
Computers and Chemical Engineering 180 (2024) 108469

Available online 18 October 2023
0098-1354/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

On the use of machine learning to generate in-silico data for batch process
monitoring under small-data scenarios

Luca Gasparini a,b, Antonio Benedetti c, Giulia Marchese d, Connor Gallagher e,
Pierantonio Facco a, Massimiliano Barolo a,*

a CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy
b INSTM – Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, via Giusti 9, 50121 Firenze FI, Italy
c Process Engineering & Analytics, Medicine Development and Supply, GSK R&D, Park Rd Ware, SG12 0DP, United Kingdom
d Process Engineering & Analytics, Medicine Development and Supply, GSK R&D, Gunnels Wood Rd, Stevenage, SG1 2NY, United Kingdom
e Process Engineering & Analytics, Medicine Development and Supply, GSK R&D, 1250 S. Collegeville Road, Collegeville, PA 19426, United States

A R T I C L E I N F O

Keywords:
Batch processes
Small data
Big data
Machine learning
Process monitoring
Biopharmaceutical industry
Pharmaceutical engineering

A B S T R A C T

Batch process monitoring using principal component analysis requires sufficient historical manufacturing data to
model the normal operating conditions of the process. However, when a new product is to be manufactured for
the first time in a given facility, very limited historical data are available, thus entailing a small-data scenario. We
thoroughly investigate and improve a data-driven methodology, previously reported in the literature (Tulsyan,
Garvin & Ündey (2019). J. Process Control, 77, 114–133), that enables batch process monitoring under such type
of scenarios. The methodology exploits machine learning algorithms (based on Gaussian process state-space
models) to generate in-silico batch trajectory data from the few available historical ones, and then uses the
overall pool of real and in-silico data to build a process monitoring model. We develop automatic procedures to
tune the values of several parameters of this machine-learning framework, in such a way that the generation of
consistent in-silico batch trajectory data can be streamlined, thus facilitating the deployment of the framework at
an industrial level. Furthermore, we develop indicators and a metric to assist the in-silico data generation activity
from a process monitoring-relevant perspective. Finally, using datasets from a benchmark simulated semi-batch
process for the manufacturing of penicillin, we thoroughly investigate the appropriateness of the in-silico
generated data for the purpose of process monitoring.

1. Introduction

In batch and semi-batch manufacturing, reproducibility (or consis
tency) across batches is required to guarantee that the end-product
quality targets are met after every batch. Whether or not a new batch
conforms to a set of “normal” batches that were run in the past can be
assessed by using a data-driven process monitoring framework, where
the most widely used one exploits multivariate statistical techniques,
such as principal component analysis (PCA; (Jackson, 1991; Wise and
Gallagher, 1996; Kourti, 2003)). The rationale behind this method is
quite simple: (a) collect a set of historical batches that were run satis
factorily (“normal” batches); (b) build a PCA model on the trajectories of
all measured variables across all normal batches; (c) using statistical
control charts built through the PCA model, test whether a new batch
can be considered normal; (d) if it is not, raise an alarm (fault diagnosis

may then follow). This approach is very effective (Kourti et al., 1995;
Reis and Gins, 2017), but suffers from a strong limitation: the required
number of historical batches, which are needed to identify the set of
normal operating conditions (NOC), is usually large (big-data scenario)
(Chiang et al., 2022). This prevents it from being used when a new
product is to be manufactured in a given facility for the first time. In fact,
in this case, the number of historical batches is usually very small,
because almost no history of past manufacturing of that particular
product in that particular facility is available. This small-data scenario is
also referred to as a low-N one, N being the number of available his
torical batches for the product being manufactured. As an industrially
relevant example, low-N scenarios are frequently encountered by bio
pharmaceutical industries, for which first-principles modeling (Rato
et al., 2020) is often impractical or impossible. In fact, for a new
biotechnological product that is manufactured at a clinical or commer
cial scale (from 2k to 20k liters), the number of available historical

* Corresponding author.
E-mail address: max.barolo@unipd.it (M. Barolo).

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

https://doi.org/10.1016/j.compchemeng.2023.108469
Received 12 June 2023; Received in revised form 11 September 2023; Accepted 17 October 2023

mailto:max.barolo@unipd.it
www.sciencedirect.com/science/journal/00981354
https://www.elsevier.com/locate/compchemeng
https://doi.org/10.1016/j.compchemeng.2023.108469
https://doi.org/10.1016/j.compchemeng.2023.108469
https://doi.org/10.1016/j.compchemeng.2023.108469
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2023.108469&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Chemical Engineering 180 (2024) 108469

2

List of symbols

||*|| euclidean norm of a given vector
* | * conditional density of the left-hand side random vector

with respect to the right hand-side one
a, b scaled versions of ã, b̃ respectively
ã, b̃ vectors extracted from the Z matrix
A number of principal components
ceil ceiling operator, ceil(x) = min{x′ ∈ Z|x′ ≥ x}
c(s) cardinality of Z (s) normalized with respect to the one of Z

c(v)(t, τ) normalized estimation of the correlation for the variable v
between the time points t and t − τ

c̃(v)(t, τ) estimation of the correlation for the variable v between the
time points t and t − τ

C(J,w,h) auxiliary coefficient for the computation of P(J, w)

D(J,h) number of sequences of J elements that contain exactly h
different (specific) ones

D̃(J,w,h) number of sequences of J elements that contain exactly h
different ones, choosing them from w different elements

D v,t training dataset with reference to the variable v and time-
point t

floor floor operator, floor(x) = max{x′ ∈ Z|x′ ≤ x}
F symbol denoting an F-type continuous probability density
F*,* F density with specified degrees of freedom
G generic 3D matrix
[

G
]

i1 ,i2 ,i3
entry of the generic 3D matrix G in position (i1, i2, i3)

h generic number of different high-frequency time points
caught in a resampling interval

i, i1, i2, i3 generic indexes to identify an element in a column vector
or a matrix (either 2D or 3D)

iNOC indicator of coverage
ivar, imean auxiliary variables for the computation of iNOC
It set of all the indexes of the J high-frequency time points

from the t-th resampling interval
IZ interval in which the fitting of a probability density

function must be performed
IK×K K × K identity matrix
I 3D matrix containing in-silico batches
j generic index identifying a batch from the stratified

resampling among J ones
jmin
τ (n,v,t), jmax

τ (n,v,t) auxiliary variables for the partitioning along J
J number of resampled trajectories for each variable
J (n,v, t) set containing the indexes of retained trajectories after the

partitioning along J with reference to (n,v, t)
J τ(n,v, t) auxiliary set for the partitioning along J
k low-frequency resampling interval
K generic number of retained trajectories for each variable

with the partitioning
K(v, t) number of retained trajectories with the partitioning for

the v-th variable and t-th time point
Kn(v, t) number of retained trajectories with the partitioning for

the n-th real batch, the v-th variable and t-th time point
K (⋅, ⋅) kernel function
K (Zt− L,...,t− 1) kernel covariance matrix
L memory parameter
L(v, t) memory parameter for the t-th low-frequency time point of

the v-th variable
m high-frequency sampling interval
M generic 2D matrix
[M]i1 ,i2

entry of the generic 2D matrix M in position (i1, i2)
n generic index identifying a real batch
ñ generic index identifying a row in Xcal

N number of available real batches
Ñ total number of batches among the real ones and the in-

silico ones
N Gaussian density (possibly multivariate)
N (*,*) N density with specified mean and covariance
N set of the natural numbers
pJ required probability that every high-frequency time point

is caught
P(J,h) probability that by randomly resampling J times one

achieves h different points in total
P̃(J,w) lower-bound for P(J,h)
q generic index identifying a high-frequency time point

(ranging from 1 to T̄)
q̃(j) T-uple containing the high-frequency time points selected

for the j-th resampled trajectory
Q residual statistics
Qlim statistical limit for Q
r generic index identifying an in-silico batch
R number of generated in-silico batches
R̄2 lower bound for the variance to be explained when

calibrating a PCA model with Xcal

R set of the real numbers
s generic index identifying a subinterval in IZ

S number of rectangles for the fitting of a probability density
function (subintervals of IZ)

t generic index identifying a low-frequency time point
(ranging from 1 to T)

T number of low-frequency time points
T2 Hotelling statistics
T2

lim statistical limit for T2

T̄ number of high-frequency time points
u sample from the discrete uniform density in {1,…,w}

v generic index identifying a process variable
v generic column vector
[v]i entry of the generic column vector v in position i
V number of process variables
w number of high-frequency time points per resampling

interval
x,x′ generic numbers
x̂ vector extracted from Xcal

x,x′, x″ auxiliary vectors derived from ̂x for the computation of iNOC
xi,xj generic arguments for the K function
X 3D matrix of the real batches
Xcal calibration matrix containing down-sampled real batches

and in-silico ones
y auxiliary vector derived from x̂ for the computation of iNOC
yt measured values of a specific variable among the K

considered trajectories at time point t
z,z1,…,zÑ generic values representing either T2 or Q values
z′, z″ extreme values of IZ

z(1)t− τ,…, z(K)t− τ values of the K retained trajectories respectively at the
time point
t − τ for a specific variable

z(i)t− L,...,t− 1 vector containing the values of the i-th retained trajectory
across the L time points for a specific variable

Z 3D matrix of the resampled trajectories
Zt− L,...,t− 1 matrix containing the values of all the retained trajectories

across the L time points for a specific variable
Z whole set of either T2 or Q statistics for Xcal

Z (s) subset of Z containing the elements belonging to I(s)Z

Z set of the integer numbers

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

3

batches may be as small as two to four. A PCA model built on such a
small number of batches would result in unsatisfactory monitoring
performance, because the process data would be insufficient to derive
any statistical inference about the process. In batch process monitoring,
this is a longstanding problem that is typically tackled by downgrading it
from multivariate to univariate, until enough batches are collected to
enter a large-N (big-data) scenario. Recently, Tulsyan et al. (2018, 2019)
proposed a machine-learning methodology to effectively transition from
low-N to large-N scenarios, with no need to downgrade the monitoring
problem to univariate. Basically, the methodology uses machine
learning to build a virtual large-N scenario from a low-N one. More
specifically, it exploits a block-learning method for a Bayesian
non-parametric model of the process under investigation, which enables
modeling the process using a Gaussian process state-space (GP-SS)
model. Then, it uses probabilistic programming to generate an arbi
trarily large number of in-silico batch datasets, which can be used to
build a PCA model until a sufficient number of historical batches has
been accumulated to enter a large-N scenario. The authors test the
methodology on proprietary datasets, and show that the resulting
monitoring models are able to detect a faulty batch when as few as two
or three historical batches are available. Whereas this methodology
elegantly addresses the low-N problem in a systematic way for the first
time, it suffers from some limitations that can hinder deployment at the
industrial level.

From the algorithmic side, the machine-learning framework pro
posed by Tulsyan et al. (2018, 2019) requires assigning the values to
several parameters, among which the number of trajectories to be
resampled for each process variable, the memory (lag) of each process
variable, and the number of resampled trajectories to be retained for
each variable for GP-SS model training. These parameters affect the
computational cost and performance of the in-silico data generation, and
eventually also the performance of the process monitoring model.
However, no systematic methodology was proposed to tune them.

From the process monitoring side, there is a need of investigating
more systematically the role of not only the number, but also the char
acteristics of the available low-N batches that cause the in-silico data
generation procedure to return trajectories that are indeed useful for
process monitoring. Additionally, how many in-silico batches should be
generated to build the process monitoring model is still to be investi
gated. Finally, we note that the results reported by Tulsyan et al. (2018,
2019) only refer to the ability of a monitoring model to detect a faulty
batch. However, whether or not a normal batch is detected as such is also

crucial in batch process monitoring, because false alarms can lead to
rejecting batches that are actually normal, thus causing an economic
penalty.

In this study, we address all the above issues systematically. Our
contributions can be summarized as follows. (i) We develop automatic
(or semiautomatic) procedures to tune the values of the machine-
learning framework parameters, in such a way that the generation of
consistent in-silico batch trajectory data can be streamlined, thus facili
tating the deployment of this framework at an industrial level. (ii) We
develop indicators and a metric to assist the in-silico data generation
exercise from a process monitoring-relevant perspective. (iii) Using
datasets from a benchmark simulated semi-batch process for the
manufacturing of penicillin, we thoroughly investigate the appropri
ateness of the data generated in-silico to the purpose of process
monitoring.

The remainder of this paper is organized as follows. Section 2 pro
vides a general overview of the in-silico data generation methodology
proposed by Tulsyan et al. (2018, 2019), with emphasis on the im
provements proposed in this paper. Section 3 focusses on the tuning of
parameters. A discussion on in-silico data generation in a process
monitoring perspective is provided in Section 4. Section 5 introduces the
benchmark process. Results are provided and discussed in Section 6.
Conclusions are drawn in a separate section. A set of Appendices provide
some theoretical insights, and a guideline to the generation of historical
datasets through the benchmark simulator.

2. Overview of the in-silico batch generation methodology

This Section presents the methodology for in-silico batch generation
adopted in this study. Details about the methodology have been pre
sented by Tulsyan et al. (2019), and we will not report all of them here.
Rather, we focus on the improvements we propose with respect to the
original methodology. Software and data are made available as illus
trated in the Data availability section.

Throughout this paper, a boldface character denotes a vector (if
lowercase) or a matrix (if uppercase). A boldface character within
square brackets and with subscripts denotes the element of a vector or a
matrix: namely, the i-th element of the generic column vector v is
denoted as [v]i; notation [M]i1 ,i2

is used for the element in position (i1, i2)
of the two-dimensional (2D) matrix M; the element in position (i1, i2, i3)

of the three-dimensional (3D) matrix G is denoted as
[

G
]

i1 ,i2 ,i3
.

0K column vector with all its K elements equal to 0
1J column vector with all its J elements equal to 1

Greek letters
α hyperparameter of the K function
ε sample from the Gaussian density N (0,1)
δ(v)L threshold for the estimation of L for the v-th variable
δL threshold for the estimation of L for a generic variable
δϕ̃, ϕ reconstruction error of ϕ̃ with respect to ϕ

δ*
F threshold for the reconstruction error of the F density

δ*
χ2 threshold for the reconstruction error of the χ2 density

η hyperparameter of the K function
μã mean of the vector ã
μQ mean of the whole set of Q statistics of Xcal

μy mean of the vector y
ρ number of in-silico batches generated at each iteration
σ standard deviation of the measurement noise in a GP-SS

model

σã standard deviation of the vector ã
σQ standard deviation of the whole set of Q statistics of Xcal

σy standard deviation of the vector y
τ number of shifting time points
ϕ generic probability density function to be reconstructed
ϕ̃ approximation from samples of ϕ
ϕT2 nominal PDF of T2 values
ϕQ nominal PDF of Q residuals
χ2 symbol denoting a χ2-type continuous probability density
χ2

* χ2 density with specified degrees of freedom

Acronyms
GP-SS Gaussian process state-space
NOC normal operating conditions
PDF probability density function
PC principal component
PCA principal component analysis

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

4

Furthermore, both the floor and the ceil operator are used, i.e., floor(x)
= max{x′ ∈ Z|x′ ≤ x} and ceil(x) = min{x′ ∈ Z|x′ ≥ x} for any x ∈ R,
where Z is the set of the integer numbers, and R the one of the real
numbers.

2.1. Data from real batches

The inputs to the in-silico data generation methodology consist of
high-frequency real batch data collected in the 3D matrix X with size N
× V × T̄, where N is the number of real batches (N typically being a
“small” number), V is the number of measured variables, and T̄ is the
number of high-frequency time points along which each variable is
measured. We denote with m the high-frequency sampling interval,
which is assumed to be the same for all variables. Note that, in the
context of this study, the high and low frequency attributes are denoted
on a relative basis, rather than on an absolute one; namely, a sampling
frequency is considered high when it is much greater than the one
(denoted as low) required for process monitoring.

2.2. Stratified resampling of the available data

Data resampling is a strategy for data augmentation (Agarwal et al.,
2019). Here, we consider the stratified resampling approach proposed
by Tulsyan et al. (2019). For a given real batch, J/N trajectories are
generated for each measured variable by low-frequency resampling of
the relevant high-frequency trajectory. Therefore, for each variable, the
overall number trajectories created by resampling from the entire set of
real batches is (J /N)⋅N = J. Essentially, stratified resampling of a var
iable trajectory for a given real batch consists first in partitioning its time
profile into a number of subintervals. A resampled trajectory is then
obtained by randomly collecting a sample from each of these sub
intervals (which are the actual “strata”), and by repeating this operation
J/N times. Whereas J needs to be sufficiently large in order to achieve
sufficient data augmentation, too large a value of J increases the
computational cost with possibly no benefits in terms of process moni
toring performance. How to determine a reasonable value for J is not
discussed by Tulsyan et al. (2019). Later in this paper (Section 3.1), we
consider this issue in detail.

Loosely speaking, stratified resampling generates J “artificial”
batches from the N available real ones; however, since the resampled
trajectories are tethered around the original (real) ones, stratified
resampling does not change the coverage of NOC. Therefore, the
resampled trajectories cannot be used by themselves to augment the real

data in order to build a reliable model for batch process monitoring.
For a given resampling interval k, with k≫m and multiple of m, the

resampled trajectories are collected in the 3D matrix Z ∈ RJ×V×T, with
T = floor(mT̄ /k) ∈ N, and N being the set of the natural numbers. If
mT̄/k > T is found, the remaining part of batches is simply discarded; for
simplicity, the assumption T = mT̄/k ∈ N is then made here. For
compactness, define w as the number of high-frequency time points
contained in a resampling interval, formally w = k/m ∈ N; it follows
that T = T̄/w.

The stratified resampling operation is formally carried out as follows:

n = ceil
(

j
J/N

)

, (1)

[
Z(j, 1, t)… Z(j,V, t)

]

=
[
X(n, 1,w⋅(t − 1) + u)… X(n,V,w⋅(t − 1) + u)

] (2)

where u comes from the discrete uniform density in {1,…,w}. The full
matrix Z is built by doing (1) and (2) for j = 1,…, J and t = 1,…, T. An
example of such operation is shown in Fig. 1 for J = 3 resampled low-
frequency trajectories (broken lines) from one single high-frequency
trajectory (solid line).

2.3. Two-stage exploitation of the resampled data

Dataset Z is then used to train a GP-SS model, which will eventually
allow generating in-silico batches to be used for process monitoring. In
the context of machine-learning techniques, GP modeling represents a
powerful modeling methodology that allows non-parametric model
learning; namely, no assumptions about model structure are required,
which is very favorable for process modeling (Rasmussen and Williams,
2006).

GP-SS model training is accomplished according to a two-step pro
cedure: data partitioning is done first (Section 2.3.1), in order to save
computational time during model training; then, actual model training
is carried out (Section 2.3.2).

2.3.1. Data partitioning
The learning phase for a GP-SS model is known to be computation

ally intensive (Moore et al., 2016). Specifically, using the entire Z matrix
as a training dataset for the GP-SS model can make the computational
problem at hand prohibitive. To tackle this issue, we adopt the same
strategy originally proposed by Tulsyan et al. (2019). First, the overall

Fig. 1. Stratified resampling. In this example, we have: N = 1 real batch, V = 1 variable, J = 3 resampled trajectories, T = 5 low-frequency time points, k = 2 time
units resampling interval. The original sampling interval is very small and it is not shown for ease of reading.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

5

dataset is sliced along the time direction into smaller datasets, which are
built by assuming that, for each variable and each time point, the sample
for that variable at that time point depends only on the L ≥ 0 preceding
ones; stated differently, we assume that each variable trajectory is a
Markov process with order L. The value of L for a given variable and time
point sets the “memory” (or lag) of the process for that particular vari
able at that particular time point. Parameter L is assumed to be known a
priori by Tulsyan et al. (2019), and identical for each variable and each
time point. However, none of the two conditions may occur in practice.
Later in this paper (Section 3.2), we propose a semiautomatic method
ology to estimate an appropriate value for L for each variable and each
low-frequency time point.

Then, to further reduce the computational cost, only K≪J resampled
trajectories for each variable and time point are retained for model
training. Each one of these retained trajectories has length L + 1, since
this partitioning occurs right after the one along the time direction. An
example of such framework is illustrated in Fig. 2 for a generic process
variable and low-frequency time point. Tulsyan et al. (2019) do not
provide indications about how to choose K. We address this issue in
Section 3.3, where we propose a method that automatically tunes K for
each variable and each time point.

According to these operations, a reduced training dataset D v,t can
eventually be related to each pair (v, t), i.e., to each variable v and low-
frequency time point t. Namely, the training dataset contains the K
retained trajectories for variable v at time point t, each one having
length L+ 1; these trajectories span the time points from t − L to t itself.
To provide a formal representation of D v,t , we simplify the notation by
omitting the variable index v as well as the reference to the last time-
point t the trajectories include. Then, let us denote as z(1)t− τ,…, z(K)t− τ the
values that the K retained trajectories respectively take at time point
t − τ for τ = 0,…, L (assuming that L > 0) for variable v. Then, define

z(i)t− L,...,t− 1 =
[

z(i)t− L ... z(i)t− 1

]⊤
, i = 1,…,K, (3)

Zt− L,...,t− 1 =
[
z(1)t− L,...,t− 1…z(K)

t− L,...,t− 1

]⊤
. (4)

Define the vector

yt =

⎡

⎢
⎢
⎣

z(1)t

⋮
z(K)

t

⎤

⎥
⎥
⎦ (5)

representing the measured values of the process variables. The reduced
training dataset is then D v,t = {Zt− L,...,t− 1, yt}. If L = 0, then the
computation of (3) and (4) is meaningless, and it is simply D v,t = {yt}.

2.3.2. GP-SS model training against the partitioned data
Once that data partitioning is obtained, a GP-SS model is trained

against the reduced dataset D v,t, for each variable v and for each low-
frequency time point t. This allows one to build a probabilistic frame
work for the generation of in-silico batches. Next, we discuss how
training is carried out.

Let us consider a given variable in Z. If L = 0 for that variable at a
given time point, then its value at that time point is considered to be
Gaussian distributed, with mean and covariance being determined by
the K retained artificial trajectories for that variable (prior learning); to
find them, one can simply calculate the mean and standard deviation of
vector yt defined in (5). If L > 0, then a squared exponential kernel is
used to model the covariance matrix of the transition density from the
value at the current time point and the L preceding ones; in practice, we
assume that the variable evolves through a certain dynamics that is to be
identified, i.e., a “dynamics learning” has to be carried out. The idea of
using such type of kernel was originally proposed by Tulsyan et al.
(2019). Here, we use the simplified version

K
(
xi, xj

)
= α2exp

(
−
⃒
⃒
⃒
⃒xi − xj

⃒
⃒
⃒
⃒2

2η2

)

, (6)

because it involves a smaller number of hyperparameters. In (6), K (⋅, ⋅)
is the actual kernel function, xi and xj are vectors of L components,
containing values of the process variable at issue, while α and η are

Fig. 2. Schematic representation of data partitioning along two directions (time and number of resampled trajectories) for one single variable in one single batch
when the memory is L = 2 time points for that variable; a set of J = 3 resampled trajectories are available from stratified resampling. With reference to the fourth
resampling interval: first, only the L = 2 preceding resampling intervals are considered for all the J resampled trajectories; then, only K = 2 < J resampled tra
jectories (each one containing only L + 1 = 3 time points) are retained out of the entire set. The dotted segments connect the resampled time points eventually
retained for GP-SS model training.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

6

hyperparameters (η is the characteristic length scale, and α is the signal
standard deviation).

Following Tulsyan et al. (2019), we consider additive white Gaussian
noise N (0, σ2) as measurement noise. A formal description of the GP-SS
model with reference to a given variable and low-frequency time point is
reported in Appendix A.

The training operations need to be repeated for each time point t ∈
{1,…,T} and for each variable v ∈ {1,…,V}. Each (v, t) pair can then be
referred to either a prior learning operation or a dynamics learning one.
When training is concluded, a probabilistic model of the process is
available for each variable and low-frequency time point.

2.4. In-silico batch generation

In-silico trajectories can be generated for all variables using the
trained GP-SS model, thus generating a set of in-silico batches that can
then be used to build a process monitoring model.

Let I indicate the 3D matrix collecting the in-silico data to be

generated, and let
[
I
]

r,v,t
be the value of variable v at time point t for in-

silico batch r. If L = 0, then
[
I
]

r,v,t
is generated according to the prior

Gaussian density, using the mean and the covariance calculated during

GP-SS model training. If L > 0, then
[
I
]

r,v,t
is generated by using the

samples from t − L to t − 1, that is
[
I
]

r,v,t− L
,…,

[
I
]

r,v,t− 1
, according to the

mathematics of GPs. The rationale we use in this study is the same
presented as Algorithm 4 in Tulsyan et al. (2019), and will not be dis
cussed further here.

The in-silico generation is continued until the in-silico dataset is large
enough, i.e., until the monitoring model being built is deemed reliable.
No indications about a suitable size of the in-silico dataset is provided by
Tulsyan et al. (2019). We address this issue in detail in Section 4.1.

3. Tuning of the GP-SS model parameters

The original study of Tulsyan et al. (2019) proved groundbreaking in
addressing the low-N problem in a process monitoring context by means
of a GP modeling methodology. Yet, no guidelines were provided on
how to assign appropriate values for the model parameters. This Section

is meant to fill this gap.

3.1. Tuning of J

The stratified resampling operation involves the risk that a certain
amount of information about the original (real) batches gets lost upon
resampling. Particularly, the resampled trajectories of a given variable
may show less variability than the original ones in X (this may occur, for
example, if stratified resampling fails from capturing enough peaks/
valleys in the real trajectories). Hence, the number J of resampled tra
jectories should be determined in such a way as to preserve the vari
ability of the real data.

3.1.1. Formalisation of stratified resampling
As already discussed, stratified resampling consists in obtaining J/N

low-frequency trajectories for each high-frequency one measured in a
given real batch for each variable. Next, we assume that only one
measured variable exists and one real batch is available, i.e., N = V = 1;
the generalization to several batches and several variables is provided in
Section 3.1.4.

Recall that w is the number of high-frequency time points per
resampling interval (Section 2.2). Every resampled trajectory (indexed
by j = 1, …, J) can be identified by a T-uple q̃(j), containing the high-
frequency time points that have been selected for that trajectory;
denote with [q̃(j)

]t , t ∈ {1,…,T}, the t-th element of q̃(j). It follows that
[
q̃(j)]

t ∈ {(t − 1)⋅w+ 1,…, t⋅w}. (7)

To ensure that the resampled trajectories cover the same variability
as the real ones, it is required that each high-frequency time point ap
pears at least once in any of the J resampled trajectories. Formally, it is
required that

∀q ∈ {1,…, T̄} ∃ j ∈ {1,…, J} | q=
[
q̃(j)]

t, t = ceil(q /w). (8)

In other words, let It = {[q̃(1)
]t ,…, [q̃(J)

]t} be the set all of the high-
frequency time points captured in the resampling interval with index t
through the J random selections. Each high-frequency time point in
{(t − 1)⋅w+1,…, t⋅w} is required to appear at least once in It; equiva
lently, It must contain exactly w different elements among all the J ones
considered, and this must hold for all t ∈ {1,…,T}.

Fig. 3. Schematic representation of the outcomes of the stratified resampling operation over three resampling intervals for a given variable. For both the central
resampling interval and the rightmost one, not all the w high-frequency time points are captured by the resampled trajectories.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

7

A situation violating this condition is illustrated in Fig. 3. In this case,
we have w = 3 high-frequency time points within each resampling in
terval, and J = 4 resampled batches; for both the central resampling
interval and the rightmost one, only 2 < w different high-frequency
time-points are captured by the resampled trajectories, despite J > w
trajectories were resampled.

We propose the following two-step procedure to estimate J:

Step 1. Determine the probability P(J,w) that, by doing J repeated
random selections from a pool of w different high-frequency time points
within a given resampling interval, each point is extracted at least once;
or, equivalently, that all the w different points do appear in the outcome
of the J random selections;

Step 2. Determine the minimum value of J such that P(J,w) is greater
than a given threshold.

Step 1 is done by determining a lower bound for P(J,w) in analytical
form. This is addressed in Section 3.1.2.

3.1.2. Determination of a lower bound for P(J,w)

Let D(J, h) be the number of sequences made by J elements that
contain exactly h different (specific) elements, for each h = 1, …, w,
where h indicates a high-frequency time point. It can be shown that the
following equation holds:

D(J,w) = wJ −
∑w− 1

h=1

(
w
h

)

D(J, h). (9)

This fact is proved in Appendix B. Upon division by wJ, the previous
equation can be rewritten as

D(J,w)
wJ = 1 −

∑w− 1

h=1

(
w
h

)
D(J, h)

wJ , (10)

and then, by defining P(J,h) = D(J,h)/hJ, h = 1,…,w, one can write

P(J,w) = 1 −
∑w− 1

h=1

(
w

h

)
hJ

wJ

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
=C(J,w,h)

P(J, h).
(11)

Being P(J, h) a probability value, then P(J, h) ∈ [0,1] and hence the
previous equation yields

P(J,w) ≥ 1 −
∑w− 1

h=1
C(J,w, h)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

=P̃(J,w)

.
(12)

The right-hand side quantity ̃P(J,w) in (12) is actually a lower bound for
P(J,w), and this is sufficient for our purpose because we require P(J,w)

to be greater than a threshold.

3.1.3. Determination of a suitable J
It is convenient to assign a-priori the probability pJ ∈ (0,1) that It

contains w different elements for each resampling interval t = 1,…,T.
Since the resampling operations are independent across the resampling
intervals, the probability for a single interval is p1/T

J , and this is the
actual lower bound for P(J, w). Therefore, one can evaluate P̃(J,w)

defined in (12) for J = w, and then increase the guess of J until
P̃(J,w) ≥ p1/T

J .

3.1.4. Generalization for N > 1 and V > 1
If more than one real batch is considered (i.e., N > 1), then the al

gorithm discussed above is used to estimate J/N rather than J, and the
reference threshold for P(J /N, w) becomes p1/(N⋅T)

J ; hence J is increased
until P̃(J /N, w) ≥ p1/(N⋅T)

J . Each one of the N real batches leads to J /N

resampled trajectories, in such a way that the total number of resampled
trajectories is still indicated as J. The generalization to the case with V >

1 does not require any modifications, since the resampling is done with
reference to all the variables for each time point. Note that this algo
rithm uses only the number w of time points within a resampling interval
as an input, and w is same for the all variables in all batches. Therefore,
the same value of J/N for all variables and all batches will be found.

3.2. Tuning of L

Parameter L has a critical role, as it tunes the memory of each process
variable. The issue of estimating the order in Markov processes has been
addressed by several researchers in different contexts (Nakahama, et al.,
1977; Ku et al., 1995; Peres and Shields, 2005; Merhav et al., 1989;
Morvai and Weiss, 2005). In this study, we propose a methodology that
is a compromise between computational burden, mathematical rigor
and easiness to interpret the results in the specific context it is applied to.
The methodology returns a value of L that is adjusted for each variable at
each low-frequency time point; therefore, notation L(v, t) will be used.

Consider the following column vectors derived from matrix Z:

ã =

[[
Z
]

1,v,t
…
[
Z
]

J,v,t

]⊤

, (13)

b̃ =

[[
Z
]

1,v,t− τ
…
[
Z
]

J,v,t− τ

]⊤

(14)

for a given value of τ ∈ {0, …, t − 1}. They represent the entire set of
values of a given variable v at time point t and at time point t − τ ≤ t
(respectively) across all resampled batches in Z. Let μã and σã be the
mean and standard deviation of ̃a respectively, and let 1J be the column
vector with all its J elements equal to 1. With these values, we compute

a =
ã − μã⋅1J

σã
, (15)

b =
b̃ − μã⋅1J

σã
. (16)

Thus, ̃a has been auto-scaled, while this has not been the case for b̃. The
correlation between a and b (i.e., the correlation between the set of
values of variable v at time point t and the set of the values it takes at the
preceding time point t − τ) is defined as

c̃(v)(t, τ) = a⊤b
J − 1

. (17)

According to the Cauchy-Schwarz inequality (Wu and Wu, 2009), we
can write

c(v)(t, τ) = |a⊤b|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a⊤a)⋅(b⊤b)

√ ∈ [0, 1], (18)

provided that both a and b have norm different from 0. Since a is the
result of an autoscaling operation, it is a⊤a = J − 1 if a has norm
different from 0.

If a or b has norm equal to 0, then c(v)(t, τ) in (18) is not computable,
and we address the issue as follows. We set c(v)(t, τ) = 1 if τ = 0, that is
any value of v at a specific time point is maximally correlated with itself.
For τ ≥ 1, we set c(v)(t, τ) = 0. This means that either ã or b̃ contains J
equal values; in practice, the value taken by variable v at either time
point t or t − τ is deterministic, and therefore it is uncorrelated with the
values at any other time points.

A threshold δ(v)L ∈ [0,1] is then set on c(v)(t, τ): if c(v)(t, τ) is smaller
than the threshold, then the values of v at the two involved time points
(i.e., t and t − τ) are considered uncorrelated, and L(v, t) is reduced of

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

8

one unit (i.e., the estimated memory is reduced of one resampling in
terval) with respect to its current guess.

We suggest setting the same δ(v)L for all the variables at the beginning;
each value can then be adjusted if results for the case study at hand are not
satisfactory. Tentative values for δ(v)L can be assigned as follows. A value of
δ(v)L = 0.1 can be used to obtain large values of L (this may be appropriate
for process variables displaying flat time profiles); a value of δ(v)L = 0.5
may fit trajectories showing significant dynamics; greater values of δ(v)L (e.
g., δ(v)L ≥ 0.9) can be used to obtain small L’s, which may be useful for very
noisy trajectories, where autocorrelation is harder to notice by inspection.
An example of how to perform this adjustment is provided in Section 6.3.1.

The procedure to estimate L is summarized in the flowchart of Fig. 4
for a generic variable v at a time point t ≥ 2 . Clearly, it is L(v,1) = 0 for
any v. For t ≥ 2, the initial guess for L(v, t) assumes that the memory at a
certain time point is not greater than the memory at the previous time
point plus one sample, that is L(v,t) ≤ L(v,t − 1)+ 1; clearly, this is only
an initial guess, and the estimation algorithm may end up even with a
decrease of the memory, that is L(v, t) < L(v, t − 1). Moreover, L(v, t) is
not decreased below 1 for t ≥ 2; this represents the fact that any time
point after the first one does have memory of at least one sample.

3.3. Tuning of K

The number K of resampled trajectories to be retained for each
variable is the parameter that eventually sets the size of training dataset
for the GP-SS model. The tuning procedure we propose sets the value of
K for each variable at each time point; hence notation K(v, t) will be
used. Whereas Tulsyan et al. (2019) assign K, and use the K-furthest
neighbors algorithm to determine the indices of the resampled trajec
tories to be retained, we propose a different approach, that simulta
neously returns both a suitable value of K and the indices of the
trajectories to be retained. The proposed approach is completely auto
matic, does not require initialization, and is computationally efficient.
The underlying idea is to retain the smallest number of trajectories that
can preserve the same variability as the entire set of trajectories in Z. To
this purpose, for a given variable, we retain all and only the trajectories
that, for any of the considered time points, include either maximum or
minimum values of that variable. Next, a formal discussion of the pro
posed algorithm is presented.

Consider the triplet (n, v, t) indicating one real batch, one variable
and one low-frequency time point. Furthermore, consider the current
value of L, i.e., L(v, t); this allows identifying the set of time points

t − τ, for τ = 0,…, L(v, t). Then, enumerate the variable trajectories
coming from the resampling of the variable v for the batch n, namely
j = (n − 1)J/N+ 1, …, nJ/N, and define J τ(n, v, t) = {jmin

τ (n, v, t),
jmax
τ (n, v, t)} with

jmin
τ (n, v, t) = argminj∈{(n− 1)J/N+1,…,nJ/N}

[
Z
]

j,v,t− τ
, (19)

jmax
τ (n, v, t) = argmaxj∈{(n− 1)J/N+1,…,nJ/N}

[
Z
]

j,v,t− τ
. (20)

This operation is done for every τ ∈ {0,…,L(v,t)}. Finally, one can write

J (n, v, t) = ∪
L(v,t)
τ=0 J τ(n, v, t). (21)

The latter set contains the indices of the resampled trajectories to be
retained with reference to the selected real batch-variable-time point
triplet (n, v, t), and its size can be denoted by Kn(v, t).

The above operation is repeated for all the N involved real batches,
thus providing the final number of retained trajectories for the pair (v,t),
namely

K(v, t) =
∑N

n=1
Kn(v, t) . (22)

4. Role of the in-silico batches in a monitoring perspective

The set of batches generated in-silico are used to complement the
(few) available real ones in such a way that a PCA model can be built
upon them to monitor the performance of a new real batch. This is done
until a sufficient number of real batches have been run to transition from
a low-N to a large-N scenario, where in-silico batches are no longer
needed to build the monitoring model. Selecting the number of batches
to be generated in silico is not trivial. Loosely speaking, if too few
batches are generated in-silico, the resulting monitoring model may not
capture sufficient variability of the true data, and therefore be prone to
errors in monitoring new real batches. On the other hand, generating too
many in-silico batches may increase the computational burden without
significant benefits. On a different perspective, the adequacy of the
monitoring model built using the in-silico batches should be assessed in
advance, to make the user more confident about the monitoring per
formance expected from the model. These issues are addressed in the
following.

Fig. 4. Flow-chart describing the procedure for the estimation of L for variable v at time point t. Note that the threshold δ(v)L must be set for each variable, but does not
vary across the time points. This is why for the estimation of L(v, t) it is not necessary to set again the threshold δ(v)L , but just to keep it into account.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

9

4.1. Determining a suitable number of in-silico batches

We propose a procedure to determine an appropriate number of
batches to be generated in-silico. The idea is fairly simple: since, for a
properly built monitoring model, the monitoring statistics are known to
follow given probability density functions (PDFs), the number of batches
to be generated in silico is chosen as the smallest one that enables the
reconstructed densities to follow the expected ones to a reasonably close
extent. The density reconstruction errors can then be used as a metric to
assess the adequacy of the monitoring model (Section 4.1.2).

The procedure for determining the number of batches to be gener
ated in-silico is sketched in Fig. 5. When a new in-silico batch (or a set of
new in-silico batches) has been generated using the GP-SS model, a
calibration 2D matrix Xcal is built by batch-wise unfolding (Nomikos
and MacGregor, 1995) the 3D matrix collecting the (down-sampled) real
batches together with the batches generated in-silico. A PCA model is
then built on Xcal, and the monitoring statistics (namely, Hotelling T2

and Q residuals; (Nomikos and MacGregor, 1995)) values are calculated
for all the batches in Xcal. Further to that, the theoretical density of each
statistics is approximated through the resulting sampled one, and the
reconstruction error is evaluated. When the errors on both statistics fall
below assigned thresholds, the generation of new in-silico batches can be
stopped.

4.1.1. Defining the target densities for the monitoring statistics
Let A be the number of principal components (PCs) of the PCA model

calibrated on Xcal (whose columns are assumed to be autoscaled).
Nomikos and MacGregor (1995) showed that, for a proper monitoring
model, the T2 values are F-distributed, whereas the Q residuals are
χ2-distributed.

In this study, we calculate the PDF of the T2 values as suggested by
Wise and Gallagher (1996). Namely, denoting such PDF with ϕT2 (z) for
any z ∈ R, we have

ϕT2 (z) =
Ñ − A

A(Ñ − 1)
FA,Ñ− A

(
Ñ − A

A(Ñ − 1)
z
)

. (23)

The density of the Q residuals is calculated as indicated by Nomikos
and MacGregor (1995). Namely, if such PDF is denoted with ϕQ, we have

ϕQ(z) =
2μQ

σ2
Q

χ2
2μ2

Q/σ2
Q

(
2μQ

σ2
Q

z

)

. (24)

In (23) and (24), the following notation is used: Ñ is the number of rows
of Xcal; FA,Ñ− A is an F density with A and Ñ − A degrees of freedom; μQ is
the mean of the Q residuals; σQ is the standard deviation of the Q re
siduals; χ2

2μ2
Q/σ2

Q
is a χ2 density with 2μ2

Q/σ2
Q degrees of freedom.

The continuous PDFs (23) and (24) are set as references against
which the densities reconstructed from sampled data are checked. While
modifications of these statistics have been developed to handle critical
aspects in batch process monitoring (e.g., Reis, et al. (2021) for the Q
statistics), we prefer to use the standard statistics to frame our research
in a more general context.

4.1.2. Reconstructing a continuous density from sampled values
An algorithm to reconstruct a tentative density starting from avail

able samples is presented. The underlying idea has some similarities
with other approaches discussed in the literature, such as the one by
Kropotov et al. (2018); further discussions on this topic are provided by
Berg and Harris (2008) and Hernandez (2018).

Recall that, if N is the number of real batches and R the number of
batches generated in-silico, then Xcal has Ñ = N + R rows and V⋅T col
umns. Suppose Z = {z1, z2,…, zÑ} is the whole set of either the T2

statistics or the Q statistics of Xcal. Consider then an interval IZ = [z′, z″]

containing all of them in such a way that [min(Z), max(Z)]⊂(z′, z″);
suitable choices are z′ = max{x ∈ Z | x< min(Z)},z″ = min{x ∈ Z | x>
max(Z)}. Divide IZ in S equal subintervals indexed by s = 1,…,S, that is

I(s)Z =
[
z′ +(s − 1)⋅

z″ − z′

S
, z′ + s⋅

z″ − z′

S

)
. (25)

Then, for each s, define Z (s) as the subset of Z built with all and only the
elements of I(s)Z , namely

Z
(s)= {z ∈{z1,…, zÑ}

⃒
⃒z ∈ I(s)Z

}
= Z ∩ I(s)Z . (26)

In practice, Z (s), for s = 1, …, S, makes a partition of Z . Moreover,
compute c(s) as the cardinality (i.e., the number of elements) of Z (s)

divided by the cardinality of Z (and multiplied by a normalization
factor):

c(s) =
|Z (s)|

|Z |
⋅

S
z″ − z′ =

|Z (s)|

Ñ
⋅

S
z″ − z′. (27)

A piecewise-constant probability density function (PDF) ϕ̃ can be
associated to Z through

Fig. 5. Simplified flowchart illustrating the stopping criterion for in-silico batch generation.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

10

ϕ̃(z) =

{
0 if z ∕∈ IZ ,

c(s) if z ∈ I(s)Z for a unique s
. (28)

If ϕ̃ attempts to approximate a target density ϕ, the total recon
struction error can be evaluated according to the Kullback-Leibler
divergence (Kullback, 1968)

δϕ̃, ϕ =

∫∞

− ∞

ϕ̃(z)log
(

ϕ̃(z)
ϕ(z)

)

dz, (29)

considering the term inside the integral equal to zero if ϕ̃(z) = 0. The
number S of the subintervals in which IZ is divided is selected in order
to minimize the reconstruction error defined by (29).

With reference to Fig. 5, the generation of new in-silico batches can
be stopped when the reconstruction error is sufficiently small for both
densities. This ensures that both T2 and Q adequately follow the relevant
theoretical density, and therefore that reliable confidence limits can be
defined for both statistics as in Nomikos and MacGregor (1995) or in
Wise and Gallagher (1996). It should be remarked that obtaining reli
able confidence limits is only a necessary condition for a monitoring
model to be deemed as reliable. However, the resulting performance of
the monitoring model may be insufficient even if both monitoring sta
tistics follow the relevant theoretical densities. This fact will be dis
cussed in Section 6.1.

4.2. Assessing the in-silico batches from a monitoring perspective

Next, we propose two tests that can be carried out on the pool of real
and in-silico batches to assess their adequacy for process monitoring
purposes.

4.2.1. Positions of the Q residuals of the real batches
Once the in-silico batch generation activity is concluded (Fig. 5), it is

convenient to plot the Q residuals of the (few) available real batches
onto the PDF plot of the reconstructed χ2 density. Remind that cali
brating a PCA model means defining a low-dimensional hyperspace of
PCs in the whole space of the columns of the calibration matrix; if the
residuals for the real batches are small, this means that they are very
close to such hyperspace, and that they can be considered as references
for the monitoring model. Therefore, for the monitoring model to be
deemed adequate, these residuals should be sufficiently small. Stated
differently, building a PCA model in which the real batches are recog
nized as largely different from the in-silico ones would denote model
inadequacy.

With reference to the Hotelling T2 statistic, we found that the loca
tion of T2 for the real batches in the relevant PDF plot does not provide
useful information in the context of in-silico batch generation. Experi
ence suggests to avoid extreme values.

The final remark done in Section 4.1.2 applies here too: whereas
suitable values of the Q residuals of the real batches may provide useful
indications about the quality of the in-silico batches with respect to the
real ones, this does not necessarily guarantee satisfactory monitoring
performance.

4.2.2. Univariate indicator of the coverage
Next, we develop a univariate indicator iNOC to quantitatively assess

the coverage of the NOC by the in-silico batches (and the few original real
ones), time point by time point, and variable by variable (i.e., with
reference to the pair (v, t)). The proposed indicator allows highlighting
the process variables for which the coverage is poor after the in-silico
generation, and at which time points this occurs. This occurrence may
suggest re-considering some steps of the in-silico data-generation pro
cedure, most likely by adjusting either parameter L or the number of
batches generated in-silico.

The idea for the calculation of iNOC with reference to the (v, t) pair is

to consider the values of variable v at time point t for all batches (both
real and in-silico), and to quantify how well these values comply with the
following empirical requirements, that are typically met under large-N
monitoring scenarios: (i) they are close to each other; (ii) they provide
uniform coverage of the real batch variability.

First, define vector x̂ = [[Xcal]1,(t− 1)V+v ... [Xcal]Ñ,(t− 1)V+v]
⊤; namely, x̂

is the set of values taken by variable v across all calibration batches at
time point t. Starting from x̂, define vector x by doing the following
operations:

• sort x̂ in ascending order, thus obtaining x″;
• shift x″ in such a way that its first element (i.e., the smallest one) is 0,

thus obtaining x′;
• scale x′ in such a way that its last element (i.e., the largest one) is 1,

thus obtaining x.

Essentially, vector x = [[x]1…[x]Ñ]
⊤ is built with the elements of x̂ by

sorting in ascending order, shifting and rescaling, in such a way that

0 = [x]1 ≤ … ≤ [x]Ñ = 1. (30)

Then, take

y = [[x]2 − [x]1…[x]Ñ − [x]Ñ− 1]
⊤ (31)

and denote by [y]ñ, ñ = 1,…, Ñ − 1 the elements of y. Note that y con
tains the distance of each value in x from its subsequent one. The mean
of y can be proved to be simply

μy =
1

Ñ − 1
⋅
∑Ñ− 1

ñ=1

[y]ñ (32)

=
1

Ñ − 1
. (33)

The variance of y is

σ2
y =

1
Ñ − 2

⋅
∑Ñ− 1

ñ=1

(
[y]ñ − μy

)2 (34)

=
1

(Ñ − 2)(Ñ − 1)

((

(Ñ − 1)⋅
∑Ñ− 1

ñ=1

[y]2ñ

)

− 1

)

, (35)

where (35) is obtained from (34) by substituting (33) into (34). Define
the auxiliary indicator ivar as

ivar = 1 − (Ñ − 1)σ2
y (36)

=
Ñ − 1
Ñ − 2

(

1 −
∑Ñ− 1

ñ=1

[y]2ñ

)

(37)

by substituting (35) into (36). Define also the auxiliary indicator imean as

imean = − μy + 1 (38)

=
Ñ − 2
Ñ − 1

(39)

by using (33). After that, introduce the iNOC indicator by defining

iNOC = ivar⋅imean (40)

= 1 −
∑Ñ− 1

ñ=1

[y]2ñ . (41)

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

11

Eq. (41) is achieved by inserting (37) and (39) into (40).
It can be proved that iNOC is bounded in [0, 1). Note that iNOC is

defined in such a way that it is close to 1 if the in-silico values for variable
v at time point t uniformly cover the variability of the real batches and
are close to each other; conversely, iNOC is close to 0 if the in-silico tra
jectories are tethered around the real ones. In fact, iNOC is the product
between ivar and imean; the former is close to 1 when the values in x
uniformly cover their variability, that is the variance of y is close to 0;
the latter is close to 1 when the values in x are close to each other, that is
the mean of y is close to 0. Therefore, the closer to 1 iNOC is, the better the
coverage for the v-th variable at the t-th time point is.

Proofs of (33) and of the statements above are reported in
Appendix C. Incidentally, if x̂ is a constant vector, then the aforemen
tioned procedure is unfeasible, and iNOC = 1 by default.

The iNOC indicator allows assessing the coverage of the NOC basing
on the knowledge available from the few real batches. However, it must
be stressed that the actual NOC, i.e., those encountered under a large-N
scenario, are unknown when a low-N scenario is in place. Therefore,
whereas a low value of iNOC indicates that the data generated in-silico are
not entirely appropriate for process monitoring, a large value of iNOC
does not necessarily mean that satisfactory monitoring performance will
be achieved.

5. Benchmark process

As a testbed to assess the in-silico data generation methodology and
the performance of the related process monitoring model, we consider a
simulated fed-batch fermentation process for the manufacturing of
penicillin. The detailed mechanistic model, also known as the Pensim
simulator, has been proposed by Birol et al. (2002), and is extensively
used for process monitoring studies. Here, we will not provide a
description of the process and of the software; the interested reader can
find details in the original reference (Birol et al., 2002). In remainder of

the discussion, this model will be referred to as the real process. Table 1
summarizes the variable numbering used in this study. The listed vari
ables represent those for which process measurements are assumed to be
available, and whose profiles are generated in-silico under low-N sce
narios. The batch length is fixed, and set to 300 h.

The process monitoring model is based on the variables listed in
Table 1. Since we are not interested in assessing the specific ability in
real-time monitoring, but rather the general effectiveness of process
monitoring using in-silico data, we carry out process monitoring only at
the end of a batch (postmortem or retrospective analysis). To do this, we
use multiway principal component analysis, namely, by batchwise
unfolding the three-way array where the real and in-silico data are stored
(Nomikos and MacGregor, 1994). The sampling interval for the process
measurement profiles is m = 10 min (0.167 h); the sampling interval for
the profiles generated in-silico is set to k = 600 min (10 h). Before being
stored in the three-way array, the process measurements are down
sampled to match the frequency at which the in-silico data are made
available.

6. Results and discussion

Results from the in-silico batch generation methodology are discussed
here in a threefold direction. First (Section 6.1), we assess the moni
toring performance of the process monitoring models calibrated with
(few) available real batches together with the batches generated in-silico.
Then (Section 6.2), we draw our attention to the in-silico batch genera
tion activity itself, namely we consider the effect of the number of
batches generated in-silico on the monitoring performance. Finally
(Section 6.3), we discuss the impact of the GP-SS model parameters
(assigned through the algorithms proposed in Section 3) on the data
generated in-silico. Throughout Sections 6.1‒6.3, we also discuss the
appropriateness of the metrics we have proposed to assess the quality of
the data generated in-silico for process monitoring purposes.

To benchmark the monitoring results, we consider a pool of 180 real
batches under NOC (Appendix D); these batches are collectively denoted
as the large-N batches. In a way, the large-N batches represent those that
one would collect after a long production campaign, i.e., when a low-N
scenario is not in place anymore. To build a monitoring model under a
low-N scenario, we draw a few (4 or 3) batches from the large-N pool;
these batches are denoted as the low-N batches. A different pool of 19
real batches, not included in the large-N one, is used to test the moni
toring performance; these batches are denoted as the validation batches.
Four of them (namely, batches nos. 16, 17, 18 and 19) are intentionally
generated as faulty ones; the remaining validation batches are normal.
The modeling conditions characterizing the large-N batches and the
validation ones are reported in Appendix D.

A PCA model with A = 5 PCs (explaining ~69 % of the overall
variance of the data) is built using the large-N dataset. All validation
batches are correctly labeled as either normal or faulty by this model
(results are not shown for conciseness); in particular, all faulty batches
show Q residuals greater than the confidence limit. When building a PCA
model with the in-silico batches together with the few low-N ones, the
number of PCs is chosen in such a way to explain an assigned amount R̄2

of variance. Although this is not necessarily the optimal way to set the
number of PCs, it nevertheless simplifies the presentation of results,
while still ensuring they are reliable. Confidence limits for all moni
toring charts are set to 95 %.

For in-silico data generation, we use the algorithms discussed in
Sections 2, 3 and 4, except when noted. With reference to the GP-SS
model, the parameters used to generate the in-silico data are listed in
Table 2. Symbols δ*

F and δ*
χ2 indicate the thresholds of the reconstruction

errors for the F density and the χ2 one, respectively. Parameter ρ is the
number of in-silico batches generated for each single iteration (see
Fig. 5). Possible modifications to the parameters will be considered
throughout the discussion.

Table 1
Pensim simulator variable numbering used in this study.

Variable no. Variable name Units

1 Aeration rate L/h
2 Agitator power W
3 Glucose feed rate L/h
4 Glucose feed temperature K
5 Glucose concentration g/L
6 Dissolved O2 concentration g/L
7 Biomass concentration g/L
8 Penicillin concentration g/L
9 Culture volume L
10 CO2 concentration mmol/L
11 pH –
12 Temperature K
13 Generated heat kcal/h
14 Acid flow rate mL/h
15 Base flow rate L/h
16 Cooling/Heating flow rate L/h

Table 2
Parameters used for the generation of in-silico batches using the GP-SS model.

k pJ δ(v)L R̄2 δ*
F δ*

χ2
ρ

600 min 0.999 0.99 for v = 2,3 50 % 0.08 0.05 25
0.97 for v = 4
0.1 for v = 7
0.5 for v = 8
0.95 for v = 12
0.7 for v = 13
0.99 for v = 14
0.55 for v = 16
0.9 for any other v

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

12

Fig. 6. Time profiles of (a) aeration rate, (b) biomass concentration, (c) penicillin concentration, (d) cooling/heating water flow rate for the large-N batches.

Fig. 7. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The four low-N batches selected as convenient for generating in-silico data
(Case 1) are indicated by red stars.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

13

Fig. 8. Time profiles of (a) aeration rate, (b) biomass concentration, (c) penicillin concentration, (d) cooling/heating water flow rate for the same four low-N batches
as in Fig. 7 (Case 1), and for the 200 in-silico batches generated from them. For convenience, the variability of the large-N dataset is shown as a green-shaded area.

Table 3
Explained variance and cumulative explained variance for the monitoring model built on the same four low-N batches as in Fig. 7 (Case 1) and the 200 in-silico batches
generated from them. For comparison, the variance explained by the model built using the large-N dataset is also reported.

Low-N scenario Large-N scenario

PC no. Explained variance [%] Cumulative explained variance [%] Explained variance [%] Cumulative explained variance [%]

1 7.85 8.04 28.31 28.31
2 6.37 14.22 14.18 42.50
3 5.82 20.04 11.14 53.63
4 5.31 25.34 8.98 62.62
5 4.95 30.30 6.35 68.97
6 4.85 35.15 1.62 70.59
7 3.98 39.14
8 3.41 42.55
9 3.04 45.49
10 2.72 48.30
11 2.57 50.87

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

14

In the sequel, when speaking about “coverage of the NOC”, we refer
to the NOC defined by the low-N batches, unless otherwise stated. In
fact, as already noted, the actual coverage of the NOC achieved in a
large-N scenario is impossible to know in advance.

6.1. Assessing the monitoring performance under low-N and large-N
scenarios

In this Section, we compare the process monitoring results from two
monitoring models: one is built using the low-N batches together with

the batches generated in-silico, and the other is built using the large-N
batches. We first consider two low-N scenarios, namely one with N = 4
(Section 6.1.1), and one with N = 3 (Section 6.1.2). The purpose is to
show that in-silico batch generation cannot lead to satisfactory moni
toring results if too small a number of low-N batches are available. Then,
for the case study with N = 4, we consider two additional sets of low-N
batches from which the in-silico ones are generated (Sections 6.1.3 and
6.1.4). We show that it is not only the number N of real batches that can
make the difference in the monitoring performance; in fact, also the
characteristics of the available real batches are critical.

Fig. 9. Reconstructed (a) F-density, (b) χ2-density for the same four low-N batches as in Fig. 7 (Case 1) and for the 200 in-silico batches generated from them.

Table 4
Mean and standard deviation of the coverage indicator iNOC across all time points for the variables of Fig. 6, using the same four low-N batches as in Fig. 7 (Case 1) and
the 200 in-silico batches generated from them.

Aeration rate Biomass concentration Penicillin concentration Cooling/Heating flow

Mean of iNOC 0.9759 0.9775 0.9758 0.9824
Standard deviation of iNOC 0.0089 0.0112 0.0130 0.0078

Fig. 10. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same four low-N batches as in Fig. 7
(Case 1) and the 200 in-silico batches generated from them. The true faulty batches are denoted with closed symbols.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

15

Fig. 11. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The three low-N batches selected as convenient for generating in-silico
data for process monitoring (Case 2) are indicated by red stars.

Fig. 12. Time profiles of (a) aeration rate, (b) biomass concentration, (c) penicillin concentration, (d) cooling/heating water flow rate for the same three low-N
batches as in Fig. 11 (Case 2), and for the 350 in-silico batches generated from them. For convenience, the variability of the large-N dataset is shown as a green-
shaded area.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

16

Fig. 6 shows the time profiles of four representative variables from
the large-N batches. For in-silico batch generation under a process
monitoring perspective, a convenient situation is one in which the low-N
batches fulfill both the following conditions: i) they have small Q re
siduals, and ii) they span a large variability in the (unknown) NOC of the
large-N scenario. The first condition is required because the in-silico
batches are expected to be generated around the hyperspace defined by
the low-N ones; therefore, if the low-N batches are lying on the hyper
space of the NOC of large-N scenario (i.e., Q ≅ 0 for the low-N batches),
the in-silico batches are likely to lie around such hyperplane. The second
condition is required because the variability of the in-silico batches is
approximately bounded by the one of the low-N batches; therefore, if the
low-N batches span too small a variability in the NOC of the large-N
scenario, the resulting monitoring model will be prone to labeling as
abnormal a batch that is actually normal but simply shows a greater
variability with respect to the low-N ones. Unfortunately, fulfillment of
the above two conditions cannot be tested in a low-N scenario, because
this would require knowing in advance the NOC space of the large-N
scenario, which is impossible.

6.1.1. Case 1: sufficient number (N = 4) and appropriate characteristics of
the real batches

A low-N case with N = 4 real batches fulfilling both conditions dis
cussed above is considered. To identify the low-N batches, the PCA
model built over the large-N dataset is considered. Let us assume that
the low-N batches are those indicated by the red stars in Fig. 7 (namely,
batches nos. 57, 71, 130 and 169): it can be seen that they span a large
portion of the large-N NOC space (Fig. 7a), and are characterized by Q
values that are well below the confidence limit (Fig. 7b).

The in-silico batch generation procedure returns 200 in-silico batches.
Fig. 8 shows the time profiles of the same variables of Fig. 6, for the low-
N batches and for the batches generated in-silico. A green-shaded area is
reported for convenience to map the unknown true variability, as
spanned by the large-N batches. In principle, this is also the variability
that one would like to reconstruct with the in-silico batches generated
from the low-N ones. It can be seen that the in-silico batch generation
methodology works well: the in-silico trajectories cover the operating
space bracketed by the low-N batches very satisfactorily, and the in-silico
trajectories are consistent with the original ones (i.e., similar patterns

Fig. 13. Reconstructed (a) F-density, (b) χ2-density for the same three low-N batches as in Fig. 11 (Case 2) and for the 350 in-silico batches generated from them.

Fig. 14. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same three low-N batches as in Fig. 11
(Case 2) and the 350 in-silico batches generated from them. The true faulty batches are denoted with closed symbols.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

17

are reproduced, and no significant noise is generated). As expected, the
variability of the in-silico batches is bounded by the one of the low-N
batches; this is particularly clear for the plots in Fig. 8a and d.

A PCA monitoring model is then built using the low-N batches
together with the batches generated in silico from them; 11 PCs are used,
capturing R̄2

≅ 50 % of the variance. The number of PCs is somewhat
greater than typically encountered in PCA modeling, and can be inter
preted as an indirect indication that an “artificial” large-N scenario (as
the one obtained through in-silico batches) embeds less systematic
variance than a real one. This is particularly clear when the model built
under the low-N scenario is compared to the one built under the large-N
scenario (Table 3).

The fittings of the F density and of the χ2 density are illustrated in
Fig. 9, together with the T2 and Q values of the low-N batches. The
sampled T2 density (Fig. 9a) satisfactorily approximates the theoretical
continuous one, thus confirming that the coverage of NOC provided by

the in-silico data is proper (i.e., the score points are multi-normally
distributed). The T2 values of the low-N batches are well within the
extremes of the F density, indicating that the in-silico batches are within
the variability of the low-N ones. With respect to the Q residuals
(Fig. 9b), they are small for the low-N batches (left-hand side of the χ2

density), indicating that they are close to the hyperspace of the low-N
PCA model; moreover, the fitting of the χ2 density is suitable.

With respect to the coverage indicator iNOC, the average value and
standard deviation along all the low-frequency time points for the four
considered variables are summarized in Table 4. The four mean values
are very close to 1, and the standard deviations are very small; this in
dicates that, for the four involved variables, the indicator iNOC is very
close to 1 across all the time points. Altogether, the results indicate that
the necessary conditions for the monitoring model to be reliable are
fulfilled.

The validation dataset is then considered, and results are illustrated

Fig. 15. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The four low-N batches deemed as unfit (because of large Q residuals) for
generating in-silico data for process monitoring (Case 3) are indicated by red stars.

Fig. 16. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same four low-N batches as in Fig. 15
(Case 3) and the 225 in-silico batches generated from them. The true faulty batches are denoted by closed symbols.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

18

in Fig. 10. We notice that the monitoring model calibrated with low-N
and in-silico batches provides a good monitoring performance: all faulty
batches (no. 16 through no. 19) are labeled as such in the Q residuals
plot, and only one false alarm (batch no.10) is raised in the same plot.
We remark that the performance of the monitoring model should be
benchmarked also against false alarms. In fact, although a false alarm
does not represent a concern for batch normality, it can lead to batch
rejection, therefore representing an economic penalty associated to
ineffective monitoring.

6.1.2. Case 2: insufficient number (N = 3) and appropriate characteristics
of the real batches

We consider a low-N scenario with N = 3 real batches fulfilling both
conditions discussed above. The score plot and the Q residuals plot are
shown in Fig. 11. Again, the low-N batches (namely, batches nos. 55, 57
and 130) are selected in such a way that they span sufficient variability
in the score plot and have small Q residuals.

For this simulation, the in-silico batches are generated using a
threshold value δ*

F = 0.16 (rather than δ*
F = 0.08) for the reconstruction

error of the F density, in order to improve convergence. A total of R =

350 in-silico batches are returned by the in-silico batch generation pro
cedure (note that R is much greater than obtained in Case 1), and results
are plotted in Fig. 12 in terms of process variable profiles. The coverage
of NOC by the in-silico data is still good for all variables; however, since
now the low-N batches span less variability than in Case 1, also the in-
silico trajectories do.

A monitoring model using the available real batch datasets together
with the in-silico ones is built. The fittings of the F density and of the χ2

density are shown Fig. 13: both of them are satisfactory, as are the values
of the Q residuals for the low-N batches. However, as discussed earlier,
this provides only a necessary condition to obtain a reliable monitoring
model, but sufficiency is not guaranteed. Indeed, Fig. 14 clarifies that
the monitoring performance against the validation dataset is poor.

Fig. 17. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The four low-N batches deemed as unfit (because of low variability) for
generating in-silico data for process monitoring (Case 4) are indicated by red stars.

Fig. 18. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same four low-N batches as in Fig. 17
(Case 4) and the 1500 in-silico batches generated from them. The true faulty batches are denoted by closed symbols.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

19

Fig. 19. Generation of in-silico batches using the same four low-N batches as in Fig. 7 (Case 1). Time profile of biomass concentration for (a) 25 in-silico batches, (b)
200 in-silico batches (for convenience, the variability of the large-N dataset is shown in (a) and (b) as a green-shaded area). Coverage indicator for biomass con
centration for (c) 25 in-silico batches, (d) 200 in-silico batches. Fitting of F-density with (e) 25 in-silico batches, (f) 200 in-silico batches.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

20

Whereas all validation faulty batches are correctly labeled as such by the
low-N monitoring model, almost all normal batches are wrongly iden
tified as faulty. This indicates that when too few low-N batches are
available, the monitoring performance can be inadequate, even if the
low-N batches have adequate characteristics and the in-silico batch
generation step returns reasonable trajectories for the process variables
(Reis, et al., 2021).

6.1.3. Case 3: sufficient number (N = 4) and inappropriate characteristics
(large Q residuals) of the real batches

We assume that enough real batches are available, and that they span
a large variability in the score plot (namely, N = 4; batches nos. 4, 67,
73 and 167; Fig. 15a). However, three of these batches are characterized
by large Q residuals (Fig. 15b).

After generating 225 in-silico batches and building the relevant
monitoring model, the monitoring results shown in Fig. 16 are obtained.
Despite the number of real batches is the same as in Case 1, the moni
toring performance is inadequate (yet better than in Case 2), given that
several normal validation batches are erroneously labeled as faulty.
Note that, also in this case, all true fault batches are correctly labeled as
faulty by the monitoring model.

6.1.4. Case 4: sufficient number (N = 4) and inappropriate characteristics
(insufficient variability) of the real batches

In this case, the available low-N batches do have small Q residuals,
but they span too low a variability in the hyperplane of the PCs (Fig. 17).
The in-silico data generation algorithm returns the profiles for R = 1500
batches. This number is meaningless from a practical perspective, and
provides indirect indication of the very small variability covered by the
available real batches. The monitoring results on the validation dataset
are shown in Fig. 18, and are clearly unacceptable: all batches are
labeled as faulty both in the Q residuals chart and in the T2 chart.

Cases 3 and 4 support the conclusion that, if the ultimate goal of in-
silico data generation is building a dataset to be used for process moni
toring, the number of available real batches is not the only parameter
that matters. The characteristics of the available real batches are also
crucial. Inadequate low-N data characteristics may not prevent the in-
silico data generation exercise to complete satisfactorily. However, the
resulting dataset will be inappropriate for process monitoring purposes,
because the monitoring model will likely rise several false alarms.

6.2. Impact of the number of batches generated in-silico

The purpose of this Section is to discuss how the number of batches
generated in-silico affects the coverage of the NOC; namely, reference is
made to the F density function and to the iNOC coverage indicator. We
assume to deal with a low-N scenario where the same N = 4 real batches
with favorable characteristics as in Case 1 are available. We compare a
situation, in which 25 in-silico batches are generated, to one where the
number of in-silico batches (namely, 200) is returned automatically by
the procedure proposed in Section 4.1. Among all variables, only the
biomass concentration is considered; results for the other variables are

qualitatively similar, and are omitted for conciseness.
Fig. 19a and b visually clarify that, when only 25 batches are

generated in-silico, the coverage is much smaller than when 200 in-silico
batches are generated; this issue is also quantitatively confirmed by the
coverage indicator iNOC (Fig. 19c and d). This affects the reconstruction
of the F density, which is quite rough when only 25 batches are gener
ated (Fig. 19e), thus indicating that the scores are far from being multi-
normally distributed; the situation is clearly better when 200 batches are
generated in-silico (Fig. 19f).

The reconstruction error for the F density is calculated according to
(29) at several numbers of in-silico batches, and outcomes are reported in
Table 5 together with summary values for iNOC. As expected, as the
number of in-silico batches increases, the reconstruction error decreases,
and iNOC gets closer to the reference. We conclude that the coverage
indicator and the density reconstruction errors are useful metrics that
can guide the user in the determination of the appropriate number of
batches to be generated in silico for process monitoring purposes.

6.3. Impact of the GP-SS model parameters

The main parameters of the GP-SS model are the memory parameter
L and the number J of resampled trajectories that are obtained for each
variable from the stratified resampling step. Next, we discuss how the
tunings of L (through δ(v)L) and of J affect the in-silico batch generation
results, and whether the methodologies we have proposed to estimate
appropriate values for these parameters return meaningful results. We
refer to the same N = 4 favorable low-N batches considered in Case 1.

6.3.1. Impact of parameter L
In Section 3.2, we have proposed a methodology to estimate L for a

given variable v at a given time point t, based on a threshold value δ(v)L for
the correlation between the set of values of the variable v at t, and the set
of the values that v takes at a preceding time point. Next, we discuss the
impact of δ(v)L (hence of L) on the in-silico generation results. For con
venience, we restrict our discussion to one single process variable,
namely the penicillin concentration, and we write δL instead of δ(v)L .

Fig. 20 compares the generation results for three values of the
threshold, namely δL = 0.999, δL = 0.5 and δL = 0.001. For better
comparability, 200 in-silico batches are intentionally generated in all
cases, regardless of the PDF reconstruction errors.

When δL is very large (δL = 0.999), the coverage is poor in the final
part of the batch (Fig. 20a), as also confirmed by the declining value of
iNOC (Fig. 20b). This is because the in-silico trajectories are tethered
around the low-N ones; in such a situation, parameter L is very small
(L = 1 for t ≥ 2; Fig. 20b), and the inherent correlation structure of the
variable (i.e., its autocorrelation) is therefore destroyed. This also ex
plains why the in-silico trajectories are so tethered around the real ones.

The situation improves with δL = 0.5 (this is the value used
throughout all simulations discussed elsewhere in this paper for this
specific variable); the proposed methodology returns values for L that
slowly grow in time (Fig. 20d), and this determines a much improved

Table 5
Reconstruction errors for the F density, mean across all the time points and standard deviation across all the time points of the coverage indicator iNOC for biomass
concentration at different numbers of batches generated in-silico from the same four low-N batches as in Fig. 7 (Case 1).

No. of batches generated in-silico F density reconstruction error Coverage indicator iNOC

Mean Std. dev.

25 0.2000 0.9088 0.0164
50 0.1675 0.9416 0.0172
75 0.1341 0.9550 0.0177
100 0.1045 0.9626 0.0185
125 0.0941 0.9691 0.0141
150 0.0843 0.9738 0.0111
175 0.0683 0.9758 0.0111
200 0.0663 0.9775 0.0112

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

21

coverage (Fig. 20c and d).
When δL = 0.001, the value of L by the end of the batch is too large

(Fig. 20f). This may explain why the in-silico trajectories are very noisy
(Fig. 20e), an occurrence that makes iNOC increase with respect to the
case with δL = 0.5 (Fig. 20f).

Unfortunately, fine tuning of δL is a matter of trial-and-error. Two

opposing effects need compromising: i) decreasing δL improves the
description of autocorrelation (and possibly of coverage); ii) increasing
δL reduces noise.

6.3.2. Impact of parameter J
Parameter J sets the number of resampled trajectories to be obtained

Fig. 20. Generation of 200 in-silico batches using the same four low-N batches as in Fig. 7 (Case 1). Time profile of the penicillin concentration for (a) δL = 0.999, (c)
δL = 0.5, and (e) δL = 0.001. Returned values for the memory parameter L and coverage indicator iNOC for penicillin concentration for (b) δL = 0.999, (d) δL = 0.5,
and (f) δL = 0.001. For convenience, the variability of the large-N dataset is shown in (a), (c) and (e) as a green-shaded area.

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

22

by stratified resampling for each variable. A methodology to tune the
value of J was proposed in Section 3.1, and its effectiveness is discussed
here. We consider several scenarios, where J is either estimated auto
matically according to the proposed methodology (using the parameters
of Table 2), or it is intentionally set to a smaller value. For each scenario,
the in-silico batch generation is carried out automatically, and the rele
vant PCA monitoring model is built. The monitoring models are then
assessed against the validation dataset. Results are summarized in
Table 6. We note that the value of J returned automatically leads to the
smallest number of labeling errors. This is probably due to the fact that
too small a value for J is likely to cause a smaller variability of the
resampled trajectories (hence of the in-silico batches) with the respect to
the low-N ones. Whereas this confirms the appropriateness of the
methodology we have proposed for the tuning of J, it must nevertheless
be noted that a six-fold decrease of the number of resampled trajectories
(J = 600) over the value returned automatically does not cause a dra
matic loss of monitoring performance.

7. Conclusions

In this paper, we have thoroughly investigated a methodology,
already proposed in the literature, that enables batch process moni
toring under low-N (i.e., small data) scenarios; namely, we have
addressed the issue of batch process monitoring when limited historical
manufacturing data are available. The problem is particularly mean
ingful when a new product is to be manufactured for the first time in a
given facility, or when an old product is to be transferred to a facility
wherein it has never been manufactured before. The methodology ex
ploits machine learning algorithms (based on Gaussian process state-
space models) to generate in-silico batch datasets from the few avail
able historical ones, and then uses the overall pool of real and in-silico
data to build a process monitoring model for the batch process. The
progress made by the research in this paper is twofold: on the algo
rithmic side, and on the process monitoring side.

From an algorithmic perspective, we have developed automatic (or
semiautomatic) procedures to tune the values of several parameters
required by the machine-learning framework, namely: i) the number of
trajectories to be resampled for each process variable, ii) the memory (or
lag) of each variable at each time point, and iii) the number of resampled
trajectories to be retained for each variable at each time point for GP-SS
model training. The proposed procedures facilitate the development,
interpretation and fine tuning of the GP-SS model, thereby streamlining
the generation of consistent in-silico batch trajectory data.

From a process monitoring perspective, we have clarified that, to
target the development of a reliable process monitoring model under a
low-N scenario, it is not only the number of available historical batches
that matters. In fact, the variability they cover across the (unknown)
domain of normal operating conditions of the process is also central.
Insufficient coverage does not prevent the in-silico batch data generation
process to complete satisfactorily; however, the resulting dataset will be
unfit for process monitoring purposes, typically resulting in a large
number of false alarms. Additionally, we have proposed: iv) a method,
based on the fitting of probability density functions of the monitoring
model statistics, to determine the appropriate number of batches to be
generated in-silico, and v) a set of indicators, based on Q-residuals plots
and on a new univariate coverage indicator, to assess the fulfillment of

necessary conditions that the overall pool of real and in-silico data should
possess in order to be exploited for process monitoring purposes.

We believe that further improvements of the in-silico batch data
generation methodology should be directed to better address the issue of
correlation in the data. Strictly speaking, correlation between variables
is not considered during GP-SS model training. This can significantly
downgrade the performance of a process monitoring model (e.g., one
based on principal component analysis), because it is precisely by
analyzing how each variable co-vary with the others (i.e., by modeling
the cross-correlation between variables) that abnormal operating con
ditions can be discriminated from normal ones. Therefore, being able to
generate in-silico trajectories that maintain the same cross-correlation
structure as the real ones is expected to further enhance the potential
for exploitation of this machine-learning methodology in a process
monitoring perspective.

Data availability

The Matlab software code (bGen) that was developed to carry out the
research described in this paper is available at the following GitHub link:
https://github.com/antoniobenedetti-pmh/BGen

Funding

This study was funded by GSK R&D, Medicine Development &
Supply, Drug Substance Development (U.S.).

CRediT authorship contribution statement

Luca Gasparini: Methodology, Software, Validation, Formal anal
ysis, Investigation, Data curation, Writing – original draft, Visualization.
Antonio Benedetti: Conceptualization, Resources, Writing – review &
editing, Project administration, Software, Funding acquisition. Giulia
Marchese: Resources, Software, Writing – review & editing. Connor
Gallagher: Resources, Writing – review & editing. Pierantonio Facco:
Conceptualization, Formal analysis, Writing – review & editing. Mas
similiano Barolo: Conceptualization, Formal analysis, Resources,
Writing – review & editing, Supervision, Project administration, Fund
ing acquisition.

Declaration of Competing Interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests:

Luca Gasparini reports financial support was provided by GSK R&D.
Massimiliano Barolo reports a relationship with GSK R&D that includes:
funding grants. Antonio Benedetti, Giulia Marchese and Connor Gal
lagher are employees of the GSK group of companies.

Acknowledgments

A preliminary investigation on this topic was carried out in 2021 by
Mr. Alberto Marchetto as a final thesis project of the Master’s Degree
program in Chemical and Process Engineering at University of Padova.
We gratefully acknowledge his contribution.

Table 6
Monitoring errors for different values of the number of resampled trajectories J using the same four low-N batches as in Fig. 7 (Case 1).

J = 3760 (calculated automatically) J = 1200 J = 600 J = 40

Returned number of in-silico batches 200 175 375 200
Number of labeling errors 1/19 2/19 2/19 4/19

L. Gasparini et al.

https://github.com/antoniobenedetti-pmh/BGen

Computers and Chemical Engineering 180 (2024) 108469

23

Appendix A - Formal description of the model training procedure for dynamics learning

This Appendix contains a formal description of the model training procedure for dynamics learning presented in Section 2.3.2.
The kernel matrix K (Zt− L,...,t− 1) is defined through the kernel function K (⋅, ⋅) at (6) in such a way that

[
K
(
Zt− L,...,t− 1

)]

i1 ,i2
= K

(
z(i1)t− L,...,t− 1, z

(i2)
t− L,...,t− 1

)
, i1, i2 = 1,…,K (A.1)

The GP-SS model of the process is then

zt |Zt− L,...,t− 1 = N
(
0K ,K

(
Zt− L,...,t− 1

))
, (A.2)

yt |zt = N
(
zt, σ2IK×K

)
, (A.3)

with N indicating a multi-variate Gaussian density, the vector zt representing the internal state of the process among the K considered trajectories at
time point t, 0K representing the column vector with all its K elements equal to 0 and IK×K the K × K identity matrix. Eq. (A.2) explains how the value of
the variable v at time point t (randomly) depends on its preceding L ones.

Parameters {η, α, σ} are estimated through a Maximum Likelihood estimator, using the training dataset D v,t (as in Tulsyan et al. (2019)). Initial
guesses can be determined following Ulapane et al. (2020); if numerical issues prevent from doing this, then no initial guesses are provided, and the
task is automatically executed by a given solver (e.g., MATLAB® can be used to this purpose).

Appendix B - Proof about D(J,h)

This Appendix contains a proof for D(J,h), which was introduced in Section 3.1.2 with reference to Eq. (9).
The framework is as follows:

• w different elements are available (in our specific context, the elements are the high-frequency time points themselves);
• J random samplings of these elements are done.

If the order of the samplings is meaningful, that is, if sequences (and not combinations) are actually considered, the total number of the possible
outcomes is wJ; indeed, each one of the J samplings has w possible different outcomes. Among these wJ sequences, a fraction of them does not contain
exactly w different points, but fewer; this is because some sequences present repetitions. Clearly, each one of the possible wJ outcomes has h different
elements, where h may take the values 1, 2, …, w. For convenience, denote by D̃(J, h, w) the number of sequences, with length equal to J, containing
exactly h different elements, and these h different elements are chosen from a set of w different ones. The number of sequences containing w different
elements is found by subtracting the number of sequences with fewer than w different elements from the total wJ, hence

D(J,w) = wJ −
∑w− 1

h=1
D̃(J,w, h). (B.1)

The number D̃(J,w, h) of sequences of J elements containing h different ones, with these ones coming from a set of w different elements, can be
calculated as

D̃(J,w, h) =
(

w
h

)

D(J, h). (B.2)

Indeed, the number of combinations of h elements chosen from w ones is
(

w
h

)

. To each combination of h elements, one can associate D(J, h) sequences

containing these specific h elements (and none else). Then, (B.2) follows. By substituting it into (B.1), Eq. (9) is obtained.

Appendix C - Proofs about the univariate coverage indicator iNOC

This Appendix gathers some technical proofs concerning the univariate coverage indicator iNOC introduced in Section 4.2.2.

C.1 Calculation of the mean of y

The aim here is to justify the existence of (33). First, recall (30) and (31); by substituting them into (32), we get

μy =
1

Ñ − 1

∑Ñ− 1

ñ=1

([x]ñ+1 − [x]ñ) (C.1)

=
1

Ñ − 1

(
∑Ñ

ñ=2

[x]ñ −
∑Ñ− 1

ñ=1

[x]ñ

)

(C.2)

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

24

=
[x]Ñ − [x]1

Ñ − 1
(C.3)

=
1

Ñ − 1
(C.4)

which is the same as (33). Moreover, this proves that

∑Ñ− 1

ñ=1

[y]ñ = 1. (C.5)

C.2. Bounds for iNOC

A further goal is to prove that 0 is a lower bound for iNOC. Using (C.5), one can write

y =

[

1 −
∑Ñ− 1

ñ=2

[y]ñ [y]2 … [y]Ñ− 1

]⊤

. (C.6)

Then, we have

∑Ñ− 1

ñ=1

[y]2ñ =

(

1 −
∑Ñ− 1

ñ=2

[y]ñ

)2

+
∑Ñ− 1

ñ=2

[y]2ñ (C.7)

= 1 − 2⋅
∑Ñ− 1

ñ=2

[y]ñ +

(
∑Ñ− 1

ñ=2

[y]ñ

)2

+
∑Ñ− 1

ñ=2

[y]2ñ (C.8)

≤ 1 − 2⋅
∑Ñ− 1

ñ=2

[y]ñ + 2⋅
∑Ñ− 1

ñ=2

[y]2ñ (C.9)

= 1 + 2⋅
∑Ñ− 1

ñ=2

[y]ñ⋅([y]ñ − 1)
⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟

≤0

(C.10)

≤ 1 (C.11)

and so iNOC = 1 −
∑Ñ− 1

ñ=1 [y]
2
ñ ≥ 0. The step from (C.8) to (C.9) is justified by the Cauchy-Schwarz inequality, which guarantees that

(
∑Ñ− 1

ñ=2 [y]ñ)
2
≤
∑Ñ− 1

ñ=2 [y]
2
ñ . The proof of the upper bound is trivial, since it is

∑Ñ− 1
ñ=1 [y]

2
ñ > 0, and it easily follows that iNOC = 1 −

∑Ñ− 1
ñ=1 [y]

2
ñ < 1.

C.3 Upper and lower bounds for iNOC

Reconsider (41). The upper bound for iNOC corresponds to the situation in which the coverage is excellent. This can be represented mathematically
by the fact that the vector x is composed of equally spaced elements, that is [x]ñ = (ñ − 1)/(Ñ − 1), which leads to [y]ñ = 1/(Ñ − 1) for each ñ; then,
(41) becomes

iNOC =
Ñ − 2
Ñ − 1

, (C.12)

which is close to 1 provided that Ñ is sufficiently large, which occurs if a sufficient number of in-silico batches have been generated.
The lower bound for iNOC occurs when all the Ñ values in x are either 0 or 1. This can be the case if N = 2, that is only 2 real batches are available,

and all the generated in-silico trajectories are tethered around the real ones for variable v at time point t. In such case, vector x contains 0′s as the left
elements and 1′s as the right ones (regardless of their repartitioning). This implies that y has only one entry equal to 1 and the remaining ones equal to
0; clearly, from (41), it follows that iNOC = 0.

Appendix D - Generation of the historical datasets

We provide information on how to generate the large-N and validation datasets discussed in Section 6 using the first-principles penicillin
fermentation model presented in Section 5 (Birol et al., 2002).

L. Gasparini et al.

Computers and Chemical Engineering 180 (2024) 108469

25

The NOC are characterized by acceptable variability around the nominal initial conditions (Table D.1) and the nominal operating variables
(Table D.2) of the process. Acceptable variability is obtained by sampling parameter ε (see the above Tables) from the Gaussian density N (0,1); this
operation is done independently for each variable subject to variability. Note that NOC characterize the entire set of batches in the large-N dataset, and
15 (out of 19) validation batches.

Table D.1
Nominal initial conditions, and acceptable variability around them, for the
generation of large-N and validation batches from the penicillin simulation
model (ε is a sample from the Gaussian density N (0,1)).

Initial condition Initial condition

Substrate concentration [g/L] 15+ ε
Dissolved O2 concentration [g/L] 1.16
Biomass concentration [g/L] 0.1
Penicillin concentration [g/L] 0
Culture volume [L] 150+ 10ε
CO2 concentration [mmol/L] 0.75+ 0.05ε
Hydrogen ion concentration H+ [mol/L] 10− 5+0.1ε

Substrate feed temperature [K] 297+ 0.2ε
Reactor temperature [K] 298
Generated heat [kcal/h] 0

Table D.2
Nominal operating variables, and acceptable variability
around them, for the generation of large-N and validation
batches from the penicillin simulation model (ε is a sample
from the Gaussian density N (0,1)).

Operating variable Value

Aeration rate [L/h] 8
Agitator power input [W] 30+ 4ε
Substrate feed rate [L/h] 0.04+ 0.001ε

The four faulty validation batches are characterized by nominal conditions similar to those of the NOC ones. However, unexpected changes in the
agitator power input or in the aeration rate occur at given times, as detailed in Table D.3.

Table D.3
Characterization of faulty conditions in the validation dataset.

Batch nos. Faulty variable Fault type Start time [h] End time [h] Fault magnitude

16, 17 Agitator power input Step 90 250 ‒40 %
18, 19 Aeration rate Ramp 150 300 ‒2.0 × 10‒3 (L/h)/h

The reactor temperature controller settings and pH controller settings are the same as in the original reference.

References

Agarwal, P., Tamer, M., Sahraei, M.H., Budman, H., 2019. Deep learning for
classification of profit-based operating regions in industrial processes. Ind. Eng.
Chem. Res. 59 (6), 2378–2395.

Berg, B.A., Harris, R.C., 2008. From data to probability densities without histograms.
Comput. Phys. Commun. 179 (6), 443–448.

Birol, G., Ündey, C., Cinar, A., 2002. A modular simulation package for fed-batch
fermentation: penicillin production. Comput. Chem. Eng. 26 (11), 1553–1565.

Chiang, L.H., Braun, B., Wang, Z., Castillo, I., 2022. Towards artificial intelligence at
scale in the chemical industry. AlChE J. e17644.

Hernandez, H., 2018. Comparison of methods for the reconstruction of probability
density functions from data samples. ForsCh. Res. Rep. 12.

Jackson, J.E., 1991. A User’s Guide to Principal Components. John Wiley & Sons s.l.
Kourti, T., 2003. Multivariate dynamic data modeling for analysis and statistical process

control of batch processes, start-ups and grade transitions. J. Chemom. 17 (1),
93–109.

Kourti, T., Nomikos, P., MacGregor, J.F., 1995. Analysis, monitoring and fault diagnosis
of batch processes using multiblock and multiway PLS. J. Process Control 5 (4),
277–284.

Kropotov, Y.A., Belov, A.A., Proskuryakov, A.Y., 2018. Estimation of the Distribution
Probability Density Acoustic Signals and interferences, the Reconstruction Methods.
IEEE, pp. 1–6 s.l.

Kullback, S., 1968. Information Theory and Statistics. Dover Publi. Inc., NY.
Ku, W., Storer, R.H., Georgakis, C., 1995. Disturbance detection and isolation by dynamic

principal component analysis. Chemom. Intell. Lab. Syst. 30 (1), 179–196.

Merhav, N., Gutman, M., Ziv, J., 1989. On the estimation of the order of a Markov chain
and universal data compression. IEEE Trans. Inf. Theory 35 (5), 1014–1019.

Moore, C.J., Chua, A.J., Berry, C.P., Gair, J.R., 2016. Fast methods for training Gaussian
processes on large datasets. R. Soc. Open Sci. 3 (5), 160125.

Morvai, G., Weiss, B., 2005. Order estimation of Markov chains. IEEE Trans. Inf. Theory
51 (4), 1496–1497.

Nakahama, H., et al., 1977. Dependency as a measure to estimate the order and the
values of Markov processes. Biol. Cybern. 25 (4), 209–226.

Nomikos, P., MacGregor, J.F., 1994. Monitoring batch processes using multiway
principal component analysis. AlChE J. 40 (8), 1361–1375.

Nomikos, P., MacGregor, J.F., 1995. Multivariate SPC charts for monitoring batch
processes. Technometrics 37 (1), 41–59.

Peres, Y., Shields, P., 2005. Two new Markov order estimators. arXiv preprint math/
0506080. https://doi.org/10.48550/arXiv.math/0506080.

Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning. MIT
Press, Cambridge, Massachusetts.

Rato, T.J., Delgado, P., Martins, C., Reis, M.S., 2020. First principles statistical process
monitoring of high-dimensional industrial microelectronics assembly processes.
Processes 8 (11), 1520.

Reis, M.S., Gins, G., 2017. Industrial process monitoring in the big data/industry 4.0 era:
from detection, to diagnosis, to prognosis. Processes 5 (3), 35.

Reis, M.S., et al., 2021. Improving the sensitivity of statistical process monitoring of
manifolds embedded in high-dimensional spaces: the truncated-Q statistic. Chemom.
Intell. Lab. Syst. 215, 104369.

L. Gasparini et al.

http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0001
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0001
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0001
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0002
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0002
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0003
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0003
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0004
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0004
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0005
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0005
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0006
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0007
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0007
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0007
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0008
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0008
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0008
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0009
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0009
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0009
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0010
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0011
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0011
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0012
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0012
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0013
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0013
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0014
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0014
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0015
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0015
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0016
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0016
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0017
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0017
https://doi.org/10.48550/arXiv.math/0506080
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0019
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0019
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0020
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0020
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0020
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0021
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0021
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0022
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0022
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0022

Computers and Chemical Engineering 180 (2024) 108469

26

Tulsyan, A., Garvin, C., Ündey, C., 2018. Advances in industrial biopharmaceutical batch
process monitoring: machine-learning methods for small data problems. Biotechnol.
Bioeng. 115 (8), 1915–1924.

Tulsyan, A., Garvin, C., Ündey, C., 2019. Industrial batch process monitoring with
limited data. J. Process Control 77, 114–133.

Ulapane, N., Karthic, T., Sarath, K., 2020. Hyper-parameter Initialization For Squared
Exponential Kernel-Based Gaussian Process Regression. IEEE, pp. 1154–1159 s.l.

Wise, B.M., Gallagher, N.B., 1996. The process chemometrics approach to process
monitoring and fault detection. J. Process Control 6 (6), 329–348.

Wu, H.H., Wu, S., 2009. Various proofs of the Cauchy-Schwarz inequality. Octogon Math.
Mag. 17 (1), 221–229.

L. Gasparini et al.

http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0023
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0023
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0023
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0024
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0024
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0025
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0025
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0026
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0026
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0027
http://refhub.elsevier.com/S0098-1354(23)00339-3/sbref0027

	On the use of machine learning to generate in-silico data for batch process monitoring under small-data scenarios
	1 Introduction
	2 Overview of the in-silico batch generation methodology
	2.1 Data from real batches
	2.2 Stratified resampling of the available data
	2.3 Two-stage exploitation of the resampled data
	2.3.1 Data partitioning
	2.3.2 GP-SS model training against the partitioned data

	2.4 In-silico batch generation

	3 Tuning of the GP-SS model parameters
	3.1 Tuning of J
	3.1.1 Formalisation of stratified resampling
	3.1.2 Determination of a lower bound for P(J,w)
	3.1.3 Determination of a suitable J
	3.1.4 Generalization for N>1 and V>1

	3.2 Tuning of L
	3.3 Tuning of K

	4 Role of the in-silico batches in a monitoring perspective
	4.1 Determining a suitable number of in-silico batches
	4.1.1 Defining the target densities for the monitoring statistics
	4.1.2 Reconstructing a continuous density from sampled values

	4.2 Assessing the in-silico batches from a monitoring perspective
	4.2.1 Positions of the Q residuals of the real batches
	4.2.2 Univariate indicator of the coverage

	5 Benchmark process
	6 Results and discussion
	6.1 Assessing the monitoring performance under low-N and large-N scenarios
	6.1.1 Case 1: sufficient number (N=4) and appropriate characteristics of the real batches
	6.1.2 Case 2: insufficient number (N=3) and appropriate characteristics of the real batches
	6.1.3 Case 3: sufficient number (N=4) and inappropriate characteristics (large Q residuals) of the real batches
	6.1.4 Case 4: sufficient number (N=4) and inappropriate characteristics (insufficient variability) of the real batches

	6.2 Impact of the number of batches generated in-silico
	6.3 Impact of the GP-SS model parameters
	6.3.1 Impact of parameter L
	6.3.2 Impact of parameter J

	7 Conclusions
	Data availability
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A - Formal description of the model training procedure for dynamics learning
	Appendix B - Proof about D(J,h)
	Appendix C - Proofs about the univariate coverage indicator iNOC
	C.1 Calculation of the mean of y
	C.2. Bounds for iNOC
	C.3 Upper and lower bounds for iNOC

	Appendix D - Generation of the historical datasets
	References

