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1 Introduction

In the last few years, there has been remarkable progress in refining the concept of global
symmetry in quantum field theory (QFT) (see for example [1–6] and references therein).
The standard idea that symmetries form a group acting on the space of local operators
in a QFT has been generalized in many different directions, so as to include higher form
symmetries acting only on extended operators, higher group structures, where p-form sym-
metries of different degree p are mixed in a non-trivial way, and non-invertible symmetries,
where the group structure of symmetry operators is replaced by some suitable category of
topological defects.

These developments have had consequences even for the study of string theory and,
more generally, quantum gravity theory. There are various arguments, mostly based on
black hole physics, supporting the conjecture that no global symmetry can exist in a con-
sistent, UV complete theory of quantum gravity [7, 8]. This means that any symmetries
arising in low energy effective descriptions of gravity must be either gauged, or broken at
some higher energy scale. This conjecture has been refined to include (or, rather, exclude)
all higher form global symmetries, as well as topological defects [9–12]. These refinements
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allow one to relate the absence of global symmetries to other conjectural properties of
quantum gravity, such as the completeness of the spectrum [7, 8] or the cobordism conjec-
ture [13].

Closely related to the idea of symmetry in QFT is the concept of orbifold. An orbifold
is a way to obtain a new QFT from a ‘parent’ one by gauging a discrete global symmetry.
A considerable amount of works in the last years focused on generalizing this procedure to
include all kind of new global symmetries [1–3, 14–19].

The orbifold is also well defined in string theory, as a procedure to obtain a new string
model from an old one. In fact, historically, many aspects of orbifolds in QFT were first
described in the context of string theory [20–24].

This discussion led us to an apparent contradiction: a string model is supposed to
provide a consistent UV complete theory of quantum gravity, and therefore there should
be no global symmetries. Therefore, how can we understand the orbifold procedure in
string theory as the ‘gauging of global symmetries’? This apparent paradox disappears
when we look more closely at how an orbifold is defined in string theory. One standard
way to define a (perturbative) string theory model A is by providing the two dimensional
conformal field theory (CFT) C that describes the worldsheet of a fundamental string.
Non-perturbative properties of the model can be deduced by consistency starting from the
worldsheet theory. The worldsheet CFT is a quantum field theory1 and can admit a group
of global symmetries Γ. This group typically appears as a gauge group from the target
space point of view. Then, it makes perfect sense to take the orbifold (in a QFT sense)
of C by Γ, to obtain a new 2-D CFT C/Γ. This new CFT can be taken as describing the
worldsheet dynamics in a new string model B. We will call this procedure the worldsheet
orbifold.

Whereas this procedure is very well understood, nevertheless some of its features are
not completely satisfactory. In string theory, the fundamental string is only one among
various extended dynamical objects, including NS-branes, D-branes, etc. Non-perturbative
string dualities exchange all such objects with each other. On the other hand, the world-
sheet orbifold procedure that we have just described requires choosing one of these objects
as a preferred one. There are of course other definitions of the orbifold in string theory, in
particular in terms of the quotient of a string background by some isometry of the back-
ground. In general, though, such a description also depends on the choice of a particular
duality frame.2 It is natural to look for a procedure that brings us from string model A to
string model B and that is ‘democratic’ among all duality frames, and in particular that
treats all dynamical objects on equal footing.

There is a second puzzling aspect of string orbifolds. As mentioned above, in order to
define the orbifold of a quantum theory, one needs to choose a particular group of symme-

1More precisely, the worldsheet theory is initially defined as a 2D (super-)gravity theory, and the CFT
arises only after suitable gauge fixing. In this article, by ‘worldsheet theory’ we will always refer to the
latter CFT. Notice that the conjecture about the absence of global symmetries does not apply to gravity
theories in two dimensions.

2There are some proposals (in particular exceptional field theory [25–29]) to describe the low energy
limit of string theory in a way that is manifestly duality invariant. It would be interesting to revisit the
results of this article in this formalism; we will leave this to future work.
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tries to ‘quotient’ by. In fact, the reason why the orbifold procedure in QFT can be applied
to a wide range of different theories is that its definition only involves very few details about
the theory itself — essentially, just the structure of the symmetry group we want to divide
by, and its action on the fields of theory. In string theory, any group of symmetries is actu-
ally a gauge group, at least from the point of view of the target space. It is natural to ask
whether one can simply regard string theory as a quantum theory in spacetime with some
gauge symmetry, and define a general ‘recipe’ to obtain the orbifold theory, which depends
only on the choice of a particular subgroup of the gauge group. One problematic aspect of
this idea is that, unlike global symmetries, gauge symmetries are, in general, not intrinsic
properties of a quantum theory, but might depend on the way the theory is described. This
raises questions on whether the final outcome of any string orbifold procedure formulated
in terms of gauge symmetries might be description-dependent. On the other hand, in string
theory there are various hints (the close relationship between gauge symmetries in target
space and global symmetries on the worldsheet; the holographic correspondence between
gauge symmetries in the bulk and global symmetries on the boundary; the completeness
conjecture, which implies the existence of dynamical objects carrying all possible charges
with respect to the gauge fields) that the presence of gauge symmetries is somehow a fun-
damental aspect of string models. As discussed further below, it is not unreasonable to
expect that a description-independent notion of a string orbifold should exist.

The goal of this article is to provide a first tentative proposal for such a procedure.
Because it is formulated in terms of gauge symmetries in spacetime, rather than global
symmetries on the worldsheet, we will call this procedure a spacetime orbifold.

The proposal is described in abstract terms in section 3, but it is best illustrated by
the two simple examples that we consider in the subsequent sections: the orbifold of type
II superstring on a circle S1 by a half-period shift (section 4), and the orbifold of a toroidal
compactification, again in type II, by the reflection along the torus coordinates (section 5).
In our approach, we focus on the structure of the gauge group G (including the various
higher form symmetries) of a given compactified string model. The dynamical objects are
classified in terms of their couplings to the corresponding gauge fields and in fact, the no-
global symmetry conjecture allows to reconstruct the couplings in the worldvolume theories
of extended objects relying only on the gauge group structure. The particular orbifold one
wants to consider is specified by a choice of a finite subgroup Γ in the 0-form component of
G. In passing from the parent to the orbifold theory, one needs to go through a sequence
of modifications (restrictions and quotients) of the gauge group and of the spectrum of
dynamical objects that are coupled to it. In particular, the procedure will require pro-
jecting out objects transforming in a non-trivial representation of Γ. This projection is
associated with the onset of non-endable line defects which in general link non-trivially
with topological Gukov-Witten operators [12]. Conjecturally, such topological operators
should be absent in any consistent UV complete quantum gravity theory. This means
that, in order to obtain a consistent string orbifold, in general one needs to gauge various
(higher form) global symmetries that appear at intermediate stages of the procedure. One
way quantum gravity avoids the appearance of global symmetries is through the presence
of Chern-Simons couplings, that are closely related to the higher group structure of G.
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The projection must in general involve the gauge field configurations present in the Chern-
Simons terms; as a consequence, the way the gauge group can be consistently modified is
strongly constrained by its higher group structure.

For example, in the case of type II on a circle S1, considered in section 4, the gauge
group in the 9-dimensional space-time contains a U(1)A1 ×U(1)B1 0-form subgroup, asso-
ciated with momentum and fundamental string winding along S1. The group Γ we want to
orbifold by is the Z2 subgroup of U(1)A1 , corresponding to half-period shifts along S1. As
a first guess, one might expect the gauge group in the orbifold theory to be simply given
by a quotient of U(1)A1 ×U(1)B1 by Γ. However, the corresponding 1-form gauge fields A1
and B1 transform in a non-trivial 2-group structure with the 2-form Kalb-Ramond field B2

A1 → A1 + dλ , B1 → B1 + dσ , B2 → B2 +B1 ∧ dλ+ dΣ1 , (1.1)

where λ and σ are 0-forms, and Σ1 a 1-form, with suitable quantization conditions. Simply
quotienting out the subgroup Γ ∼= Z2 ⊂ U(1)A1 would make the quantization conditions on
λ incompatible with this transformation law. One is therefore forced to perform also a non-
trivial Z2 extension of the group U(1)B1 — this step can also be seen as taking a quotient
of the higher form group that is the magnetic dual of U(1)B1 . The charged objects with
respect to this new Z2 gauge symmetry are exactly the twisted sector of the fundamental
string. Therefore, one can argue for the presence of such twisted sector just from the
requirement that the spectrum is ‘complete’, i.e. that there exist dynamical objects carrying
all possible charges compatible with Dirac quantization condition (in section 4 we will
provide an alternative argument as for why such twisted sector must be present). A similar
mechanism occurs in the orbifold of type II superstrings on a torus T d by the reflection
C of all coordinates of T d, considered in section 5. In this case, the 0-form component
of the gauge group contains a non-abelian subgroup G = ZC2 n

∏d
i=1(U(1)Ai × U(1)Bi),

where Γ ∼= ZC2 is the subgroup generated by C, which acts on the gauge fields of the U(1)
factors by charge conjugation Ai1 → −Ai1, Bi

1 → −Bi
1. Naively, one might expect the gauge

group of the orbifold theory to be obtained by first restricting G to the abelian subgroup
Gres = ZC2 ×Zd2×Zd2 of symmetries that commute with C, and then quotienting by Γ ∼= ZC2 ,
to obtain the abelian group Zd2×Zd2. However, this simple guess leads to the wrong answer,
as can be seen, for example, from the worldsheet orbifold construction. From the space-
time point of view, the problem is that we neglected the 2-group structure relating the
1-form gauge fields of G to the 2-form Kalb-Ramond field B2. In fact, we will argue that,
even when Ai1 and Bi

1 are restricted to the Z2 subgroups of U(1)Ai and U(1)Bi , there is a
non-trivial action of C on the set of gauge fields by

(Ai1, Bi
1, B2) C−→

(
Ai1, B

i
1, B2 + 2

∑
i

Ai1 ∧Bi
1

)
.

A consequence of this transformation is that, once again, the 0-form gauge group of the
orbifold theory is a certain non-abelian Z2 central extension of Zd2 × Zd2, in agreement with
the worldsheet analysis. The charged object with respect to this new central Z2 group is the
twisted sector of the fundamental string, and the correct degeneracy of the twisted ground
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states can also be predicted. To summarise, in both examples we consider, the higher group
structure of the original gauge group dictates how the naive restrictions and quotients of
the 0-form gauge group must be modified in order to get a consistent theory. Combining
these constraints with the requirement that the final theory has no global symmetries, one
can deduce the main properties of the twisted sector of the orbifold theory. In section 6, we
make use of the examples to discuss our construction in further detail. We stress that this
article should be interpreted as a first sketch of our proposal: in this perspective, section 6
also contains some possible generalizations and open questions that we hope to analyze in
the future.

There are various reasons as for why such a procedure might be interesting. First
of all, in string theory the interplay between the worldsheet physics and the spacetime
physics is often very subtle.3 For example, worldsheet orbifolds might be inconsistent if
global symmetries of the CFT have some ’t Hooft anomalies. On the other hand, because
the string theory is actually consistent, the corresponding gauge symmetries in spacetime
cannot be anomalous. What is the spacetime interpretation of the obstructions to defining
an orbifold, that are manifest in the worldsheet theory? In general, ’t Hooft anomalies on
the worldsheet are closely related to higher group structures for the spacetime gauge group.
This means that the symmetries we would like to quotient by, sometimes do not really form
a properly defined subgroup of the spacetime gauge group (see point 1 in section 6 for a
discussion about this point, and sections 4 and 5 for a couple of examples).

In fact, when it comes to consistency conditions for orbifolds, it is well known that a
purely worldsheet perspective might not be sufficient. For example in order to make the
string orbifold consistent, it is sometimes necessary to include non-perturbative degrees of
freedom (e.g. spacetimes filling branes necessary for tadpole cancellation [33]) that cannot
be easily interpreted in terms of an orbifold of a worldsheet QFT.

A second motivation for introducing a ‘spacetime orbifold’ is to get a well-defined
procedure that does not single out the fundamental string as a ‘preferred’ object. It is not
a priori clear that such a democratic procedure does even exist. On the contrary, there are
some arguments suggesting that it cannot exist in general. These arguments are based on
the fact that ‘orbifold does not always commute with duality’ [34–36].

Consider, for example, type IIB superstring theory in 10 flat dimensions. For generic
string coupling constant, this theory has two Z2 symmetries, namely worldsheet parity
Ω and (−1)FL , the symmetry acting by a minus sign on the R-R and R-NS sectors and
acting trivially on the NS-NS and NS-R sectors. This symmetries are exchanged by non-
perturbative S-duality. Now, if we take the orbifold by Ω, we obtain type I string theory,
while if we take the orbifold by (−1)FL we obtain type IIA; these two theories are clearly not
dual to each other. So, how are these examples compatible with the idea of a well-defined
duality invariant orbifold procedure?

3There exists an alternative approach to string orbifolds where the target space is described as a stack,
rather than a geometric orbifold [30–32]. This description allows one to recover all information about the
twisted sector of the child theory from a purely space-time point of view, and can be generalized to include
higher form symmetries. We thank E. Sharpe for bringing our attention to these constructions.
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There are two possible perspectives on the idea of a theory A being dual to a theory
B. One might consider A and B as two different theories that turn out to be (often non-
trivially) equivalent to each other. From another point of view, we might consider A and
B just as two different descriptions of the same theory.

From the first point of view, the fact that the orbifolds A/Γ and B/Γ of two dual
theories are still equivalent is a highly non trivial statement, and one should provide a
reasonable argument (for example, the adiabatic argument of [34]) to explain why this
equivalence is true in most cases. On the other hand, from the second perspective, because
the underlying quantum gravity theory is unique, the fact that one might possibly get
different theories after applying the same orbifold procedure looks quite puzzling. Indeed,
the fact that we can obtain different orbifolds starting from different duality frames implies
that the orbifold procedure is inherently description-dependent, and that it admits no
unambiguous definition from the point of view of the ‘intrinsic’ quantum theory of gravity.
This conclusion about the description-dependence of string-theoretical orbifolds would be
in stark contrast with orbifolds in QFT, that are completely based on intrinsic properties
of the theory, such as its group of global symmetries.

The (somehow tautological) point of view that we are going to adopt in this article is
to declare that, by definition, the string theoretical orbifold must be independent of the
duality frame. How is this compatible with the observation that ‘orbifolds do not always
commute with duality’? A way out of this conundrum is to allow the orbifold by a given
group of symmetries not to be unique, but to depend on some subtle choices to be made.
Some of these choices might be simpler or more natural in one description or another,
which is the reason why one might obtain two different quantum gravity theories A/Γ and
B/Γ. Nevertheless, if the duality frames are really equivalent descriptions of the same
quantum gravity theory, there should be the possibility to describe any possible outcome
of the orbifold procedure in each such duality frame — it might however happen that some
outcomes are more ‘exotic’ than others in some descriptions. This hypothesis is much closer
in spirit to the QFT orbifold, where for a given group of global symmetries, the resulting
orbifold QFT is not necessarily unique. This phenomenon is known as discrete torsion,
and the different possibilities are in finite number and can be fully classified.

In fact, in the above type IIB example, an alternative definition of the orbifold by
(−1)FL has been proposed in [37, 38]. In this case, one is instructed to include in the
theory 32 spacetime filling NS9-branes (the objects S-dual to D9-branes), and it is argued
that the resulting theory is SO(32) heterotic string. This result is the exact S-dual analogue
of constructing type I theory by orbifolding worldsheet parity symmetry.

A natural question is how to describe the orbifold in a way that is manifestly description
independent and duality invariant. The ideal framework for this definition would be an
intrinsic non-perturbative description of the quantum gravity theory, for example in terms
of algebras of observables. Unfortunately, such a description of quantum gravity is not
available.4 Our goal is to define the orbifold through a sequence of abstract rules that

4One might argue that, at least for asymptotically AdS spacetime, holography does provide such a
definition, in terms of the QFT on the boundary. On the other hand, when no semiclassical description of
the bulk theory is available, it is in general very difficult to interpret the properties of the boundary QFT
in terms of a quantum gravity theory. We comment more on this in section 6.
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make sense and can be applied whenever an explicit description of a string theory model is
available, but that does not depend on the particular duality frame where such a description
is formulated. This sequence of rules is what we call the ‘spacetime orbifold’ procedure,
in contrast with the ‘worldsheet orbifold’ which is based on the choice of one dynamical
object (the fundamental string) as a preferred one.

Based on our discussion above, it would be natural to test our orbifold procedure
in the cases where ‘duality does not commute with orbifolds’. Unfortunately, a detailed
discussion of such examples needs some technical refinements of our approach that we are
not going to discuss in this paper (see paragraph 9 in section 6); we hope to address these
issues in future work. Here, let us just mention that our hypothesis that the potential
outcomes of an orbifold procedure does not depend on the duality frame leads to some
highly non-trivial consequences. For example, in the case orbifolds of 10-dimensional type
IIB theory, one should be able to obtain M-theory compactified on a large circle from a
‘spacetime’ orbifold of perturbative type IIB by worldsheet Ω. This example would show
that the ‘spacetime orbifold’ that we are proposing must be a more general procedure than
the standard ‘worldsheet orbifold’. This opens up the possibility of considering brand new
ways of constructing a new consistent string model from a ‘parent’ one.

2 Orbifolds in quantum field theory

In quantum field theory (not coupled to gravity), the orbifold procedure is a way to obtain
a new theory from a ‘parent’ theory by ‘gauging a global symmetry’. In this section, we
review the features of (generalized) global symmetries and orbifolds in QFT, that will be
useful in the following sections.

2.1 Examples of symmetries and orbifolds in QFT

2.1.1 Orbifolds in 2D CFT

The best studied examples of orbifolds are in two-dimensional conformal field theory (2D
CFT) [20–24]. In this section, we review the main properties of such orbifolds.

Let us consider a bosonic unitary Euclidean 2D CFT C, with a single vacuum and with
a finite group of (global) symmetries Γ. This means that the space of states/operators H
admits a unitary representation ρ of Γ, that fixes the vacuum, commutes with the Virasoro
algebra, and preserves the operator product expansion (OPE).

The orbifold procedure is a way to define a new CFT C/Γ (the orbifold of C by Γ) from
the parent one. For simplicity, let us focus on the case where Γ is abelian. The orbifold
can be described as a two-steps procedure.

• Projection. The first step is to project onto the subspace HΓ of states/operators that
are invariant under Γ. This subspace contains the vacuum state and the Virasoro
algebra, and is closed under OPE.

• Twisted sector. Next, for each g ∈ Γ, we consider the twisted sector space Hg.
This is a space of operators that are not mutually local with respect to the op-
erators in H (and also with respect to other twisted operators), but rather create
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some branch cuts in correlation functions. More precisely, consider a correlation
function 〈Og(0)O(w) · · · 〉, where Og ∈ Hg, O ∈ H, and · · · denote other insertions
farther from the origin than O. Then, if we analytically continue w → e2πiw along
a small circle around Og(0), the correlation function is not single-valued, as the
operator O transforms as O(e2πiw) = (ρ(g) ·O)(w). Each Hh, h ∈ Γ, affords a (pos-
sibly projective) representation ρh of Γ, and we have an analogous transformation
Oh(e2πiw) = (ρh(g) · Oh)(w) in the (analytically continued) correlation function as
Oh moves along a small circle around Og ∈ Hg.
The space of states H̃ of the orbifold theory C/Γ is obtained as the direct sum of
HΓ ≡ HΓ

g=1 with the Γ-invariant subspaces of each twisted sector

H̃ = ⊕g∈ΓHΓ
g . (2.1)

The projection onto the Γ-invariant operators is a necessary condition for the OPE
to be local.

This construction generalizes easily to the case where Γ is non-abelian. In this situation,
for each conjugacy class [g] of Γ, there is a (projective) action of Γ on H[g] := ⊕h∈[g]Hh,
the direct sum of the h-twisted sectors for all the elements h in the conjugacy class. The
orbifold Hilbert space is then given by the sum ⊕[g]HΓ

[g] over all conjugacy classes [g] of
the Γ-invariant subspaces HΓ

[g] ≡ (H[g])Γ; in fact, one can show that HΓ
[g] is isomorphic to

HCΓ(g)
g for any g in the conjugacy class, where CΓ(g) is the centralizer of g within Γ.

The inclusion of the twisted sector is necessary in order to obtain a theory with modu-
lar invariant torus partition function. The procedure outlined above does not always yield
a consistent CFT. In particular, it might be impossible to obtain a modular invariant par-
tition function, due to the failure of the level matching condition, or it might be impossible
to define a local OPE among the twisted operators [23, 24, 39–41]. On the other hand, if
a consistent orbifold exists for a given group Γ, it might not be unique [23].

In order to understand these points, let us focus on the OPE between twisted operators.
In general one expects a g-twisted sector Hg to be an irreducible (g-twisted) module with
respect to the OPE with operators in H, and to be the unique (up to isomorphisms) such
irreducible g-twisted module.5 The OPE between operators Og ∈ Hg and Oh ∈ Hh will
produce gh-twisted operators, so that the space Hg ⊗Hh can be identified with Hgh. This
identification requires choosing an isomorphism

ϕg,h : Hg ⊗Hh → Hgh , (2.2)

of gh-twisted modules, which is unique only up to a phase. Therefore, in order to define
the OPE in the orbifold theory, one needs to choose the isomorphisms ϕg,h for each pair
g, h ∈ Γ.

For a given choice of {ϕg,h}g,h∈Γ, the two isomorphisms ϕgh,k ◦ (ϕg,h ⊗ 1) : Hg ⊗Hh ⊗
Hk → Hghk and ϕg,hk ◦ (1 ⊗ ϕh,k) : Hg ⊗ Hh ⊗ Hk → Hghk might differ by a phase, i.e.

5An analogous statement can be rigorously proved in the context of vertex operator algebras (VOAs)
under standard conditions for the VOA [42–45] .

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
3

there might be a non-trivial associator αg,h,k : Hghk → Hghk, such that

ϕg,hk ◦ (1⊗ ϕh,k) = αg,h,k ◦ ϕgh,k ◦ (ϕg,h ⊗ 1) . (2.3)

The associator must be proportional to the identity αg,h,k = α(g, h, k)idHghk , where α :
Γ× Γ× Γ→ U(1) satisfies a certain cocycle condition

α(g, h, k)α(g, hk, l)α(h, k, l) = α(gh, k, l)α(g, h, kl) , (2.4)

for all g, h, k, l ∈ Γ. If α is non-trivial, the OPE among twisted sectors is not associative
and the orbifold theory is not a consistent CFT. One can try to modify the isomorphisms
ϕg,h by

ϕg,h → ϕ̃g,h = ϕg,hβ(g, h) , (2.5)

for some β : Γ× Γ→ U(1), and this modifies the associator by

α→ α̃ = α · ∂β , (2.6)

where ∂β is a 3-coboundary

(∂β)(g, h, k) = β(g, h)β(gh, k)
β(g, hk)β(h, k) . (2.7)

Therefore, the obstruction to defining an associative OPE is represented by a 3-cocycle α
modulo 3-coboundaries ∂β, which defines a class [α] in H3(Γ,U(1)). Different choices of
the collection {ϕg,h}g,h∈Γ in a given CFT lead to different cocycles α in the same class.
Only when the class [α] is trivial, one can choose the isomorphisms ϕg,h in such a way that
αg,h,k is the identity for all g, h, k ∈ Γ, so that the OPE of twisted operators is associative.
Triviality of [α] also implies that the torus partition function of the orbifold theory is
modular invariant, and in particular that the level matching condition is satisfied for all
g-twisted sectors. In fact, when the group Γ is cyclic, the triviality of [α] is equivalent to
the level matching condition for all g-twisted sectors. On the other hand, for more general
(in particular, non-abelian) groups Γ, it might happen that the level matching condition
is satisfied for all g ∈ Γ, but the class [α] is non-trivial, and the orbifold, therefore, is
inconsistent.

If [α] is trivial, there might still be different choices of {ϕg,h}g,h∈Γ for which α = 1.
Such choices are related to each other by transformations (2.5) for some β satisfying a
2-cocycle condition ∂β = 1. Different {ϕg,h} will lead to equivalent CFTs only if they are
related by redefinitions of twisted operators

γ(g) : Hg → Hg , (2.8)

for some γ : Γ→ U(1). Thus, nonequivalent orbifold theories are in one-to-one with classes
[β] ∈ H2(Γ,U(1)), that are represented by 2-cocyles β modulo

β → β · ∂γ , (2.9)
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where ∂γ is a 1-coboundary
(∂γ)(g, h) = γ(gh)

γ(g)γ(h) . (2.10)

The possibility of having multiple consistent orbifold theories associated with the same
‘parent’ theory and symmetry group Γ is known as discrete torsion.

A useful way to describe the orbifold procedure in CFT is in terms of defects [14–
19, 46, 47]. With each symmetry generator g ∈ Γ, one can associate a topological defect
Lg(γ) supported on an oriented 1-dimensional curve γ. Inserting Lg(γ) in a correlation
function creates a discontinuity of the fields at γ, with the prescription that the fields on
the left of γ are related to the field on the right of γ by the action of g. Here, the ‘left’ and
‘right’ side of the defect are defined with respect to the orientation of γ, so that reversing
the orientation of γ is equivalent to exchanging Lg with Lg−1 . The defects Lg(γ) are
topological, in the sense that correlation functions are invariant under small deformations
of the support γ, so long as γ does not cross the support of some other operator. The
twisted sector Hg is naturally interpreted as the space of point-like operators where an
(outgoing oriented) Lg defect can start. Similarly, (Hg)∗ ∼= Hg−1 is the space of point
operators where an incoming Lg defect can end. When two parallel defects are brought
very close to each other, they can ‘fuse’ into a single defect. The fusion of defects respects
the group-like structure of Γ, so that two defects Lg and Lh fuse into Lgh. One can also
consider k-fold junctions among defects, i.e. point-like operators with k outgoing defects
attached. A junction operator is called topological if it can be moved without changing
the correlation function, as long as no other insertion is crossed. In particular, a g-twisted
operator can be interpreted as a 1-fold junction, which is usually not topological. There
is always a 1-dimensional space of topological 3-fold junctions ϕg,h with two incoming
defects Lg and Lh and one outgoing defect Lgh. The choice of a topological junction ϕg,h
is equivalent to the choice of an isomorphism (2.2). More precisely, the isomorphism, seen
as a map Hg ⊗ Hh ⊗ (Hgh)∗ → C, is determined by a 3-point correlation function on the
sphere, with the insertion of a g-twisted, a h-twisted and a (gh)−1-twisted operators, with
the corresponding defects joining at a topological junction ϕg,h.

Suppose we choose a collection {ϕg,h}g,h of topological junctions. The phase α in (2.3)
appears when one tries to deform a network of defects. In particular, consider a correlation
function with the insertion of a network of defects as in the left of figure 1. Upon moving
a topological junction ϕg,h across a topological junction ϕgh,k, we obtain a new correlation
function with the insertion of the network on the right, containing the junctions ϕh,k and
ϕg,hk. The two correlators are equal only up to the overall phase α(g, h, k).

The correlation functions in the orbifold theory can be obtained in terms of correla-
tion functions in the original theory with the insertion of a network of defects Lg. More
precisely, suppose we want to compute a n-point correlation function 〈∏iOi(zi)〉 in the
orbifold theory, where Oi ∈

⊕
gHg. We can choose a triangulation of the worldsheet, such

that the insertion points of the operators coincide with some of the vertices of the trian-
gulation. We can also assume that the triangulation has only trivalent vertices. Then, the
orbifold correlation function corresponds to a correlation function in the original theory,
where we insert in each edge a topological defect Lg, g ∈ Γ, and in each vertex a topo-
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g
h

k

gh

ghk

= α(g, h, k)
k

h
g

hk

ghk

Figure 1. Two different ways of fusing three defects Lg, Lh, and Lk into a single defect Lghk
through a sequence of 3-pronged junctions. The dashed lines represent the identity defect, that we
added for later convenience. One can continuously deform the left configuration into the right one;
along this transformation, there is a point where the defects Lg, Lh, Lk, and Lghk are connected
to a single 4-pronged junction. Passing across that point, a correlation function might get a non-
trivial phase α(g, h, k). Equivalently, the left and the right-hand side are related by a local gauge
transformation acting by a group element h in the green region; this picture makes it clear that
α(g, h, k) is a ’t Hooft anomaly — correlation functions pick up a non-trivial phase under gauge
transformations of the background gauge field.

logical junction ϕg,h from an appropriately chosen collection {ϕg,h}g,h, and we sum over
all (consistent) possibilities. The sum over all defect networks implements a projection,
so that the correlation function is non-zero only if all Oi are in the Γ-invariant subspace
(⊕gHg)Γ. Equivalently, one can describe the orbifold as the insertion of a superposition
LΓ := ∑

g∈Γ Lg of all possible symmetry defects in each edge of the triangulation. This pre-
scription is well-defined, and in particular is independent of the choice of the triangulation,
if and only if all the phases α(g, h, k) are trivial.

The insertion of a network of defects Lg, g ∈ Γ, in a correlation function of the original
theory can also be interpreted as a coupling to a background gauge field for the group
Γ. Since Γ is finite, and therefore discrete, the gauge connection can only be flat — in
particular, there is no curvature and no propagating degrees of freedom. Nonequivalent
(flat) gauge configurations on a worldsheet X are represented by classes in H1(X,Γ). For a
given triangulation of X, we can regard the faces as corresponding to open patches Ui, the
edges as double intersections Ui ∩ Uj , and the vertices as triple intersections Ui ∩ Uj ∩ Uk.
The insertions of defects supported at the edges correspond to the choice of (constant)
transition functions φij ∈ Γ in each double intersection. Consistency conditions φijφjkφki =
1 on triple intersections are assured by the requirement that there must exist some non-
zero topological junction operator at each vertex. A local gauge transformation can be
interpreted as a change of the triangulation. Therefore, the sum over network of defects
that defines the correlation functions in the orbifold theory is just a sum over all possible
configurations for the background Γ-gauge field. Performing such a sum amounts to making
the background gauge field dynamical. In this sense, the orbifold procedure can be seen as
the gauging of a discrete group.
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This construction suggests that the notion of global symmetries in 2D CFT (and in
more general QFTs, see [48–50]) can be extended by including all kind of topological defects
in the theory. In this generalization, the group multiplication gets replaced by the fusion
product of defects, and the ordinary symmetries are characterized as the subset of defects
that are invertible with respect to fusion. The notion of orbifold can be generalized accord-
ingly, by replacing the superposition defect LΓ = ∑

g∈Γ Lg by some other suitable topolog-
ical defects, not necessarily defined in terms of (ordinary) symmetries [14–19, 46, 47].

2.1.2 Orbifolds of higher form symmetries

Considering orbifolds of QFTs in d spacetime dimensions naturally leads to the notion of
generalized global symmetries which has been introduced in [2]. As for the discussion in
this subsection, we assume p-form global symmetry transformations form a group G(p), and
in particular we will ignore the possible mixing of several q-form symmetry groups with
possibly different q’s. These transformations can be expressed in terms of charge operators
(or defects6 using the nomenclature as in section 2.1.1) Ug(M (d−p−1)) supported on closed
manifolds M (d−p−1) of dimension d − p − 1 and labeled by elements g of the group G(p),
with the group multiplication law

Ug(M (d−p−1))× Ug′(M (d−p−1)) = Ugg′(M (d−p−1)) . (2.11)

In particular, every charge operator Ug has an inverse U−1
g = Ug−1 , such that Ug×Ug−1 = 1,

the identity operator. Charge operators are therefore invertible and topological in the sense
that small continuous deformations of M (d−p−1) do not affect any physical observables
unless M (d−p−1) crosses any charged operators. Given an operator V (Cp) supported on a
manifold Cp of dimension p and transforming in a representation g(V ) of g, if Sd−p−1 is a
small sphere linking once with Cp , we have the Ward identity

Ug(Sd−p−1)V (Cp) = g(V )V (Cp) . (2.12)

g(V ) is simply a phase when the global symmetry group is abelian, which is always the case
for p ≥ 1. The equation above should be understood as an operator equation, valid within
general correlation functions provided that there are no other operator insertions that link
nontrivially with Sd−p−1 or Cp. If the support of the charged operator V is allowed to
be a manifold C(p) with a boundary, we say that V is endable. It is easily proven that
any endable operator must link trivially with any topological operator so that any endable
operator of dimension p cannot carry charge under a p-form global symmetry.

An example that is particularly useful to illustrate these ideas is a 4d non-abelian gauge
theory based on a Lie algebra g, which admits ’t Hooft-Wilson line defects. These lines
can be thought of as the worldvolume of very massive probe (i.e., non-dynamical) particles
charged under g. In [51, 52] it was shown that ’t Hooft-Wilson line defects are classified
by equivalence classes (e,m) ∈ Λwe ×Λwm, defined modulo the action of the Weyl group W.

6We follow a common sloppiness and use the words ‘defect’ and ‘operator’ somehow interchangeably,
although strictly speaking in Lorentzian signature the latter should only refer to the case where the support
is space-like.
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Here Λwe = t∗ is the weight lattice of g and Λwm is the so-called magnetic weight lattice,
namely the Cartan subalgebra t ⊂ g, which is the weight lattice of the Langlands-dual Lie
algebra ĝ. We should also notice this labeling contains more information than simply the
representations of g and ĝ since, chosen a W-orbit of a magnetic weight B ∈ t , an allowed
electric representation is determined by a WB-orbit of a weight µ ∈ Λwe = t∗, with WB the
stabilizer subgroup of B inW. Following [10], we say that a ’t Hooft-Wilson line is endable
if it may be defined on an open curve with endpoints supporting local charged operators in
the same representation. On top of this, we should take into account that in general two
’t Hooft-Wilson line defects labelled by (e,m) and (e′,m′) are not pairwise local. In fact,
the Dirac quantization condition relates mutual locality to the condition of integrality of
the Dirac pairing m · e′ −m′ · e.

The group algebra g does not contain all the information about the lines. In fact, it
is shared by all gauge groups of the form G(0) = G(0)/Γ(0), with G(0) the unique simply-
connected gauge group with the Lie algebra g and Γ(0) ⊂ Z (G) a subgroup of the center
Z (G). Indeed, we should allow for all Wilson lines (e, 0) with e belonging to the electric
weight sublattice ΛwGe labelling the representations of G. This sublattice needs contain
the root lattice Λre. On the other hand, if the gauge group is G, e is any weight in Λwe
and hence because of Dirac quantization m must be in the magnetic root lattice Λrm, i.e.
the coroot lattice of g. We can therefore consider the charges (e,m) modulo Λre ×Λrm, and
realize they encode the information about the topological linking of ’t Hooft-Wilson lines to
the Gukov-Witten operators [53, 54], which are codimension-2 defect operators labeled by
conjugacy classes [g] in G. Analogously to ’t Hooft-Wilson lines, Gukov-Witten operators
can be interpreted as insertions of probe (non-dynamical) vortices, codimension 2-objects
defined by the nontrivial gauge holonomy around their worldvolume. Gukov-Witten oper-
ators that are topological cannot link nontrivially with endable ’t Hooft-Wilson lines. In a
pure G gauge theory the endable Wilson lines are precisely those corresponding to represen-
tations built from the adjoint under taking tensor products and sub-representations, and
the topological Gukov-Witten operators correspond precisely to conjugacy classes which
act trivially on the adjoint representations, i.e. contained in the centralizer Z (G0) of the
identity component G0 of the group G [10]. So a pure G-gauge theory has an electric one-
form symmetry valued in Z (G0), which shifts the gauge fields by a flat Z (G0)-valued gauge
field. Therefore, for the pure G-gauge theory ’t Hooft-Wilson line defects have one-form
charges in the character group Ẑ (G) = Λwe /Λ

r
e. They are also charged under a magnetic

one-form symmetry with charges in Z (G) = Λwm/Λ
r
m, so that the charges can be labeled by

Z] = Ẑ (G)× Z (G) . (2.13)

However two general ’t Hooft-Wilson line defects labeled by (ze, zm) and (z′e, z′m) are
pairwise local only under the assumption of integrality of the Dirac pairing zm ·z′e−z′m ·ze.
Since purely electric line defects (ze, 0) with ze ∈ Ẑ (G) unconstrained are allowed, this
condition implies that no non-trivial magnetic charge is permitted and the G-gauge theory
has no magnetic one-form symmetry. More generally, an important observation is that the
set of lines that are charged under the one-form symmetry is a way to discriminate between
gauge theories based on the group G or on the quotient G = G/Γ by some subgroup of the

– 13 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
3

center, even in the absence of matter in a nontrivial representation of Γ. For concreteness
we may consider the case G = SU (N), Z (G) = ZN , for which the representations of lines
are specified by

(ze, zm) = (n,m) mod N , (2.14)

with n,m ∈ Z. Mutual locality of two line operators labeled by (ze, zm) and (z′e, z′m)
implies the Dirac quantization condition

zm · z′e − z′m · ze = 0 mod N. (2.15)

The allowed purely electric line operators are therefore labeled by (ze, 0), with ze =
0, . . . , N − 1. Clearly, the locality condition (2.15) shows that all the magnetically charged
lines must be associated with the root lattice and so have zm = 0 mod N . On the other
hand, if G = SU (N)/ZN , the purely electric line operators must be in a trivial represen-
tation of ZN , that is (ze, zm) = (0, 0). Under a completeness requirement, it can be easily
shown [55] by means of (2.15) that the allowed lines belong to classes

Ln = {(ze, zm) = (nm,m) mod N} , (2.16)

with m,n = 0, 1, . . . , N − 1, which means that for every n we have a distinct theory
(SU (N) /ZN )n, whose line operators have charges in Ln. An interesting observation is
that, because of the Witten effect, a shift of θ → θ+ 2π changes the electric charge carried
by a line operator,

(ze, zm)→ (ze + zm, zm) , (2.17)

so that the sets Ln are transformed as Ln → Ln+1. This can be understood as the fact that
whereas for G = SU (N), θ ∈ [0, 2π), for G = SU (N) /ZN θ ∈ [0, 2πN) so that θ → θ+ 2π
is no more a symmetry of the theory but only θ → θ+ 2πN . This in turn is related to the
fact that the SU (N) theory has several vacua mapped into each other by a (spontaneously
broken) global symmetry which is absent in the SU (N) /ZN theory. More in general, one
can observe that, when the gauge group is SU (N) /Zk, with k a divisor of N , kk′ = N ,
the allowed sets of charges of line operators are

Lk,n =
{
(ze, zm) = e (k, 0) +m

(
n, k′

)
mod N

}
, (2.18)

with e and m integers and n = 0, 1, . . . , k − 1. The shift θ → θ + 2π sends Lk,n → Lk,n+k′ ,
which is interpreted as a mapping between different theories (SU (N) /Zk)n. Only theories
with the same n mod l, where l = gcd (k, k′), are related by the shift of the θ-angle, and
there are l sets of theories that are distinguished by a discrete analogue of the original
θ-angle.

Gauging a subgroup Γ ⊂ Z (G) of the global one-form symmetry reduces the electric
one-form symmetry from Z (G) to Z (G) /Γ and consequently restricts the allowed Wilson
lines to be in ̂Z (G) /Γ ⊂ Ẑ (G) , which in its turn implies that additional lines can now be
introduced in accordance with the integrality of the Dirac pairing. Under the assumption
that the set of lines be maximal and complete, the gauging procedure therefore involves
the choice of a maximal Lagrangian subgroup L ⊂ Z]. As shown in [55], such a choice
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is not unique and is associated with a discrete theta parameter. For trivial discrete theta
parameter, the additional lines have magnetic charges m ∈ Γ ⊂ Z (G) , while their electric
charges can be screened by the allowed Wilson lines. This means a new one-form magnetic
symmetry valued in Γ̂, the character group of Γ, will appear and that the full one-form
global symmetry is Z (G) /Γ× Γ̂.

The gauging of a global Zk 1-form symmetry can be described explicitly in terms of a
coupling to a Zk gauge theory. If G = SU (N), Z (G) = Zn, we can follow [1, 2, 56], and
introduce the gauge field for a (SU(N)×U(1)) /Zk gauge theory,

a1 + 1
k
Ã11 , (2.19)

where a1 is the SU (N) traceless gauge field, Ã1 a U(1) gauge field and 1 the unit matrix.
We can then remove these U(1) degrees of freedom by imposing the 1-form gauge symmetry

Ã1 → Ã1 − kΣ1 , (2.20)

where Σ1 is a U(1) gauge field with standard normalization. We are left with a Zk 1-form
global symmetry, which we gauge by adding to the action [57]

2πiF2 ∧
(
dÃ1 + kB2

)
+ πipkB2 ∧B2 , (2.21)

with p ∼ p+k an integer corresponding to a discrete θ angle. B2 is the gauge field for (2.20)
transforming as B2 → B2 + dΣ1, and F2 is a 2-form Lagrange multiplier transforming as
F2 → F2 − p dΣ1. Upon integrating out Ã1 and expressing the result in terms of the dual
gauge field A1 such that F2 = dA1 with A1 → A1 − pΣ1, we get

2πikB2 ∧ dA1 + πipkB2 ∧B2 , (2.22)

which is a standard action for a Zk gauge theory.

2.1.3 Higher group symmetries

So far we have considered each higher form symmetry independently, which is justified
in situations where the full global symmetry is given by a standard product between p-
form symmetry groups for different degrees p. However, in general, when higher form
symmetries groups of different degrees are present in the same theory, they can combine
in a very non-trivial way.

Let us consider the case of a QFT with a 0-form group G(0) and a 1-form group G(1).
First of all, the codimension 1 defects realizing the G(0) symmetry group can act on the
codimension 2 defects realizing G(1) by a group homomorphism

ρ : G(0) → Aut
(
G(1)

)
. (2.23)

This means that when a codimension 2 defect U (d−2)
h , h ∈ G(1), crosses a codimension one

defect U (d−1)
g , g ∈ G(0), it emerges on the other side as U (d−2)

ρ(g)·h .
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In general, the 0-form group G(0) also acts on line operators by a (possibly projective)
representation. In the presence of a 1-form symmetry G(1), the class of such projective
representation becomes ambiguous. Indeed, as the G(0) symmetry group is realized by
topological codimension-one defects, their junctions can be decorated by codimension-two
topological defects for the 1-form symmetry group G(1). These decorations are invisible
for local (point-like) operators, but they can change by a phase the action of G(0) on
lines that carry charge under G(1). This can shift the cohomology class of the projective
representations of G(0) on the lines. As discussed in [58, 59], consistency of fusion of the
junctions and 1-form implies that distinct choices are related to each other by a class in a
twisted cohomology group

H2
ρ

(
G(0), G(1)

)
, (2.24)

where H2
ρ denotes the cohomology with respect to a twisted differential dρ that depends

on the homomorphism ρ (see for example [60, 61] for details). More precisely, given a
flat background A1 for G(0), i.e. a G(0)-valued 1-cocycle on the d-dimensional spacetime
manifold Md

A1 ∈ Z1
(
Md, G

(0)
)
, (2.25)

a background for the 1-form symmetry G(1) is specified by

B2 ∈ Z2
A1

(
Md, G

(1)
)
, (2.26)

which is a G(1)-valued A1-twisted 2-cocycle. The class [η] ∈ H2
ρ

(
G(0), G(1)

)
≡ H2

ρ

(
BG(0), G(1)

)
constrains the background fields by

[B2] = [A∗1η] , (2.27)

where [B2] is the cohomology class of the cocyle B2, the flat background A1 is interpreted
as a map A1 : Md → BG(0) from spacetime to the universal classifying space BG(0), and
A∗1η is the pull-back of a representative of the class [η] via this map.

The phenomena that we just described only affect the action of the group G(0) ×G(1)

on various operators of the theory. The interplay between p-form symmetries of different
degrees can lead to more radical modifications of the structure of symmetries, that might
be combined into higher-categorical structures known as n-groups [19, 62]. In particular,
let us focus a QFT with a 0-form group G(0) and a 1-form group G(1) giving rise to a
2-group [3, 60, 63]. The 2-group structure can be understood as a failure of associativity
when we consider a junction of three 0-form symmetry defects Ug, Uh, Uk into Ughk. This
is similar to the situation illustrated by figure 1 in 2 dimensions. In this case, the invariant
data encoding such a failure is a class [α] (Postnikov class), which is an element of the
third group-cohomology group of G(0) with values in G(1):

[α] ∈ H3
ρ (BG(0), G(1)) . (2.28)

The 2-group structure implies that, given a standard G(0)-connection A1, the appropriate
background field B2 for G(1) has its coboundary fixed by α as

dρ(A1)B2 = A∗1α , (2.29)

– 16 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
3

where A1 is viewed as a map from spacetime to the classifying space BG(0). When α =
0, (2.29) is in fact equivalent to the cocycle condition dρ(A1)B2 = 0, whose solutions are
given by (2.27). When the pull-back A∗1[α] of the Postnikov class is non-trivial, this means
that the background B2 satisfying (2.29) is defined only locally, and that under a 0-form
symmetry transformation with parameter λ, B2 acquires a non-trivial transformation

A1 → Aλ1 , B2 → B2 + ζ (λ,A1) , (2.30)

with nonequivalent choices of ζ classified by (2.28). Given a solution B2 to (2.29), there is
still an ambiguity corresponding to shifting B2 by a class in H2

ρ (G(0), G(1)).
There is an important difference between the case of a 2-group and the ’t Hooft anoma-

lies discussed in the previous section. In fact, α in this case is not just a phase, but a
nontrivial operator of the theory — it corresponds to a modification of the B2 background,
i.e. to the insertion of a codimension 2 defect for the 1-form symmetry G(1). Taking all
these data into account we can describe a 2-group global symmetry as

G =
(
G(0), G(1), ρ, [α]

)
. (2.31)

As we already saw for higher form global symmetry, we can also probe the 2-group
symmetry coupling the theory to background gauge field, namely to the connections of
2-group gauge theory [64–68]. In particular, codimension-1 0-form symmetry defects can
be viewed as transition functions connecting couples of locally trivial patches in a principal
G(0)-bundle, and codimension-2 1-form symmetry defects are associated with transition
functions for a G(1)-gerbe. So in this language the appropriate background fields are a
1-form gauge field for G(0) and a 2-form gauge field for G(1), whose gauge transformations
are controlled by ρ and [α]. In fact, describing the gauge transformations of the background
fields is a very convenient way to encode the invariant information ρ and [α] defining the
2-group structure. As a simple example of this approach, we consider a continuous 2-group
where ρ is trivial, G(0) = ∏

I U(1)(0)I with background gauge fields AI1 that transform as
AI1 → AI1 + dλI , and G(1) = U(1)(1) with the background U(1)(1)-gerbe B2 transforming as

B2 → B2 + dΣ1 + 1
2π
∑
I,J

κ̂IJλ
IF J2 , F I2 = dAI1, κ̂IJ ∈ Z . (2.32)

The integer matrix κ̂IJ can be identified with the Postnikov class [α]. The gauge invariant
field strength H3 is consequently defined as

dB2 = H3 + 1
2π
∑
I,J

κ̂IJA
I
1F

J
2 . (2.33)

Gauge fields with gauge transformations of this form are ubiquitous in string theory.
From the target space viewpoint, they are actually dynamical gauge fields, but they can
also appear as background fields for the worldsheet theory describing the fundamental
string.
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2.2 General features of orbifolds in QFT

Let us now summarize some of the general features of orbifolds in quantum field theory.

• Anomalies. Before even trying to construct the orbifold, one needs to check that
it is consistent to gauge Γ. The obstruction to doing this are given by ’t Hooft
anomalies. In order to detect whether a given group Γ has such an anomaly, one
needs to consider the theory in the background of an external (non-dynamical) gauge
field A for the group Γ. Formally, this means that one chooses a principal Γ-bundle
with a connection A in the spacetime where the QFT is defined, and considers the
partition function Z[A] obtained by requiring the fields of the QFT to be sections of
vector bundles (for the appropriate Γ-representation) associated with the Γ-bundle
of A. Notice that when Γ is discrete, and in particular when it is finite, then the
connection A is necessarily flat. A ’t Hooft anomaly is a failure of the partition
function Z[A], seen as a functional on the space of Γ-connections, to be invariant
under Γ gauge transformations of A. More precisely, it is an obstruction to choosing
suitable local counterterms in the action to make the partition function invariant.
When such an anomaly is present, one cannot gauge Γ, i.e. one cannot consistently
make the gauge connection A a dynamical field in theory.
In the example of a bosonic 2D CFTs, ’t Hooft anomalies for a group Γ are classified
the class [α] in the cohomology groupH3(Γ,U(1)) ∼= H4(Γ,Z). ’t Hooft anomalies can
be defined even for higher form symmetries and for n-groups, see for example [1, 3, 60].

• Gauging. If there are no ’t Hooft anomalies for the group Γ, then one can promote
the connection A to a dynamical field on the theory. This amounts to summing over
all possible gauge bundles and connections A, possibly with suitable weights. This
sum is the path integral description of the partition function of the new theory. As
for the operatorial description of the new orbifold theory, suppose that the spacetime
is of the form Σ × Rt, where Rt is a time-like direction and Σ is space-like, and let
H be the Hilbert space of states on Σ. Then, the orbifold procedure can be thought
of as consisting of two steps. First, one projects onto a ‘subtheory’ whose operators
are invariant under (local) Γ-transformations. Such an intermediate step might not
necessarily satisfy all properties that we require for a QFT — for example, in the case
of 2D CFT, this first step alone does not lead to a modular invariant torus partition
function. Next, one ‘completes’ the subtheory by introducing new sectors in the space
of states of the theory (twisted sectors), as well as the corresponding twist operators.
Roughly speaking, the insertion of a twist operator at a certain space slice Σ at fixed
time creates a non-trivial Γ-bundle from the vacuum.

• Discrete torsion. For a given symmetry group Γ, there might be many consistent
ways of introducing the twisted sectors, leading to different orbifolds. This freedom
is known as discrete torsion [1, 23]. In the path integral definition of the orbifold
partition function, these different possibilities correspond to nonequivalent ways of
weighing the contributions Z[A] for various choices of the gauge bundle and connec-
tion.
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In the 2D CFT example, discrete torsion corresponds to nonequivalent choices of the
collection {ϕg,h}, leading to a trivial associator αg,h,k; such choices are in one-to-one
correspondence with classes in H2(Γ,U(1)).

• Quantum symmetry and invertibility. Suppose that the ‘child’ theory B is obtained
from a ‘parent’ theory A via the gauging (orbifold) of some global p-form symmetry
Γ. Then, the child theory B always has a global (D − p− 2)-form symmetry, some-
times known as the ‘quantum symmetry’, that acts non-trivially only on the twist
operators [1]. By gauging the quantum symmetry in theory B, one simply gets back
the original theory A. In this sense, the orbifold procedure is invertible. We stress
that, even if one starts with an ordinary symmetry group Γ in the theory A, the
quantum symmetry might in general be a ‘generalized’ kind of symmetry, such as,
for example, a (possibly non-invertible) object in a category of topological defects
(see for example [18] for a recent discussion in 2D CFT).

• Orbifolds of families of QFTs. Rather than considering the orbifold of a single quan-
tum field theory, one can consider the orbifold of a whole family of QFTs with some
given symmetry group Γ. It is actually very difficult to provide a rigorous definition
of what a ‘family of QFTs’ should be, so here we will just sketch some basic ideas.
Roughly speaking, the correct definition should involve a fibration over a (topologi-
cal) space of parameters B (the base), where the fiber is a pair (T ,Γ) of a quantum
field theory T and a group Γ of global symmetries of T isomorphic to a fixed abstract
group (equivalently, an action of the abstract group Γ as a group of global symmetries
of T ). One might require proper notions of continuity and some choice of equivariant
connection on such a family. Let us assume that the ’t Hooft anomaly for Γ vanishes
over the whole family. Then, we expect the orbifold procedure to define a second
family over the same base B and with fiber (T /Γ, Q), where T /Γ is the orbifold of
T by Γ and Q is the quantum symmetry group. The procedure should be invertible,
in the same sense as in the previous point. In case of non-trivial discrete torsion, the
base space of the orbifold family might be a covering of the original base space B.

3 Orbifolds in string theory

Our goal is to define an orbifold procedure in a theory of quantum gravity (and, in par-
ticular, in string theory), that resembles as much as possible the properties of orbifolds in
QFT summarized in the previous subsection.

As discussed in the introduction, there is an immediate problem with this program:
in all known string theory models (and, conjecturally, in all theories of quantum gravity),
there are no global symmetries. Therefore, the very definition of ‘orbifold’ as a gauging of a
(discrete) global symmetry simply does not make sense in quantum gravity. Nevertheless,
there is a well known procedure in string theory that allows one to obtain a new string
theory model starting from an old one. This orbifold procedure in string theory can be
described from two different (but, ultimately, equivalent) perspectives:
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• Worldsheet orbifold. One can focus on the 2D CFT describing the worldsheet of a
fundamental string. Quite generally, what from the spacetime point of view appears
as a gauge symmetry corresponds to a global symmetry for the worldsheet CFT.
Therefore, it makes sense to consider the gauging of the worldsheet CFT by this
global symmetry, and obtain a new 2D CFT. This is really an orbifold in the QFT
sense, as described in the previous section, but the theory to which the orbifold
procedure is applied is not the quantum gravity theory in spacetime, but rather the
worldsheet QFT.

• Background orbifold. Alternatively, one can consider the orbifold as the quotient of
some geometric string background by isometries. The starting point is a string theory
model, defined by choosing a topology for the 10-dimensional spacetime (usually
of the form K10−D ×MD, where K10−D is a compact manifold), and a consistent
background for the metric, the dilaton and all the other fields appearing in the low
energy effective field theory. If the chosen background is invariant under some finite
group Γ of isometries, one can define a new background by identifying the points in
spacetime that are related by the action of Γ. The spacetime obtained in this way
is a geometric orbifold, possibly with some (mild) singularities at the loci of points
that are stabilized by some non-trivial subgroup of Γ. This definition of the orbifold
procedure makes sense in spacetime, but in general it depends on the geometry and
topology of the compact submanifold K10−D. In turn, these data might depend on
the particular duality frame one is choosing to describe the theory.

The group Γ of isometries of a consistent string background induces a group Γ of
global symmetries on the worldsheet CFT C of the fundamental string. In this case, if
one considers the string model obtained as the background orbifold by isometries, the
corresponding worldsheet CFT is just the worldsheet orbifold C/Γ, i.e. the one obtained
from C by gauging the group Γ of global symmetries. In this sense, the two points of view
described above are equivalent, in the sense that they just lead to the same final string
model.7

The worldsheet point of view has the drawback that it singles out one of many dy-
namical objects in string theory. The properties of the other objects are then deduced by
consistency of their interaction with the fundamental string — for example one can derive
the properties of D-branes by analyzing the boundary states in the worldsheet orbifold
CFT.

The ‘background orbifold’ viewpoint is apparently more ‘democratic’ among the differ-
ent dynamical objects. However, the description of the 10-dimensional spacetime geometry
is usually only valid in one specific duality frame, so that the fundamental string in this par-
ticular frame is again singled out among all dynamical objects. In a sense, the background
just represents the geometry as ‘seen’ by the fundamental string.

7The distinction between worldsheet orbifold and background orbifold procedure is very schematic. In
practice, one often uses a mixture of geometric and worldsheet intuition in order to describe the resulting
orbifold theory.
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To better illustrate this point, consider type IIA compactified on K3×R5,1, giving rise
to a quantum gravity theory in 6 extended dimensions with 16 spacetime supersymmetries
and a gauge group of rank 24 (generically, U(1)24). This theory is dual to the heterotic
string on T 4×R5,1, with the duality exchanging the type IIA fundamental string with the
heterotic 5-brane wrapping T 4, and the IIA NS5-brane wrapping K3 with the fundamental
heterotic string. Describing the corresponding background as type IIA on K3, rather than
heterotic on T 4, singles out the type IIA fundamental string among all dynamical objects.
In fact the internal K3 manifold is the geometry ‘seen’ by this particular object, whereas
a type IIA NS5-brane wrapping K3 would be better described as a heterotic string, and it
would ‘see’ an internal T 4 geometry.

Understanding the dependence (or independence) of the orbifold procedure on the
duality frame is one of our main motivations for this work. It has long been known that
‘orbifolds do not always commute with dualities’ [34–36]. Consider two string theory models
A and B related by a duality. Suppose that A has a symmetry Γ; by duality, the model
B must admit an isomorphic group Γ′ ∼= Γ of symmetries. There are known examples
where the orbifold of A by Γ is not dual to the orbifold of B by Γ′. One example, already
mentioned in the introduction, is the orbifold of 10d type IIB theory by worldsheet parity
Ω, which gives type I string theory. The S-dual of Ω is (−1)FL , the symmetry acting by
−1 on the R-NS and R-R sectors and acting trivially on the NS-NS and NS-R sectors.
The orbifold of type IIB by (−1)FL is type IIA, that clearly is not dual to type I. Another
example arises within the pair of dual theories that we mentioned above, namely type IIA
on K3 and heterotic on T 4. The orbifold of type IIA on K3 by the symmetry (−1)FL gives
rise to type IIB on K3. On the other hand, the corresponding symmetry on the worldsheet
heterotic string has a ’t Hooft anomaly, so that the orbifold is not even well defined!

This phenomenon is perfectly compatible with the worldsheet description of the orb-
ifold, if the duality is non-perturbative. Indeed, this description is based on gauging a
global symmetry on the worldsheet of a fundamental string, a procedure that only makes
sense in a duality frame where string perturbation theory is reliable. Non-perturbative du-
alities map the fundamental string to some different object and exchange the weak and the
strong coupling limit of string theory. Therefore, we are not guaranteed that the orbifold
procedure in the dual theory gives the same result.

It is natural to ask whether one can define a spacetime orbifold procedure in string
theory that treats all dynamical objects in a ‘democratic’ way, and that does not depend
on any specific effective description or duality frame. In the example of the IIA on K3 and
heterotic on T 4 dual pairs, we can just describe the resulting theory as a six dimensional
quantum gravity theory, with asymptotically flat geometry, with a given gauge group H

and a collection of dynamical (point-like or extended) objects that are charged with respect
to H (see [69] for a recent description of the landscape of such models and their orbifolds).
The finite group Γ we want to quotient by appears at some special loci in the moduli space,
where it combines with the generic group H to form an enhanced gauge group. We stress
that there is no need to choose a specific duality frame in order to describe the gauge
group. We can also classify all stable dynamical objects in the theory just in terms of their
couplings to the various gauge fields, again without making a specific choice between the
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type IIA and the heterotic frame. In fact, only if we take this ‘democratic’ perspective we
are able to match the action of the group Γ on the two sides of the duality. The orbifold
procedure consists in projecting out some of the dynamical objects of the theory, modifying
the gauge group of the theory via a sequence of restrictions, quotients and extensions, and
introducing new objects and fields (the twisted sector) which interact in a consistent way
with the ones of the parent theory.

These arguments suggest the existence of a ‘spacetime orbifold’ procedure that satisfies
the following properties:

• All dynamical objects and all effective descriptions of the theory are taken on the
same footing.

• It is defined by specifying some finite subgroup Γ of the gauge group, that must get
quotiented out in the final theory. As suggested by the examples in section 2.1.2,
quotienting of gauge groups can often be described in terms of the gauging of some
higher form finite global symmetry in spacetime.

• The sequence of steps describing the orbifold depends very little on the dynamics of
the theory, and is mainly based on the symmetries of the theory itself and on how the
dynamical objects of the theory are coupled to them. This property should allow us
to extend the procedure to families of models sharing the same group of symmetries.

• It is equivalent (at least, in most cases) to the standard definitions of orbifolds in
string theory that are given above, in the sense that in most cases it just provides
the same orbifold theory. In fact, we expect this procedure to be a generalization of
the usual string orbifolds.

If such a ‘spacetime orbifold’ procedure exists, then one can reasonably expect it to
always commute with dualities. On the other hand, this seems to be in contradiction with
the very examples we have described above: we know already that there are cases where
duality and orbifolds do not commute! As discussed in the introduction, there are various
possible resolutions to this paradox:

• The most obvious possibility is that any orbifold procedure is intrinsically related
to a given choice of duality frame or effective description. Therefore, there is no
meaningful way to define the orbifold that does not make any reference to a choice
of duality frame.

• A second possibility is that, in some cases, there might be more than one possible
way to take an orbifold by a given group Γ. In QFT, we already know that this is the
case, due to discrete torsion. It might very well be that, if one focuses on a specific
dynamical object or duality frame, not all these possibilities can be described in a
natural way in terms of an orbifold on a worldsheet theory. That would mean that
only one of the possible ways of taking an orbifold (in spacetime sense) is ‘visible’ in
a given duality frame, and a different way of taking the orbifold is visible in another
duality frame. When this happens, then it would appear as if ‘the orbifold does not
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commute with duality’. What is really happening is that the worldsheet orbifolds on
the two sides of the duality are not the same operation from a spacetime point of
view. This is the possibility that we will consider in this article.

In the following, we will describe a rough proposal for this ‘spacetime orbifold’ pro-
cedure. The proposal will be then illustrated in a couple of examples in the following
sections. In particular, we want to verify that, at least for these simple examples, the
spacetime orbifold proposal reproduces the orbifold as obtained from either the worldsheet
or the geometric background perspective.

3.1 Initial data: the parent theory

Let us start by describing the parent theory, i.e. the string theory model for which we want
to take the orbifold. Our goal is to express this ‘initial data’ in a way that does not depend
on the choice of a particular duality frame, and that is mainly based on the symmetries of
a given theory.

Let us consider the compactification of some superstring theory on a consistent back-
ground. Quite generally, we can describe this model as a quantum gravity theory in D

extended dimensions with a given asymptotic geometry — for simplicity, we will only con-
sider asymptotically flat spacetime. We do not fix the topology of the spacetime away
from the asymptotic boundary, since we want to allow for dynamical topology changes.
The theory has a gauge group G, where ‘group’ should be meant in a very general sense:
it might comprise subgroups G(p) of p-form gauge symmetries for different degrees p, with
non-trivial mixings among various values of p, giving rise to structures such as n-groups
or generalizations. Furthermore, there might be some matter fields or some (possibly
extended) dynamical objects (fundamental strings, branes, monopoles,. . . ) that can be
charged with respect to the various gauge fields.8 On the other hand, we do not include
D-dimensional spacetime diffeomorphisms in the gauge group G; here, we are implicitly
assuming that there is an (approximate) description of our theory where this separation
between D-dimensional spacetime diffeomorphisms and an ‘internal’ gauge group G makes
sense. In particular, in the following, when we talk about gauge invariant operators, we
only mean invariant under local G-transformations.

In general, in QFT, the gauge group is not an intrinsic property of a given theory:
there might exist different descriptions of the same QFT with different gauge groups.
For example, pure U(1) Maxwell theory in three dimensions can be described in terms
of a dual scalar field, with trivial gauge group. This can happen because physical states
and observables, that characterize intrinsically a QFT, are all invariant under local gauge
transformations.

On the other hand, physical states might not be invariant under asymptotic gauge
transformations, i.e. such that the gauge parameters do not vanish at infinity (see for
example [70, 71] for a similar discussion). Suppose, for example, that our string model

8Of course, in string theory the distinction between smooth extended solitons and fundamental branes
is just an artefact of an effective description — they are just different limits of the same object, and we will
refer to them generically as branes.
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admits, in some semiclassical description, a (ordinary 0-form) U(1) gauge group. We want
to allow for our theory to contain states whose total electric and/or magnetic U(1) charge is
different from zero, and which therefore belong to non-trivial representations with respect
to constant U(1) transformations. Similarly, when the gauge group contains a discrete
subgroup H, we expect the quantum Hilbert space to contain states transforming in non-
trivial representations of H under the action of the asymptotic gauge group.

If there is some charged state in a faithful representation of a gauge group G, then
all possible descriptions of the theory must contain G as a group of symmetries.9 In all
known string theory models, and conjecturally in all consistent quantum gravity theories,
the spectrum of charges is complete, i.e. contains all possible representations of a gauge
group. This means that there are physical states transforming faithfully under asymptotic
gauge transformations, so that the gauge group is not a property that depends on the
particular description (for example, the duality frame) of the theory.

We emphasize that, for this description to be valid, the group G should be in a Coulomb
(or free charge, in the terminology of [70, 71]) phase. In particular, G should not include
any spontaneously broken symmetry. This means that if there is a moduli space of string
models, the group G will, in general, depend on the moduli. On the other hand, there
might exist continuous families of different string models, parametrized by some moduli,
with the same unbroken gauge group G. This can happen, in particular, when the marginal
operators corresponding to small deformations of (some of) the moduli are invariant under
G. In this case, we expect our orbifold procedure to map the whole family of parent
theories to a family of orbifold theories with the same base — see the discussion at the end
of section 2.2.

Finally, in order for the definition to be duality invariant, one should include ‘electric’
and ‘magnetic’ gauge fields in a democratic way. For example, in ten dimensional type IIA
theory, G will contain the Ramond-Ramond p-form U(1) gauge group for all possible odd
values of p, even though the p-form and (8− p)-form gauge fields are actually dual to each
other.

In any semiclassical description of the theory, there will be extended dynamical objects
(which, depending on the duality frame, will be called D-branes, NS5-branes, etc.) that
are coupled in various ways to the gauge fields. There are usually degrees of freedom
localized on the worldvolume of such extended objects, giving rise to worldvolume currents
that are sources for p-form gauge fields in the bulk. The gauge couplings also dictate how
these extended objects are allowed to end onto each other. As discussed in [9], most of
these properties are strongly constrained once we require the absence of all kind of global
symmetries (in particular, what are called Chern-Weil symmetries in [9]) in the complete
quantum gravity theory. In fact, in [9] it is shown how one can reconstruct the various
couplings in the worldvolume theory of extended dynamical objects, starting from the low
energy effective action, and in particular from the Chern-Simons terms, for the massless
p-form gauge fields in spacetime. In turn, these Chern-Simons terms are fixed by the higher

9In principle, we cannot exclude that, in some particular description, G is extended to some larger gauge
group. If such situations occur, then G should be regarded as the quotient of the gauge group by the
subgroup acting trivially on all states.
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group structure of the gauge group, which is part of the initial data we are considering.
This argument suggests that the full information about the structure of the gauge group G,
together with the requirement of the absence of global symmetries, is sufficient to provide
very detailed information about a given string theory model.

3.2 The orbifold projection and twisted sector

Starting from the initial data described in the previous subsection, let us now discuss how
to define the orbifold of our string model by a 0-form finite subgroup Γ of the full gauge
group G. It might be possible to extend our procedure to higher form gauge symmetries,
but we will not consider this generalization here. Furthermore, for simplicity, we will only
consider explicit examples where the symmetry group Γ is cyclic, Γ ∼= ZN .

If we want to compare our procedure to the standard ‘worldsheet orbifold’, we also
need to assume that the gauge group Γ in spacetime corresponds, in some duality frame,
to a group of global symmetries in the CFT describing the worldsheet of a fundamental
string. The action of Γ on the worldsheet of the fundamental string might not in principle
be faithful; this is the case, for example, when Γ is a discrete subgroups of a U(1) gauge
group associated with a R-R gauge fields in type II string models. In these cases, the
final outcome of the ‘spacetime orbifold’ procedure does not correspond to any ‘worldsheet
orbifold’, at least in the given duality frame. The examples we consider in the next sections
only consider groups of symmetries that descend from global symmetry of the worldsheet
CFT (in some duality frame); it would be very interesting to discuss the outcome of our
construction in more general examples.

Vice versa, any group Γ of global symmetries of the worldsheet theory, commuting with
the BRST operator that defines the physical string states,10 gives rise to a symmetry of
perturbative string theory. Assuming that the symmetry is not broken at non-perturbative
level, it must correspond to a group of 0-form gauge symmetries in spacetime. When Γ
is (a subgroup of) a global continuous symmetry on the worldsheet, the existence of the
corresponding gauge symmetry can also be inferred from the presence of a massless gauge
boson in the physical string spectrum.

Since Γ is a gauge symmetry in spacetime, it must be associated with a gauge field
A1. When Γ is a subgroup of a continuous gauge group, for example Γ ⊂ U(1), we let A1
be the U(1) gauge field and F2 = dA1 the corresponding field strength.

In general, a gauge theory with a gauge group Γ should include Wilson lines or loops
WR for each representation R of Γ. Invariance under local gauge transformations requires
an open Wilson line to be stretched all the way to infinity, i.e. with both ends at the
boundary of spacetime, or to have one or both ends terminated on some suitably charged
(point-like) operator, if it is present in the theory. In quantum gravity theories, the con-
jecture that the spectrum of charges is complete implies that all Wilson lines are ‘endable’,
i.e. that there are always point-like operators where a Wilson line can end in the interior
of space time.

10A worldsheet symmetry that does not commute with the BRST operator (for example not commuting
with the worldsheet N = (1, 1) super-Virasoro algebra in type II string theory) does not preserve the space
of physical string states.
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Let us now describe the theory obtained from an orbifold of this quantum gravity
theory by the group Γ.

• The orbifold theory should contain some of the degrees of freedom (fields or extended
dynamical objects) of the original theory. In order to understand which degrees
of freedom are retained in the orbifold, it is useful to reformulate the steps of the
worldsheet orbifold from a spacetime point of view. The first step in the worldsheet
orbifold procedure is to project out the states and operators that are not invariant
under the group Γ, seen as a group of global symmetries on the worldsheet. From the
spacetime point of view, the string states that we eliminate correspond to degrees of
freedom transforming in some non-trivial representation R with respect to the gauge
group Γ. More generally, we expect an analogous projection to occur for all the
degrees of freedom localized on other extended objects such as D-branes, NS5-branes,
etc. From a spacetime perspective, therefore, we argue that the orbifold theory should
contain only local degrees of freedom transforming in the trivial representation R of
the group Γ.

Notice that, unless Γ is a central subgroup of G, the G gauge fields themselves
transform non-trivially under Γ. Thus, in this first step, the gauge group G must be
modified. In particular, only the gauge fields that commute with Γ will be retained
in the orbifold theory; see section 5 for an example where the group Γ is not in the
centre of G.

• The local degrees of freedom that we eliminated in the first step are exactly the
ones where Wilson lines in some non-trivial Γ-representation R could end. Thus, if
such Wilson lines were still present in the orbifold theory, then they would be ‘non-
endable’. As discussed in section 2.1.2, the presence of non-endable Wilson lines is
related to the presence of a potential 1-form ‘electric’ global symmetry group, still
isomorphic to Γ. The group acts on a Wilson line WR in the representation R of
Γ by multiplication by TrR(g), which is just a phase for a cyclic group Γ. From a
different perspective, the 1-form global symmetry is generated by (D−2)-dimensional
topological operators Tg (Gukov-Witten operators), labeled by elements g ∈ Γ.11

It is widely believed that in a consistent theory of quantum gravity, any ‘potential’
global symmetry should be either broken or gauged. In the parent string model, the
1-form symmetry was broken due to the presence of charged local operators where
the Wilson lines WR could end, which make the Gukov-Witten operators Tg non-
topological. As stressed above, in the orbifold theory these charged local operators
are not present, so that the 1-form symmetry cannot be broken. Therefore, it must
be gauged. Gauging the global symmetry has two effects. First of all, the Wilson
linesWR for non-trivial Γ-representation R are not gauge invariant, and therefore are
not present in the theory anymore. The second effect of gauging the electric 1-form
symmetry is that we should introduce new configurations of the gauge fields where

11For non-abelian groups Γ, the Gukov-Witten operators are labeled by conjugacy classes of elements
in Γ.
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the transition functions close only up to gauge transformations in Γ. Effectively, this
means that the gauge group in the orbifold theory is obtained by taking a quotient
of the ‘parent’ gauge group by the subgroup Γ.

• For each dynamical object (fundamental string D-brane, NS-brane), we should allow
for the worldvolume fields to have non-trivial Γ-monodromy around any non-trivial
cycle wrapped by the brane. The reason for this is the following. In the original
theory, the partition function is obtained by summing over all possible (principal)
Γ-bundles with connection in spacetime. For each such choice of Γ-bundle, the fields
in the worldvolume of each dynamical object must be represented by sections of a
suitable Γ-vector bundles, which is determined by the given principal Γ-bundle (more
precisely, by the pullback of such principal bundle in spacetime to the worldvolume
of the brane). In the orbifold theory, after gauging the 1-form symmetry, all different
principal Γ-bundles in spacetime are physically equivalent to each other and to the
trivial Γ-bundle — one has no way to observe the difference. This means that, in the
worldvolume theory, one should include all possible Γ-vector bundle configurations,
independently of any (unobservable) choice of Γ-principal bundle in spacetime. In
particular, we should allow for fields with non-trivial Γ-monodromy even in the ab-
sence of non-trivial gauge background in the orbifold theory. Furthermore, for each
g ∈ Γ, we should include operators of codimension 2 on the worldvolume of each
string or brane, that create twist vortices such that the worldsheet fields have mon-
odromy g around the insertion point. On the fundamental string, these operators
exactly correspond to g-twisted operators in the worldsheet orbifold construction.

• At the end of the day, we expect the content of the twisted sector in the final orbifold
theory to be dictated by consistency conditions in quantum gravity. Some of these
conditions might come from standard tadpole cancelation — for example, in some
cases, it is well known that the orbifold theory is well defined only after including
a suitable number spacetime filling branes [33]. In our description of the twisted
sector, the main consistency condition we are imposing is the absence of any global
symmetries in the final orbifold theory. It has been recently argued that the structure
of string theory is strongly constrained by such a requirement. In particular, based
on the absence of all ‘Chern-Weil symmetries’, the authors of [9] were able to deduce
the coupling of D-branes and other extended objects to various p-form gauge fields,
as well as the presence of dynamical worldvolume degrees of freedom. In a similar
spirit, in the previous point, we used the absence of global symmetries to deduce the
structure of the twisted sector in the orbifold theory. The analysis of [9] suggests that
this strategy, together with tadpole cancelation, should be sufficient to reconstruct
the orbifold theory completely — or at least up to a limited number of choices.

In the following sections we will show how this procedure can be implemented in some
simple examples. In particular, our goal will be to show that the final theory is the same
that one would obtain via the worldsheet orbifold procedure.
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4 Orbifold of type II on S1 by half-period shift

In this section, we consider the compactification of type IIA or type IIB string theory on
a circle S1. We do not fix the geometry (or even the topology) of the interior of the D = 9
dimensional spacetime, but we assume that the asymptotic region at infinity is just flat
8 + 1 dimensional Minkowski spacetime. As we review below, this theory has a U(1) gauge
symmetry corresponding (in a suitable duality frame) to translations along the internal
circle S1. Our goal is to apply (at least in a simplified setup) the procedure described in
section 3 to obtain the orbifold of this model by the Z2 subgroup of this U(1) symmetry,
corresponding to the translation by half a period along S1.

For simplicity, we will focus on the bosonic NS-NS sector, and more specifically on the
various gauge fields, and ignore the fermions and the RR sector.

4.1 The initial data

Let us start from considering the low energy effective action. The NS-NS sector of type
II 10-dimensional superstring theory contains a dilaton scalar φ̂, the Kalb-Ramond (KR)
2-form B̂2 = 1

2B̂µ̂ν̂dx
µ̂ ∧ dxν̂ , and a two-index traceless symmetric tensor ĝµ̂ν̂ describing

the graviton.
The low-energy effective action in the string frame is given by

SNS−NS = ĝ2

16πG(10)
N

∫
d10x̂

√
−ĝe−2φ̂

[
R̂+ 4

(
∂φ̂
)2
− 1

2 · 3!H
2
3

]
,

= ĝ2

16πG(10)
N

∫
d10x̂e−2φ̂√−ĝ (R̂+ 4

(
∂φ̂
)2
)

− ĝ2

16πG(10)
N

∫
e−2φ̂ 1

2Ĥ3 ∧ ∗̂Ĥ3 , (4.1)

where Ĥ3 = dB̂2 (locally) is the KR field strength. Here, ∗̂ is the Hodge dual with
respect to the string metric ĝµ̂ν̂ , ĝ = eφ̂0 is the string coupling constant compensating for
the asymptotic value of the dilaton, and G(10)

N is the 10-dimensional supergravity Newton
constant. The normalization of the KR field in the effective action (4.1) is such that the
fundamental string couples to B̂2 via the standard Wess-Zumino term in the worldsheet
action

− T
∫

Σ
B̂2 , (4.2)

with T the string tension and Σ the worldsheet. The Kalb-Ramond field B2 is the gauge
boson associated with a 1-form U(1) gauge symmetry

B̂2 → B̂2 + d Σ̂1 , (4.3)

where Σ̂1 = Σ̂µ̂dx̂
µ̂ is a 1-form gauge parameter. We have the quantization conditions

− T
∫
M(3)

Ĥ3
2π ∈ Z , −T

∫
M(2)

dΣ̂1
2π ∈ Z , (4.4)

when evaluated in closed surfaces M (p).

– 28 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
3

The bosonic sector also includes the Ramond-Ramond (RR) fields,which are differential
forms of even (odd) rank in the IIB (IIA) theory. In the string frame they do not couple to
the dilaton, but they couple to the KR 2-form due to the definitions of the field strengths
and also to the presence of Chern-Simons (CS) topological terms. Although these couplings
are responsible for the quite interesting phenomenology of extended objects in string theory,
we shall not consider the whole RR sector in the following.

Instead we shall consider the structure emerging from a standard Kaluza-Klein (KK)
ansatz for the NS-NS sector. Denoting the compact coordinate by x9 ≡ z ∈ [0, 2π`z] and
assuming that all the fields are independent of it, we can rewrite the action in terms of the
corresponding 9-dimensional vielbein, KR 2-form B2 and dilaton field φ, the KK vector
A1, the winding vector B1 and the KK scalar field k. We omit the Einstein-Hilbert term,
the dilaton and KK scalar kinetic terms in order to focus on the relevant p-form gauge
symmetry without cluttering our notation. Therefore the action is

SNS−NS = − g2

16πG(9)
N

∫
d9x
√
−ge−2φ

( 1
2 · 3!H̃

2
3 + 1

4k
2F̃ 2

2 + 1
4k
−2H̃2

2 + . . .

)

= − g2

16πG(9)
N

∫ 1
2e
−2φ

(
H̃3 ∧ ∗H̃3 + k2F̃2 ∧ ∗F̃2 + k−2H̃2 ∧ ∗H̃2 + . . .

)
, (4.5)

where

H̃3 = dB̃2 − Ã1 ∧ H̃2 , (4.6)
F̃2 = dÃ1 , (4.7)
H̃2 = dB̃1 , (4.8)

and
g = ĝk

− 1
2

0 , G
(9)
N = G

(10)
N / (2πRz) , (4.9)

with k0 the asymptotic value of the KK scalar field and

Rz = lzk0 ,

the radius of the compact dimension z. ∗ is the Hodge dual with respect to the string
metric gµν .

The action (4.5) is invariant under the Nicolai-Townsend transformations [72, 73]

δÃ1 = dλ̃, δB̃1 = dσ̃,

δB̃2 = dΣ̃1 + λ̃H̃2 . (4.10)

In particular one can see that δH̃3 = 0. The origin of the gauge transformations for the
KK vector field Ã1 is the general coordinate transformations of the compact coordinate z,
δz = −k−1

0 λ̃, so that the period of the gauge parameter is λ̃ ∼ λ̃+ 2πRz and we have the
quantization conditions

1
Rz

∫
M(2)

dF̃2
2π ∈ Z ,

1
Rz

∫
γ

dλ̃

2π ∈ Z . (4.11)
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Given the dimensional reduction definitions,

B̃µ ≡ B̂µz , σ̃ = Σ̂z , (4.12)

(which are taken to not depend on the compact dimension z), upon integrating over the
closed manifoldsM (3) = S1×N (2) M (2) = S1×γ, with S1 the circle in the compact dimen-
sion and N (2), γ respectively a closed surface and line in the transverse directions, (4.4)
implies

− T (2πRz)
∫
N(2)

H̃2
2π ∈ Z , −T (2πRz)

∫
γ

dσ̃

2π ∈ Z . (4.13)

In particular, the gauge parameter σ̃ is defined modulo

σ̃ ∼ σ̃ + 2πR′z = σ̃ + 2πα′
Rz

. (4.14)

where
R′z = α′

Rz
, (4.15)

is the radius of the T-dual circle.
Finally, by (4.4), the Kalb-Ramond 2-form field B̃2 and the gauge parameter Σ̃1 are

quantized as

T

∫
N(3)

dB̃2
2π ∈ Z , T

∫
N(2)

dΣ̃1
2π ∈ Z , (4.16)

For our purpose, it is more convenient to normalize the fields so that they have standard
quantization conditions for U(1) gauge fields. We use the redefinitions

A1 = Ã1
2πRz

, B1 = RzTB̃1 , B2 = T

2π B̃2 . (4.17)

The gauge transformations have the same form as before

δA1 = dλ, δB1 = dσ,

δB2 = dΣ1 + λH2 . (4.18)

but the respective gauge parameters

λ = λ̃

2πRz
, σ = RzT σ̃ , Σ1 = T

2π Σ̃1 , (4.19)

now have integral periods over closed manifolds∫
γ
dλ ∈ Z ,

∫
γ
dσ ∈ Z ,

∫
M(2)

dΣ1 ∈ Z . (4.20)

In terms of the field strengths F2 = dA1, H2 = dB1 and H3 = dB2 −A1 ∧H2 = T
2π H̃3, the

action (4.5) becomes

−
∫ ( 1

2g2
B2

H3 ∧ ∗H3 + 1
2g2
A1

F2 ∧ ∗F2 + 1
2g2
B1

H2 ∧ ∗H2 + . . .

)
, (4.21)
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where

1
2g2
B2

= πg2

4G(9)
N T 2

e−2φ 1
2g2
A1

= πg2k2R2
z

4G(9)
N

e−2φ 1
2g2
B1

= g2k−2

16πG(9)
N R2

zT
2
e−2φ . (4.22)

In the language of [3], the gauge transformations (4.18) are an example of 2-group
structure of the form G(0)×κG(1), with G(0) = U(1)A1 ×U(1)B1 and G(1) = U(1)B2 , where
the 0-form gauge transformation of the fields A1 and B1 also affects the 1-form gauge field
B2.

This string compactification is also invariant under the Z2 symmetry acting by reflec-
tion on the internal circle S1. From the 9-dimensional point of view, this symmetry acts
by charge conjugation on the 0-form gauge fields

A′µ = −Aµ, B′µ = −Bµ.

Strictly speaking, one should include this transformation as a discrete gauge symmetry,
making the whole 0-form symmetry group non-abelian. In this section, we will just focus
on the normal abelian subgroup. We will consider this complication in the next section, in
the more general context of toroidal compactifications.

In the absence of external electric or magnetic charges, we get the Bianchi identities

dH3 +H2 ∧ F2 = 0, (4.23)
dF2 = 0 (4.24)
dH2 = 0 (4.25)

and the equations of motion

d(g−2
B2
∗H3) = 0, (4.26)

d(g−2
A1
∗ F2)−H2 ∧ g−2

B2
∗H3 = 0, (4.27)

d(g−2
B1
∗H2)− F2 ∧ g−2

B2
∗H3 = 0, (4.28)

where ∗ is taken with respect to the D-dimensional metric gµν .
Let us now consider our supergravity theory in the presence of external electric or

magnetic sources for these gauge fields. The Bianchi identities and equations of motion are
modified by the presence of suitable p-form currents jp that are ‘localized’, i.e supported
on (9− p)-dimensional manifolds in spacetime. As discussed in [9], self-consistency of the
equations require that the presence of new degrees of freedom localized on the world-volume
of the extended objects coupled with the gauge fields.

Let us now discuss how the Bianchi identities and equations of motion are modified
in the presence of such electric and magnetic currents. In string theory, these sources
correspond to various kinds of extended dynamical objects. The presence of Chern-Simons
terms and the non-standard form of some Bianchi identities put non-trivial consistency
conditions on the couplings to sources. In particular, the extended objects are required to
carry worldvolume degrees of freedom with suitable transformations under the action of
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the gauge group. More precisely, the equations in the presence of sources take the following
form:

dH3 +H2 ∧ F2 = jNS5
4 +∇B1ρ

KK ∧ jKK3 +∇A1z
NS5 ∧ jNS5

3 , (4.29)
dF2 = jKK3 (4.30)
dH2 = jNS5

3 (4.31)
d(g−2

B2
∗H3) = jF7 , (4.32)

d(g−2
A1
∗ F2)−H2 ∧ g−2

B2
∗H3 = jm8 −∇B1Z̃ ∧ jF7 −∇B5 z̃

NS5
4 ∧ jNS5

3 , (4.33)
d(g−2

B1
∗H2)− F2 ∧ g−2

B2
∗H3 = jF8 −∇A1Z ∧ jF7 −∇B5 ρ̃

KK
4 ∧ jKK3 . (4.34)

In string theory, the currents admit the following interpretation:

• jF7 and jF8 correspond to fundamental strings that are, respectively, localized at
the point 2π`zZ in the compact direction, or wrapping the compact direction and
localized in the uncompactified ones. From the 9-dimensional spacetime perspective,
the former current is supported in the 2-dimensional worldsheet spanned by the string;
the latter current is supported on a line, which is the trajectory in the 9-dimensional
spacetime of a string wrapping the compact direction. Strings that are localized in
the compact S1 direction carry a worldsheet degree of freedom, the scalar field Z,
that corresponds to the position of the string along S1. The scalar field Z̃ is defined
as the worldsheet dual of Z,

g−1
A1
∇A1Z = g−1

B1
?∇B1Z̃ , (4.35)

where ? denotes the worldsheet Hodge duality.

• jNS5
3 and jNS5

4 correspond to NS5 branes that are, respectively, localized at a point
or wrapping the compact direction. Branes localized at the point carry a world-
volume degree of freedom, the scalar field zNS5, corresponding to the position of the
brane in the compact direction. The 4-form z̃NS5

4 is the Hodge dual of zNS5 in the
worldvolume of the NS5 brane, in analogy with (4.35).

• jKK3 is a KK monopole. It is known [74] that KK monopoles carry a worldvolume
degree of freedom, a scalar field ρKK , that gets shifted as ρKK → ρKK + σ1 under a
U(1)B2 transformation with gauge parameter σ1. The 4-form ρ̃KK4 is the Hodge dual
of ρKK in the worldvolume of the KK monopole, in analogy with (4.35).

• jm8 is a current corresponding to units of momentum along the internal S1 circle.

• The covariant derivatives are ∇XY = dY +X, where X is a p-form potential and Y
is a charged p− 1 form field on the worldvolume; B5 is the magnetic dual of B2, i.e.
the gauge field with field strength dB5 = g−2

B2
∗H3.

The existence of worldvolume degrees of freedom is required for consistency of these
equations. To see this, let us apply the differential d to both sides of one these equations,
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for example (4.33). We get

−jNS5
3 ∧ g−2

B2
∗ H̃3 −H2 ∧ jF7 = djm8 − (d∇B1Z̃) ∧ jF7 − (d∇B5 z̃

NS5
4 ) ∧ jNS5

3 , (4.36)

which is an identity using that

d∇B5 z̃
NS5
4 = d(dz̃NS5

4 +B5) = g−2
B2
∗ H̃3 (4.37)

and
d∇B1Z̃ = d(dZ̃ +B1) = H2 . (4.38)

Without the worldvolume fields zNS5
4 and Z, one would not be able to write gauge invariant

combinations such as ∇B5 z̃
NS5
4 and ∇B1Z̃, and it would be impossible to cancel the terms

on the left hand side of this equation. See for example [9] for a more detailed description
of this mechanism.

In a low energy effective description of string theory, it is justified to consider these
currents as external non-dynamical sources only when the corresponding objects are very
heavy. On the other hand, our orbifold procedure does not depend on such dynamical
details, but only on the structure of the gauge group and on their coupling to charged
objects. Therefore, we can regard the equations above as a schematic way to encode such
information, independently of the conditions under which these equations make sense in
some suitable low energy limit.

4.2 The projection

We have described the ‘initial data’ of the parent string theory. Now, we want to apply
the procedure described in section 3, and consider the orbifold by the Z2 subgroup of the
U(1)A1 gauge group; this group is generated by a half-period shift along the internal S1

circle.
The first step in the procedure is to project out all dynamical objects carrying non-

trivial charge with respect to such Z2 gauge group. This projection will make the cor-
responding Wilson lines non-endable, and ‘restore’ a 1-form Z2 electric global symmetry
acting on such Wilson lines. Naively, the operators generating such a 1-form symmetry are
of the form

e
πi
∫
M7

g−2
A1
∗F2

,

for any closed 7-manifold M7. Even without introducing the electric and magnetic sources,
this 1-form symmetry is broken due to the Chern-Simons term in the equation of motion.
Indeed, ifM7 andM ′7 are the boundary components of a 8-manifoldN8, i.e. ∂N8 = M7−M ′7,
then ∫

M7
g−2
A1
∗ F2 −

∫
M ′7

g−2
A1
∗ F2 =

∫
N8
d(g−2

A1
∗ F2) =

∫
N8
−H2 ∧ g−2

B2
∗ H̃3 . (4.39)

In the classification of [75], the current d(g−2
A1
∗ F2) is called a Maxwell current, and it is

gauge invariant and conserved, but it is not quantized nor ‘localized’, i.e. it is not supported
on a manifold of positive codimension in spacetime. Assuming that the gauge bundle for
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U(1)B1 is trivial, i.e. the class [H2] ∈ H2(X,Z) vanishes, then B1 is a well defined 1-form
on X, and we can consider the operator

e
πi
∫
M7

JPage7 , (4.40)

where
JPage7 = g−2

A1
∗ F2 +B1 ∧ g−2

B2
∗ H̃3 . (4.41)

In the absence of external sources one has

dJPage7 = 0 .

More generally, the quantity dJPage7 (known as the Page current) is quantized, so that in
principle one could restore a 1-form Z2 symmetry by restricting to configurations where
the number of quantized charge is even. Unfortunately, the operator (4.40) is not gauge
invariant: under B1 → B1 + dσ, JPage7 transforms as

JPage7 → JPage7 + dσ ∧ g−2
B2
∗ H̃3 . (4.42)

The 1-form dσ is closed, but it is not exact as a real-valued 1-form, because σ is only
defined in R/Z and in general does not lift to a real valued 0-form. This means that∫
M7

dσ∧g−2
B2
∗H̃3 is integral but not necessarily zero. As a consequence, the operator (4.40)

is not well defined, since a gauge transformation can change its sign.
The presence of the Chern-Simons term leads to a second, closely related problem. We

have seen in the previous subsection that consistency of the Bianchi identities and equa-
tions of motions requires the presence of worldvolume degrees of freedom. For example,
among the electric sources for ∗F2 one must include terms such as ∇B1Z̃ ∧ jF7 , with very
precise normalization and quantization conditions. One cannot modify such contributions
arbitrarily without modifying the Chern-Simons term H2 ∧ g−2

B2
∗ H̃3. In particular, the

integral of dZ̃ ∧ jF7 over a closed 8-manifold can be any integer. Indeed, requiring dZ̃ to
have even periods when integrated over loops would be incompatible with U(1)B1 gauge
invariance, while imposing that jF7 is even would ‘restore’ an additional 2-form global Z2

symmetry with generator eiπ
∫
M(6) g

−2
B2
∗H3 . Even in the absence of external sources, if the

term H2 ∧ g−2
B2
∗H3 is not modified, one expects solitonic solutions for the massless fields

carrying any possible electric charge for U(1)A1 compatible with the Dirac quantization
conditions. In general, in string theory the distinction between solitons for the massless
fields and fundamental extended objects is really an artefact of the low energy effective
description. Thus, one can argue that there must be suitable solitonic solutions corre-
sponding, for example, to the source term dZ̃ ∧ jF7 .

Our orbifold procedure instructs us to exclude all possible field configurations giving
rise to an odd electric charge for the U(1)A1 gauge group. As argued above, in order to
implement such a projection, we are forced to modify the quantization conditions for the
fields B1 or B2, in order to be consistent with the term H2 ∧ g−2

B2
∗ H̃3 in the equations of

motion for ∗F2. This modification can be obtained as follows. Consider the operator

e
πi
∫
M2

H2
, (4.43)
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for any closed 2-manifold M2. In the absence of external sources, this defines a 6-form Z2
global symmetry. In type II string theory, this symmetry is broken by any odd number of
NS5 branes transverse to the internal S1 circle. In the same spirit as in the procedure of
section 3, the symmetry (4.43) can be ‘restored’ by requiring the number of NS5 branes to
be even, for example by imposing

jNS5
3 = 2j̃NS5

3 , (4.44)

where j̃NS5
3 is an integral-valued cochain. Once such a restriction on jNS5

3 is imposed, (4.43)
defines a global symmetry and can be gauged. As explained, for example, in [2], one possible
way to gauge a (D−3)-form Z2 symmetry is via a BF theory. We introduce some dynamical
(D−2)-form U(1) gauge field CD−2 and a 1-form U(1) gauge field B1, obeying the standard
quantization conditions, and then add to the spacetime action the terms

2πi
∫
X
CD−2 ∧ (H2 − 2dB1) . (4.45)

The functional integral over CD−2 then forces

B1 = 2B1 , (4.46)

up to irrelevant gauge transformations. Note that we did do not introduce any additional
propagating degrees of freedom, since the functional integral over B1 implies dCD−2 = 0.

After this gauging, the integral
∫
M2

H2 over any closed manifold M2 is even. Further-
more, the flux of H2 ∧ g−2

B2
∗ H̃3 through any closed 8-manifold N is also even, so that one

cannot construct a solitonic operator where the Wilson line for Z2 ⊂ U(1)A1 can end just
out of these fields.

In fact, gauging the ‘magnetic’ (D − 3)-form Z2 symmetry (4.43) has the effect of
modifying the gauge group U(1)B1 by replacing it by a double cover12 Z2.U(1) ∼= U(1),
that can be described as a group extension

1 −→ Z2 −→ Z2.U(1) −→ U(1)B1 −→ 1 . (4.47)

While the double cover Z2.U(1) is still isomorphic to U(1) as an abstract group, it has dif-
ferent quantization conditions with respect to U(1)B1 . In fact, only configurations carrying
even magnetic charge for U(1)B1 lift to a well defined gauge bundle for the cover Z2.U(1).
On the other hand, the cover Z2.U(1) admits new representations corresponding to half-
integral electric charges for U(1)B1 , i.e. half-integral winding number along the circle S1.
The double cover Z2.U(1) is the group associated with the gauge field B1; therefore, we
will denote such group by U(1)B1 . One can use (4.46) to replace B1 by 2B1 and H2 by
2H2 = 2dB1 everywhere; B1 has the standard quantization conditions for a U(1) field.

As a bonus, after gauging the symmetry (4.43), the operator (4.40) is now gauge
invariant and conserved (in the absence of external sources). Indeed, using

JPage7 = g−2
A1
∗ F2 +B1 ∧ g−2

B2
∗ H̃3 = g−2

A1
∗ F2 + 2B1 ∧ g−2

B2
∗ H̃3 , (4.48)

12In general, by X.Y we denote a group containing X as normal subgroup and such that the quotient by
X is isomorphic to Y .
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we see immediately that a gauge transformation for B1 changes the integral∫
M7

JPage7 (4.49)

by even integers, so that (4.40) is well defined. Notice that, when the gauge bundle for
U(1)B1 is non-trivial, the expression 2B1∧g−2

B2
∗ H̃3 is not a well-defined real valued 7-form,

but should rather be considered as a 7-cochain with values in R/2Z. This is sufficient for
the operator (4.40) to be well-defined.

Let us now discuss how the current JPage7 (as an integral cochain modulo 2) needs
to be modified upon introducing electric and magnetic sources, as in eq. (4.33). We
rewrite (4.33) as

d(g−2
A1
∗F2)−H2∧g−2

B2
∗H3−B1∧jF7 +B5∧jNS5

3 = jm8 +dZ̃∧jF7 −dz̃NS5∧jNS5
3 . (4.50)

After imposing (4.44), the term dz̃NS5 ∧ jNS5
3 = 2dz̃NS5 ∧ j̃NS5

3 on the right-hand side
of (4.33) is already even. We need to impose that j8

m and dZ̃ ∧ jF7 be even as well. The
latter requirement amounts to impose that the integral

∮
γ dZ̃, where γ is any closed circle

on the worldsheet of a fundamental string, must be even (physically, this is just the center
of mass momentum of the string in the compact direction). In fact, the change in the
quantization conditions of B1 forces Z̃1 to takes values in R/2Z rather than R/Z. We
consider now an integral-valued 8-cochain H8 ∈ C8(X,Z) in spacetime such that∫

M(8)
(−H2 ∧ g−2

B2
∗H3 −B1 ∧ jF7 +B5 ∧ jNS5

3 ) = 2
∫
M(8)

H8 , (4.51)

for any closed 8-manifold M (8). Such an integral cochain exists, because the right-hand
side of (4.50) is quantized and even. This implies that

−H2 ∧ g−2
B2
∗H3 −B1 ∧ jF7 +B5 ∧ jNS5

3 = 2(H8 + δb7) , (4.52)

for some real 7-cochain b7, where δ denotes the coboundary operator. The cochains H8 and
b7 satisfying these conditions are defined up to

H8 − δn7 , b7 + n7 + β7 , (4.53)

where n7 is an integral 7-cochain and β7 is a closed 7-cochain (a cocycle), i.e. δβ = 0. The
shifts of b7 by an integral cochain n7 or by a coboundary β7 = dα6 correspond to gauge
transformations of B1 and B5. On the other hand, the shift of b7 by a cochain β7 that is
closed but not exact is physically meaningful: it corresponds to shifts of B1 and B5 by flat
connections, i.e. to changes of holonomy. We can now define the current

JPage7 = g−2
A1
∗ F2 + 2b7 , (4.54)

so that by (4.50)

δJPage7 = −2H8 + jm8 + dZ̃ ∧ jF7 − dz̃NS5 ∧ jNS5
3 . (4.55)

The right hand side of this equation is quantized and even. It follows that, with this defini-
tion of JPage7 , the operator (4.40) is gauge invariant and topological, so that it implements
a Z2 global symmetry, and it can be gauged.
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4.3 Gauging and twisted sectors

Let Γ ∼= Z2 be the subgroup of the gauge group U(1)A1 corresponding to half-integral shifts;
the operator (4.40) is the generator of the 1-form ‘electric’ global symmetry corresponding
to the gauge group Γ. Gauging (4.40) has the effect of projecting out all closed Wilson lines
measuring a non-trivial holonomy for Γ. Equivalently, such a gauging can be described as
the insertions of a network of codimension 2 defects Tg, g ∈ Γ, (Gukov-Witten operators
for Γ), that shift the A1 gauge field by a flat connection corresponding to monodromy g
around the defect. As usual in a gauging procedure, one has to sum over all possible ways
of labeling the defects in the network by elements in Γ, subject the condition that junctions
between defects is compatible with the group law. After this gauging, all configurations for
the group U(1)A1 that differ by a flat connection in Γ ⊂ U(1)A1 are physically equivalent
and indistinguishable.

Gauging (4.40) has also consequences for the configurations of the fields localized on
the worldvolumes of dynamical objects, such as the fundamental strings and the branes. In
the original theory, the insertions of a Gukov-Witten operator Tg, g ∈ Γ, on a codimension
2 submanifold N had physically observable consequence. For example, consider a funda-
mental string with worldsheet of the form S1×R, with the R direction parallel to the defect
N and the circle S1 encircling N . In this situation, the worldsheet fields are constrained
to have monodromy g around S1. Furthermore, if the defect Tg intersects the worldsheet
of a fundamental string, it creates a vortex with monodromy g for the worldsheet fields
localized at the intersection point. Such vortices on the worldsheet are not allowed outside
of the intersection points with some Tg. This shows that the position of Tg in the original
theory is physically observable.

On the other hand, in the orbifold theory, gauge configurations with or without the
insertion of Tg must be physically equivalent. This means that, even when the background
for the orbifold gauge group is trivial, one should include all possible monodromies g ∈ Γ
for the worldsheet fields along an S1 circle. Furthermore, one is free to insert, at any point
on the worldsheet, operators creating a vortex for worldsheet fields, independently of the
configuration of the gauge fields in spacetime.

These additional states and operators for the fundamental string correspond exactly
to the twisted sector in the worldsheet orbifold. In our spacetime orbifold procedure,
we see immediately that analogous twisted sector operators should be introduced in the
worldvolume of all dynamical objects that are present in the theory, and not just on the
string worldsheet. Of course, the presence of such operators can be shown to be necessary
in the worldsheet orbifold procedure as well, but their derivation is less direct. For example,
for D-branes, it can be deduced by studying the boundary states in the orbifold worldsheet
CFT.

Let us now discuss the effects of the spacetime orbifold procedure on the 0-form gauge
groups of the theory. We have already found that the factor U(1)B1 gets extended to a
double cover U(1)B1 , with B1 = 2B1. We have also excluded all objects carrying odd
electric charge with respect to U(1)A1 . After gauging (4.40), we should include new gauge
bundles for the A1 gauge field, where the transition functions on triple intersections only
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close up to transformations in Γ ⊂ U(1)A1 . These gauge bundles carry ‘half-integral’
magnetic flux, from the point of view of the original A1 gauge field. We should also
allow for the corresponding codimension 3 ’t Hooft operators with ‘half-integral’ magnetic
charge. In the original theory, these ‘badly quantized’ ’t Hooft operators could only arise
as boundaries of some Gukov-Witten operator; after the orbifold, the presence of Gukov-
Witten operators Tg, g ∈ Γ, is unobservable, so that the corresponding ’t Hooft lines
become genuine codimension 3 operators. Finally, in order for the completeness conjecture
to be satisfied by the orbifold theory, one should also include ‘half-integral’ KK monopoles
as dynamical objects, where the new ’t Hooft operators can end. As discussed for example
in [10, 11], the completeness conjecture is required in order for all global symmetries to
be broken. In our approach, the absence of global symmetries is a guiding principle for
constructing the twisted sector of our theory.

At the end of the day, the modifications to the gauge group U(1)A1 correspond to
quotienting U(1)A1 by its central subgroup Γ ∼= Z2. As an abstract group, U(1)A1/Z2 is
still isomorphic to U(1), but the quantization conditions on the charges are different. In-
deed, only the even charge representations of U(1)A1 define representations of the quotient
group U(1)A1/Z2. On the other hand, U(1)A1/Z2 allows for more general magnetic charges,
that are ‘half-integral’ quantized from the point of view of U(1)A1 . The half-integral KK
monopoles we introduced are the dynamical objects carrying such magnetic charges. Their
presence breaks a potential (D − 3)-form global symmetry (the spacetime quantum sym-
metry) which arises when gauging a 1-form symmetry. Such a quantum symmetry would
act on the newly introduced ’t Hooft operators, if the latter were non-endable. We de-
note by A1 the U(1) gauge field, with standard quantization conditions, of the quotient
U(1)A1/Z2 ∼= U(1). Such a field is related to A1 by 2A1 = A1.

Even without any detailed analysis of the Bianchi identities and equations of motion
and their coupling to the currents, the need to perform the gauging of both eiπ

∫
M2

H2 and
e
iπ
∫
M7

JPage7 could be understood in terms of the 2-group structure of the gauge group,
which is encoded in the gauge transformations (4.18). One cannot simply replace the
gauge group U(1)A1 by its quotient U(1)A1/Z2 without modifying any other gauge field,
because the new quantization of the gauge parameter λ would not be compatible with
the quantization of B2 and B1. In particular, the term λH2 in the gauge variation of B2
in (4.18) would be inconsistent with the quantization conditions on H2 and dB2. On the
other hand, if we simultaneously replace U(1)A1 by its quotient U(1)A1/Z2 and U(1)B1 by
the double cover Z2.U(1)B1 , the quantization of the term λH2 in the gauge transformation
of B2 in (4.18) is left invariant, and there is no inconsistency. This argument is very robust,
in the sense that it is not based on any effective description of the theory or on the existence
of any particular source for the gauge fields, but is intrinsic to the structure of the gauge
group.

In this section, we considered only a small part of the full gauge group — the one that
was more relevant form to understand the relation with the worldsheet orbifold procedure.
Similar considerations should apply when all the other gauge fields are included, in partic-
ular the ones arising in the RR sector. For example, the gauge fields B1 and B2 are related
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by U-duality to RR U(1) gauge fields C1 and C2, whose corresponding electric charges are
carried by suitable D-branes that are, respectively, point-like or string-like objects in the
9-dimensional spacetime. All the arguments we described for the fields A1, B1, B2 applies
with few modifications for the fields triplet of fields A1, C1, C2.

In particular, the 2-group structure of the gauge transformations, and the correspond-
ing Chern-Simons terms in the action are completely analogous. This means that, as a
first step in our orbifold procedure, we will have to ‘restore’ and then gauge a (D−3)-form
Z2 symmetry generated by eiπ

∫
M(2) G2 , G2 = dC1, (the RR analogue of eiπ

∫
M(2) H2), which

is a magnetic symmetry for the gauge field C1. As a consequence of this gauging, the U(1)
gauge group related to C1 gets extended to a double cover Z2.U(1). The current (4.54)
receives corrections from the RR analogue of b7. With these corrections included and both
eπi
∫
M(2) G2 and eπi

∫
M(2) H2 gauged, the operator eπi

∫
M7

JPage7 is again topological, and we
can proceed with gauging the corresponding 1-form Z2 symmetry, as described above.

5 Orbifold of toroidal compactification by coordinate inversion

As a second example, let us now consider a compactification of type II on a d-dimensional
torus T d, d ≤ 6 at some generic point in the moduli space, times an uncompactified
spacetime X of dimension D = 10− d, which we require to be asymptotically Minkoswski.
We want to describe the orbifold by the order 2 symmetry C that inverts all coordinates of
the torus T d. As in the previous case, we focus on the bosonic NS-NS sector for simplicity.13

The 0-form part of the gauge group contains a semidirect product

G = ZC2 n
d∏
i=1

(U(1)Ai ×U(1)Bi) ,

where in the normal subgroup U(1)Ai × U(1)Bi the first U(1)Ai factor represents transla-
tions along the i-th circle S1 of the torus T d, while the second U(1)Bi factor represents
translations in the T-dual circle. The associated conserved charges are internal momenta
and fundamental string windings, respectively, and we denote the corresponding 1-form
gauge fields respectively by Ai1 and Bi

1, i = 1, . . . , d, with field strengths F i2 = dAi1 and
H i

2 = dBi
1. The group ZC2 is the symmetry inverting all coordinates of T d, and therefore

acts by charge conjugation on all U(1) factors; we denote by C the generator of ZC2 and by
C the corresponding Z2 gauge field. Therefore, this ZC2 is the subgroup of the gauge group
corresponding to the symmetry we want to orbifold by. More precisely, we define C to be
an element in G with non-trivial image under the projection G→ ZC2 , and we identify ZC2
with the subgroup of G generated by C. All such elements are conjugate to each other in
G, and therefore the orbifold procedure does not depend on this choice. For the moment,

13In this oversimplified treatment, where we plainly ignore all R-R fields, as well as spacetime fermions,
the dimension d of the torus is not very important. In general, one should take into account that, for odd
d, the coordinate inversion k changes the orientation of the 10-dimensional spacetime. Furthermore, when
d ≡ 2 mod 4, k lifts to an element of order 4 in the spin group. Strictly speaking, the naive treatment in
this section is mostly relevant for the case d = 4, where no such subtleties arise.

– 39 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
3

we ignore the fact that G is part of a higher group structure — this will turn out to be too
naive, as we will see below.

The first step in our procedure is to eliminate all local operators where a Wilson line
in a non-trivial representation of ZC2 can end, so as to restore a global electric 1-form
symmetry acting on ‘non-endable’ Wilson lines. In this case, this global 1-form symmetry
is broken even if we considered just a pure gauge theory for the group G. Indeed, because G
is non-abelian, the gauge fields themselves transform non-trivially under ZC2 . In particular,
the field strengths of the U(1)d ×U(1)d subgroup transform as

F i2 → −F i2 , H i
2 → −H i

2 . (5.1)

Therefore, an operator F i2(x) or H i
2(x) can be inserted at the ending point of a Wilson line

corresponding to a non-trivial representation of ZC2 ⊂ G to get a G-invariant operator. This
fits with the general statement that, for a non-abelian gauge group G, the only electric
global 1-form symmetries that are possibly unbroken are the ones corresponding to the
center of G [2].

Thus, in order to implement the first step in our procedure and restore an unbroken
global 1-form symmetry corresponding to ZC2 , we must restrict the gauge group G to the
maximal subgroup of symmetries Gres ⊂ G commuting with ZC2 , i.e. to the centralizer

Gres := CG(ZC2 ) = {g ∈ G | gC = Cg} .

It is easy to check that the only symmetries commuting with C, apart from C itself, are
generated by the half period shifts along any internal direction, as well as the half-period
shifts in the T-dual torus, so that

Gres = ZC2 × (Z2 × Z2)d . (5.2)

The fact that the gauge group must be restricted to this centralizer can be also seen at the
level of the gauge fields. We want to restrict our path integral only to gauge bundles and
connections that commute with ZC2 . At the level of the field strengths, this means that we
have to impose F i2 = −F i2 and H i

2 = −H i
2 for all i = 1, . . . , d, which implies

F i2 = 0 , H i
2 = 0 , i = 1, . . . , d , (5.3)

i.e. all U(1)d ×U(1)d connections must be flat.14 For what concerns the gauge 1-forms Ai1
and Bi

1, one has to impose

Ai1 ∼ −Ai1 , Bi
1 ∼ −Bi

1 , i = 1, . . . , d , (5.4)

where ∼ denotes equality up to U(1)d ×U(1)d gauge transformations. Besides the flatness
conditions dAi1 = 0 = dBi

1 that we already discussed, this implies that 2Ai1 and 2Bi
1 must

14At the level of the Chern classes c1 ∈ H2(X,Z) of the various U(1) gauge bundles, the condition that
the gauge field configuration commutes with ZC2 implies c1 = −c1, i.e. 2c1 = 0. Thus, if H2(X,Z) contains
a non-zero 2-torsion class, a topologically non-trivial gauge bundle might still be allowed. For simplicity,
we will ignore this possibility here.
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be pure gauge for all i = 1, . . . , d. For flat U(1) connections, this is equivalent to requiring
that ∮

γ
2Ai1 ∈ Z ,

∮
γ

2Bi
1 ∈ Z , i = 1, . . . , d , (5.5)

for all 1-cycles (closed 1-chains) γ. Equivalently, we require that the cohomology classes
with representatives 2Ai1 and 2Bi

1 are all integral

[2Ai1] ∈ H1(X,Z) , [2Bi
1] ∈ H1(X,Z) , i = 1, . . . , d , (5.6)

where X is the spacetime. These conditions do not imply that the gauge fields Ai1 and Bi
1

are themselves trivial, since their integral along any closed curve in spacetime is allowed
to be half-integral. This means that the holonomies e2πi

∮
γ
Ai1 and e2πi

∮
γ
Bi1 must be signs,

i.e. they must take values in the Zd2 × Zd2 subgroup of U(1)d × U(1)d. But this means that
the gauge group is restricted to (5.2), as expected.

Naively, this argument seems to show that, at least for what concerns the gauge fields,
the first part of our procedure is completed: because ZC2 is, by construction, central in
the restricted gauge group Gres = CG(ZC2 ), the Wilson lines corresponding to non-trivial
ZC2 representations are non-endable in the pure Gres gauge theory. However, as mentioned
above, this reasoning neglects the fact that the 0-form group G is part of a higher group
structure. In particular, the U(1)d × U(1)d 0-form gauge transformations affect also the
B-field B2, which from the 10 − d spacetime point of view is the 2-form gauge field of a
U(1)(1) 1-form symmetry.

To illustrate this point, let us focus for a moment on the case d = 1, so that we have
only a U(1)×U(1) continuous 0-form gauge group, with gauge fields A1 and B1. The gauge
transformations of A1, B1 and B2 are the same as in (4.18)

A1 → A1 + dλ , B1 → B1 + dσ , B2 → B2 +B1 ∧ dλ+ dΣ1 , (5.7)

where λ and σ are 0-forms with values in R/Z, and Σ1 is (locally) a 1-form defined modulo

Σ1 ∼ Σ1 + dρ ,

for any R/Z valued 0-form ρ.15

The transformation of the B2 field can be recast in a different form by some field
redefinition B2 → B2−αA1 ∧B1, α ∈ R, which must be accompanied by the addition of a
term αA1 ∧ B1 to the worldsheet action. No such field redefinition can cancel completely
the dependence of the B2 gauge transformation on the 0-form gauge parameters σ and λ;
this is the signature of a higher (in this case 2-) group structure.

15To give a more precise definition of λ, σ, and Σ1, let us consider an open cover {Ui}i∈I of the spacetime
X =

⋃
i
Ui such that each Ui is topologically trivial. On each patch Ui, λ can be represented by a real-

valued function λi. On double intersections Ui ∩ Uj , we require the transitions functions to be constant
integral functions, i.e. λi−λj ∈ Z. Similarly, on each local patch Ui, Σ1 can be represented by a real 1-form.
On intersections Ui ∩ Uj we allow the corresponding local 1-forms to differ by dρij , for some R/Z-valued
0-forms ρij . In turn, if Ui ∩ Uj are topologically trivial, we can always lift all transition functions ρij to
real-valued 0-forms satisfying ρij + ρjk + ρki ∈ Z on any triple intersection Ui ∩ Uj ∩ Uk.
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The fact that λ and σ are valued in R/Z rather than R means that the integrals of dλ
and dσ along a closed curve γ are not necessarily 0, but rather that∮

γ
dλ ∈ Z ,

∮
γ
dσ ∈ Z .

As a cross-check, notice that a transformation (5.7) of A1 and B1, with parameters λ and
σ quantized as above, does not affect the fields strengths F2 and H2, nor the U(1)-valued
holonomies e2πi

∮
γ
A1 and e

2πi
∮
γ
B1 , as expected for a gauge transformation. Similarly, a

gauge transformation with parameter Σ1 does not affect dB2, and changes the integral of
B2 over any closed 2-manifold only by integers.

Now, the generator of the ZC2 symmetry acts on a triple of fields (A1, B1, B2) as

(A1, B1, B2)→ (−A1,−B1, B2) . (5.8)

Notice that B2 is not affected by the inversion of the coordinates of the internal T d torus,
since it corresponds to the components of the 10-dimensional Kalb-Ramond field Bµν where
none of the indices µ, ν is along T d. As argued above, in order to implement the first step
in the orbifold procedure, we must restrict the gauge fields to configurations such that

(A1, B1, B2) ∼ (−A1,−B1, B2) , (5.9)

where in this case ∼ denotes equivalence up to the gauge transformations (5.7). Because

(−A1,−B1, B2) = (A1 − 2A1, B1 − 2B1, B2) , (5.10)

this restriction implies, as we argued above, that 2A1 and 2B1 must be pure gauge, i.e.
that

2A1 = dλ , 2B1 = dσ , (5.11)

for some R/Z-valued 0-forms λ and σ. However, this condition is necessary but not sufficient
to guarantee that the field configuration (A1, B1, B2) is invariant under ZC2 . Indeed, by
applying (5.7) with λ and σ as in (5.11) and Σ1 = 0, we obtain

(−A1,−B1, B2) = (A1 − 2A1, B1 − 2B1, B2) ∼ (A1, B1, B2 + 2A1 ∧B1) , (5.12)

which is in general different from (A1, B1, B2). One can wonder whether the additional
term

2A1 ∧B1 = 1
2dλ ∧ dσ , (5.13)

can be canceled by a B2 gauge transformation with a suitable parameter Σ1, but this is
not the case. Indeed, the integral of 1

2dλ∧ dσ over a closed 2-manifold is valued in 1
2Z, but

not necessarily in Z. This means that there is no way of choosing the gauge parameter Σ1,
satisfying the correct quantization conditions, and such that dΣ1 = 1

2dλ∧dσ. For example,
if we choose Σ1 on each local patch Ui to be equal to 1

2λidσ, then in general the transitions
functions ρij = 1

2(λi−λj)σj only satisfy ρij +ρjk +ρki ∈ 1
2Z on triple intersections, so that

Σ1 is not a valid gauge parameter. This conclusion is not changed by any field redefinition
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B2 → B2 − αA1 ∧ B1, because A1 ∧ B1 is invariant under gauge transformations with
parameters (5.11).

We conclude that the condition that 2A1 and 2B1 are pure gauge is not sufficient to
ensure that the field configuration is invariant under the ZC2 action. One needs also to
require that the period of 2A1 ∧ B1 over any closed 2-manifold M (2) is an integer, rather
than a half-integer, i.e. that ∮

M(2)
2A1 ∧B1 ∈ Z . (5.14)

Notice that, because of (5.11) both A1 and B1 are closed dA1 = 0 = dB1 as R/Z-valued
1-forms, so that

d(2A1 ∧B1) = 0 . (5.15)

This means that 2A1 ∧ B1 is a conserved current corresponding to a global (D − 3)-form
Z2 symmetry, whose corresponding defect is e2πi

∫
M(2) 2A1∧B1 , where D = 10 − d is the

dimension of the uncompactified spacetime.16 Therefore, after restricting to the gauge
group ZC2 × Z2 × Z2, one way to implement the further restriction (5.14) is to gauge this
global symmetry. As in section 4.2, we introduce some (D−2)-form U(1) gauge field BD−2
and a 1-form U(1) gauge field A1, obeying the standard quantization conditions, and then
add to the spacetime action the terms

2πi
∫
X
BD−2 ∧ (4A1 ∧B1 − 2dA1) . (5.16)

The functional integral over BD−2 and A1 then forces

2A1 ∧B1 = dA1 , dBD−2 = 0 . (5.17)

The fact that A1 is a 1-form U(1) gauge field implies that dA1 is a globally defined closed
(but not necessarily exact) real 2-form with integral periods. Therefore, the first equation
implies (5.14).

The logic here is completely analogous to the example in section 4.2: in order to
implement the first step of the orbifold procedure, we need to gauge a (D − 3)-form Z2
global symmetry. In section 4.2, the corresponding conserved current was H2 (mod 2),
while in this case it is 2A1 ∧B1 (mod 1). We stress that this higher form global symmetry
only exists when we ignore the various dynamical objects in string theory (strings, branes,
etc.); in a complete theory, we expect these symmetries to be broken. For example, in the
previous example, the Z2 symmetry with current H2 is broken once we introduce an odd
number of NS5-branes transverse to the compactified direction. In this example, we also
expect the conservation of 2A1 ∧B1 to be broken by some dynamical objects17 that create
a non-trivial background for 2A1 ∧ B1. Therefore, in order to obtain our orbifold theory,

16We stress that integrals such as
∫
γ
A1,

∫
γ
B1 and

∫
M(2) 2A1 ∧B1 are only well-defined modulo integers.

This reflects the fact that A1 and B1 are R/Z-valued, and there might be an obstruction to lift them to
real valued 1-forms.

17We are not aware of any explicit description of such objects in string theory. It would be interesting to
provide more details about them.

– 43 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
3

one also needs first of all to eliminate such objects, so that 2A1∧B1 is conserved, and then
proceed with the gauging.

As in the previous example, the effect of gauging the (D − 3)-form symmetry is to
extend the 0-form gauge group by a Z2 factor, corresponding to the newly introduced
1-form gauge field A1. We denote by ZA2 this group, and by Q its generator.

This construction generalizes trivially to the case of a higher dimensional internal torus
T d, d ≥ 1. In this case, after restricting the gauge group to (5.2), the field B2 transforms
under charge conjugation by

B2 → B2 +
d∑
i=1

2Ai1 ∧Bi
1 , (5.18)

if we keep all Ai1 and Bi
1 fixed. Therefore, in order to eliminate all field configurations

in non-trivial representations of ZC2 , we have to gauge the (D − 3)-form Z2 symmetry
associated with the conserved current ∑d

i=1 2Ai1 ∧Bi
1.

Once all point-like operators that transform non-trivially under charge conjugation
have been projected out, the Wilson lines for non-trivial representations of ZC2 are non-
endable, and the theory has a 1-form Z2 symmetry acting by a minus sign on such Wilson
lines. This symmetry must be gauged in order to obtain a consistent orbifold theory. After
this gauging, the non-endable Wilson lines are not physical operators anymore, as they
are not gauge invariant, and the ZC2 subgroup of the 0-form gauge group is effectively
quotiented out.

What is the final 0-form gauge group in the orbifold theory? We quotiented out the
factor ZC2 from the original Gres = ZC2 ×

∏
i(Z

Ai1
2 × Z

Bi1
2 ), and we introduced a new order 2

group Z
A1
2 . Therefore, the final gauge group is a Z

A1
2 extension of Gres/ZC2 = ∏

i(Z
Ai1
2 ×Z

Bi1
2 ),

i.e. a group G̃ fitting in an exact sequence

1 −→ Z
A1
2 −→ G̃ −→

∏
i

(ZA
i
1

2 × Z
Bi1
2 ) −→ 1 . (5.19)

It turns out that, due to the non-trivial 2-group structure of the gauge group in the
original theory, the extension G̃ is not simply a product Z

A1
2 × Zd2 × Zd2. To understand

this point, let us go back to the group Gres = ZC2 ×
∏
i(Z

Ai1
2 × Z

Bi1
2 ). We want to describe

a flat gauge bundle for Gres in terms of defects, similarly to what we did in section 2.1.1
for 2-dimensional CFTs. More precisely, a Gres flat connection is represented by a network
of (D − 1)-dimensional defects Lg in the spacetime X, with each defect labeled by an
element of g ∈ Gres. Roughly speaking, the network is supported on the Poincaré dual
to the Gres-valued 1-cocycle representing the class in H1(X,Gres) associated with the
flat Gres-connection. The network partitions the spacetime into different regions, and the
defects represent the transition functions between adjacent regions. The junctions between
defects must be compatible with the group product in Gres. Continuous deformations of
the network of defects can be identified with appropriate gauge transformations.

Because the group Gres is abelian, any two defects Lg and Lh , g, h ∈ Gres can simply
cross each other, as in figure 2.
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Lg

Lg

Lh

Lh

Figure 2. The group Gres is abelian. Thus, the fusion of any two defects Lg and Lh, g, h ∈ Gres
is commutative LgLh = LhLg, which means that Lg and Lh can simply ‘cross each other’. In this
figure, the lines represent codimension 1 defects.

Lgi

Lhi

LC

Figure 3. A triple intersection between three codimension 1 defects, namely Lgi (blue), Lhi (red)
and LC (grey). Due to the non-trivial 2-group structure, the B-field on the two sides of the LC
defect differs by a 2-cochain that is Poincaré dual to the (D − 2)-dimensional intersection of Lgi
and Lhi (the yellow line).

Let us denote by gi and hi the generators of Z
Ai1
2 and Z

Bi1
2 , respectively. Consider

three defects Lgi , Lhi and LC in generic positions, such that each pair of defects cross
in a (D − 2)-dimensional intersection, and with a non-trivial (D − 3)-dimensional triple
intersection (see figure 3). The fact that B2 shifts by 2Ai1 ∧ Bi

1 (see eq. (5.18)) under the
action of C means the B2-field on the two sides of the LC-defect ‘jumps’ by an half-integer
flux localized at the intersection between the Lgi and Lhi defects. In other words, if S2 is
a small 2-sphere encircling the (D−3)-dimensional triple intersection between a Lgi , a Lhi
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Lgi
Lhi

LQ

Figure 4. After gauging 2A1 ∧B1, the (D − 2)-dimensional intersection of a Lgi (blue) and a Lhi
(red) defects must be the boundary of a LQ defect (green). The presence of this LQ defect can

be deduced by the fact that a small Wilson line e2πi
∮
γ1

A1 encircling the Lgi and Lhi intersection
is non trivial. This means that, after gauging, the fusion between the Lgi , Lhi , LQ defects is
not commutative, i.e. the corresponding group is non-abelian. In this picture, the lines represent
codimension 1 defects.

and a LC defect, then the B2 flux across S2 is e2πi
∫
S2 B2 = −1 (at least in the limit where

the radius of S2 is infinitesimal).
When we gauge the symmetry with current 2A1 ∧ B1, we get a new Z2 gauge field

A1; we denoted by Q the corresponding gauge group generator. An integral
∮
γ1
A1 along

a closed curve γ1 just counts the number (mod 2) of intersections of the curve γ1 with
LQ defects. The equation of motion (5.17) implies that if we take a very small closed
curve γ1 that encircles the (D − 2)-dimensional intersection of a gi and hi defect, then
e

2πi
∮
γ1
A1 = −1. This means that, after gauging 2A1 ∧ B1, there must be a LQ defect

starting from any intersection of a Lgi and a Lhi defect (see figure 4). In other words, if
a Lgi defect crosses a Lhi defect, then on the other side it must emerge as a LgiQ defect.
This implies that the 0-form group has become non-abelian, with relations

gihi = higiQ . (5.20)

Because there are no other couplings between A1 and the Ai1 and Bi
1 gauge fields, we

conclude that the other group relations are simply

Qgi = giQ, Qhi = hiQ, g2
i = h2

i = Q2 = 1 . (5.21)

When d = 1, the group G̃ with generators g1, h1, Q satisfying these relations is known as
the dihedral group D8 of order 8. For general d, the resulting group is known as the 21+2d

extra-special group (see for example chapter 5 of [76]).
This result fits nicely with the worldsheet orbifold construction and the geometric

intuition. It is well known that the Z2 orbifold of a free boson on a circle S1 has symmetry
groupD8 (see for example [77, 78] for a derivation in terms of topological defects). The same
result generalizes straightforwardly to the case of CFT with target T d/Z2, whose symmetry
group is an extra-special group 21+2d. In this worldsheet orbifold, the ∏i(Z

Ai1
2 × Z

Bi1
2 )
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inherited from the parent CFT, gets extended by the Z2 group generated by the worldsheet
quantum symmetry. Comparison with our spacetime construction leads us to identify the
worldsheet quantum symmetry with the gauge symmetry Q associated with the gauge
field A1. Our spacetime derivation of the group structure tells us immediately that there
must be 2d worldsheet twisted ground states, since this is the dimension of the smallest
irreducible representation of the extra-special group 21+2d where the central element Q acts
non-trivially. This matches with the number of fixed points of a geometric T d/Z2 orbifold.

Again, this structure is very similar to what we found in the example of section 4.2. In
that case, the Z2-gauge field B1 was coupled to the currentH2 (modulo 2). As a consequence
of introducing the B1 field and coupling to H2, the U(1)B1 gauge group, whose electric
charge is the winding number along the internal S1, gets extended by Z2 in a non-trivial
way — it is isomorphic to U(1), and not to the direct product Z2 × U(1). This extended
gauge group admits half-integral winding charges (in the normalization of the original
theory) to which the gauge field B1 was coupled. But only the twisted fundamental strings
carry non-integral winding number, so that the Z2 gauge symmetry extending U(1)B1 was,
once again, the worldsheet quantum symmetry.

From the point of view of the worldsheet orbifold, the fact that the extension of∏
i(Z

Ai1
2 ×Z

Bi1
2 ) by the quantum symmetry is non-trivial is closely related to the presence of

a mixed ’t Hooft anomaly, in the original worldsheet theory, between ∏i(Z
Ai1
2 × Z

Bi1
2 ) and

the ZC2 symmetry we want to gauge [18, 19]. In a sense, the mechanism described above is
the spacetime version of this phenomenon.

In this section, we focused on the fundamental string and on the gauge fields that are
coupled to it, such as Ai1, Bi

1, B2, in order to show the relationship between the spacetime
and the worldsheet orbifold procedures. However, the discussion would be completely
analogous if we focused on D1-branes instead. One just needs to replace the fields Bi

1
and B2 by the fields Ci1 and C2 that one obtains from the RR 2-form of 10-dimensional
type IIB theory by dimensional reduction on T d. For each i = 1, . . . , d, the D-string
worldsheet currents that couple to the Ai1 and Ci1 gauge fields are related to each other
by two dimensional Hodge duality. This means that the two global symmetries on the
D-string worldsheet related to Ai1 and Ci1 potentially have a mixed ’t Hooft anomaly. As
explained in more detail at point 1 in next subsection, this potential anomaly is canceled
by imposing the correct gauge transformations for the field C2. This argument inevitably
leads to the same gauge transformations as in (5.7), after replacing B1 by C1 and B2 by
C2. From this point on, all our derivation, which was valid for the fundamental string, can
be repeated without essential differences for the D-string and the gauge fields coupled to it.

In order to get the complete information about the orbifold theory, one should extend
our arguments so as to include all gauge fields in the original theory, as well as their
couplings to the various dynamical objects, and take into account the complicated higher
group structure of their gauge transformations.
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6 Discussion and conclusions

In this last section, we comment on various aspects of the orbifold procedure, that emerged
in the examples of sections 4 and 5. We also point out several directions of future investi-
gation.

1. As pointed out in section 2.1.1, for a 2D CFT there might be an obstruction in
gauging a certain subgroup Γ of a finite group of symmetries G, which is measured
by the restriction to Γ of a class18 [α] ∈ H3(G,U(1)). From a string theoretical
viewpoint, one generally expects the global symmetries on the worldsheet, giving rise
to exact symmetries of the string amplitudes, to correspond to gauge symmetries
in spacetime, and therefore to be coupled to suitable dynamical gauge fields. As a
consequence, it must be possible to generalize the worldsheet theory so as to describe
a string moving in some non-trivial background for these gauge fields. This seems
at odds with the possible presence of a ’t Hooft anomaly [α]. Indeed, a ’t Hooft
anomaly can be interpreted as an obstruction to coupling the worldsheet theory to
background gauge fields in a gauge invariant way. In quantum field theory a ’t Hooft
anomaly is not an inconsistency of the theory. In string theory, the situation is very
different: from the spacetime point of view, these gauge fields are dynamical, and the
coupling to the string worldsheet must be gauge invariant in order to be consistent.

What saves the day is that the anomaly can be canceled by a non-trivial transforma-
tion of the B2 field, through a version of the Green-Schwarz mechanism. In particular,
let us view the G-bundle on spacetime X as the pull-back φ∗ of the tautological bun-
dle on the universal classifying space BG of G through some map φ : X → BG. The
class [α] can be described as a class in the cohomology H3(BG,U(1)) of the universal
classifying space BG of G, so that the pullback φ∗α defines a U(1)-valued 3-cocycle
in spacetime. Then, in order to cancel the anomaly, it is sufficient to assume that
the gauge invariant field strength for B2 is

H3 = dB2 + φ∗α . (6.1)

Indeed, let us assume that the worldsheet is a closed manifold Σ, and let M be a
3-manifold such that ∂M = Σ. The worldsheet action contains the term∫

Σ
B2 =

∫
M
dB2 =

∫
M
H3 −

∫
M
φ∗α . (6.2)

In the last expression,
∫
M H3 is gauge invariant, while the gauge variation of

∫
M φ∗α

exactly cancels the ’t Hooft anomaly, similarly to the anomaly inflow mechanism.
The expression (6.1) implies that the spacetime action contains non-trivial Chern-
Simons terms, arising from the kinetic term from the B2 field, and ultimately that the
spacetime gauge group is not plainly the product of a 0-form symmetry G with gauge

18Strictly speaking, this is true only for bosonic CFTs. Anomalies in superconformal theories possibly
have further ‘layers’ [79, 80]. Here, we are assuming that such layers vanish, which is true in many interesting
examples, included the ones considered in this article.
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field A and a U(1) 1-form symmetry with gauge field B2, but that these symmetries
are mixed in a non-trivial 2-group structure. Eq. (6.1) is the origin of the non-
standard Bianchi identity dH+F2∧H2 = 0. Formally, the term F2∧H2 is analogous
to the term Tr(F ∧ F ) appearing in the Bianchi identity of the field strength H3
in heterotic strings; in that case as well, the modification can be related to the
cancelation of a sigma model anomaly [81–84].

This argument shows that the Postnikov class defining the 2-group structure, as
described in [60], is exactly [α] ∈ H3(BG,U(1)). Thus, the obstruction to gauging
a certain worldsheet symmetry group Γ ⊆ G translates, in spacetime, with the fact
that Γ is not really present as a group of ‘pure’ 0-form gauge symmetries, but only
within a non-trivial higher group structure.

For example, in a string theory compactified on a circle, considered in section 4,
there is a well-known mixed ’t Hooft anomaly in the worldsheet theory between
the translations along S1, associated with the gauge field A1, and the translations
along the T-dual circle, associated with B1.19 This means that, in the absence of
the coupling with B2, the worldsheet theory cannot be coupled in a gauge invariant
way to both A1 and B1. This anomaly is canceled by the coupling to B2, once the
Nicolai-Townsend transformations (4.18) are imposed.

Similarly, in the example of section 5, the worldsheet CFT has a mixed ’t Hooft
anomaly for the group G = ZC2 × Zd2 × Zd2 containing a term ∑d

i=1C1 ∧ Ai1 ∧ Bi
1. A

derivation of this fact in the case of a single free boson on S1 is given in appendix
A.2 of [78], and the d > 1 case is a straightforward generalization. The worldsheet
fermions do not contribute to this anomaly because the Zd2 × Zd2 group acts trivially
on them. Such a class can be represented by a cocycle α : G × G × G → U(1) such
that α(C, gi, hi) = −1 for all i = 1, . . . , d. This leads to the non-trivial transforma-
tion (5.18) of the B2 field under C in the presence of a non-trivial background for Ai1
and Bi

1.

2. Let A1 be the Zn gauge field corresponding to a group of 0-form symmetries Γ, which
arises from global symmetries on the worldsheet. If Zn is the subgroup of some U(1)
gauge symmetry, then we take A1 to be the U(1) gauge field. As discussed in the
previous point, there is potentially a 2-group structure, dictated by the ’t Hooft
anomalies in the string worldsheet, that leads to a number of Chern-Simons terms in
the low energy effective action in spacetime, arising from the kinetic term H3 ∧ ∗H3
for the B2-field. In the two examples we studied, these Chern-Simons terms have the
form ∫

X
A1 ∧R2 ∧ ∗H3 , (6.3)

19This example does not exactly fit into the general case described above, because the group G =
U(1)A1 × U(1)B1 is continuous rather than finite. In this case, the anomaly is a class in H4(G,Z), and
α = A1 ∧H2 is a locally defined 3-form such that the closed 4-form dα = F2 ∧H2 represents the anomaly.
When the group G is finite, there is an isomorphism H3(G,U(1)) ∼= H4(G,Z), so that the anomaly can be
described directly as the 3-cohomology class [α].
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where R2 is a suitable 2-form field. In particular, in the examples of section 4 and 5,
R2 was equal to H2 = dB1 and to 2A1 ∧ B1, respectively. When such terms are
present, then a non-trivial flux

∫
MD−1 R2 ∧ ∗H3 over (D − 1)-dimensional manifold

can provide a non-zero charge for the gauge field A1.

Now, the first step in our orbifold procedure amounts to eliminating all charged
operators for the gauge field A1. This means that we have to modify our theory
in such a way that the fluxes of R2 ∧ ∗H3 are 0 mod n, i.e. that they carry trivial
charge under the gauge group Γ ∼= Zn. In the first example of section 4, where
R2 = H2 = dB1 and n = 2, this modification was obtained by first restricting
the NS5 charges, which represent the magnetic charges for B1, to even ones, so
that H2 is a conserved current mod 2. Next, one can gauge the (D − 3)-form Z2
global symmetry (4.43), corresponding to this current. The effect of gauging (4.43)
is to change the quantization of the magnetic fluxes carried by H2, so that they
are always even; equivalently, the 0-form U(1) gauge group associated with B1 is
extended by a Z2 group. A similar mechanism applies to the example of section 5.
More generally, we expect a similar procedure to be necessary every time a Chern-
Simons term involving the Γ-gauge field is present.

3. The discussion in the point 1 was focused on the worldsheet of the fundamental
string. However, a similar argument should hold for the worldvolume of each d-
dimensional dynamical object. Any such object is coupled to a number of p-form
gauge fields. In particular, it usually carries an electric charge with respect to a d-
form U(1) gauge field Bd, analogous to the B-field B2 for the fundamental string. The
worldvolume fields, in general, transform in some (possibly) non-trivial representation
of the 0-form gauge group G, and therefore the worldvolume theory must be coupled
to the corresponding spacetime G gauge fields. In principle there might be a ’t Hooft
anomaly for the G group action in the d-dimensional worldvolume theory, and that
would make the coupling with the dynamical G-gauge fields inconsistent.

In the example of the worldsheet theory for the fundamental string, the anomaly
cancels when one considers the coupling with the B2 field and its non-trivial trans-
formation. By analogy, we expect a similar cancellation to occur when one considers
the coupling of the d-dimensional object to all p-form gauge fields in the theory,
provided that such p-form fields transform non-trivially under the 0-form G gauge
parameters [85].

This argument suggests that an intricate higher group structure, mixing the 0-form
gauge group G with higher form gauge symmetries, is necessary in order for the string
theory to be consistent. The precise mixing should be dictated by the requirement
of cancellation of all potential anomalies in the worldvolume field theories of all
dynamical objects. For example, in the two examples of section 5 and 4, by S-
duality, we expect the worldsheet theory of the D-string to have anomalies that are
completely analogous to the ones observed for the fundamental string, and that are
canceled by a non-trivial transformation of the RR 2-form field C2 that is coupled to
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the D-string. This means that the B2 and C2 fields appear in the same Chern-Simons
terms in the effective action, as expected by S-duality.
The discussion of point 2 should be also generalized accordingly. Suppose the action
contains Chern-Simons terms of the form∫

X
A1 ∧R , (6.4)

where A1 is the gauge field of the group Γ ∼= Zn we want to orbifold by, and R is a
(D− 1)-form built in terms of the various p-form fields. Then in order to implement
the orbifold by Γ ∼= Zn, one needs to modify the theory in such a way that the fluxes
of R through any (D − 1)-dimensional manifold are quantized in multiples of n, so
that they do not carry any charge under the Zn symmetry. This modification will in
general modify the gauge symmetry of the model, by either quotienting/extending
various factors in the original group by Zn.

4. In general, the gauging of a p-form (abelian) global symmetry Γ in a D-dimensional
quantum field theory leads to a (D − p − 2)-form global symmetry in the orbifold
theory for the Pontryagin dual group Γ̂ = Hom(Γ,U(1)) [2]. The worldsheet orbifold
procedure is a gauging of a 0-form symmetry in a two dimensional CFT, so that
the quantum symmetry is again a global 0-form symmetry on the worldsheet. On
the other hand, our procedure involves, as an intermediate step, the gauging of a
1-form symmetry in a D-dimensional spacetime, with respect to which the quantum
symmetry is a (D−3)-form global symmetry in spacetime. Therefore, the worldsheet
and spacetime quantum symmetries are not related to each other. In fact, their fate in
the final, consistent, orbifold string theory must be different. The global worldsheet
quantum symmetry becomes a new 0-form gauge symmetry in spacetime. On the
other hand, the (D− 3)-form global spacetime quantum symmetry is broken once we
introduce the dynamical objects where the newly introduced codimension 3 ’t Hooft
operators can end.

5. Let us focus on the worldsheet quantum symmetry Q. This is a global symmetry
on the worldsheet, so that, under the assumption that it extends to a symmetry
of the whole string theory, it must be coupled to a gauge field in spacetime. In
the examples we have studied, the additional gauge field arises automatically when
one considers the procedure described at point 2. Let us consider the example of
section 4. As described in section 4.2, modifying the quantization of the H2 fluxes is
equivalent to considering an extension of the U(1) gauge group associated with B1 by
a Z2 group. The objects charged under this new Z2 gauge field are the ones carrying
half-integral winding along the internal S1 circle, i.e. exactly the twisted sector of
the fundamental string. This is sufficient to identify the new Z2 symmetry with
the worldsheet quantum symmetry. The same mechanism occurs for the example of
section 5.
It would be interesting to understand how general this phenomenon is. Since the
Chern-Simons terms are related the potential anomalies of the worldsheet global
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symmetries, the procedure described at point 2 might not be necessary if the ’t Hooft
anomaly for the full group of global worldsheet symmetries vanished. Similar con-
siderations should apply for the quantum symmetries that arise in the worldvolume
theories describing the other dynamical objects in string theory.

6. As discussed in section 2.1.1, the group of global symmetries of a 2D CFT can be
generalized to include the fusion category of (possibly non-invertible) topological
defects. This generalization is very natural when one considers orbifolds, for several
reasons. First of all, the orbifold construction can be defined with respect to objects
in the fusion category that do not come from the usual symmetries (generalized
orbifolds) [14–17, 46]. Furthermore, even if one started from a ‘parent’ theory where
all defects are invertible, and therefore form a group under fusion, after orbifolding
by some subgroup of symmetries the defects of the original theory might induce some
non-invertible defects on the orbifold [14–19, 46].

An example related to the model in section 5 is the following. Consider the 2D CFT
given by a sigma model with target a torus T d, that has a ZC2 n(U(1)d×U(1)d) group
of symmetries. As mentioned in section 5, after orbifolding by the ZC2 symmetry
that reverses all directions of the torus, only a Zd2 × Zd2 subgroup of the ‘parent’
symmetry group survives as a proper global symmetry group in the ‘child’ theory.
However, the topological defects implementing the U(1)d ×U(1)d symmetries do not
disappear, but combine to form a continuum of non-invertible topological defects.
Therefore, the orbifold CFT has a complicated fusion category of defects, where the
‘group-like’ global symmetry is only a small subcategory [77, 78, 86]. Much like the
Zd2 × Zd2 group of global symmetries, these non-invertible defects are ‘transparent’ to
the BRST charge whose cohomology describes the physical string states, and their
existence puts non-trivial selection rules on the (perturbative) string amplitudes. So,
it would seem reasonable to consider them on the same footing as the Zd2 × Zd2 group
even at the level of the string theory.

There is one further reason for considering the category of topological defects, rather
than groups of symmetries. The worldsheet orbifold procedure that produces a CFT
C′ starting from a theory C, can always be reversed, i.e. one can re-obtain the ‘par-
ent’ theory C starting from the ‘child’ C′. But this reverse procedure is, in general,
an orbifold by a non-invertible subcategory of defects, rather than by a group of
symmetries [15, 18, 46].

In the context of string theory, it is natural to ask how non-invertible topologi-
cal defects on the worldsheet manifest themselves in spacetime. Because groups of
worldsheet symmetries generalize so naturally to the category of defects, it is tempt-
ing to speculate that the group of 0-form gauge symmetries in spacetime should get
somehow extended to some ‘gauge fusion category’ in spacetime. To the best of our
knowledge, such a concept has not been developed so far. Providing a reasonable def-
inition of such a structure would be extremely interesting, and might be a necessary
step in order to describe an inverse of the spacetime orbifold procedure.
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7. One can consider the orbifold procedure in a spacetime that is asymptotically AdS,
rather than Minkowski. In this situation, holography provides an ‘intrinsic’ descrip-
tion of the quantum gravity theory in terms of the dual QFT on the boundary. In
general, one expects the gauge symmetries in the bulk to be dual to global symmetries
on the boundary.

Therefore, there is a very natural candidate for the orbifold of the string model by
some group of symmetries: one simply considers the orbifold of the boundary QFT
by the corresponding global symmetry, and defines the string orbifold in the bulk
as the dual of such a boundary orbifold QFT. Apparently, this approach completely
solves our problem, since it provides a precise definition of the string orbifold model
that makes sense even in regimes where there is no perturbative or semiclassical
description of the bulk gravity theory. On the other hand, whenever an effective
description of the bulk gravity theory is available, we expect to be able to provide an
equivalent description of the boundary orbifold purely from the bulk point of view.
Unfortunately, the task of translating the boundary orbifold procedure in terms of the
bulk gravity theory is not necessarily obvious — in a sense, we have just moved from
one difficult problem to another. Nevertheless, the holographic viewpoint supports
our proposal that a description independent spacetime orbifold procedure should
exist.

8. It is natural to ask how our proposal might generalize to orbifolds by a non-abelian
group Γ. One can argue that such a generalization might be quite non-trivial, and
require a slightly different approach to the spacetime orbifold procedure.

Indeed, the proposal in this article involves ‘restoring’ and then gauging a 1-form
global symmetry, namely the electric 1-form symmetry associated to the 0-form gauge
symmetry Γ. On the other hand, 1-form symmetries can only be abelian. In partic-
ular, a potential electric 1-form global symmetry can only exist for the centre of the
gauge group; this is the reason why, in section 5, our first step in the orbifold was
to restrict the gauge group to the centralizer of ZC2 . When Γ is non-abelian, restrict-
ing to the centralizing subgroup does not make sense, since Γ does not centralizes
itself. The correct approach, in this case, seems to be a restriction to the normalizer,
rather than centralizer, i.e. the largest subgroup of the gauge group containing Γ as
a normal subgroup. After this restriction, one can project out all dynamical objects
transforming in representations of the gauge group where the normal subgroup Γ
acts non-trivially, thus making the corresponding Wilson lines non-endable. In the
non-abelian case, the presence of non-endable Wilson does not automatically lead to
a group of 1-form global symmetries. However, it does imply that the theory contains
some (in general, non-invertible) topological operators, which are a generalization of
the standard group-like global symmetries [10–12]. The analogue of our procedure,
in this case, would be to ‘gauge’ such topological defects, so as to obtain a theory
with no (invertible or non-invertible) global symmetries. Thus, as discussed at point
6 above, in order to include the non-abelian case in our procedure, a better under-
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standing of the gauging of non-invertible symmetries in general spacetime dimensions
seems to be necessary.

9. All examples we discussed in this article involved the orbifold by some finite group of
0-form symmetries with trivial action on the higher form symmetries. More generally,
as explained in section 2.1.3, one could consider 0-form symmetries acting by non-
trivial automorphisms ρ on the higher form gauge groups. For example, a 0-form
symmetry might act by B2 → −B2 on the Kalb-Ramond B-field, or mix it non-
trivially with a R-R 2-form gauge field. This generalization would be very important
because, as far as we know, all examples where ‘duality does not commute with
orbifolds’ belong to this class. We hope to address this more general case in future
work.

10. In our examples, we haven’t discussed the possible obstructions to the orbifold pro-
cedure, i.e. the conditions under which the procedure we describe can possibly yield
a consistent string model. From the worldsheet orbifold perspective, the main consis-
tency condition for an orbifold by Γ to exist, is that the cohomology class representing
the ’t Hooft anomaly vanishes when restricted to Γ. As discussed in point 1 above,
the potential ’t Hooft anomalies for the worldsheet global symmetry are encoded in
the particular higher group transformation of the B-field B2. From the perspective
of the spacetime orbifold procedure, the higher group structure of the full group of
spacetime gauge symmetries is part of the initial data. Therefore, trying to take a
worldsheet orbifold by an anomalous symmetry translates, from the spacetime per-
spective, to orbifolding by a transformation that is not a symmetry, because it ignores
the higher group structure.

On the other hand, there are potentially further obstructions to orbifolding that might
be difficult to interpret from the point of view of the worldsheet QFT. In particular,
it is known that, in some cases, the worldsheet orbifold procedure leads to a string
model with a tadpole, that needs to be canceled by inserting an appropriate number
of spacetime filling branes [33, 36].

In QFT, a systematic classification of all possible obstruction to orbifolds is available.
For strings orbifolds, it might be that cancellation of all potential tadpoles is the only
condition required for the orbifold string model to be consistent. On the other hand,
while the consistency conditions have been studied in a large number of examples, a
classification of orbifold obstructions as systematic and rigorous as in QFT does not
exist, as far as we know. We hope that our approach might help in shedding light on
this issue in the future.

11. An important open problem, closely related to the previous point, is a systematic
construction of all consistent ‘twisted sectors’ for any given parent string model A and
orbifold group Γ. Let us discuss this point by analogy with the case of orbifolds in 2D
CFT, which is quite well understood. Given a consistent CFT A, with a finite group
of global symmetries Γ, one can construct the orbifold CFT (or orbifold CFTs) by first
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projecting on a Γ-invariant subtheory AΓ, which is common to both the parent and
child theory (or children theories). The subtheory AΓ is well defined on the sphere, in
the sense that the OPE of any two operators in AΓ closes within AΓ, but not on the
torus or higher genus Riemann surfaces — for example, the partition function is not
modular invariant. The orbifold theory is a way to complete AΓ to a fully consistent
CFT. This process can be made very rigorous and precise. For example, if A is a
holomorphic CFT, then it can be viewed as a vertex operator algebra (VOA), and
AΓ as a subVOA of A. In general, the category of modules of a rational VOA forms a
modular tensor category (MTC) [87, 88]. The latter can also be described in terms of
a 3D topological quantum field theory [89, 90]. In order for a VOA A to define a fully
consistent CFT by itself, its MTC must contain only one simple object (the algebra
itself). In this case, the MTC of the invariant subVOA AΓ can be obtained as the
double of the fusion category of topological defects corresponding to the group Γ [18]
— each simple object is labeled by a pair consisting of a conjugacy class in Γ and an
irreducible Γ-representation. The modular tensor category is the only information
we need to know to classify and construct all possible completions of AΓ to a fully
consistent CFT, as well as the possible obstructions (’t Hooft anomalies) — no other
information about AΓ is needed. One of the main properties of a MTC is that it
has a finite number of simple objects. For example, if Γ ∼= ZN the MTC of AΓ has
N2 simple objects, and any completion of AΓ to a consistent CFT involves a suitable
collection of N of them.
Our formulation of the spacetime orbifold of a D-dimensional quantum gravity theory
follows a similar pattern. Namely, we first projected our ‘parent model’ A to a
subtheory AΓ and then tried to complete it to a consistent orbifold theory by adding
a suitable twisted sector. One natural open question is about the nature of the
‘subtheory’ AΓ. It cannot be a consistent theory of quantum gravity, but should be
sufficiently well defined to be able to speak about its global symmetries.
In a sense, we expect the common subtheory AΓ to contain most of the information
about both the parent theory and its orbifold — roughly speaking, it can be obtained
by restricting the parent theory to trivial representations of a finite group, and such
a group admits only finitely many irreducible representations. The point of view that
we tried to pursue in this article is that the ‘parent’ and the ‘child’ string models
are different consistent ways to gauge or break all global symmetries of the common
subtheory AΓ. By analogy with 2D CFTs, one might expect that only a finite amount
of additional information (the analogue of a MTC) is needed to ‘complete’ AΓ to a
fully consistent theory.
What is the analog of MTC for the subtheory AΓ? Given our current understanding
of the problem, an answer to this question is out of reach. The best we can do at
this point is to propose some vague speculation, based on analogy with quantum field
theory.
In a D-dimensional QFT, both the category of global symmetries and the ’t Hooft
anomalies are expected to be described by suitable (D + 1)-dimensional topological
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quantum field theory [6]. In D = 2 CFT, the MTC can be described as a topological
field theory in D + 1 = 3 dimensions. One can speculate that for a D-dimensional
quantum gravity theory, the same role might be played again by a topological theory,
either in (D + 1) or in D dimensions — the latter hypothesis might fit better with
holography, in the cases where the D-dimensional quantum gravity theory is dual to
a (D − 1)-dimensional QFT. Topological field theory descriptions of the symmetries
arising from string and M-theory compactifications have been recently proposed, see
for example [91–101].

One first step in trying to make these ideas more precise would be to provide a
reasonable definition of the subtheory AΓ. Next, one should try to describe the
(topological?) theory playing the role of the MTC for holomorphic 2D CFTs. Any
further progress in this direction would be a major advance in our understanding of
symmetries and orbifolds in string theory.
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