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Superfluidity meets the solid-state:
frictionless mass-transport through a (5,5) carbon-nanotube
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Superfluidity is a well-characterized quantum phenomenon which entails frictionless-motion of
mesoscopic particles through a superfluid, such as 4He or dilute atomic-gases at very low temper-
atures. As shown by Landau, the incompatibility between energy- and momentum-conservation,
which ultimately stems from the spectrum of the elementary excitations of the superfluid, forbids
quantum-scattering between the superfluid and the moving mesoscopic particle, below a critical
speed-threshold. Here we predict that frictionless-motion can also occur in the absence of a stan-
dard superfluid, i.e. when a He atom travels through a narrow (5,5) carbon-nanotube (CNT). Due
to the quasi-linear dispersion of the plasmon and phonon modes that could interact with He, the
(5,5) CNT embodies a solid-state analog of the superfluid, thereby enabling straightforward transfer
of Landau’s criterion of superfluidity. As a result, Landau’s equations acquire broader generality,
and may be applicable to other nanoscale friction phenomena, whose description has been so far
purely classical.

Superfluidity [1–3] is a well-characterized physical phe-
nomenon, which enables frictionless-flow of a mesoscopic
particle through a superfluid medium, such as 4He or
dilute atomic-gases at very low temperatures. When
the elementary excitations of the superfluid exhibit a
quasi-linear spectrum, two-fold conservation of energy
and momentum interdicts quantum-mechanical scatter-
ing, as long as the mesoscopic particle does not exceed
a critical velocity-threshold. Below the critical velocity,
the quasi free-particle spectrum of the mesoscopic body
-which is quadratic in momentum- is incompatible with
the spectrum of the superfluid, which is instead quasi-
linear at small momenta. Most notably, while spectral-
incompatibility is pivotal to superfluidity, Landau’s the-
ory [4] does not invoke particular assumptions about the
nature of the medium, as long as a free particle can pass
through. It is thus conceivable that seemingly disparate
systems may eventually lead to analogous frictionless
flow, implying non-trivial transferability of Landau’s cri-
terion of superfluidity. Known extensions of the standard
mechanism contemplate for instance supersolidity [5, 6],
or even exciton-condensation [7–10] in two-dimensional
solid nanostructures. However, one could question about
the existence of generalized-superfluid mechanisms even
in the normal state –i.e. in the absence of Bose-Einstein
condensation–, as long as the essential requirements are
met.

To prove this idea true, in this Letter we consider a
4He atom moving through a (5,5) carbon-nanotube [11]
(CNT) – which can be regarded as a closed, cylindrical-
shaped graphene [12] tube (see Fig. 1), characterized by
a radius of 3.41 Å and longitudinal metallicity. Scatter-
ing rates will be derived from scratch, without relying
on assumptions adopted in standard superfluidity (no
ultracold gas is demanded). A single He atom can fit

in the center of the (5,5) CNT section, and it can eas-
ily move along the longitudinal axis. The dispersion of
the relevant low-energy quasiparticles of the CNT, i.e.
plasmon and phonon excitations, bears formal analogies
with the quasi-linear Bogoliubov’s spectrum, so that the
(5,5) CNT could act as an effective superfluid medium,
providing on equal footing a viable channel for He trans-
port. We note in passing that low-dimensional nanos-
tructures readily attracted scientific interest in relation
to superfluidity [13, 14], although the presence of actual
ultracold gases was so far always invoked. On the other
hand, the evidence of ballistic electron transport [15, 16]
in CNT’s, adds even more appeal to these systems, also in
view of their availability as C allotropes with outstanding
mechanical-resistance and chemical-inertness.
Hereafter we build a quantum mechanical model, based

on first-principle density functional theory (DFT) simula-
tions, relying on semi-local [20] exchange-correlation, and
including dispersion [21, 22] corrections within Grimme’s
D2 [23] prescription. The approximations adopted are
listed and discussed in detail in the Supplementary Mate-
rial [24]. The Quantum Espresso [34] simulation package
is exploited, in combination with ultrasoft pseudopoten-
tials and an energy cutoff of 35 Ry for the plane-wave
expansion of the electronic wavefunctions. Since we are
primarily interested in the flow of a single He atom, peri-
odic DFT simulations will minimize the interaction with
periodic replicas by adoption of a long supercell (8 unit
cell replicas along the CNT axis, with a total length of
19.7Å) and setting the transversal cell size to 15 Å. The
Hamiltonian describing the one-dimensional (1D) motion
of a He monomer along the CNT axis (indicated as x̂ –
atomic units are adopted hereafter) is:

HHe = − ∂2
xHe

2mHe
+ VHe(xHe,Rion, δρρρel) , (1)
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FIG. 1: Potential VHe computed as a function of xHe (He
displacement) within the (5,5) CNT unit cell. C atoms are
fixed in the equilibrium position, in the absence of electronic
displacements. The geometry of the He atom confined in the
(5,5) CNT 8×1×1 supercell is illustrated for reference in the
upper panel. The red segment visually indicates the longitu-
dinal size (L) of the CNT unit cell.

where Rion are the ionic coordinates, and δρρρel the elec-
tronic charge displacements in the CNT. To investigate
the problem within a perturbative framework, we ini-
tially assume that all C atoms are fixed in the equilibrium
configuration, and that no electronic displacement takes
place. In physical terms, this corresponds to the Born-
Oppenheimer (BO) approximation, in combination with
the electronic groundstate. Under these assumptions, the
potential energy VHe experienced by a single He molecule
traveling along the (5,5) CNT is computed by DFT.
Transversal (ŷ− ẑ) He motion can be approximated by a
2D quantum harmonic oscillator model, whose frequency
(estimated by DFT) ωHe is ∼ 8 meV. As from Fig. 1,
VHe is a sinusoidal function of xHe (phases can be ab-
sorbed by rigid translation): VHe(xHe) ∼ V sin(2QxHe),
where Q = 2π/L, and L is the CNT unit cell length
(i.e. 2.46 Å). The magnitude of the oscillations amounts
to V ∼ 0.035 meV (and undergoes limited change when
exact exchange is included - see [24]). Dispersion inter-
actions contribute to V with only ∼ 3 × 10−4 meV and
can thus be neglected. Notably, V is about 200 times
smaller than ωHe; one accordingly expects that for suffi-
ciently slow He, transversal excitations can be factorized
from longitudinal translations. The motion of He is thus
effectively reduced to 1D.
The He spectrum relative to longitudinal motion is ob-

tained diagonalizing the Hamiltonian Eq. (1), and it is
hardly distinguishable from the free-particle dispersion
Efree(k) = k2/(2mHe), where k is the (1D) x̂ momen-
tum (parallel to the CNT longitudinal axis). As from
Fig. 2, largest deviations are found at the Brillouin-zone
(BZ) edges, where small band-splittings emerge due to

FIG. 2: Spectrum of a single He atom (longitudinal modes),
subject to the potential VHe, as reported in Fig. 1. Since the
periodicity of VHe corresponds to half unit cell (i.e. L/2),
the Size of the first Brillouin zone is rescaled correspondingly.
Inset: detail of a band edge, where VHe induces small splitting.

the He-CNT coupling VHe. Due to the similarity between
the free and interacting He spectra, one can estimate the
atomic velocity as vHe ≃ q/mHe, while single plane-waves
provide a good approximation for He eigenstates.

Both He-phonon and He-plasmon couplings provide
possible channels for the He-CNT scattering. Clearly,
the spectra of the available (phononic and plasmonic)
excitations play a major role in this respect, eventually
determining the admitted transitions. Given the small
energy scales observed so far, one can assume that the
lowest-frequency modes will be most relevant. Concern-
ing phonon excitations, the (5,5) CNT is characterized by
four acoustic modes [11, 17] whose frequency vanishes in
the q → 0 limit, according to a linear dispersion ωj(q) =
vj |q|. The index j runs over two degenerate transverse-
acoustic modes (TA) with vTA = 4.5 × 10−3a.u., a twist
mode (TW) with vTW = 6.9×10−3a.u., and longitudinal-
acoustic mode (LA) with vLA = 9.7 × 10−3a.u., accord-
ing to existing [11, 17] literature. A longitudinal plas-
mon with vanishing frequency at q → 0 also exists, while
transversal plasmon modes are gapped. Given the longi-
tudinal metallicity of the (5,5) CNT, nearly-1D plasmons
exhibit [18] quasi-linear dispersion (up to logarithmic cor-
rections - see [24]) in the long wavelength limit, and a
tight-binding approach (see full derivation in Ref. [19])
predicts typical plasmon velocities of the order of ∼1 a.u.

To address now the friction mechanism experienced by
He in the CNT we consider that a travelling He atom
can scatter against the CNT, transferring part of its en-
ergy either to CNT phonon modes or to plasmons. When
scattering takes place, the kinetic energy of the He atom
decreases and this is traduced into an affective friction
force. To describe this process, one needs to explicitly
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treat both ionic (Rion) and electronic (δρρρel) degrees of
freedom, overcoming the BO approximation. One ac-
cordingly expands the potential energy VHe to first order
in both fluctuations, starting from equilibrium geometry
(R̄ion) and zero charge displacements (δρρρel = 0). Ionic
displacements are defined as δRion = Rion − R̄ion, and
the expanded potential reads:

VHe(xHe,Rion, δρρρel) = VHe(xHe, R̄ion, δρρρel = 0) +
∑

i

∂Ri,ion
VHe(xHe,Rion, δρρρel = 0)|

Rion=R̄ion
δRi,ion +

∑

i

∂δρel,i
VHe(xHe, R̄ion, δρρρel)|δρρρel=0 δρel,i + ... . (2)

This expression can be physically interpreted noting that
the derivatives of VHe with respect to the ionic coordi-
nates relate to ionic forces: ∂Ri,ion

VHe = −Fi,ion. In-
stead, the derivative with respect to the i-th charge ∂ρel,i

corresponds to an effective potential ṽi acting on site
i. Eq. (2) can thus be expressed in compact form as
−Fi,ionδRi,ion+ ṽiδρel,i. Repeated indices are contracted
for compactness and the same notation will be adopted
hereafter. In Eq. (2) ionic and electron-charge motions
are treated as 3D, at variance with He, and they natu-
rally account for the quasi-1D geometry of the CNT.
Both ionic and electronic-charge displacements are

connected to quantum mechanical excitation modes of
the CNT, i.e. phonons and plasmons. In the case of
phonons, there exists a unitary transformation that al-
lows to express the geometry of the j-th collective vi-
brational modes with (1D) wavenumber q (i.e. δR̃j(q))
in terms of the ionic coordinates. The transformation
is δR̃j(q) = (1/

√
N)S†

j,ne
iqlcLδRlc,n,ion, where the over-

all atomic index is now split into a cell index (lc) and
reduced atomic index (n), belonging to the unit cell.
Here Sj,n is a unitary matrix that determines the ge-
ometry of the j-th phonon. Calculations are formally
performed in a box with finite length Λ, containing N
replicas of the unit cell. The limit Λ → ∞ is eventu-
ally taken, keeping the N/Λ unvaried. Then, by defining

F̃j(xHe, q) = (1/
√
N)S†

j,ne
iqlcLFlc,n,ion(xHe), the term

−Fi,ionδRi,ion is recast in the following form:

N−1
∑

q=0

F̃j(xHe, q)δR̃j(−q) . (3)

Upon quantization of the normal vibrational modes
based on quantum harmonic oscillators (QHO), Eq. (3)
is expressed in terms of construction and annihilation op-
erators (ã†j,q,ion, ãj,q,ion) such that:

δR̃j(q) = (ãj,q,ion + ã†j,q,ion)/
√

2mCωj(q) . (4)

Here ωj(q) is the frequency of the j-th phonon at
wavenumber q, and mC is the mass of a single C atom.
Eq. (3) provides a coupling between He and CNT

phonons, and can lead to scattering processes. Analo-
gous considerations can be extended to charge displace-
ments, hence the He-plasmon coupling term turns out
to share the same architecture as Eq. (3), although in-
volving the specific geometry and energy spectrum of the
plasmon modes (these can also be associated to QHO’s,
via analogous creation/annihilation operators).

We now estimate He-phonon scattering rates by
Fermi’s golden rule. We assume that a He atom with ini-
tial (1D) wavenumber kHe,i interacts with CNT phonons
via Eq. (2), ending up in the final wavenumber kHe,f . If
the CNT initially occupies the vibrational groundstate,
the transition rate is

Γph
i−f = 2π|〈kHe,f | − F †

i,ion|kHe,i〉〈1j,q|δRi,ion|0j,q〉|2 ×
δ(Ei,He − Ef,He − ωj(q)) , (5)

where |0j,q〉, |1j,q〉 are the groundstate and first excited
state for the j − th phonon at q. The delta function en-
forces energy conservation: in fact, the energy lost by He
(Ei,He−Ef,He) must be converted into phonon excitation
(ωj(q)). We also note that occupation of the vibrational
groundstate implies a T = 0 description. However, QHO
excitation energies do not depend on the initial state.

We now make use of Eqs. (3),(4), and consider that
excitation of the j-th phonon with wavenumber q gives
〈1j,q|ã†j,q|0j,q〉 = 1. We also define ∆kHe = ki,He − kf,He,
and note that q must be compatible with the CNT unit
cell. Recalling that N unit-cell replicas are present in
Λ, we facilitate normalization also assuming a finite He
density, namely N ′ atoms (having the same momentum
for simplicity) should be present in the adopted supercell.
We also note that ionic forces can be Fourier transformed
as: Fn,lc,ion(xHe) =

1
2π

∫

dqf̃n(q)e
iq(xHe−lcL). After inte-

gration, Eq. (5) finally reduces to:

Γph
i−f = 2π

N ′

NL2

∣

∣

∣

∣

f̃n(∆kHe)Sn,j
1

√

2ωj(∆kHe +mQ)mC

∣

∣

∣

∣

2

×

δ(Ei,He − Ef,He − ωj(q)) . (6)

In the Λ → ∞ limit, the ratios N/Λ and N ′/N are kept
constant in order to avoid normalization issues. When
deriving the above equation one finds that, in addition to
energy conservation, crystal momentum is also conserved:
in practice, one obtains the relation ki,He = kf,He + q +
mQ, where m is an integer number that accounts for
Umklapp processes; in practice, momentum is conserved
up to integer multiples of the CNT lattice momentum
Q. This property stems from the discrete translational
symmetry of the CNT.

As in conventional superfluids, conservation of energy
and momentum is traduced into a selection rule. At low
ki,He it is possible to adopt a free-particle dispersion for
He (as justified above). Hence, conservation of crystal
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momentum and energy is expressed as:

k2i,He − k2f,He

2mHe
=

−(q +mQ)2 + 2ki,He(q +mQ)

2mHe
= ωj(q) .

(7)
Eq. (7) provides a generalization (due to Umklapp pro-
cesses) of the familiar Landau’s criterion [4] of superflu-
idity, which gives the critical velocity below which the
elastic collision is forbidden and the mesoscopic parti-
cle flows without friction. According to Eq. (7), only
a limited number of ki,He values is compatible with the
excitation of the j-th phonon at momentum q:

ki,He =
ωj(q)mHe

q +mQ
+

q +mQ

2
. (8)

Recalling the linear phonon dispersion in the relevant
low-momentum regime ωj(q) = vj |q|, one can examine
how the solutions depend on the integer Umklapp param-
eter m, with the aid of Fig. 3. At m = 0, one has con-
servation of the total momentum, as in conventional su-
perfluid regimes, and the admitted interval for the initial
(positive) He momenta is: ki,He ∈ [vjmHe, vjmHe+Q/2].
Due to large phonon velocities, very high ki,He is ob-
tained. However, Umklapp processes significantly al-
ter this picture, as a consequence of the CNT period-
icity. At m = 1 the allowed momentum interval be-
comes ki,He ∈ [Q/2, vjmHe/2 + Q], and the lower ex-
treme touches here the minimum admitted value (q is
varied between 0 and Q). As a consequence, no scat-
tering is possible for ki,He < Q/2 (see Fig. 3); below
this threshold, friction forces are expected to vanish, in
close analogy to standard superfluidity. The associated
speed threshold for He superflow in the (5,5) CNT is thus
v∗He = Q/(2mHe) ∼ 9.2 × 10−5 a.u. (i.e. ∼ 200 m/s).
Conversely, friction forces are restored beyond v∗He. Tak-
ing ki,He above the threshold, multiple solutions (corre-
sponding to different m) can be found. However, one ex-
pects that large momentum transfer would be eventually
associated to small scattering rates, since the Fourier-
transformed ionic forces f̃n should decay at large mo-
menta.
At variance with standard superfluidity, here the criti-

cal velocity is independent from the excitation spectrum,
due to Umklapp. Coming to Plasmon excitations, anal-
ogous conclusions are drawn by approximating the spec-
trum as a linear function. Even accounting for the loga-
rithmic corrections to linearity expected in 1D metals, no
solution is possible below v∗He; this unique critical veloc-
ity is sufficient to discriminate the generalized-superfluid
regime.
By equipartion theorem, the He kinetic energy asso-

ciated to the 1D critical velocity v∗He is traduced into a
temperature of about 20 K; this suggests that direct in-
jection of sufficiently slow He atoms into the CNT from a
reservoir could be non-trivial. Nonetheless, major energy
losses are expected when He leaves the bulk, entering the

FIG. 3: Graphical representation of the solutions Eq. (8) rel-
ative to the scattering between helium an the TA phonon –
analogous solutions are found for the other excitation modes
that characterize the CNT. ki,He is the wavenumber of He
in the initial state (before the scattering takes place), and it
is taken as positive. Each red segment indicates the range
of ki,He values compatible with the He-phonon scattering at
a given value of the integer parameter m. When m = 0
(standard solution) one has exact momentum conservation
(ki,He − kf,He = q), whereas m 6= 0 implies occurrence of
Umklapp phenomena (ki,He − kf,He = q + mQ). We recall
that q is restricted to the Brillouin zone. In the area delim-
ited by dashed blue lines (colored in light blue), corresponding
to ki,He < Q/2, no solution is found and the scattering is for-
bidden.

CNT edge (due to the suppression of He-He interactions,
and collisions with the CNT edge); He atoms in the CNT
should thus be slower than expected from naive consider-
ations. In conventional superfluidity, thermal occupation
of the available excitation introduces a normal component
of the fluid, which can cause scattering and finite friction.
Computation of the normal component for CNT phonons
and plasmon modes (see [24]) indicates that this does not
exceed ∼ 0.1% of the total available modes up to 300K.
The stability of the generalized-superfluidity mechanism
is unparalleled, and descends from the high phonon and
plamon velocities.

In summary, quantum-mechanical analysis of a He
atom flowing through a sub-nm (5,5) CNT leads to a
theoretical description which is formally similar (yet not
identical) to Landau’s superfluidity criterion. The spec-
trum of the CNT low-lying quasi-particle excitations (i.e.
phonon and plasmon modes) is quasi-linear with respect
to momentum, although no Bose-Einstein condensation
is assumed. This implies the existence of a critical speed
v∗He ≃ 200m/s, below which He atoms cannot scatter
against the CNT, thereby encountering no friction. Re-
markably, in the CNT v∗He does not depend on the excita-
tion spectrum, as a consequence of lattice periodicity and
Umklapp. Indeed, we have found that v∗He = Q/(2mHe),
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where Q = 2π/L is the lattice momentum of the CNT,
and L its unit-cell length. While this work specifically
addresses He flow, we expect that other rare-gas atoms
(or possibly other chemical moieties) could equally move
through the CNT with vanishing friction, as long as
their interaction with the CNT walls is small enough
to produce only weak geometrical perturbations. Analo-
gous generalized superfluidity is expected in metallic and
finite-gap CNT’s with comparable radii. Experimental
validation by means of nanofluidic techniques should be
viable (see [24]) due to the simplicity and stability of the
mechanism with respect to thermal excitations, and due
to relatively high v∗He value.

This work provides the first prediction of superfluid-
like mass-transport in a standard solid system, and com-
plements the ballistic electron transport already detected
in CNT’s. No ultracold gas is introduced here, spec-
tral linearity is not strictly demanded at low momen-
tum, and continuous translational invariance is not en-
forced. Extremely-high permeabilities [35, 36] (3-4 orders
of magnitude larger than no-slip hydrodynamic predic-
tions - see [24]) experimentally reported for water-flow
through nanoscale CNT’s appear qualitatively compati-
ble with the present findings; in fact, such measurements
imply drastic suppression of friction forces (by orders of
magnitude) in the limit of small CNT radii, and could not
be reproduced [37, 38] by semi-classical models. In spite
of the higher complexity of water, a generalized superflu-
idity mechanism may be responsible for the observed fric-
tion suppression. We add that enhanced nanofluidic flow
was also confirmed in activated [39] carbon channels, and
high osmotic flow was found in double-walled [40] CNT’s.
Extension of our quantum-mechanical theory may also
interest alternative nanoscale friction [41, 42] phenom-
ena, involving for instance 1D/2D heterostructures and
interfaces, so that the boundary between classical and
quantum-mechanical friction mechanisms should be re-
visited. This work finally opens new perspectives for
nanofluidics devices, suggesting, among others, energy-
efficient quantum mechanical sieving, or non-destructive
injection through cellular membranes.
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SUPPLEMENTAL MATERIAL

We review here in detail the approximations of the
adopted model, in order to assess the solidity of our pre-
dictions.

Semi-local density functional theory approximation

Semi-local exchange-correlation functionals are
known [25] to miss long-rage correlations, which implies
a poor account of van der Waals forces. For this reason,
we explicitly introduced van der Waals corrections [23]
in DFT calculations. Van der Waals corrections turn
out to have negligible impact on the corrugation of
the potential experienced by He (3×10−4 meV to be
compared with 0.035 meV obtained with the semi-local
PBE [20] functional alone). On the other hand, semi-
local approximations are based on a free electron-gas
model, so that they can reliably describe the metallic
electrons present in the nanotube. In order to exclude
possible interference of the adopted exchange-correlation
approximation, we repeated DFT calculations for
the potential corrugation using a different semi-local
exchange-correlation functional, namely PBEsol [26].
We find that the potential corrugation computed with
PBEsol deviates from PBE by only ∼ 8%, amounting to
0.032 meV. Overall, He remains a quasi-free particle, and
no impact on the superfluid flow is to be expected: even
a variation of the corrugation by 100% would ultimately
imply no significant change of the He spectrum reported
in the article (see Fig. 2).

Exact exchange

To address the possible role of exchange interactions
in the corrugation of the He-CNT potential we adopted
the hybrid PBE0 functional, [27] which is derived from
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PBE upon inclusion of fractional exact exchange. Given
the high computational cost of the PBE0 functional [27]
(wich can exceed [28] semi-locals by a factor of 50 or
more, depending on system-size and specific implemen-
tation), straightforward simulation of the 8×1×1 super-
cell is very demanding. Willing to assess the relative
weight of exact exchange with respect to other energy
components already present in PBE, we thus reduced the
simulation size to the CNT unit cell, checking that the
potential corrugation does not substantially vary with re-
spect to the cell size. Passing from 8 to 2 unit cell replicas
while keeping the reciprocal space sampling unvaried, the
PBE corrugation undergoes minor variation (from 0.035
meV to 0.029 meV). Even in the unit cell, the corruga-
tion remains rather stable, amounting to 0.025 meV. This
demonstrates weak dependence of He-CNT interactions
with respect to the He-He separation. It is thus justi-
fied to compare PBE and PBE0 corrugations within the
unit cell. Here the PBE0 estimate is ∼5% larger than
the corresponding PBE value. The limited role of ex-
change interactions can be rationalized in terms of the
small overlap between He and C electron density tails,
and is expected again to produce negligible impact on
the generalized superfluidity mechanism.

Ideal nanotube lattice

Periodicity is ubiquitous in solid state physics, and
does not necessarily involve approximations. However, in
the present case periodicity could be viewed as an ”ideal-
ization”, since: i) experiments will necessarily deal with
finite-size nanotubes; ii) lattice defects could be present
in the nanotube; iii) deformations might be present in
the structure.
Concerning point i), as long as the finite-size nanotube

is sufficiently extended, its excitation spectrum will be
distributed approximately along the periodic bands con-
sidered in this work. This property can be easily deduced
for charge-displacement modes, from existing [21, 29] lit-
erature. Charge waves reproduce the periodicity of quasi-
1D systems with remarkable precision, already at finite
lengths of about 5-10 nm. No major difference is ex-
pected with vibrational modes.
A more relevant concern regards energy losses at the

nanotube edges, i.e. when a single He atom leaves or
enters a reservoir. Hence, in order to experimentally
verify the predicted frictionless flow one should either
consider long nanotubes, or compare nanotubes with dif-
ferent length. Since energy losses will be concentrated
at nanotube edges, longer nanotubes must exhibit lower
effective energy-dissipation per unit-length.
Regarding points ii) and iii), ultimate nanofabri-

cation technologies such as chemical vapor deposition
(CVD) [30, 31] enable realization of high-quality and vir-
tually defect-free nanotubes. On the other hand, nan-

otechnology manipulation techniques can be exploited
to fix nanotubes in the desired conformation. A di-
rect example is the realization of stacks of parallel nan-
otubes [35], whereby exceedingly large geometrical dis-
tortions can be avoided. Experimental samples can thus
get surprisingly close to the ideal situation modeled in
this work. On the other hand, we also recall that
small geometrical deformations can naturally occur due
to quantum mechanical phenomenon related to phonons,
and are already accounted for in this work.

Separation of He longitudinal and transversal

motion

The transversal motion of the He atom (orthogonally
to the nanotube axis), is controlled by the confining po-
tential induced by interaction of He with the nanotube
walls. By sampling small He displacements from the cen-
ter (within 0.3 Å ), one finds that the DFT energy is
well approximated by a quadratic potential, of the form
V (rTHe) ≃ V (0) + 1/2V ′′(rTHe)

2, where rTHe is the distance
of He from the nanotube axis. By taking into account
the atomic mass, V ′′ is associated to a quantum oscil-
lator frequency. The transversal He motion can thus be
described by a quantum harmonic oscillator, whose com-
puted frequency amounts to ∼8 meV. This energy scale
is larger than the other energy scales involved in He flow:
we recall that the potential corrugation along the axis
amounts to 0.035 meV, while the He kinetic energy at
the critical velocity is about 0.5 meV. One can thus fac-
torize the longitudinal and transversal components of the
He wavefunction, and safely assume that the transversal
degree of freedom will be described by a quantum har-
monic oscillator in the groundstate. No excitation of this
transversal degree of freedom takes place at the relevant
energy scales, hence He motion can be treated as effec-
tively 1D.

Thermal effects

Finite temperatures can induce thermal excitation of
the plasmon and phonon modes, which may cause scat-
tering events. By analogy with standard superfluids, this
fraction of excited modes corresponds to the so-called
normal component. We underline that in our case no
Bose-Einstein condensate is present, and no dramatic
change in the excitation spectrum should be expected
up to room temperature.

We will thus simply recall that the normal component
of the available excitations can move [3, 4] with velocity
v with respect to the other modes, due to momentum
transfer induced by scattering. The normal mass current
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at finite temperature T is defined as:

jn(T ) = nn(T )mv =
L

2π

∫

BZ

dp p fB(E(p)− pv) , (9)

where integration is performed over the first Brillouin
zone (BZ), while nn is the normal density component
(given as the number of modes per unit cell of length L),
m is the effective mass of the excitation modes, and fB
is the Bose-Einstein distribution. If small velocity v is
assumed, the above expression can be Taylor expanded
at first order in v. Hence one can identify the normal
density component with

nn(T ) = − L

6kBπ

∫

BZ

dp
p2

m

eE(p)/kBT

(

eE(p)/kBT − 1
)2 , (10)

where kB indicates Boltzmann’s constant. Considering
phonon modes, one needs to perform a summation over
all four linear branches, accounting for their energy dis-
persion (other phonons are neglected due to the finite
gap). Since the nanotube is only composed of C atoms,
the effective phonon mass equals the atomic C mass. If
the phonon speeds are indicated as vj , the corresponding
energies are written as [11] Ej(p) = vj |p|. When linear
mode dispersion is assumed throughout the entire BZ,
analytic integration of the above formula is possible, and
leads to the following expression:

nn(T ) =
L

πmCvj

4
∑

j=1

(f1,j + f2,j + f3,j) , (11)

with

f1,j = − (π/L)2

eπvj/LkBT
(12)

and

f2,j =
2πkBT

vjL
ln

(

1− e−πvj/LkBT
)

, (13)

while

f3,j =
2k2BT

2

v2j

[

Li2(1)− Li2(e
−πvj/LkBT )

]

. (14)

Here Li2 is Spence’s polylogarithm function, and mC is
the C atom mass. The normal mode component can be
compared to the the total mode number within the same
unit cell (i.e. ntot = 4). The ratio between normal com-
ponent and total modes is plotted in Fig. 1 as a function
of T . We observe that the ratio remains very small up
to room temperature (300 K). In fact, phonon speeds are
high, and excitation of high momentum modes remains
difficult, even at high temperature. The small normal
fraction justifies a posteriori the adopted linear-band ap-
proximation through the entire BZ - since occupation
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FIG. 4: Ratio of the normal component vs. total available
excitations as a function of the temperature T . Phonon and
plasmon modes are treated separately: phonons provide the
leading contribution to the normal component of the system
excitations.

of normal states remains negligible. Analogous calcula-
tions can be performed for plasmon modes, where even
smaller normal fraction is found: a difference of almost
three orders of magnitude is found, due to the even higher
steepness of the plasmon spectrum.

These results demonstrate that only a tiny fraction of
the available modes can contribute to friction forces at
temperatures that are unparalleled by conventional su-
perfluids. The generalized superfluid mechanism is ex-
tremely resistant to thermal effects, and may accordingly
enable real-world technological applications.

QUASI-1D MODEL FOR PLASMON MODES

An explicit calculation of the plasmon modes for a
metallic (4,4) carbon nanotube (CNT) is provided in
Ref. [19], based on a discretized model, where electron
hopping is explicitly included. Given the close analogies
between the electronic structure of (4,4) and (5,5) CNT’s,
the properties of the plasmon modes will be transferable.
In fact, the coupling between metallic (universal) and lo-
calized (system-specific) electronic modes provides mod-
est renormalization close to q = 0 (where q is the plasmon
wavenumber).

To guide intuition on plasmon modes, here we will
further report a derivation based on a quasi-1D contin-
uum model [18], which can be treated analytically, and
still reproduces the main spectral features that are ex-
ploited in this work. We consider a metallic wire, with
infinite length and effective thickness b. In the relevant
regime qb ≪ 1 the intrawire interaction has the form
w(q) = −2 ln(qb). Atomic units are adopted, consistently
with the main article. The bare electron-density suscep-
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tibility is

χ0(q) = (N0q
2/ω2) , (15)

where N0 is the number of metallic electrons per unit
length and ω is the frequency. Within the random phase
approximation, the poles of the interacting response func-
tion satisfy the equation

χ0(q)w(q) = 1 , (16)

which leads to the following solution for the the plasmon
frequency:

ω = |q|
√

2N0|ln(qb)| . (17)

According to this expression, one has a linear dispersion,
corrected by a logarithmic factor. The plasmon frequency
vanishes in the q → 0 limit, so that the logarithmic cor-
rection has no effect on the critical velocity (see Eq. 8 in
the main article).

CONNECTION TO EXPERIMENT AND

NANOTUBE FEATURES

The detection of enhanced water flow can be exper-
imentally accomplished by permeability measurements.
When a pressure difference ∆P is applied between two
water reservoirs connected by a CNT, one detects a net
volumetric flux Q. The volumetric flux relates to the
permeability κ through the following relation:

Q =
κ∆PS

Ltot
, (18)

where S and Ltot are the CNT transversal area and total
length, respectively. Classical macroscopic hydrodynam-
ics (no-slip Haagen-Poiseuille theory [32]), predicts the
following permeability:

κHP =
R2

8µ
, (19)

where R is the CNT radius and µ is the dynamic viscos-
ity of water. However, experimental permeabilities [36]
can easily exceed this classical estimate by 3-4 orders
of magnitude when CNT radii approach the nanometer
scale. This implies a breakdown of classical fluid dynam-
ics, which is associated to extremely low friction, and slip-
page of water molecules with respect to the CNT walls.
Extension of the aforementioned approach could also be
exploited for the experimental detection of generalized
He superfluid flow, given the direct analogy between the
two setups.

The main prerequisite for the onset of frictionless He
flow is the respect of the maximum atomic speed (which

should be smaller than the critical velocity). If He is ex-
tracted from a reservoir at finite temperature, it is prob-
able that scatterings at the nanotube edges can signifi-
cantly reduce the thermal velocity of the atom. In the
same breath, when a single He atom is extracted from the
reservoir, the former interaction with the surrounding He
gas implies additional energy loss. It is thus plausible
that He gases well above 20 K can be used as a reservoir,
still respecting the critical velocity limit.
Other experimental issues regard the quality of the

nanotube (presence of defects, or distortions) which
should be kept under control: defects may act as scat-
tering sources. A possible strategy to control mechanical
distortions is the realization of porous membranes com-
posed by a stack of parallely oriented nanotubes: the
bending of stacked nanotubes is expected to be unfa-
vored.
The choice of a (5,5) carbon nanotube is mainly due

to two reasons: i) The diameter of this nanotube roughly
matches the sum of the C and He van der Waals radii,
so that only a single He atom can fit in the nanotube
section. At the same time, the Pauli repulsion between
He electronic cloud and nanotube walls remains weak.
Under these conditions, the He atom undergoes effective
1D motion, while the He-nanotube interaction potential
exhibits very small oscillations. ii) The (5,5) nanotube is
metallic, so that both phonon and plasmon modes can be
excited by the travelling He atom. This implies a richer
physical model. In a finite-gap nanotube with compa-
rable radius one only expects phonon modes to be rele-
vant. Hence, the frictionless flow should be be preserved,
although somewhat larger potential oscillations are ex-
pected due to charge localization at C-C bonds.
In summary, the physical effect described in this work

should reasonably hold both in metallic and finite-gap
nanotubes with comparable radii.
When the radius is too small, He atoms undergo large

Pauli Repulsion, and their spectrum can significantly
deviate from the free-particle parabolic dispersion seen
here. Conversely, when the radius is much larger, He
may stick to the nanotube wall, staying away from the
center. The nanotube walls become more deformable,
the motion can deviate from the considered 1D trajec-
tories, and several He atoms can pass at the same time
through the nanotube section. We also expect that in
large nanotubes the flowing He atoms could thermalize
with the reservoir, so that the critical velocity threshold
may be harder to respect.
While no direct experimental validation exists yet for

the predicted frictionless He flow, a number of exper-
iments have been conducted for water flow in carbon
nanotubes (see for instance Refs. [35, 36]). These exper-
iments consistently indicate drastic suppression of fric-
tion forces when the nanotube radius approaches the nm
scale. Moreover, permeabilities steeply increase when the
radius is further decreased.
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All attempts to model water flow within semi-classical
theories have failed [37, 38] in reproducing the ex-
tremely high permeabilities measured by experiments.
The underlying mechanism should accordingly have a
truly quantum-mechanical character. The sought-after
quantum-mechanical effect should persist in the limit of
very narrow nanotubes, and should cause drastic sup-
pression of water-nanotube scattering.
The generalized superfluidity mechanism could pro-

vide, by extension [33] of our work, a clean physical in-
terpretation for the above experimental observations. In-
deed, some more issues should be addressed before gen-
eralized superfluid flow of water is confirmed: water im-
plies complications with respect to He, due to the internal
structure and the ability to form relatively strong inter-
molecular bonds.
He and other noble-gas atoms enable simplification of

the problem both from the theoretical and experimen-
tal point of view, thereby providing a more convenient
platform for test and characterization of the generalized
superfluid phenomenon.

REMARKS

Landau’s account of standard superfluidity is deeply
rooted in translationally-invariant ultracold gases. In
fact, Landau’s theory involves as a key step the deriva-
tion of the quasiparticle excitation modes of an ultra-
cold gas. In particular, a linear phonon spectrum is ob-
tained at low momenta exploiting continuum hydrody-
namics equations. The collective quasi-particle modes of
the ultracold gas are fundamental here, since they are
identified as the available excitation modes of the sys-
tem. Energy-momentum conservation directly follows as
a standard condition that should be respected in scatter-
ing events. Accordingly, Landau’s theory is broader than
just spectral incompatibility alone.
In this letter we did not assume the presence of any ul-

tracold gas, we did not introduce Bogoliubov excitations,
we did not exploit hydrodynamics equations, and we
neither assumed continuous translational invariance (the
CNT is characterized by a discrete lattice). We derived
instead a fully quantum mechanical model for the scat-
tering between He and CNT plasmon and phonon modes,
based on first-principle calculations and Fermi’s golden
rule. The excitation modes of the CNT are not the same
as in conventional superfluids. While phonons exhibit lin-
ear spectrum at vanishing momentum, plasmons are al-
ways characterized by logarithmic corrections, hence they
qualitatively differ from Bogoliubov excitations. As pre-
dicted by Fermi’s golden rule, He-CNT scattering neces-
sarily involves two-fold conservation of energy and quasi-
momentum. But quasi-momentum also differs from the
standard linear momentum conserved in Landau’s the-
ory due to the discrete CNT lattice. For this reason,
our critical velocity contrasts with Landau’s prediction,
and does not depend on the excitation spectrum. These
discrepancies ultimately imply unparalleled robustness of
the generalized superfluidity mechanism with respect to
thermal excitations: the normal component of available
CNT excitation modes exhibits minimal relative weight
up to room temperature - again at stark variance with
conventional superfluids.
Considering that CNT’s are solid nanostructures that

have little to do with conventional superfluids, the emer-
gence of a generalized superfluid mechanism which can
persist even at high temperatures is undoubtedly surpris-
ing. Last but not least, the application spectrum of gen-
eralized superfluidity markedly differs from conventional
superfluidity: the former may encompass gas filtration
by CNT stacks at low energy cost, non-destructive injec-
tion through cellular membranes via CNT’s, or realiza-
tion of highly efficient nanofluidic circuits. In addition,
surprisingly-low friction forces may eventually interest
other quasi-1D or 2D nanointerfaces, thereby implying
novel superlubricity mechanisms.
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