take values in {0, 1}, denoting
the absence and the presence of a link, respectively, while real nonnegative values of eij
will account for different strengths of the relationship in weighted networks. In order to
represent a given network G it is possible to define a n × n adjacency matrix A whose
elements aij = eij .
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The notion of high-density regions highlighted in the previous section suggests a nat-
ural counterpart in network analysis, where clusters are often referred to as sets of actors
with dense relationship patterns (see, among others, Moody, 2001). However, network
objects are subject to an inherent limitation, as their properties can be established in
geodesic terms only. In particular, a probabilistic notion of density cannot be defined and
shall be intended in a less formal way, reflecting some intuitive meaning of cohesiveness.

We are naturally tempted to borrow the concept of density and akin notions from
graph theory. The density of a subgraphH ⊆ G is defined as the proportion of all possible
edges ofH which are actually observed. In fact, density definition as a node-wise measure
is arbitrary as a subgraph Hv is required to be associated to each node v. For instance,
one could set Hv = {Vv, Ev} as the subgraph having the nearest neighbours of v as
nodes, or focus on the single node Vv = v and its incident edges Ev thus recasting to the
notion of (possible weighted) degree. In fact, consistently with the previous one, a wider
set of candidates to quantify local density is represented by measures of connectivity or
measures of centrality, which evaluate, somehow, the role as well as the prominence of
each actor in a network. It is worthwhile to observe that the choice of a node-wise density
measure is not inconsequential with regard to the subsequent interpretation of clusters,
and different choices would entail a different concept of cluster. For example, the notion
of degree accounts for the rate of the activity of individual nodes in the network, so
that high-degree actors act as “hubs” and play a central role in the overall connectivity.
Alternatively, by measuring the proportion of times a node works as a broker connecting
nodes otherwise disconnected in the network, betweenness evaluates the influence of the
actors with respect to the information flow in the network. Despite in the following we
adopt well-known node centrality measures only, any function defined on the node set
V or alternative node-wise measures that allow to quantify the role and/or position of
each node in the network can be used. This allows our procedure to be more flexible
than other methods based on optimisation of a given node (or edge) function.

While, in general, the above mentioned measures do not sum up to one, as it would
be required by a density function, they can be easily normalised to this purpose, but for
the subsequent developments this is not strictly necessary.

2.2.2. Clustering of unweighted networks
Consider a binary network G = {V, E}, where E = {eij} and eij ∈ {0, 1}. To perform
clustering, we select a node-wise measure of density δ : V 7→ R+ ∪ {0} as discussed in
the previous section. Afterwards, we may proceed to cluster the nodes according to
the modal formulation illustrated in Section 2.1, i.e. actors are clustered together when
they have density above the examined threshold and they are connected. With respect
to the nonrelational framework above, we further benefit of the fact that the connected
components of the high-density level sets may be identified as the connected components
of the induced subgraphs, namely the maximal set of nodes such that each pair of nodes
is connected by a path. An operational route is a represented by the following scheme:

(a) Compute the density of the relationships of each actor: δ(v1), . . . , δ(vi), . . . , δ(vn).
Clusters will be formed around the modal actors, namely actors with the densest
relationship patterns.
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(b) For 0 < λ < maxi δ(vi) :

• Determine the upper level set Vλ = {vi ∈ V : δ(vi) ≥ λ},
• Build the subgraph Gλ = (Vλ, Eλ) ⊂ G where Eλ = {eij(λ)} and

eij(λ) =

{
eij if (vi, vj ∈ Vλ)
0 otherwise

• Find the connected components of Gλ.

(c) Build the cluster tree by associating each level λ to the number of connected com-
ponents of Gλ.

(d) Identify all the lowest λ for which the branches of the tree represent the leaves, and
form the cluster cores as the connected components of the different associated Gλ.

Essentially, at each threshold λ we evaluate the connected components of Gλ, the sub-
graph formed by the nodes with density above λ and the only connections between
them. The scheme usually leaves unallocated a number of actors with low-density pat-
terns, when they do not univocally pertain to a modal actor. Depending on the aim of
clustering and on subjects-matter considerations, part, or all of them may be either left
unallocated or assigned to the cluster for which they present the highest density δ(·).

The described way of proceeding entails the early identification of clusters as formed
by actors with the highest density, i.e. the leaders of the community, and the subsequent
aggregation to the formed clusters of actors with less prominent role. In this sense, and
consistently with the non-relational version of modal clustering, the final clusters are
then described by the domains of attraction of the community leaders.

2.2.3. Clustering of weighted networks
Let us now consider a weighted network G = {V, E}, where E = {eij} and eij ∈ R+∪{0},
i.e. the link weight is proportional to the strength of the relationship between the two
incident nodes and it is set to zero when the two nodes are not linked.

As a first natural ploy to account for real-valued edges, we consider density measures
for weighted networks. Indeed, the generalisation of these measures to weighted net-
works has been historically a somewhat controversial matter which cannot be tackled
without considering the nature of the data, the goal of the analysis, and subject-matter
knowledge. However, for most of the mentioned candidate measures δ, there exist a rea-
sonable weighted counterpart. The degree, for instance, is easily extended to measure
centrality in weighted networks by summing up the weights incident with each node.
This allows considering prominent an actor not only when he has many connections, but
also when the strength of these connection is large. We refer the reader to the existing
literature for a discussion about the specification of descriptive measures for weighted
networks (Opsahl et al., 2010).

In the presence of relationships of different strengths, we need to further adjust the
presented procedure. Indeed, a possible weak connection between two high density actors
does not appear as a sufficient condition for them to be clustered. Thus, we account for
the weights on the basis of the following simple idea: two actors are clustered together
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when they have density above the examined threshold and they are strongly connected.
Actors presenting a weak relationship with their neighbours are merged into the same
cluster at a lower level of density. Here, the strength of the connection is intended as
relative to the set of connections of each node. While this is consistent with the natural
idea that prominent actors exercise more influence over their strong connections and less
influence over their weak connections, its implementation may take various forms. The
following scheme provides two options of possible operational routes:

(a) Compute the density of each actor, δ(v1), . . . , δ(vi), . . . , δ(vn), with δ an appropriate
measure of node-wise density accounting for the weights of the edges;

(b) For each node vi, i = 1, . . . , n, identify the incident edge with maximum weight
eim = max

j: eij∈E
eij ;

(c) For 0 < λ < maxi δ(vi) :

• Determine the upper level set V(λ) = {vi ∈ V : δ(vi) ≥ λ}
• Build the subgraph Gλ = {Vλ, Eλ}, where Eλ = {eij(λ)} and eij(λ) can be

defined according to the two alternative options, denoted by ‘AND’ and ‘OR’
respectively.

option AND

eij(λ) =

{
eij if (vi, vj ∈ Vλ) ∩ ((eim = eij) ∩ (ejm = eij))
0 otherwise

option OR

eij(λ) =

{
eij if (vi, vj ∈ Vλ) ∩ ((eim = eij) ∪ (ejm = eij))
0 otherwise

• find the connected components of Gλ
• update eim = max

j: eij∈E\Eλ
ei,j ;

(d) Find the connected components of Gλ.
(e) Build the cluster tree by associating each level λ to the number of connected com-

ponents of Gλ.
(f) Identify all the lowest λ for which the branches of the tree represent the leaves, and

form the cluster cores as connected components of the different associated Gλ.

Essentially, at each λ, we identify the connected components of Gλ which are formed
by the nodes with density above λ. According to “option AND” the additional condi-
tion for aggregation is that these nodes represent their reciprocal strongest connection
among those not examined yet; conversely, according to “option OR” the condition is
loosen by requiring that such connection is the strongest for just one of the actors. The
two options, albeit not exhaustive, correspond to different ways of disentangling net-
work complexity and defining the underlying network group structure. With the tight
AND option, aggregation is harder to occur, hence leading to a large number of highly
homogeneous clusters. The resulting partition is mostly driven by the importance of the
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relations among nodes rather than by their relative importance within the whole net-
work. According to the “OR option”, where the aggregation condition is more frequently
satisfied, more parsimonious partitions are created, with clusters mostly driven by the
attraction hold by the high density nodes, namely the leaders, on the lower-density ones.
Note that this way of proceeding does not guarantee that all the weights are scanned
while scanning the density values, i.e. at the lowest considered λ, the weakest connections
between some pairs of actors might not be accounted for. Since in practice these con-
nections are negligible as, by construction, the weakest ones, we simply circumvent this
problem by identifying, at the end of the density scanning, the connected components
of the network disregarding the weights of the connections.

The clustering procedure eventually entails the formation of singleton clusters: sup-
pose that three connected nodes u, v, and z have all density above a given λ, but while
the strongest relationship of u is with v, the strongest relationship of v is with z and
viceversa. Then, with the AND option, v and z will fall in the same cluster while u will
be a singleton cluster which will be aggregated to the other at a lower λ.

Unallocated actors are finally classified to the cluster core at which they present
highest density, like in the unweighted setting.

3. Empirical analysis

3.1. Aims and implementation details

The current section aims to illustrate the aggregation mechanism at the basis of the
proposed method for different community configurations, also with respect to the se-
lected node-wise measure. We consider as density measures three alternative indexes
of centrality designed to catch different roles and community configurations within a
network: degree centrality evaluates the actor importance in terms of number of rela-
tionships with other members of the community; betwenness centrality, on the other
hand, by counting the number of times actor work as bridges to connect other members,
evaluates their strategic role in terms of brokerage; finally, local density, by shifting the
focus from single actors to their nearest neighbourhood (i.e., nodes at geodesic distance
equal to one from the focal actor), relaxes the focus on centralized groups and identifies
shared leaderships. The considered measures have been consistently adjusted for their
use in weighted networks.

With the aim of comparison, the considered examples are run also by considering
a few competing community detection methods, mostly selected because of their wide
popularity: the Girvan Newman (GN) method and its extension to weighted networks,
the Louvain method and Stochastic Block Models (SBM).

All the analyses are run in the R computing environment R Core Team (2020) with
the aid of libraries igraph (Csardi and Nepusz, 2006), sna(Butts, 2020), sbm(Chiquet
et al., 2020). The proposed method has been implemented within the DeCoDe package
(Density-based Community Detection), available on the author webpage†.

†https://homes.stat.unipd.it/giovannamenardi/content/software
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3.2. A simple illustrative example
For the sake of illustration, we consider as a first example of our empirical analysis some
unweighted archetypal networks where the community structure is determined by the
presence of high-density nodes.

The simple network displayed in the top row of Figure 2 highlights 4 hubs standing out
among 28 actors, labelled as 5, 8, 15, and 22. Each of the four hubs drives the information
flow from and towards six actors having a less prominent role. Density-based clustering
built on degree centrality reflects the hub dominance by identifying 4 clusters headed
by the leaders (Figure 2 a1). In fact, if the leaders were connected - middle panel of
the Figure, where a tie links actors 1 and 8 - the clustering configuration would change
accordingly, and a single group would be formed by all the followers of the leader dyad
(Figure 2 b1). In the lack of hubs - bottom row of Figure 2, where actors 5, 8, 15, 22
have been removed from the network - density-based clustering built on the degree fails
to identify groups (Figure 2 c1), which are better identified by alternative node-wise
measures accounting for a decentralized leadership. By considering, for example, the
local density based on the nearest neighborhood, modal clustering detects four clusters
in all the three versions of network (second column of Figure 2). Conversely, if the
the analysis focuses on the strategic role of the actors, the leadership is rather drawn
by actors 12 and 25, acting as brokers which connect nodes otherwise disconnected in
the network. With this changed aim in mind, a different structure characterizes the
network, as the whole community is compact around the leaders. Consistently, density-
based clustering built on betweenness detects just one cluster in all the three versions of
network, leaded by the connected brokers (third column of Figure 2).

The cluster trees provide further information by identifying the hierarchy of the
communities. Thus, in the four clusters configurations the more central communities
aggregate first, whereas in the three clusters configuration the first merge occurs between
the largest cluster and the closest one (bottom panel of Figure 2).

Compared to density-based clustering, GN and the Louvain method, mostly driven
by the idea of modularity within a community, identify 4 clusters in all variants of the
network, thus behaving like modal clustering with local density (Figure 2, fourth and
fifth columns). SBM identifies an optimal partition in two clusters in the presence of
hubs, and one cluster only in the absence of hubs (Figure 2 a6, b6, and c6 respectively).

3.3. Benchmark examples
As a second step of the empirical analysis, we explore the behaviour of our method in
some popular real datasets where a ground truth community membership is assigned.
The choice of evaluating results in term of a true labeling, rather common in clustering,
is motivated by our will of not being biased towards specific community configurations.
On the other hand, it is worth highlighting that the possible identification of community
structures diverse from the defined true labels would not necessarily imply a failure of the
applied clustering method. Such possible result would just reflect that the true clusters
have a configuration different from the one that each method is designed to detect.

The agreement between the true and the detected membership has been measured in
terms of normalised mutual information (NMI, Danon et al., 2005) which increases for
improved quality and associates the maximum value 1 to a perfect agreement.
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Fig. 2. At each row a slightly changed version of the same toy network: in the first one four
hubs not linked directly; in the second row two of them are connected by a link; in the third
row the hubs have been removed. At each column the clustering produced by the density-
based procedure built on different measures, GN, Louvain, and SBM. Clusters are marked with
different colors. In the first three columns actor size is proportional to their density. In the bottom
panel, the cluster trees associated with the density-based partitions into 4 and 3 clusters.

Zachary Karate Club network The well-known Karate Club data (Zachary, 1977) de-
scribes the network of friendships between 34 members of a karate club at a US university
in the 1970s. The network is in principle weighted, with the strength of connections given
by the number of common activities of the club members. In fact, we run the empirical
analysis on both the weighted network and on its binary version, built by neglecting
the strength of connections. Due to a dispute between the administrator ‘John A’ and
the instructor ‘Mr Hi’, the club split into two factions, here representing the benchmark
membership. The two factions are then built around the leadership of John A and Mr
Hi, which play a special role in terms of both direct influence on the club members, and
influence on the information flow to and from the actors.

In agreement with these considerations, in the binary setting, an essentially perfect
agreement is found between the two factions and the density-based partition detected
with both degree and betweenness as node-wise measures. Conversely, since local density
accounts for the maximum number of ties each actor can set in its neighbourhood, it
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degree loc. density betw. degree loc. density betw.

0.56 0.69 0.01 1 0.44 0.85 0.61 0.36 0.42

Fig. 3. Zachary Karate Club network with true communities marked with different colours. Be-
low, NMI results of different community detection methods.

results in depowering the leaders of star-based community, thus proving not to be ade-
quate as a node-wise measure to recover the true factions. A slightly better performance
arises from the application of both Louvain and GN methods, while SBM cannot recon-
struct the benchmark factions. Note, however, that none of the competitors is designed
to detect hub headed communities. See Figure 3.

When considering the weighted network with the OR option, the two factions are
again perfectly recovered with the degree used as a node-wise measure. Betwenness
overall makes a remarkable job as well, althought it identifies three community instead
of two. Accounting for the link weights, in fact, allows to distinguish a new leader
beyond Mr Hi and John A, namely actor 32, with a high prominent bridging role. The
inadequacy of local density to find clusters arising from a leadership is confirmed also in
the weighted setting. The AND option gives rise, by construction, to a larger number
of homogeneous clusters, with the highest density ones still led by John A and Mr Hi.
For this reason the NMI stands at decreased values. Disregarding the employed density,
in general, the presence of more peripheral actors is enhanced, as with the AND option
individual connections are accounted for in clustering formation, rather than the leader
influence. In fact, despite the true cluster membership, driven by a forced choice of each
actor to line up with one of the leaders, data show that the relationships among the
peripheral actors are generally stronger than the ones they have with the leaders.

The Louvain method produces improved results with respect to the binary case, while
SBM and GN stand at about the same level than in the binary counterpart.
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Fig. 4. Les Misérables character network. Cf. Figure 3.

Les Misérables character network This popular network describes the interactions be-
tween 77 characters of the Victor Hugo’s novel Les Misérables (Knuth, 1993). The
network is in principle weighted, with edge strength set to the number of co-appearance
of characters in one or more scenes of the novel. Like in the previous example, we also
analyse its binary version. With the aim of an objective evaluation, we pursue the assign-
ment of a ground truth membership by associating each character to the book of his/her
early appearance. This eventually results in 20 small communities having an assorted
attachment mechanism, with some communities formed around more relevant characters
and other more cohesive communities (Figure 4). The partition provides an overall fair
summary of the novel plot, yet we shall account with some limitations. Beyond three
ambiguous references to unnamed actors, the cluster membership of a few main char-
acters should rather have overlapping nature. Hence, results evaluation requires some
further insights beyond the mere observation of the NMI values.

Neglecting the strenght of relationships, has little impact on the minor characters,
generally claiming a small number of weak interactions. Thus, in the binary version of the
network, cohesive communities are anyway easily detected, whereby GN, Louvain and
modal clustering based on local density stand out from the other methods at high values
of accuracy. Conversely, the loss of information on the weights affects the classification of
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Fig. 5. US politics books co-purchasing network. Cf. Figure 3.

the main characters, all being connected to each other, yet with a different extent which
pinpoints their role. Hence, modal clustering with degree and betweenness identifies in
the binary network just one community, built around the protagonist Jean Valjean.

When the weight strength is accounted for, modal clustering works remarkably with
the AND option, which tends to inflate the segmentation and highlights minor groups.
The OR option underperforms the AND version compared to the true labels, yet results
are anyway highly interpretable. The use of both degree and betwenness gives rise to
6 clusters. In the former case most communities are built around one main character,
whereas when betwenness centrality kicks in, being its values larger for those characters
having a protagonist role in multiple books, modal clustering is able to isolate all the
main characters in just one group (that is the “main plot” cluster) together with other
5 smaller sized groups of actors whose story is standalone within the whole plot.

US politics books co-purchasing network As a further example of star-shaped commu-
nities in networks, the US politics books co-purchasing data‡ include 105 books about
US politics published around the presidential election in 2004 and sold online at Ama-
zon.com. The 441 ties between them represent co-purchasing of books by the same buy-
ers. Community membership is given by the book political alignment: liberal, neutral,
or conservative. Within communities there exists a slighlty centralized organization of
links, especially among liberal and conservative thinkings, with bestsellers representing
high-density nodes, often bought in bundle with a variety of less popular other books.

Results (Figure 5) reflect such behaviour, as the density-based partition built on
degree centrality outperforms both the other centrality measures and the competitors.
While the latter tend to oversegment the network yet achieving acceptable results, the
former result not appropriate to describe the community configuration. Without excep-
tion, methods are not able to identify the least characterized neutral books.

‡http://www.orgnet.com/

http://www.orgnet.com/
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Fig. 6. Email-EU-core network network. Cf. Figure 3.

Email-EU-core network The Email-EU-core network (Leskovec et al., 2007; Yin et al.,
2017) describes the email exchange between the members of 42 departments of an Euro-
pean research institution. The network is regarded to as undirected by setting an edge
whenever there has been at least one either outgoing or incoming email between two
members. True clusters are the Departments of affiliation. Distribution of actors among
Departments is rather unbalanced, ranging from 1 to 107 individuals. Since the network
includes a few isolated nodes, we focus on the giant component only, consisting of 986
individuals (98% of the total) connected by 25552 ties (99.9%).

The network is far more complex than the ones examined above. While of difficult
inspection, Figure 6 shows that the community configuration is hardly caught by the
link description. Research collaborations, indeed, are possibly conducted also by email,
and likely not to be limited to the members of a Department. Additionally, there is little
evidence of some attachment mechanism guided by the presence of prominent individuals
in terms of their degree; also due to the unavailability of weights, conversely, it is likely
to expect quite a homogeneous distribution of links within each Department and possible
clusters not built around some leaders.

Results confirm the expectations, as local density is the only centrality measure able
to catch the gross community structure via density-based clustering. GN and Lovain
method stand on about the same level of accuracy of classification. The application of
SBM is computationally unfeasible on this network, due to an inner limitation of the
R routines included in package sbm, which requires the joint estimation of models for
any number of communities and the subsequent selection of the best models. Hence,
networks with a large number of clusters, like in this case, run into a memory error.

American college football network The American college football network, described
by Girvan and Newman (2002), represents the schedule of Division I American football
games for the 2000 season. Nodes represent teams and ties between two teams represent
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Fig. 7. American college football network. Cf. Figure 3.

regular-season games they dispute. The 115 teams are divided into 12 conferences,
representing the benchmark community memberships. In most conferences, inner games
are more frequent than games with external teams, with an average of about seven
intraconference games and four interconference games in the reference season (Girvan
and Newman, 2002, p.7824). The example is here explored to show the inadequacy
of density-based community detection in the lack of leadership. Games configuration,
indeed, leads to a grid-like organization of links within communities. In this situation
the competing methods are able to recover accurately the community structure, while
our proposal fails by setting either degree or betwenness as node-wise measure. Local
density in this case, allows just for a slight improvement. See Figure 7 for details.

3.4. Finding clusters within the community of Italian academic statisticians
The aim of the case study here considered is to characterise the scientific community
of the Italian academic scholars in Statistics and related fields, via the identification of
the clusters formed on the basis of the relationships between them, possibly of different
nature and strength, and of the leading aggregation mechanism. This can be useful, for
instance, for the creation of new projects and synergies, or more generally, to understand
who are, within the community, the leading actors with respect to specific topics.

The main hypothesis underlying the data collection is that, to characterise a re-
searcher within the community, we broadly answer to the questions: Where does he/she
work? What is his/her macro-area of research? Who does he/she work with? What does
he/she work on? As a consequence, we have built a weighted network having in princi-
ple a multiplex structure, divided in four layers associated with the questions above: (1)
affiliation adjacency matrix (AFF): two actors are connected when they share the same
university department affiliation; (2) macro-sector adjacency matrix (MS): two actors
are connected when they belong to the same macro-sector, within the area of Statistics
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and related fields, and as defined by the Italian Ministry of Education, Universities,
and Research MIUR (statistics, economic statistics, demography and social statistics,
mathematical methods for economy, actuarial and financial sciences) (3) co-authorship
network (PUBS): two actors are connected with a link weighted as the number of publi-
cations they co-authored; (4) common keywords adjacency matrix (KW): two actors are
connected with a link weighted as the number of common keywords in their publications.

Data have been collected in November 2019 and refer to 1160 among professors and re-
searchers of the academic community of statisticians, as recorded by the MIUR database§
where information about the university affiliation and the scientific macro-sector have
been drawn. Information about the publications and the keywords have been extracted
from the ISI-WoS database¶. Handling the latter one has been troublesome, due to an
awkward operation of author matching, especially in the case of homonymy or when
a researcher has changed his affiliation at some time and the WoS database does not
recognise it. In fact, we shall live with the likely, hopefully not relevant, distortion in
the assessment of both the publications and the inherent keywords.

A summarising description of the single layers is provided in Table 3.4. All networks
at the individual layers are composed of the 1160 nodes representing the members of the
scientific community under study. Given the exclusivity of the affiliation, the associated
network is composed by as many components as the number of observed University
departments (namely, 194), within which every actor is connected with all the other
actors. The number of researchers within departments is pretty heterogeneous, ranging
from 1 to 54. A similar behaviour is observed in the network associated to the macro-
sector, where each actor is connected with all other researchers in the same macro-
sector. The number of connected components in this layer is equal to the number of
considered macro-sectors and these components have diverse sizes (both the statistics and
mathematical methods for economy, actuarial and financial sciences areas count more
that 400 researchers, while each of the two further sectors count about 150 researchers).
The co-authorship layer represents an updated, enriched version of one of the databases
employed by De Stefano et al. (2013). We observe 255 isolated researchers, either because
they have not published on ISI journals, or because their publications have never been
co-authored by any other Italian academic statistician currently on the MIUR list. Their
publications have been in any case considered to extract the keywords for the fourth layer
of the network, where the number of isolated researchers reduces to 109.

In order to aggregate the four layers into a single, weighted network, we have first
normalised the edge weights, measured on different scales, depending on the represented
relationship. In principle, there are many procedures to choose among for the pur-
pose.We opt for the simple idea of dividing each weight by the sum of weights within the
layer. Then, stemming from the four normalised networks, we have built the associated
overlapping network (Battiston et al., 2014) by simply summing up the edge weights as-
sociated to the same actor across different layers. The overall network is relatively dense
and cohesive with no isolates since all nodes are comprised in the unique component (see
Table 3.4). The strength of the links in the overall network is largely governed by the
sparsest co-authorship layer because of the used weighting system.

§http://cercauniversita.cineca.it.
¶https://apps.webofknowledge.com

http://cercauniversita.cineca.it
https://apps.webofknowledge.com
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Table 1. Italian academic statisticians network: descriptive statis-
tics for the individual layer networks (AFF - Department affiliation,
MS - Macro-sector, CA - Coauthorship network, KW - common
keywords) and overall weighted networks.

AFF MS PUBS KW Overall
# of isolated nodes 67 0 255 109 0
# of components 194 4 292 110 1
Network Density 0.014 0.308 0.002 0.523 0.734
Global transitivity 1 1 0.306 0.820 0.833
Degree centralization 0.032 0.082 0.016 0.346 0.240

Among the community detection methods, we have been able to run the Louvain
method only, whereas the application of both GN and SBM has turned out computa-
tionally unfeasible. It is worth reporting, however, that we run SBM up to the maximum
number of communities allowed by our computational resources, i.e. 64. The detected
partition is unarguably suboptimal, with one community gathering the 2/3 of the ac-
tors but the remaining 63 clusters do not differ much from the ones obtained with our
procedure. The Louvain algorithm identifies 23 communities, of size ranging from 13 to
102 researchers. Cluster homogeneity with respect to the scientific macro-sector and the
affiliation has been evaluated via the complement to one of the Gini index. As for the
publications, for each researcher, the proportion of works coauthored by members of the
same cluster has been evaluated and the cluster average used as a summarising measure
of cluster homogeneity. The same index has been computed for the keywords. To look
at the assortative mixing within the detected communities and find if actors within clus-
ters tend to exhibit dense connections among them rather than with actors in different
clusters, modularity of the clusters has been also evaluated. Results are summarized in
Figure 8. Due to the large size of the detected clusters, clusters are somewhat homo-
geneous for the scientific sector and the affiliation only, while communities are scarcely
associated to co-authorship and research topics. While, by construction, modularity of
the Louvain-based partition is maximised, it does not show a remarkably high value. To
this respect, it is worth noting that even if the detected partition corresponds to the
global maximum of the modularity, in scientific applications this solution is not guaran-
teed to be more meaningful than the ones obtained by local maxima (Good et al., 2010).
Furthermore, results are affected by the so-called resolution limit for which small, plau-
sible communities cannot be identified if the network is large and heterogeneous clusters
tend to be formed (Fortunato and Barthélemy, 2007).

Modal clustering has been run building on the degree of the actors, as it appears the
most sensible and easiest to interpret choice in such a complex application. Both the
options “OR” and “AND” have been run. Summarising results in terms of size of clusters,
modularity, and homogeneity with respect to the considered relationships are reported in
Figure 8. The OR option identifies 139 groups of size ranging from 4 to 49 scholars. Some
heterogeneity with respect to the considered relationships is unavoidable, but clusters
are far more homogeneous than those identified by the Louvain method. In fact, while
actors working either together or on similar topics tend to be aggregated into the same
cluster, the same membership is often shared by other researchers. In this case, cluster
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Louvain Density-based clustering
Option OR Option AND

size 45.69 (22.90) size 7.56 (7.97) size 2.11 (1.42)
modularity 0.42 modularity 0.24 modularity 0.18
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Fig. 8. Italian community of statisticians. Top panel: average size of clusters (and standard
deviation) found via the Louvain method and both the options OR/AND of the density-based
method and modularity. The boxplots display the homogeneity of actors across clusters with
respect to the considered relationships.

aggregation is mostly driven by the attraction hold by a few leaders towards minor actors
which often exhibit pretty diverse characteristics. Conversely, option AND gives rise to
a very sensible partition, counting 499 clusters, overall a realistic value in the overview of
the statistical community where, excluded applied interdisciplinary scholars, researchers
tend to work within very small-sizes teams, and publications are generally co-authored
by 2/3 researchers at most. The majority of clusters is fully homogeneous with respect
to the scientific macro-sector and affiliation, and gathers researchers who are known to
belong to the same research group. Note that this result is largely acknowledged to
occur in social contexts, where social groups are limited in size even if social actors are
embedded in relatively large networks (Dunbar, 1992).

However, the clustering is not to be interpreted solely in term of final group mem-
bership - a not that different partition could be trivially obtained by aggregating pairs
of maximally connected actors. In fact, the generation process of collaboration among
researchers is pretty peculiar: there may be solitary researchers, sparsely collaborating
with other subjects; also, there are researchers who mostly focus on a specific research
topic, but also collaborate with different groups of people on a variety of different areas.
Both keeping these researchers separated or merging them into the same group may
be a stretch. To this aim, a relevant interpretation derives from the exploration of the
cluster tree, where clusters are subsequently aggregated at lower levels of the hierarchy,
to form larger clusters with a lower resolution (Figure 9). For the sake of interpretation,
one of its branches, including 17 clusters and a total of 30 researchers, is detailed in
Figure 10, along with the associated subnetwork highlighting cluster aggregations at the
different levels of the cluster tree. The forming leaves of the branch mostly include either
researchers affiliated to the Department of Statistical Science at University of Padova,
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Fig. 9. Cluster tree of the Italian academic statisticians (rotated for better readability, with high
density levels at the right side). An insight of the highlighted area is provided in Figure 10.

or scholars who have spent at that Department part of their academic career. Actor
aggregation in clusters mostly relies on the strength of connections, hence lead by co-
authorship which weights most on the overlapping network. At a lower level of the tree,
cluster merging is driven by research topics, with the largest branch on the left associ-
ated to likelihood theory, and the other branches including scholars working on its more
applied declinations. A link between branches derives from the eclecticism of some of the
researchers, working on different research topics. The size of the tree prevents an overall
interpretation, but similar traits of homogeneity can be easily identified by picking any
branch of the tree. Of course, the lower the level of aggregation of the branches, the
lower the homogeneity of the branch.

4. Discussion

Due to the unsupervised nature of the problem, and to the further lack of a ground
truth against which to evaluate the quality of a partition, clustering is an ill-posed task,
which cannot be performed fully automatically, i.e. without some amount of human
intervention and disregarding subject-matter considerations.

The methodology here presented makes no exception in the clustering panorama, as
it both has required during its planning and still requires the user to make a few thorny
choices. A first choice concerns the density measure. The lack of a probabilistic notion
of density at a node-wise level implies the loss, for network data, of the probabilistic
framework of the original approach defined for non-relational data. Hence, the proposed
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Fig. 10. Detailed visualization of the subtree highlighted in Figure 9 and associated subnetwork
with clusters marked in different colors and superimposed the cluster aggregations at the differ-
ent levels of the cluster tree. Actor size is proportional to the their density and different shapes
are associated to different macro-sectors. Actor colour is associated to the affiliation. Edge
width is proportional to the number of common keywords and coauthored publications.

procedure cannot enjoy the mathematical rigour of other well known stochastic proce-
dures. On the other hand, it follows the opportunity of selecting the measure of density
among a wide set of candidates which quantify connectivity or centrality roles of the ac-
tors. Different group structures arise according to the chosen density measure and those
structures account for different aspects of subnetworks cohesiveness. In fact, we believe
that leaving unspecified this measure represents a strength of the procedure. Depend-
ing on subject-matter considerations, this provides the procedure with the flexibility of
adapting to different notions of clusters, each of them associated with a specific selection
of the density and consistently with the intrinsic ill-posedness of the clustering problem.

A second choice concerns the way to handle relationships of different strength. Unlike
the unweighted framework, there is no obvious way to extend modal clustering in the
presence of weighted links. Our strategy aggregates strongly connected individuals at
a higher density level than individuals which are weakly connected. While this choice
is consistent with the considered aggregation mechanism, based on the most prominent
actors exerting influence over their neighbours, the actual implementation of this idea
may take various forms. The AND option aggregates two actors with density above a
threshold, when they represent their reciprocal strongest connection among those not
examined yet. Alternatively, the condition may be loosen via the OR option, by requiring
that such connection is the strongest for just one of the actors. A further alternative route
would consist in proceeding in a block-sequential manner, aggregating several actors with
density above the threshold at a time, as long as their relationship has, at least, a given
strenght. The possibility of choosing among these options in cluster formation allows for
looking at a given network structure from a different granularity of the representation.
As showed in the proposed applications, the OR mechanism tends to minimize the
network partition in a smaller number of internal densely connected clusters with loose
connections with other clusters. On the other hand, the AND mechanism maximizes
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the internal homogeneity of clusters detecting a larger number of smaller groups. Here
again the choice of the mechanism to handle weights depends on the purpose of the
analysis. For instance in the Karate network, the choice of the OR option would reflect
an interest in the big picture after collapsing the relations in the community. Conversely,
in the Italian statisticians network, the choice of the AND option would entail small scale
groups of actors and reflect the purpose of looking for cohesive research clusters.

Although featuring these different options of analysis, the proposed density-based
procedure does not suffer from the arbitrariness matters which are typical of standard
clustering procedures. While the number of clusters is determined within the procedure,
the partitioning accounts for different levels of cluster resolution, via the group hierarchy
provided by the cluster tree. In this sense, the cluster tree represents a somewhat
formal instrument to emulate the human cognitive system and allows for getting over
the resolution limit of modularity-based methods.

From a computational point of view, the algorithm requires to run O((V +E)V ) oper-
ations on a binary network, in addition to the ones needed to compute the density, which
depend on the selected node-wise measure. While the quadratic growth discourages the
use of the procedure with huge networks, we have not experienced system crashes in any
of the examples run in the manuscript, and the procedure has proven its feasiblity on
networks having V in the order of the thausands. According to our experience, detect-
ing communities in networks of such size is conversely prevented by the application of
popular competitors like Girvan Newman and SBM.
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