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A B S T R A C T   

Batch process monitoring using principal component analysis requires sufficient historical manufacturing data to 
model the normal operating conditions of the process. However, when a new product is to be manufactured for 
the first time in a given facility, very limited historical data are available, thus entailing a small-data scenario. We 
thoroughly investigate and improve a data-driven methodology, previously reported in the literature (Tulsyan, 
Garvin & Ündey (2019). J. Process Control, 77, 114–133), that enables batch process monitoring under such type 
of scenarios. The methodology exploits machine learning algorithms (based on Gaussian process state-space 
models) to generate in-silico batch trajectory data from the few available historical ones, and then uses the 
overall pool of real and in-silico data to build a process monitoring model. We develop automatic procedures to 
tune the values of several parameters of this machine-learning framework, in such a way that the generation of 
consistent in-silico batch trajectory data can be streamlined, thus facilitating the deployment of the framework at 
an industrial level. Furthermore, we develop indicators and a metric to assist the in-silico data generation activity 
from a process monitoring-relevant perspective. Finally, using datasets from a benchmark simulated semi-batch 
process for the manufacturing of penicillin, we thoroughly investigate the appropriateness of the in-silico 
generated data for the purpose of process monitoring.   

1. Introduction 

In batch and semi-batch manufacturing, reproducibility (or consis
tency) across batches is required to guarantee that the end-product 
quality targets are met after every batch. Whether or not a new batch 
conforms to a set of “normal” batches that were run in the past can be 
assessed by using a data-driven process monitoring framework, where 
the most widely used one exploits multivariate statistical techniques, 
such as principal component analysis (PCA; (Jackson, 1991; Wise and 
Gallagher, 1996; Kourti, 2003)). The rationale behind this method is 
quite simple: (a) collect a set of historical batches that were run satis
factorily (“normal” batches); (b) build a PCA model on the trajectories of 
all measured variables across all normal batches; (c) using statistical 
control charts built through the PCA model, test whether a new batch 
can be considered normal; (d) if it is not, raise an alarm (fault diagnosis 

may then follow). This approach is very effective (Kourti et al., 1995; 
Reis and Gins, 2017), but suffers from a strong limitation: the required 
number of historical batches, which are needed to identify the set of 
normal operating conditions (NOC), is usually large (big-data scenario) 
(Chiang et al., 2022). This prevents it from being used when a new 
product is to be manufactured in a given facility for the first time. In fact, 
in this case, the number of historical batches is usually very small, 
because almost no history of past manufacturing of that particular 
product in that particular facility is available. This small-data scenario is 
also referred to as a low-N one, N being the number of available his
torical batches for the product being manufactured. As an industrially 
relevant example, low-N scenarios are frequently encountered by bio
pharmaceutical industries, for which first-principles modeling (Rato 
et al., 2020) is often impractical or impossible. In fact, for a new 
biotechnological product that is manufactured at a clinical or commer
cial scale (from 2k to 20k liters), the number of available historical 
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List of symbols 

||*|| euclidean norm of a given vector 
* | * conditional density of the left-hand side random vector 

with respect to the right hand-side one 
a, b scaled versions of ã, b̃ respectively 
ã, b̃ vectors extracted from the Z matrix 
A number of principal components 
ceil ceiling operator, ceil(x) = min{x′ ∈ Z|x′ ≥ x}
c(s) cardinality of Z (s) normalized with respect to the one of Z 

c(v)(t, τ) normalized estimation of the correlation for the variable v 
between the time points t and t − τ 

c̃(v)(t, τ) estimation of the correlation for the variable v between the 
time points t and t − τ 

C(J,w,h) auxiliary coefficient for the computation of P(J, w)

D(J,h) number of sequences of J elements that contain exactly h 
different (specific) ones 

D̃(J,w,h) number of sequences of J elements that contain exactly h 
different ones, choosing them from w different elements 

D v,t training dataset with reference to the variable v and time- 
point t 

floor floor operator, floor(x) = max{x′ ∈ Z|x′ ≤ x}
F symbol denoting an F-type continuous probability density 
F*,* F density with specified degrees of freedom 
G generic 3D matrix 
[

G
]

i1 ,i2 ,i3
entry of the generic 3D matrix G in position (i1, i2, i3)

h generic number of different high-frequency time points 
caught in a resampling interval 

i, i1, i2, i3 generic indexes to identify an element in a column vector 
or a matrix (either 2D or 3D) 

iNOC indicator of coverage 
ivar, imean auxiliary variables for the computation of iNOC 
It set of all the indexes of the J high-frequency time points 

from the t-th resampling interval 
IZ interval in which the fitting of a probability density 

function must be performed 
IK×K K × K identity matrix 
I 3D matrix containing in-silico batches 
j generic index identifying a batch from the stratified 

resampling among J ones 
jmin
τ (n,v,t), jmax

τ (n,v,t) auxiliary variables for the partitioning along J 
J number of resampled trajectories for each variable 
J (n,v, t) set containing the indexes of retained trajectories after the 

partitioning along J with reference to (n,v, t)
J τ(n,v, t) auxiliary set for the partitioning along J 
k low-frequency resampling interval 
K generic number of retained trajectories for each variable 

with the partitioning 
K(v, t) number of retained trajectories with the partitioning for 

the v-th variable and t-th time point 
Kn(v, t) number of retained trajectories with the partitioning for 

the n-th real batch, the v-th variable and t-th time point 
K (⋅, ⋅) kernel function 
K (Zt− L,...,t− 1) kernel covariance matrix 
L memory parameter 
L(v, t) memory parameter for the t-th low-frequency time point of 

the v-th variable 
m high-frequency sampling interval 
M generic 2D matrix 
[M]i1 ,i2 

entry of the generic 2D matrix M in position (i1, i2)
n generic index identifying a real batch 
ñ generic index identifying a row in Xcal 

N number of available real batches 
Ñ total number of batches among the real ones and the in- 

silico ones 
N Gaussian density (possibly multivariate) 
N (*,*) N density with specified mean and covariance 
N set of the natural numbers 
pJ required probability that every high-frequency time point 

is caught 
P(J,h) probability that by randomly resampling J times one 

achieves h different points in total 
P̃(J,w) lower-bound for P(J,h)
q generic index identifying a high-frequency time point 

(ranging from 1 to T̄) 
q̃(j) T-uple containing the high-frequency time points selected 

for the j-th resampled trajectory 
Q residual statistics 
Qlim statistical limit for Q 
r generic index identifying an in-silico batch 
R number of generated in-silico batches 
R̄2 lower bound for the variance to be explained when 

calibrating a PCA model with Xcal 

R set of the real numbers 
s generic index identifying a subinterval in IZ 

S number of rectangles for the fitting of a probability density 
function (subintervals of IZ ) 

t generic index identifying a low-frequency time point 
(ranging from 1 to T) 

T number of low-frequency time points 
T2 Hotelling statistics 
T2

lim statistical limit for T2 

T̄ number of high-frequency time points 
u sample from the discrete uniform density in {1,…,w}

v generic index identifying a process variable 
v generic column vector 
[v]i entry of the generic column vector v in position i 
V number of process variables 
w number of high-frequency time points per resampling 

interval 
x,x′ generic numbers 
x̂ vector extracted from Xcal 

x,x′, x″ auxiliary vectors derived from ̂x for the computation of iNOC 
xi,xj generic arguments for the K function 
X 3D matrix of the real batches 
Xcal calibration matrix containing down-sampled real batches 

and in-silico ones 
y auxiliary vector derived from x̂ for the computation of iNOC 
yt measured values of a specific variable among the K 

considered trajectories at time point t 
z,z1,…,zÑ generic values representing either T2 or Q values 
z′, z″ extreme values of IZ 

z(1)t− τ,…, z(K)t− τ values of the K retained trajectories respectively at the 
time point  
t − τ for a specific variable 

z(i)t− L,...,t− 1 vector containing the values of the i-th retained trajectory 
across the L time points for a specific variable 

Z 3D matrix of the resampled trajectories 
Zt− L,...,t− 1 matrix containing the values of all the retained trajectories 

across the L time points for a specific variable 
Z whole set of either T2 or Q statistics for Xcal 

Z (s) subset of Z containing the elements belonging to I(s)Z 

Z set of the integer numbers 
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batches may be as small as two to four. A PCA model built on such a 
small number of batches would result in unsatisfactory monitoring 
performance, because the process data would be insufficient to derive 
any statistical inference about the process. In batch process monitoring, 
this is a longstanding problem that is typically tackled by downgrading it 
from multivariate to univariate, until enough batches are collected to 
enter a large-N (big-data) scenario. Recently, Tulsyan et al. (2018, 2019) 
proposed a machine-learning methodology to effectively transition from 
low-N to large-N scenarios, with no need to downgrade the monitoring 
problem to univariate. Basically, the methodology uses machine 
learning to build a virtual large-N scenario from a low-N one. More 
specifically, it exploits a block-learning method for a Bayesian 
non-parametric model of the process under investigation, which enables 
modeling the process using a Gaussian process state-space (GP-SS) 
model. Then, it uses probabilistic programming to generate an arbi
trarily large number of in-silico batch datasets, which can be used to 
build a PCA model until a sufficient number of historical batches has 
been accumulated to enter a large-N scenario. The authors test the 
methodology on proprietary datasets, and show that the resulting 
monitoring models are able to detect a faulty batch when as few as two 
or three historical batches are available. Whereas this methodology 
elegantly addresses the low-N problem in a systematic way for the first 
time, it suffers from some limitations that can hinder deployment at the 
industrial level. 

From the algorithmic side, the machine-learning framework pro
posed by Tulsyan et al. (2018, 2019) requires assigning the values to 
several parameters, among which the number of trajectories to be 
resampled for each process variable, the memory (lag) of each process 
variable, and the number of resampled trajectories to be retained for 
each variable for GP-SS model training. These parameters affect the 
computational cost and performance of the in-silico data generation, and 
eventually also the performance of the process monitoring model. 
However, no systematic methodology was proposed to tune them. 

From the process monitoring side, there is a need of investigating 
more systematically the role of not only the number, but also the char
acteristics of the available low-N batches that cause the in-silico data 
generation procedure to return trajectories that are indeed useful for 
process monitoring. Additionally, how many in-silico batches should be 
generated to build the process monitoring model is still to be investi
gated. Finally, we note that the results reported by Tulsyan et al. (2018, 
2019) only refer to the ability of a monitoring model to detect a faulty 
batch. However, whether or not a normal batch is detected as such is also 

crucial in batch process monitoring, because false alarms can lead to 
rejecting batches that are actually normal, thus causing an economic 
penalty. 

In this study, we address all the above issues systematically. Our 
contributions can be summarized as follows. (i) We develop automatic 
(or semiautomatic) procedures to tune the values of the machine- 
learning framework parameters, in such a way that the generation of 
consistent in-silico batch trajectory data can be streamlined, thus facili
tating the deployment of this framework at an industrial level. (ii) We 
develop indicators and a metric to assist the in-silico data generation 
exercise from a process monitoring-relevant perspective. (iii) Using 
datasets from a benchmark simulated semi-batch process for the 
manufacturing of penicillin, we thoroughly investigate the appropri
ateness of the data generated in-silico to the purpose of process 
monitoring. 

The remainder of this paper is organized as follows. Section 2 pro
vides a general overview of the in-silico data generation methodology 
proposed by Tulsyan et al. (2018, 2019), with emphasis on the im
provements proposed in this paper. Section 3 focusses on the tuning of 
parameters. A discussion on in-silico data generation in a process 
monitoring perspective is provided in Section 4. Section 5 introduces the 
benchmark process. Results are provided and discussed in Section 6. 
Conclusions are drawn in a separate section. A set of Appendices provide 
some theoretical insights, and a guideline to the generation of historical 
datasets through the benchmark simulator. 

2. Overview of the in-silico batch generation methodology 

This Section presents the methodology for in-silico batch generation 
adopted in this study. Details about the methodology have been pre
sented by Tulsyan et al. (2019), and we will not report all of them here. 
Rather, we focus on the improvements we propose with respect to the 
original methodology. Software and data are made available as illus
trated in the Data availability section. 

Throughout this paper, a boldface character denotes a vector (if 
lowercase) or a matrix (if uppercase). A boldface character within 
square brackets and with subscripts denotes the element of a vector or a 
matrix: namely, the i-th element of the generic column vector v is 
denoted as [v]i; notation [M]i1 ,i2 

is used for the element in position (i1, i2)
of the two-dimensional (2D) matrix M; the element in position (i1, i2, i3)

of the three-dimensional (3D) matrix G is denoted as 
[

G
]

i1 ,i2 ,i3
. 

0K column vector with all its K elements equal to 0 
1J column vector with all its J elements equal to 1 

Greek letters 
α hyperparameter of the K function 
ε sample from the Gaussian density N (0,1)
δ(v)L threshold for the estimation of L for the v-th variable 
δL threshold for the estimation of L for a generic variable 
δϕ̃, ϕ reconstruction error of ϕ̃ with respect to ϕ 

δ*
F threshold for the reconstruction error of the F density 

δ*
χ2 threshold for the reconstruction error of the χ2 density 

η hyperparameter of the K function 
μã mean of the vector ã 
μQ mean of the whole set of Q statistics of Xcal 

μy mean of the vector y 
ρ number of in-silico batches generated at each iteration 
σ standard deviation of the measurement noise in a GP-SS 

model 

σã standard deviation of the vector ã 
σQ standard deviation of the whole set of Q statistics of Xcal 

σy standard deviation of the vector y 
τ number of shifting time points 
ϕ generic probability density function to be reconstructed 
ϕ̃ approximation from samples of ϕ 
ϕT2 nominal PDF of T2 values 
ϕQ nominal PDF of Q residuals 
χ2 symbol denoting a χ2-type continuous probability density 
χ2

* χ2 density with specified degrees of freedom 

Acronyms 
GP-SS Gaussian process state-space 
NOC normal operating conditions 
PDF probability density function 
PC principal component 
PCA principal component analysis  
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Furthermore, both the floor and the ceil operator are used, i.e., floor(x)
= max{x′ ∈ Z|x′ ≤ x} and ceil(x) = min{x′ ∈ Z|x′ ≥ x} for any x ∈ R, 
where Z is the set of the integer numbers, and R the one of the real 
numbers. 

2.1. Data from real batches 

The inputs to the in-silico data generation methodology consist of 
high-frequency real batch data collected in the 3D matrix X with size N 
× V × T̄, where N is the number of real batches (N typically being a 
“small” number), V is the number of measured variables, and T̄ is the 
number of high-frequency time points along which each variable is 
measured. We denote with m the high-frequency sampling interval, 
which is assumed to be the same for all variables. Note that, in the 
context of this study, the high and low frequency attributes are denoted 
on a relative basis, rather than on an absolute one; namely, a sampling 
frequency is considered high when it is much greater than the one 
(denoted as low) required for process monitoring. 

2.2. Stratified resampling of the available data 

Data resampling is a strategy for data augmentation (Agarwal et al., 
2019). Here, we consider the stratified resampling approach proposed 
by Tulsyan et al. (2019). For a given real batch, J/N trajectories are 
generated for each measured variable by low-frequency resampling of 
the relevant high-frequency trajectory. Therefore, for each variable, the 
overall number trajectories created by resampling from the entire set of 
real batches is (J /N)⋅N = J. Essentially, stratified resampling of a var
iable trajectory for a given real batch consists first in partitioning its time 
profile into a number of subintervals. A resampled trajectory is then 
obtained by randomly collecting a sample from each of these sub
intervals (which are the actual “strata”), and by repeating this operation 
J/N times. Whereas J needs to be sufficiently large in order to achieve 
sufficient data augmentation, too large a value of J increases the 
computational cost with possibly no benefits in terms of process moni
toring performance. How to determine a reasonable value for J is not 
discussed by Tulsyan et al. (2019). Later in this paper (Section 3.1), we 
consider this issue in detail. 

Loosely speaking, stratified resampling generates J “artificial” 
batches from the N available real ones; however, since the resampled 
trajectories are tethered around the original (real) ones, stratified 
resampling does not change the coverage of NOC. Therefore, the 
resampled trajectories cannot be used by themselves to augment the real 

data in order to build a reliable model for batch process monitoring. 
For a given resampling interval k, with k≫m and multiple of m, the 

resampled trajectories are collected in the 3D matrix Z ∈ RJ×V×T, with 
T = floor(mT̄ /k) ∈ N, and N being the set of the natural numbers. If 
mT̄/k > T is found, the remaining part of batches is simply discarded; for 
simplicity, the assumption T = mT̄/k ∈ N is then made here. For 
compactness, define w as the number of high-frequency time points 
contained in a resampling interval, formally w = k/m ∈ N; it follows 
that T = T̄/w. 

The stratified resampling operation is formally carried out as follows: 

n = ceil
(

j
J/N

)

, (1)  

[
Z(j, 1, t)… Z(j,V, t)

]

=
[
X(n, 1,w⋅(t − 1) + u)… X(n,V,w⋅(t − 1) + u)

] (2)  

where u comes from the discrete uniform density in {1,…,w}. The full 
matrix Z is built by doing (1) and (2) for j = 1,…, J and t = 1,…, T. An 
example of such operation is shown in Fig. 1 for J = 3 resampled low- 
frequency trajectories (broken lines) from one single high-frequency 
trajectory (solid line). 

2.3. Two-stage exploitation of the resampled data 

Dataset Z is then used to train a GP-SS model, which will eventually 
allow generating in-silico batches to be used for process monitoring. In 
the context of machine-learning techniques, GP modeling represents a 
powerful modeling methodology that allows non-parametric model 
learning; namely, no assumptions about model structure are required, 
which is very favorable for process modeling (Rasmussen and Williams, 
2006). 

GP-SS model training is accomplished according to a two-step pro
cedure: data partitioning is done first (Section 2.3.1), in order to save 
computational time during model training; then, actual model training 
is carried out (Section 2.3.2). 

2.3.1. Data partitioning 
The learning phase for a GP-SS model is known to be computation

ally intensive (Moore et al., 2016). Specifically, using the entire Z matrix 
as a training dataset for the GP-SS model can make the computational 
problem at hand prohibitive. To tackle this issue, we adopt the same 
strategy originally proposed by Tulsyan et al. (2019). First, the overall 

Fig. 1. Stratified resampling. In this example, we have: N = 1 real batch, V = 1 variable, J = 3 resampled trajectories, T = 5 low-frequency time points, k = 2 time 
units resampling interval. The original sampling interval is very small and it is not shown for ease of reading. 
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dataset is sliced along the time direction into smaller datasets, which are 
built by assuming that, for each variable and each time point, the sample 
for that variable at that time point depends only on the L ≥ 0 preceding 
ones; stated differently, we assume that each variable trajectory is a 
Markov process with order L. The value of L for a given variable and time 
point sets the “memory” (or lag) of the process for that particular vari
able at that particular time point. Parameter L is assumed to be known a 
priori by Tulsyan et al. (2019), and identical for each variable and each 
time point. However, none of the two conditions may occur in practice. 
Later in this paper (Section 3.2), we propose a semiautomatic method
ology to estimate an appropriate value for L for each variable and each 
low-frequency time point. 

Then, to further reduce the computational cost, only K≪J resampled 
trajectories for each variable and time point are retained for model 
training. Each one of these retained trajectories has length L + 1, since 
this partitioning occurs right after the one along the time direction. An 
example of such framework is illustrated in Fig. 2 for a generic process 
variable and low-frequency time point. Tulsyan et al. (2019) do not 
provide indications about how to choose K. We address this issue in 
Section 3.3, where we propose a method that automatically tunes K for 
each variable and each time point. 

According to these operations, a reduced training dataset D v,t can 
eventually be related to each pair (v, t), i.e., to each variable v and low- 
frequency time point t. Namely, the training dataset contains the K 
retained trajectories for variable v at time point t, each one having 
length L+ 1; these trajectories span the time points from t − L to t itself. 
To provide a formal representation of D v,t , we simplify the notation by 
omitting the variable index v as well as the reference to the last time- 
point t the trajectories include. Then, let us denote as z(1)t− τ,…, z(K)t− τ the 
values that the K retained trajectories respectively take at time point 
t − τ for τ = 0,…, L (assuming that L > 0) for variable v. Then, define 

z(i)t− L,...,t− 1 =
[

z(i)t− L ... z(i)t− 1

]⊤
, i = 1,…,K, (3)  

Zt− L,...,t− 1 =
[
z(1)t− L,...,t− 1…z(K)

t− L,...,t− 1

]⊤
. (4)  

Define the vector 

yt =

⎡

⎢
⎢
⎣

z(1)t

⋮
z(K)

t

⎤

⎥
⎥
⎦ (5)  

representing the measured values of the process variables. The reduced 
training dataset is then D v,t = {Zt− L,...,t− 1, yt}. If L = 0, then the 
computation of (3) and (4) is meaningless, and it is simply D v,t = {yt}. 

2.3.2. GP-SS model training against the partitioned data 
Once that data partitioning is obtained, a GP-SS model is trained 

against the reduced dataset D v,t, for each variable v and for each low- 
frequency time point t. This allows one to build a probabilistic frame
work for the generation of in-silico batches. Next, we discuss how 
training is carried out. 

Let us consider a given variable in Z. If L = 0 for that variable at a 
given time point, then its value at that time point is considered to be 
Gaussian distributed, with mean and covariance being determined by 
the K retained artificial trajectories for that variable (prior learning); to 
find them, one can simply calculate the mean and standard deviation of 
vector yt defined in (5). If L > 0, then a squared exponential kernel is 
used to model the covariance matrix of the transition density from the 
value at the current time point and the L preceding ones; in practice, we 
assume that the variable evolves through a certain dynamics that is to be 
identified, i.e., a “dynamics learning” has to be carried out. The idea of 
using such type of kernel was originally proposed by Tulsyan et al. 
(2019). Here, we use the simplified version 

K
(
xi, xj

)
= α2exp

(
−
⃒
⃒
⃒
⃒xi − xj

⃒
⃒
⃒
⃒2

2η2

)

, (6)  

because it involves a smaller number of hyperparameters. In (6), K (⋅, ⋅)
is the actual kernel function, xi and xj are vectors of L components, 
containing values of the process variable at issue, while α and η are 

Fig. 2. Schematic representation of data partitioning along two directions (time and number of resampled trajectories) for one single variable in one single batch 
when the memory is L = 2 time points for that variable; a set of J = 3 resampled trajectories are available from stratified resampling. With reference to the fourth 
resampling interval: first, only the L = 2 preceding resampling intervals are considered for all the J resampled trajectories; then, only K = 2 < J resampled tra
jectories (each one containing only L + 1 = 3 time points) are retained out of the entire set. The dotted segments connect the resampled time points eventually 
retained for GP-SS model training. 
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hyperparameters (η is the characteristic length scale, and α is the signal 
standard deviation). 

Following Tulsyan et al. (2019), we consider additive white Gaussian 
noise N (0, σ2) as measurement noise. A formal description of the GP-SS 
model with reference to a given variable and low-frequency time point is 
reported in Appendix A. 

The training operations need to be repeated for each time point t ∈
{1,…,T} and for each variable v ∈ {1,…,V}. Each (v, t) pair can then be 
referred to either a prior learning operation or a dynamics learning one. 
When training is concluded, a probabilistic model of the process is 
available for each variable and low-frequency time point. 

2.4. In-silico batch generation 

In-silico trajectories can be generated for all variables using the 
trained GP-SS model, thus generating a set of in-silico batches that can 
then be used to build a process monitoring model. 

Let I indicate the 3D matrix collecting the in-silico data to be 

generated, and let 
[
I
]

r,v,t 
be the value of variable v at time point t for in- 

silico batch r. If L = 0, then 
[
I
]

r,v,t 
is generated according to the prior 

Gaussian density, using the mean and the covariance calculated during 

GP-SS model training. If L > 0, then 
[
I
]

r,v,t 
is generated by using the 

samples from t − L to t − 1, that is 
[
I
]

r,v,t− L
,…,

[
I
]

r,v,t− 1
, according to the 

mathematics of GPs. The rationale we use in this study is the same 
presented as Algorithm 4 in Tulsyan et al. (2019), and will not be dis
cussed further here. 

The in-silico generation is continued until the in-silico dataset is large 
enough, i.e., until the monitoring model being built is deemed reliable. 
No indications about a suitable size of the in-silico dataset is provided by 
Tulsyan et al. (2019). We address this issue in detail in Section 4.1. 

3. Tuning of the GP-SS model parameters 

The original study of Tulsyan et al. (2019) proved groundbreaking in 
addressing the low-N problem in a process monitoring context by means 
of a GP modeling methodology. Yet, no guidelines were provided on 
how to assign appropriate values for the model parameters. This Section 

is meant to fill this gap. 

3.1. Tuning of J 

The stratified resampling operation involves the risk that a certain 
amount of information about the original (real) batches gets lost upon 
resampling. Particularly, the resampled trajectories of a given variable 
may show less variability than the original ones in X (this may occur, for 
example, if stratified resampling fails from capturing enough peaks/ 
valleys in the real trajectories). Hence, the number J of resampled tra
jectories should be determined in such a way as to preserve the vari
ability of the real data. 

3.1.1. Formalisation of stratified resampling 
As already discussed, stratified resampling consists in obtaining J/N 

low-frequency trajectories for each high-frequency one measured in a 
given real batch for each variable. Next, we assume that only one 
measured variable exists and one real batch is available, i.e., N = V = 1; 
the generalization to several batches and several variables is provided in 
Section 3.1.4. 

Recall that w is the number of high-frequency time points per 
resampling interval (Section 2.2). Every resampled trajectory (indexed 
by j = 1, …, J) can be identified by a T-uple q̃(j), containing the high- 
frequency time points that have been selected for that trajectory; 
denote with [q̃(j)

]t , t ∈ {1,…,T}, the t-th element of q̃(j). It follows that 
[
q̃(j)]

t ∈ {(t − 1)⋅w+ 1,…, t⋅w}. (7) 

To ensure that the resampled trajectories cover the same variability 
as the real ones, it is required that each high-frequency time point ap
pears at least once in any of the J resampled trajectories. Formally, it is 
required that 

∀q ∈ {1,…, T̄} ∃ j ∈ {1,…, J} | q=
[
q̃(j)]

t, t = ceil(q /w). (8)  

In other words, let It = {[q̃(1)
]t ,…, [q̃(J)

]t} be the set all of the high- 
frequency time points captured in the resampling interval with index t 
through the J random selections. Each high-frequency time point in 
{(t − 1)⋅w+1,…, t⋅w} is required to appear at least once in It; equiva
lently, It must contain exactly w different elements among all the J ones 
considered, and this must hold for all t ∈ {1,…,T}. 

Fig. 3. Schematic representation of the outcomes of the stratified resampling operation over three resampling intervals for a given variable. For both the central 
resampling interval and the rightmost one, not all the w high-frequency time points are captured by the resampled trajectories. 

L. Gasparini et al.                                                                                                                                                                                                                               



Computers and Chemical Engineering 180 (2024) 108469

7

A situation violating this condition is illustrated in Fig. 3. In this case, 
we have w = 3 high-frequency time points within each resampling in
terval, and J = 4 resampled batches; for both the central resampling 
interval and the rightmost one, only 2 < w different high-frequency 
time-points are captured by the resampled trajectories, despite J > w 
trajectories were resampled. 

We propose the following two-step procedure to estimate J: 

Step 1. Determine the probability P(J,w) that, by doing J repeated 
random selections from a pool of w different high-frequency time points 
within a given resampling interval, each point is extracted at least once; 
or, equivalently, that all the w different points do appear in the outcome 
of the J random selections; 

Step 2. Determine the minimum value of J such that P(J,w) is greater 
than a given threshold. 

Step 1 is done by determining a lower bound for P(J,w) in analytical 
form. This is addressed in Section 3.1.2. 

3.1.2. Determination of a lower bound for P(J,w)

Let D(J, h) be the number of sequences made by J elements that 
contain exactly h different (specific) elements, for each h = 1, …, w, 
where h indicates a high-frequency time point. It can be shown that the 
following equation holds: 

D(J,w) = wJ −
∑w− 1

h=1

(
w
h

)

D(J, h). (9)  

This fact is proved in Appendix B. Upon division by wJ, the previous 
equation can be rewritten as 

D(J,w)
wJ = 1 −

∑w− 1

h=1

(
w
h

)
D(J, h)

wJ , (10)  

and then, by defining P(J,h) = D(J,h)/hJ, h = 1,…,w, one can write 

P(J,w) = 1 −
∑w− 1

h=1

(
w

h

)
hJ

wJ

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
=C(J,w,h)

P(J, h).
(11)  

Being P(J, h) a probability value, then P(J, h) ∈ [0,1] and hence the 
previous equation yields 

P(J,w) ≥ 1 −
∑w− 1

h=1
C(J,w, h)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

=P̃(J,w)

.
(12)  

The right-hand side quantity ̃P(J,w) in (12) is actually a lower bound for 
P(J,w), and this is sufficient for our purpose because we require P(J,w)

to be greater than a threshold. 

3.1.3. Determination of a suitable J 
It is convenient to assign a-priori the probability pJ ∈ (0,1) that It 

contains w different elements for each resampling interval t = 1,…,T. 
Since the resampling operations are independent across the resampling 
intervals, the probability for a single interval is p1/T

J , and this is the 
actual lower bound for P(J, w). Therefore, one can evaluate P̃(J,w)

defined in (12) for J = w, and then increase the guess of J until 
P̃(J,w) ≥ p1/T

J . 

3.1.4. Generalization for N > 1 and V > 1 
If more than one real batch is considered (i.e., N > 1), then the al

gorithm discussed above is used to estimate J/N rather than J, and the 
reference threshold for P(J /N, w) becomes p1/(N⋅T)

J ; hence J is increased 
until P̃(J /N, w) ≥ p1/(N⋅T)

J . Each one of the N real batches leads to J /N 

resampled trajectories, in such a way that the total number of resampled 
trajectories is still indicated as J. The generalization to the case with V >

1 does not require any modifications, since the resampling is done with 
reference to all the variables for each time point. Note that this algo
rithm uses only the number w of time points within a resampling interval 
as an input, and w is same for the all variables in all batches. Therefore, 
the same value of J/N for all variables and all batches will be found. 

3.2. Tuning of L 

Parameter L has a critical role, as it tunes the memory of each process 
variable. The issue of estimating the order in Markov processes has been 
addressed by several researchers in different contexts (Nakahama, et al., 
1977; Ku et al., 1995; Peres and Shields, 2005; Merhav et al., 1989; 
Morvai and Weiss, 2005). In this study, we propose a methodology that 
is a compromise between computational burden, mathematical rigor 
and easiness to interpret the results in the specific context it is applied to. 
The methodology returns a value of L that is adjusted for each variable at 
each low-frequency time point; therefore, notation L(v, t) will be used. 

Consider the following column vectors derived from matrix Z: 

ã =

[[
Z
]

1,v,t
…
[
Z
]

J,v,t

]⊤

, (13)  

b̃ =

[[
Z
]

1,v,t− τ
…
[
Z
]

J,v,t− τ

]⊤

(14)  

for a given value of τ ∈ {0, …, t − 1}. They represent the entire set of 
values of a given variable v at time point t and at time point t − τ ≤ t 
(respectively) across all resampled batches in Z. Let μã and σã be the 
mean and standard deviation of ̃a respectively, and let 1J be the column 
vector with all its J elements equal to 1. With these values, we compute 

a =
ã − μã⋅1J

σã
, (15)  

b =
b̃ − μã⋅1J

σã
. (16)  

Thus, ̃a has been auto-scaled, while this has not been the case for b̃. The 
correlation between a and b (i.e., the correlation between the set of 
values of variable v at time point t and the set of the values it takes at the 
preceding time point t − τ) is defined as 

c̃(v)(t, τ) = a⊤b
J − 1

. (17)  

According to the Cauchy-Schwarz inequality (Wu and Wu, 2009), we 
can write 

c(v)(t, τ) = |a⊤b|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a⊤a)⋅(b⊤b)

√ ∈ [0, 1], (18)  

provided that both a and b have norm different from 0. Since a is the 
result of an autoscaling operation, it is a⊤a = J − 1 if a has norm 
different from 0. 

If a or b has norm equal to 0, then c(v)(t, τ) in (18) is not computable, 
and we address the issue as follows. We set c(v)(t, τ) = 1 if τ = 0, that is 
any value of v at a specific time point is maximally correlated with itself. 
For τ ≥ 1, we set c(v)(t, τ) = 0. This means that either ã or b̃ contains J 
equal values; in practice, the value taken by variable v at either time 
point t or t − τ is deterministic, and therefore it is uncorrelated with the 
values at any other time points. 

A threshold δ(v)L ∈ [0,1] is then set on c(v)(t, τ): if c(v)(t, τ) is smaller 
than the threshold, then the values of v at the two involved time points 
(i.e., t and t − τ) are considered uncorrelated, and L(v, t) is reduced of 
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one unit (i.e., the estimated memory is reduced of one resampling in
terval) with respect to its current guess. 

We suggest setting the same δ(v)L for all the variables at the beginning; 
each value can then be adjusted if results for the case study at hand are not 
satisfactory. Tentative values for δ(v)L can be assigned as follows. A value of 
δ(v)L = 0.1 can be used to obtain large values of L (this may be appropriate 
for process variables displaying flat time profiles); a value of δ(v)L = 0.5 
may fit trajectories showing significant dynamics; greater values of δ(v)L (e. 
g., δ(v)L ≥ 0.9) can be used to obtain small L’s, which may be useful for very 
noisy trajectories, where autocorrelation is harder to notice by inspection. 
An example of how to perform this adjustment is provided in Section 6.3.1. 

The procedure to estimate L is summarized in the flowchart of Fig. 4 
for a generic variable v at a time point t ≥ 2 . Clearly, it is L(v,1) = 0 for 
any v. For t ≥ 2, the initial guess for L(v, t) assumes that the memory at a 
certain time point is not greater than the memory at the previous time 
point plus one sample, that is L(v,t) ≤ L(v,t − 1)+ 1; clearly, this is only 
an initial guess, and the estimation algorithm may end up even with a 
decrease of the memory, that is L(v, t) < L(v, t − 1). Moreover, L(v, t) is 
not decreased below 1 for t ≥ 2; this represents the fact that any time 
point after the first one does have memory of at least one sample. 

3.3. Tuning of K 

The number K of resampled trajectories to be retained for each 
variable is the parameter that eventually sets the size of training dataset 
for the GP-SS model. The tuning procedure we propose sets the value of 
K for each variable at each time point; hence notation K(v, t) will be 
used. Whereas Tulsyan et al. (2019) assign K, and use the K-furthest 
neighbors algorithm to determine the indices of the resampled trajec
tories to be retained, we propose a different approach, that simulta
neously returns both a suitable value of K and the indices of the 
trajectories to be retained. The proposed approach is completely auto
matic, does not require initialization, and is computationally efficient. 
The underlying idea is to retain the smallest number of trajectories that 
can preserve the same variability as the entire set of trajectories in Z. To 
this purpose, for a given variable, we retain all and only the trajectories 
that, for any of the considered time points, include either maximum or 
minimum values of that variable. Next, a formal discussion of the pro
posed algorithm is presented. 

Consider the triplet (n, v, t) indicating one real batch, one variable 
and one low-frequency time point. Furthermore, consider the current 
value of L, i.e., L(v, t); this allows identifying the set of time points  

t − τ, for τ = 0,…, L(v, t). Then, enumerate the variable trajectories 
coming from the resampling of the variable v for the batch n, namely 
j = (n − 1)J/N+ 1, …, nJ/N, and define J τ(n, v, t) = {jmin

τ (n, v, t),
jmax
τ (n, v, t)} with 

jmin
τ (n, v, t) = argminj∈{(n− 1)J/N+1,…,nJ/N}

[
Z
]

j,v,t− τ
, (19)  

jmax
τ (n, v, t) = argmaxj∈{(n− 1)J/N+1,…,nJ/N}

[
Z
]

j,v,t− τ
. (20)  

This operation is done for every τ ∈ {0,…,L(v,t)}. Finally, one can write 

J (n, v, t) = ∪
L(v,t)
τ=0 J τ(n, v, t). (21)  

The latter set contains the indices of the resampled trajectories to be 
retained with reference to the selected real batch-variable-time point 
triplet (n, v, t), and its size can be denoted by Kn(v, t). 

The above operation is repeated for all the N involved real batches, 
thus providing the final number of retained trajectories for the pair (v,t), 
namely 

K(v, t) =
∑N

n=1
Kn(v, t) . (22)  

4. Role of the in-silico batches in a monitoring perspective 

The set of batches generated in-silico are used to complement the 
(few) available real ones in such a way that a PCA model can be built 
upon them to monitor the performance of a new real batch. This is done 
until a sufficient number of real batches have been run to transition from 
a low-N to a large-N scenario, where in-silico batches are no longer 
needed to build the monitoring model. Selecting the number of batches 
to be generated in silico is not trivial. Loosely speaking, if too few 
batches are generated in-silico, the resulting monitoring model may not 
capture sufficient variability of the true data, and therefore be prone to 
errors in monitoring new real batches. On the other hand, generating too 
many in-silico batches may increase the computational burden without 
significant benefits. On a different perspective, the adequacy of the 
monitoring model built using the in-silico batches should be assessed in 
advance, to make the user more confident about the monitoring per
formance expected from the model. These issues are addressed in the 
following. 

Fig. 4. Flow-chart describing the procedure for the estimation of L for variable v at time point t. Note that the threshold δ(v)L must be set for each variable, but does not 
vary across the time points. This is why for the estimation of L(v, t) it is not necessary to set again the threshold δ(v)L , but just to keep it into account. 
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4.1. Determining a suitable number of in-silico batches 

We propose a procedure to determine an appropriate number of 
batches to be generated in-silico. The idea is fairly simple: since, for a 
properly built monitoring model, the monitoring statistics are known to 
follow given probability density functions (PDFs), the number of batches 
to be generated in silico is chosen as the smallest one that enables the 
reconstructed densities to follow the expected ones to a reasonably close 
extent. The density reconstruction errors can then be used as a metric to 
assess the adequacy of the monitoring model (Section 4.1.2). 

The procedure for determining the number of batches to be gener
ated in-silico is sketched in Fig. 5. When a new in-silico batch (or a set of 
new in-silico batches) has been generated using the GP-SS model, a 
calibration 2D matrix Xcal is built by batch-wise unfolding (Nomikos 
and MacGregor, 1995) the 3D matrix collecting the (down-sampled) real 
batches together with the batches generated in-silico. A PCA model is 
then built on Xcal, and the monitoring statistics (namely, Hotelling T2 

and Q residuals; (Nomikos and MacGregor, 1995)) values are calculated 
for all the batches in Xcal. Further to that, the theoretical density of each 
statistics is approximated through the resulting sampled one, and the 
reconstruction error is evaluated. When the errors on both statistics fall 
below assigned thresholds, the generation of new in-silico batches can be 
stopped. 

4.1.1. Defining the target densities for the monitoring statistics 
Let A be the number of principal components (PCs) of the PCA model 

calibrated on Xcal (whose columns are assumed to be autoscaled). 
Nomikos and MacGregor (1995) showed that, for a proper monitoring 
model, the T2 values are F-distributed, whereas the Q residuals are 
χ2-distributed. 

In this study, we calculate the PDF of the T2 values as suggested by 
Wise and Gallagher (1996). Namely, denoting such PDF with ϕT2 (z) for 
any z ∈ R, we have 

ϕT2 (z) =
Ñ − A

A(Ñ − 1)
FA,Ñ− A

(
Ñ − A

A(Ñ − 1)
z
)

. (23) 

The density of the Q residuals is calculated as indicated by Nomikos 
and MacGregor (1995). Namely, if such PDF is denoted with ϕQ, we have 

ϕQ(z) =
2μQ

σ2
Q

χ2
2μ2

Q/σ2
Q

(
2μQ

σ2
Q

z

)

. (24)  

In (23) and (24), the following notation is used: Ñ is the number of rows 
of Xcal; FA,Ñ− A is an F density with A and Ñ − A degrees of freedom; μQ is 
the mean of the Q residuals; σQ is the standard deviation of the Q re
siduals; χ2

2μ2
Q/σ2

Q 
is a χ2 density with 2μ2

Q/σ2
Q degrees of freedom. 

The continuous PDFs (23) and (24) are set as references against 
which the densities reconstructed from sampled data are checked. While 
modifications of these statistics have been developed to handle critical 
aspects in batch process monitoring (e.g., Reis, et al. (2021) for the Q 
statistics), we prefer to use the standard statistics to frame our research 
in a more general context. 

4.1.2. Reconstructing a continuous density from sampled values 
An algorithm to reconstruct a tentative density starting from avail

able samples is presented. The underlying idea has some similarities 
with other approaches discussed in the literature, such as the one by 
Kropotov et al. (2018); further discussions on this topic are provided by 
Berg and Harris (2008) and Hernandez (2018). 

Recall that, if N is the number of real batches and R the number of 
batches generated in-silico, then Xcal has Ñ = N + R rows and V⋅T col
umns. Suppose Z = {z1, z2,…, zÑ} is the whole set of either the T2 

statistics or the Q statistics of Xcal. Consider then an interval IZ = [z′, z″]

containing all of them in such a way that [min(Z ), max(Z )]⊂(z′, z″); 
suitable choices are z′ = max{x ∈ Z | x< min(Z )},z″ = min{x ∈ Z | x>
max(Z )}. Divide IZ in S equal subintervals indexed by s = 1,…,S, that is 

I(s)Z =
[
z′ +(s − 1)⋅

z″ − z′

S
, z′ + s⋅

z″ − z′

S

)
. (25)  

Then, for each s, define Z (s) as the subset of Z built with all and only the 
elements of I(s)Z , namely 

Z
(s)= {z ∈{z1,…, zÑ}

⃒
⃒z ∈ I(s)Z

}
= Z ∩ I(s)Z . (26)  

In practice, Z (s), for s = 1, …, S, makes a partition of Z . Moreover, 
compute c(s) as the cardinality (i.e., the number of elements) of Z (s)

divided by the cardinality of Z (and multiplied by a normalization 
factor): 

c(s) =
|Z (s)|

|Z |
⋅

S
z″ − z′ =

|Z (s)|

Ñ
⋅

S
z″ − z′. (27) 

A piecewise-constant probability density function (PDF) ϕ̃ can be 
associated to Z through 

Fig. 5. Simplified flowchart illustrating the stopping criterion for in-silico batch generation.  
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ϕ̃(z) =

{
0 if z ∕∈ IZ ,

c(s) if z ∈ I(s)Z for a unique s
. (28) 

If ϕ̃ attempts to approximate a target density ϕ, the total recon
struction error can be evaluated according to the Kullback-Leibler 
divergence (Kullback, 1968) 

δϕ̃, ϕ =

∫∞

− ∞

ϕ̃(z)log
(

ϕ̃(z)
ϕ(z)

)

dz, (29)  

considering the term inside the integral equal to zero if ϕ̃(z) = 0. The 
number S of the subintervals in which IZ is divided is selected in order 
to minimize the reconstruction error defined by (29). 

With reference to Fig. 5, the generation of new in-silico batches can 
be stopped when the reconstruction error is sufficiently small for both 
densities. This ensures that both T2 and Q adequately follow the relevant 
theoretical density, and therefore that reliable confidence limits can be 
defined for both statistics as in Nomikos and MacGregor (1995) or in 
Wise and Gallagher (1996). It should be remarked that obtaining reli
able confidence limits is only a necessary condition for a monitoring 
model to be deemed as reliable. However, the resulting performance of 
the monitoring model may be insufficient even if both monitoring sta
tistics follow the relevant theoretical densities. This fact will be dis
cussed in Section 6.1. 

4.2. Assessing the in-silico batches from a monitoring perspective 

Next, we propose two tests that can be carried out on the pool of real 
and in-silico batches to assess their adequacy for process monitoring 
purposes. 

4.2.1. Positions of the Q residuals of the real batches 
Once the in-silico batch generation activity is concluded (Fig. 5), it is 

convenient to plot the Q residuals of the (few) available real batches 
onto the PDF plot of the reconstructed χ2 density. Remind that cali
brating a PCA model means defining a low-dimensional hyperspace of 
PCs in the whole space of the columns of the calibration matrix; if the 
residuals for the real batches are small, this means that they are very 
close to such hyperspace, and that they can be considered as references 
for the monitoring model. Therefore, for the monitoring model to be 
deemed adequate, these residuals should be sufficiently small. Stated 
differently, building a PCA model in which the real batches are recog
nized as largely different from the in-silico ones would denote model 
inadequacy. 

With reference to the Hotelling T2 statistic, we found that the loca
tion of T2 for the real batches in the relevant PDF plot does not provide 
useful information in the context of in-silico batch generation. Experi
ence suggests to avoid extreme values. 

The final remark done in Section 4.1.2 applies here too: whereas 
suitable values of the Q residuals of the real batches may provide useful 
indications about the quality of the in-silico batches with respect to the 
real ones, this does not necessarily guarantee satisfactory monitoring 
performance. 

4.2.2. Univariate indicator of the coverage 
Next, we develop a univariate indicator iNOC to quantitatively assess 

the coverage of the NOC by the in-silico batches (and the few original real 
ones), time point by time point, and variable by variable (i.e., with 
reference to the pair (v, t)). The proposed indicator allows highlighting 
the process variables for which the coverage is poor after the in-silico 
generation, and at which time points this occurs. This occurrence may 
suggest re-considering some steps of the in-silico data-generation pro
cedure, most likely by adjusting either parameter L or the number of 
batches generated in-silico. 

The idea for the calculation of iNOC with reference to the (v, t) pair is 

to consider the values of variable v at time point t for all batches (both 
real and in-silico), and to quantify how well these values comply with the 
following empirical requirements, that are typically met under large-N 
monitoring scenarios: (i) they are close to each other; (ii) they provide 
uniform coverage of the real batch variability. 

First, define vector x̂ = [[Xcal]1,(t− 1)V+v ... [Xcal]Ñ,(t− 1)V+v]
⊤; namely, x̂ 

is the set of values taken by variable v across all calibration batches at 
time point t. Starting from x̂, define vector x by doing the following 
operations:  

• sort x̂ in ascending order, thus obtaining x″;  
• shift x″ in such a way that its first element (i.e., the smallest one) is 0, 

thus obtaining x′;  
• scale x′ in such a way that its last element (i.e., the largest one) is 1, 

thus obtaining x. 

Essentially, vector x = [[x]1…[x]Ñ]
⊤ is built with the elements of x̂ by 

sorting in ascending order, shifting and rescaling, in such a way that 

0 = [x]1 ≤ … ≤ [x]Ñ = 1. (30)  

Then, take 

y = [[x]2 − [x]1…[x]Ñ − [x]Ñ− 1]
⊤ (31)  

and denote by [y]ñ, ñ = 1,…, Ñ − 1 the elements of y. Note that y con
tains the distance of each value in x from its subsequent one. The mean 
of y can be proved to be simply 

μy =
1

Ñ − 1
⋅
∑Ñ− 1

ñ=1

[y]ñ (32)  

=
1

Ñ − 1
. (33)  

The variance of y is 

σ2
y =

1
Ñ − 2

⋅
∑Ñ− 1

ñ=1

(
[y]ñ − μy

)2 (34)  

=
1

(Ñ − 2)(Ñ − 1)

((

(Ñ − 1)⋅
∑Ñ− 1

ñ=1

[y]2ñ

)

− 1

)

, (35)  

where (35) is obtained from (34) by substituting (33) into (34). Define 
the auxiliary indicator ivar as 

ivar = 1 − (Ñ − 1)σ2
y (36)  

=
Ñ − 1
Ñ − 2

(

1 −
∑Ñ− 1

ñ=1

[y]2ñ

)

(37)  

by substituting (35) into (36). Define also the auxiliary indicator imean as 

imean = − μy + 1 (38)  

=
Ñ − 2
Ñ − 1

(39)  

by using (33). After that, introduce the iNOC indicator by defining 

iNOC = ivar⋅imean (40)  

= 1 −
∑Ñ− 1

ñ=1

[y]2ñ . (41) 
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Eq. (41) is achieved by inserting (37) and (39) into (40). 
It can be proved that iNOC is bounded in [0, 1). Note that iNOC is 

defined in such a way that it is close to 1 if the in-silico values for variable 
v at time point t uniformly cover the variability of the real batches and 
are close to each other; conversely, iNOC is close to 0 if the in-silico tra
jectories are tethered around the real ones. In fact, iNOC is the product 
between ivar and imean; the former is close to 1 when the values in x 
uniformly cover their variability, that is the variance of y is close to 0; 
the latter is close to 1 when the values in x are close to each other, that is 
the mean of y is close to 0. Therefore, the closer to 1 iNOC is, the better the 
coverage for the v-th variable at the t-th time point is. 

Proofs of (33) and of the statements above are reported in 
Appendix C. Incidentally, if x̂ is a constant vector, then the aforemen
tioned procedure is unfeasible, and iNOC = 1 by default. 

The iNOC indicator allows assessing the coverage of the NOC basing 
on the knowledge available from the few real batches. However, it must 
be stressed that the actual NOC, i.e., those encountered under a large-N 
scenario, are unknown when a low-N scenario is in place. Therefore, 
whereas a low value of iNOC indicates that the data generated in-silico are 
not entirely appropriate for process monitoring, a large value of iNOC 
does not necessarily mean that satisfactory monitoring performance will 
be achieved. 

5. Benchmark process 

As a testbed to assess the in-silico data generation methodology and 
the performance of the related process monitoring model, we consider a 
simulated fed-batch fermentation process for the manufacturing of 
penicillin. The detailed mechanistic model, also known as the Pensim 
simulator, has been proposed by Birol et al. (2002), and is extensively 
used for process monitoring studies. Here, we will not provide a 
description of the process and of the software; the interested reader can 
find details in the original reference (Birol et al., 2002). In remainder of 

the discussion, this model will be referred to as the real process. Table 1 
summarizes the variable numbering used in this study. The listed vari
ables represent those for which process measurements are assumed to be 
available, and whose profiles are generated in-silico under low-N sce
narios. The batch length is fixed, and set to 300 h. 

The process monitoring model is based on the variables listed in 
Table 1. Since we are not interested in assessing the specific ability in 
real-time monitoring, but rather the general effectiveness of process 
monitoring using in-silico data, we carry out process monitoring only at 
the end of a batch (postmortem or retrospective analysis). To do this, we 
use multiway principal component analysis, namely, by batchwise 
unfolding the three-way array where the real and in-silico data are stored 
(Nomikos and MacGregor, 1994). The sampling interval for the process 
measurement profiles is m = 10 min (0.167 h); the sampling interval for 
the profiles generated in-silico is set to k = 600 min (10 h). Before being 
stored in the three-way array, the process measurements are down
sampled to match the frequency at which the in-silico data are made 
available. 

6. Results and discussion 

Results from the in-silico batch generation methodology are discussed 
here in a threefold direction. First (Section 6.1), we assess the moni
toring performance of the process monitoring models calibrated with 
(few) available real batches together with the batches generated in-silico. 
Then (Section 6.2), we draw our attention to the in-silico batch genera
tion activity itself, namely we consider the effect of the number of 
batches generated in-silico on the monitoring performance. Finally 
(Section 6.3), we discuss the impact of the GP-SS model parameters 
(assigned through the algorithms proposed in Section 3) on the data 
generated in-silico. Throughout Sections 6.1‒6.3, we also discuss the 
appropriateness of the metrics we have proposed to assess the quality of 
the data generated in-silico for process monitoring purposes. 

To benchmark the monitoring results, we consider a pool of 180 real 
batches under NOC (Appendix D); these batches are collectively denoted 
as the large-N batches. In a way, the large-N batches represent those that 
one would collect after a long production campaign, i.e., when a low-N 
scenario is not in place anymore. To build a monitoring model under a 
low-N scenario, we draw a few (4 or 3) batches from the large-N pool; 
these batches are denoted as the low-N batches. A different pool of 19 
real batches, not included in the large-N one, is used to test the moni
toring performance; these batches are denoted as the validation batches. 
Four of them (namely, batches nos. 16, 17, 18 and 19) are intentionally 
generated as faulty ones; the remaining validation batches are normal. 
The modeling conditions characterizing the large-N batches and the 
validation ones are reported in Appendix D. 

A PCA model with A = 5 PCs (explaining ~69 % of the overall 
variance of the data) is built using the large-N dataset. All validation 
batches are correctly labeled as either normal or faulty by this model 
(results are not shown for conciseness); in particular, all faulty batches 
show Q residuals greater than the confidence limit. When building a PCA 
model with the in-silico batches together with the few low-N ones, the 
number of PCs is chosen in such a way to explain an assigned amount R̄2 

of variance. Although this is not necessarily the optimal way to set the 
number of PCs, it nevertheless simplifies the presentation of results, 
while still ensuring they are reliable. Confidence limits for all moni
toring charts are set to 95 %. 

For in-silico data generation, we use the algorithms discussed in 
Sections 2, 3 and 4, except when noted. With reference to the GP-SS 
model, the parameters used to generate the in-silico data are listed in 
Table 2. Symbols δ*

F and δ*
χ2 indicate the thresholds of the reconstruction 

errors for the F density and the χ2 one, respectively. Parameter ρ is the 
number of in-silico batches generated for each single iteration (see 
Fig. 5). Possible modifications to the parameters will be considered 
throughout the discussion. 

Table 1 
Pensim simulator variable numbering used in this study.  

Variable no. Variable name Units 

1 Aeration rate L/h 
2 Agitator power W 
3 Glucose feed rate L/h 
4 Glucose feed temperature K 
5 Glucose concentration g/L 
6 Dissolved O2 concentration g/L 
7 Biomass concentration g/L 
8 Penicillin concentration g/L 
9 Culture volume L 
10 CO2 concentration mmol/L 
11 pH – 
12 Temperature K 
13 Generated heat kcal/h 
14 Acid flow rate mL/h 
15 Base flow rate L/h 
16 Cooling/Heating flow rate L/h  

Table 2 
Parameters used for the generation of in-silico batches using the GP-SS model.  

k pJ δ(v)L R̄2 δ*
F δ*

χ2 
ρ 

600 min 0.999 0.99 for v = 2,3 50 % 0.08 0.05 25 
0.97 for v = 4 
0.1 for v = 7 
0.5 for v = 8 
0.95 for v = 12 
0.7 for v = 13 
0.99 for v = 14 
0.55 for v = 16 
0.9 for any other v  
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Fig. 6. Time profiles of (a) aeration rate, (b) biomass concentration, (c) penicillin concentration, (d) cooling/heating water flow rate for the large-N batches.  

Fig. 7. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The four low-N batches selected as convenient for generating in-silico data 
(Case 1) are indicated by red stars. 
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Fig. 8. Time profiles of (a) aeration rate, (b) biomass concentration, (c) penicillin concentration, (d) cooling/heating water flow rate for the same four low-N batches 
as in Fig. 7 (Case 1), and for the 200 in-silico batches generated from them. For convenience, the variability of the large-N dataset is shown as a green-shaded area. 

Table 3 
Explained variance and cumulative explained variance for the monitoring model built on the same four low-N batches as in Fig. 7 (Case 1) and the 200 in-silico batches 
generated from them. For comparison, the variance explained by the model built using the large-N dataset is also reported.   

Low-N scenario Large-N scenario 

PC no. Explained variance [%] Cumulative explained variance [%] Explained variance [%] Cumulative explained variance [%] 

1 7.85 8.04 28.31 28.31 
2 6.37 14.22 14.18 42.50 
3 5.82 20.04 11.14 53.63 
4 5.31 25.34 8.98 62.62 
5 4.95 30.30 6.35 68.97 
6 4.85 35.15 1.62 70.59 
7 3.98 39.14   
8 3.41 42.55   
9 3.04 45.49   
10 2.72 48.30   
11 2.57 50.87    
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In the sequel, when speaking about “coverage of the NOC”, we refer 
to the NOC defined by the low-N batches, unless otherwise stated. In 
fact, as already noted, the actual coverage of the NOC achieved in a 
large-N scenario is impossible to know in advance. 

6.1. Assessing the monitoring performance under low-N and large-N 
scenarios 

In this Section, we compare the process monitoring results from two 
monitoring models: one is built using the low-N batches together with 

the batches generated in-silico, and the other is built using the large-N 
batches. We first consider two low-N scenarios, namely one with N = 4 
(Section 6.1.1), and one with N = 3 (Section 6.1.2). The purpose is to 
show that in-silico batch generation cannot lead to satisfactory moni
toring results if too small a number of low-N batches are available. Then, 
for the case study with N = 4, we consider two additional sets of low-N 
batches from which the in-silico ones are generated (Sections 6.1.3 and 
6.1.4). We show that it is not only the number N of real batches that can 
make the difference in the monitoring performance; in fact, also the 
characteristics of the available real batches are critical. 

Fig. 9. Reconstructed (a) F-density, (b) χ2-density for the same four low-N batches as in Fig. 7 (Case 1) and for the 200 in-silico batches generated from them.  

Table 4 
Mean and standard deviation of the coverage indicator iNOC across all time points for the variables of Fig. 6, using the same four low-N batches as in Fig. 7 (Case 1) and 
the 200 in-silico batches generated from them.   

Aeration rate Biomass concentration Penicillin concentration Cooling/Heating flow 

Mean of iNOC 0.9759 0.9775 0.9758 0.9824 
Standard deviation of iNOC 0.0089 0.0112 0.0130 0.0078  

Fig. 10. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same four low-N batches as in Fig. 7 
(Case 1) and the 200 in-silico batches generated from them. The true faulty batches are denoted with closed symbols. 
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Fig. 11. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The three low-N batches selected as convenient for generating in-silico 
data for process monitoring (Case 2) are indicated by red stars. 

Fig. 12. Time profiles of (a) aeration rate, (b) biomass concentration, (c) penicillin concentration, (d) cooling/heating water flow rate for the same three low-N 
batches as in Fig. 11 (Case 2), and for the 350 in-silico batches generated from them. For convenience, the variability of the large-N dataset is shown as a green- 
shaded area. 
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Fig. 6 shows the time profiles of four representative variables from 
the large-N batches. For in-silico batch generation under a process 
monitoring perspective, a convenient situation is one in which the low-N 
batches fulfill both the following conditions: i) they have small Q re
siduals, and ii) they span a large variability in the (unknown) NOC of the 
large-N scenario. The first condition is required because the in-silico 
batches are expected to be generated around the hyperspace defined by 
the low-N ones; therefore, if the low-N batches are lying on the hyper
space of the NOC of large-N scenario (i.e., Q ≅ 0 for the low-N batches), 
the in-silico batches are likely to lie around such hyperplane. The second 
condition is required because the variability of the in-silico batches is 
approximately bounded by the one of the low-N batches; therefore, if the 
low-N batches span too small a variability in the NOC of the large-N 
scenario, the resulting monitoring model will be prone to labeling as 
abnormal a batch that is actually normal but simply shows a greater 
variability with respect to the low-N ones. Unfortunately, fulfillment of 
the above two conditions cannot be tested in a low-N scenario, because 
this would require knowing in advance the NOC space of the large-N 
scenario, which is impossible. 

6.1.1. Case 1: sufficient number (N = 4) and appropriate characteristics of 
the real batches 

A low-N case with N = 4 real batches fulfilling both conditions dis
cussed above is considered. To identify the low-N batches, the PCA 
model built over the large-N dataset is considered. Let us assume that 
the low-N batches are those indicated by the red stars in Fig. 7 (namely, 
batches nos. 57, 71, 130 and 169): it can be seen that they span a large 
portion of the large-N NOC space (Fig. 7a), and are characterized by Q 
values that are well below the confidence limit (Fig. 7b). 

The in-silico batch generation procedure returns 200 in-silico batches. 
Fig. 8 shows the time profiles of the same variables of Fig. 6, for the low- 
N batches and for the batches generated in-silico. A green-shaded area is 
reported for convenience to map the unknown true variability, as 
spanned by the large-N batches. In principle, this is also the variability 
that one would like to reconstruct with the in-silico batches generated 
from the low-N ones. It can be seen that the in-silico batch generation 
methodology works well: the in-silico trajectories cover the operating 
space bracketed by the low-N batches very satisfactorily, and the in-silico 
trajectories are consistent with the original ones (i.e., similar patterns 

Fig. 13. Reconstructed (a) F-density, (b) χ2-density for the same three low-N batches as in Fig. 11 (Case 2) and for the 350 in-silico batches generated from them.  

Fig. 14. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same three low-N batches as in Fig. 11 
(Case 2) and the 350 in-silico batches generated from them. The true faulty batches are denoted with closed symbols. 
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are reproduced, and no significant noise is generated). As expected, the 
variability of the in-silico batches is bounded by the one of the low-N 
batches; this is particularly clear for the plots in Fig. 8a and d. 

A PCA monitoring model is then built using the low-N batches 
together with the batches generated in silico from them; 11 PCs are used, 
capturing R̄2

≅ 50 % of the variance. The number of PCs is somewhat 
greater than typically encountered in PCA modeling, and can be inter
preted as an indirect indication that an “artificial” large-N scenario (as 
the one obtained through in-silico batches) embeds less systematic 
variance than a real one. This is particularly clear when the model built 
under the low-N scenario is compared to the one built under the large-N 
scenario (Table 3). 

The fittings of the F density and of the χ2 density are illustrated in 
Fig. 9, together with the T2 and Q values of the low-N batches. The 
sampled T2 density (Fig. 9a) satisfactorily approximates the theoretical 
continuous one, thus confirming that the coverage of NOC provided by 

the in-silico data is proper (i.e., the score points are multi-normally 
distributed). The T2 values of the low-N batches are well within the 
extremes of the F density, indicating that the in-silico batches are within 
the variability of the low-N ones. With respect to the Q residuals 
(Fig. 9b), they are small for the low-N batches (left-hand side of the χ2 

density), indicating that they are close to the hyperspace of the low-N 
PCA model; moreover, the fitting of the χ2 density is suitable. 

With respect to the coverage indicator iNOC, the average value and 
standard deviation along all the low-frequency time points for the four 
considered variables are summarized in Table 4. The four mean values 
are very close to 1, and the standard deviations are very small; this in
dicates that, for the four involved variables, the indicator iNOC is very 
close to 1 across all the time points. Altogether, the results indicate that 
the necessary conditions for the monitoring model to be reliable are 
fulfilled. 

The validation dataset is then considered, and results are illustrated 

Fig. 15. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The four low-N batches deemed as unfit (because of large Q residuals) for 
generating in-silico data for process monitoring (Case 3) are indicated by red stars. 

Fig. 16. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same four low-N batches as in Fig. 15 
(Case 3) and the 225 in-silico batches generated from them. The true faulty batches are denoted by closed symbols. 
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in Fig. 10. We notice that the monitoring model calibrated with low-N 
and in-silico batches provides a good monitoring performance: all faulty 
batches (no. 16 through no. 19) are labeled as such in the Q residuals 
plot, and only one false alarm (batch no.10) is raised in the same plot. 
We remark that the performance of the monitoring model should be 
benchmarked also against false alarms. In fact, although a false alarm 
does not represent a concern for batch normality, it can lead to batch 
rejection, therefore representing an economic penalty associated to 
ineffective monitoring. 

6.1.2. Case 2: insufficient number (N = 3) and appropriate characteristics 
of the real batches 

We consider a low-N scenario with N = 3 real batches fulfilling both 
conditions discussed above. The score plot and the Q residuals plot are 
shown in Fig. 11. Again, the low-N batches (namely, batches nos. 55, 57 
and 130) are selected in such a way that they span sufficient variability 
in the score plot and have small Q residuals. 

For this simulation, the in-silico batches are generated using a 
threshold value δ*

F = 0.16 (rather than δ*
F = 0.08) for the reconstruction 

error of the F density, in order to improve convergence. A total of R =

350 in-silico batches are returned by the in-silico batch generation pro
cedure (note that R is much greater than obtained in Case 1), and results 
are plotted in Fig. 12 in terms of process variable profiles. The coverage 
of NOC by the in-silico data is still good for all variables; however, since 
now the low-N batches span less variability than in Case 1, also the in- 
silico trajectories do. 

A monitoring model using the available real batch datasets together 
with the in-silico ones is built. The fittings of the F density and of the χ2 

density are shown Fig. 13: both of them are satisfactory, as are the values 
of the Q residuals for the low-N batches. However, as discussed earlier, 
this provides only a necessary condition to obtain a reliable monitoring 
model, but sufficiency is not guaranteed. Indeed, Fig. 14 clarifies that 
the monitoring performance against the validation dataset is poor. 

Fig. 17. Monitoring model built on the large-N batches: (a) score plot, (b) Q residuals plot. The four low-N batches deemed as unfit (because of low variability) for 
generating in-silico data for process monitoring (Case 4) are indicated by red stars. 

Fig. 18. Monitoring results for the validation dataset in terms of (a) Hotelling T2, and (b) Q residuals for the model built on the same four low-N batches as in Fig. 17 
(Case 4) and the 1500 in-silico batches generated from them. The true faulty batches are denoted by closed symbols. 

L. Gasparini et al.                                                                                                                                                                                                                               



Computers and Chemical Engineering 180 (2024) 108469

19

Fig. 19. Generation of in-silico batches using the same four low-N batches as in Fig. 7 (Case 1). Time profile of biomass concentration for (a) 25 in-silico batches, (b) 
200 in-silico batches (for convenience, the variability of the large-N dataset is shown in (a) and (b) as a green-shaded area). Coverage indicator for biomass con
centration for (c) 25 in-silico batches, (d) 200 in-silico batches. Fitting of F-density with (e) 25 in-silico batches, (f) 200 in-silico batches. 
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Whereas all validation faulty batches are correctly labeled as such by the 
low-N monitoring model, almost all normal batches are wrongly iden
tified as faulty. This indicates that when too few low-N batches are 
available, the monitoring performance can be inadequate, even if the 
low-N batches have adequate characteristics and the in-silico batch 
generation step returns reasonable trajectories for the process variables 
(Reis, et al., 2021). 

6.1.3. Case 3: sufficient number (N = 4) and inappropriate characteristics 
(large Q residuals) of the real batches 

We assume that enough real batches are available, and that they span 
a large variability in the score plot (namely, N = 4; batches nos. 4, 67, 
73 and 167; Fig. 15a). However, three of these batches are characterized 
by large Q residuals (Fig. 15b). 

After generating 225 in-silico batches and building the relevant 
monitoring model, the monitoring results shown in Fig. 16 are obtained. 
Despite the number of real batches is the same as in Case 1, the moni
toring performance is inadequate (yet better than in Case 2), given that 
several normal validation batches are erroneously labeled as faulty. 
Note that, also in this case, all true fault batches are correctly labeled as 
faulty by the monitoring model. 

6.1.4. Case 4: sufficient number (N = 4) and inappropriate characteristics 
(insufficient variability) of the real batches 

In this case, the available low-N batches do have small Q residuals, 
but they span too low a variability in the hyperplane of the PCs (Fig. 17). 
The in-silico data generation algorithm returns the profiles for R = 1500 
batches. This number is meaningless from a practical perspective, and 
provides indirect indication of the very small variability covered by the 
available real batches. The monitoring results on the validation dataset 
are shown in Fig. 18, and are clearly unacceptable: all batches are 
labeled as faulty both in the Q residuals chart and in the T2 chart. 

Cases 3 and 4 support the conclusion that, if the ultimate goal of in- 
silico data generation is building a dataset to be used for process moni
toring, the number of available real batches is not the only parameter 
that matters. The characteristics of the available real batches are also 
crucial. Inadequate low-N data characteristics may not prevent the in- 
silico data generation exercise to complete satisfactorily. However, the 
resulting dataset will be inappropriate for process monitoring purposes, 
because the monitoring model will likely rise several false alarms. 

6.2. Impact of the number of batches generated in-silico 

The purpose of this Section is to discuss how the number of batches 
generated in-silico affects the coverage of the NOC; namely, reference is 
made to the F density function and to the iNOC coverage indicator. We 
assume to deal with a low-N scenario where the same N = 4 real batches 
with favorable characteristics as in Case 1 are available. We compare a 
situation, in which 25 in-silico batches are generated, to one where the 
number of in-silico batches (namely, 200) is returned automatically by 
the procedure proposed in Section 4.1. Among all variables, only the 
biomass concentration is considered; results for the other variables are 

qualitatively similar, and are omitted for conciseness. 
Fig. 19a and b visually clarify that, when only 25 batches are 

generated in-silico, the coverage is much smaller than when 200 in-silico 
batches are generated; this issue is also quantitatively confirmed by the 
coverage indicator iNOC (Fig. 19c and d). This affects the reconstruction 
of the F density, which is quite rough when only 25 batches are gener
ated (Fig. 19e), thus indicating that the scores are far from being multi- 
normally distributed; the situation is clearly better when 200 batches are 
generated in-silico (Fig. 19f). 

The reconstruction error for the F density is calculated according to 
(29) at several numbers of in-silico batches, and outcomes are reported in 
Table 5 together with summary values for iNOC. As expected, as the 
number of in-silico batches increases, the reconstruction error decreases, 
and iNOC gets closer to the reference. We conclude that the coverage 
indicator and the density reconstruction errors are useful metrics that 
can guide the user in the determination of the appropriate number of 
batches to be generated in silico for process monitoring purposes. 

6.3. Impact of the GP-SS model parameters 

The main parameters of the GP-SS model are the memory parameter 
L and the number J of resampled trajectories that are obtained for each 
variable from the stratified resampling step. Next, we discuss how the 
tunings of L (through δ(v)L ) and of J affect the in-silico batch generation 
results, and whether the methodologies we have proposed to estimate 
appropriate values for these parameters return meaningful results. We 
refer to the same N = 4 favorable low-N batches considered in Case 1. 

6.3.1. Impact of parameter L 
In Section 3.2, we have proposed a methodology to estimate L for a 

given variable v at a given time point t, based on a threshold value δ(v)L for 
the correlation between the set of values of the variable v at t, and the set 
of the values that v takes at a preceding time point. Next, we discuss the 
impact of δ(v)L (hence of L) on the in-silico generation results. For con
venience, we restrict our discussion to one single process variable, 
namely the penicillin concentration, and we write δL instead of δ(v)L . 

Fig. 20 compares the generation results for three values of the 
threshold, namely δL = 0.999, δL = 0.5 and δL = 0.001. For better 
comparability, 200 in-silico batches are intentionally generated in all 
cases, regardless of the PDF reconstruction errors. 

When δL is very large (δL = 0.999), the coverage is poor in the final 
part of the batch (Fig. 20a), as also confirmed by the declining value of 
iNOC (Fig. 20b). This is because the in-silico trajectories are tethered 
around the low-N ones; in such a situation, parameter L is very small 
(L = 1 for t ≥ 2; Fig. 20b), and the inherent correlation structure of the 
variable (i.e., its autocorrelation) is therefore destroyed. This also ex
plains why the in-silico trajectories are so tethered around the real ones. 

The situation improves with δL = 0.5 (this is the value used 
throughout all simulations discussed elsewhere in this paper for this 
specific variable); the proposed methodology returns values for L that 
slowly grow in time (Fig. 20d), and this determines a much improved 

Table 5 
Reconstruction errors for the F density, mean across all the time points and standard deviation across all the time points of the coverage indicator iNOC for biomass 
concentration at different numbers of batches generated in-silico from the same four low-N batches as in Fig. 7 (Case 1).  

No. of batches generated in-silico F density reconstruction error Coverage indicator iNOC 

Mean Std. dev. 

25 0.2000 0.9088 0.0164 
50 0.1675 0.9416 0.0172 
75 0.1341 0.9550 0.0177 
100 0.1045 0.9626 0.0185 
125 0.0941 0.9691 0.0141 
150 0.0843 0.9738 0.0111 
175 0.0683 0.9758 0.0111 
200 0.0663 0.9775 0.0112  
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coverage (Fig. 20c and d). 
When δL = 0.001, the value of L by the end of the batch is too large 

(Fig. 20f). This may explain why the in-silico trajectories are very noisy 
(Fig. 20e), an occurrence that makes iNOC increase with respect to the 
case with δL = 0.5 (Fig. 20f). 

Unfortunately, fine tuning of δL is a matter of trial-and-error. Two 

opposing effects need compromising: i) decreasing δL improves the 
description of autocorrelation (and possibly of coverage); ii) increasing 
δL reduces noise. 

6.3.2. Impact of parameter J 
Parameter J sets the number of resampled trajectories to be obtained 

Fig. 20. Generation of 200 in-silico batches using the same four low-N batches as in Fig. 7 (Case 1). Time profile of the penicillin concentration for (a) δL = 0.999, (c) 
δL = 0.5, and (e) δL = 0.001. Returned values for the memory parameter L and coverage indicator iNOC for penicillin concentration for (b) δL = 0.999, (d) δL = 0.5, 
and (f) δL = 0.001. For convenience, the variability of the large-N dataset is shown in (a), (c) and (e) as a green-shaded area. 
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by stratified resampling for each variable. A methodology to tune the 
value of J was proposed in Section 3.1, and its effectiveness is discussed 
here. We consider several scenarios, where J is either estimated auto
matically according to the proposed methodology (using the parameters 
of Table 2), or it is intentionally set to a smaller value. For each scenario, 
the in-silico batch generation is carried out automatically, and the rele
vant PCA monitoring model is built. The monitoring models are then 
assessed against the validation dataset. Results are summarized in 
Table 6. We note that the value of J returned automatically leads to the 
smallest number of labeling errors. This is probably due to the fact that 
too small a value for J is likely to cause a smaller variability of the 
resampled trajectories (hence of the in-silico batches) with the respect to 
the low-N ones. Whereas this confirms the appropriateness of the 
methodology we have proposed for the tuning of J, it must nevertheless 
be noted that a six-fold decrease of the number of resampled trajectories 
(J = 600) over the value returned automatically does not cause a dra
matic loss of monitoring performance. 

7. Conclusions 

In this paper, we have thoroughly investigated a methodology, 
already proposed in the literature, that enables batch process moni
toring under low-N (i.e., small data) scenarios; namely, we have 
addressed the issue of batch process monitoring when limited historical 
manufacturing data are available. The problem is particularly mean
ingful when a new product is to be manufactured for the first time in a 
given facility, or when an old product is to be transferred to a facility 
wherein it has never been manufactured before. The methodology ex
ploits machine learning algorithms (based on Gaussian process state- 
space models) to generate in-silico batch datasets from the few avail
able historical ones, and then uses the overall pool of real and in-silico 
data to build a process monitoring model for the batch process. The 
progress made by the research in this paper is twofold: on the algo
rithmic side, and on the process monitoring side. 

From an algorithmic perspective, we have developed automatic (or 
semiautomatic) procedures to tune the values of several parameters 
required by the machine-learning framework, namely: i) the number of 
trajectories to be resampled for each process variable, ii) the memory (or 
lag) of each variable at each time point, and iii) the number of resampled 
trajectories to be retained for each variable at each time point for GP-SS 
model training. The proposed procedures facilitate the development, 
interpretation and fine tuning of the GP-SS model, thereby streamlining 
the generation of consistent in-silico batch trajectory data. 

From a process monitoring perspective, we have clarified that, to 
target the development of a reliable process monitoring model under a 
low-N scenario, it is not only the number of available historical batches 
that matters. In fact, the variability they cover across the (unknown) 
domain of normal operating conditions of the process is also central. 
Insufficient coverage does not prevent the in-silico batch data generation 
process to complete satisfactorily; however, the resulting dataset will be 
unfit for process monitoring purposes, typically resulting in a large 
number of false alarms. Additionally, we have proposed: iv) a method, 
based on the fitting of probability density functions of the monitoring 
model statistics, to determine the appropriate number of batches to be 
generated in-silico, and v) a set of indicators, based on Q-residuals plots 
and on a new univariate coverage indicator, to assess the fulfillment of 

necessary conditions that the overall pool of real and in-silico data should 
possess in order to be exploited for process monitoring purposes. 

We believe that further improvements of the in-silico batch data 
generation methodology should be directed to better address the issue of 
correlation in the data. Strictly speaking, correlation between variables 
is not considered during GP-SS model training. This can significantly 
downgrade the performance of a process monitoring model (e.g., one 
based on principal component analysis), because it is precisely by 
analyzing how each variable co-vary with the others (i.e., by modeling 
the cross-correlation between variables) that abnormal operating con
ditions can be discriminated from normal ones. Therefore, being able to 
generate in-silico trajectories that maintain the same cross-correlation 
structure as the real ones is expected to further enhance the potential 
for exploitation of this machine-learning methodology in a process 
monitoring perspective. 
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Table 6 
Monitoring errors for different values of the number of resampled trajectories J using the same four low-N batches as in Fig. 7 (Case 1).   

J = 3760 (calculated automatically) J = 1200 J = 600 J = 40 

Returned number of in-silico batches 200 175 375 200 
Number of labeling errors 1/19 2/19 2/19 4/19  
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Appendix A - Formal description of the model training procedure for dynamics learning 

This Appendix contains a formal description of the model training procedure for dynamics learning presented in Section 2.3.2. 
The kernel matrix K (Zt− L,...,t− 1) is defined through the kernel function K (⋅, ⋅) at (6) in such a way that 

[
K
(
Zt− L,...,t− 1

)]

i1 ,i2
= K

(
z(i1)t− L,...,t− 1, z

(i2)
t− L,...,t− 1

)
, i1, i2 = 1,…,K (A.1)  

The GP-SS model of the process is then 

zt |Zt− L,...,t− 1 = N
(
0K ,K

(
Zt− L,...,t− 1

))
, (A.2)  

yt |zt = N
(
zt, σ2IK×K

)
, (A.3)  

with N indicating a multi-variate Gaussian density, the vector zt representing the internal state of the process among the K considered trajectories at 
time point t, 0K representing the column vector with all its K elements equal to 0 and IK×K the K × K identity matrix. Eq. (A.2) explains how the value of 
the variable v at time point t (randomly) depends on its preceding L ones. 

Parameters {η, α, σ} are estimated through a Maximum Likelihood estimator, using the training dataset D v,t (as in Tulsyan et al. (2019)). Initial 
guesses can be determined following Ulapane et al. (2020); if numerical issues prevent from doing this, then no initial guesses are provided, and the 
task is automatically executed by a given solver (e.g., MATLAB® can be used to this purpose). 

Appendix B - Proof about D(J,h) 

This Appendix contains a proof for D(J,h), which was introduced in Section 3.1.2 with reference to Eq. (9). 
The framework is as follows:  

• w different elements are available (in our specific context, the elements are the high-frequency time points themselves);  
• J random samplings of these elements are done. 

If the order of the samplings is meaningful, that is, if sequences (and not combinations) are actually considered, the total number of the possible 
outcomes is wJ; indeed, each one of the J samplings has w possible different outcomes. Among these wJ sequences, a fraction of them does not contain 
exactly w different points, but fewer; this is because some sequences present repetitions. Clearly, each one of the possible wJ outcomes has h different 
elements, where h may take the values 1, 2, …, w. For convenience, denote by D̃(J, h, w) the number of sequences, with length equal to J, containing 
exactly h different elements, and these h different elements are chosen from a set of w different ones. The number of sequences containing w different 
elements is found by subtracting the number of sequences with fewer than w different elements from the total wJ, hence 

D(J,w) = wJ −
∑w− 1

h=1
D̃(J,w, h). (B.1)  

The number D̃(J,w, h) of sequences of J elements containing h different ones, with these ones coming from a set of w different elements, can be 
calculated as 

D̃(J,w, h) =
(

w
h

)

D(J, h). (B.2)  

Indeed, the number of combinations of h elements chosen from w ones is 
(

w
h

)

. To each combination of h elements, one can associate D(J, h) sequences 

containing these specific h elements (and none else). Then, (B.2) follows. By substituting it into (B.1), Eq. (9) is obtained. 

Appendix C - Proofs about the univariate coverage indicator iNOC 

This Appendix gathers some technical proofs concerning the univariate coverage indicator iNOC introduced in Section 4.2.2. 

C.1 Calculation of the mean of y 

The aim here is to justify the existence of (33). First, recall (30) and (31); by substituting them into (32), we get 

μy =
1

Ñ − 1

∑Ñ− 1

ñ=1

([x]ñ+1 − [x]ñ) (C.1)  

=
1

Ñ − 1

(
∑Ñ

ñ=2

[x]ñ −
∑Ñ− 1

ñ=1

[x]ñ

)

(C.2)  
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=
[x]Ñ − [x]1

Ñ − 1
(C.3)  

=
1

Ñ − 1
(C.4)  

which is the same as (33). Moreover, this proves that 

∑Ñ− 1

ñ=1

[y]ñ = 1. (C.5)  

C.2. Bounds for iNOC 

A further goal is to prove that 0 is a lower bound for iNOC. Using  (C.5), one can write 

y =

[

1 −
∑Ñ− 1

ñ=2

[y]ñ [y]2 … [y]Ñ− 1

]⊤

. (C.6)  

Then, we have 

∑Ñ− 1

ñ=1

[y]2ñ =

(

1 −
∑Ñ− 1

ñ=2

[y]ñ

)2

+
∑Ñ− 1

ñ=2

[y]2ñ (C.7)  

= 1 − 2⋅
∑Ñ− 1

ñ=2

[y]ñ +

(
∑Ñ− 1

ñ=2

[y]ñ

)2

+
∑Ñ− 1

ñ=2

[y]2ñ (C.8)  

≤ 1 − 2⋅
∑Ñ− 1

ñ=2

[y]ñ + 2⋅
∑Ñ− 1

ñ=2

[y]2ñ (C.9)  

= 1 + 2⋅
∑Ñ− 1

ñ=2

[y]ñ⋅([y]ñ − 1)
⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟

≤0

(C.10)  

≤ 1 (C.11)  

and so iNOC = 1 −
∑Ñ− 1

ñ=1 [y]
2
ñ ≥ 0. The step from (C.8) to (C.9) is justified by the Cauchy-Schwarz inequality, which guarantees that 

(
∑Ñ− 1

ñ=2 [y]ñ)
2
≤
∑Ñ− 1

ñ=2 [y]
2
ñ . The proof of the upper bound is trivial, since it is 

∑Ñ− 1
ñ=1 [y]

2
ñ > 0, and it easily follows that iNOC = 1 −

∑Ñ− 1
ñ=1 [y]

2
ñ < 1. 

C.3 Upper and lower bounds for iNOC 

Reconsider (41). The upper bound for iNOC corresponds to the situation in which the coverage is excellent. This can be represented mathematically 
by the fact that the vector x is composed of equally spaced elements, that is [x]ñ = (ñ − 1)/(Ñ − 1), which leads to [y]ñ = 1/(Ñ − 1) for each ñ; then, 
(41) becomes 

iNOC =
Ñ − 2
Ñ − 1

, (C.12)  

which is close to 1 provided that Ñ is sufficiently large, which occurs if a sufficient number of in-silico batches have been generated. 
The lower bound for iNOC occurs when all the Ñ values in x are either 0 or 1. This can be the case if N = 2, that is only 2 real batches are available, 

and all the generated in-silico trajectories are tethered around the real ones for variable v at time point t. In such case, vector x contains 0′s as the left 
elements and 1′s as the right ones (regardless of their repartitioning). This implies that y has only one entry equal to 1 and the remaining ones equal to 
0; clearly, from (41), it follows that iNOC = 0. 

Appendix D - Generation of the historical datasets 

We provide information on how to generate the large-N and validation datasets discussed in Section 6 using the first-principles penicillin 
fermentation model presented in Section 5 (Birol et al., 2002). 
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The NOC are characterized by acceptable variability around the nominal initial conditions (Table D.1) and the nominal operating variables 
(Table D.2) of the process. Acceptable variability is obtained by sampling parameter ε (see the above Tables) from the Gaussian density N (0,1); this 
operation is done independently for each variable subject to variability. Note that NOC characterize the entire set of batches in the large-N dataset, and 
15 (out of 19) validation batches.  

Table D.1 
Nominal initial conditions, and acceptable variability around them, for the 
generation of large-N and validation batches from the penicillin simulation 
model (ε is a sample from the Gaussian density N (0,1)).  

Initial condition Initial condition 

Substrate concentration [g/L] 15+ ε 
Dissolved O2 concentration [g/L] 1.16 
Biomass concentration [g/L] 0.1 
Penicillin concentration [g/L] 0 
Culture volume [L] 150+ 10ε 
CO2 concentration [mmol/L] 0.75+ 0.05ε 
Hydrogen ion concentration H+ [mol/L] 10− 5+0.1ε 

Substrate feed temperature [K] 297+ 0.2ε 
Reactor temperature [K] 298 
Generated heat [kcal/h] 0   

Table D.2 
Nominal operating variables, and acceptable variability 
around them, for the generation of large-N and validation 
batches from the penicillin simulation model (ε is a sample 
from the Gaussian density N (0,1)).  

Operating variable Value 

Aeration rate [L/h] 8 
Agitator power input [W] 30+ 4ε 
Substrate feed rate [L/h] 0.04+ 0.001ε  

The four faulty validation batches are characterized by nominal conditions similar to those of the NOC ones. However, unexpected changes in the 
agitator power input or in the aeration rate occur at given times, as detailed in Table D.3.  

Table D.3 
Characterization of faulty conditions in the validation dataset.  

Batch nos. Faulty variable Fault type Start time [h] End time [h] Fault magnitude 

16, 17 Agitator power input Step 90 250 ‒40 % 
18, 19 Aeration rate Ramp 150 300 ‒2.0 × 10‒3 (L/h)/h  

The reactor temperature controller settings and pH controller settings are the same as in the original reference. 
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