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EXCEPTIONAL ZERO FORMULAE FOR ANTICYCLOTOMIC p-ADIC

L-FUNCTIONS OF ELLIPTIC CURVES IN THE RAMIFIED CASE

MATTEO LONGO AND MARIA ROSARIA PATI

Abstract. Iwasawa theory of modular forms over anticyclotomic Zp-extensions of imaginary
quadratic fields has been studied by several authors, starting from the works of Bertolini-
Darmon and Iovita-Spiess, under the crucial assumption that the prime p is unramified in K.
We start in this article the systematic study of anticyclotomic p-adic L-functions when p is
ramified in K. In particular, when f is a weight 2 modular form attached to an elliptic curve
E/Q having multiplicative reduction at p, and p is ramified in K, we show an analogue of the
exceptional zeroes phenomenon investigated by Bertolini-Darmon in the setting when p is
inert in K. More precisely, we consider situations in which the p-adic L-function Lp(E/K) of
E over the anticyclotomic Zp-extension of K does not vanish identically but, by sign reasons,
has a zero at certain characters χ of the Hilbert class field of K. In this case we show that
the value at χ of the first derivative of Lp(E/K) is equal to the formal group logarithm
of the specialization at p of a global point on the elliptic curve (actually, this global point
is a twisted sum of Heegner points). This generalizes similar results of Bertolini-Darmon,
available when p is inert in K and χ is the trivial character.

1. Introduction

Cyclotomic Iwasawa theory of elliptic curves goes back to the work of B. Mazur [Maz72]
in the seventies, and since then its interest has constantly grown; spectacular results, among
others, of K. Kato [Kat04] and Skinner-Urban [SU14] led to the proof of the Iwasawa Main
Conjecture for a rational elliptic curve, ordinary at p, over the cyclotomic Zp-extension of
Q. Parallel to the cyclotomic theory, the anticyclotomic Iwasawa theory of elliptic curves
has been developed, by several authors, among which M. Bertolini, H. Darmon, A. Iovita,
M. Spiess, B. Howard, R. Pollack, T. Weston ([BD96], [BD98], [BD05], [BD01], [BDIS02],
[How04a], [How04b], [PW11]).

Bertolini and Darmon, in [BD98] and [BD01] and later on all the articles dealing with
anticyclotomic p-adic L-functions attached to a pair consisting of a modular form and an
imaginary quadratic field K, make the crucial assumption that the prime p is unramified in
K. We start in this article the systematic study of the construction and special values of
anticyclotomic p-adic L-functions attached to a modular form and an imaginary quadratic
field K when p is ramified in K.

In the setting of Bertolini-Darmon, expecially in [BD96] and [BD98], one fixes an elliptic
curve E/Q and a quadratic imaginary field K/Q whose discriminant is prime to the conductor
N of E; one then factors N = N+N− into a product of coprime integers in such a way that
a prime number divides N+ if and only if it is split in K, and consequently a prime number
divides N− if and only if it is inert in K. Pick a prime number p which does not divide
the discriminant of K; we finally assume that the number of primes dividing N− is odd. In
this setting, Bertolini-Darmon defined a p-adic L-functions Lp(E/K) of E over K; this is

an element of the Iwasawa algebra ZpJG̃K (where G̃ is the Galois group of the union of all
ring class fields of K of p-power conductor), characterized by the fact that for all finite order

characters χ of G̃, the value Lp(E/K)(χ) = χ (Lp(E/K)) interpolates special values of the
complex L-function L(E/K,χ, s) of E/K twisted by χ. In the special case when p is inert in
K and p | N , so that E has multiplicative reduction at p, the main result of [BD98] expresses
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the value of the first p-adic derivative of Lp(E/K) at the trivial character as a p-adic logarithm
of a global point in E(K), which is actually a Heegner point of E of conductor 1 arising from
a Shimura curve uniformization of E. This remarkable result provides a completely p-adic
construction of global points.

As mentioned before, one of the aims of this paper is to investigate an analogue of the
results in [BD98] in which the crucial assumption made in loc. cit. that p | N and p is inert
in K is replaced by the requirement that p | N and p is ramified in K. We obtain results in
the spirit of [BD98], expressing the χ-value of the derivative of the p-adic L-function as the
p-adic logarithm of Heegner points in the χ-eigencomponent of the Mordell-Weil group of E,
for all χ in a specific family of finite order characters of the Galois group of the union of the
ring class fields of p-power conductor of K. Note that the case when p is ramified is in some
sense richer than the original setting of [BD98] when p is inert, since in the latter case only
the value of the derivative of the p-adic L-function at the trivial character can be studied,
while in our setting the family of characters giving rise to the p-adic construction of global
points might be strictly larger.

We now explain in a more precise form the main results of this paper. Let E be an elliptic
curve over Q of conductor N and let p be a prime of multiplicative reduction for E, so that
p ‖ N . Fix an imaginary quadratic field K of discriminant D. The following assumption are
made throughout:

• O×
K = {±1}, i.e. K 6= Q(i) and K 6= Q(

√
−3);

• (N,D) = p, i.e. p is ramified in K and no other prime dividing N ramifies in K.

Write N as

N = pN−N+

where the primes dividing N− are those inert in K, and the primes of N dividing N+ are
those splitting in K. We make the following further assumptions:

• The integer N− is squarefree, i.e. E has multiplicative reduction at the primes dividing
N which are inert in K;
• The integer N− is the product of an odd number of primes.

Under the above assumptions, let K∞ = ∪nKn where Kn is the ring class field of K of
conductor pn; this is the abelian extension ofK corresponding to Pic(Opn) by class field theory,

where Opn = Z+ pnOK . Let G̃ = Gal(K∞/K), which is isomorphic to a product G̃ = T ×G,
where G ≃ Zp and T is a finite group. In the first part of the paper, following [BDIS02], for

an eigenform φ of even weight k on Γ0(N) we construct an element in ZpJG̃K which is known,

thanks to [YZZ13, Theorem 1.4.2], to interpolate the algebraic part Lalg(φ,K, χ, k/2) of the
special value L(φ,K, χ, k/2) of the complex L-function of φ over K twisted by χ, for all finite

order ramified characters χ of G̃. Applying all this to the modular eigenform of weight two
attached to E/Q by modularity, we obtain a p-adic L-function Lp(E/K,χ, s), which is an

element of ZpJG̃K, interpolating the algebraic part of the special value L(E/K,χ, 1) of the
complex L-function of E/K twisted by χ.

Let Hp be the maximal subextension of H, the Hilbert class field of K, in which the unique
prime p of K above p splits completely. We consider the set Z of finite order characters χ of
G̃ which factors through Hp. Fix such a character χ of G̃. Under our assumption, the elliptic
curve E can be uniformized by the Shimura curve X = XN+,pN− attached to the indefinite

quaternion algebra B of discriminant pN− and the Eichler order R of level N+; note that the
number of primes dividing N− is odd. Let PH be a Heegner point of conductor 1 in E(H)
arising from this uniformization, and construct the point

Pχ =
∑

σ∈Gal(H/K)

P σ
H ⊗ χ−1(σ)
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in (E(H)⊗ZQ̄)χ; here for any C[Gal(H/K)]-moduleM , we denote byMχ its χ-eigencomponent.
The main result of this paper is the following:

Theorem 1.1. For all χ ∈ Z,

L′
p(E/K)(χ) =

2

[H : Hp]
·
(

logE(Pχ)− logE(P̄χ)
)

where logE is the logarithm of the formal group of E and P̄χ is the complex conjugate of Pχ.

Of course, the question is when the point Pχ in the above theorem is non-torsion. To discuss
this point, let bp be the p-th Fourier coefficient of the Theta series attached to χ. Also, let
ap = +1 if E has split multiplicative reduction at p, and ap = −1 otherwise. If

(1) ap · bp = 1

then the order of vanishing of L(E/K,χ, s) at s = 1 is odd; thus in particular L(E/K,χ, 1)
is equal to zero. Under the assumption that L′(E/K, 1) 6= 0, the point Pχ is non-torsion
by [YZZ13, Theorem 1.3.1] and therefore Theorem 1.1 gives a purely p-adic construction of
the logarithm of a global point of the elliptic curve, in the spirit of [BD98, Theorem B], As
remarked above, note that in our setting the character χ needs not be trivial.

If (1) is not satisfied, the situation looks more mysterious. The order of vanishing of
L(E/K,χ, s) at s = 1 is even in this case. Call r this order of vanishing. Clearly, if r ≥ 2,
then the point Pχ is torsion by [YZZ13, Theorem 1.3.1]. If r = 0, that is L(E/K,χ, 1) 6= 0, at
least assuming E does not have CM, (E(H)⊗Z Q̄)χ = 0 by [Nr12, Theorem A’]; therefore, Pχ

is torsion as well, and logE(Pχ) and logE(P̄χ) are both zero. Therefore, our theorem implies
that L′

p(E/K)(χ) = 0. It might be interesting in this case to study the arithmetic significance
of the second derivative L′′

p(E/K)(χ) of the p-adic L-function valued at χ.

Remark 1.2. S. Molina [Mol16] has recently obtained a construction of the p-adic L-function
in the ramified case, following the strategy of Spiess (see [Spi14]), and proving several results
toward exceptional zero formulae in the more general context of totally real number fields;
however, the author does not cover the case we are interested in. Moreover, the construction
of the p-adic L-function in [Mol16] is different from our.

Finally, let us outline the main differences between the inert [BD98] and the ramified case.
Leaving to the following sections the discussion of the specific technical issues arising in the
ramified case (for example, Hp might be different from H in our context, while H = Hp in
the inert case) one of the main differences between the ramified and the inert cases is related
to the use of the Cerednik-Drinfeld uniformization theorem, which plays an important role in
the p-adic analytic description of the image of Heegner points of conductor 1 in the fiber at
p of Shimura curves, in the case when p divides the discriminant of the quaternion algebra.
Briefly, in the inert case the image of Heegner points of conductor 1 in X(Cp) (where X
is as above the Shimura curve attached to the indefinite quaternion algebra of discriminant
pN− and an Eichler order of level N+) can be described by means of the Cerednik-Drinfeld
theorem and correspond to points in the subset Qp2 − Qp of the Drinfeld upper half plane
Hp = Cp −Qp, where Qp2 is the quadratic unramified extension of Qp; this is due to the fact
that the Shimura curve X/Qp is a Mumford curve, isomorphic over Qp2 to quotients of the
p-adic upper half plane by appropriate arithmetic subgroups of PGL2(Qp). In the ramified
situation, we need a more refined version of the Cerednik-Drinfeld theorem, since our points
will belong to extension of a quadratic ramified extension of Qp, for which the uniformization
theorem does not hold. Therefore, we first need to describe X/Qp over Qp in terms of twisted
Mumford curves as in [JL85, Theorem 4.3’], and then carefully describe the image of Heegner
points in terms of these twisted objects.

Acknowledgements. We are grateful to A. Iovita for many interesting discussion about the
topics of this paper. M.L. is supported by PRIN
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2. The anticyclotomic p-adic L-function of φ and K

We begin by setting some notation and recalling some definitions. Let

Hp := P1(Cp)− P1(Qp)

be Drinfeld’s upper half plane. The group PGL2(Qp) acts on Hp from the left by fractional
linear transformations. Let T = Tp be the Bruhat-Tits tree of PGL2(Qp) and denote by
~E(T ), E(T ) and V(T ) the sets of oriented edges, edges and vertices of T , respectively. For

any e ∈ ~E(T ) we denote by V (e) ⊂ Hp the inverse image of e under the canonical reduction

map r : Hp → V(T ) ∪ ~E(T ).
Let B be the definite quaternion algebra of discriminant N−. Since p ∤ N−, Bp := B ⊗Qp

is isomorphic to M2(Qp). Fixing an isomorphism ι : Bp → M2(Qp), we view the vertices of T
as the maximal (Z-)orders in Bp and the edges as the Eichler orders of level p. Let R be an
Eichler Z[1/p]-order in B of level N+ (it is unique up to conjugation) and denote by R×

1 the
group of the elements of reduced norm 1 in R. Let Γ := ι(R×

1 ) ⊂ PSL2(Qp) be the image of
R×

1 under ι.
Finally, let Pk−2 be the (k − 1)-dimensional Cp-vector space of polynomials of degree at

most k − 2 with coefficients in Cp. The linear group GL2(Qp) acts on the right on Pk−2 in
the following way:

P (x) · β :=
(cx+ d)k−2

(det(β))
k−2
2

P

(

ax+ b

cx+ d

)

, β =

(

a b
c d

)

, P ∈ Pk−2.

Since Q×
p ⊂ Pk−2 acts trivially, it is actually an action of PGL2(Qp) on Pk−2. This action

also induces a left action on the dual space P∨
k−2 := Hom(Pk−2,Cp) given by

β · ϕ(P ) := ϕ(P · β), ϕ ∈ P∨
k−2.

We are now ready to introduce the following two definitions:

Definition 2.1. A p-adic modular form of weight k on Γ is a Cp-valued global rigid analytic
function f on Hp satisfying

f(γz) = (cz + d)kf(z) for all γ =

(

a b
c d

)

∈ Γ.

Definition 2.2. A harmonic cocycle c of weight k on T is a P∨
k−2-valued function on ~E(T )

satisfying

c(e) = −c(ē),
∑

source(e)=v

c(e) = 0, ∀v ∈ V(T ),

where ē is the unique edge obtained from e by reversing the orientation.

Denote by Char(k) the Cp-vector space of weight k harmonic cocycles, and by Char(k)
Γ

the space of Γ-equinvariant harmonic cocycles of weight k, that is to say harmonic cocycles c
satisfying

c(γe) = γ · c(e) ∀γ ∈ Γ.

For c ∈ CΓ
har, set

〈c, c〉 =
∑

e∈~E(T )/Γ

we〈c(e), c(e)〉,

where the sum is taken over a set of representatives for the Γ-orbits in ~E(T ), the integer we is
the cardinality of the stabilizer of e in Γ and 〈 , 〉 is the pairing on P∨

k−2 defined in [BDIS02,
Sec. 1.2].
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2.1. The p-adic modular form f associated to φ. Denote X = XN+,pN− the Shimura
curve (viewed as a scheme over Q) attached to the quaternion algebra B = BpN− of dis-
criminant pN− and the Eichler order R = RN+ of level N+ in B. Let R = R[1/p] ⊂ B
and Γ = ι(R×

1 ) be the image in PSL2(Qp) of the elements of reduced norm 1 in R. By the
Cerednik-Drinfeld uniformization theorem, the quotient Γ\Hp is isomorphic to the set X(Cp)
of Cp-points of the Shimura curve X.

Let φ =
∑∞

n=1 anq
n be a normalized eigenform of even weight k on Γ0(N). Combining

the Jacquet-Langlands correspondence and the Cerednik-Drinfeld uniformization theorem,
we attach to φ a p-adic modular form f of weight k on Γ such that

Tℓ(f) = aℓf ∀ℓ ∤ pN−,

where Tℓ denotes the ℓ-th Hecke correspondence on the Shimura curve X defined above. This
function is unique up to scaling by a nonzero element in Cp.

2.2. The harmonic cocycle cf associated to f . We associate to f a harmonic cocycle cf
of weight k defined by

cf (e)(P ) = rese(f(z)P (z)d(z)), P (z) ∈ Pk−2,

where rese is the p-adic annular residue along V (e) ⊂ P1(Cp). It can be shown that cf ∈ CΓ
har

(see [BD01, Lemma 3.13]).
We normalize f so that 〈cf , cf 〉 = 1, it follows that f is defined up to sign and that cf takes

values in an extension at most quadratic of the field generated by the Fourier coefficients of
φ (having fixed at the beginning an embedding of Q̄ in Cp).

2.3. The measure µf on P1(Qp) associated to cf . We associate now to the harmonic
cocycle cf a measure µf on P1(Qp) in the following way.

First of all observe that P1(Qp) is identified with the space E∞(T ) of ends of T . Recall

that an end of T is an equivalence class of sequences (en)
∞
n=1 of consecutive edges en ∈ ~E(T ),

where (en) is identified with (e′n) if and only if there exist N and N ′ with eN+j = e′N ′+j for

all j ≥ 0. After the identification of E∞(T ) with P1(Qp), the space E∞(T ) inherits a natural

topology coming from the p-adic topology on P1(Qp). Each edge e ∈ ~E(T ) corresponds to an
open compact subset U(e) ⊂ E∞(T ) consisting of the ends having a representative containing
e.

For all e ∈ ~E(T ) and P ∈ Pk−2 define

µf (P · χU(e)) :=

∫

U(e)
P (x)dµf (x) = cf (e)(P ).

It extends to a functional on the space, which we denote by Ak, of locally analytic Cp-valued
functions on P1(Qp) having a pole of order at most k − 2 at ∞.

Extending the action of PGL2(Qp) on Pk−2 to Ak, i.e. defining:

(ϕ ∗ β)(x) := (cx+ d)k−2

det(β)
k−2
2

ϕ(βx), β ∈ PGL2(Qp), ϕ ∈ Pk−2,

one can easily see that µf satisfies the following properties:

Lemma 2.3. (1) For any P ∈ Pk−2,
∫

P1(Qp)
P (x)dµf (x) = 0;

(2) µf (ϕ ∗ γ) = µf (ϕ), for all γ ∈ Γ and ϕ ∈ Ak.

Proof. (1) Let v be any vertex of T . By identifying P1(Qp) with E∞(T ) one has
∫

P1(Qp)
P (x)dµf (x) =

∑

e, source(e)=v

∫

U(e)
P (x)dµf (x) =

∑

e, source(e)=v

cf (e)(P ) = 0,
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where in the last equality we have used the harmonicity of cf .

(2) It suffices to check the formula on functions of the type P · χU(e):

µf ((P · χU(e)) ∗ γ) = µf ((P · γ)(x) · χU(e)(γx)) = µf ((P · γ) · χU(γ−1e))

= cf (γ
−1e)(P · γ) = γ−1 · cf (e)(P · γ) = cf (e)(P ) = µf (P · χU(e)).

�

2.4. The measure µf,Ψ,⋆ on G associated to µf and (Ψ, ⋆). Now we want to pass from
a measure on P1(Qp) to a measure on the Galois group of a suitable extension of K related
to the adjective anticyclotomic that appears in the title. Recall that our aim is to define a
p-adic L-function associated to a pair (φ,K) where φ is an eigenform of even weight k ≥ 2
on Γ0(N) and K is an imaginary quadratic field satisfying certain conditions. Up to now, we
have used information coming only from φ (except for the factorization of N which depends
on K); from now on we will also take into consideration the field K.

Let Kn denote the ring class field of K of conductor pn, and set K∞ =
⋃

n Kn. It is the
maximal anticyclotomic extension which is unramified outside p. We have the following tower
of extensions

Q ⊂ K ⊂ Hp ⊆ K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · ·K∞,

where K0 = H is clearly the Hilbert class field of K and Hp is the maximal subextension of
K0 over K in which the prime of K above p splits completely. Note that if pOK = p2 and p

is a principal ideal then Hp = K0.
We denote

G := Gal(K∞/Hp), ∆ := Gal(Hp/K), G̃ := Gal(K∞/K).

We can interpret these groups in terms of ideles of K. Denote by O the Z[1/p]-order OK [1/p]

in K. For every rational prime ℓ, set Kℓ := K ⊗Qℓ, Oℓ := O ⊗ Zℓ and Ô := O ⊗ Ẑ. Observe
that Ô× is isomorphic to

∏

ℓO×
ℓ , the product being taken over all primes ℓ; in what follows

it will also appear Ô′ :=
∏

ℓ 6=pO×
ℓ .

The adel ring of K is K̂ = Ô ⊗ Q. Note that, since we are assuming p ramified in K,
the Qp-algebra Kp is the completion of K at the prime p above p and it is a totally ramified
extension of Qp of degree 2.

If we denote by OK,pn the order of OK of conductor pn, then by definition

Gal(Kn/K) = Pic(OK,pn) = K̂×/K×Ô×
K,pn.

By Galois theory, one has

G̃ := Gal(K∞/K) = lim←−
n

Gal(Kn/K) = K̂×/K×
⋂

n

Ô×
K,pn = K̂×/K×Ô′Z×

p .

Observe that, by strong approximation, we can write

Q̂× = Q×
∏

ℓ 6=p

Z×
ℓ Q

×
p ,

therefore, since Q ⊂ K and
∏

ℓ 6=p Zℓ ⊂ Ô′, one has

G̃ = K̂×/K×Ô′Q̂×.

Consider now the Galois group of Hp over K. It is a quotient of Gal(K0/K) = K̂×/K×Ô×
K .

In particular, since the prime of K above p splits completely in Hp, we have

Gal(Hp/K) = K̂×/K×Ô×
KK×

p = K̂×/K×Ô×Q×
p
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and, again by strong approximation, one can write

∆ := Gal(Hp/K) = K̂×/K×Ô×Q̂×

Finally, by Galois theory, Gal(K∞/Hp) is the unique subgroup G of G̃ such that G̃/G ≃ ∆,
therefore

G := Gal(K∞/Hp) = K×
p /Q×

p O×.

For our purpose, we have to find a way to “translate”the measure µf on P1(Qp) into a measure

on G = K×
p /Q

×
p O×. The trick is to embed K×

p /Q
×
p into a matrix algebra acting simply

transitively on P1(Qp), obtaining then a bijection between K×
p /Q×

p and P1(Qp). Finally a
simple passage to a quotient will give the desired measure on G.

Equip both O and R with orientations, that is to say fix surjective homomorphisms

o : R −→ (Z/N+Z)×
∏

ℓ|N−

Fℓ2 ,

α : O −→ (Z/N+Z)×
∏

ℓ|N−

Fℓ2 .

An embedding Ψ: K −→ B is called an oriented optimal embedding of O into R if:

(1) Ψ(K) ∩R = Ψ(O), so that Ψ induces an embedding of O into R;
(2) Ψ is compatible with the chosen orientations onO and R in the sense that the following

diagram commutes

O Ψ
✲ R

(Z/N+Z)×
∏

ℓ|N−

Fℓ2

o

✛

α
✲

Note that each embedding Ψ corresponds to a vertex of T . In fact Ψ extends to an embedding
of Kp in Bp and, if Op is the ring of the integers of Kp, Ψ(Op) is contained in a unique maximal
order of Bp, which is a vertex of T by definition.

The group R× acts by conjugation on the set of all oriented optimal embeddings of O into
R. Write emb(O, R) for the set of all oriented optimal embedding of O into R, taken modulo
conjugation by R×

1 .
The group ∆ acts naturally on emb(O, R) in the following way. Let Ψ ∈ emb(O, R)

and σ ∈ K̂× be a representative for σ̄ ∈ ∆ = K̂×/K×Ô×Q̂×, denote by Ψ̂ the extension

of Ψ: K → B to K̂ → B̂ and by R̂ the adelisalition of R, that is R ⊗ Ẑ. Then Rσ :=
(Ψ̂(σ)R̂Ψ̂(σ)−1)∩B is an Eichler Z[1/p]-order of level N+, which inherits an orientation from
the one of R. The element Ψ ∈ emb(O, R) is also an element of emb(O, Rσ); in fact Ψ(O) ⊂ B

and Ψ(O) ⊂ (Ψ̂(σ)R̂Ψ̂(σ)−1), so that Ψ(O) ⊂ Rσ, moreover Ψ(K)∩ (Ψ̂(σ)R̂Ψ̂(σ)−1) ⊂ Ψ(O)
and Ψ also respect the orientations on O and Rσ. Since B and Z[1/p] satisfy the Eichler
condition, all the Z[1/p]-order of a given level are conjugate in B, so that there exists b ∈ B×

such that R = bRσb
−1. Then we can define

σ̄Ψ := bΨb−1 ∈ emb(O, R).

It is easy to see that the definition does not depend on the choice of the representative for σ̄,
so that it is really an action of ∆. Moreover it is invariant under the action of R×

1 on Ψ, that
is to say the action is well-defined on emb(O, R).

The following holds

Proposition 2.4. The group ∆ acts freely on emb(O, R). The set emb(O, R)/∆ has order

2.
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Proof. See [Gro87, Section 3]. �

A pointed oriented optimal embedding of O into R is a pair (Ψ, ⋆), where Ψ is an oriented
optimal embedding of O into R and ⋆ is a point of P1(Qp), which is not fixed by the action

of Ψ(K×
p ) by Moebius transformations. Since R×

1 acts on the oriented optimal embedding by
conjugation and on P1(Qp) by Moebius transformations, we can consider the set of all pointed
oriented optimal embeddings of O into R modulo R×

1 , that we will denote by embp(O, R).
The elements of embp(O, R) have an interpretation on the Bruhat-Tits tree: once fixed Ψ ∈
emb(O, R) which is a vertex v on the quotient graph T /Γ, to give ⋆ is equivalent to give an
end of T /Γ originating from v.

The group G̃ acts on embp(O, R). In particular, for each n ≥ 0 the subgroup Gn =
Gal(K∞/Kn) fixes Ψ and the first n + 1 edges of the end ⋆, so that σ ∈ Gn sends (Ψ, ⋆) to
(Ψ, σ⋆) where σ⋆ is an end which differs from ⋆ as from the (n + 2)-th edge. While, as seen
before, the quotient ∆ moves the starting vertex Ψ.

As before, it holds

Proposition 2.5. The group G̃ acts freely on embp(O, R). The set embp(O, R)/G̃ has order

2.

Proof. See [BDIS02, Lemma 2.13]. �

Fix a pointed oriented optimal embedding (Ψ, ⋆). We want to define a measure µf,Ψ,⋆ on
G.

Observe that, since p is ramified in K, the completion Kp is a quadratic extension of Qp

so in particular a Qp-vector space of dimension 2; it follows that the quotient of K×
p by the

action of Q×
p is by definition P1(Qp). Since it is also a group, the action of K×

p /Q
×
p on itself

is simply transitive. Therefore, fixing Ψ we obtain a simply transitive action of K×
p /Q

×
p on

P1(Qp), and the base point ⋆ determines a bijection

ηΨ,⋆ : K
×
p /Q×

p −→ P1(Qp)

by the rule ηΨ(x) = ιΨ(x−1)(⋆). Note that ιΨ(K×
p ) has two fixed points zΨ, z̄Ψ ∈ K×

p in Hp,

which, up to a change of coordinates, are the roots of X2 −D. We can identify K×
p /Q×

p with

K×
p,1, the group of elements in K×

p of norm 1, via the map sending x (mod Qp) to x/x̄. If we
choose ⋆ =∞ we can write the composition

ηΨ,⋆ : K
×
p,1

∼−→ K×
p /Q×

p
∼−→ P1(Qp)

in a simple explicit way (abusing notation we have denoted also by ηΨ,⋆ the composition of
ηΨ,⋆ with x 7→ x/x̄).

We first look at the inverse η−1
Ψ,∞ : P1(Qp) −→ K×

p,1. Let a ∈ P1(Qp), it is the image of

⋆ = ∞ under the Moebius transformation associated to ιΨ(a − zΨ) = ιΨ

(

(

1
a−zΨ

)−1
)

. So

that, applying the identification x 7→ x/x̄, one obtains

(2) η−1
Ψ,∞(a) =

a− z̄Ψ
a− zΨ

.

Compute the inverse

a− z̄Ψ
a− zΨ

= α, α ∈ K×
p,1 =⇒ a =

αzΨ − z̄Ψ
α− 1

.

So that

ηΨ,∞(α) =
αzΨ − z̄Ψ
α− 1

.
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Pullback by ηΨ,⋆ and η−1
Ψ,⋆ on functions preserve local analyticity and so we get a natural,

continuous isomorphism

(η−1
Ψ,⋆)

∗ : A(K×
p,1) −→ A(P1(Qp))

between the Qp-algebra of locally analytic functions on K×
p,1 and the Qp-algebra of locally

analytic functions on P1(Qp).

Let uΨ := Ψ(
√
D), it is an element of reduced trace zero, as one can see looking at the

characteristic polynomial of ι(uΨ), that is X
2 −D. Define the polynomial Puψ ∈ P2 as

PuΨ
(x) = trace

(

ι(uΨ)

(

x
1

)

(

1 −x
)

)

.

It is a polynomial with coeffcients in Qp with the property that

(3) PuΨ
· ιΨ(α) = PuΨ

, ∀α ∈ K×
p .

Now recall that in the previous section we have defined a distribution µf on the space of locally
analytic functions on P1(Qp) having a pole of order at most k−2 in∞, therefore, by restriction,

also a linear functional on the free A(P1(Qp))-module of rank one P
k−2
2

uΨ
· A(P1(Qp)) ⊂ Ak,

which is again a distribution (see [Tei90], Proposition 9). We use it to define the distribution
µf,Ψ,⋆ on K×

p,1 setting

µf,Ψ,⋆(ϕ) := µf (P
k−2
2

uΨ
· (η−1

Ψ,⋆)
∗(ϕ)), for ϕ ∈ A(K×

p,1).

Observe that under the identification x 7→ x/x̄ we can write G = K×
p /Q×

p O× as

G = K×
p,1/O×

1 ,

where O×
1 is the group of norm one elements in O×. By the theorem of S-units, O× is a free

abelian group of rank 1, so that the quotient O×/Z[1/p]× is a finite group Z/nZ for some n.
In particular,

∣

∣O×/Z[1/p]×
∣

∣ > 1,

because, if we write p as xy with x, y ∈ p ⊂ OK (recall that we assumed pOK = p2) then
x
p ∈ O× but x

p /∈ Z[1/p]×. Consider the projection map

K×
p,1 ≃ K×

p /Q×
p

✲✲ K×
p /Q×

p O× ≃ K×
p,1/O×

1 .

Its kernel is O×
1 ≃ O×/(Q×

p ∩O×) = O×/Z[1/p]×, which is a finite group. In particular, every

element of O×
1 is a root of unity, thus O×

1 = {±1} since K is an imaginary quadratic field,
and as such it does not contain any cyclotomic field Q(ζn) for n 6= 2. This implies that the
kernel of the projection K×

p,1 ։ K×
p,1/O×

1 = G has order 2.

Now, to give a function ϕ on G = K×
p,1/O×

1 is equivalent to give a function ϕ on K×
p,1

such that ϕ(x) = ϕ(ux) for all x ∈ K×
p,1 and u ∈ O×

1 . Observe that µf,Ψ,⋆ is invariant under

translation by O×
1 . Indeed, if we denote by ϕ× u the function x 7−→ ϕ(ux) (x ∈ K×

p,1) then

µf,Ψ,⋆(ϕ× u) = µf ((P
k−2
2

uΨ
· (η−1

Ψ,⋆)
∗(ϕ× u)) = µf ((P

k−2
2

uΨ
· (ϕ× u) ◦ η−1

Ψ,⋆),

but for x ∈ P1(Qp)

(P
k−2
2

uΨ · (ϕ× u) ◦ η−1
Ψ,⋆)(x) = P

k−2
2

uΨ (x) · ϕ(uη−1
Ψ,⋆(x)) = P

k−2
2

uΨ (x) · ϕ(η−1
Ψ,⋆(γx))

where γ ∈ ι(Ψ(O×
1 )) ⊂ Γ is the matrix of Γ which correspond to u ∈ O×

1 . Using (3) and that
cf ∈ CΓ

har is Γ-invariant we obtain that

µf (P
k−2
2

uΨ
· (ϕ× u) ◦ η−1

Ψ,⋆) = µf ((P
k−2
2

uΨ
· (η−1

Ψ,⋆)
∗ϕ) ∗ γ) = µf (P

k−2
2

uΨ
· (η−1

Ψ,⋆)
∗ϕ) = µf,Ψ,⋆(ϕ).
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The invariance of µf,Ψ,⋆ under translation by O×
1 implies that, if ϕ ∈ A(K×

p,1) is a locally

analytic function on K×
p,1 and V is a compact open subset of K×

p,1, then
∫

uV
ϕdµf,Ψ,⋆ =

∫

V
(ϕ× u)dµf,Ψ,⋆, ∀u ∈ O×

1

just for a change of variable. In particular if ϕ ∈ A(G) is a locally analytic function on
G = K×

p,1/O×
1 and F is a fundamental domain for the action of O×

1 on K×
p,1 then

∫

uF
ϕdµf,Ψ,⋆ =

∫

F
ϕdµf,Ψ,⋆.

It follows that we can define a measure, denoted also by µf,Ψ,⋆, on G setting

µf,Ψ,⋆(ϕ) =

∫

G
ϕdµf,Ψ,⋆ :=

∫

F
ϕdµf,Ψ,⋆, for all ϕ ∈ A(G).

2.5. Measure µf,K on G̃ associated to φ and K. Extend µf,Ψ,⋆ to a Cp-valued measure

µf,K on G̃ by the rule

µf,K(δU) := µ
f,Ψδ−1 ,⋆δ−1 (U), U ⊂ G, δ ∈ G̃.

For δ̄ ∈ ∆, choose a lift δ of δ̄ to G̃, so that G̃ is a disjoint union of G-cosets:

G̃ =
⋃

δ̄∈∆

δG.

If ϕ ∈ A(G̃) is any locally analytic function on G̃, then
∫

G̃
ϕ(x)dµf,K(x) =

∑

δ̄∈∆

∫

G
ϕ(δx)dµ

f,Ψδ−1 ,⋆δ−1 (x).

Proposition 2.6. The distribution µf,K depends on the choice of (Ψ, ⋆) only up to translation

by an element of G̃, and up to sign. Its restriction to G is µf,Ψ,⋆.

Proof. If (Ψ, ⋆) is replaced by (γΨγ−1, γ⋆) with γ ∈ R×
1 , then the associated distribution is

unchanged since µf is invariant under the action of Γ. By Proposition 2.5 there are only two

G̃-orbits. If (Ψ, ⋆) and (Ψ′, ⋆′) = α·(Ψ, ⋆) are in the same G̃-orbits, the associated distributions

differ by translation by α. If (Ψ, ⋆) and (Ψ′, ⋆′) belong to different G̃-orbits, the associated

distributions differ by translation by an element of G̃ and, eventually, by the sign. �

2.6. The p-adic L-function associated to φ and K. We are now ready to define the
notion of p-adic L-function attached to φ and K.

Definition 2.7. Let
X = Homcont(G̃, Q̄×

p )

be the set of Q̄×
p -valued continuous characters χ : G̃→ Q̄×

p .

(1) Let (Ψ, ⋆) be a representative for a class in embp(O, R). The partial anticyclotomic

p-adic L-function attached to φ, K and (Ψ, ⋆) is the function χ 7→ Lp(φ,K,Ψ, ⋆, χ)
defined for χ ∈ X as

Lp(φ,K,Ψ, ⋆, χ) :=

∫

G
χ(g)dµf,Ψ,⋆(g).

(2) The anticyclotomic p-adic L-function attached to φ and K is the function χ 7→
Lp(φ, χ) defined for χ ∈ X by

Lp(φ,K, χ) :=

∫

G̃
χ(g)dµf,K(g).



11

Let log : C×
p −→ Cp be a branch of the p-adic logarithm. It gives a homomorphism

log : K×
p −→ Kp which is 0 on O×

1 , and hence, by passing to the quotient, a homomorphism
from G to Kp which extends uniquely to a homomorphism

log : G̃ −→ Kp

as G has finite order in G̃. For g ∈ G̃ and s ∈ Zp, define

gs := exp(s · log(g)),

where exp is the usual p-adic exponential. For any finite order character χ : G̃ → Q̄p, let χs

denote the character defined by χs(g) = χ(g) · gs. In this case, we put

Lp(φ,K, χ, s) = Lp(φ,K, χs− k
2

) and Lp(φ,K,Ψ, ⋆, χ, s) = Lp(φ,K,Ψ, ⋆, χs− k
2

).

For χ a finite order character of G̃, we define L′
p(φ,K, χ, s) and L′

p(φ,K,Ψ, ⋆, χ, s) to be the p-
adic derivative of the p-adic analytic functions s 7→ Lp(φ,K, χ, s) and s 7→ Lp(φ,K,Ψ, ⋆, χ, s),
respectively.

2.7. Interpolation formulae. We now fix an embedding Q̄p →֒ C, thus allowing to consider
p-adic numbers as complex numbers. Then we expect that the p-adic L-function satisfies the
following interpolation formula:

(4)

∣

∣

∣

∣

∫

G̃
χ(g)dµf,K

∣

∣

∣

∣

2

= |Lp(φ,K, χ, k/2)|2 .
= Lalg(φ,K, χ, k/2)

for any finite order character χ of G̃, where
.
= indicates an equality up to an algebraic non-zero

factor and Lalg(φ,K, χ, k/2) is a suitable normalisation of L(E/K, 1), obtained by dividing
L(φ,K, k/2) by an appropriate complex period. For k = 2, formula (4) has been proved in
[YZZ13, Theorem 1.4.2].

3. Twisted Cerednik-Drinfeld uniformization and Heegner points

The aim of this Section is to review a twisted version of the Cerednik-Drinfeld theorem
which we will use for our purposes. As a general notation, if T → S and X → S are schemes
over a base scheme S, we denote XT = X×S T . If F/Q is a field extension, and X is a scheme
over Spec(Q), we will write XF for XSpec(F ) and sometimes we will simply write X when it
is clear over which field the scheme is considered.

3.1. Twisted uniformization of Shimura curves. From now on we will look at the p-adic
L-function attached to the modular form of weight 2 associated by modularity to an elliptic
curve over Q. In particular, let E be an elliptic curve over Q of conductor N , p be a prime such
that p ‖ N and φ be the normalized eigenform on Γ0(N) associated to E by modularity. Using
the construction of the previous section, we can define a p-adic L-function which interpolate
the algebraic part of the special value L(E/K,χ, 1) of the complex L-function of E/K twisted

by χ, for all finite order ramified characters of G̃. We will denote it by Lp(E/K,χ, s) instead
of Lp(φ/K,χ, s) to recall that the modular form φ is that associated to E/Q.

Recall the notation fixed in Section 2: B is the quaternion algebra over Q of discriminant
N−; R is a fixed Eichler Z[1/p]-order in B of level N+; R×

1 is the group of the elements of
reduced norm 1 in R; ι : Bp = B ⊗Q Qp ≃ M2(Qp) is a fixed isomorphism; Γ := ι(R×

1 ) ⊂
PSL2(Qp) is the image of R×

1 under ι. We also define Γ̃0 = ι(R×) and Γ0 = ι(R×
+), where R×

+

is the subgroup of R× consisting of elements with even valuation. Clearly, the image of Γ0 in
PGL2(Zp) is Γ, and therefore Γ0\Hp = Γ\Hp. Also, Γ0 is normal in Γ̃0 and we let {1, wp} be
representatives of the quotient group W = Γ̃0/Γ0.
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Let Ĥp be Drinfeld formal scheme over Spf(Zp) whose generic fiber is Hp. The quotient

Γ0\Ĥp is then the formal completion along its closed fiber of a scheme XΓ0
, which is projective

over Zp.
As in Section 2, denote X = XN+,pN− the Shimura curve (viewed as a scheme over Q)

attached to the quaternion algebra B = BpN− of discriminant pN− and the Eichler order

R = RN+ of level N+ in B. It is well known that over the quadratic unramified extension
Qp2 of Qp we have an isomorphism of Qp2-schemes XΓ0

≃ X. Moreover, let

[ϕ] ∈ H1
(

Gal(Qp2/Qp),Aut(XQ
p2
)
)

be the class represented by the cocycle ϕ : Gal(Qp2/Qp) → Aut(XQ
p2
) which maps the gen-

erator Frobp of Gal(Qp2/Qp) to wp. Then (cf. [JL85, Theorem 4.3’]) there is an isomorphism

Xϕ
Γ0

∼−→ X

of schemes over Qp, where Xϕ
Γ0

denotes the twist of XΓ0
by ϕ. In particular, if F is any

extension of Qp such that F ∩Qp2 = Qp and L = F ·Qp2 , then we have

Xϕ
Γ0
(F ) = XΓ0

(L)Frobp=wp

where Frobp = Frobp(L/F ) denotes the generator of Gal(L/F ) and

XΓ0
(L)Frobp=wp = {P ∈ XΓ0

(L)|PFrobp = wp(P )}.

3.2. Twisted uniformization of elliptic curves. As a consequence of the Jacquet-Langlands
correspondence, it is known that there exists a modular uniformization

πE : Div0(X)−։E

of Qp-schemes. Let

ΦTate : C
×
p /q

Z −→ E(Cp)

be the Tate uniformization of E, where q is the Tate period, which is defined over Qp2 if E has
non-split multiplicative reduction over Qp, and over Qp if E has split multiplicative reduction
over Qp. Let log = logq be the choice of p-adic logarithm satisfying logq(q) = 0, and define

logE : E(Cp) −→ Cp

by the formula logE(P ) = logq(x) for any x ∈ Cp such that ΦTate ([x])) = P (having denoted

[x] the class of x in C×
p /q

Z).
Over Qp2 , composing πE with the isomorphism XΓ0

≃ X, we get a map

(5) Div0 (XΓ0
)

∼−→ Div0 (X)
πE−→ E.

This map can be described explicitly by means of p-adic Coleman integrals (cf. [Tei90]). First,
consider the map

Hp ×Hp −→ C×
p

defined by

[x]− [y] 7−→ ×
∫

[x]−[y]
ωf = ×

∫

P1(Qp)

t− x

t− y
dµf

where
∫

× denotes the multiplicative integral defined by taking limits of Riemann products
instead of sums (for more details see [Dar01], Section 1) and recall that µf is the measure on
P1(Qp) constructed in §2.3. Extending by Z-linearity, we get a map

×
∫

ωf : Div0(Hp) −→ C×
p .
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denoted d 7→
∫

×dωf . The map in (5) can be described as the map which takes a divisor of
degree zero d of XΓ0

defined over an extension of Qp2 to

πΓ0,E(d) = ΦTate

(

×
∫

d̃
ωf

)

where d̃ is any degree zero divisor in Div0(Hp) which is sent to d via the isomorphism of rigid
analytic spaces Γ0\Hp ≃ XΓ0

(Cp).
Over Qp, we have a map

(6) Div0
(

Xϕ
Γ0

)

≃−→ Div(X) −→ E.

Let F be any finite field extension of Qp, let L/F be the quadratic unramified extension of
F , and let q be as above the Tate period of E. Define

ΣF (E) =

{

F×/qZ, if E/F has split multiplicative reduction,

{u ∈ L×/qZ |NL/F (u) ∈ qZ/q2Z}, otherwise,

where NL/F denotes the norm map. Tate’s theory of p-adic uniformization implies then that
the following diagram is commutative:

ΣF (E)
ΦTate

≃
// E(F ) �

�

// E(L)

Div0
(

Xϕ
Γ0
(F )
)

=Div0
(

XΓ0
(L)Frobp=wp

)

×
∫
ωf

OO

�

�

// Div0 (XΓ0
(L))

≃ πΓ0,E

OO

where ΦTate : L
×/qZ → E(L) denotes as above the Tate uniformization.

Remark 3.1. One can directly check that the dotted arrows factors through ΣF (E). If a divisor
d =

∑

i xi in Div0(XΓ0
(L)) satisfies Frobp(xi) = wp(xi) for all i, using that the isomorphism

Γ0\Hp ≃ XΓ0
(Cp) is equivariant for the action of wp, and the action of wp on µf is via ap, we

see that

NL/F

(

×
∫

d̃
ωf

)

=

(

×
∫

d̃
ωf

)

·
(

×
∫

wp(d̃)
ωf

)

=

(

×
∫

d̃
ωf

)1+ap

which shows that
∫

×d̃ωf belongs to F× if ap = 1 and is trivial if ap = −1.
3.3. Heegner points. Let PH ∈ X(H) be a Heegner point of conductor 1, defined over the
Hilbert class field of K. Let yH = πE(PH). Our next task is to use the twisted version of the
Cerednik-Drinfeld theorem recalled above to describe the localization of the point yH .

Recall that p = pK denotes the unique prime of K above p. Fix a prime pH of H above p,
and let pHp be its restriction to Hp. The completion Hp,pHp of Hp at pHp is then isomorphic

to the completion Kp of K at p, and the completion HpH
of H at pH is a (finite unramified)

extension of Kp.
1 We also observe that, since p splits completely in Hp, the prime pH is the

unique prime of H above pHp .
We still denote PH both the point in X(HpH

) obtained by localization, and the point in
Xϕ

Γ0
(HpH

) corresponding to PH under the isomorphism Xϕ
Γ0
≃ X. If F = HpH

·Qp2 , then the

point PH ∈ Xϕ
Γ0
(HpH

) corresponds to a point P̃H ∈ XΓ0
(F ) on which the generator Frobp of

Gal(F/HpH
) acts by wp. Finally denote ξ(PH) ∈ Hp a representative of the point in Γ0\Hp

corresponding to P̃H via the isomorphism Γ0\Hp ≃ XΓ0
(Cp) of algebraic varieties over Cp.

Let (A, i, C) be the modular point associated with PH by the modular interpretation of X,
as described for example in [BD96, Section 4]. In particular, A is an abelian variety defined

1Denote Hp = HpH
to simplify the notation (understanding then the choice of pH which has been made).
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over H, with complex multiplication by OK . Let Ared be the reduction of (an integral model
of) A modulo pH , which is then an abelian variety defined over the residue field of HpH

. It is
known (see for example [Mol12, Proposition 5.2]) that the reduction of endomorphism gives
a map

Ψ = Ψ(PH) : End(A) −→ End(Ared)

which is an optimal embedding ofOK into an Eichler Z-order R0 of levelN
+p in the quaternion

algebra B. Since any two Eichler Z[1/p]-orders of the same level in B are conjugate, we may
assume that R0[1/p] = R, where R is the Z[1/p]-order used to define the p-adic L-function.
So, tensoring Ψ with Z[1/p], we get an optimal embedding Ψ : O → R. Since A has complex

multiplication by OK , the point ξ(PH) ∈ Hp representing the class of P̃H as above is fixed by
the action of Ψ(OK) and therefore coincides with one of the two fixed points for the action
of Ψ(OK) on Hp. We normalize the choice of the fixed point so that the action of K×

p on
the tangent line of Hp at ξ(PH) is via the character z 7→ z/z̄, as opposite to the character
z 7→ z̄/z. We may thus write, with the usual notation, ξ(PH) = zΨ; if we need to specify the
point PH that we started with to construct zΨ, we write zΨ(PH ).

If σ ∈ Gal(H/K), then we may consider the conjugate point P σ
H in X(H), and its localiza-

tion P σ
H in X(HpH

) as above. We then get a point zΨ(Pσ
H
) in Hp; since (Ψ(PH))σ = Ψ(P σ

H), we

have zΨ(Pσ
H
) = z(Ψ(PH ))σ . Having fixed our point PH and Ψ = Ψ(PH), the last formula simply

reads as zΨ(Pσ
H
) = zΨσ . Since Gal(H/Hp) acts trivially on emb(O, R), and Gal(Hp/K) acts

without fixed points, we see that there are exactly [H : Hp] points whose associated point in
Hp is a given zΨσ .

Observe that, since HpH
/Kp is unramified and Kp/Qp is totally ramified, the Galois group

Gal(HpH
/Qp) can be written as

Gal(HpH
/Kp)×Gal(Kp/Qp) ≃ 〈Frobp〉 × 〈τ〉,

where τ is the map induced on the completion Kp by the complex conjugation on K. We
can see the abelian variety A as defined over HpH

, thus we can consider the map f : A →
Spec(HpH

). We also have the endomorphism τ# induced on Spec(HpH
) by the complex

conjugation τ . Let Ā be the fibred product of A and Spec(HpH
) over Spec(HpH

) with respect

to f and τ#, that is Ā = A ×HpH
,τ# HpH

. Denote by p1 and p2 the projections of Ā onto A

and Spec(HpH
) respectively. For every ϕ ∈ End(A), we have fϕp1 = τ#p2 , therefore by the

universal property of the fibred product there exists a unique ρ ∈ End(Ā) such that ϕp1 = p1ρ.
Thus we obtain a map α : End(A)→ End(Ā). Now observe that Ared is isomorphic to Āred as
schemes, because p1 is induced by τ and, since τ is the generator of a totally ramified extension,
at level of residue fields it is the identity. It follows that, when we pass to the reduction, the
map Ψ̄: End(Ā) → End(Āred) satisfies Ψ̄α = Ψ. In particular, if z ∈ OK ⊆ End(A) then
α(z) = τ(z) and Ψ̄(z) = Ψ(τ(z)). It follows that the optimal embedding Ψ̄ : O → R induced
by Ā is given composing τ : O → O with Ψ: O → R, therefore if ξ(PH) ∈ Hp is the point

corresponding to the abelian variety A then ξ(PH) = τ(ξ(PH)) is the point corresponding
to Ā. But Ā is just the modular point associated to P̄H ∈ X(H), where P̄H is the complex
conjugate of PH ∈ X(H). In light of the above normalization, we therefore have

(7) πE(PH − P̄H) = πΓ0,E

(

ξ(PH)− ξ(PH)
)

= ΦTate

(

×
∫ zΨ

z̄Ψ

ωf

)

= ΦTate

(

×
∫

P1
Qp

t− zΨ
t− z̄Ψ

dµf

)

.

Fix a Heegner point PH ∈ X(H), the optimal embedding Ψ = Ψ(PH) ∈ emb(O, R) and the

p-adic point zΨ ∈ Hp as above. For any character χ : G̃→ Q̄×
p , denote Z[χ] the ring extension

of Z generated by the values of χ. For a character χ factoring through Gal(H/K), define

Pχ =
∑

σ∈Gal(H/K)

P σ
H ⊗ χ−1(σ)
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which is an element in the group ring Div(X(H)) ⊗Z Z[χ]. Fix now a character χ : G̃ → Q̄p

which factors through ∆ = Gal(Hp/K) (so, it is trivial on G). Define the divisor

PHp =
∑

σ∈Gal(H/Hp)

P σ
H .

We then have in the group ring Div(X(H)) ⊗Z Z[χ],

(8) Pχ =
∑

σ∈∆

P σ̃
Hp ⊗ χ−1(σ̃)

where σ̃ ∈ Gal(H/K) is any lift of σ ∈ ∆.
Following the notation in §3.2, define

zχ =
∑

σ∈Gal(H/K)

zΨσ ⊗ χ−1(σ).

Since, as observed above, Gal(H/Hp) acts trivially on Ψ, we have
∑

σ∈Gal(H/Hp)

zΨσ = [H : Hp] · zΨ

as elements in Div(Hp) and therefore

zχ = [Hp : H] ·
∑

σ∈∆

zΨσ̃ ⊗ χ−1(σ̃).

where as above σ̃ is any lift of σ. Similarly, we may consider the point z̄χ obtained with the
same process, but starting with the point P̄H instead of PH . Using (7), (8) and the fact that
all points in the divisor P σ̃

Hp
reduce to the same zΨσ̃ , we have

(9) πE(Pχ − P̄χ) = ΦTate

(

×
∫ zχ

z̄χ

ωf

)

= [H : Hp] · ΦTate





∏

σ∈∆

(

×
∫

P1
Qp

t− zΨσ

t− z̄Ψσ
dµf

)χ−1(σ̃)


 .

4. Zeros of the p-adic L-function at the central point s = 1

4.1. Signs. Let Gn = Gal(Kn/K) be the Galois group of the ring class field of K of conductor
pn over K. Fix a character χ : Gn → Q̄×. We are interested in computing the sign of the
functional equation of L(E/K,χ, s) at its center of symmetry s = 1, which we denote w(E,χ).
We will say that we have a change of sign phenomenon if the sign of functional equation of
L(E/K,χ, s) is different for χ = 1 and χ ramified at p.

If we let wℓ(E,χ) denote the local sign of the L-function of E/K and χ at a rational prime
ℓ, then it is known that the sign w(E,χ) of L(E/K,χ, s) is

w(E,χ) = (−1)#Σ(E,χ)+1

where Σ(E,χ) is the set of rational primes ℓ such that wℓ(E,χ) 6= ηK(−1). See [YZZ13,
Theorem 1.3.2] or [CV07, Sec. 1.1] for details.

By [Zha01, (1.1.3)], if ℓ 6= p, then ℓ ∈ Σ(E,χ) if and only if ℓ | N−. So let us consider the
case of p. Again by [Zha01, (1.1.3)], p ∈ Σ(E,χ) if and only if the p-th Fourier coefficient of
φ, that is ap, is the inverse of the p-th Fourier coefficient

bp =
∑

a⊂OK
NK(a)=p

χ(a)

of the Hecke theta series associated to χ. On the other hand, by a result of Cornut and Vatsal
(see [CV07, Lemma 1.1]), if χ is sufficiently ramified at p, p does not belong to Σ(E,χ). In
our situation, one can show that p 6∈ Σ(E,χ) whenever χ is ramified at p.
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Remark 4.1. If χ = 1 is the trivial character, then bp = 1 because, since p is ramified in
K, there is only one prime in OK with norm p, that is the unique prime above p. This
implies that p ∈ Σ(E,χ) if and only if ap = 1, i.e. E has split multiplicative reduction in p.
Therefore we may conclude that if E has split multiplicative reduction, then we have at least
one change of sign phenomenon. The same holds for all characters χ such that χ(p) = 1. On
the contrary, if ap = −1, i.e. E has non-split multiplicative reduction in p, we have a change
of sign phenomenon for all characters χ such that bp = χ(p) = −1.

We denote Z the subset of X consisting of finite order characters χ : G̃ → Q̄p factoring
through ∆ = Gal(Hp/K).

By definition, the value of Lp(E/K,Ψ, ⋆, s) in s = 1 does not depend on the choice of ⋆, i.e.

Lp(E/K,Ψ, ⋆, 1) = Lp(E/K,Ψ, ⋆′, 1).

Therefore we can write Lp(E/K,Ψ, 1) instead of Lp(E/K,Ψ, ⋆, 1).
Define hp = [Hp : K] = |∆|. Fix Ψ = Ψ1 in emb(O, R), and let Ψ2, . . . ,Ψhp be its

conjugates under the action of ∆ on emb(O, R). We order the elements of ∆ = {σ1, . . . , σhp}
in such a way that Ψσ−1

i = Ψi.

Lemma 4.2. If χ ∈ Z, then Lp(E/K,χ, 1) = 0 and in fact Lp(E/K,Ψ, 1) = 0 for all Ψ in

emb(O, R).

Proof. Observe that the first statement is trivial if χ is such that apχ(p) = 1: in fact from the
previous section, the set Σ(E,χ) contains p and therefore it has even cardinality. It follows
that L(E/K,χ, 1) = 0 and, by interpolation, also Lp(E/K,χ, 1) = 0. We now show the
stronger statement Lp(E/K,Ψ, 1) = 0 for all Ψ in emb(O, R). This will imply the first one
since

Lp(E/K,χ, 1) =

∫

G̃
χ(g)dµf,K(g) =

hp
∑

i=1

∫

G
χ(σi)dµf,Ψi,⋆i(g) =

hp
∑

i=1

χ(σi)Lp(E/K,Ψi, 1),

where in the second equality we used the fact that χ factors through ∆.
Fix Ψ ∈ emb(O, R); we now compute Lp(E/K,Ψ, 1). Recall that

Lp(E/K,Ψ, 1) =

∫

G
dµf,Ψ,⋆ =

∫

F
dµf,Ψ,⋆,

where F is a fundamental domain for the action of O×
1 on K×

p,1.
Let v be the vertex of T corresponding to the embedding Ψ, u0 be a generator for the finite

group O×/Z[1/p]× and u = u0/ū0 the image of u0 in K×
p,1. Denote γ = ιΨ(u) ∈ Γ, it has

order 2 since |O×/Z[1/p]×| = 2.
To know a fundamental domain for the action of u on K×

p,1 is equivalent to know a funda-

mental domain for the action of γ on P1(Qp) = E∞(T ). Consider the path joining v and γv;
the ends rising from v are equivalent to those arising from γv under the action of γ. Therefore
the ends arising from the vertices of the path between v and γv are a fundamental domain
for the action of γ on P1(Qp). More explicitly, if E ′ denote the set of oriented edges of T with
the same source as the edges on the path from v to γv, but not containing these edges, then

F ′ =
⋃

e∈E ′

U(e)

is a fundamental domain for the action of γ on P1(Qp). Therefore η−1
Ψ,⋆(F ′) is fundamental

domain for the action of u on K×
p,1. It follows that

∫

F
dµf,Ψ,⋆ =

∫

F ′

dµf =
∑

e∈E ′

µf (χU(e)) =
∑

e∈E ′

cf (e).
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Let ~e0, . . . , ~ek be the edges of the path between v and γv, then, since cf is a cocycle, we have
∑

e∈E ′

cf (e) = −cf (~e0) + (cf (~e0)− cf (~e1)) + · · ·+ (cf (~ek−1)− cf (~ek)) + cf (~ek) = 0

which concludes the proof. �

When L(E/K,χ, 1) = 0 (which happens for instance when apχ(p) = 1) one expects that
the annihilation of Lp(E/K,χ, 1) is due to the existence of an effective non torsion rational
point PK on the elliptic curve E. More precisely, we will relate L′

p(E/K,χ, 1) to the existence

of a global point in E(Q̄) in the following, in the spirit of the main result of [BD98, Corollary
7.2].

Let zΨi and z̄Ψi ∈ Hp be the two fixed points for ιΨi(K
×
p ) acting on Hp. To simplify the

notation, put

Lp(E/K,Ψi, χ, 1) = Lp(E/K,Ψi,∞, χ, 1).

Lemma 4.3. Let χ ∈ Z. Then the following equalities hold up to sign:

(1) L′
p(E/K,Ψi, χ, 1) = 2

∫ zΨi
z̄Ψi

f(z)dz,

(2) L′
p(E/K,χ, 1) = 2

∑hp
i=1 χ(σi)

∫ zΨi
z̄Ψi

f(z)dz.

Proof. The indeterminacy of the sign in these equations is unavoidable, since the harmonic
cocycle attached to f is only well defined up to sign. To prove the first statement, recall that

Lp(E/K,Ψ, χ, s) =

∫

G
χ(g)gs−1dµf,Ψ,⋆(g),

therefore, since χ is trivial on G, we have

L′
p(E/K,Ψ, χ, s)|s=1 =

∫

G
(gs−1)′|s=1dµf,Ψ,⋆(g) =

∫

G
log(g)dµf,Ψ,⋆(g).

On the other hand, by definition of the Coleman p-adic line integral associated to the choice
of the p-adic logarithm log, one has

∫ zΨ

z̄Ψ

f(z)dz =

∫

P1(Qp)
log

(

a− zΨ
a− z̄Ψ

)

dµf (a) = 2

∫

G
log(g)dµf,Ψ,∞(g),

where in the last equality we used (2) and |Ker(K×
p,1 ։ G)| = 2, and the first equality comes

from the work of Teitelbaum [Tei90, Sec. 1]. The second formula follows immediately from
the first by integration, since comparing with the definition of the p-adic L-function we see
that

Lp(E/K,χ, 1) =

hp
∑

i=1

χ(σi)Lp(E/K,Ψi, χ, 1)

because χ factors through Gal(Hp/K). �

Let PH ∈ X(H) be a Heegner point of conductor 1 and recall the point Pχ ∈ X(H)⊗ZZ[χ]
defined in §3.3. As in §3.3, denote yH ∈ E(Hp) the point obtained as the image of PH via the
modular uniformization πE and then localizing from E(H) to E(Hp); we also denote yχ the
point in E(Hp)⊗Z Z[χ] corresponding to Pχ. The following is the main result of this paper:

Theorem 4.4. For all χ ∈ Z we have L′
p(E/K,χ, 1) = 2

[H:Hp]
· logE(yχ/ȳχ) up to signs.

Proof. Combine (9) and Lemma 4.3, (2). �
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