
  

      

 

 

 

 

 

Head Office: Università degli Studi di Padova 

 

Department of Civil, Environmental and Architectural Engineering (ICEA Dept.)  

_______________________________________________________________________________________ 

 

 

Ph.D. COURSE IN SCIENCES OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING  

CURRICULUM: Rischio, vulnerabilità, ambiente, salute e territorio 

SERIES: XXXVI 

 

ADVANCES IN HYDRODYNAMIC AND MORPHODYNAMIC MODELLING 

 

 

Thesis written with the financial contribution of Fondazione Cariparo and Fondazione Ing. A. Gini 

 

 

 

 

Coordinator: Prof. Massimiliano Ferronato 

Supervisor: Prof. Daniele Pietro Viero 

Co-Supervisor: Prof. Andrea Defina 

 

 

       Ph.D. student : Tommaso Lazzarin 

          





i 

 

Abstract  

The present research focuses on the advanced modelling of complex phenomena of 
river hydraulics. Modelling river flows has long represented one of the most challenging 
tasks of fluid dynamics, because river flows are characterized by high Reynolds 
numbers, by an inherent three-dimensional (3D) nature promoted by the irregular 
geometry of the physical domain at the micro- and the macro-scale, and by 
morphodynamic processes that can modify the domain in time. Nevertheless, modelling 
and understanding river flows has fundamental implications for advancing the 
knowledge of environmental processes, the design of hydraulic works, the flood 
prediction, etc. 

Nowadays, two-dimensional (2D) depth-averaged hydrodynamic models are 
common tools in river hydraulics. Though outperforming classical one-dimensional 
models, 2D models still have limitations, essentially because the vertical velocity 
component can often play a non-negligible role and pressure is often quite different from 
hydrostatic one. The first theme of the present research is aimed at enhancing the 
predictive ability of 2D models by including effects induced by large-scale 3D flow 
structures. The focus is here on the secondary currents generated by the streamline 
curvature in river bends. A parametrization of curvature-induced helical flow is 
included in a 2D hydro- and morpho-dynamic model on flexible grids based on a 
cartesian frame by means of additional dispersive terms in the Shallow Water Equations. 
The non-linear saturation effect, which limits the growth of the helical-flow in case of 
relatively sharp bends, is modelled with a novel, purely 2D approach suitable for real-
world applications. The model also accounts for the effects of helical flow on passive 
tracers mixing and on the bedload transport. Model applications to laboratory tests and 
to a real river, under fixed and mobile bed conditions, confirmed the validity of the 
proposed approach, the relevance of accounting for secondary flows in specific cases, 
and provided guidelines for a proper application of 2D hydrodynamic models to river 
flows in bends.  

Other kinds of geometrical irregularities of the solid boundary, such as macro-
roughness elements or built-up structures, produce 3D turbulent structures that require 
the use of more sophisticated models. In the recent years, advances in numerical 
techniques and the increase in computational power have promoted the use of eddy-
resolving Computational Fluid Dynamics (CFD) models to describe turbulent river 
flows. Then, the second theme of the present research concerns the application of these 
models to river flows over complex geometries. The Detached Eddy Simulation (DES) 
approach is used to simulate turbulent flows in natural beds in the presence of relatively 
large roughness elements (i.e., freshwater mussels) and structures (i.e., bridges). 
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Studying the mutual interactions between turbulent flow and mussel shells has 
important ecological implications because mussels are among the most imperilled fauna, 
and understanding the flow at the organism scale may be of help for their conservation. 
The present research is based on the representation of a real gravel-bed to simulate 
realistic scenarios; indeed, mussels typically live in sand or gravel beds, where the bed 
roughness plays a role. The analysis moves from the case of flow around an isolated 
freshwater mussel and extends through considering large arrays of mussels (i.e., mussel 
beds), to understand the influence of different physical parameters (e.g., number of 
mussels per unit area, filtering activity, bed roughness, burrowing ratio) on flow, 
turbulent structures, drag forces on the mussel shells, bed shear stresses, and mixing of 
clean water exhaled from the mussels siphons. 

Finally, the DES approach is used to study the turbulent flow at a real bridge with 
multiple piers, which is of great importance because bridge failures are often caused by 
hydraulic-related reasons, such as bed erosion and trapping of floating debris. The DES 
simulations account for the detailed geometry of the bridge and for the real bathymetry 
of the riverbed; the Volume of Fluid (VoF) numerical technique is used to track the free-
surface. Such simulations overcome the limitations of previous studies that either used 
turbulence-averaged models (e.g., RANS), or referred to idealized geometrical 
conditions. The goals include understanding how the flow and the shear stress at the 
bed are affected by the presence of the bridge, in both the free-surface conditions and in 
the pressure-flow with deck overtopping. The analysis focuses on the main turbulent 
coherent structures and their interaction with the riverbed, and allows comparing the 
results of DES and RANS approaches. 
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Sommario  

Il presente lavoro di ricerca si concentra sulla modellazione avanzata di fenomeni 
complessi dell'idraulica fluviale. La modellazione delle correnti fluviali ha da sempre 
rappresentato una sfida impegnativa nell’ambito della fluidodinamica, poiché il moto in 
tali contesti è spesso caratterizzato da elevati numeri di Reynolds, da una intrinseca 
natura tridimensionale (3D) enfatizzata dalla geometria irregolare del dominio a diverse 
scale spaziali e da processi morfodinamici che possono modificare il dominio nel tempo. 
D’altra parte, modellare le correnti fluviali e comprenderne le caratteristiche salienti in 
casi complessi ha importanti implicazioni per l'interpretazione dei processi ambientali, 
per la progettazione di opere in alveo, per la previsione delle piene, ecc. 

Al giorno d’oggi, i modelli idrodinamici bidimensionali (2D) mediati sulla verticale 
sono strumenti di uso comune in vari campi dell'idraulica fluviale. Pur essendo più 
affidabili e completi dei classici modelli monodimensionali, i modelli 2D hanno 
limitazioni intrinseche, dovute al fatto che spesso le componenti verticali della velocità 
determinano effetti non trascurabili sul campo di moto e la distribuzione delle pressioni 
non sempre è idrostatica. Il primo tema della presente ricerca ha l’obiettivo di migliorare 
la capacità predittiva dei modelli 2D tenendo conto degli effetti indotti dalle strutture 
tridimensionali a larga scala. Nello specifico, l’attenzione è rivolta alle correnti 
secondarie generate dalla curvatura delle linee di corrente nei tratti di canale in curva. Il 
moto elicoidale che si sviluppa in tali casi è parametrizzato mediante l’introduzione di 
appositi termini dispersivi nelle equazioni delle onde lunghe in acque basse, 
implementate in un modello idro- e morfo-dinamico 2D su griglia non strutturata in 
coordinate cartesiane. Il processo non-lineare di saturazione, che limita lo sviluppo del 
moto elicoidale in caso di curvature pronunciate, è modellato con un approccio originale 
puramente 2D, adatto all’applicazione a casi reali. Il modello tiene conto degli effetti che 
il moto elicoidale in curva esercita anche sul trasporto e la diffusione di traccianti passivi 
e sul trasporto al fondo di sedimenti. Le applicazioni del modello volte a riprodurre casi 
studio di laboratorio e di un fiume reale, condotte sia in ipotesi di fondo fisso e sia di 
fondo mobile, hanno confermato la validità dell’approccio proposto, la rilevanza degli 
effetti delle correnti secondarie in molte applicazioni e hanno consentito di formulare 
linee guida per una corretta modellazione bidimensionale di correnti fluviali in tratti 
curvi.  

Altri tipi di irregolarità geometriche dei contorni solidi, come per esempio macro-
scabrezze o strutture costruite in alveo, producono strutture turbolente 3D che 
richiedono l'uso di modelli più sofisticati. Negli ultimi anni, l’introduzione di schemi 
numerici avanzati e l'aumento della potenza computazionale hanno reso possibile 
l’utilizzo, anche in ambito fluviale, dei modelli di fluidodinamica computazionale 
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(CFD). Perciò, il secondo tema di ricerca riguarda l'applicazione di questi modelli per la 
simulazione di correnti fluviali in presenza di geometrie complesse. L’approccio ibrido 
DES (Detached Eddy Simulations) è utilizzato nella presente ricerca per lo studio di 
correnti turbolente in casistiche complesse e irregolari come nel caso di letti fluviali con 
elementi di macro-scabrezza (es., cozze di acqua dolce) e in presenza di ostacoli in alveo 
(es., strutture dei ponti). Studiare le mutue interazioni tra i flussi turbolenti e le cozze di 
acqua dolce ha importanti implicazioni biologiche ed ecologiche in quanto la 
sopravvivenza di tali molluschi è fortemente compromessa dalle variazioni nell’habitat 
idrodinamico, e la comprensione delle dinamiche di flusso a scala di organismo può 
fornire indicazioni utili per la valutazione delle azioni da intraprendere per la loro 
conservazione. La presente ricerca si basa sulla rappresentazione di un fondo scabro per 
simulare scenari realistici; infatti, tali molluschi si collocano generalmente su fondi 
ghiaiosi o sabbiosi, nei quali la scabrezza del fondo risulta importante. Lo studio si 
sviluppa a partire del caso di flusso attorno ad una cozza isolata, e considera poi il caso 
di colonie di molluschi. L’analisi, di tipo parametrico, consente di valutare l'influenza di 
diversi parametri fisici (ad esempio, numero di cozze per unità di area, intensità di 
filtrazione della cozza, scabrezza del fondo, grado di interrimento) sul campo di moto e 
sulle strutture turbolente, sulle forze destabilizzanti indotte sul carapace, sugli sforzi al 
fondo e sul trasporto di un tracciante passivo utilizzato per rappresentare il flusso di 
acqua filtrata dalla cozza. 

Infine, simulazioni con approccio DES sono utilizzate per studiare le correnti fluviali 
turbolente che si sviluppano in corrispondenza di un ponte con più pile in alveo. 
L’argomento è di interesse alla luce del fatto che il collasso di ponti è spesso determinato 
da cause idrauliche, come per esempio l’erosione del fondo e la cattura di materiale 
galleggiante trasportato dalla corrente. Le simulazioni DES condotte nel presente lavoro 
tengono conto della geometria del ponte e della reale batimetria del fondo; il metodo 
Volume of Fluid (VoF) è utilizzato per tracciare la superficie libera. Tale impianto 
modellistico consente di superare alcune limitazioni che caratterizzano i lavori 
precedenti, basati sull’uso di modelli mediati sulla turbolenza (e.g., RANS) o su 
condizioni geometriche idealizzate. Gli obiettivi includono l’analisi del campo di moto e 
delle sollecitazioni che esso induce sul fondo in termini di sforzi tangenziali a causa della 
presenza del ponte, sia nel caso di moto a superficie libera, sia nel caso di flusso in 
pressione con sormonto dell’impalcato. L’analisi si concentra sullo studio delle strutture 
turbolente coerenti e sulla loro interazione con il letto del fiume e permette inoltre di 
confrontare tra loro i risultati ottenuti con gli approcci DES e RANS.  
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1 Introduction  
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1 Introduction 

The use of numerical models has become increasingly widespread during the recent 
years in the different fields of river hydraulics. Models for hydrodynamic simulations 
are nowadays the standard tool for the design of civil works, the assessment of hydraulic 
risk, the prediction of floods, etc. The coupling with sediment transport models also 
allows for the analysis and prediction of the morphodynamic evolution of river systems.  

Numerical modelling of river flows has long represented one of the most challenging 
tasks in fluid dynamics, given the complexity of these flows compared to others (e.g., in 
the industrial field). Many are the factors that characterize river flows and make their 
simulation particularly complex: the large spatial extension of the geometrical domain, 
the long simulation time and the huge need for computational resources, the presence 
of high-Reynolds turbulent flows, the free-surface regime, the irregular bathymetry 
(both at the micro- and at the macro-scale), the presence of obstacles and geometrical 
singularities, the mobility of riverbeds, etc.  

The possibility of representing accurately some of the complex phenomena that 
characterize river flows is strongly connected with the choice of the model, and hence 
with its intrinsic level of simplification, with the refinement of the spatial discretization, 
and, ultimately, with the availability of computational power. 

Indeed, numerical models solve approximate and/or reduced versions of the full 
Navier-Stokes (NS) equations on discrete computational grids. A wealth of methods has 
been developed and the availability of computational power has been growing at 
exceptional rates, allowing for more and more detailed solutions of flow fields. 
However, the availability of computational resources is still a limit, and all the simplified 
approaches are characterized by peculiar limitations. Earlier models used to simulate 
river flows were based on reduced-order versions (i.e., 1D and 2D) of the full NS 
equations, in which flow resistance was accounted for with simplified parametrizations 
such as uniform flow formulae (e.g., Strickler-Manning or Chezy formulas). Enhanced 
2D models now include more complex turbulent models, typically based on the concept 
of eddy viscosity and Reynolds stresses. Three-dimensional (3D) models, commonly 
referred to as Computational Fluid Dynamics (CFD) tools, have become increasingly 
popular in the last decades also in the field of environmental research. Applications to 
river flows were mainly based on Reynold-Averaged Navier-Stokes (RANS) equations, 
with the associated issues of choosing suitable turbulence models and to model large 
enough domains using a sufficiently fine numerical grid. More advances numerical 
approaches, such as the Large Eddy Simulation (LES) and the hybrid Detached Eddy 
Simulation (DES), were the subject of some pioneering applications, typically in spatially 
limited and/or simplified domains. 
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Accordingly, in the field of fluvial hydraulics there is still the need of developing 
specific modelling approaches to obtain solutions that are practically useful and 
sufficiently accurate for given specific problems. Furthermore, testing innovative 
computational approaches such as the DES in the field of (as real as possible) river flows, 
is of particular interest as well. 

1.1 Enhancing 2D models with the effect of secondary currents 

Given their modest computational demand, reduced-order 1D models have been first 
developed to simulate river flows. They solve the 1D de Saint Venant equations, 
sometimes neglecting specific terms, on a geometrical domain that is composed of a 
series of river cross-sections. These models can be used for both steady and unsteady 
flows, such as flood waves. As a main assumption, water must flow primarily along the 
streamwise direction, with negligible contributions of the lateral components of velocity. 
Considering the present availability of computational power, 1D models are extremely 
fast to run. However, given the strong limitations in reconstructing complex flow fields, 
1D models can be used only for simple applications on channels with compact sections 
where the velocity components in the transversal direction are negligible.  

Some of the above limitations can be overcame by using 2D depth-averaged models, 
based on the 2D shallow water equations (SWEs). Accounting for both planar 
components of velocity, they can be used to predict water depth and flow velocity in 
compound sections, over floodplains, and/or in braided rivers. Nowadays, they 
represent one of the best compromises between accuracy and computational cost in 
many applications (Shaheed et al., 2021; Uijttewaal, 2014). For simulations at the scale of 
the river reach, 2D models are reasonably fast so that, with the present availability of 
computational power, they can used also for large-scale and real-time simulations 
(Echeverribar et al., 2019; Vacondio et al., 2017, 2014). 

However, also 2D models present some important simplifications, which make them 
not appropriate for representing complex, three-dimensional flow fields with adequate 
accuracy. The 2D SWEs are derived by means of the Reynolds decomposition to 
represent turbulence effects, and of depth-averaging that means neglecting the vertical 
velocity component and assuming a constant vertical profile of the velocity (Bates, 2022). 
These last simplifications do not always hold in case of natural river flows where 
different factors, such as the presence of bends, can alter the vertical distribution of the 
flow velocity. In river bends, the imbalance among the centrifugal acceleration and the 
pressure gradient leads to the formation of a streamwise-oriented helical flow, which 
produces non-negligible velocity components in the transversal direction (Falcon, 1984; 
Johannesson and Parker, 1989a). This helical flow, known also as curvature-induced 
secondary current, constitutes a large-scale three-dimensional structure that develops 
progressively along the bend and typically involves the entire cross-section. This 
secondary flow has a number of consequences on the hydrodynamics and on the 
transport of passive tracers and bed particles (Dietrich and Smith, 1983; Duan, 2004): 
increasing the flow resistance, deviating the high-velocity core, enhancing the mixing of 
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solutes, deflecting the direction of particles transport, shaping the riverbed by eroding 
the outer bank and accreting the inner bars, etc.  

It is then desirable to account for the effects of the helical flows in reduced-order 
models, to increase their predictive ability still retaining their easiness of use and 
computational efficiency (Begnudelli et al., 2010). To reach the goal, the typical approach 
consisted in including these effects by introducing additional dispersive terms in the 
governing equations (Johannesson and Parker, 1989b; Odgaard, 1986), as a function of 
the geometry of the bend (e.g., curvature radius, resistance parameters) and of the 
characteristics of the flow field (e.g., flow velocity, water depth). The research work 
performed in the last four decades has led to several parameterizations for the intensity 
of the helical flow, that were mainly thought in the framework of enhanced 1D models. 
The dispersive terms for curvature-induced secondary flows have been first applied to 
2D models with reference to curvilinear boundary-fitted grids, whereas their use in 
conjunction to more flexible unstructured meshes has been achieved only recently 
(Begnudelli et al., 2010), showing the need for a number of applicative techniques. 
Furthermore, most of the parameterizations predict a linear, unbounded growth of the 
helical flow intensity with the bend curvature; however, it has been shown that a non-
linear saturation effect limits of the growth of secondary currents, particularly in (but 
not limited to) sharp bends (see e.g., Blanckaert and de Vriend, 2003). A 1D model for 
helical flow saturation has been recently developed (Blanckaert and de Vriend, 2010), 
but an effective implementation in 2D schemes on unstructured grids was still lacking. 

As a last point, from a review of the technical literature, it is not clear when (and 
where) curvature-induced secondary currents need to be simulated including the 
dispersive terms in the SWEs, or when accounting for their effects on bedload transport 
is sufficient to perform reliable morphodynamic simulations. 

1.2 3D CFD modelling to investigate complex flows 

As already introduced, river flows are generally complex, because of the high 
Reynolds numbers and the three-dimensional characteristics, induced by the irregular 
geometry both at the macro-scale (e.g. bends, bottom jumps, interaction with in-stream 
structures, etc.) and at the scale of wall (micro- and macro-roughness).  

While some of the large-scale flow structures (e.g., secondary currents) can be 
modelled using reduced-order models with proper parametrizations, accurate 
predictions of the three-dimensional turbulent flows in rivers, as well as their 
interactions with the bottom, require the use of more complex computational techniques. 
3D Computational Fluid Dynamics (CFD) models have been increasingly used to 
simulate free-surface river flows. While developed primarily for industrial applications, 
nowadays CFD models represent the state of the art of hydraulic modelling at local scale 
also in the field of environmental research (Wright and Hargreaves, 2013). They allow 
to model complex riverine flows, such as those over irregular bathymetries, in channel 
bends, past large roughness elements, or in-stream structures, etc. However, besides 
specific skills to setup suitable computational grids, they require also large 
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computational resources and long time for the simulation. This has limited their 
diffusion for practical applications in the environmental field (Fischer-Antze et al., 2008). 
In most cases their use is restricted to the academic research, especially to reproduce 
idealized conditions at the laboratory scale or the flow in short or simplified natural 
reaches. 

As mentioned, the numerical simulation of turbulent flows has long represented one 
of the main difficulties in fluid dynamics, as opposed to the case of laminar flows. 
Evaluating the turbulent motion of free-surface flows is not straightforward because of 
their complexity and irregularity, and still this represents one of the big fields of research 
in CFD (Argyropoulos and Markatos, 2015). Turbulence has many implications for river 
flows, such as momentum transfers, increased friction, mixing of passive tracers, 
entrainment of bed particles, etc., and accounting for its effect is needed to obtain 
accurate solutions. Direct Numerical Simulations (DNS) solve the full Navier-Stokes 
equations and naturally account for turbulence at all relevant spatial and temporal 
scales. To solve the flow field up to the dissipative scale, DNS require extremely fine 
grids and huge computational cost, which become soon unfeasible for the Reynolds 
numbers typical of turbulent geophysical flows (Fröhlich and von Terzi, 2008). Rather 
than modelling turbulence directly, the first practical solution is modeling the effects of 
turbulence with models based on the Reynolds-Averaged Navier-Stokes (RANS) 
equations. Their main assumption is the decomposition of velocities and pressure terms 
into their mean and fluctuating contributes. The time-averaging of the fluctuating 
components leads to additional turbulent stresses, which require proper 
parametrizations (i.e., the closure of turbulence, with a wealth of available approaches 
such as the well-known k-ε or k-ω models). RANS approaches have long represented the 
most common way to account for turbulence effects. They are the standard for reduced-
order models, but they are also used in 3D models. Although RANS models account for 
the effect of turbulence, they do not explicitly reproduce the energetic eddies developing 
in the flow. Large Eddy Simulations (LES) models, instead, have been proposed to model 
the large-scale eddies in 3D models (Smagorinsky, 1963, see also Rodi et al., 2013). They 
require a parametrization only for eddies whose length-scale is smaller than the size of 
the computational grid elements. If the grid is sufficiently refined, eddies smaller than 
the grid size have been shown to have homogenous characteristics, making their 
modelling easier with respect to larger-scale eddies. However, in return for the increased 
precision, these models require more refined grids and larger computational efforts 
compared to RANS models. In particular, a critical point for LES is that, close to the 
walls, its computational requirement is close to that of a DNS. As a compromise between 
RANS and LES approaches, hybrid models have been developed to couple the former in 
the proximity of solid walls with the latter in the other parts of the physical domain. 
Such models require a lower computational effort compared to LES models, and include 
DES (Detached Eddy Simulations) models, which nowadays represent one of the best 
options for modelling complex river flows (Spalart, 2009).  

LES and DES models explicitly characterize the larger-scale turbulent structures, and 
provide detailed and complete pictures of turbulent flow fields in case of complex 



1 Introduction  

5 

 

geometrical domains. Thus, they constitute powerful tools for investigations. Though in 
the academic field LES and DES models has already found application to environmental 
hydraulics, the application of such models to river flows is still limited for different 
reasons: the numerical approach is relatively new, the setup of numerical grid requires 
skills that are not in the background of most of environmental modelers yet, and the 
need of computational resources becomes challenging when dealing with 
hydrodynamic studies of natural flows at a large spatial scale. 

Despite that, many are the possible applications for the study of the environmental 
flows, among which one of the most relevant concerns the interplay between flows and 
geometric singularities at various scales. 

1.3 Goals and Outline of the work 

The general aim of the present work is to advance hydro- and morpho-dynamic 
modelling with regards to the representation of some relevant 3D features of the flow 
fields. The research develops along two main directions.  

First, the work deals with the improvement of an existing 2D hydro- and morpho-
dynamic model by including effective parametrizations of the curvature-induced 
secondary currents. The specific goals of this part include: 

➢ developing a model implementation that incorporates different previous 
formulations and evaluating their performance against data from available 
laboratory experiments; 

➢ development of a pure 2D model to account for the non-linear saturation 
mechanism on general unstructured grids, and verification using data available 
in the literature; 

➢ evaluating the effects of including helical flow dispersive terms in reconstructing 
the flow field, in predicting the transport of passive tracers, and in modelling the 
bedload transport; 

➢ assessing the role of secondary currents in equilibrium and non-equilibrium 
morphodynamic conditions in a real case study, shedding light on the interplay 
between secondary flow and bed bathymetry (i.e., the so-called topographic 
steering); 

➢ highlighting the key factors and providing practical guidelines for a proper 
modelling of river flows in bends using 2D models.  

Second, the work deals with the application of eddy resolving CFD simulations (i.e., 
DES) to describe the turbulent flows in natural streams in presence of large roughness 
elements (i.e., the shells of freshwater mussels) and of in-stream structures (i.e., bridges). 
Findings of the present study can be of help also for proper parametrizations in reduced-
order models. The main goals of this part include: 
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➢ analyzing the flow over isolated, partially-burrowed, freshwater mussels to 
analyze the role and the interplay of bed roughness, burrowing degree, and 
filtering activity of the mussels; 

➢ understanding the key features of the fully-developed flow over clusters of 
partially-burrowed mussels, and how they vary depending on mussel density 
(i.e., number of mussels per unit area), on bed roughness, and on the filtering 
activity of the mollusks; 

➢ describing the key features of the free-surface flow and the bed shear stresses at 
a realistic bridge on a real river bathymetry, highlighting the changes ascribed to 
the shift from the free-surface regime to the pressurize flow with deck 
overtopping.  

The analysis and the 2D modelling of secondary currents are discussed in Chapter 2 
of the present work. The study of the interactions between the turbulent flow and a 
riverbed with large roughness elements is reported in Chapters 3, which focus on 
partially-burrowed freshwater mussels. The analysis of the flow field in the presence of 
in-stream structures is reported in Chapter 4, which deals with a realistic, multi-pier 
riverine bridge over the real bathymetry. Some conclusions close the thesis.  
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2 Analysis and 2D modelling of curvature-induced secondary 

currents 

This Chapter is essentially constituted by a manuscript published in Advances in 
Water Resources (Lazzarin and Viero, 2023)1. It focuses on curvature-induced secondary 
flows, which are ubiquitous in nature because of the generally curved course of rivers. 
Three-dimensional (3D) models explicitly account for their effect at the cost of a large 
computational effort, so that it is desirable to account for the effects of secondary flows 
in reduced-order models. The focus here is on an existing, general-purpose, 2D-depth-
averaged hydro-morphodynamic model, based on flexible grids on a cartesian frame, 
which has been enhanced to include the effects of the secondary currents on the flow 
structure, on the mixing of passive tracers, and on the bedload transport.  

The non-uniform vertical distribution of velocity in the streamwise and spanwise 
directions, as determined by the curvature of streamlines and the onset of a helical 
(spiral) secondary flow, is considered by introducing proper dispersive terms in the 
SWEs, an anisotropic diffusivity tensor in the advection-diffusion equation, and a 
correction to the direction of bed shear stress for the bedload transport. Different 
approaches and parameterizations available in the technical literature are recast in a 
unique form and compared to each other in terms of flow field, tracer transport, and bed 
evolution, using data from laboratory experiments and real-world case studies. The 
model includes a novel, pure 2D implementation of a non-linear model that accounts for 
the saturation effect, which limits the growth of the helical flow intensity in relatively 
sharp bends. 

The results obtained from the model applications show the efficacy of the different 
approaches and allow to highlight when and where it is important to account for the 
effects of curvature-induced secondary currents. The assessment of different key-factors, 
implementation techniques, constraints for a proper mesh design, the suitability of local 
and non-local approaches, and the role of bathymetry, leads to a set of guidelines that 
provides a complete review of effective and parsimonious (in terms of computational 
cost) strategies for 2D hydro- and morpho-dynamic modelling in river bends.  

  

                                                      
1 Lazzarin, T., Viero, D.P., 2023. Curvature-induced secondary flow in 2D depth-averaged hydro-

morphodynamic models: An assessment of different approaches and key factors. Adv. Water 
Resour. 171, 104355. https://doi.org/10.1016/j.advwatres.2022.104355 
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2.1 Introduction 

In river and channel bends, the interplay between the curvature of streamlines in the 
horizontal plane and the non-uniformity of streamwise velocity along the vertical 
produces a streamwise-oriented helical flow, because of an imbalance between the 
outward centrifugal acceleration and the inward pressure gradient (Blanckaert and de 
Vriend, 2010; Falcon, 1984; van Balen et al., 2010) This curvature-induced secondary 
current, which acts to deviate the high-velocity thread from the inner to the outer bank 
(Ahmadi et al., 2009; Bolla Pittaluga et al., 2009; Johannesson and Parker, 1989a; Lien et 
al., 1999; Seminara et al., 2002; Shimizu et al., 1990; Wu et al., 2004, 2005), has long 
attracted scientist attention (e.g., Boussinesq, 1868; Thomson, 1877; the tea leaves of 
Einstein, 1926; see also Bowker, 1988) because of interesting fundamental implications 
in shaping the riverbed bathymetry, in contributing to bank erosion and meander 
migration, in enhancing mixing and dispersions of heat and solutes, in increasing flow 
resistance, etc.(Constantinescu et al., 2013; Demuren and Rodi, 1986; Duan, 2004; Gu et 
al., 2016; Iwasaki et al., 2016; Jang and Shimizu, 2005; Koken et al., 2013; Lai et al., 2012; 
Papanicolaou et al., 2007; Termini, 2014). 

The most natural way of modelling secondary currents is employing full three-
dimensional (3D) models, which naturally resolve curvature-induced helical flows 
(Keylock et al., 2012). Starting from pioneering applications in the ’70 (Leschziner and 
Rodi, 1979; Pratap and Spalding, 1975), the increased computational power has now 
allowed modelling long stretches of natural rivers with full 3D (CFD, Computational 
Fluid Dynamics), but the need of suitable computing facilities and of large 
computational time still hinder their widespread application (Fischer-Antze et al., 2008; 
Horna-Munoz and Constantinescu, 2018).  

The search for efficient strategies to account for curvature-induced secondary flow in 
reduced-order hydraulic models, started by Van Bendegom in 1947 by looking at the 
flow field in a single bend, has so far produced many different approaches and 
modelling strategies (Blanckaert and de Vriend, 2010; Camporeale et al., 2007; Lane, 
1998). Most of these are linear (or weakly non-linear) models, valid for low curvatures 
of the river axis and slowly varying bed topography, hence suitable to model long-term 
migration of large-scale meandering rivers.  

To meet the specific needs of practical engineering problems involving fluvial hydro- 
and morpho-dynamics, two-dimensional (2D) free-surface shallow water models still 
represent a valid compromise between efficiency and effectiveness (Shaheed et al., 2021; 
Uijttewaal, 2014). In 2D depth-averaged models, the vertical profile of the velocity is 
assumed implicitly, and is commonly taken constant (Bates, 2022; Ghamry and Steffler, 
2002). To account for the effects of secondary flows in channel bends, the shallow water 
equations (SWEs) are enriched with dispersive stresses (Bora and Khalita, 2020; 
Camporeale et al., 2021; Song et al., 2012), which parameterize the momentum transfer 
produced by the streamwise-oriented helical flow. 

The simplest approach to account for curvature-induced secondary flows in 2D 
models assumes instantaneous adaptation of secondary flow intensity to the driving 
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curvature. The dispersive stresses are directly linked to the local streamline curvature 
(Begnudelli et al., 2010; Duan, 2004; Guan et al., 2016; Lien et al., 1999; Song et al., 2012). 
Actually, the problem is further complicated because the streamline curvature 
progressively generates secondary flow, i.e., with a phase-lag due to inertia, and the 
helical flow is subject to different dissipative mechanisms as well (Blanckaert and de 
Vriend, 2004, 2003). The lagged formation of helical flow in steady state applications was 
simulated by introducing an adaptation length (Blanckaert and de Vriend, 2003; De 
Vriend, 1981; Johannesson and Parker, 1989b; Kikkawa et al., 1976; Rozovskii, 1957; Wu 
et al., 2005, 2004). A more rigorous and general approach requires solving a transport-
diffusion equation for vorticity (or angular momentum), with centrifugal force and 
resistance mechanisms acting as source and sink terms, respectively (Bernard and 
Schneider, 1992; Einstein and Li, 1958; Ikeda and Nishimura, 1986; Kalkwijk and Booij, 
1986; Odgaard, 1986). At the cost of additional computational demand, this approach 
doesn’t suffer from local singularities in the curvature field and reproduces the slow 
decay of the helical flow, which vanishes at a long distance downstream of a bend (Bai 
et al., 2019).  

Concerning the implementation of the above methods, modelling approaches 
proliferated with regard to: i) the basic conservation principle, such as extra equations 
from the Navier Stokes equations (Ghamry and Steffler, 2002; Jin and Steffler, 1993; Yeh 
and Kennedy, 1993), reduced versions of the momentum equation in the transversal 
direction (e.g., Kalkwijk and Booij, 1986; Odgaard, 1986), or the conservation of 
streamwise angular momentum (e.g., Bernard and Schneider, 1992; Finnie et al., 1999); 
ii) the vertical profile for the streamwise velocity component, either logarithmic (Bernard 
and Schneider, 1992; De Vriend, 1977, 1981; Kitanidis and Kennedy, 1984; Shimizu et al., 
1990) or power-law (Odgaard, 1986; Wu et al., 2004; Yeh and Kennedy, 1993); iii) the 
vertical profile for the spanwise velocity component, typically linear with zero mean 
(Odgaard, 1986) albeit notable variations such as polynomial expressions (e.g., De 
Vriend, 1977, 1981; Kikkawa et al., 1976; Shin and Seo, 2021); iv) the way in which local 
curvature is estimated and possibly filtered to avoid numerical instabilities (Abad et al., 
2008; Begnudelli et al., 2010); v) the use of boundary-fitted orthogonal curvilinear grids, 
which naturally allow evaluating longitudinal and transversal terms (e.g., Blanckaert 
and de Vriend, 2003; Demuren, 1993), as opposed to general-purpose unstructured 
meshes in a Cartesian reference frame that are more flexible in case of unevenly curved 
bends and wandering riverbeds (Jin and Steffler, 1993; Nikora and Roy, 2011); vi) the 
treatment of impervious banks using either the free- or no-slip condition, each one 
entailing specific pros and cons (Blanckaert, 2001). 

In general, the basic model assumptions limit the scope of such 2D models to the case 
of mild curvatures. Indeed, in the case of sharp bends, curvature-induced secondary 
flows are characterized by relevant non-linear feedbacks. The helical flow, with its 
outward transport of streamwise momentum, modifies both the horizontal pattern and 
the vertical profiles of flow velocity: the high-velocity thread is moved outward, and the 
vertical profile is flattened, which means weakening the helical flow production 
mechanism (Blanckaert, 2009; Blanckaert and de Vriend, 2003; Blanckaert and Graf, 2004; 
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Wei et al., 2016). This feedback-based non-linear process, referred to as saturation of 
secondary flow, has been assessed quite recently, and its implementation in 2D depth-
averaged models is still in its infancy (Guan et al., 2016; Ottevanger et al., 2012; Qin et 
al., 2019; Shin and Seo, 2021; Xiao et al., 2022). 

Finally, the implementation of 2D model accounting for curvature-induced secondary 
flows, as well as their application to laboratory and real-world case studies, lead to face 
many other subtle factors: examples are the proper inclusion of high spatial gradients of 
water depth associated to compound cross-sections and irregular bathymetries, the 
computation of dispersive stresses at the wet/dry interface or at the mesh (lateral) 
boundaries, the need of accounting for lateral wall friction (particularly for laboratory 
applications with rectangular cross-sections), effective strategies to employ coarser 
computational meshes, etc. 

The present study aims at providing a comprehensive assessment of curvature-
induced secondary flows in the frame of general-purpose, depth-averaged 2D models 
for river hydro- and morpho-dynamics on flexible grids based on a cartesian frame (i.e., 
not on a curvilinear coordinate system). Different parameterizations available in the 
technical literature are recast in similar form and implemented in a 2D finite-element 
hydrodynamic model, for both the cases of instantaneous adaptation of helical flow 
intensity and of transport of streamline vorticity. The saturation of secondary flow in the 
case of strong curvatures is modelled introducing a pure 2D extension of the model by 
Blanckaert and de Vriend (2003); saturation effects can be accounted for with any of the 
approaches for secondary flow implemented in the model. The hydrodynamic module 
for curvature-induced secondary flows is then integrated with a module for transport of 
passive tracers, and with a morphodynamic module solving for the bedload sediment 
transport. 

The Chapter is organized as follows. The theoretical models for curvature-induced 
flows are presented in Sect. 2, along with an in-depth description of implementation 
techniques. The model is verified against several laboratory experiments, both with fixed 
and movable bed (Sect. 3). A model application to a real case-study (Po River) is used to 
assess some key factors in 2D depth-averaged hydro- and morphodynamic modelling of 
real rivers. The relevant aspects emerged in this study are then discussed in light of the 
recent advances on the subject and of open issues (Sect. 4). A set of conclusions closes 
the Chapter. 

2.2 Accounting for curvature-induced secondary flows in 2D models 

2.2.1 Shallow water equations with dispersive stresses 

On a horizontal Cartesian frame with axes (x, y), the 2-D depth-averaged Navier-
Stokes equations with the hypothesis of hydrostatic pressure distribution, commonly 
known as De Saint Venant or shallow water equations (SWEs), read: 
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DD𝑡 (𝑞𝑥𝑌 ) − 1𝑌 (∂𝑅𝑒𝑥𝑥∂𝑥 + ∂𝑅𝑒𝑥𝑦∂𝑦 ) + 1𝑌 (∂𝐷𝑥𝑥∂𝑥  + ∂𝐷𝑥𝑦∂𝑦 ) + 𝜏𝑏𝑥𝜌𝑌 + 𝑔  ∂ℎ∂𝑥 = 0 DD𝑡 (𝑞𝑦𝑌 ) − 1𝑌 (∂𝑅𝑒𝑥𝑦∂𝑥 + ∂𝑅𝑒𝑦𝑦∂𝑦 ) + 1𝑌 (∂𝐷𝑦𝑥∂𝑥  + ∂𝐷𝑦𝑦∂𝑦 ) + 𝜏𝑏𝑦𝜌𝑌 + 𝑔  ∂ℎ∂𝑦 = 0 

𝜂(ℎ) ∂ℎ∂𝑡 + ∂𝑞𝑥∂𝑥 + ∂𝑞𝑦∂𝑦 = 0 

(2-1) 

where t is time, D/Dt is the material (Lagrangian) time derivative, q = (qx, qy) are the 
depth-integrated velocity components, Y is the equivalent water depth (i.e., water 
volume per unit area, Defina, 2000), Re are the Reynolds turbulent stresses in the 
horizontal plane, (τbx, τby) are the bed shear stress components, ρ is the water density, g 
is gravity, and h is the water surface elevation over a datum. In the continuity equation, 
η(h) ]0,1] is a depth-dependent storage coefficient defined as the wet area fraction 
(Defina, 2000). The dispersive stresses Dxx, Dxy, and Dyy emerge from the integration of 
non-uniform vertical distribution of velocity over the water depth, and are defined as 

𝐷𝑥𝑥 = ∫ [𝑢′(𝑧)]2 𝑑𝑧𝑌
0  

𝐷𝑥𝑦 = 𝐷𝑦𝑥 = ∫ 𝑢′(𝑧)𝑣′(𝑧)𝑑𝑧𝑌
0  

𝐷𝑦𝑦 = ∫ [𝑣′(𝑧)]2 𝑑𝑧𝑌
0  

(2-2) 

where the apostrophe denotes the difference between the real and the depth-averaged 
velocity component (note that the velocity vector is here defined as w = (u, v) = q/Y): 𝑢′(𝑧) = 𝑢(𝑧) − 𝑢 𝑣′(𝑧) = 𝑣(𝑧) − 𝑣 (2-3) 

Dispersive stress terms thus account for the subscale spatial variations of the 
unresolved velocity field. To obtain close-form expressions of the dispersive terms, it is 
convenient to use a local (s, n) reference frame, with s the longitudinal (streamwise) and 
n the transversal (spanwise) directions (see Figure 2-1a), and to assume simple vertical 
distributions of the flow velocity components along s and n. Among the different 
expressions used in previous studies, a power law distribution can be assumed for the 
streamwise component, ws, which allows for a simpler derivation of dispersive stresses. 
According to Odgaard (1986): 

𝑤𝑠(𝑧)𝑤 = 𝑚 + 1𝑚  (𝑧𝑌) 1𝑚 (2-4) 

being 𝑤 = √𝑢2 + 𝑣2 the magnitude of the depth-averaged velocity and m a friction 
parameter (m = χκ / g1/2 with χ the Chezy coefficient and κ = 0.4 the von Karman 
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constant). For the spanwise velocity component, wn, a linear profile with zero mean is 
commonly used (Jin and Steffler, 1993; Kalkwijk and Booij, 1986; Odgaard, 1986): 𝑤𝑛(𝑧)𝑤 = 𝑣𝑛𝑠∗ (2𝑧𝑌 − 1) (2-5) 

where 𝑣𝑛𝑠∗ = 𝑣𝑛𝑠/𝑤 is the non-dimensional transversal velocity component at the free-
surface. Integration on the water depth provides (Begnudelli et al., 2010; Lien et al., 1999; 
Wu et al., 2004) 

𝐷𝑠𝑠 = 𝑌 𝑤2𝑚(2 +𝑚) 𝐷𝑠𝑛 = 𝐷𝑛𝑠 = 𝑌 𝑤21 + 2𝑚𝑣𝑛𝑠∗    sign(𝑅) 𝐷𝑛𝑛 = 𝑌 (𝑣𝑛𝑠∗  𝑤)23  

(2-6) 

being R the radius of curvature of depth-averaged streamlines (R is positive for 
clockwise bends in the flow direction, and negative vice-versa). Finally, these terms are 
rotated into the (x, y) coordinate frame by expressing the rotation matrix in terms of 
velocity components, to read 

𝐷𝑥𝑥 = 𝐷𝑠𝑠  𝑢2𝑤2 − 2𝐷𝑠𝑛  𝑢𝑣𝑤2 + 𝐷𝑛𝑛  𝑣2𝑤2 𝐷𝑥𝑦 = 𝐷𝑦𝑥 = 𝐷𝑠𝑠  𝑢𝑣𝑤2 +𝐷𝑠𝑛  (𝑢2 − 𝑣2𝑤2 ) − 𝐷𝑛𝑛  𝑢𝑣𝑤2 

𝐷𝑦𝑦 = 𝐷𝑠𝑠  𝑣2𝑤2 + 2𝐷𝑠𝑛  𝑢𝑣𝑤2 + 𝐷𝑛𝑛  𝑢2𝑤2 

(2-7) 

Lien et al. (1999) reported an equivalent derivation of these terms for the case of a 
logarithmic vertical profile of streamwise velocity. 

 

Figure 2-1. a) schematics of main and secondary flows in a channel bend, with notation; 

b) estimation of the local streamline curvature; c) model for wall friction. 
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It’s worth noting that the net contribution to momentum (Eq. (2-1)) of dispersive 
stresses Dij, with i and j denoting either x or y, depends on their spatial derivatives rather 
than on their magnitude. Concerning the role of the single dispersive terms, Dss does not 
depend on the secondary flow; it acts in the streamwise direction by hindering both 
spatial acceleration and deceleration. The mixed Dsn term is the most important term for 
simulating secondary flows; its spatial gradient may lead to additional resistance at the 
inner side of bends and to acceleration at the outer side of bends (Dietrich and Smith, 
1983), thus accounting for the effect of outward momentum transfer ascribed to the 
helical flow. Dnn may produce a spanwise net stress that, depending on the spanwise 
gradient of flow velocity (w) and secondary flow intensity (𝑣𝑛𝑠∗ ), may lead to a larger 
free-surface transversal slope. 

2.2.2 Instantaneous-adaptation and vorticity-transport approaches 

The dispersive stresses for curvature-induced secondary flows, which depend on the 
helical flow intensity, can be expressed in terms of non-dimensional spanwise velocity 
component at the free-surface, 𝑣𝑛𝑠∗ . Basically, 𝑣𝑛𝑠∗  can be evaluated using two different 
approaches: i) a local approach, which implies instantaneous adaptation of the helical 
flow intensity to the local flow features, and ii) a vorticity-transport approach, which 
accounts for generation, transport, and dissipation of the helical flow. 

In the local approach, which is simpler and less computationally demanding, 𝑣𝑛𝑠∗  is a 
direct function of local water depth, velocity, and streamline curvature. As a major 
drawback, the local approach does not consider the inertia of secondary flow, and the 
spatially distributed field of 𝑣𝑛𝑠∗  becomes particularly sensible to local variations of the 
flow field and streamline curvature, particularly in the vicinity of sharp boundaries (e.g., 
bridge piers, abutments). 

The vorticity-transport approach models the helical flow in terms of streamwise 
vorticity component, which emerges from the non-uniformity of the spanwise velocity 
(Einstein and Li, 1958). Usually, rather than solving the complete equation for three-
dimensional vorticity vector (Blanckaert and de Vriend, 2004), depth-average simplified 
versions of the vorticity equations are solved for the streamwise component of vorticity, 𝜔, (Finnie et al., 1999; Uchida and Fukuoka, 2014). The general form of the transport 
equation for streamwise vorticity in the (x, y) horizontal plane is: D𝜔D𝑡 = 𝛺𝑃𝑅𝑂𝐷 − 𝛺𝐷𝐼𝑆𝑆 (2-8) 

in which ΩPROD is a production term depending on the imbalance between the centrifugal 
acceleration and the transversal pressure gradient, and ΩDISS is a dissipation term that 
derives from the bottom stresses (Farhadi et al., 2018; Nezu, 2005). Several formulations 
have been proposed in the technical literature to estimate the production and dissipation 
terms of Eq. (2-8). Although formally different, being obtained from different basis 
assumptions, they all share a similar structure, as shown in the following. 
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Noting that the streamwise vorticity component, ω, is twice the angular velocity, Ω, 
and assuming the linear profile for spanwise velocity of Eq. (2-5), it results: 

𝜔 = 2𝛺 = 2 𝑣𝑛𝑠𝑌/2 = 4𝑣𝑛𝑠𝑌  
(2-9) 

Under the hypothesis of slowly-varying water depth, Eq. (2-8) can be written directly 
in terms of vns in the general form D𝑣𝑛𝑠D𝑡 = 𝑓𝐷𝑘𝑃𝑤2𝑅  − 𝑘𝐷   𝑣𝑛𝑠𝑤𝑌  (2-10) 

being kP and kD production and dissipation coefficients, whose formulation depends on 
the basic conservation principle; fD is a coefficient introduced to account for non-linearity 
in the production of helical flow (see Sect. 2.2.3). 

Kalkwijk and Booij (1986) derived a transport-diffusion equation starting from the 
momentum equation in the transversal direction and using a logarithmic vertical profile 
for streamwise velocity. This approach is also implemented in Delft3D, with a slightly 
different formulation for the production term (see Chavarrías et al., 2019). A similar 
approach has been proposed by Odgaard (1986), which used a power law (Eq. (2-4)) for 
the vertical profile of streamwise velocity. Actually, both these studies worked with the 
assumption of steady state, yet the generalization to unsteady flow is straightforward. 

Bernard and Schneider (1992) obtained the transport-diffusion equation by imposing 
angular momentum conservation on a cross-section and assuming a logarithmic vertical 
profile for the longitudinal velocity component; in the present work, for the sake of 
simplicity, the same approach has been reformulated using the power law in Eq. (2-4). 

Eq. (2-10) can be used to estimate the transversal surface velocity 𝑣𝑛𝑠∗  for both the 
vorticity-transport approach and the instantaneous-adaptation approach. Indeed, the 
instantaneous-adaptation approach implicitly assumes that an equilibrium condition is 
locally attained elsewhere, which is equivalent to assume that the material derivative of 
streamwise vorticity (i.e., the left-hand side term in Eq. (2-10)) vanishes. In this case, 𝑣𝑛𝑠∗  
can be evaluated directly (and locally) as 

𝑣𝑛𝑠∗ = 𝑣𝑛𝑠𝑤 = 𝑓𝐷 𝑘𝑃𝑘𝐷 𝑌𝑅 (2-11) 

Compared to the local approach, which allows estimating the transversal velocity 
calculating production dissipation terms solely, the vorticity-transport method has a 
higher computational cost since the transport equation (2-10) must also be solved. 
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Table 2-1. Collection of the main formulations for secondary flow proposed in the 

literature. Ω, I, and vns measure the secondary flow intensity. In the Bernard and Schneider 

(1992) formulation,  is the streamwise vorticity, CF is a friction parameter, CA, CB, CC, C2 

are model parameters that are combined in the production, AS, and decay, DS, coefficients. In 

the Kalkwijk and Booji (1986) formulation, kb = kb(s) is a calibration parameter that accounts 

for the phase lag. 

 
Bernard and Schneider (1992) Kalkwijk and Booji (1986) Odgaard (1986) 

Derived from 
Angular Momentum 

Conservation on Transversal 
Section 

Steady state momentum 
equation in the transversal 

direction 

Steady state momentum equation 
in the transversal direction 

Transported 
quantity 

𝛺 = 𝐶𝐴𝐶𝐵𝐶2𝜔12  𝐼 = 𝑘𝑏 𝑤𝑌𝑅  𝑣𝑛𝑠 = 2𝑚 + 12𝜅2𝑚 𝑤𝑌𝑅  

Exp. for transv. 
velocity at the f. s. 

𝑣𝑛𝑠 = 𝑌𝜔4 = 𝑌4 12𝛺𝐶𝐴𝐶𝐵𝐶2 𝑣𝑛𝑠 = 3 𝐼𝜅2 (12 − 1𝑚) as above 

Original transport-
eq. 

D𝛺D𝑡 = 16 (𝑤𝐶𝐴𝐶2)2𝑅𝑌 √𝐶𝐹 − 3𝐶𝐶√𝐶𝐹 𝛺𝑤𝑌  
𝑑 (𝑘𝑏𝑤𝑌𝑅 )𝑑𝑠 = 2𝜅2𝑚 − 2𝑤𝑅 (1 − 𝑘𝑏) 𝑑𝑣𝑛𝑠𝑑𝑠 = 2𝑚 + 1𝑚(𝑚 + 1)𝑤𝑅 − 2𝜅2𝑚 + 1𝑣𝑛𝑠𝑌  

Normalized 
transport-eq. 

D𝑣𝑛𝑠D𝑡 = √6𝐴𝑆2 𝜅𝑚𝑤2𝑅 − 𝐷𝑆 𝜅𝑚𝑤𝑣𝑛𝑠𝑌  𝑤 𝑑𝑣𝑛𝑠𝑑𝑠 = 3𝑚𝑤2𝑅 − 2𝜅2𝑚− 2𝑤𝑣𝑛𝑠𝑌  𝑤𝑑𝑣𝑛𝑠𝑑𝑠 = 2𝑚 + 1𝑚(𝑚 + 1)𝑤2𝑅 − 2𝜅2𝑚 + 1𝑤𝑣𝑛𝑠𝑌  

Transv.velocity at 
equilibrium 

𝑣𝑛𝑠∗ = √6𝐴𝑆2𝐷𝑆 𝑌𝑅 𝑣𝑛𝑠∗ = 32 (𝑚 − 2)𝑚𝜅2 𝑌𝑅 𝑣𝑛𝑠∗ = 2𝑚 + 12𝜅2𝑚 𝑌𝑅 

Table 2-1 reports the different expressions for production and dissipation terms 
available in the literature, also expressed according to the form of Eqs. (2-10) and (2-11). 
In Figure 2-2a, the magnitude of the transversal velocity component at the free-surface 
is plotted for different value of the Strickler roughness coefficient, Ks. The Bernard and 
Schneider model, reformulated assuming a power law vertical profile (red dashed line) 
is very similar to their original, lag-law based model (red continuous line). The models 
by Odgaard (1986) show an opposite trend with respect to that of Kalkwijk and Booij 
(1986). By increasing values of Ks (i.e., moving toward smoother beds), the vertical profile 
of streamwise velocity component is progressively flatter, which entails a reduced 
production of helical flow; yet, a smoother bed also entails reduced resistances to spiral 
motion. The two above models give different weight to these two opposing factors. 

  

Figure 2-2. a) magnitude of the transversal velocity at the free-surface, vns, scaled by 

w(Y/R), evaluated with different approaches using eq. (2-11) with fD = 1. b) dampening factor 

for vorticity production, fD, for different values of the friction parameter m and the normalized 

spanwise gradient of streamwise velocity αs. 
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2.2.3 Saturation of secondary flows 

In Eq. (2-10), as well as in Eq. (2-11), assuming fD = 1 leads to linear models in which 
the intensity of secondary flow increases indefinitely with the streamline curvature 
(Camporeale et al., 2007; Song et al., 2012). This is not the real case, particularly for higher 
curvature ratios Y/R, because of the so-called saturation effect (Bai et al., 2019; 
Blanckaert, 2009; Blanckaert and de Vriend, 2003). The dampening factor fD [0,1] is 
introduced in Eq. (2-10) to reduce the production term in all the formulation here 
implemented when the saturation mechanism plays a role.  

Blanckaert and de Vriend (2003) proposed a parameterization in which fD is a function 
of the bend parameter β, which in turn depends on the normalized transversal gradient 
of the depth averaged velocity, αs: 

𝑓𝐷 = 1 − exp (− 0.41.05𝛽3 − 0.89𝛽2 + 0.5𝛽) 𝛽 = √ 𝑌|𝑅| (0.41𝑚 )−0.55 (𝛼𝑠 + 1)0.25 

𝛼𝑠 = 𝑅𝑤𝜕𝑤𝜕𝑛  

(2-12) 

The key parameter is here αs, which varies from αs = −1, i.e., potential flow (or free-
vortex) velocity distribution with maximum velocity at the inner side, to αs = 1, i.e., 
forced-vortex with maximum velocity at the outer side (Blanckaert and de Vriend, 2003; 
Ottevanger et al., 2012). The rationale is that αs = −1 generally at the bend entrance, where 
the helical-flow production is stronger and the outward momentum transfer has still to 
affect the flow; as opposite, αs tends to 1 as the high-velocity thread shifts to the outer 
side of the bend, i.e., where the vertical profile of velocity is likely to be flattened and the 
production of helical-flow weakened. Accordingly, the dampening factor fD decreases 
for increasing αs (Figure 2-2b). Through the bend parameter β, fD also depends on 
hydrodynamic variables (Y and R) and on bottom friction (m). For increasingly sharp 
bends, fD decreases, indicating that non-linear effects become increasingly important in 
limiting the growth of helical flow. 

The non-linear model by Blanckaert and de Vriend (2003) has been conceived for 
reduced order models developed on curvilinear reference frames, typically used as 
meander-migration models, in which the secondary currents are parameterized based 
on momentum balance at the channel centreline. Ottevanger (2013) proposed to extend 
the model to the whole channel width by extending the secondary flow intensity 
estimated at the centreline modulated with empirical power-law weighting functions. 
Such an extension is limited to regular-shaped cross-sections and presumes the 
knowledge of the channel centreline and walls. Iterative procedures are required to deal 
with more complex geometries (Qin et al., 2019). The generalization of this nonlinear 
model to a form that is suitable to general-purpose 2D schemes is still to be sought. 
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2.2.4 A pure 2D approach and the treatment of banks 

Within the scope of general-purpose 2D depth-averaged models, which include the 
salient features of curvature-induced secondary flows, the approach used to account for 
impervious banks and the transversal distribution of the Dsn dispersive stress deserves 
some discussions.  

As well explained by Blanckaert (2001), it is known since Johannesson and Parker 
(1989a) that, in a channel bend, the Dxy dispersive stress must satisfy two conditions: i) it 
should be positive in the central region of the cross section, where the helical flow 
produces the highest transversal momentum flux, and ii) it should decay to zero toward 
the impervious banks, where the direction of secondary flow is mostly vertical and the 
velocity progressively reduces due to sidewall friction. When applying linear models for 
secondary currents to strongly curved flows, the helical flow intensity is generally 
overestimated when the (physically sound) hypotheses of no-slip condition is assumed 
(e.g., Blanckaert, 2001; Lien et al., 1999). Indeed, in the external part of the bend, the no-
slip condition amplifies the (negative outward) spanwise gradient of velocity, entailing 
a larger, streamwise-oriented, net stress at the outer side of the bend. 

A simple solution that has been often adopted in previous studies (Lien et al., 1999; 
Song et al., 2012) is adopting the free-slip condition at impervious banks. The spanwise 
gradient of velocity is reduced, and so it is the dispersive stress Dxy; unfortunately, this 
causes an unphysical momentum flux at the banks (Johannesson and Parker, 1989a). 
Moreover, while assuming a free-slip condition at the banks entails minor drawbacks in 
case of relatively large cross-sections, the sidewall friction plays a significant role in case 
of cross-sections with large aspect ratios, typical of artificial channels and laboratory 
flumes, and should be accounted for. 

Physics-based analytical solutions proposed in previous studies (e.g., Ikeda et al., 
1990) are unsuitable to general-purpose 2D depth-averaged models, for which the 
channel centreline and width, as well as the distance from the banks, cannot even be 
identified. Actually, the bank location can change substantially depending on the water 
level in typical compound cross-sections (e.g., passing from full-bank to flood 
discharge), as well as due to movable-bed dynamics in case of active (i.e., migrating, 
braided, anabranching) riverbeds.  

In general-purpose 2D models based on a Cartesian (i.e., not curvilinear) reference 
frame, only local variables (i.e., the flow depth and velocity, the radius of curvature R, 
etc.) can be used to estimate the helical flow strength (Jin and Steffler, 1993; Koch and 
Flokstra, 1980). Hence, here we explore the practical solution of implementing a model 
for secondary flow, including the associated non-linear saturation effects, based on local 
variables only. The effectiveness of such a pure 2D approach has to be verified by means 
of model applications (the reader is referred to Sect. 2.3 and 2.4). The basic idea is that 
considering the physics-based saturation effects, rather than the unphysical free-slip 
condition at sidewalls or other case-specific tuning parameters, could alleviate the 
overestimation of secondary flow that is produced in strongly curved bends when the 
no-slip condition acts at impervious banks. 
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Of course, providing a physically sound representation of the complex 3D 
phenomena occurring in strongly curved channel bends is beyond the scope of the 
present work. The goal is achieving a cost-effective, versatile, and useful tools for 
engineering applications. 

2.2.5 Advection-diffusion equation in the presence of secondary currents 

The advection-diffusion equation allows to determine the evolution in time and space 
of the vertically-averaged concentration, C, of tracers and substances transported by the 
flow. It is used to model suspended sediment, pollutant transport, and other transported 
quantities such as the vorticity ω (Sect. 2.2.2). The advection-diffusion equation can be 
written as: ∂𝑌𝐶∂𝑡 + ∇ ∙ 𝐶𝐪 − ∇ ∙ (𝑌𝜀𝑇∇𝐶) − ∇ ∙ (𝑌𝐃𝐃∇𝐶) = 𝑆 (2-13) 

where 𝛻 ∙ the 2D divergence operator, εT = νT / T is the turbulent diffusivity, commonly 
expressed as a function of the eddy viscosity, νT, and of the Schmidt number, T (Duan, 
2004), DD is an anisotropic diffusivity tensor that accounts for dispersion, and S is a 
source term. 

The dispersive-diffusion term is often neglected in the practice (i.e., DD = 0), and the 
turbulent diffusivity is tuned using the Schmidt-number as a calibration parameter for 
representing experimental data in general conditions (smaller values for the Schmidt 
number increase the mixing and vice-versa) (Duan, 2004; Hu et al., 2017). However, the 
curvature-induced helical flow enhances the lateral mixing (Engmann, 1986; Fischer, 
1969; Lee and Kim, 2012; Moncho-Esteve et al., 2017; Rishnappan and Lau, 1977). 
Particularly, large curvature and strong secondary currents entail a marked anisotropic 
diffusivity that needs to be modelled with a suitable parameterization (Demuren and 
Rodi, 1986; Duan, 2004). This generally suffices to make the calibration of the Schmidt 
number unnecessary (i.e., T = 1 can be assumed) in the case of channel bends. 

The principal components of the DD tensor, in the local (s, n) reference frame, can be 
expressed in the following general form: 𝐷𝐷𝑠𝑠 = 𝛼𝐷𝑠𝑢∗𝑌           𝐷𝐷𝑛𝑛 = 𝛼𝐷𝑛𝑢∗𝑌           𝐷𝐷𝑠𝑛 = 𝐷𝐷𝑛𝑠 = 0 (2-14) 

where 𝑢∗ is the friction velocity and αDs, αDn are proper parameters (Elder, 1959; Holly 
and Usseglio‐Polatera, 1984; Shin et al., 2020). Different formulations for αDs and αDn are 
available in the literature, depending on flow and environmental conditions, e.g., the 
shape of the velocity profile (Seo and Baek, 2004) or the presence of vegetation (Lou et 
al., 2020). Following Elder (1959), a common choice is αDs = 5.93. To account for the 
presence of helical flows, αDn can be estimated as a function of the transversal velocity at 
the free-surface, vns, as a result of depth-averaging (Fischer et al., 1979; Lee and Seo, 2013). 
Considering the vertical distributions of velocity expressed by Eqs. (2-4) and (2-5), 
results in 
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𝛼𝐷𝑛 = 16𝜅 (𝑣𝑛𝑠𝑢∗ )2    (2-15) 

Finally, by rotating the principal-component tensor onto the (x, y) reference frame, 
the diffusivity components DDij become (Alavian, 1986): 

𝐷𝐷𝑥𝑥 = 𝐷𝐷𝑠𝑠 𝑢2𝑤2 + 𝐷𝐷𝑛𝑛 𝑣2𝑤2              𝐷𝐷𝑥𝑦 = 𝐷𝐷𝑦𝑥 = (𝐷𝐷𝑠𝑠 −𝐷𝐷𝑛𝑛) 𝑢𝑣𝑤2 𝐷𝐷𝑦𝑦 = 𝐷𝐷𝑠𝑠 𝑣2𝑤2 + 𝐷𝐷𝑛𝑛 𝑢2𝑤2   (2-16) 

The advection-diffusion equation, enriched by the anisotropic diffusivity tensor DD, 
accounts for the additional mixing induced by the secondary circulations, yet a constant 
distribution of the concentration is assumed along the vertical direction. This is not 
always true when considering the transport of suspended sediments, which is also 
modelled by the same advection-diffusion equation. Generally, the concentration of 
suspended sediments is much higher in the lower part of the water column, so that the 
helical flow produces a net flux of sediment concentration in the transversal direction, 
towards the inner side of bends. Additional dispersive terms should be introduced in 
Eq. (2-13) to account for the vertical distributions of both the flow velocity and the 
concentration of suspended sediments (e.g., Rouse profile). The introduction of these 
additional terms is discussed in detail in Appendix D. 

2.2.6 The 2DEF finite element numerical model 

The different parameterizations of curvature-induced secondary currents are 
implemented in the framework of the 2DEF Finite Element hydrodynamic model 
(D’Alpaos and Defina, 2007; Defina, 2003; Viero et al., 2014, 2013). The model solves Eqs. 
(2-1), which constitute a modified version of the full shallow water equations, to deal 
with wetting and drying processes over irregular topography (Defina, 2000). The bottom 
friction is expressed using the Strickler-Manning formulation; it is treated semi-
implicitly to enhance model stability (Cea and Bladé, 2015; Valiani et al., 2002; Viero and 
Valipour, 2017). 

The computational domain is discretized with 2D triangular elements. A staggered 
scheme is used in which water levels are defined at the grid nodes and assumed to vary 
piecewise linearly through the domain; flat triangular elements, characterized by a 
constant elevation, convey the discharge among adjacent nodes. In the framework of 
semi-implicit, mixed Eulerian-Lagrangian scheme, in the momentum equation the 
material (Lagrangian) derivative of the depth-averaged velocity is replaced by the finite 
difference formulation: 
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D𝐰D𝑡 = 𝐰 −𝐰0∆𝑡  (2-17) 

where the subscript “0” indicates the terms at the previous time step and position 
(backward along the Lagrangian trajectory). Under the hypothesis of slowly varying 
flows, momentum equations are linearized and then solved for q = wY, which in turn 
are substituted into the continuity equation, and solved with a Finite Element Galerkin’s 
method (Defina, 2003). The semi-implicit nature of the scheme limits its applicability to 
subcritical flows, yet relaxes the Courant-Friedrichs-Lewy (CFL) number restriction on 
the computational time step. A single system of N algebraic equations, being N the 
number of nodes, is solved at each time step by a modified conjugate gradient method. 
Considering that the accuracy of the scheme allows for using relatively coarse meshes, 
the model turns out to be particularly efficient. 

2.2.6.1 Computation of the local streamline curvature 

The Lagrangian approach for convective terms is used also to estimate the local radius 
of curvature of the streamlines, basing on the spatial variation of the direction of the 
velocity (Bonetto and Defina, 1998). Denoting with  the angle of the velocity vector to 
the x axis (positive counter clockwise) and with R the local radius of curvature of the 
streamline (Figure 2-1b), the distance ds can be written as: 𝑑𝑠 = −𝑅 [𝜗(𝑠 + 𝑑𝑠) − 𝜗(𝑠)] = −𝑅 𝑑𝜗 (2-18) 

Observing that tan = v/u and cos = u/w, the derivative of  can be expressed in terms 
of velocity components as: 𝑑𝑑𝑠 (𝑣𝑢) = 𝑑𝑑𝑠 𝑡𝑎𝑛 𝜃 = 1𝑐𝑜𝑠2 𝜗 𝑑𝜗𝑑𝑠 = (𝑤𝑢)2 𝑑𝜗𝑑𝑠  (2-19) 

The local streamline curvature, 1/R, is then obtained by combining Eqs. (2-18) and 
(2-19): 1𝑅 = − 𝑑𝜗𝑑𝑠 = −(𝑢𝑤)2 𝑑𝑑𝑠 (𝑣𝑢) = − 𝑢2𝑤2 (1𝑢 𝑑𝑣𝑑𝑠 − 𝑣𝑢2 𝑑𝑢𝑑𝑠) = 1𝑤2 (𝑣 𝑑𝑢𝑑𝑠 − 𝑢 𝑑𝑣𝑑𝑠) (2-20) 

For slowly varying flows, Δs  w1Δt, and the spatial derivative of the velocity 
components can be approximated as: 𝑑𝑢𝑑𝑠|1 ≅ 𝑢1 − 𝑢0𝑤1𝛥𝑡 ;        𝑑𝑣𝑑𝑠|1 ≅ 𝑣1 − 𝑣0𝑤1Δ𝑡  (2-21) 

where the label “1” denotes the centre of a generic cell. Hence, making use of Eqs. (2-20) 
and (2-21), the local curvature is finally given by: 
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1𝑅1 ≅ 1𝑤13𝛥𝑡 [𝑣1(𝑢1 − 𝑢0) − 𝑢1(𝑣1 − 𝑣0)] = 1𝑤13𝛥𝑡 [𝑢1 𝑣0 − 𝑣1𝑢0] (2-22) 

2.2.6.2 Computation of the Reynolds turbulent stresses 

The horizontal components of Reynolds turbulent stresses are modelled with the 
Boussinesq approximation and the depth integrated eddy viscosity by Stansby (2003) 
and Uittenbogaard and van Vossen (2004) (see also Viero, 2019). The Reynolds terms in 
Eqs. (2-1) are 

𝑅𝑒𝑖𝑗 ≅ 𝜈𝑇𝑌 (𝜕𝑢𝑖𝜕𝑗 + 𝜕𝑢𝑗𝜕𝑖 ) (2-23) 

with indexes i and j denoting either x or y, 𝜈𝑇 the eddy viscosity, and ui = qi/Y the generic 
depth-averaged velocity component. Looking at the first equation in (2-1), under the 
hypothesis of smooth spatial variations of the eddy viscosity, the first Reynolds stress 
component becomes 𝜕𝑅𝑒𝑥𝑥𝜕𝑥 + 𝜕𝑅𝑒𝑥𝑦𝜕𝑦 ≅ 𝜈𝑇𝑌 [ 𝜕𝜕𝑥 (2𝜕𝑢𝑥𝜕𝑥 ) + 𝜕𝜕𝑦 (𝜕𝑢𝑥𝜕𝑦 + 𝜕𝑢𝑦𝜕𝑥 )] = 

                          = 𝜈𝑇𝑌 (𝜕2𝑢𝑥𝜕𝑥2 + 𝜕2𝑢𝑥𝜕𝑦2 ) + 𝜈𝑇𝑌 𝜕𝜕𝑥 (𝜕𝑢𝑥𝜕𝑥 + 𝜕𝑢𝑦𝜕𝑦 ) 
(2-24) 

According to the continuity equation in (2-1), the last right-hand side term is 
proportional to the temporal variation of the water level, and is negligible in case of 
slowly varying flows. Hence, the Reynolds stress can be estimated as 

[  
 𝜕𝑅𝑒𝑥𝑥𝜕𝑥 + 𝜕𝑅𝑒𝑥𝑦𝜕𝑦𝜕𝑅𝑒𝑦𝑥𝜕𝑥 + 𝜕𝑅𝑒𝑦𝑦𝜕𝑦 ]  

 ≅ 𝜈𝑇𝑌 [   
 𝜕2𝑢𝑥𝜕𝑥2 + 𝜕2𝑢𝑥𝜕𝑦2𝜕2𝑢𝑦𝜕𝑥2 + 𝜕2𝑢𝑦𝜕𝑦2 ]   

 = 𝜈𝑇𝑌∇2𝐮 (2-25) 

Considering that these terms have to be computed for each element of an 
unstructured triangular mesh, the divergence theorem is used to obtain the average cell 
value of the Reynolds stresses: 𝜈𝑇𝑌𝐴𝑒 ∫ 𝛻2𝐮 𝑑𝐴𝐴𝑒 = 𝜈𝑇𝑌𝐴𝑒 ∫ 𝛻𝐮 ⋅ 𝐧𝛤 𝑑𝛤𝛤𝑒 ≈ 𝜈𝑇𝑌𝐴𝑒 ∑𝛻𝐮𝑘 ⋅ 𝐧𝑘 𝐿𝑘𝑘  

(2-26) 

in which Ae is the area and 𝛤𝑒 the boundary of the computational element, 𝐧𝛤 is the unit-
vector normal to the cell boundary (positive outward), k identifies each of the three cell 
sides, whose length is Lk. 
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Denoting with O the centroid of the cell and with Ok the centroid of the cell adjacent 
to the k-th side of the cell, and with dk the projection of the segment 𝑂𝑂𝑘̅̅ ̅̅ ̅̅  onto nk, the last 
term of Eq. (2-26) becomes 2𝜈𝑇𝐴𝑒 ∑(𝐮𝑂𝑘 − 𝐮𝑂) 𝑝𝑘𝐿𝑘𝑑𝑘𝑘  

(2-27) 

in which the weight pk = min(Yk/Y; 1) accounts for the fact that Reynolds stresses take 
only place at the wet interface shared by adjacent cells (e.g., if the adjacent cell is dry, no 
Reynolds stress occurs). For cell sides belonging to the mesh boundary, assuming 𝐮𝑂𝑘 =𝐮𝑂 (or, equivalently, pk = 0) allows simulating the slip-condition. 

2.2.6.3 Computation of the dispersive stress terms 

Similar to the Reynolds stresses, the computation of dispersive stresses in Eqs. (2-1) 
requires a suitable evaluation of the spatial derivatives of the Dij terms defined at 
Eq. (2-7). Denoted the dispersive terms with  

𝐃 = [𝐷𝑥𝑥 𝐷𝑥𝑦𝐷𝑦𝑥 𝐷𝑦𝑦] (2-28) 

the dispersive stresses are given by ∇ ∙ 𝐃. The average of the dispersive stresses for each 
computational cell can be evaluated making use of the divergence of D: 1𝐴𝑒∫ ∇ ∙ 𝐃 𝑑𝐴𝐴𝑒 = 1𝐴𝑒∫ 𝐃 ∙ 𝐧𝛤 𝑑𝛤𝛤𝑒 ≈ 1𝐴𝑒∑𝐃𝑘 ⋅ 𝐧𝑘 𝐿𝑘𝑘  

(2-29) 

in which Dk is the tensor of dispersive terms evaluated at the center of the k-th cell side. 
This can be obtained as the average of the D terms, previously computed for adjacent 
cells and weighted with the distance of centroids to the center of the k-th cell side. 

Concerning the dampening factor, which accounts for the saturation of secondary 
flow in case of sharp bends, the key point is the computation of the transversal gradient 
of the velocity, which appears in Eq. (2-12) within αs, and is equal to ∂w/∂n = ∇w ∙n, with 
n the unit vector normal to the local flow direction. Making use of the divergence 
theorem, for each computational cell the average value of the velocity gradient is 
evaluated as 1𝐴𝑒∫ ∇𝑤 𝑑𝐴𝐴𝑒 = 1𝐴𝑒∫ 𝑤𝐧𝛤 𝑑𝛤𝛤𝑒 ≈ 1𝐴𝑒∑𝑤𝑘 𝐧𝛤𝑘 𝐿𝑘𝑘  

(2-30) 

where the velocity at the side centre, wk, is computed as the average of the w at adjacent 
cells weighted with the distance of centroids to the center of the k-th cell side, Lk is the 
length of the k-th cell side, and nΓk is the outward unit vector normal to the cell side. 
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2.2.6.4 Wall function to account for no-slip condition at sidewalls 

At the mesh boundaries, the model allows imposing a classical slip conditions, or to 
use a wall function to account for additional friction exerted by sidewalls. In the latter 
case, an additional stress component, parallel to the wall direction, is added to the 
momentum balance of wall-adjacent elements. It is computed as (Wu et al., 2000): 

𝜏𝑤𝑎𝑙𝑙 = 𝜌𝑤2 [ 𝜅ln (30 ∙ 𝑑𝑤𝑎𝑙𝑙𝑒𝑠 )]
2
 (2-31) 

where es is the equivalent sand grain roughness of lateral walls and dwall is a wall-distance 
within the logarithmic layer (see Figure 2-1c), assumed equal to 

𝑑𝑤𝑎𝑙𝑙 = 50 𝜈 𝑢∗  (2-32) 

where ν is the kinematic viscosity of water, and u* the shear velocity. For each grid cell, 
the wall shear stress is applied on the surface Y·bwall, being bwall the length of the vertical 
wall. 

2.2.6.5 Numerical scheme for the transport-diffusion equation 

The transport-diffusion equation (Sect. 2.2.5) is solved using a conservative, second-
order in-space numerical scheme. The scheme is equivalent to that described by Casulli 
and Zanolli (2005), with the substantial difference that variables are located oppositely 
in the two staggered meshes. In Casulli and Zanolli (2005), the model cells are control 
volumes that exchange fluxes through the cell-sides; in the present model, the triangular 
elements convey fluxes from a node to the others, or from two nodes to the remaining 
one. The second order accuracy in space, for the advective terms, is achieved using an 
upwind, total variation diminishing (TVD) scheme; to avoid spurious oscillations, the 
SUPERBEE limiter is applied based on two consecutive gradients of nodal tracer 
concentration. For each node of the grid, the preliminary step is computing the upstream 
concentration as the average concentration of all the upstream nodes, weighted with the 
value of incoming water discharge (Casulli and Zanolli, 2005). Then, for each element, 
the direction of the velocity vector determines each couple of nodes that exchange flow 
and tracer with each other, and the concentration value at these two connected nodes is 
completed with the upstream concentration. The two consecutive gradients allow 
applying the TVD limiter, and the limited gradient of concentration is finally used to 
compute the tracer flux between nodes. 
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2.2.6.6 Bedload Transport 

The bed evolution module of the 2DEF model, described in Defina (2003), is based on 
the Exner sediment balance equation: 

(1 − 𝑛) 𝜕𝑧𝑏𝜕𝑡 + 𝛻 ∙ 𝐪𝐛 = 0 (2-33) 

where n is the bed sediment porosity, zb the bottom elevation (see also Appendix B for a 
detailed description of the techniques adopted to evaluate the bottom elevation in case 
of staggered grids), and qb the volumetric sediment transport rate per unit width, 
expressed as (Struiksma, 1985): 

|𝐪𝐛| = 𝑞𝑏0 (1 − 𝜒𝑐𝑓 𝜕𝑧𝑏𝜕𝑠 ) (2-34) 

being cf the friction coefficient (cf = KS2Y4/3/g) and χ an empirical factor to account for the 
effect of longitudinal slope on transport rate (χ = 0.03 according to Crosato and 
Struiksma, 1989). The effect of the longitudinal slope on the sediment transport rate, and 
the possible corrections to account for it, are discussed also in Appendix C. As evaluating 
the bed slope is not straightforward in case of staggered grids, different techniques to 
improve its estimation has been investigated and implemented in the model (see 
Appendix B). The sediment transport rate, qb0, is evaluated with a continuous variant 
(Carniello et al., 2012) of the threshold-based Meyer-Peter and Müller (MPM) formula: 

𝑞𝑏0 = 8√𝑔𝑑𝑠3(𝑠 − 1) 𝑇1.5       with     𝑇 = −𝜃𝐶 + √𝜃𝐶4 + 𝜇𝜃44
 (2-35) 

where ds is the characteristic (median) sediment diameter, s = ρs/ρ the relative density 
of sediments, μ the ripple factor (Vermeer, 1986), θ the Shields parameter, and θC the 
threshold value for incipient bedload transport. Compared to the original MPM 
formulation, the continuous variant provides smoother (hence more stable), practically 
equivalent solutions. 

The components of the sediment rate, qbx and qby, are obtained from |qb| as a function 
the direction of sediment transport, which in turn depends on the near-bed flow velocity. 
In channel bends and meandering rivers, using the mean velocity of the primary flow to 
estimate the bedload transport is often incorrect since the curvature-induced secondary 
flow can significantly affect the flow (and sediment) direction at the bottom (Abad et al., 
2008; Kitanidis and Kennedy, 1984). The inward-oriented velocity at the bottom is the 
main cause of bend scour and of point-bar accretion, respectively at the outer at the inner 
sides of bends (Bathurst et al., 1977; Engel and Rhoads, 2012; Rozovskii, 1957). 

Empirical corrections have been proposed in literature for representing the deviation 
of bedload transport to the mean flow velocity. Olesen (1987) suggested the following 
angular correction:  
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∆𝛽 = 𝐴𝑐 𝑌𝑅 (2-36) 

where Ac is a parameter typically assumed in the range 7 ÷ 12. Accordingly, the 
bottom velocity can be estimated as: 𝐰b = (𝑢 + ∆𝛽 ∙ 𝑣; 𝑣 − ∆𝛽 ∙ 𝑢) (2-37) 

Such an approach still finds widespread applications in hydro-morphological models 
(Vanzo et al., 2021). Yet, a major limitation comes from the direct dependence on the 
local streamline curvature, as in the instantaneous-adaptation approach for secondary 
flows (Sect. 2.2.2), which may produce unphysical results in case of large curvatures 
(inertia and saturation are not considered). Moreover, the bottom characteristics, such as 
the bed roughness that shape the vertical profile of flow velocity, is not accounted for 
explicitly. As a consequence, such a correction model needs, at least, robust and site-
specific calibration. 

Alternatively, when curvature-induced helical flow is modelled effectively, the 
bottom deviation angle Δβ can be evaluated depending on the near-bed transversal 
velocity component. This is expected to provide a more accurate estimation of bedload 
than using empirical, local corrections (Wang and Tassi, 2014), as inertia, saturation, and 
vertical velocity profiles can be all accounted for. According to the linear velocity profile 
of Eq. (2-5), the transversal velocity component at the bottom is opposite to that at the 
free-surface, i.e., -vns. The near-bed velocity becomes equal to 𝐰b = (𝑢𝑏; 𝑣𝑏) = (𝑢 + 𝑣𝑛𝑠∗ ∙ 𝑣; 𝑣 − 𝑣𝑛𝑠∗ ∙ 𝑢) (2-38) 

and it forms an angle 𝛿 = arctan( 𝑣𝑏/𝑢𝑏) to the x axis. The direction of sediment 
transport, α, is also influenced by the bed slope (Baar et al., 2018; Chavarrías et al., 2019), 
which is accounted for according to Struiksma (1985): 

𝛼 = arctan [sen(𝛿) − 1𝑓(𝜃) 𝜕𝑧𝑏𝜕𝑦cos(𝛿) − 1𝑓(𝜃) 𝜕𝑧𝑏𝜕𝑥 ] (2-39) 

The function f(θ) weights the influence of the transverse bed slope and is estimated 
as (Talmon et al., 1995): 𝑓(𝜃) = 𝜁 ⋅ √𝜃         with     𝜁 = 9(𝑑𝑠/𝑌)0.3 (2-40) 

Besides accounting for the effect of longitudinal and transversal slopes, the model 
also includes a sub-model for sediment redistribution in case of bed slope exceeding the 
repose slope (see Appendix C), which allows simulating a specific mechanism of bank 
erosion and retreat (Abderrezzak et al., 2016). 
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2.3 Results 

2.3.1 Test with fixed-bed, mild-curvature, laboratory experiments 

The effectiveness of secondary flow parameterizations described in the previous 
section is first verified by comparing the hydrodynamic field, modelled with different 
approaches, to the laboratory data from the RIPRAP test facility experiment (Bernard 
and Schneider, 1992; Finnie et al., 1999).The RIPRAP channel is L = 274 m long and 
B = 5.27 m wide, with 2:1 bank slope in the lower part of lateral walls (Figure 2-3). The 
four bends (90° and 135° right wise, 90° left wise and 135° right wise) have a constant 
centreline radius of curvature R = 15.2 m. The longitudinal slope is 0.216 % and the 
Strickler roughness coefficient is KS =38.5 m1/3/s.  

The numerical mesh is made of 6,293 nodes and 11,528 triangles, with mean linear 
size of 45 cm (i.e., channel width to cell-side-length ratio, B/Δx, of about 12). The model 
of Odgaard (1986) is used for the source terms in Eq. (2-10) and (2-11) (see also Table 
2-1), and the wall function of Eq. (2-31) is used to enforce the no-slip condition at the 
lateral boundaries, thus accounting for the presence of side walls. As boundary 
conditions, constant flowrate (Q = 4.25 m³/s) and water depth (YD = 0.8 m) are imposed 
at the inlet and outlet sections, respectively. 

Figure 2-4 shows the spanwise profiles of depth-averaged velocity, in steady state 
conditions, for the 11 cross-sections of Figure 2-3; the experimental data (red dots, from 
Finnie et al., 1999) are compared with model results obtained without considering 
dispersive stresses (dotted lines), with the instantaneous-adaptation (solid lines), and 
with the vorticity transport (dash-dotted lines) approaches. For the same cases, the plan 
view of Figure 2-5 shows the location of the main stream (high-velocity thread). In 
Appendix A (Supplementary Material), Figure 2-25 highlights the importance of using a 
wall function to account for the resistance induced by sidewalls, and Figure 2-26 and 
Figure 2-27 the performance of the different formulations, collected in Table 2-1, for the 
source terms of Eq. (2-10) and (2-11). 

 

Figure 2-3. The RIPRAP facility channel (Finnie et al., 1999) with numbered cross-

sections. 
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Figure 2-4. Transversal profiles of depth-averaged velocity in the RIPRAP test (Finnie et 

al., 1999): measured data (red dots) and modelled profiles without dispersive terms (dotted 

lines), with the instantaneous-adaptation approach (solid lines) and with the vorticity-

transport approach (dash-dotted lines). The relative transversal coordinate spans the channel 

width from the left bank. 

Figure 2-4 confirms that accounting for curvature-induced secondary flow is 
necessary to obtain reasonable transversal velocity profiles in the presence of bends. 
While the difference with a classical 2D formulation without dispersive terms is striking, 
the local instantaneous-adaptation and the vorticity-transport approaches perform 
similarly to each other; they both reproduce the experimental data very well, with the 
vorticity-transport approach slightly retarding the development of the secondary flow, 
and in turn the outer shift of higher velocities, at the beginning of bends (see Sect. 2, 6, 
and 10). The mean RMSE for the 11 sections is 0.224 m/s without dispersive terms 
0.109 m/s using the local approach and 0.123 m/s using the vorticity-transport approach. 

The dispersive stresses in the SWEs produce deceleration of the flow in the inner part 
and acceleration at the outer part of the bend (Dietrich and Smith, 1983), thus shifting 
the high-velocity thread toward the outer side of bends compared to the simulation 
without dispersive terms (Figure 2-5). Figure 2-5 also shows one of the main differences 
between the instantaneous-adaptation and the vorticity-transport approaches; by 
looking at the undisturbed flow approaching the first bend, the outward shift of the 
high-velocity thread is faster with the local approach (Figure 2-5a), as it doesn’t account 
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for rotational inertia. On the contrary, the vorticity-transport approach can account for 
the phase lag, which becomes more important in the last part (and downstream) of 
bends. Indeed, the vorticity-transport approach (Figure 2-5b) shows a persistent 
deviation of the high-velocity thread well after the bend (i.e., when there is no more 
curvature of the streamlines). In the case of multiple subsequent bends, the residual 
helical flow interacts with the secondary current that grows in the following bend (Abad 
and Garcia, 2009), thus increasing or decreasing the intensity of the helical flow 
depending on the curvature sign of successive bends. Passing from the first to the second 
bend, the high-velocity thread returns to the channel centre with the local approach, 
whereas it remains at the outer (left) side of the channel by transporting the vorticity. On 
the contrary, the change in curvature sign in the two last bends produces a retarded 
outward shift of the high-velocity thread in Figure 2-5b. 

 

Figure 2-5. Main stream flow (velocity higher than 1.15 m/s) for the model without the 

dispersive terms (red) and a) with the instantaneous-adaptation approach (blue), b) with the 

vorticity-transport approach (green) for curvature-induced secondary flow. 

In the RIPRAP experiment, the width ratio Y/B ≈ 0.2 is quite low; notwithstanding, 
the sidewalls of the channel affect significantly the transversal velocity profile. As shown 
in Figure 2-25 (Appendix A. Supplementary Material), without including a wall function 
for the boundary elements, the model overpredicts the flow velocity close to the walls, 
and at some sections this overprediction becomes larger when including the dispersive 
stresses for curvature-induced helical flow. 

The different formulations implemented for the source terms kP and kD in Eq. (2-10) 
and (2-11), reported in Table 2-1, produce very similar results. The different solutions 
become nearly indistinguishable both using the instantaneous-adaptation and the 
vorticity-transport approach (Figure 2-26 and Figure 2-27 in Appendix A: 
Supplementary Material). 

2.3.2 Test with fixed-bed, strong-curvature, laboratory experiments 

In strongly curved bends, the strong secondary circulations produced by the large 
streamline curvature flatten the vertical profile of velocity, thus weakening the 
mechanism of helical-flow production in what is called the saturation of secondary flows 
(Blanckaert and de Vriend, 2003).  
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Figure 2-6. a) The EPFL channel (Blanckaert and de Vriend, 2003), and b) the Rozovskii 

(1957) channel, with numbered cross-sections. 

We use the experiments of Blanckaert and de Vriend (2003) and Rozovskii (1957), in 
which the curvature is strong and the saturation effect plays a key role, to check the 
model accuracy in terms of secondary circulation strength and spatial pattern. 

The Ecole Polytechnique Fédérale Lausanne (EPFL) channel (Blanckaert and de 
Vriend, 2003) has a length L = 19.7 m and a width B = 1.3 m, with vertical side walls. The 
bend develops for 193° with a constant curvature (radius R = 1.7 m at the centreline, 
Figure 2-6a). For the experiment here considered, the bottom is flat and fixed, and the 
Strickler coefficient is KS = 60 m1/3/s. Three different steady-flow experiments have been 
conducted with inflow of 56, 89, and 104 l/s and a downstream water depth of 10.9, 16.0, 
and 21.3 cm, respectively. With fixed upstream discharge and downstream water level, 
numerical simulations have been run until steady state conditions are attained. For the 
three scenarios, the bend sharpness is Y/R = 0.065, 0.095, and 0.125. 

The dampening factor, fD, introduced in Sects. 2.2.2 and 2.2.3 is computed for each 
computational cell based on the local flow variables, in particular on the transversal 
gradient of longitudinal velocity, αs. Figure 2-7 shows that, in the first part of the bend, 
the high-velocity thread is located at the inner side of the bend (αs < 0 as in a potential 
flow), vorticity is still developing and the interaction with the primary flow is negligible: 
the production of streamwise vorticity is maximum (fD ≈ 1). In the second part of the 
bend, as the high-velocity thread is moved outward by the momentum transfer 
associated to the helical flow (αs progressively increases), the non-linear saturation 
feedback mechanism becomes important and the production of vorticity is reduced 
(fD << 1). At the downstream end of the bend, the high-velocity thread is close to the outer 
bank and αs ≈ 1. Expectedly, by increasing the bend sharpness Y/R, the saturation effect 
develops faster and becomes stronger (second and third column in Figure 2-7), with the 
consequence that the helical flow intensity does not grow much with Y/R. 

In Figure 2-8, the model results are compared with experimental data in terms of the 
non-dimensional quantity ⟨fn2⟩ (angle brackets highlight depth-averaging), which 
measures the strength of the secondary circulation and is defined as (Blanckaert and de 
Vriend, 2003): 

〈𝑓𝑛2〉 = 〈𝑣𝑛𝑠2 〉(𝑤𝑌𝑅 )2 (2-41) 
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Figure 2-7. Spatial distribution of the depth-averaged flow velocity, w, of the normalized 

transversal gradient of velocity, αs, of the dampening factor, fD, and of the transversal velocity 

at the free surface, vns, for a) Q = 56 l/s, b) Q = 89 l/s, and c) Q = 104 l/s. Note that the αs 

field has been masked where the local curvature radius, R, is larger than 20 m (both R and αs 

tend to infinity in straight reaches). 

Comparing the results with experimental data, the non-linear model allows to predict 
the magnitude of the secondary flow far more precisely than the linear model, 
confirming the effectiveness of the present approach. It has to be said that, while ⟨fn2⟩ 
magnifies the secondary flow strength (thus the difference between linear and non-linear 
models), the change in the flow field obtained by accounting for non-linear saturation 
model is quite small in the first case (Q = 56 l/s), and more important for the largest 
discharge values. This suggests that accounting for non-linear effects improves the 
model predictions, and becomes fundamental for larger values of the bends sharpness.  
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Figure 2-8. Magnitude of the secondary current, ⟨fn
2⟩. Comparison of experimental data 

(symbols, adapted from Blanckaert and de Vriend, 2003) with the results of the linear (dashed 

lines) and non-linear (solid lines) models, for the three discharge values considered in the 

experiments. 

The channel used by Rozovskii (1957) has a length L = 11.5 m and a width B = 0.8 m, 
with vertical side walls. The bend develops for 180° with a constant curvature (radius 
R = 0.8 m at the centreline, Figure 2-6b). For the experiment here considered, the bottom 
is flat and fixed, and the Strickler roughness coefficient is KS = 70 m1/3/s. The inlet velocity 
is w = 0.26 m/s, and the downstream water depth is Y = 5.1 cm. The bend sharpness is 
Y/R ≈ 0.07. 

The model results, obtained with the no-slip condition at the sidewalls, are compared 
with the measured data in terms of depth-averaged velocity at different cross-sections 
(Figure 2-9), and in terms of water surface elevation along the channel at the inner and 
outer sidewalls (Figure 2-10). The model without dispersive terms overpredicts the 
velocity peak at the inner part of the bend, as can be noted especially between Section 5 
and 11 in Figure 2-9. Introducing the dispersive terms with a linear formulation (i.e., 
fD = 1 in Eq. (2-10) or (2-11)), the high-velocity thread is shifted to the outer side of the 
bend (dash-dotted lines), overestimating the observed redistribution of velocity, 
especially in the final part of the bend. Including the representation of the saturation 
mechanisms leads to a general improvement of model predictions. The free-surface 
profiles in Figure 2-10 show that a classical 2D model without dispersive terms tends to 
underpredict the head losses. The linear model for secondary currents leads to a 
significant overestimation of head losses, probably because the flow is much confinated 
toward the outer side of the bend. Again, including the non-linear effects improves the 
model prediction. 
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Figure 2-9. Transversal profiles of depth-averaged velocity for the Rozovskii (1957) 

experiment (red squares), compared with model results without dispersive stresses (dotted 

lines), with the linear, instantaneous-adaptation approach (dash-dot lines), and with the non-

linear model (solid line). The transversal coordinate spans the channel width from the left to 

the right bank.  

 

Figure 2-10. Longitudinal profiles of water surface elevation at the outer (black lines) and 

inner (blue lines) sides of the bend. Red squares are the data measured by Rozovskii (1957); 

model results are shown without considering dispersive terms (dotted lines), with the linear 

model for secondary currents (dash-dot lines), and including the non-linear saturation effect 

(solid lines). 

The interest here is checking the effectiveness of the pure 2D non-linear model for 
secondary flow in terms of transversal distribution of dispersive stresses, as discussed 
in Sect. 2.2.4. For the experiment by Blanckaert and de Vriend (2003) with a discharge of 
89 l/s, Figure 2-11a shows the spanwise distribution of the Dsn dispersive term at 90° from 
the beginning of the bend; the red line shows the measured data as reported by 
Ottevanger (2013). Linear models, either analytical (Ottevanger, 2013) or the present 
numerical scheme (green and black dash-dotted lines, respectively) overrate the 
dispersive stress, especially close to the sidewalls where it has to decay to zero 
(Blanckaert, 2001; Johannesson and Parker, 1989a) Prediction from the non-linear model 
with the no-slip condition at sidewalls (black solid line) is in good agreement with the 
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empirical formulation by Ottevanger (2013), and not too far from the measured data. A 
comparison among the same models and formulations, for the experiment by Rozovskii 
(1957), is reported in Figure 2-11b in terms of transversal velocity at the free-surface, −vns, 
which stands for the helical flow intensity. Although measured data are not available, it 
emerges that i) linear formulations (dash-dotted lines) lead to excessively strong 
circulation, ii) the no-slip condition at the sidewalls reduces the momentum 
redistribution close to the banks (black lines), and iii) accounting for both the sidewall 
friction and the non-linear saturation effects (black solid line) improves the physical 
soundness of the solution.  

 

Figure 2-11. a) Transversal profiles of the Dns/Y dispersive term for the 89 l/s experiment 

by Blanckaert and de Vriend (2003) at 90° from the beginning of the bend. The red line 

resembles the experimental data reported by Ottevanger (2013). b) Transversal profiles of 

the helical flow intensity (in terms of −vns) for the Rozovskii (1957) experiment at cross-

section 6. In both panels, dash-dotted lines denote linear formulations; for the present model, 

black and blue lines correspond to no-slip and free-slip condition at the sidewall, respectively; 

the green lines are the theoretical profiles from Ottevanger (2013), referring to a linear model 

and its power-law extension (dash-dotted and solid lines, respectively). 

2.3.3 Transport of passive tracers in curved channel 

To test the model effectiveness in reproducing the transport of a generic passive tracer 
in presence of curvature-induced secondary currents, we use the experiments of Chang 
(1971), which have been subject to many model applications (see e.g., Begnudelli et al., 
2010; Duan, 2004; Duan and Nanda, 2006; Ye and McCorquodale, 1997). The flume is 
35.4 m long and it has two opposite 90° bends with a radius of curvature R = 8.53 m; the 
cross-section is rectangular and the width is B = 2.34 m. The mean velocity on the channel 
is U = 0.367 m/s and the water depth is Y = 0.115 m, which are obtained imposing an 
upstream inflow of 0.0988 m³/s, a downstream water level of 0.115 m, and running the 
model until steady state conditions are attained. A conservative tracer is then introduced 
with point injections located at 3 different transversal coordinates (the injection points 
are named IP1, IP2, and IP3 in Figure 2-12), prescribing a constant value for the flowrate 
of the passive tracer (QC = 0.01 m³/s).  
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Figure 2-12. Layout of the flume used in the experiments by Chang (1971), with the 

location of the three point injections (IP1, IP2, IP3) considered in the experiments. 

The mesh resolution is a key factor for controlling the numerical diffusion in transport 
problems (Begnudelli et al., 2010; Casulli and Zanolli, 2005). To test the mesh-
dependency of the model solution, three different mesh grids have been used, with 3,396 
(mesh 1x), 13,349 (mesh 4x), 49,587 (mesh 16x) elements, respectively. These are 
obtained through halving the sides of each elements (i.e., the number of elements is 
about 4 times greater at each refinement). For the three meshes, the channel width to 
cell-side-length ratio, B/Δx, is about 10, 20, and 40. Figure 2-28 and Figure 2-29 in 
Appendix A (Supplementary Material) show that only the finest mesh (16x, channel 
width to cell-side-length ratio of about 40) leads to reliable results; with the coarser 
meshes (1x and 4x), numerical diffusion becomes unacceptably high. 

Using the finest mesh, the concentration profiles (Figure 2-13) are in good agreement 
with the experimental data of Chang (1971). The comparison of solutions obtained with 
and without considering the curvature-induced dispersion (grey and black lines in 
Figure 2-13) highlights the enhanced diffusion generated by the helical flow, well 
described introducing the dispersive terms in the transport-diffusion equation.  

When a proper mesh resolution is used, the dispersive terms in the advection-
diffusion equation allow reproducing the correct tracer distribution in the curved 
channel with the Schmidt number T = 1. Contrarily, to match the experimental data 
without using these dispersive terms, the Schmidt number has to be tuned to lower 
values (Figure 2-30 in Appendix A: Supplementary Material), so as to increase the 
spanwise diffusion artificially (Rodi, 2017; Ye and McCorquodale, 1998). 

 

Figure 2-13. For the Chang (1971) experiment with point injection IP1 and for the finest 

mesh (16x), transversal profiles of relative concentrations for Sections 7, 9, 11, and 13: 

experimental data (red dots) and model results without (grey lines) and with (black lines) 

dispersive terms in the momentum advection-diffusion equations. 
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Figure 2-14. For the Chang (1971) experiment, depth-averaged normalized concentration 

obtained with the finer mesh 16x. For IP1, with (a) and without (b) dispersive terms in the 

momentum and transport-diffusion equations; for IP2 (c) and IP3 (d) with dispersive terms. 

The top views of Figure 2-14a,b, referring to the same scenarios of Figure 2-13, suggest 
that the strength of the secondary flow is modest in the experiments of Chang (1971). 
This is confirmed by looking at Figure 2-14c,d (lateral injection points IP2 and IP3): the 
tracer remains almost confined closed to the lateral walls, according to the experimental 
data and numerical results shown by Duan (2004) and Moncho-Esteve et al. (2017). 

Finally, the role of the longitudinal dispersion terms (Ds in Eq. (2-14)) is highlighted 
in Figure 2-31 in Appendix A (Supplementary Material) by releasing the tracer at point 
IP1 starting at t = 0, on a steady baseflow. With Ds = 0, the leading front of the “coloured” 
water reveals that the high-velocity thread is located at the inner side (free-vortex flow, 
weak velocity redistribution performed by the secondary current); the additional 
anisotropic, streamwise diffusion provided by the Ds terms makes the leading front 
faster and closer to the channel centreline. 

2.3.4 Bedload transport – Laboratory experiments 

The parametrization of curvature-induced helical flows allows to estimate the near-
bed transversal component of the flow velocity, thus predicting more precisely the 
direction of the bedload transport. To analyse this influence on the bed evolution, we 
considered the experiment performed by Koch and Flokstra (1980) at the Laboratory of 
Fluid Mechanics (LFM) channel. The channel has a rectangular cross-section (width 
B = 1.7 m) and a U-shape bend with curvature radius R = 4.25 m measured at the 
centreline. The longitudinal bed slope is 0.18% and the Strickler roughness coefficient is 
KS = 36 m1/3/s. The discharge is Q = 0.17 m³/s and the downstream water depth is 
Y = 0.2 m. The bed sediment has a median diameter ds = 0.78 mm and a relative density 
s = 2.65.  

The mesh has 1,719 nodes and 3,040 elements, corresponding to about 8 elements per 
channel width. The simulations started from a previously-computed steady flow over a 
bed with only streamwise slope; then, keeping fixed the inflow discharge and the 
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downstream water level, the bed is left free to evolve until an equilibrium state is 
reached. 

Without any corrections to account for helical flow, the bottom shear stresses are 
aligned to the primary flow (Figure 2-15a). Introducing the secondary current correction, 
bottom stresses change the direction inward (Figure 2-15b). This produces an imbalance 
in the bedload transport, with leads to scouring at the outer side and bed accretion at the 
inner part of the bend. 

 

Figure 2-15. Water velocity vectors at the bottom without (a) and with (b) correction for 

the secondary flow. 

The bed topography at equilibrium is shown in the colour maps of Figure 2-16 in 
terms of erosion/deposition with respect to the initially flat bed, ∆z, and in the 
transversal profiles of bed elevations reported in Figure 2-17 (see also Figure 2-32 in 
Appendix A: Supplementary Material, which plots the difference among computed and 
measured values of ∆z). With respect to the experimental data (Figure 2-16a), a 2D model 
with no corrections for the bedload direction leads to completely unreliable results: only 
the accelerations and decelerations associated to the free-vortex flow field at the 
beginning and at the end of the bend produce some modification of the bed (Figure 
2-16b). The empirical correction of bedload direction proposed by Olesen (1987), with 
Ac = 10 in Eq. (2-36), tends to overestimates both erosion and depositions (Figure 2-16c); 
especially, as this correction is based on the local radius of curvature, scour and 
deposition start at the very beginning of the bend (no phase lag) and proceed uniformly 
along the bend (in the experiment scour and erosion slightly decrease). At 135° the 
computed ∆z is over 3 times larger than the measured one (Figure 2-17). 

The explicit parametrization of the secondary current and the correction of bedload 
direction proposed by Bernard and Schneider (1992), leads to better estimations; 
compared to the instantaneous-adaptation approach (Figure 2-16d), the vorticity-
transport approach in Figure 2-16e correctly reproduces the initial phase lag and the 
increased scour at the end of the bend, close to the outer wall. The cross-sections in 
Figure 2-17 show that the inclusion of secondary flow, according to Bernard and 
Schneider (1992), well reproduces the inner aggradation, whereas the outer scour is 
underestimated. 
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Figure 2-16. Bed elevation with respect to the undisturbed flat bed (∆z >0 denotes 

deposition, ∆z <0 erosion). a) Experimental data reproduced from Koch and Flokstra (1980); 

b) model results without any correction for bed-load direction; c) model results with 

empirical bed-load direction correction (A = 10 in Eq. (2-36)); d) model results with 

dispersive terms correction (instantaneous-adaptation approach), e) model results with 

dispersive terms correction (vorticity-transport approach). 

 

Figure 2-17. Transversal profiles of bed elevation at 45°, 90°, and 135°with the results 

provided by different modelling approaches compared to the Koch and Flokstra (1980) 

experimental data. 

Finally, Figure 2-18 shows a comparison of the scour/deposition produced by the 
three different models for secondary flow here implemented. The bed evolution is 
estimated using different parametrization for secondary currents intensity. Compared 
to Bernard and Schneider (1992), which is in good agreement with experimental data, 
the models of Kalkwijk and Booji (1986) and Odgaard (1986) slightly underestimate the 
magnitude of ∆z, yet with a very similar spatial pattern (see also Figure 2-33 in Appendix 
A: Supplementary Material, which plots the difference among computed and measured 
values of ∆z). 
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Figure 2-18. Bed topography in terms of erosion/deposition with respect to a flat bed, 

computed with the dispersive terms corrections computed using the instantaneous-adaptation 

approach and the formulations of (a) Bernard and Schneider (1992), (b) Kalkwijk and Booji 

(1986), and (c) Odgaard (1986). 

2.3.5 Real-world case study: fixed and mobile bed 

The model is finally applied to a real-world case study, the ~50 km long reach of Po 
River (Northern Italy) between the Mincio and the Panaro confluences, i.e., from 12 km 
upstream of Ostiglia to 8 km downstream of Ficarolo (Figure 2-19). The meandering 
reach has been modelled using a 2D triangular grid with 58,570 nodes and 114,452 
elements. We focus on three meandering bends, denoted as M1, M2, and M3 in Figure 
2-19. Table 2-2 reports additional details. The bathymetry, derived from a 2004 
multibeam survey merged with a 2008 LiDAR survey, is shown in Figure 2-34 in 
Appendix A (Supplementary Material). 

A fixed water level, derived from an available rating curve, is used as downstream 
boundary condition. We then considered three different discharge scenarios, named 
Q_3990, Q_7400, Q_11500 (where Q denotes the discharge expressed in m³/s and 
imposed the inlet section). 

 

Figure 2-19. The meandering reach of the Po River (Italy) between the Mincio and Panaro 

confluences. 
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For each discharge scenario, a first set of simulations has been performed with the 
fixed, real bathymetry, with and without including the dispersive terms in the 
momentum equations. The inclusion of secondary flow correction entails minor changes 
to the flow field. An example is shown in Figure 2-20; at the AA cross-section (meander 
M1), the increase and the outer shift of the peak velocity, obtained by including the 
correction for the secondary flow, is absolutely modest, and it further decreases for lower 
flowrate values (e.g., Q = 3,990 m³/s, Figure 2-20b). Using the instantaneous adaptation 
or the vorticity-transport approach entails negligible differences as well (dashed and 
solid lines in Figure 2-20b). Similar results are obtained for meanders M2 and M3 (some 
relevant parameters are reported in Table 2-2). The depth-averaged velocity field at 
meander M1, for the discharge Q = 11,500 m³/s and including the dispersive stresses in 
the momentum equations, is shown in Figure 2-21. The w = 2 m/s isoline is plotted for 
both the cases with (magenta) and without (orange) the dispersive stresses, again 
without any substantial difference. These results suggest that including the dispersive 
terms for curvature-induced secondary flow is inessential to model the depth-averaged 
2D flow field in natural rivers with fixed deformed bed. This is discussed in detail 
Section 2.4.5. Nonetheless, it has been already pointed out that that secondary flow plays 
a major role with respect to the development of the bed topography (Blanckaert, 2010; 
Shimizu et al., 1990). 

 

Figure 2-20. Po River case study. Transversal profiles at the AA cross-section (at meander 

M1, panel a) of the depth-average velocity (b) and water and bed levels (c). 
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Figure 2-21. Spatial distribution of the depth-average velocity at meander M1 for 

Q_11500 and isoline for w = 2 m/s without (orange) and with (magenta) dispersive terms in 

the momentum equations. 

Table 2-2. Po River case study. Characteristics of the simulations and relevant flow 

variables for scenarios Q_3990, Q_7400, and Q_11500; the depth-average velocity is 

computed either neglecting (w) or considering (w*) the dispersive terms. 

  
Q_3990 Q_7400 Q_11500 

Discharge [m³/s] 3,990 7,400 11,500 

D.s. water lev [m] 8 12 16 
  

M1 M2 M3 M1 M2 M3 M1 M2 M3 

YMAX [m] 21.5 20.6 20.8 25.1 24.5 25.0 28.7 28.0 28.8 

R [m] 480 630 570 480 630 570 480 630 570 

wMAX [m/s] 2.71 2.59 2.32 3.95 3.27 2.59 4.37 3.39 2.58 

Ds_MAX [Pa] 29 23 22 50 28 26 53 49 29 

vs_MAX [m/s] 0.27 0.30 0.35 0.41 0.32 0.41 0.51 0.36 0.23 

w*MAX [m/s] 2.91 2.68 2.45 4.24 3.30 2.65 4.66 3.98 2.59 

w*MAX/wMAX [-] 1.07 1.03 1.06 1.07 1.01 1.02 1.07 1.17 1.01 

 

The Po River case study is then used to check the ability of the different approaches 
for curvature-induced secondary flow in modelling the relevant hydro-morphodynamic 
processes and to produce real-like bathymetric configurations. Hence, a set of mobile-
bed simulations has been run starting from a flat bed, i.e., an unbalanced bathymetric 
configuration obtained by linearly interpolating the bed elevation from the mesh inlet to 
the outlet (Figure 2-22b, the surveyed bed is shown in Figure 2-22a). The movable-bed 
simulations, either with or without dispersive terms and correction for bedload 
direction, are run with a constant discharge Q = 11,500 m³/s until an equilibrium bed 
condition is reached. The inclusion of dispersive stresses and the correction for bedload 
direction are actually necessary to obtain reliable bed configurations, as demonstrated 
by comparing the equilibrium configuration obtained in the two different modelling 
approaches (Figure 2-22c). Interestingly, reliable equilibrium bathymetries are obtained 
also using the empirical correction for the bedload direction proposed by Olesen (1987), 
with Ac = 10, or considering a lower discharge of Q = 7,400 m³/s (see Figure 2-35 in 
Appendix A: Supplementary Material). 
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Figure 2-22. Po River case study, meander bend M1. Surveyed bathymetry (a), flat bed 

used as initial condition for mobile-bed simulations (b), bed equilibrium condition modelled 

without (c) and with (d) dispersive terms and correction of bedload direction (vorticity-

transport approach). The different bed configurations are also shown at cross-sections AA 

and BB (e,f). 

 

 

Figure 2-23. Po River case study, meander bend M1. Bed evolution from an initial flat 

bed up to the equilibrium condition: modelled bathymetry (upper row) and flow velocity 

(lower row) at different time instants (0, 1/20 Teq, 1/8 Teq, and Teq), with the time needed to 

reach the equilibrium condition being Teq ≈ 2 years. 
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Figure 2-23 shows the bed evolution and the depth-averaged velocity field, from the 
initially flat bed to the equilibrium condition (reached at time Teq ≈ 2 years), modelled 
considering the dispersive terms. With the flat bed, the high-velocity thread is located at 
the inner part of the bend, and the flow then collides at an oblique angle with the outer 
bank; in this situation, the secondary flow is relatively strong, and so is the velocity 
redistribution entailed by the dispersive terms. As time advances, sediments are carried 
toward the accreting point bar, in the inner part of the bend, due to the inward direction 
imposed by the helical flow. The main part of the discharge then flows over the deepest 
part of the bend, driven by topographic steering (Blanckaert, 2010) more than by 
momentum redistribution induced by the secondary flow. Approaching the equilibrium 
condition, the importance of topographic steering increases, and the already weak effect 
of dispersive terms further reduces. 

2.4 Discussion 

This study deals with the inclusion of helical flow secondary currents in two-
dimensional, general-purpose, river- and flood-models. The implementation of different 
modelling approaches and the application to several case studies, both in the laboratory 
and in the field, shed light on a set of interesting issues, which are here discussed. 

2.4.1 The role of dispersive terms in momentum and transport-diffusion equations 

The model applications described in the previous section highlighted the importance 
of including the dispersive terms; yet, not all these terms play an important role, nor are 
always necessary.  

In the momentum equations, the most important contribution is given by the 
diagonal term Dsn; its spatial gradient entails additional resistance at the inner side of 
bends and acceleration at the outer side of bends (Dietrich and Smith, 1983), which are 
the outcome of the outward momentum transfer generated by the helical flow. The Dss 
and Dnn terms are often neglected in the technical literature (e.g., Finnie et al., 1999). 
Indeed, the streamwise variation of Dss is generally smooth, and the Dnn term is typically 
much smaller than Dsn when the curvature ratio, Y/R, is much lower than 1 (Lien et al., 
1999). In the model applications described above, the inclusion of the Dss and Dnn terms 
(not shown) produced negligible modifications in the model outcomes. 

In the equation for transport and diffusion of conservative tracers and suspended 
matters, the inclusion of dispersive terms suffices to avoid the calibration of the Schmidt 
number to match experimental data. However, in transport/diffusion problems, the 
mesh resolution is the key factor to control the numerical diffusion and to obtain reliable 
results. 

2.4.2 Model sensitivity to the mesh resolution 

The dispersive terms for curvature-induced secondary flows rely on the proper 
evaluation of the transversal gradient of the Dsn dispersive stress. The effectiveness of 
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the helical-flow parameterization then depends on the mesh resolution. We performed 
an ad-hoc sensitivity analysis of the model results to the mesh resolution for the above 
case studies. 

As a representative example, for the RIPRAP experiment, we compared the model 

results obtained with four different mesh (Figure 2-24): 

➢ mesh_1x: cell-side-length ≈ 2.00 m, B/Δx = 4, tot. 1,112 cells; 

➢ mesh_10x: cell-side-length ≈ 0.45 m, B/Δx = 10, tot. 11,528 cells; 

➢ mesh_40x: cell-side-length ≈ 0.22 m, B/Δx = 24, tot. 43,395 cells; 

➢ mesh_160x: cell-side-length ≈ 0.11 m, B/Δx = 48, tot. 166,965 cells; 

with B/Δx the channel width to cell-side-length ratio. 

Figure 2-24 shows that the dispersive terms, which comes from the transversal 
derivatives of the Dsn stresses, are smoothed out excessively using the coarsest mesh_1x. 
The mesh_10x well adheres to the experimental velocity data (Figure 2-24f). The mesh_40x 
improves the representation of dispersive terms, particularly close to the channel walls 
where the highest gradients of dispersive terms are located (Figure 2-24b), leading to an 
improved spanwise distribution of flow velocity (Figure 2-24f). Finally, as shown in 
Figure 2-24g, the far increased computational need required by mesh_160x (vertical bars) 
is not counterbalanced by a further improvement of the solution (the velocity RMSE does 
not reduce for B/Δx > 10). 

 

 

Figure 2-24. (a-d) Magnitude of dispersive terms in the first bend of the RIPRAP facility 

channel for different mesh resolutions; (e) location of the first bend, and (f) transversal 

distribution of depth-averaged flow velocity at cross-section AA for the different mesh 

resolutions; (g) Computational time (vertical bars) with respect to the 1x mesh and velocity 

RMSE (black line) for the different mesh resolutions. 
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The mesh resolution was shown to have a far more important role in controlling the 
numerical diffusion of passive tracers and suspended matters (Sect. 2.3.3), which 
requires finer meshes (B/Δx ≈ 40) than for including the parameterization of secondary-
flow on momentum equations only (B/Δx ≈ 10÷20). Using a coarser mesh with the 
Schmidt number tuned to larger values is a computationally efficient alternative; 
however, it entails extra diffusion in straight river segments and a loss of predictive 
ability (ah-hoc calibration becomes mandatory). 

The choice of the grid structure (e.g., structure or unstructured, regular or irregular) 
is another issue that can affect the numerical diffusion of transported tracers (Casulli and 
Zanolli, 2005). While unstructured meshes allow for a greater flexibility and easier 
adaptation to irregular boundaries, the computation of the spatial gradients of 
dispersive stresses may become challenging close to geometrical singularities and at 
interfaces where elements size changes abruptly (Nabi et al., 2016). An ad-hoc sensitivity 
analysis (not shown here) demonstrated that, when a proper mesh resolution is chosen, 
the schemes described at Sects. 0 led to an accurate estimation of the spatial gradients 
irrespective of the kind of structured mesh employed (e.g., regular, aligned with flow, 
or irregular cell patterns). 

2.4.3 Modelling approaches to dispersive stress estimation 

Different options have been implemented to estimate the helical flow intensity, which 
regard the local or transported approach (i.e., with instantaneous adaptation or by 
transporting the streamwise vorticity component), the theoretical formulation for the 
secondary flow parameterization (i.e., the expression for kP and kD in Eqs. (2-10) or 
(2-11)), the inclusion of wall functions and of a non-linear model for secondary flow 
saturation. The choice of the most suitable approach mainly depends on the geometrical 
configuration of the channel. Here we collect some general criteria. 

The local approach is the easiest to implement, the cheapest from a computational 
standpoint, and particularly suitable for long, regular bends. As it neglects the 
secondary-flow inertia, the helical flow intensity can be overpredicted in high-curvature 
bends, especially at the entrance of the bend, or mispredicted in tight succession of 
counterrotating bends. Moreover, the local approach is very sensitive to geometrical 
singularities that entail abrupt variations of streamline curvature (also in straight river 
segments, where spurious local variations of dispersive stresses can appear). Thus, to 
avoid the onset of unphysical dispersive stresses, it is a good practice to apply a spatial 
smoothing (e.g., a Shapiro filter, Shapiro, 1970) to the streamline curvature field. The 
vorticity-transport approach, which intrinsically smooths out possible unevenness in the 
streamline curvature field as a result of the secondary flow inertia, is surely more robust 
and physically sound, yet more demanding from a computational standpoint. It is 
advisable for river channels in which the bathymetry presents some unevenness, in the 
case of sharp bends, and in tight sequences of bends. 

The different parameterizations of secondary flow here implemented (see Table 2-1) 
lead to dispersive stresses, Dij, whose magnitude are quite different; however, the 
dispersive terms in the momentum equations, which depend on the spatial gradients of 
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Dij, are coherently predicted by the different parameterizations herein tested. The model 
applications of Sect. 2.3 suggested that the different theoretical formulations are 
practically equivalent to each other. 

The magnitude of dispersive terms in momentum equations, which depends on the 
gradients of dispersive stresses Dij, is generally negligible at the channel centreline and 
maximum towards the banks, where both flow velocity and the dispersive stress tend to 
zero and their derivatives reach the maximum values (Blanckaert, 2001; Johannesson 
and Parker, 1989a). In case of compact, low aspect-ratio cross-sections, the velocity 
gradient at the banks is greatly affected by the no-slip condition at the channel walls. In 
these cases, which are generally found in laboratory flumes, the use of wall functions to 
account for side-wall friction is mandatory. Instead, in natural bends, the effect of lateral 
wall is less significant as banks are tilted and the aspect ratio is far larger; in this kind of 
cross-sections, velocity reduces progressively in the transversal direction, dictated by the 
progressive reduction of water depth. Consequently, the free-slip condition at sidewalls 
is generally an acceptable hypothesis in natural rivers. 

Finally, the model applications showed that the saturation of secondary flow has to 
be accounted for, to limit the intensity of helical flow, when strong secondary currents 
act to flatten the vertical profile of the streamwise velocity component (Blanckaert, 2009; 
Blanckaert et al., 2013). When (and where) the saturation effect becomes important is not 
only a function of the bend curvature, but also of the local flow field. Indeed, the key 
parameter governing the occurring of saturation is the spanwise gradient of the 
longitudinal velocity component, which describes if the high-velocity thread locates at 
the inner (free-vortex type flow) or at the outer (forced-vortex type flow) of the bend. 
Importantly, the local flow field and the transversal gradient of velocity, αs, also depend 
on the bed bathymetry, i.e., flat or deformed (outward tilted).  

This can be seen also by looking at the spatial distribution of the parameter αs (the 
normalized transversal gradient of the depth-averaged velocity). For a flat-bed 
rectangular cross-section, αs is expected to approach −1 at the beginning of the bend (free-
vortex flow type) and to progressively increase along the bend to denote forced-vortex 
flow type (Blanckaert, 2010). This is roughly depicted in the upper panels of Figure 2-7. 
Instead, in a real bend with deformed bed, the high-velocity thread locates at the outer 
side of the bend due to topographic steering, keeping αs ≈ 1 at the inner side, and αs ≈ −1 
at the outer side all along the bend (Figure 2-36 in Appendix A: Supplementary 
Material). As a result, the helical flow intensity is dampened by the saturation model 
(fD << 1) at the main core of the flow (outer side of the bend) where the velocity and the 
centrifugal force are highest, and limited by the low streamwise velocity at the inner side 
of the bend (where the dampening factor fD ≈ 1 would let the helical flow to develop 
free). Interestingly, when the depth-averaged flow field is mainly driven by the 
bathymetry, the spatial distribution of αs remain broadly the same either considering or 
ignoring the dispersive terms (Figure 2-36 in Appendix A: Supplementary Material). The 
role of bend bathymetry is further discussed in the Sect. 2.4.5. 

A relevant aspect concerning the model implementation is that the saturation effect 
can be effectively assessed with a pure 2D approach thus avoiding any reference to the 



2.4 Discussion 

48 

 

channel centreline or width (Gu et al., 2016; Ottevanger et al., 2012), nor requiring time-
consuming iterative procedures to estimate the non-linear parameters (Qin et al., 2019). 
In this way, the validity of traditional 2D models is extended to relatively sharp bends 
in a straightforward manner and without dramatic increase of the computational 
burden. The modeller should be aware that 2D models, equipped with this kind of 
description of secondary flows, cannot represent the formation of counterrotating 
secondary cells in very sharp bend (Blanckaert and de Vriend, 2010; Stoesser et al., 2010). 

2.4.4 Ill-posedness and instability in 2D secondary flow models 

The recent study by Chavarrías et al. (2019) highlighted an important issue 
concerning the possible ill-posedness of 2D depth-averaged models with linear 
formulation for the secondary flow. They considered the case in which the helical flow 
intensity is computed using a transport equation. Ill-posedness was shown to appear in 
the form of non-physical oscillations of the flow field, which increase with increased grid 
refinement. They demonstrated that adding a certain amount of diffusion, particularly 
in the spanwise direction, may lead to a well-posed problem and provide stable 
solutions. Besides that, they observed that accounting for the saturation effect may have 
a similar stabilizing effect, as saturation models act to dampen any kind of unbounded 
production of helical flow intensity, as in the case of unstable short waves. 

On the one hand, we stress that, while 2D models compute the intensity of the helical 
flow locally, the secondary flow typically emerges as a unique rotating cell in the 
physical domain. Hence, to be physically consistent, the helical flow intensity computed 
by 2D models should vary smoothly in the spanwise direction. Of course, enhanced 
transversal diffusion, as that provided by the use of coarse grids, is beneficial in this 
regard. On the other hand, it is interesting to note that, in the numerical experiments by 
Chavarrías et al. (2019), model instabilities as a result of ill-posedness were significant 
for a grid with B/Δx = 100 and disappeared when they used a coarser grid with B/Δx = 10, 
comparable with the grid resolution used (and suggested as reasonable) in the present 
study. 

2.4.5 The interplay of secondary flow and bed bathymetry 

The importance of secondary flow in shaping hydro- and morphodynamics in curved 
channels, as well as the ability of 2D models to effectively capture the effects of helical 
flow, have been long debated in the literature (Alho and Mäkinen, 2010; Guan et al., 
2016; Kasvi et al., 2015, 2013; Lane, 1998). A tangled picture also emerges from the case 
studies assessed in Sect. 2.3; including the dispersive terms in the momentum equations 
was crucial in the case of laboratory experiments, yet it entailed minor changes to the 
flow field in the real-world case of the Po River considering the surveyed bed 
bathymetry. The different behaviour might be attributed to different curvature ratios 
among these tests. We then computed, for the model applications presented in Sect. 2.3, 
different scaling parameters that have been proposed to measure the strength of 
curvature-induced secondary flow and its effects on hydrodynamic (Kashyap et al., 
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2012). According to the values collected in Table 2-3, the secondary flow correction is 
most important in the EPFL channel of Blanckaert and de Vriend (2003) followed by that 
of Rozovskii (1957), and less important for the Chang (1971) case. This ranking agrees 
with the outcomes of the model applications shown in Sect. 2.3.1 and 2.3.3, respectively. 
In fact, we used the experimental data by Chang (1971) only to check the transport and 
diffusion module, because the effect of dispersive terms on the depth-averaged 2D 
hydrodynamics was negligible. Looking at the Po River case study, the parameters of 
Table 2-3 are actually lower (but not substantially lower) than those computed in the 
laboratory experiments described above. The small differences do not justify the weak 
to negligible effect of secondary flows on the depth-averaged hydrodynamics of the Po 
River test case. Similarly, the velocity redistribution by secondary flow is known to be 
much important for narrow cross-sections (e.g., B/Y ≈ 10) and negligible in shallow ones 
with B/Y > 50 (Blanckaert, 2011; Blanckaert and de Vriend, 2010; Constantinescu et al., 
2013) but, again, the aspect ratio of the Po River case study is not so different to justify 
the basically different behaviour. 

The above considerations and the results shown in Sect. 2.3.5 suggest that the main 
reason for the controversial results obtained in the previous and present applications 
stems from the fact that the development of (and the role played by) secondary flows 
essentially depends on the bed bathymetry. In the Po River test, the surveyed bottom is 
deformed (see the cross-section in Figure 2-20 and the colour map in Figure 2-22a), 
whereas the laboratory tests dealt with compact cross-sections with flat bed and vertical 
walls. By performing additional numerical experiments in which the bed was artificially 
flattened, it was shown that the flow field in the Po River bends with deformed 
bathymetry is mainly driven by the bed topography (i.e., the so-called topographic 
steering) than by momentum exchanges and velocity redistribution ascribed to 
curvature-induced secondary flow (Blanckaert, 2010; Chen and Duan, 2006; Deng et al., 
2021; He, 2018; van Balen et al., 2010). 

Table 2-3. Scaling parameters for the strength of curvature-induced secondary flow 

computed for the case studies presented in Sect. 2.2.2. 

   
 Scaling parameter for secondary flow strength 

Case study Trial 
Effects 
on flow 

field 

 Odgaard 
(1989) 

Johannesson & 
Parker (1989b) 

Bolla 
Pittaluga et 

al. (2009) 

 Blanckaert and de 
Vriend (2003) 

Blanckaert and de Vriend 
(2010) 𝐵𝑌 

𝑌𝑅 × 100 𝐶𝑓−1 2𝑌𝐵  𝐶𝑓−1/2 𝑌𝑅 𝐶𝑓−0.275 (𝑌𝑅)0.5 𝐶𝑓−1 𝑌𝑅 
𝐵𝑅 

Chang (1971) - no 19.17 1.41 4.11 0.09 0.33 0.56 0.27 

RIPRAP fac. - yes 6.50 5.33 43.16 0.63 0.90 7.48 0.35 

LFM flume - yes 8.50 5.00 89.77 0.98 1.15 19.08 0.43 

EPFL ch. Q_104 yes 6.10 12.53 71.82 1.85 1.56 27.46 0.76 

EPFL ch. Q_89 yes 8.13 9.41 49.04 1.33 1.32 18.75 0.76 

EPFL ch. Q_56 yes 11.93 6.41 29.40 0.85 1.05 11.24 0.76 

Rozovskii - yes 13.33 7.50 29.33 1.05 1.17 14.67 1.00 

Po River 
case study 

Q_11500 weak 12.50 3.33 65.76 0.68 0.96 13.70 0.42 

Q_7400 no 16.67 2.50 44.81 0.48 0.81 9.34 0.42 

Q_3990 no 25 1.67 27.42 0.31 0.64 5.71 0.42 
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Of course, the fact that the depth-averaged 2D flow field is not significantly altered 
by the secondary circulation and can be roughly predicted by traditional 2D models 
without including dispersive terms, does not imply that secondary circulations do no 
play a role at all. Secondary circulations, with presence of inner and outer streamwise-
oriented vortical cells, still amplify the boundary shear stresses, altering the transport of 
sediments and posing a threat to bank stability; this picture further complicates in very 
sharp bends (Blanckaert, 2011; Constantinescu et al., 2013). Accounting for the effects of 
curvature-induced secondary flow in 2D hydro-morphological models remains almost 
necessary, in particular when the bathymetric configuration is far from equilibrium 
conditions (Shimizu et al., 1990), or when the bathymetry could be subject to strong 
variations (e.g., long-term simulations). However, the vast majority of natural river 
bends are mildly curved and/or have a deformed bed; in these conditions, the depth-
averaged 2D flow field is nearly independent of dispersive terms, and the major outcome 
of curvature-induced secondary circulations is by far the change in bedload direction. 
This explains why many hydro-morphological models only implements empirical 
formulations to correct the bedload direction to account for the effect of secondary flows 
(e.g., Defina, 2003; Vanzo et al., 2021). 

2.5 Conclusions 

A correction for curvature-induced secondary flow in channel and river bends is 
implemented in the hydro- and morpho-dynamic model 2DEF. The dispersive terms 
appearing in the momentum equations are expressed according to three different 
formulations, recast in similar form. The computation can be performed assuming the 
instantaneous-adaptation of secondary flow to the driving streamline curvature, or 
accounting for inertia and phase-lag of the helical flow via a vorticity-transport 
approach. The effect of impervious banks is accounted for using wall functions. The 
classical linear model for secondary flow is completed with a novel, pure 2D 
implementation of a robust non-linear model accounting for the saturation of secondary 
flow occurring in relatively sharp bends. Dispersive terms are added also to the 
transport and diffusion equation, and accounted for in the morphodynamic module for 
bedload transport and mobile bed evolution. 

Model applications to laboratory tests and to a real river, with both fixed and mobile 
beds, confirm the importance of accounting for secondary flow and the validity of the 
approaches. The different formulations for dispersive terms perform similarly. The local, 
instantaneous-adaptation approach is less demanding and suitable to isolated bends in 
riverbeds with a regular bathymetry (in addition, the streamline curvature field must be 
smoothed out to avoid numerical instabilities). All the local approaches (either to 
compute the dispersive stresses or to correct the direction of bedload transport) produce 
unphysical results in presence of geometrical singularities such as bridge piers or 
abutments. The inertia of secondary flow, which is accounted for intrinsically when 
transporting the streamwise vorticity, filters out the typical unevenness characterizing 
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the bathymetry and the curvature field of real rivers and possible geometrical 
singularities. 

The non-linear model for secondary flow saturation is a fundamental ingredient to 
counteract the excessive growth of helical flow intensity in relatively sharp bends and to 
produce physically sound spatial distributions of dispersive stresses. To this purpose, 
wall functions are needed to model the effect of vertical, impervious walls; nonetheless, 
in real rivers with tilted banks, wall functions are unnecessary. 

Curvature-induced secondary flows are shown to produce important modifications 
to the depth-averaged flow field in case of rectangular cross-sections (i.e., flat bed in the 
spanwise direction). The high-velocity thread is moved from the inner to the outer side 
of the bend, and saturation of secondary flow soon becomes important, even for not 
excessively sharp bends. On the contrary, in real rivers with formed bathymetry (outer 
scour) the moderate streamline curvature and the already-formed bed bathymetry make 
the effects of the correction less evident in terms of depth-averaged flow field. The 
estimation of secondary flow intensity remains important for modelling the transport of 
suspended matter and, above all, for repercussions on bedload transport and 
morphological setting. However, in real river with formed bathymetry, empirical 
corrections for the direction of bedload transport, based on the local streamline 
curvature and without including dispersive terms in the momentum equations, 
generally perform satisfactorily. 
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2.6 Appendix A: Supplementary Material 

 

 

Figure 2-25. Transversal profiles of depth-averaged velocity in the RIPRAP test (Finnie 

et al., 1999): measured data (red dots) and modelled profiles to show the effect of considering 

(continuous lines) or neglecting (dashed lines) the sidewall resistance, for the case without 

(blue) and with (black) dispersive terms. The relative transversal coordinate spans the 

channel width from the left bank. 
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Figure 2-26. Transversal profiles of depth-averaged velocity in the RIPRAP test (Finnie 

et al., 1999): measured data (red dots) and modelled profiles to show the results obtained 

with different formulations of the secondary flow parameterization: Bernard and Schneider 

(1992) in blue, Kalkwijk and Booji (1986) in green, and Odgaard (1986) in black. Results 

are obtained using the local (instantaneous-adaptation) approach. The relative transversal 

coordinate spans the channel width from the left bank. 
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Figure 2-27. Transversal profiles of depth-averaged velocity in the RIPRAP test (Finnie 

et al., 1999): measured data (red dots) and modelled profiles to show the results obtained 

with different formulations of the secondary flow parameterization: Bernard and Schneider 

(1992) in blue, Kalkwijk and Booji (1986) in green, and Odgaard (1986) in black. Results 

are obtained using the vorticity-transport approach. The relative transversal coordinate spans 

the channel width from the left bank. 

 

 

Figure 2-28. Transport of a passive tracer in the presence of helical flow: depth-averaged 

concentration field for the experiment of Chang (1971) for different mesh refinements. The 

injection point is in the centre of the channel (IP1). Mesh 1x has about 10, Mesh4x has 20, 

and Mesh 16x has 40 cells per channel width. 
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Figure 2-29. Transport of a passive tracer in the presence of helical flow: transversal 

profiles of the depth-averaged normalized concentration for the experiment of Chang (1971) 

at Sections 7, 9, 11, and 13. The injection point is in the centre of the channel (IP1). 

Experimental data (red dots) and numerical profiles obtained with the three different mesh 

refinements. Mesh 1x has about 10, Mesh4x has 20, and Mesh 16x has 40 cells per channel 

width. 

 

 

Figure 2-30. As in Figure 2-29, with no dispersive terms in momentum and transport-

diffusion equations, for Mesh 16x and different values of the Schmidt number: T = 1 (solid 

lines), T = 0.1 (dotted lines), T = 10 (dashed lines). 

 

 

Figure 2-31. Transport of a passive tracer in the presence of helical flow: depth-averaged 

concentration fields for the experiment of Chang (1971). Concentration fields at different 

time instants (the tracer is injected starting from t = 0 s) either ignoring (upper panels) or 

considering (lower panels) the longitudinal dispersion. 
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Figure 2-32. In panel a, channel configuration of the laboratory experiment of Koch and 

Flokstra (1980). Difference among the ∆z computed with the present model and the ∆z 

measured in the laboratory experiment of Koch and Flokstra (1980), using b) model results 

without any correction for bed-load direction; c) model results with empirical bed-load 

direction correction (A = 10 in Eq. (2-36)); d) model results with dispersive terms correction 

(instantaneous-adaptation approach), e) model results with dispersive terms correction 

(vorticity-transport approach). 

 

 

Figure 2-33. Difference among the ∆z computed with the present model and the ∆z 

measured in the laboratory experiment of Koch and Flokstra (1980), using the dispersive 

terms corrections computed using the instantaneous-adaptation approach and the 

formulations of (a) Bernard and Schneider (1992), (b) Kalkwijk and Booji (1986), and (c) 

Odgaard (1986). 



2 Analysis and 2D modelling of curvature-induced secondary currents  

57 

 

 

Figure 2-34. Po River case study: surveyed bathymetry for meander bends M1, M2, and 

M3. 

 

 

Figure 2-35. Po River case study. Surveyed bathymetry (a), bed equilibrium condition 

modelled with dispersive terms and correction of bedload direction for Q = 7,400 m³/s (b), 

bed equilibrium condition modelled without dispersive terms but with the empirical 

correction of bedload direction (Olesen, 1987) for Q = 11,500 m³/s (c), bed equilibrium 

condition modelled with dispersive terms and correction of bedload direction for 

Q = 11,500 m³/s (d). The different bed configurations are also shown at cross-sections AA 

and BB (e,f). 
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Figure 2-36. Po River case study for the Q = 11,500 m³/s discharge scenario. Spatial 

distribution of the normalized transversal gradient of velocity, αs, in meander M1 without (a) 

and with (b) dispersive terms in the momentum equations. The negligible difference means 

that the real bathymetry shifts the flow at the outer part of the bend, and secondary flow does 

not entail additional changes to the depth-averaged flow field. 

2.7 Appendix B: Estimation of bed elevation and slopes in case of staggered 

grids 

2.7.1 An efficient method for reconstructing nodal elevations from element barycentric 
values 

The hydrodynamic model in the 2DEF framework is based on a staggered triangular 
mesh, in which the water levels are defined at the nodes of the computational grid and 
the flow rates at the center of the triangular cells/elements (see 2.2.6). The representation 
of the bed elevation is also provided by values defined at the center of the elements. The 
bed load transport model is based on sediment mass fluxes exchanged through the edges 
of the elements, which accounts for the elevation of the elements as well (Bonetto and 
Viero, 2016). However, the suspended load transport model included in the 2DEF solves 
mass balances on the nodes. Hence, values of the bed elevations are updated at nodes at 
each time step, even if the bed elevation in the model is represented through values at 
the center of the elements. This requires a precise conversion of element elevations into 
nodal elevations. In other word, a reliable method should be found to obtain elevations 
at the nodes of the grids (zb,i) which satisfy the elevations at the center of the cells (zb,j). In 
this way, in case of mobile bed simulations with suspended sediment transport, the 
representation of the bed elevation through nodal values would be exact with respect to 
the element values.  

Imposing nodal elevations to satisfy the elevation at the barycenter of each j-th 
element leads to: 

𝑧𝑏,𝑗 =∑𝑧𝑏,𝑖 33
𝑖=1  (2-42) 
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In general, the number of the elements composing the computational grid is larger 
than the number of the nodes. The solution of the associated exact linear system is then 
overdetermined, and it is needed to be solved through QR decompositions. However, 
this is expensive from a computational point of view, and inefficient for the purpose of 
a conversion that is needed to be executed at each time step.  

A second method, although less precise, consists in assigning the elevation of the i-th 
node through averaging the elevations of the elements which share the i-th node, as: 

𝑧𝑏,𝑖 = 1𝐴𝑖∑𝑧𝑏,𝑗 𝐴𝑒,𝑗3𝑛𝑗
𝑗=1  (2-43) 

where nj is the number of elements connected to the i-th node, Ai is the area pertaining 
to the i-th node and Ae,j the area of the j-th element. This is the method currently 
implemented in the 2DEF model given its good balance among precision and efficiency.  

The method here proposed is based on a Galerkin approximation. In detail, the 
method uses the same decomposition introduced for the solution of the continuity 
equation to solve the equation: 𝑧𝑏 = 𝑧𝑏,𝑗 (2-44) 

which can be written as:  

∑𝑧𝑏,𝑖𝜉𝑖𝑛
𝑖=1 (𝑥𝐺 , 𝑦𝐺) = 𝑧𝑏,𝑗(𝑥𝐺 , 𝑦𝐺) (2-45) 

being (xG, yG) the coordinate of the barycenter of the j-th element, and ξi the shape 
functions.  

Imposing the residual r to be orthogonal to the nodal function, the previous equation 
becomes: 

∫ 𝜉𝑗𝑟 𝑑𝐴𝑒𝐴𝑒 = 0 → ∫ 𝜉𝑗 [∑𝑧𝑏,𝑖𝜉𝑖𝑛
𝑖=1 (𝑥𝐺 , 𝑦𝐺) − 𝑧𝑏,𝑗(𝑥𝐺 , 𝑦𝐺)]  𝑑𝐴𝑒𝐴𝑒 = 0 (2-46) 

which can be solved using the conjugate gradient method (GCM., the same used to solve 
the continuity equation of the hydrodynamic model).  

The availability of the Galerkin decomposition makes the model computationally 
cheap. The obtained nodal elevations still do not satisfy exactly the barycentric elements 
elevation. However, results based on different case studies showed that the proposed 
method allows for a representation through nodal elevations that is more adherent to 
the elements representation if compared to the method implemented in the current 
version of the 2DEF model. In particular, the method here proposed has been shown to 



2.7 Appendix B: Estimation of bed elevation and slopes in case of staggered grids 

60 

 

provide more precise nodal values in case of discontinuities in the bottom elevations, 
such as in the channel banks (see e.g., Figure 2-37). 

 

Figure 2-37. Bottom elevation zb defined at the grid nodes, based on values at the centre 

of the cells. The dashed line represents elevations through interpolation of element elevations, 

the grey line of nodal elevation (through weight-averaging of cell), and the black line of nodal 

elevation (solving the Galerkin discretization through CGM). 

2.7.2 Techniques to improve the estimation of longitudinal and transversal slopes in 
riverbeds 

The estimation of bed slope is fundamental to obtain reliable predictions of the river 
morphology, especially at the banks and in the channel bends. Both the longitudinal and 
the transversal slope may generate contributions of the weight that enhance or impede 
the entrainment of bed particles.  

In the case of an unstructured computational grid, the reconstruction of the spatial 
gradients of the river bed is straightforward if the elevation is defined for each element 
basing on nodal values. In this case, it is:  

𝜕𝑧𝑏𝜕𝑥 = 12𝐴𝑒∑𝑧𝑏,𝑖 𝑛𝑖,𝑥  𝐿𝑖3
𝑖=1  

𝜕𝑧𝑏𝜕𝑦 = 12𝐴𝑒∑𝑧𝑏,𝑖 𝑛𝑖,𝑦 𝐿𝑖3
𝑖=1  

(2-47) 

where n = (nx,ny) is the unit vector normal to the edge, and L is the edge length (subscript 
i refers to the edge opposite to the i-th node).  

The method based on Eq. (2-47) is computationally cheap but it can not be applied 
strictly in the 2DEF framework, since the bed load transport model is based on the 
elevations defined at the center of the elements. Two alternative methods to calculate the 
element slopes basing on the elevations of neighboring elements are here proposed.   

A first method considers a sub-triangulation (subscript k’, see Figure 2-38a), which is 
based on the three elements neighboring the j-th cell, labelled with the subscript k. In 
detail, the edge shared between the j-th and the k-th cells is labelled k’, and the sub-
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triangulation is based on the central point of this edge. Called zb,k’ the elevation at the 
center of the k’-th edge, the three values zb,k’ constitute nodal elevations in the sub-
element. Thus, derivatives of zb are computed as:  

𝜕𝑧𝑏𝜕𝑥 = 12𝐴𝑒 ∑ 𝑧𝑏,𝑘′ 𝑛𝑘′,𝑥 𝐿𝑘′

3
𝑘′=1 = 1𝐴𝑒∑𝑧𝑏,𝑘(−𝑛𝑘,𝑥 𝐿𝑘)3

𝑘=1  

𝜕𝑧𝑏𝜕𝑦 = 12𝐴𝑒 ∑ 𝑧𝑏,𝑘′ 𝑛𝑘′,𝑦 𝐿𝑘′

3
𝑘′=1 = 1𝐴𝑒∑𝑧𝑏,𝑘(−𝑛𝑘,𝑦 𝐿𝑘)3

𝑘=1  
(2-48) 

This method is formally analogous to the previous. However, the sub-triangulation 
on the center of the edges allows to use directly the elements elevations. As a drawback, 
it is necessary to use the elevation of the neighboring elements to obtain the edge 
elevation zb,k’. 

 

Figure 2-38. Sketches for the calculation of the bed slope a) basing on the sub-

triangulation, and b) near a discontinuity (bank). 

A second method to reconstruct the bed elevation gradients is based on the least-
squares (LS) reconstruction, which is a higher order reconstruction method. The least-
squares reconstruction is obtained by solving an objective function for the values of the 
gradients which minimize the sum of the squares of the differences between elevations 
in the actual and neighboring cells. The objective function to be minimized is given by: 

∑𝑤𝑗,𝑘2 𝐸𝑗,𝑘2𝑁
𝑘=1  (2-49) 

being w a weight function, and E the error which is evaluated considering a linear 
approximation for the bed level. In this case the bed level computed in the neighboring 
element is: 

𝑧𝑏,𝑘 = 𝑧𝑏,𝑗 + 𝜕𝑧𝑏𝜕𝑥 |𝑗 (𝑥𝑘 − 𝑥𝑗) + 𝜕𝑧𝑏𝜕𝑦 |𝑗 (𝑦𝑘 − 𝑦𝑗) + 𝐸(∆𝑥2, ∆𝑦2) (2-50) 

Imposing the minimization along the x and y directions yields: 
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{  
  𝑎𝑗 𝜕𝑧𝑏𝜕𝑥 + 𝑏𝑗 𝜕𝑧𝑏𝜕𝑦 = 𝑑𝑖𝑏𝑗 𝜕𝑧𝑏𝜕𝑥 + 𝑐𝑗 𝜕𝑧𝑏𝜕𝑦 = 𝑒𝑖  (2-51) 

where: 

𝑎𝑗 = ∑ 𝑤𝑗,𝑘2 (𝑥𝑘 − 𝑥𝑗)2𝑁𝑘=1     𝑏𝑗 = ∑ 𝑤𝑗,𝑘2 (𝑥𝑘 − 𝑥𝑗)𝑁𝑘=1 (𝑦𝑘 − 𝑦𝑗)             𝑐𝑗 =∑ 𝑤𝑗,𝑘2 (𝑦𝑘 − 𝑦𝑗)2𝑁𝑘=1   𝑑𝑗 = ∑ 𝑤𝑗,𝑘2 (𝑥𝑘 − 𝑥𝑗)(𝑧𝑏,𝑘 − 𝑧𝑏,𝑗)𝑁𝑘=1                      𝑒𝑗 =∑ 𝑤𝑗,𝑘2 (𝑦𝑘 − 𝑦𝑗)(𝑧𝑏,𝑘 − 𝑧𝑏,𝑗)𝑁𝑘=1  
(2-52) 

which can be solved using e.g., the Cramer’s rule. 
The method based on the LS reconstruction allows to consider either the three 

elements directly neighboring the j-th cell (i.e., all elements sharing an edge with the j-
th element) or all the neighboring elements (i.e., all elements sharing a node with the j-
th element). In the latter case, the result becomes smoothed.  

The precision of the reconstruction can be tested through the coefficient of 
determination R2. Results on selected case studies showed that near discontinuity (e.g., 
channel banks), the LS reconstruction may still predict inaccurate results (i.e., R2 < 0.95). 
The reason is the approximation with a linear function passing through the center of the 
elements. This assumption does not hold where there is a spatial discontinuity (e.g., a 
channel bank, as in the schematic example of Figure 2-38b). In other words, the LS 
reconstruction considers the elevation of an adjacent element which is not coplanar with 
the j-th element. 

To avoid possible errors, a useful technique is to apply an inverse distance weighting 
(IDW) on the direction orthogonal to the water flow, assuming that large discontinuities 
such as channel banks are generally parallel to the water flow. Then, the element 
providing the largest deviation between measured and predicted elevations is excluded 
from the LS reconstruction. In this case the computation of the derivatives becomes exact 
being based on the plane for the three points (i.e., the center of the actual and of the two 
adjacent elements). 

This correction enhances the precision especially for coarser meshes and in channel 
with constant slope (Figure 2-39 and Figure 2-40). In real bathymetries, especially when 
using sufficiently refined grids, the precision by the different methods is similar (not 
shown).  
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Figure 2-39. Estimation of the longitudinal slope (iLONG = -0.01) using different methods 

(a-e). 

 

Figure 2-40. Estimation of the transversal slope (iTRASV = 1.5 on the bank, iTRASV = 0 

elsewhere) using different methods (a-e). 

2.8 Appendix C: Sediment Transport in Inclined Beds 

2.8.1 Effect of longitudinal slope on the bedload discharge 

In the bedload transport model, a classical (1D) Meyer-Peter and Müller relation is 
coupled with the Exner equation to guarantee the continuity of sediments (see 2.2.6.6). 
The Meyer-Peter and Müller relation has been found for a nearly plane bed, but, as 
already mentioned, longitudinal bed slopes may vary the flux of transported sediments. 
Two are the main approaches traditionally proposed for correcting the bedload 
transport in longitudinally inclined beds: 

− corrections on the bedload transport rate; 
− corrections on the critical shear stress. 

Besides the longitudinal slope (available from nodal/element elevations), the 
additional parameters needed for evaluating bedload transport on inclined beds include 
the angle of repose of particles (depending on soil).  
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Figure 2-41. Sketch of the forces acting on a solid particle in case of longitudinal and 

transversal slopes 

2.8.1.1 Corrections on the bedload transport rate 

These methods consist in augmenting the bedload transport rate for a nearly 
horizontal bed, qb,0, by a factor that depends primarily on the slope along the flow 
direction, γ.  

In the current version of the model 2DEF, the intensity of sediment transport accounts 
for the effect of the longitudinal slope as (Struiksma, 1985): 𝑞𝑏 = 𝑞𝑏,0[1 − 𝜒 𝑐𝐹 𝑡𝑔 (𝛾)] (2-53) 

where cF = kS2Y1/3/g is the friction factor and  is a coefficient accounting for the effect of 
stream-wise bed slope ( = 0.03 after Olesen, 1987, as reported by Crosato and Struiksma, 
1989). 

Koch and Flokstra (1980), as extended by Talmon et al. (1995), proposed the following 
expression: 𝑞𝑏 = 𝑞𝑏,0[1 − 𝑡𝑔 (𝛾)] (2-54) 

Bagnold (1966), instead, proposed to calculate the bedload transport rate as:  

𝑞𝑏 = 𝑞𝑏,0 ( 𝑡𝑔(𝜙)𝑐𝑜𝑠(𝛾)[𝑡𝑔 (𝛾) + 𝑡𝑔 (𝜙)]) (2-55) 

2.8.1.2 Corrections on the critical shear stress 

These methods consist in adapting the critical shear stress found for a nearly 
horizontal bed (i.e., from Shields diagram), τC,0, to account for the effect of the local slope 
by proper multiplying factor(s). Considering the inclination and the planar component 
of weight, and imposing equilibrium among the forces acting on a particle located in the 
bank (see Figure 2-41), one can find: 

𝐶 = 𝑘𝛼𝑘𝛾 𝐶,0 
(2-56) 
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where τC and τC,0 represent the critical shear stress for inclined and for flat bed 
respectively, and kα and kγ are coefficients for considering the transversal and 
longitudinal slope, respectively. Lane (1955) proposed the following formula for the two 
coefficients: 

𝑘𝛼 = cos(𝛼)√1 − 𝑡𝑔2(𝛼)𝑡𝑔2(𝜙 )                       𝑘𝛾 = 𝑐𝑜𝑠 (𝛾) (1 − 𝑡𝑔 (𝛾)𝑡𝑔 (𝜙)) (2-57) 

where α and γ are the transversal and longitudinal slope angle, respectively, and ϕ the 
angle of repose of particles. Similar expressions to the Lane’s formula have been widely 
used for the critical bed shear stress correction (e.g., Dey, 2004; Ikeda, 1982). 

Other formulations have been proposed in the technical literature. Dey (2003) from 
laboratory experiment found the following relation:  

𝑘𝛾𝑘𝛼 = 0.954(1 − 𝛾𝜙)0.745 (1 − 𝛼𝜙)0.372 (2-58) 

Seminara et al. (2002), which complemented the analysis of Kovacs and Parker (1994) 
by adding the effect of the lift forces, proposed to evaluate the correction on the critical 
shear stress for an arbitrarily slopping bed solving the equation:  

(1 − 𝛥)(𝑘𝛾𝑘𝛼)2 + 2( 𝛥√1 + 𝑡𝑔2(𝛾 ) + 𝑡𝑔2(𝛼) + 𝑠𝑖𝑛(𝛾)𝑡𝑔(𝜙)) 𝑘𝛾𝑘𝛼+ 1 + 𝛥1 + 𝑡𝑔2(𝜙 ) + 𝑡𝑔2(𝛼)(𝑡𝑔2(𝛼) + 𝑡𝑔2 (𝛾)𝑡𝑔2(𝜙 ) − 1) = 0 
(2-59) 

2.8.1.3 Comparison 

The above options have been implemented in the 2DEF module for bedload transport, 
allowing the user to select the most suitable approach for each application. 

The different formulations presented above can provide different importance to the 
slope correction. To exemplify, in Figure 2-42 the effects of the aforementioned 
corrections are compared in terms of qb/qb,0, for a sloped channel with tan(γ) = 1 ‰ and 
different values of the bed shear stress τ.  

As a general indication, qb/qb,0 values remain the same for the three corrections based 
on augmenting the bedload transport rate. Among the three, in the present example the 
correction of Struiksma (1985) provides higher values of qb/qb,0, which means a larger 
contribution of the longitudinal slope. In case of the corrections of the critical shear 
stress, the bedload transport process begins at low shear stress conditions and the 
correction is significant when τ is slightly higher than τC. When τ >> τC, the correction 
becomes negligible. The correction of Dey (2001) provides higher values of qb/qb,0, 
especially slightly above the incipient motion condition.  
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Some of the corrections listed above consider also other parameters in their 
formulation (these parameters were assumed fixed in the comparison of Figure 2-42). 
Most of them include the angle of repose of the particles. The correction of Struiksma 
(1985) depends also on the friction factor cF, which in turn depend on the water depth 
and on the Strickler coefficient. While the Strickler coefficient is generally uniform in the 
riverbed (at least at a large spatial scale), the water depth may show strong variations, 
especially because of deformed riverbed, such as in banks. This induce additional 
variability on the magnitude of the correction.  

 
Figure 2-42. Effect of the slope correction for the bedload transport rate in terms of qb/qb0 

for different values of the bed shear stress τ. Other parameters are mean diameter d50 = 5mm, 

Strickler coefficient KS = 50m1/3/s, water depth Y = 0.76 m, angle of repose of the particles 

ϕ = 0.6 ≈ 31°. θEFF = θ-θC measure the excess of shear stress in terms of Shields parameter, 

θ (θC is the threshold value for incipient bedload transport). 

2.8.2 Sub-model for sediment redistribution in case of bed slope exceeding the repose 
slope 

Longitudinal and transversal slopes can intensify the bed load transport induced by 
hydrodynamic actions through adding additional contributions of force because of the 
weight. If the slope is larger than a certain threshold (i.e., angle of repose) the particles 
can be entrained also in case of no hydrodynamic actions. The bathymetry is then 
naturally modified such that every computational cell has a slope less steep than the 
angle of repose. The sediment redistribution in case of excess of bed slope has been 
implemented as a sub-model in the existing bed load transport model of the 2DEF 
framework. The approach followed in the proposed method is based on the estimation 
of the mass fluxes passing through cell edges to modify bathymetry until stable 
conditions are established.  

Pairs of elements whose inclination δ exceeds a prescribed value of critical slope ϕ 
(conveniently assumed to be equal to the angle of repose of particles) are first 
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individuated. In this case, each edge of the cell is analyzed evaluating the elevation 
difference dh,k = zb,j - zb,k and the planar distance lk among centroids of the actual cell j and 
the adjacent cell k, projected along the direction of the maximum slope (see Figure 2-43 
for the meaning of symbols).  

The particles redistribution occurs from the actual 
cell to the adjacent(s) only if δk = dh,k / lk exceeds the 
critical slope. The mass flux is directed as the 
maximum slope of the actual cell and it is estimated in 
order to recover the critical slope among the two cells.  

To ensure the conservation of the mass of 
sediments, supposing sediment density as constant, 
the volume exchanged among the cells must be the 
same, namely: 𝑉𝑗,𝑘 = −∆𝑗 𝐴𝑒𝑗 = ∆𝑘 𝐴𝑒𝑘            (2-60) 

where Vj,k is the volume exchanged among elements j 
and k, Δ = z’b - zb is the variation of elevation and Ae the 
area of the cell. Moreover, the total variation must 
recover the critical slope, namely: −∆𝑗 + ∆𝑘= 𝑙𝑘  𝛿 − 𝑙𝑘  𝜙 

(2-61) 

Solving these equations for Δj, one finds: 

∆𝑗= 𝑙𝑘  
(𝛿 − 𝜙 )1 + 𝐴𝑒𝑗 𝐴𝑒𝑘⁄  

(2-62) 

Thus, the mass flux per unit width passing into the k-element, qs,k, is estimated as: 

𝑞𝑠,𝑘 = ∆𝑗  𝐴𝑒𝑘𝑚𝑘  𝑑𝑡  
(2-63) 

where dt is the computational time step and mk the length of the adjacent edge.  

Computing all the mass fluxes from higher cells to lower cells ensures the 
redistribution of the bottom elevations recovering the critical slope. It should be noted 
that the rearrangement takes a certain time T (i.e., a number of time steps) since the 
variation in adjacent cells elevation may produce excesses of slope for different couples 
of elements; and the process ends when an equilibrium condition is reached in the entire 
domain. The time T is usually much shorter than the morphological time scale. 
Moreover, the process can be further smoothed with proper coefficients that reduce qs to 
avoid sudden changes in the bathymetry that may induce numerical issues. 

To show the effectiveness of this approach, the evolution of an inclined bank 
(δ = 1.6 ≈ 59°) is represented in transversal sections of Figure 2-44a and Figure 2-44b , 

 

Figure 2-43. Schematization 

of mass failure process among 

two cells in which the critical 

repose slope is exceeded 
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which consider medium and low values for the critical repose slope respectively 
(ϕ = 0.6 ≈ 31° and ϕ = 0.4 ≈ 22°). The evolution of a vertical wall is represented in the 
transversal section of Figure 2-44c when prescribing a low value for the critical repose 
slope (ϕ = 0.4 ≈ 22°). In all the cases, the bed elevation rearranges to satisfy the prescribed 
angle of repose; the number of time steps required for equilibrium ranges from about 25 
(for the case in Figure 2-44a) to 150 (for the case in Figure 2-44c). 

 
Figure 2-44. In panel a and b, inclined bank evolution prescribing medium and low values 

for the critical repose slope (ϕ = 0.6 ≈ 31° and ϕ = 0.4 ≈ 22°, respectively); in panel c vertical 

bank evolution prescribing a low value for the critical repose slope (ϕ = 0.4 ≈ 22°) 

2.9 Appendix D: Influence of secondary flow on the suspended load 

transport  

The influence of the secondary flow on the transport of a passive tracer is considered 
through the anisotropic diffusive tensor DD, with the (possible) introduction of a mixing 
coefficient/Schmidt number (e.g., Chang, 1971; Duan, 2004), as detailed in 2.2.5. This 
approach considers the additional mixing induced by the transversal circulation, but still 
assumes a constant concentration of the passive scalar along the vertical direction.  

The advection-diffusion equation is used also for the suspended sediment transport. 
However, previous numerical experiments showed that in real rivers strong differences 
are observed against the comparison with measured data. Especially in bends, the 
calibration of the mixing coefficient has been shown to require unphysical values 
(Arailopoulos, 2014). 

One reason that can explain these discrepancies is the skewed vertical profile of the 
suspended sediment (see e.g., typical Rouse vertical distributions), in which highest 
values are usually located in the lower part of the water column. A net sediment flux is 
then induced in the transversal direction because of the spanwise velocity components 
generated by the secondary currents. In particular, as typically high concentrations of 
sediments are at the bottom of the water column, a net sediment flux directed to the 
inner part of the bend is generated by the transversal velocity component near the bed, 
which is directed to the inner part of the bend as well.  
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In channel bends the influence of secondary flow on suspended sediment should be 
modelled explicitly, considering proper vertical distributions of the velocity and of the 
concentration. Thus, dispersive terms for the concentration flux should be added in the 
transport-diffusion equation (Arailopoulos, 2014; Huang et al., 2006; Jia et al., 2019). 
Given vertical distributions for the velocity (longitudinal and transversal components) 
and for the concentration (simplified version of Rouse equation), the analytic integration 
of the difference with the depth-averaged values provides supplementary terms to be 
added to the advective and the diffusive terms. The advection-diffusion equation (Eq. 
(2-13)) for suspended sediment is then re-written as:   𝜕𝑌𝐶𝜕𝑡 + 𝛻 ∙ 𝐶𝒒 − 𝛻 ∙ (𝑌𝜀𝑇𝛻𝐶) − 𝛻 ∙ (𝑌𝑫𝑫𝛻𝐶) + 𝜕𝐷𝐶𝑥𝜕𝑥 + 𝜕𝐷𝐶𝑦𝜕𝑥 = 𝑆 (2-64) 

where DCx and DCy are the dispersive terms, written as:  

𝐷𝐶𝑥 = ∫ 𝑢′(𝑧)𝐶′(𝑧)𝑑𝑧𝑌
0 = 𝐷𝐶𝑠𝑢 − 𝐷𝐶𝑛𝑣𝑤  

𝐷𝐶𝑦 = ∫ 𝑣′(𝑧)𝐶′(𝑧)𝑑𝑧 =𝑌
0 𝐷𝐶𝑠𝑣 + 𝐷𝐶𝑛𝑢𝑤  

(2-65) 

being C’(z) the difference among the vertical profile of the suspended sediment 
concentration and its depth-averaged value. As seen in section 2.2, it is convenient to use 
a local reference frame in which DCs and DCn are the dispersive stress in the streamwise 
and in the spanwise directions.  

In the present application the vertical distributions of the velocity are assumed as in 
Eqs. (2-4) and (2-5). A simplified Rouse profile (Swart, 1976; see also the recent Boudreau 
and Hill, 2020) is assumed for the vertical distribution of suspended sediments 
concentration: 

𝐶(𝑧) = 𝐶𝑘𝐶 (𝑧𝑎)−𝑅𝑜 (2-66) 

where C is the depth-averaged concentration, R0 is the rouse number, a is the height of 
the bed load layer and kC is defined as: 

𝑘𝐶 = (𝑌 − 𝑎)(1 − 𝑅0)(𝑌1−𝑅0 − 𝑎1−𝑅0)𝑎𝑅0 (2-67) 

Dispersive stresses DCs and DCn are then written as: 

𝐷𝐶𝑠 = ∫ [𝑤𝑠(𝑧) − 𝑤][𝐶(𝑧) − 𝐶]𝑑𝑧𝑌
0 = ∫ [𝑚 + 1𝑚 (𝑧𝑌)1/𝑚𝑤 −𝑤] [𝑘𝐶 (𝑧𝑎)−𝑅0 − 𝐶]𝑑𝑧 = 𝑤𝐶𝑌

0 𝑘𝑠 (2-68) 
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𝐷𝐶𝑛 = ∫ 𝑤𝑛(𝑧)[𝐶(𝑧) − 𝐶]𝑑𝑧 =𝑌
0 ∫ [(2𝑧𝑌 − 1) 𝑣𝑛𝑠∗ 𝑤] [𝑘𝐶 (𝑧𝑎)−𝑅0 − 𝐶]𝑑𝑧𝑌

0= 𝑤𝐶 𝑘𝑛 

with the coefficients:  

𝑘𝑠 = 1𝑚𝑌1/𝑚𝑎−𝑅0 [𝑘𝐶(𝑚 + 1) 𝑌1/𝑚−𝑅0+11/𝑚 − 𝑅0 + 1 − (𝑚 + 1)𝑎−𝑅0𝑌1/𝑚+1 1/𝑚 + 1− 𝑘𝐶𝑚𝑌1/𝑚−𝑅0+1−𝑅0 + 1 +𝑚𝑎−𝑅0𝑌1/𝑚+1] 
𝑘𝑐 = 𝑣𝑛𝑠∗ 𝑘𝐶𝑌−𝑅0+1𝑎−𝑅0 [ −𝑅0(−𝑅0 + 2)(−𝑅0 + 1)] 

(2-69) 

These terms have been implemented in the 2DEF model similarly to the dispersive 
terms in the SWEs (see 2.2.1), and their effectiveness have been tested using the 
Rozovskii channel experiment (see Figure 2-6 and details of the experiment in section 
2.3.2), in which larger transversal components of velocity are observed especially at the 
middle of the (sharp) bend (Figure 2-45a). Being higher concentration of sediments in 
the lower part of the water column, and being the transversal velocity directed to the 
inner part of the bend, these terms induce a supplementary concentration flux directed 
toward the inner part (Figure 2-45b and Figure 2-46a). As a consequence, the sediments 
are deposed in the inner part of the bend, which further enhances bar accretion (Figure 
2-45c and Figure 2-46b). Though the introduction of the terms confirms a larger sediment 
flux is directed to the inner part of the band, no experimental data for validation are 
nowadays available. Future research will be needed to compare results with laboratory 
data. 



2 Analysis and 2D modelling of curvature-induced secondary currents  

71 

 

 

Figure 2-45. Magnitude of secondary currents measured by the transversal velocity at the 

free surface vns (a), depth-averaged concentration of suspended sediment C (b), bed elevation 

at equilibrium zb (c), either without (left) and with (right) the dispersive flux correction for 

suspended sediment. Red and black arrows indicate the points with larger difference among 

the model without and with dispersive flux correction for the transport of suspended sediment 

concentration.  

 

 

Figure 2-46. Depth-averaged concentration of suspended sediment C (a) and bed 

elevation zb at equilibrium (b) in transversal section AA, either without (left) and with (right) 

the dispersive flux correction for suspended sediment. 
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3 CFD numerical analysis of turbulent flow over mussels on a 

gravel bed 

The results presented in this Chapter are reported in a manuscript published in Water 
Resources Research (Lazzarin et al., 2023a)1, and in a further manuscript submitted for 
possible publication in Water Resources Research2. 

The Chapter presents the results of the parametrical analysis of the flow around a 
partially-buried, isolated freshwater mussel, and over clusters of partially-buried 
mussels, all placed on a gravel bed. 

After illustrating the numerical model used in the study, the Chapter describes the 
turbulent flow around an isolated specimen of the freshwater Unio Elongatulus mussel. 
Though the isolated shell can be considered as a particular case of surface-mounted 
obstacle, studying the flow over a live mussel is complicated by the coarse substrate, the 
complex shape of the shell and the filtering activity of the mollusk. Thus, the relevant 
parameters investigated in the study are the bed roughness, the burrowing ratio of the 
shell and the filtering discharge through the mussel incurrent and excurrent siphons. 
The analysis focuses on the mean flow and the turbulent kinetic energy (TKE), as well as 
on the vortical structures generated around the mussel, the flow in the wake and the 
vortex shedding. 

As mussels tend to aggregate to form clusters of elements with different spatial 
densities, evaluating how the flow structure changes in case of a musselbed provides 
further insights on the mean flow and on the turbulent structures at the organism scale. 
In clusters of elements mussel-to-mussel interactions affect the flow approaching each 
shell, and must be accounted for to provide a more realistic view of the environmental 
conditions in which mussels live, compared to the canonical case of an isolated mussel. 
The main parameter analyzed in the second part of this Chapter is the mussel density 
(i.e., the number of mussels per unit area). The effects of the bed roughness and the 
filtering activity of the mussels are also investigated at different mussel densities. 

The present analysis of the flow around mussels has also important ecological and 
biological implications. Freshwater mussels are among the most imperilled fauna, hence 
investigating the flow at the organism scale can be of importance to sustain their 

                                                      
1 Lazzarin, T., Constantinescu, G., Di Micco, L., Wu, H., Lavignani, F., Lo Brutto, M., Termini, D., Viero, 

D.P., 2023. Influence of bed roughness on flow and turbulence structure around a partially-buried, 
isolated freshwater mussel. Water Resour. Res. 59, e2022WR034151. 
https://doi.org/10.1029/2022WR034151 

2 Lazzarin, T., Constantinescu, G., Wu, H., Viero, D.P. Fully Developed Open Channel Flow over Clusters 
of Freshwater Mussels Partially Buried in a Gravel Bed. Submitted for publication in Water Resour. 
Res.  
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conservation. Factors that influence the life of the mussel are also investigated in the 
study, in case of both isolated specimens and clusters of elements. Precisely, the mean 
drag forces and the bed shear stresses (that influence mussel stability) and the jet of 
filtered water exhaled from the excurrent siphon (that influence the availability of 
nutrients and foods) are analyzed depending on the aforementioned controlling 
parameters.  

3.1 Introduction 

Freshwater mussels are mollusks living at the sediment–water interface, and they are 
common in sand and gravel bed rivers. Given their non-negligible importance in fluvial 
environments, they are identified as ecosystem engineers to highlight their role in 
increasing the sustainability of river ecosystems (Marion et al., 2014; Polvi and Sarneel, 
2018; Vaughn, 2018). Among the various roles, freshwater mussels constitute a 
fundamental link in many food chains (Atkinson and Vaughn, 2015; Howard and Cufey, 
2006; Vaughn et al., 2008), contribute to the filtration of suspended material (Hajisafarali 
et al., 2022; Kreeger et al., 2018), provide suitable habitat for fish, insects and benthic 
organisms (Gutiérrez et al., 2003), increase bed stability especially in gravel-bed rivers 
(Lohrer et al., 2004), and can be used as bioindicators for water quality (Doucet et al., 
2021; Haag, 2012). 

 

Figure 3-1. Sketch of the mussel shell. U0 is the section-averaged velocity in the channel, 

L, H and b are the mussel’s length, height and width in the x, y, z reference frame, respectively 

(the position z = 0 identifies the mean bed elevation), h is the height of the exposed part, Uin 

and Uex are the mean velocities through the incurrent and the excurrent siphons, respectively, 

and D is the height of the water column above the bed. P1, P2, P3 are the horizontal locations 

where vertical profiles of the streamwise velocity were measured experimentally (see Sect. 

3.2.5). 
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Freshwater mussels have a shell composed by two valves, symmetric respect to a 
central axis (Figure 3-1). In the lower part of the shell, a muscular foot guarantees the 
anchoring to the bed. The foot also allows small movement of the mussel, in both the 
horizontal and the vertical direction.  

Generally, live mussels have been observed to move reacting to the surrounding 
environment such that they assume an orientation parallel to the incoming flow. Though 
many factors influence the mussel orientation, the alignment with the incoming flow 
allows to minimize the total drag force and the probability of being dislocated from the 
substrate (Di Maio and Corkum, 1997; Wu and Constantinescu, 2022). Mussels are 
generally partially burrowed in the bed, and anchored in the substrate with the foot, 
which is not visible and located below the mean bed level (Vaughn et al., 2008). The level 
of burial can change to adapt to flow conditions.  

The mussels have siphons to communicate with the surrounding environment and to 
acquire nutrients. An incurrent (or inhaling) siphon is generally oriented upstream and 
it is used to acquire organic particles and nutrients from the surrounding flow. The 
excurrent (or exhaling) siphon is oriented upwards, still in the frontal part of the mussel. 
Mussels use the exhaling siphon to reintroduce in the channel a jet of filtered water, 
which has low concentrations of nutrients and organic particles (Kumar et al., 2019; 
O’Riordan et al., 1995; Perles et al., 2003). For this reason, freshwater mussels are 
important for filtering water flows. The role of water purifier is among the key functions 
of freshwater mussels in river ecosystem, and their filtering rate has been measured 
experimentally (see e.g., Kryger & Riisgård, 1988; Monismith et al., 1990; Nishizaki & 
Ackerman, 2017). Though the filtering rate depends on the specie and the dimension 
(Bunt et al., 1993), mussels can also change their filtering rate in response of variable flow 
conditions.  

 

In many part of the world, freshwater mussels are among the most common benthic 
invertebrates (Allen & Vaughn, 2009; Strayer, 2008). However, they are also among the 
world's most imperilled fauna (Ferreira-Rodríguez et al., 2019; Froufe et al., 2017; Lopes-
Lima et al., 2017; Lopez et al., 2022; Lydeard et al., 2004; Simeone et al., 2021; Strayer et 
al., 2004). Mussels life is strongly connected with the aquatic environment in which they 
are found (Lopez et al., 2022). In particular, the chemical and biological characteristics of 
the water, in terms of availability of nutrients, water pH and temperature, can all affect 
mussel life. The survival of the mussels also depends on the flow hydrodynamics, which 
can modify environmental conditions and play a key role for the conservation of these 
mollusks. The mutual influences between mussels and flow are then of great importance 
for their conservation. Understanding the hydrodynamic responses of freshwater 
mussels and individuating regions with a favorable habitat for mussels, can be useful to 
sustain their population over long times (Blettler et al., 2010; Engelhardt et al., 2004; 
Nakato et al., 2007; Sullivan and Woolnough, 2021; Zigler et al., 2008). Hence, studying 
mechanisms and factors that can threaten mussel life (e.g., critical stability, nutrients 
availability) can shed a new light on techniques to guarantee mussel survival in natural 
streams. At the moment, important gaps on the mussel-flow interactions at the organism 
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scale still hinder the actions to be pursued (Lopez and Vaughn, 2021), even if a full 
understanding of factors influencing mussel life, as well as the ecological role played by 
the mussels, require an interdisciplinary approach involving ecological, biomechanical 
and environmental fluid mechanics research tools (Nikora, 2010).  

As most of the invertebrates living at the sediment-water interface, freshwater 
mussels are sensitive to shear stresses in the river reach (Modesto et al., 2023; Morales et 
al., 2006; Strayer, 1999). Regions of high bed shear stress are associated to a lower 
probability of mussel survival (Newton et al., 2008). High bed shear stresses generally 
correlate with mussel dislocation, because of drag forces acting on the emerged part of 
the shell, and of sediment entrainment at the bed that induces local scour near the shells. 
These mechanisms are enhanced during floods because both the mean drag forces and 
the mean bed shear stresses increase, thus increasing the probability of mussel 
dislocation. During floods instantaneous values also show larger variations with respect 
to the mean values, which further increases the probability of the mussel to lose anchor 
from the substrate. For this reason, floods and extreme events are among the main causes 
that threaten mussel conservation (Sansom et al., 2018).  

Large-scale turbulent structures and high values of the turbulence kinetic energy 
(TKE) at the shells may also affect the quality of the habitat and, possibly, the survival of 
the mussel (Rehmann et al., 2003). The mussel shell constitutes a submerged, surface-
mounted obstacle, which increases velocity and shear stresses on its sides, and produces 
a recirculation region in the wake downstream. Various other vortical structures form, 
and interact with those generated at the individual particles of the rough bed and at the 
neighboring mussels, if present (Chang and Constantinescu, 2013). Most of them (e.g., 
horseshoe vortices, wake vortices, base and tip vortices in the wake) are observed above 
the surface of the bed, and generally they extend until an elevation comparable with the 
emerged part of the shells. As a consequence, their presence and/or their passage induce 
instantaneous fluctuations on the flow field, and they can amplify the instantaneous 
values of bed shear stresses and drag forces on the mussel, thus affecting the ability of 
the mussel to remain anchored to the bed. Together with macro-scale characteristics of 
the flow (e.g., flow velocity), these local turbulent structures are also expected to be of 
influence for the mussel life, thus requiring analysis of the flow at the organism scale. 

 

Most of the previous studies on the interactions among flow and mussels at the 
organism scale include laboratory experiments (Wu et al., 2020). Earlier studies focused 
on characterizing the phytoplankton distribution within the boundary layer (e.g., 
Butman et al., 1994; O’Riordan et al., 1995). Nikora et al. (2002) analyzed the internal 
boundary layer (e.g., velocity and turbulence profiles) over a patch of horse mussels 
through in situ measurements in a tidal environment. Crimaldi et al. (2002) measured 
turbulent structures over a laboratory bed with 0.027 m long model clams. Considering 
different densities and emerging heights, they concluded that spacing strongly affects 
the probability of the mussel to remain anchored to the bed. van Duren et al. (2006) used 
living, 0.039 m long mussels to assess the effects of mussel filtering activity on mussel-
bed boundary layer structure. The filtering effect has been demonstrated to be crucial 
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especially if the excurrent velocity was relatively high compared to the mean incoming 
flow. Crimaldi et al. (2007) also evaluated the effect of the filtering activity on velocity 
and concentration profiles making use of models of 0.009 m long clams. The siphonal 
activity was accounted for also in the experimental studies of Kumar et al. (2019), 
considering an isolated mussel with siphons facing both upstream and downstream, and 
of Sansom et al. (2018), considering a bed with mussels at a low spatial density (i.e., 
10 mus/m2). Sansom et al. (2020), instead, used Particle Image Velocimetry (PIV) to 
characterize flow over a rough bed with models of shells ~0.030 to 0.040 m long at 
relatively high spatial densities. Mussels was partially-burrowed in the substrate and 
placed at spatial densities spanning from 0 mus/m2 to 100 mus/m2. The model mussels, 
however, did not account for the filtering activity of the mollusks. They observed a 
change in flow regime for higher mussel densities (above 25 mus/m2), with reduced flow 
velocity and bed shear stresses in the mussel region. Largest turbulent shear stresses, 
instead, were located at the top of the protruding shells, away from the bed. As a 
consequence, the dislodgement potential exerted on the mussels was observed to be 
reduced for clusters with high mussel densities.  

Besides laboratory experiments, the mussel-flow interactions at the organism scale 
have been investigated also through numerical approaches that resolve the energetically 
important turbulent eddies in the flow. Previous studies focused on vortical structures 
generated by mussels, their dynamics and their effects on the drag forces, on the capacity 
of the flow to induce local scour, and on the mixing between the excurrent siphon jet of 
filtered water and the overflow rich in phytoplankton. Among the studies, Wu et al. 
(2020) considered a single partially-burrowed mussel placed on a flat bed, while 
Constantinescu et al. (2013) a small cluster of three mussels, still mounted on a flat bed. 
The effect of the angle of attack was discussed later by Wu & Constantinescu (2022). 

 

As a first drawback of previous numerical studies, they refer to the case of a smooth 
horizontal bed. However, mussels are generally found in sand or gravel rivers. Coarse 
substrates enhance both bed stability and water mixing. As these are key aspects for their 
survival, mussels live on bed whose roughness is relatively high. The mean sediment 
size (e.g., as quantified by the d50 and d90 diameters) of the bed particles can be as high as 
10% of the height of the emerged part of the mussel, h. Particles composing gravel beds 
induce energetic eddies to form in case of turbulent flows. As a consequence, TKE values 
above the bed surface are higher if compared to the case of a smooth, horizontal channel 
with the same Reynolds number. This effect is observed in case of graded sediments, 
and it is enhanced when particles with heterogeneous dimensions are present. Though 
depending also on the relative size of the sediment diameter and the water depth, large 
size particles constitute larger-scale roughness elements and act as surface-mounted 
obstacles, with a role similar to that of a mussel shell. In any case, in rough, gravel beds 
eddies generated by the bed sediments may alter the flow field approaching the mussel 
shell. The interactions of these eddies with the turbulent structures generated by the shell 
should be considered, as they influence the flow approaching the mussel. These 
interactions can affect both the instantaneous and the mean flow field in the shell region, 
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and ultimately the drag forces on the shell and the bed shear stress near the mussels, 
which are important for the mussel stability. For this reason, considering a gravel bed is 
expected to provide more realistic predictions of the actions of flow on mussels. To this 
end, differently from the aforementioned studies based on eddy resolving techniques, 
that simulate the case of smooth beds, the present work refers to the case of a rough bed 
to approximate a natural benthic environment, and to evaluate to what extent the bed 
roughness controls the dynamics of the larger-scale coherent structures, the forces on the 
shell, and the mixing between the filtered water entering the channel through the 
excurrent siphon and the surrounding flow. As mussels are common in rough bed rivers, 
understating the flow structure in case of mussels placed over gravel beds is of particular 
interest to understand actions to be pursed to preserve their life in natural streams. 

As a second drawback, previous studies refer to isolated specimens, or to small 
groups of mussels with low spatial densities. In natural rivers, instead, mussels form 
large clusters (or arrays), known as mussel beds (Morales et al., 2006; van de Koppel et 
al., 2008). Though the positions of the mussels are strongly irregular in the clusters, the 
value of the mussel array density (i.e., the number of mussels per unit area) is generally 
used to characterize clusters of mussels. Values are highly variable, and they depend on 
several factors (e.g., mussel species, environmental conditions, etc.). On some river beds 
they also exceed 200 mus/m2 (Strayer et al., 1994). In case of mussel beds, the flow and 
the vortical structures are expected to differ from those observed in the canonical case of 
an isolated mussel (Sansom et al., 2022). Mussel-to-mussel interactions increase with the 
array density increasing. As a consequence, the effect on the surrounding flow becomes 
also function of the position inside the array and of the relative position of each mussel 
with respect to neighboring ones, while for an isolated mussel it is mainly a function of 
the geometry of the protruding part of the shell and of the filtering discharge. In the case 
of an array of mussels, the drag forces on the shells are also expected to differ if 
compared to the case of an isolated mussel. As mussels are partially sheltered by 
neighboring shells, the destabilizing drag forces are expected to decrease with increasing 
mussel density. In cluster of mussels, the filtering activity of single mollusks also 
interfere with that of the surrounding ones; hence, the availability of nutrients can be 
influenced by the mussel density, besides the mixing capacity of the surrounding flow. 
All these reasons justify the study of clusters of mussels at different spatial densities to 
complement the results obtained for the canonical case of an isolated mussel.  

 

The present work is based on numerical simulations with eddy resolving techniques, 
which constitute a powerful tool to provide information on the dynamics of the large-
scale turbulence in case of complex three-dimensional domain, with elements of 
irregular shapes (Keylock et al., 2012, 2005). The vortical structures of the flow, the 
interaction of these coherent structures with the bed and the mussel surface and their 
role in transport and mixing processes, require the use of 3D approaches as information 
collected in 2D planes does not describe completely the complex interactions occurring 
in such cases. Also, solving the flow over the individual roughness elements forming the 
rough bed surface, either in case of the bed particles and in case of mussel shells, 
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provides more realistic results rather than simply accounting for the bed roughness via 
empirical roughness models (e.g., Wu et al., 2021). This is the case of the present study 
which is based on a gravel bed surface obtained from a flume experiment conducted as 
part of a larger research program, and on a shape of the shells that accurately reproduces 
that of an unionid mussel, and includes the filtering flows through the excurrent and 
incurrent siphons. 

The numerical approach used in the present study resolves the flow past the mussel 
shells, and allows to investigate the near-bed flow in the roughness layer and to provide 
complete information of the entire flow field in the region where mussels are placed. The 
advantage of this numerical approach is particularly clear especially if compared to 
laboratory experiments. In this latter case, information on the mean flow and turbulence 
variables (e.g., TKE, Reynolds stresses) is constrained by the experimental 
measurements, and it is generally available in a limited number of sections and/or in a 
limited number of horizontal locations around the mussel (Crimaldi et al., 2002; Kumar 
et al., 2019; Sansom et al., 2018). Measurements near the mussels are also difficult to 
perform experimentally, especially at high mussel densities, due to the very small 
spacing among the shells. 

The present study refers to a Unio Elongatulus freshwater mussel, which is a popular 
mussel in riverine and lake environments in Northern Italy (Froufe et al., 2017; Lopes-
Lima et al., 2017; Marrone et al., 2019) The shell of the Unio Elongatulus mussel is more 
streamlined compared to the Lampsilis Siliquoidea mussel used by Wu et al. (2020a) and 
Wu & Constantinescu (2022) in their numeircal analysis for the case of a single specimen 
on a flat bed. Also, the Unio Elongatulus mussel is typically inclined toward the incoming 
flow, such that the front and the back side present large differences (Figure 3-1). L. 

Siliquoidea mussels, instead, have a more symmetrical shell and they are typically found 
to be less tilted toward the incoming flow.  

The first part of the present research focuses on the interactions between the flow and 
an isolated mussel placed on a gravel bed. The interest is to understand how an 
undisturbed flow approaches the shell and which are the turbulent coherent structures 
forming. Quantifying drag forces and describing the mixing of the excurrent jet induced 
by the incoming flow are also of interest for the mussel conservation. The present study 
complements the previous numerical researches, which refer to the case of smooth beds, 
by analyzing the influence of bed roughness on flow and turbulence structures. The 
second part of the research, instead, focuses on musselbeds. Compared to previous 
studies conducted with freshwater mussels, the present work investigates the effect of 
the density of the mussel array up to large values corresponding to highly dense mussel 
beds (e.g., 500 mussels/m²). In this case the interest is the analysis of the fully developed 
flow, which corresponds to the flow at large distances from the leading edge of the array. 
This is motivated by the fact that in natural rivers musselbeds can extend over several 
kilometers. After the development of a rough bed boundary layer at the leading edge of 
the array, at a distance, this boundary layer is expected to reach the free surface, and the 
flow reaches a new ‘fully-developed’ state. This new state still depends to the 
characteristics of the open channel flow approaching the mussel bed to a large extend 
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(e.g., flow discharge), but it is strongly influenced by the characteristics of the musselbed, 
and it is observed until the end of the musselbed.  

A first main goal of the study is to understand to what extent bed roughness affects 
flow, turbulent kinetic energy and the dynamics of vortical structures around an 
isolated, partially-burrowed mussel shell. A related goal is to quantify the effect of 
increasing bed roughness on the mean drag forces acting on the exposed part of the shell 
and the associated drag coefficients, and on mixing between the excurrent siphon jet and 
the surrounding flow. A second main goal of the study is to understand to what extent 
the mussel density influences the aforementioned aspects. This requires analyzing the 
interactions between the eddies generated by the gravel bed particles and the mussel 
shells, and the mussel-to-mussel interactions in case of arrays of shells. Other research 
questions the present study tries to answer regard how does bed roughness and mussel 
densities affect the formation and strength of the base vortices induced by active filtering 
and of tip vortices induced in the wakes, and how is wake vortex shedding affected by 
increasing bed roughness. Besides the bed roughness and the mussel density, the study 
also investigates the role of the mussel shape, by the comparison with previous studies 
on different species, of the filtering activity of the mussel, by varying the discharge 
through the siphons, and of the burial level, by changing the height of the exposed part 
of the shells.  

After describing the computational model and its validation by means of 
experimental measurements (Sect. 3.2), the present study first provides information for 
the case of an isolated mussel on a rough bed (Sect. 3.3). The main parameter investigated 
is the bed roughness, quantified as the main grain diameter, d50. The study considers 
beds of different roughness, from the case of a gravel bed to the canonical case of a 
smooth bed. The study also considers different heights of the exposed part of the mussel, 
h, as the interactions between eddies generated by the rough bed and by the exposed 
part of the shell are controlled to a large degree by the d50/h ratio. Another parameter 
investigated in the present study is the filtering velocity ratio, VR. defined as the ratio 
between the excurrent jet velocity, Uex, and the bulk velocity in the channel, U0. This is 
motivated by the previous study of Wu et al. (2020a), which has shown that increasing 
VR the drag force acting on the shell increases, suggesting that mussel could limit their 
filtering activity at high flow conditions to better resist dislocation from the substrate. 
Then, the study is complemented with the case of clusters of mussels placed on a rough 
bed, which are investigated in a similar way (Sect. 3.4). In this case, a single value of the 
exposed height of the mussel is considered. The parameters investigated in this Section 
include the mussel array density, M, the ratio between the bed roughness height and the 
protruding height of the mussel, d50/h, and the filtering velocity ratio, VR. Some 
conclusions close the Chapter, where limitations of the present work and future research 
objectives are also discussed (Sect. 3.5). 
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3.2 Geometry, Computational Approach and Model Validation 

3.2.1 Geometry 

The rough bed surface used in the present simulations was the reproduction of a real 
water-worked gravel bed sample from laboratory, with d50 = 3.1 mm and d90 = 5.0 mm 
(Figure 3-2a). In present study the main focus was on the flow around the partially-
buried mussels. The critical effect induced by the gravel bed, and desired to be captured 
by the numerical simulations, was the generation of turbulent eddies induced by bed 
particles and their interactions with the mussel shells. For this reason, the bed was 
assumed to be impermeable, and only the surface of the gravel bed (i.e., the part directly 
exposed to the flow) was modelled. The lower part of the particles and the pores below 
them were instead ignored. Some simulations included in the present studies considered 
a flatbed (i.e., d50 = 0.00 mm), while others considered a deformed bed surface obtained 
by multiplying the vertical elevation of the original gravel bed by a factor 0.5. This 
surface has a of lower roughness, corresponding to d50 = 2.46 mm.  

The geometry of the mussel shell has been obtained as a 3-D reproduction of the real 
shell of an Unio Elongatulus mussel. The mussel has a total length of 0.080 m and it is 
placed with the major axis forming a 45° angle with the bed, according to its usual 
position in the real habitat observed from field observations, as pictured in Figure 3-1. 
The mussel was aligned with the incoming flow (i.e., angle of attack 0°). The projected 
dimensions along x,y,z axis was length L = 0.055 m, width b = 0.020 m and height 
H = 0.050 m. Considering the emerging part of the shell, the length, L, and the width, b, 
were approximatively constant for the different levels of mussel burial considered in the 
present work. The height, h, of the emerging part of the shell (i.e., the part above the bed 
surface) decreased with increasing mussel burrowing. The inhaling siphon was pointing 
upstream, while the exhaling siphon, which was located downstream of the inhaling 
siphon, was pointing upwards (Figure 3-2b). In the simulations, the width of the shell 
was constant, such that the small change in the volume of the shell during the filtering 
process, which results from the opening of the shell, was neglected. 

 

Figure 3-2. Computational domain with a rough bed surface and an isolated mussel. a) 

three-dimensional (3-D) view of the computational domain (red rectangle shows the y / H = 0 

plane); b) 3-D view of the mussel, highlighting the positions of the incurrent and excurrent 

siphons. 
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3.2.2 Numerical model 

The simulations were performed with the finite-volume, viscous flow solver in STAR-
CCM+. The same computational suite has been widely used to simulate and to accurately 
predict complex flows in natural environments containing highly-unsteady vortices, as 
well as steady and unsteady flows in channels containing large-scale flow obstructions 
(e.g., Constantinescu, 2014; Horna-Munoz and Constantinescu, 2018; Keylock et al., 2012; 
Lazzarin et al., 2023b).  

The Detached Eddy Simulation (DES) approach was adopted in the present study to 
reproduce the energetically important eddies in the flow. DES is a hybrid approach 
between the Reynolds-Averaged-Navier-Stokes (RANS) and the Large Eddy 
Simulations (LES). It reduces to RANS equations near the solid boundaries 
(Constantinescu et al., 2003: Heinz, 2020; Menter et al., 2021). Instead, the LES mode is 
used over the rest of the computational domain (Chang et al., 2007a).  

In RANS, the Reynolds decomposition and the time averaging of equations 
(continuity and Navier-Stokes) correspond to apply a time filter. The additional 
Reynolds stresses, that arise in the time-filtered equations, represent the effect of 
turbulence on the mean flow. In LES, flow quantities are not averaged in time; rather, 
turbulent motions are split into large- and small-scale eddies, with the former resolved 
and the latter modelled. The small-scale motions are modelled making use of a spatial 
filtering that depends on the local mesh size. Equations are equivalent to the RANS 
equations with the additional turbulent stress term that arises from the filtering 
operation performed by a subgrid model. The main difference is that in RANS the stress 
term represents the total effect of turbulence, whereas in LES only the effect of the small-
scale motions.  

In the present simulations the base RANS model was the Shear Stress Transport (SST) 
k- model (Menter, 1994; Menter et al., 2003). The DES formulation is obtained by 
modifying the definition of the specific dissipation term, , depending on the specific 
approach. 

Grid elements are assigned to either RANS or LES regions depending on the 
turbulence length scale. In the RANS region, the turbulence length scale is proportional 
to the distance to the closest solid boundary. By contrast, the turbulence length scale in 
DES is redefined such that it becomes proportional to the local grid size away from the 
solid boundaries and the eddy viscosity becomes proportional to the square of the local 
grid spacing, as in the LES model.  

In the present simulations, a passive scalar was used to study the mixing of the jet 
from the excurrent siphon. A transport equation was solved for the passive scalar, and 
the Prandtl number was set to 1, which is generally the standard in these applications 
(Chang et al., 2007b). 

The viscous sublayer was fully resolved to avoid the introduction of wall functions 
(i.e., at least one grid point was situated inside the viscous sublayer in the wall normal 
direction; this required the thickness of the near-wall cell to be lower than 5ν/u*, being ν 

the kinematic viscosity and u* the local shear velocity). DES calculations with this kind 
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of approach have been demonstrated to accurately predict flow and turbulence statistics 
for open channel flows and flow in natural river reaches (Constantinescu, 2014; 
Constantinescu et al., 2003; Constantinescu and Squires, 2003; Keylock et al., 2012; Kirkil 
and Constantinescu, 2009). Such DES simulations have been also used to study the flow 
fields in open channel flows with either isolated specimens or arrays of surface-mounted 
emerged and submerged obstacles (Chang et al., 2007a, 2020; Koken and Constantinescu, 
2021), and with large-scale roughness elements, such as arrays of 2-D dunes (Chang and 
Constantinescu, 2013). 

The governing equations were discretized on unstructured, Cartesian-like grids. The 
Navier-Stokes equations were advanced in time using a Semi-Implicit Method for 
Pressure Linked Equations (SIMPLE) algorithm. In this algorithm an intermediate 
velocity is calculated by solving the momentum equations without the pressure term, 
and then a pressure correction is introduced to calculate the final velocity that ensures 
the continuity equation is satisfied (Patankar and Spalding, 1972; Qin et al., 2021; Xu et 
al., 2022) The convection terms in the momentum equations were discretized making 
use of a Hybrid-Bounded central difference scheme. It couples a bounded central 
difference scheme in LES regions, and a higher-order upwind scheme in RANS regions. 
Advection-diffusion equations were used for the eddy viscosity and for the passive 
scalar introduced through the excurrent siphons of mussels. Convective terms in the 
transport equations were discretised with a second-order upwind scheme, while 
diffusive and pressure gradient terms were discretised with a second-order central 
scheme. The temporal discretization was implicit, and the solver was parallelized using 
message passing interface for application in computing clusters.  

3.2.3 Computational Model and Boundary conditions 

The gravel bed surface and the geometry of the mussel shell were obtained from the 
digitalization of the real samples. They were reconstructed as separate geometries 
making use of an accurate close-range photogrammetric survey (ground sample 
distance of ~0.06 mm). This technique has been shown to well capture the geometry of 
gravel beds (Chen et al., 2019). A Nikon D5200 digital camera have been used, and 
classical Structure from Motion (SfM) and Multi-View Stereo (MVS) allowed to match 
the images to obtain dense point clouds. The point clouds for the 0.40 m wide and 1.0 m 
long bed surface consisted of 1.9 million points. That of the mussel shell consisted of 
172,000 points. The point clouds have been exported as a triangulated meshes in 
stereolithography files (.stl), with a spatial resolution of 0.4 mm for the bed and 0.1 mm 
for the mussel shell. The three-dimensional models of the gravel-bed and of the mussel 
have been imported into the STAR-CCM+ software to build the computational mesh. 

For simulations considering an isolated mussel, the original scanned bed was used in 
the simulations. Instead, in the case of musselbeds, the original graved bed surface was 
used to obtain a larger bed surface. Using symmetry projections, the new surface has 
been generated such that the bed elevation was identical at the upstream and at the 
downstream edges of the computational domain, and also at its right and left sides (this 
was needed to impose periodic boundary conditions, as described later in the text). 
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The isolated mussel has been positioned equidistant from the later sides, at a 
longitudinal distance of 0.2 m (i.e., 4 H) from the upstream part of the gravel bed surface. 
When considering musselbeds, the positions of the mussels in the array have been 
determined using a randomization procedure. Additional constraints allowed to 
maintain a nearly uniform mussel density in the different parts of the domain, and to 
guarantee a minimum distance between neighboring mussels. The surface of the mussel 
shell was copied and placed over the bed surfaces, and centered at the spatial 
coordinates provided by the aforementioned procedure. 

Once the mussels were placed on a smooth or a rough bed corresponding to the 
desired level of burial, the mussel parts beneath the bottom were removed to obtain the 
final mesh (Figure 3-2a). No-slip boundary conditions were then applied on the bed 
surface and on the mussel shells. The turbulent kinetic energy was imposed to be zero 
on all solid surfaces, and the standard relationships were used to specify the turbulence 
vorticity on these surfaces (Menter, 1994). 

To mimic the two mussel siphons (Figure 3-2b), additional parts have been added to 
the surface of the mussel shell. To provide a realistic representation of the interactions 
between the excurrent jet and the overflow, the exhaling siphon has been modelled with 
a vertical pipe inside the upper part of the mussel, as in Wu et al. (2020a). A fixed mass 
flow was specified on the incurrent siphon surface (mass outlet), and at the entrance 
section of the excurrent siphon pipe (mass inlet). The values of discharge corresponded 
to the desired filtering flow, and it was constant in time for each simulation. A constant 
concentration of passive scalar (C0 = 1) has also been assigned at the inlet section of the 
exhaling siphon to study the excurrent jet. At the solid surfaces and at the free surface, 
the gradients of C in the normal direction were set equal to zero (Chang et al., 2007). The 
excurrent pipe was removed in the simulations conducted with no active filtering, and 
a cap was placed on the top of the excurrent siphon. 

In the simulations the ceiling was fixed. This corresponds to the rigid-lid 
approximation (i.e., non-deformable free surface). Accordingly, proper boundary 
conditions have been assigned at this boundary (e.g., zero shear stress for velocity, zero 
vertical gradient for other variables). In the present case, the rigid-lid approximation can 
be considered acceptable. Indeed, deformations of the free-surface are expected to 
induce negligible effects on the flow field close to the mussels, given the low value of the 
Froude number and the high submergence of the emerged part of the shell (Hajimirzaie 
et al., 2012; Koken and Constantinescu, 2009; Shamloo et al., 2001; Wu et al., 2020). 

Simulations considering an isolated mussel made use of an assigned velocity 
distribution as inlet boundary condition. The distribution was obtained from a precursor 
simulation performed in a channel with the same cross section at the inlet section and 
with a length of 0.36 m. In this precursor simulation, periodic boundary conditions were 
imposed in the streamwise direction to obtain the fully-developed velocity distribution, 
as well as the inlet distributions of the turbulent kinetic energy, k, and the turbulence 
vorticity,  for which transport equations are solved in the RANS regions of the present 
DES model. Once the precursor simulation reached a steady state, data was imposed at 
the inlet section of the main model. Symmetry boundary conditions have also been 
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imposed at the two later boundaries of the main model. At the exit section, a pressure 
outlet boundary condition was used. The passive scalar concentration, C, was set to 0 at 
the inlet boundary, and it was set equal to the value at the immediate interior cell at the 
outlet boundary. The gradients of C in the direction normal to surfaces were set to zero. 

Boundary conditions were different in the simulations conducted with arrays of 
mussels. As the goal was to study the fully developed flow over musselbeds, periodic 
boundary conditions have been imposed in both the streamwise and spanwise directions 
for flow velocity and turbulence model variables. In the longitudinal direction, the value 
of mass flow rate was imposed to be fixed. Periodic conditions on these boundaries was 
assigned also to the scalar concentration, though prescribing zero-gradients in the 
normal direction at the impermeable surfaces.  

3.2.4 Computational mesh 

The computational grids were created using the mesh generator in STAR-CCM+. 
They were made of hexahedral cells, which provided a higher degree of flexibility. Near 
the irregular surfaces (e.g., at the bed and at the shells), mesh refinements and trimmed 
cells provided a conformal mapping of these surfaces. This procedure also ensured 
smooth transitions between regions of different mesh refinements. 

Regions close to the mussel and to the gravel bed required higher levels of 
discretization to represent the irregular surfaces with sufficient degree of precision. For 
this reason, the mesh was nested-like to allow a local refinement where higher 
resolutions were needed; in particular, the computational domain has been decomposed 
into three regions with a progressive decrease in the dimension of the computational 
cells approaching the lower part of the water column. In the upper region, the 
computational cells had a dimension of 0.0048 m; going toward the bed, where higher 
resolutions were required, the mesh has been refined using cells with dimensions of 
0.0024 m and 0.0012 m (Figure 3-3). The last value corresponds to about 20-25 wall units 
for cells near the bed and the protruding shells in the direction tangent to the surfaces. 
In the wall normal direction at least one grid point was ensured to be in the viscous 
sublayer. The regions near the siphons have been refined with elements of size 0.0005 m. 

The mesh generation consisted in the remeshing of the geometrical surfaces with the 
desired precision, and in the subsequent generation of the 3D volume mesh. In the 
present simulations, the computational domain was made by approximatively 6’000’000 
elements for cases with a single mussel. The total number of cells used for investigating 
cases with musselbeds was close to 13’000’000, as the geometrical domain was larger and 
the regions with high resolution at the siphons were more.  

Results of numerical simulations have been first checked to be grid independent in 
the initial phase of the study. One of the rough-bed case simulations has been performed 
with different levels of grid refinement. Considering the region directly above the gravel 
bed, the investigated range of the grid sizes spanned from 0.0008 m to 0.0030 m. The grid 
independency of the solution has been observed below the value of 0.0012 m (referred 
to the part of the domain in the vicinity of the gravel bed). Simulations with finer grids 
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in this part of the domain showed negligible variations of velocity, vorticity and TKE if 
compared to the results obtained with a resolution of 0.0012 m near the bed. For this 
reason, simulations included in this study have been performed with a resolution of 
0.0012 m in the lower region, as in the computational grid pictured in Figure 3-3.  

The same code was used in the investigations of Wu et al. (2020a), who already 
conducted grid sensitivity analysis to determine the grid resolution needed to obtain 
accurate and grid-independent results near the mussels. The grid refinement in the 
mussels region was similar to those of the present study, which confirms the validity of 
the approach, given the similar values of the Reynolds numbers in the two studies.  

 

Figure 3-3. Computational mesh in a longitudinal section cutting an isolated mussel.  

The irregular gravel bed considered in the present study demanded for solving the 
turbulence above bed particles. This in turn required a higher number of computational 
cells near the bed. For unit area of the computational domain, the number of cells used 
in the present study is roughly three times higher than the number of cells used by Wu 
et al. (2020a) and Wu & Constantinescu (2022) in the case of a flat bed. 

3.2.5 Model validation 

The numerical model used in the present study was already validated for flow past 
isolated, partially-burrowed mussels by Wu et al. (2020a). An additional validation of 
the model has been performed by reproducing a laboratory experiment of flow over a 
mussel on a gravel bed with d50 = 3.10 mm. Both the gravel bed and the mussel shell used 
in the experiments were the same reproduced in the numerical model. 

The experiment has been performed in a recirculating flume 11 m long and 0.40 m 
wide at the Hydraulic Laboratory of the Department of Engineering – University of 
Palermo (Lazzarin et al., 2023a; Termini et al., 2022). The laboratory conditions 
corresponded to that of the numerical simulation with an isolated mussel with no active 
filtering, bed roughness d50 = 3.10 mm, water depth D = 0.103 m, and height of the 
exposed part of the mussel h = 0.024 m (i.e., submergence ratio D/h = 4.3). The 
streamwise velocity has been measured with a vertical resolution of 0.003 m in 3 verticals 
around the mussel and at the inlet. A non-intrusive ultrasonic velocity profiler DOP2000 
by Signal Processing S.A. have been used. 

The experimental test has been reproduced with the numerical model described in 
the previous Sections. In particular, the structure of the computational grid was the same 
as for the other simulations included in this study. However, in this simulation the 
lateral boundaries have been set as smooth walls to mimic the experimental conditions. 
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Moreover, at the inlet, the vertical velocity profile obtained from experimental 
measurement has been assumed as constant along the width. For a better representation 
of experimental conditions, a temporal fluctuation has been added randomly to the 
velocity imposed at the inlet section. The maximum magnitude of the fluctuation has 
been set to be 10% of the values of the local velocity based on fluctuations observed in 
the laboratory setup. The other boundary conditions were identical to the ones discussed 
in Sect. 3.2.3. 

The vertical velocity profiles extracted from the numerical model are compared to 
measured data in Figure 3-4, which refer to horizontal locations P1, P2 and P3 shown in 
Figure 3-1. The level of agreement is overall good. Some local small differences are still 
present, but they do not affect the predictive ability of the model, considered that the 
effects of secondary flow and the variability of the streamwise velocity in the spanwise 
direction were ignored (a single vertical profile was measured at the inlet section). The 
magnitude of these differences is lower than 0.1 U0. This is similar to what observed by 
Wu et al., 2020 for the case of a mussel partially burrowed on a smooth bed, when 
considering the discrepancies among the simulated velocity and the experimental values 
of Sansom et al., 2020. 

 

Figure 3-4. Vertical profiles of mean streamwise velocity at points P1 (a), P2 (b), and P3 

(c) (see Figure 3-1) predicted by the validation simulation and measured experimentally over 

a rough bed (d50/H = 0.062). 
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3.3 Flow over an Isolated Mussel 

3.3.1 Test cases 

The simulations discussed in the present Section consider an isolated specimen of the 
mussel, and were performed in a nearly rectangular channel, 0.360 m (7.2 H). wide and 
0.690 m (13.8 H) long (Figure 3-2a). The flow depth in the smooth-bed simulations was 
D = 0.103 m (~2 H). This value corresponds to the average flow depth in the rough-bed 
simulations. Though this means changing the energy slope within the rigid-lid 
approximation (see Sect. 3.2.3), this approach has the advantage that it allows a direct 
comparison among different cases (same channel Reynolds number, same flow depth, 
etc.). The flow rate through the channel was the same for all the simulations and equal 
to Q = 0.0061 m³/s, corresponding to a section-averaged, or bulk, velocity U0 = 0.164 m/s. 
The Froude number was F = 0.16, the bulk Reynolds number Re = 16’900. 

Simulations were performed for a total time of 17 s (~27.1 D/U0), of which 7 s 
(~11.2 D/U0) to reach statistically steady condition and 10 s (~15.9 D/U0) for averaging.  

The mass flow rates through the incurrent and excurrent siphons were equal 
(Qin = Qex), and maintained constant in time. As the cross section of the exhaling siphon 
was 1.1 time larger than that of the inhaling siphon, lower values of velocity were 
prescribed at its boundary to maintain the same discharge through the two siphons. In 
the simulations presented in this Section, the values of discharge through the siphons 
are 0.0, 1.55·10- 6 and 3.10·10-6 m³/s. The corresponding excurrent siphon velocities, Uex, 
are 0.0, 0.1 and 0.2 m/s, respectively, while the values of the velocity ratio, VR = Uex/U0, 
are 0, 0.61 and 1.22. All values are in the expected range for the species and the 
dimensions of mussels similar to the Unio Elongatulus specimen considered in this study. 
While the intermediate value (VR = 0.61) can be considered representative of the average 
filtering discharge (Monismith et al., 1990; Sansom et al., 2018), the highest value 
(VR = 1.22) is close to the upper threshold observed for mussels of similar size (Bunt et 
al., 1993).  

The simulations discussed in the present Section include 15 cases, described in Table 
3-1, which contains their main geometrical parameters. Table 3-2, instead, contains some 
of the results discussed in the following parts of the Chapter. Simulations with VR = 0 
and the gravel bed with d50 = 3.10 mm were performed considering three different levels 
of mussel burial (h = 0.024, 0.019 and 0.014 m corresponding to h/H = 0.48, 0.38 and 0.28, 
respectively). Maintaining VR = 0 and h/H = 0.48, further simulations were performed 
with a bed of reduced roughness (d50/H = 0.049) and with a smooth bed (d50/H = 0). These 
five simulations were repeated using VR = 0.61 and VR = 1.22 to investigate the effect of 
the active filtering. 
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Table 3-1. Matrix of test cases with flow and geometrical properties. Variables h, H, L, 

b, Uex, U0 are defined in Figure 3-1; d50 is the mean grain size of the rough bed. 

h/H d50/H VR = Uex/U0 L/H b/H b/L h/b d50/h 

(-) (-) (-) (-) (-) (-) (-) (-) 

0.48 0.062 0 1.02 0.40 0.39 1.20 0.13 
0.38 0.062 0 0.98 0.40 0.41 0.95 0.16 
0.28 0.062 0 0.94 0.40 0.43 0.70 0.22 
0.48 0.049 0 1.00 0.40 0.40 1.20 0.10 
0.48 0.000 0 0.96 0.40 0.42 1.20 0.00 
0.48 0.062 0.61 1.02 0.40 0.39 1.20 0.13 
0.38 0.062 0.61 0.98 0.40 0.41 0.95 0.16 
0.28 0.062 0.61 0.94 0.40 0.43 0.70 0.22 
0.48 0.049 0.61 1.00 0.40 0.40 1.20 0.10 
0.48 0.000 0.61 0.96 0.40 0.42 1.20 0.00 
0.48 0.062 1.22 1.02 0.40 0.39 1.20 0.13 
0.38 0.062 1.22 0.98 0.40 0.41 0.95 0.16 
0.28 0.062 1.22 0.94 0.40 0.43 0.70 0.22 
0.48 0.049 1.22 1.00 0.40 0.40 1.20 0.10 
0.48 0.000 1.22 0.96 0.40 0.42 1.20 0.00 

 

Table 3-2. Matrix of test cases with main results. Variables h, H, Uex, U0 are defined in 

Figure 3-1; d50 is the mean grain size of the rough bed; LR is the length of the recirculation 

region at the back of the mussel; Ax(h) is the projected frontal area in the x-direction; Fdx, Fdy 

and Fdxy are the streamwise, spanwise and total horizontal drag forces acting on the exposed 

part of the shell; Cdx
MEAN and Cdx

RMS are the mean streamwise drag coefficient and the root 

mean square of the streamwise drag coefficient, respectively. 

h/H d50/H VR = Uex/U0 LR/h Ax/H2 Fdx/ρU02H2 Fdy/ρU02H2 Fdxy/ρU02H2 CdxMEAN CdxRMS 

(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) 

0.48 0.062 0 2.3 0.131 0.0105 0.0016 0.0106 0.160 0.013 

0.38 0.062 0 2.6 0.096 0.0057 0.0004 0.0057 0.119 0.019 

0.28 0.062 0 3.2 0.050 0.0024 0.0003 0.0025 0.097 0.019 

0.48 0.049 0 2.3 0.131 0.0102 0.0012 0.0103 0.155 0.007 

0.48 0.000 0 2.7 0.131 0.0099 0.0007 0.0100 0.152 0.007 

0.48 0.062 0.61 2.4 0.131 0.0113 0.0026 0.0116 0.172 0.015 

0.38 0.062 0.61 2.6 0.096 0.0064 0.0024 0.0069 0.135 0.026 

0.28 0.062 0.61 3.2 0.050 0.0028 0.0012 0.0031 0.113 0.023 

0.48 0.049 0.61 2.4 0.131 0.0111 0.0015 0.0112 0.169 0.007 

0.48 0.000 0.61 2.9 0.131 0.0107 0.0008 0.0107 0.163 0.009 

0.48 0.062 1.22 2.5 0.131 0.0094 0.0027 0.0098 0.143 0.016 

0.38 0.062 1.22 2.9 0.096 0.0043 0.0017 0.0047 0.091 0.010 

0.28 0.062 1.22 3.6 0.050 0.0015 0.0008 0.0017 0.060 0.022 

0.48 0.049 1.22 2.7 0.131 0.0092 0.0021 0.0095 0.141 0.007 

0.48 0.000 1.22 3.1 0.131 0.0086 0.0012 0.0087 0.132 0.007 
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Freshwater mussels generally live in water bodies with flow depths ranging from 
some tens of centimetres to couple of meters. Based on this information, and considering 
the typical size and burial ratio of mussel, mussels do not place themselves in very 
shallow water, which motivates the fact that the test cases discussed in the present 
Section, and included in Table 3-1, consider a relatively high submergence (i.e., D/h > 4). 

Though the submergence ratio D/h is among the key parameters when studying flow 
around submerged obstacles (Hajimirzaie et al., 2012; Papanicolaou et al., 2018; Singh et 
al., 2019), Shamloo et al. (2001) observed that in case of submergence ratios D/h > 4 the 
interactions between the water surface and the wake are negligible. According to this, 
the rigid lid approximation has been assumed for the set-up of the numerical model 
(Sect. 3.2.3). Cases with low submergence ratios (e.g., D/h < 1.5), instead, are 
characterized by a more complex flow physics, with strong obstacle-free surface 
interactions (Lacey and Rennie, 2012; Sadeque et al., 2009, 2008), which requires a 
numerical model with a deformable free surface (e.g., the Volume of Fluid two-phase 
scheme). Given the fact that these cases are less relevant for mussels in natural streams, 
the present study refers to cases with relatively large submergence.  

In any case, to evaluate the effect of varying the submergence, additional simulations 
were performed with a lower flow depth (D = 0.069 m, D/h = 2.9) for three different 
values of VR (i.e., 0.00, 0.61 and 1.22), maintaining constant the burial level (h/H = 0.48) 
and the bed roughness (d50/H = 0.062). Results of simulations performed with 
D = 0.069 m and D = 0.103 m showed negligible differences, thus simulations conducted 
with D = 0.069 m are not included in Table 3-1 and Table 3-2 for brevity.  

3.3.2 Mean Flow and Turbulent Kinetic Energy 

Flow over an isolated mussel represents a particular case of flow past submerged, 
surface‐mounted obstacle. Accordingly, a recirculation region forms at the back of the 
mussel, and the flow passing above the top of the mussel descents to the bed 
downstream of its shell. To measure the length of the recirculation region, the point in 
which the flow reattaches to the bed is determined by considering the adjacent cells with 
opposite velocity. The streamwise distance measured from the centre of the exhaling 
siphon to this point is labelled LR. A visual representation of the recirculation length LR 

is provided in Figure 3-5a for the h/H = 0.48, d50/H = 0, VR = 0 case, where the 
recirculation bubble is highlighted by means of the 2-D streamlines in the y/H = 0 vertical 
plane.  

The distributions in Figure 3-5 also allow to evaluate the differences in the streamwise 
velocity whether the bed is smooth (Figure 3-5a,b) or rough (Figure 3-5c,d). Particularly, 
in the near bed region gravel particles reduce the streamwise velocity, which is expected 
to influence the flow approaching the mussel and to affect the adverse pressure 
gradients in the frontal part of the shell. Adverse pressure gradients are in turn 
connected with the possible formation of a horseshoe vortex at the junction line between 
the shell and the bed surface. The thickness of this reduced-velocity region is larger 
upstream the mussel, but becomes almost negligible in the wake, where low values of 
velocity are observed only in between bed particles. The distributions in Figure 3-5 also 
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allow to evaluate the influence of the active filtering (Figure 3-5b,d, for VR = 0.61). The 
main effect is the presence of a jet of water injected vertically in the surrounding flow 
from the upper part of the mussel. The jet realigns with the incoming flow downstream 
the shell, at a distance from the excurrent siphon. The dynamics of the excurrent jet are 
important as they affect the transport of nutrients and organic matter in the surrounding 
environment. For VR < 1 water in the jet has a lower velocity compared to the 
surrounding flow, such that the region of reduced streamwise velocities becomes thicker 
with increasing VR (e.g., compare cases with VR = 0 in Figure 3-5a,c and VR = 0.61 in 
Figure 3-5b,d). The excurrent jets develop above the top of the mussels and they are 
marginally affected by the bed roughness. The comparison between Figure 3-5b and 
Figure 3-5d shows that the jets develop almost independently of d50/H. 

 

Figure 3-5. Mean streamwise velocity, u/U0, in the y/H = 0 plane for different simulations 

(a-d). LR denotes the maximum streamwise length of the mean-flow recirculation region 

based on 2-D streamline patterns. 

Recirculation regions in the wake are observed in all the simulations, though the size 
of these regions, as measured by the streamwise length LR (Figure 3-5), is different 
depending on the controlling parameters here analysed. Figure 3-6 visualizes the length 
of the recirculation region as a function of the main parameters investigated in the study 
(i.e., bed roughness, velocity ratio, and exposed height of the shell). As the size of the 
recirculation region depends on the height of the emerged part of the shell, as observed 
in previous studies with canonical submerged obstacles, LR is non dimensionalized 
through the emerged height, h. The length of the recirculation region decreases with the 
bed roughness (Figure 3-6a), as LR is strongly reduced in the simulations with 
d50/H = 0.062 and d50/H = 0.042. Compared to the case of a smooth bed, LR decreases of 
about 25% in case of a rough bed. This can be explained by the enhanced turbulent 
dissipation in the wake induced by the interactions among the flow and the irregular 
bed surface. This effect has been observed independently of the filtering activity of the 
mussel. Figure 3-6b shows the effect of the filtering activity on the length of the 
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recirculation region. As expected, LR increases when increasing VR, because the jet 
increases the thickness of the region with reduced velocity. Though the rate of increasing 
decrease with increasing bed roughness, differences in the value of LR are generally 
modest (e.g., LR increase of 10-15% when passing from VR = 0.61 to VR = 1.22). As 
mentioned, the most important parameter controlling the length of the recirculation 
region is the height of the exposed part of the shell, h. As expected, when increasing h/H, 
LR increases. However, LR/h decreases with a rate that is fairly independent of the value 
of VR, as shown in Figure 3-6c for the cases with d50/H = 0.062. This trend is in agreement 
with the findings of Wu et al. (2020) for an isolated mussel (L. Siliquoidea) placed on a 
smooth bed. 

 

Figure 3-6. Nondimensional length of the recirculation region, LR/h, (see Figure 3-5a) as 

a function of a) the bed roughness, d50/H (for different values of VR, and h/H = 0.48), b) the 

exhaling velocity ratio, VR (for different values of d50/H, and h/H = 0.48), c) the mussel 

burrowing level, h/H (for different values of VR, and d50/H = 0.062). 

The adverse pressure gradient at the front of the mussel induces a strong downflow 
which in turn may generate a horseshoe vortex to form at the junction line between the 
mussel and the bed. The formation of an horseshoe vortex was observed for the case of 
the L. Siliquoidea considered in the study of Wu et al. (2020). In the present case, which 
refers to the shape of a Unio Elongatulus mussel, no horseshoe vortices are observed to 
form at the upstream face of the mussel in the smooth-bed simulations (Figure 3-7a,b). 
The difference can be explained by the different shape of the two mussels (the Unio 

Elongatulus has a more streamlined shape), and by the inclination of the mayor axis of 
the Unio Elongatulus. The geometry and the anchoring of the shell are then of great 
importance for the formation of vortical structures near the mussels. Compared to the 
case of the L. Siliquoidea considered by Wu et al. (2020), the shape and the inclination of 
the Unio Elongatulus suppress the formation of horseshoe vortices, and, in turn, one of 
the main mechanism for local bed erosion around the shell is dampened.  

Horseshoe vortices are suppressed also in the case of a gravel bed. Though in this case 
the sheet of main vorticity is observed above the bed because of the presence of large 
bed particles upstream the mussel (Figure 3-7c,d), closer inspections of the flow field 
show no horseshoe vortices form (see also Sect. 3.3.3). 
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Figure 3-7. Mean flow spanwise vorticity, yH/U0, in the y/H = 0 plane for different 

simulations (a-d). 

Another important effect of the bed roughness is that the length of the separated shear 
layer forming at the top of the mussel is reduced. This is a clear effect of the bed 
roughness, as eddies induced by bed particles interfere with the wake downstream the 
mussel. This result agrees with the decrease of the recirculation length LR when 
increasing d50/H (Figure 3-5). The inclination of the sheet of high vorticity at the top of 
the shear layer also differs depending on the bed roughness, as the tilt is reduced in 
simulations with d50/H = 0.062. This is another consequence of bed roughness.  

In the simulations with the active filtering on, besides the shear layer forming at the 
top of the mussel, a second shear layer is observed above the excurrent siphon. It forms 
because of the interaction between the exhaled jet and the outer flow moving over the 
mussel.  

The suppression of the horseshoe vortices in the case of the Unio Elongatulus shell is 
confirmed by the TKE distributions in Figure 3-8. In the smooth bed simulations (Figure 
3-8a-c) no amplifications of TKE are observed at the upstream face of the mussel. Some 
turbulent amplifications in this region are observed in case of a rough bed (Figure 3-8d-
i), which is consistent with the presence of the vorticity sheet forming above the bed 
because of large bed particles. These amplifications are independent of the mussel burial 
level and on the exhaling velocity ratio. This suggests that the amplifications of TKE in 
the frontal part of the shell may be the consequence of large-scale turbulence originated 
because of the presence of a gravel bed, rather than being related to the generation of 
horseshoe vortices because of the mussel shell.  

Amplifications of TKE are observed in the wake downstream the mussel for all the 
cases. TKE values observed in the smooth bed cases are relatively low, especially with 
no active filtering (Figure 3-8a).Comparing results of simulations with a flat bed with 
the results obtained by Wu et al. (2020) in their corresponding simulations, 
amplifications of TKE in case of a Unio Elongatulus are about one order of magnitude 
lower. This is a result of the different shape and orientation of the mussels used in the 
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two studies. The Unio Elongatulus mussel has a more streamlined shape and, in this case, 
the anti-symmetric vortex shedding mode is suppressed (see Sect 3.3.5), as opposed to 
the case of the L. Siliquoidea where this was identified as one of the main responsible of 
the amplification of TKE in the wake. In the simulations with active filtering, the 
excurrent jet induces wake vortices to form, and anti-symmetric shedding is observed at 
times. This increases the levels of TKE in the wake (Figure 3-8b-c), though values are 
observed to be roughly 50% of those observed by Wu et al. (2020) for similar values of 
h/H and VR, as a consequence of the shape of the mussel. When the active filtering is on, 
further regions of high TKE form above the excurrent-siphons, due to the instabilities 
generated from the interaction of the jet with the surrounding flow.  

In case of a gravel bed, and for the same burial level (Figure 3-8d-f), amplifications of 
TKE are larger compared to the case of a smooth bed. For h/H = 0.48, the TKE values in 
the wake downstream the mussel for cases with d50/H = 0.062 are roughly two times those 
observed in the cases with d50/H = 0.000 (e.g., compare cases in Figure 3-8a-c and Figure 
3-8d-f). This is consistent with the antisymmetric vortex shedding mode becoming 
dominant when increasing the bed roughness (see Sect. 3.3.5). As observed for the 
smooth bed simulations, even in the case of a gravel bed, for VR ≥ 0.00 amplifications of 
TKE are generally larger and a second region of high TKE forms at the excurrent jet 
(Figure 3-8e,f).  

When increasing the burial level (i.e., for decreasing h/H) in the simulations 
performed on a gravel bed, the TKE amplifications in the wake decrease (compare Figure 
3-8d-f and Figure 3-8g-i). This is consistent with the reduced emerged part of the shell. 
When h decreases, and approaches d50, the exposed part of the shell also decreases and 
the effect of the mussel becomes similar to that of the other bed particles. 

 

Figure 3-8. Turbulent kinetic energy, TKE/U0
2, in the y/H = 0 plane for different 

simulations (a-i). Values lower than 0.007 were blanked. 
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3.3.3 Main Vortical Structures Generated Around the Mussel 

Large-scale coherent structures are visualized by means of the Q criterion in Figure 
3-9 for some of the test cases included in Table 3-1 considering instantaneous and mean 
flow fields. These visualizations further confirm that no horseshoe vortices form in the 
frontal part of the mussel, regardless of the filtering activity of the mussel, as observed 
from the vorticity and TKE distributions in the symmetry plane of the shell (Figure 3-7 
and Figure 3-8). Any doubt about the formation of horseshoe vortices at the junction line 
between the shell and the bed is clarified by Figure 3-10, which pictures the 2-D mean 
streamline patterns in a vertical plane inclined respect to the symmetry plane y/H = 0. 

As mentioned, this differ from the case of the L. Siliquoidea used by Wu et al. (2020), 
in which the formation of horseshoe vortices was observed in the mean and 
instantaneous flow fields. This difference can be explained by the lower degree of 
bluntness of the Unio Elongatulus mussel part of the present study, and by its larger 
inclination respect to the incoming flow. Both these factors contribute in weakening the 
downflow forming at the frontal face of the mussel, as confirmed by streamlines in 
Figure 3-10. As the formation and the coherence of the horseshoe vortices have been 
shown to depend on the strength of the downflow (Kirkil and Constantinescu, 2009; 
McCoy et al., 2007), the absence of the horseshoe vortices is a direct consequence of the 
suppression of the downflow.  

 

Figure 3-9. Coherent structures visualized using the Q criterion. a) instantaneous flow, 

h/H = 0.48, VR = 0.61 simulations with d50/H = 0 and 0.062; b) mean flow, h/H = 0.48, 

VR = 0.61 simulations with d50/H = 0 and 0.062; c) mean flow, h/H = 0.48, VR = 1.22 

simulations with d50/H = 0 and 0.062; d) mean flow, h/H = 0.48, VR = 0.00 simulations with 

d50/H = 0 and 0.062. 
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Figure 3-10. Mean flow, 2-D streamline patterns in a vertical plane making a 25° angle 

with the y/H = 0 plane in the h/H = 0.48, VR = 0.00 simulations with d50/H = 0.062 (a) and 

d50/H = 0.000 (b). 

Visualizations of mean and instantaneous flow fields in Figure 3-9 confirm that no 
clear horseshoe vortices form even in the case of a grave bed. In this case, the flow field 
in front of the mussel is disturbed by the presence of the bed particles. Though 2-D 
streamline patterns in the vertical section of Figure 3-10a may suggest the presence of a 
circulation in this plane, the irregular distribution of the streamlines is to be attributed 
to bed particles and not to the formation of a horseshoe vortex, as confirmed by the Q 
criterion visualizations in Figure 3-9 and by the vorticity and TKE distributions included 
in Section 3.3.2. Eddies forming due to bed particles, even close to the junction line 
between the bed and the mussel shell, are generated by flow separation at the larger 
particles composing the bed. In particular eddies forming at the frontal part of the shell 
are enhanced by the adverse pressure gradients and by the (weak) downflow induced 
by the shell, however they do not extend around the shell and thus they can not be 
considered as horseshoe vortices.  

Figure 3-9 shows also that a pair of close-to-symmetric vortices forms in simulations 
conducted considering the active filtering of the mussel. These vortices are originated at 
the excurrent siphon and they are observed to form independently of the bed roughness. 
These vortices depend on the filtering discharge, as they are not observed to form if 
VR = 0.0, and their coherence increases with increasing VR. For this reason, the 
generation of these vortices is strongly connected with the dynamics of the excurrent jet. 
These vortices differ from the pair of counter-rotating vortices forming near the bed 
surface in the smooth-bed simulations conducted by Wu et al. (2020), which are induced 
by the presence of the submerged shell. Instead, the vortices noticed in Figure 3-9 for the 
cases with active filtering should be compared with the second pair of base vortices 
observed by Wu et al. (2020), forming at an elevation close to the excurrent siphon for 
the simulations conducted with VR = 0.7. One difference between the present case and 
the results of Wu et al. (2020) is the symmetry of these pairs of vortices. While in the 
present study the vortices remain symmetrical at high streamwise distance, in the case 
of Wu et al. (2020), for similar level of burrowing as in the cases pictured in Figure 3-9, 
only one of these vortices was observed away from the mussel because of the larger 
asymmetry of the emerged part of the shell. However, for higher levels of mussel 
burrowing, Wu et al. (2020) observed that the coherence of these vortices becomes 
similar, as noticed in the case of the in the Unio Elongatulus mussel considered in the 
present study.  
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The Q criterion visualizations in the instantaneous flow provide further insight on the 
dynamics of these vortices (Figure 3-9a). In the mean flow visualizations the cores of the 
two vortices are fairly straight and symmetric (Figure 3-9b), suggesting that the vortices 
may be relatively steady in time. However, this is contradicted by the inspection of the 
instantaneous flow field (Figure 3-9a), in which a large-scale instability is observed to 
propagate along the cores of the two vortices. Because of this unsteadiness, the cores of 
the two vortices move such that they may touch at times. These mutual interactions 
enhance the dissipation of the vortices such that they break-up and they lose their 
coherence at a streamwise location. Though the two vortices are clearly visible in the 
simulations conducted on a gravel bed (Figure 3-9), the streamwise length of the two 
legs is generally reduced. This happens because the eddies generated by the bed particles 
may be advected to the upper part of the water column, thus also interacting with the 
cores of the excurrent jet vortices, further dampening their strength. This effect is 
expected to be increased for increasing roughness, or, alternatively, for increasing the 
burial of the mussel, as the excurrent jet gets closer to the bed.  

Though Wu et al. (2020) observed the formation of counter-rotating vortices forming 
near the bed surface in the smooth-bed simulations, Q criterion visualizations in Figure 
3-9 do not provide any evidence of the eventual formation of such vortices. However, 
closer inspections of the flow fields highlight that such vortices form in all the simulation 
with the Unio Elongatulus mussel, as demonstrated by the mean streamwise-vorticity 
distribution in Figure 3-11, which refer to x/H = 1 and x/H = 3 cross sections and include 
the 2-D streamline patterns in these planes.  

Figure 3-11a represents the case of the simulation with no active filtering and with 
the flat bed. In this case a pair of vortices is observed in the wake. The slight asymmetry 
is motivated by the fact that the real shape of the shell is used in the present study, with 
the two valves being not exactly symmetrical respect to the central axis. The flow is 
advected in between the vortices cores toward the bed, hence they are tip vortices. Pair 
of similar tip vortices has been already observed to form at the bed in case of submerged 
semi-ellipsoids mounted on a smooth bed (Hajimirzaie et al., 2012; Hajimirzaie and 
Buchholz, 2013). As observed in the present simulations, these vortices are relatively 
symmetrical, and their coherence remains comparable with the streamwise distance, 
until they dissipate. The presence of tip vortices at the back of the mussel contrasts with 
results of Wu et al. (2020), who observed base vortices to form. The difference can be 
attributed to the shape of the emerged part of the shell, and it is a further confirmation 
that the shape of the mussel controls the turbulent structures forming in the flow at the 
organism level. 

In case of active filtering (e.g., VR = 0.61) and a smooth bed (Figure 3-11b), still the 
pair of near-bed tip vortices is observed to form. In addition, a pair of vortices situated 
slightly above the top of the mussel forms because of the excurrent jet, as observed 
previously by the analysis of Q visualizations in Figure 3-9. As flow is advected 
downward in between their cores, these are base vortices. While the tip vortices in the 
vicinity of the bed are among the main responsible of a strong downflow at the 
symmetry plane, which also influence the shedding mode in the wake, as clarified in 
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Sect. 3.3.4, the base vortices are of influence for the excurrent jet fluid with a role in the 
mixing between the jet and the surrounding flow. 

 

Figure 3-11. Mean flow streamwise vorticity, xH/U0 (values between −0.5 and 0.5 were 

blanked), and 2-D mean streamline patterns in the x/H = 1 and x/H = 3 planes for different 

simulations (a-g). The red arrows point toward the tip vortices (downwash flow). The blue 

arrows point toward the base vortices (upwash flow). 

The bed roughness in the gravel bed simulations strongly modifies the symmetry of 
the aforementioned vortices. Though the formation of tip and base vortices is still 
observed in cases with d50/h = 0.062 (e.g., see Figure 3-11c and Figure 3-11d), the degree 
of symmetry and the coherence of these vortices strongly decrease with respect to the 
corresponding smooth bed cases. This effect is already visible in the x/H = 1 cross-
section, but it is furtherly confirmed by results in the x/H = 3 planes, in which the pair of 
vortices becomes hardly visible because of the loss of coherence. This is particularly clear 
in case of active filtering, as the jet further tends to dampen the coherence of the tip 
vortices forming at the bed. This is clarified by Figure 3-11d, in which the tip vortices are 
not observed in the x/H = 3 section. The reduction of the symmetry and the loss of 
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coherence are mainly induced by the interactions of the pair of vortices with the irregular 
bed surface, and with turbulent eddies generated by the larger bed particles. As a main 
consequence, the downwelling flows at the symmetry plane are expected to decrease 
with the roughness.  

Though tip vortices near the bed are strongly deformed in simulations with 

d50/h = 0.062, the effect of the roughness is less relevant on the base vortices developing 
above the excurrent siphon. Being the burrowing ratio relatively low (i.e., h/D = 0.48 in 
Figure 3-11a-d), the excurrent jet and the associated base vortices are situated relatively 
far from the bed, thus being less affected by the irregular gravel surface. Near the mussel 
(e.g., x/H = 1 section), the base vortices are similar either the bed is smooth or rough. 
Instead, at larger distances (e.g., x/H = 3 section), the cores of the two vortices are not 
anymore symmetric with respect to the y/H = 0 plane in the rough bed cases. A 
quantitative measure of the effect of the roughness on the base vortices forming at the 
excurrent siphon jet is provided by the total circulation magnitude T., Figure 3-12 shows 
the non-dimensional total circulation T/(U0H) as a function of x/H. The circulation 
magnitude, T, is calculated by integrating the streamwise vorticity, x, in cross-stream 
(x = constant). The threshold value used to perform the integration over the cores of the 
vortices is |x/U0| = 0.3. The effect of the bed roughness is small for low x/H (i.e., 
x/H < 1) as seen in Figure 3-12a. However, at larger x/H the total circulation decreases 
faster for higher values of d50/H, because of the interactions among the turbulence 
induced by the bed and the excurrent siphon jet.  

For a constant level of mussel burrowing and a constant bed roughness, the rate of 
decay of the total circulation decreases when increasing VR. The higher coherence of the 
vortices for VR = 1.22 is motivated by the fact that the jet has a higher initial momentum, 
such that it penetrates to higher elevations before realigning with the incoming velocity. 
The base vortices develop at a higher distance from the bed, and they felt less the effect 
of the turbulence generated at the rough bottom. The increased coherence of the vortices 
for the higher value of exhaled discharge can be observed also comparing Q 
visualization in Figure 3-9b,c, and the vorticity distributions in the x/H = 3 sections of 
Figure 3-11. While these base vortices are not visible anymore for the case with VR = 0.61 
(Figure 3-11d), they are still clearly visible in the case with VR = 1.22 (Figure 3-11g).  

 

Figure 3-12. Streamwise variation of the total circulation magnitude of the base vortices, 

T/(U0H). a) effect of d50/H (VR = 0.61, h/H = 0.48); effect of VR (d50/H = 0.062, 

h/H = 0.48); c) effect of h/H (d50/H = 0.062, VR = 0.61). 
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The comparison of Figure 3-11e and Figure 3-11f allows to evaluate how varying the 
degree of mussel burial affects the dynamics of the base and tip vortices developing at 
the back of the mussels. When the exposed part of the shell decreases, the tip vortices 
forming near the bed are expected to be less strong. This is further exacerbated in the 
case of a rough bed surface because the interactions with the vortices forming at the bed 
are stronger. Considering the h/H = 0.28, d50/H = 0.062 simulation (Figure 3-11e), tip 
vortices are strongly deformed at x/H = 1 and are destroyed before reaching the x/H = 3 
section, where they are not visible. This differs from the correspondent case with 
h/H = 0.48 in which vortices are still visible in the x/H = 3 plane (Figure 3-11c, see the red 
arrow). As observed for the simulations with h/H = 0.48, the symmetry and the coherence 
of tip vortices are generally further dampened in case of active filtering. This is true also 
in the h/H = 0.28 simulation of Figure 3-11f, where tip vortices are destroyed already in 
the x/H = 1 section (compare to the corresponding simulation with h/H = 0.48 in Figure 
3-11d). The effect of the exposed height h/H in the coherence of the base vortices is 
evident especially at low values of x/H (Figure 3-12c), where the total magnitude of T 

decreases strongly in cases with lower values with h/H because the trajectory of the bed 
approaches the bottom and the tip vortices induced by the excurrent jet are dampened 
more strongly by the near-bed turbulence. For higher values of h/H, however, difference 
becomes negligible, as T is fairly independent of the values of h/H. 

3.3.4 Near-Wake Flow 

For the case of a L. Siliquoidea over a smooth bed, a pair of base (upwashing) vortices 
forms at the back of the mussel (Wu et al., 2020). Accordingly, a region of strong 
upwelling flow is observed downstream the mussel in the symmetry axis (y/H = 0 plane) 
between the cores of the two vortices. At the sides of this region, two larger regions of 
downwelling flow are induced by the outer part of the vortices. Fluid is here advected 
to the bed, which explain why larger values of bed shear stresses were observed at the 
sides of the wake forming at the back of the mussel. Wu et al. (2020) also observed that 
these regions are close to symmetric for higher levels of mussel burrowing (h/H ≈ 0.25), 
when the coherence of the base vortices was comparable. Instead, for relatively low 
levels of mussel burial (h/H ≈ 0.5), the coherence of the left-hand-side vortex was larger, 
as well as the region of downwelling flow in this part of the mussel. This has been 
attributed to the asymmetry of the shell. For this reason, the shape and the symmetry of 
the shell are expected to control the near-wake flow. As the Unio Elongatulus mussel part 
of the present study has a different shape and orientation with respect to the L. Siliquoidea 

considered by Wu et al. (2020), differences are expected among the two cases.  

In the simulations conducted with a flat bed and with no filtering discharge, a pair of 
tip (downwashing) vortices has been shown to form at the back of the mussel. The 
coherence of these vortices is comparable at large distances from the mussel. More 
importantly, the tip vortices induce a region of strong flow downwelling near the 
symmetry axis (y/H = 0), as pictured in Figure 3-13a for the h/H = 0.48, d50/H = 0, VR = 0 
simulation. This is one of the main differences with the case of the L. Siliquoidea, in which 
the base vortices induce an upwelling region to form in the symmetry plane. At the sides 

https://context.reverso.net/traduzione/inglese-italiano/exacerbated
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of the shell, two regions of upwelling flow form because the downflow at the front of 
the mussel reaches the bed surface, and it is diverted laterally and advected upwards by 
two sides of the mussel. Two other regions of upwelling flow are observed immediately 
at the back of the mussel, at opposite sides respect to the symmetry axis. The slight 
asymmetry of the flow regions on opposite sides of the mussels derives from the realistic 
shape of the mussel, where the two valves are not exactly symmetric respect to the 
central axis.  

 

Figure 3-13. Mean vertical velocity, w/U0, in the horizontal plane z/H = 0.5 for different 

simulations (a-f). 

 

Figure 3-14. Mean streamwise velocity, u/U0, in the horizontal plane z/H = 0.5 for 

different simulations (a,b). 

The strong downflow observed downstream of the shell in the simulation with no 
filtering activity and with a smooth bed strongly affects the wake forming at the back of 
the Unio Elongatulus mussel. This effect is also highlighted by the distributions of the 
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streamwise velocity in a horizontal plane (z/H = 0.5) pictured in Figure 3-14 with the 
exhaling velocity ratio VR equal to either 0 and 0.61. In the VR = 0 simulation (Figure 
3-14a), the recirculation region (i.e., with u/U0 ≤ 0) shows a relatively unusual shape, with 
two elongated regions of low velocity at the back of the mussel. In between them, a 
region of relatively high velocity flow forms. This happens because of the strong 
downflow in the symmetry plane, and because, as discussed later in the text, the 
symmetric shedding mode prevents the flow to recirculate between the two sides at the 
opposite part with respect to the central axis. 

In the VR = 0.61 simulation (Figure 3-14b), instead, the shape of the recirculating 
region is similar to those typically observed past submerged obstacles, in which two 
vertical vortices are observed at the sides of the recirculation region. These vortices are 
the legs of the U-shaped vortices forming at the back of the submerged body, that border 
the region of recirculating flow (Chang et al., 2020). 

In the rough-bed cases tip vortices are still present near the bed at the back of the 
shell. However, as highlighted in Section 3.3.2, they are situated further away from the 
bed and their symmetry is broken because of the irregular bed surface. For this reason, 
the main region of flow downwelling breaks into multiple asymmetrical subregions. The 
effect of the tip vortices on the vertical velocity at the back of the mussel is reduced and 
the strength of the downwelling flow in the symmetry plane is also reduced if compared 
to the corresponding cases with a flat bed (Figure 3-13c-d). In rough bed simulations, 
differently from the smooth bed cases, at the frontal side of the mussel a region of 
downflow is observed, while a small region of strong upwelling flow also forms at the 
back of the mussel. 

As noticed in the smooth bed simulations, the effect of the active filtering is to dampen 
the downwelling flows and to reduce the symmetry of the regions with relevant vertical 
velocities forming inside the near wake. This is confirmed also in the simulations 
conducted with d50/H = 0.062 (compare Figure 3-13c and Figure 3-13d). 

The level of mussel burial also affects the downflows at the back of the mussel. When 
the height, h, of the exposed part of the mussel decreases, the upwelling and 
downwelling flows in the wake are weakened (e.g., compare the cases with h/H = 0.48 in 
Figure 3-13c-d and those with h/H = 0.28 in Figure 3-13e-f). This result is expected given 
that the recirculation region has a reduced length (Figure 3-6c) and the tip vortices in the 
simulations with h/H = 0.28 lose their coherence immediately downstream the shell 
(Figure 3-11e-f). When decreasing h, the downflow in front of the mussel is also reduced 
because of the reduced strength of the adverse pressure gradient (e.g. compare Figure 
3-13c-d, with h/H = 0.48 cases, and Figure 3-13e-f with h/H = 0.28 cases). 

3.3.5 Vortex Shedding 

In the case with smooth, flat bed with VR = 0 the symmetric shedding mode 
dominates and the interactions between the separated shear layers (SSLs) are strongly 
dampened because of the downwelling flow in between them (Figure 3-15a). The 
secondary flow generated by the region of flow downwelling maintains the SSLs far 
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from the symmetry plane, and impedes the natural oscillations of the two legs. As the 
secondary flow reaches the SSLs, it starts moving away from the bed. This explains the 
two elongated patches of vorticity forming in between the symmetry plane and the two 
separated shear layers in Figure 3-15a. Sometimes, the SSLs are disturbed on one side by 
the detachment and the shedding of patches of vorticity from their legs (e.g., see right 
frame in Figure 3-15a), but this condition can not be identified as an antisymmetric 
shedding mode. This differs from the results of Wu et al. (2020), who showed that for a 
L. Siliquoidea mussel with a similar level of burial, and placed on a smooth bed, the 
antisymmetric mode was the dominant one. For this reason, the shape of the shell can 
be identified as one of the key parameters in controlling the type and the coherence of 
the vortices forming in the wake, which in turn determines the dominant shedding mode 
in the wake. 

Increasing the bed roughness up to d50/H = 0.049 (not shown here), the wake shedding 
is similar to the smooth bed case: a symmetric shedding mode is observed with no 
interactions between SSLs because of flow downwelling, and with some waviness in 
both SSLs at times. For the rough bed with d50/H = 0.062 and VR = 0, still the symmetric 
mode dominates, but for only 70% of the time, while a clear antisymmetric mode can be 
identified otherwise (Figure 3-15b). Hence, when increasing the bed roughness, the 
symmetric wake shedding mode weakens, as well as the secondary flow moving toward 
the two SSLs. As a consequence, the antisymmetric wake shedding mode grows and 
gradually can become dominant. 

Increasing VR, for the case of a flat bed, the strength of the downflow is reduced and 
clear interactions between SSLs can be noticed although for most of times a proper 
symmetric mode is observed (Figure 3-15c). The elongated patches of vorticity forming 
in between the symmetry plane and the SSLs are also suppressed because of the weak 
effect of the downflow (compare Figure 3-15a and Figure 3-15c). This is observed for 
VR = 0.61, and it is even stronger for VR = 1.22, where the symmetric mode dominates 
for about 50% of times.  

The effect of the reduced downflow as a consequence of the increased VR is more 
evident increasing the roughness. For d50/H = 0.062 the antisymmetric mode for VR = 0.61 
is stronger if compared to simulations for VR = 0, and it clearly becomes the dominant 
mode (Figure 3-15d). This is amplified when increasing VR: if VR = 0.61 the 
antisymmetric mode is observed for ~55% of the time, while if VR = 1.22 for ~90% of the 
time. 
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Figure 3-15. Instantaneous-flow, vertical vorticity, ωzH/U0, in the horizontal plane 

z/H = 0.5 for different simulations (a-d). Left frames illustrate the symmetric wake shedding 

mode; right frames illustrate the anti-symmetric wake shedding mode (c-d) or the symmetric 

mode with a loss of symmetry for the eddies that detach from the downstream part of the 

separated shear layers (a-b). 

3.3.6 Drag Forces 

To evaluate the stability of the mussel and its capacity to avoid to be dislocated from 
the bed, it is important to quantify the drag forces acting on the emerged part of the shell 
(Dey, 2003; Diedericks et al., 2018; Witman and Suchanek, 1984). 

The total force on the mussel, Fdxy, is calculated by integrating the mean pressure on 
the shell, the contribution of the shear component being negligible. The streamwise and 
the spanwise components are labelled Fdx and Fdy, respectively. Due to the presence of a 
gravel bed with irregular particles of different dimensions, values of Fdx and Fdy have 
been extracted for the z > 0 region to allow a direct comparison of the results provided 
by the different simulations, and with the smooth bed cases. Streamwise and spanwise 
components, as well as the magnitude of the total horizontal forces, are also 
nondimensionalized through the water density ρ, the incoming section-averaged flow 



3 CFD numerical analysis of turbulent flow over mussels on a gravel bed  

111 

 

velocity U0 and the height of the mussel H. All these parameters are constant for all 
simulations. 

Table 3-2 summarizes the values of the main drag force obtained in the simulations. 
Table 3-2 also reports values for the mean streamwise drag coefficient, CdxMEAN, and its 
root-mean-square (RMS) fluctuations, CdxRMS. The mean drag coefficient in the x-
direction is defined as CdxMEAN = 2 Fdx/ρU02Ax, where Ax is the projected area of the 
emerged part of the mussel (in the region z > 0). Values of Ax vary with h/H. 

The total force on the mussel depends on the mean pressure force on the shell. 
Generally, highest pressure values are observed in the upstream part of the mussel, 
where the flow is decelerated and diverted laterally. Lowest values, instead, are 
observed in the region immediately downstream the excurrent siphon. Since both the 
shell and the gravel bed are obtained from real specimens, the layout is slightly 
asymmetric. Hence, the distributions of pressure are slightly different considering the 
left and the right side, resulting in non-zero values for the mean drag forces Fdy in the 
spanwise direction. 

For a fixed value of the burrowing-ratio, h/H, and of the velocity ratio, VR, the drag 
force in both the streamwise and the spanwise direction increases monotonically with 
the roughness (Figure 3-16a). However, the rate of increase is higher for the lateral 
components.  

The drag force in the streamwise direction also depend on the value of the exhaling 
velocity ratio, VR, for a fixed value of bed roughness, and keeping constant the 
burrowing level, h/H. As highlighted in Figure 3-16b, between VR = 0 and VR = 0.61 the 
drag force increases with VR, as observed by Wu et al., 2020 for their simulations with 
VR < 0.7. Between VR = 0.61 and VR = 1.22, instead, the drag force decreases with VR. It 
can be supposed that the trend reverses around VR = 1, when the velocity injected by the 
siphon has the same value as the incoming flow. Fdy, instead, is increasing monotonically 
with VR. 

 

Figure 3-16. Non-dimensional drag forces, Fdx/(U0
2H2) and Fdy/(U0

2H2), as a function 

of a) the bed roughness, d50/H (for different values of VR, and h/H = 0.48), b) the exhaling 

velocity ratio, VR (for different values of d50/H, and h/H = 0.48), c) the mussel burrowing 

level, h/H (for different values of VR, and d50/H = 0.062). Blue symbols refer to x-direction, 

red symbols to y-direction. 
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The value of the drag force is observed to depend also on the burrowing ratio h/H, 
with the streamwise component increasing with increasing h/H (Figure 3-16c), similarly 
to what found by Wu et al. (2020) for the case of a flat bed. The spanwise component is 
also increasing with increasing h/H, although with a lower rate. Interestingly, for the 
higher value of h/H considered in the present study (i.e., h/H = 0.48), the streamwise 
component is about one-order of magnitude greater than the spanwise component and 
Fdxy ≈ Fdx, especially for the simulations with smooth bed. Considering the simulations 
with a rough bed and h/H = 0.48, values of Fdy can be as high as 30% of Fdx. However, for 
higher degree of mussel burial (i.e., lower values of h/H) the spanwise components 
become not negligible, as they can be as high of 75% the longitudinal components for 
h/H = 0.28 (see Table 3-2 and Figure 3-16c). 

Drag coefficients in the streamwise direction are pictured in Figure 3-17. The trends 
in the variation of their values reflect what observed for the streamwise drag force: 
values increase increasing the roughness d50/H (Figure 3-17a), or the exposed part of the 
shell h/H (Figure 3-17c), while for the dependence on VR a non-monotonic trend is 
observed (Figure 3-17b). The maximum value of CdxMEAN is around 0.17 for VR = 0.62 and 
h/H = 0.48. This value is approximatively 50-70% lower than those predicted by Wu et 
al. (2020), because the Unio Elongatulus has a much more streamlined shape of the frontal 
part compared to the L. Siliquoidea considered in the study of Wu et al. (2020). Given that 
the exposed area Ax varies with the mussel burial, the rate of increase of CdxMEAN with h/H 
is lower than the rate observed for Fdx. In any case, strong differences are still observed 
varying the exposed height of the mussel. Passing from h/D = 0.48 to h/D = 0.28, the mean 
drag coefficient in the streamwise direction is roughly halved, if considering the results 
of the simulation with d50/H = 0.062 and VR = 1.22. 

Inspections of Table 3-2 also highlight that the values of the drag coefficient 
fluctuations, CdxRMS, are about one order of magnitude lower than those of CdxMEAN for 
h/H = 0.48. This means that, for higher burrowing ratio, the fluctuations of the drag 
coefficient are less significant than the mean values in displacing the shell from the bed. 
Decreasing the exposed height h, while values of CdxRMS are poorly influenced by h, values 
of CdxMEAN decrease significantly with decreasing h. For h/H = 0.28 CdxRMS is found to be 
only 3 times lower than CdxMEAN, meaning that, at high burial level, fluctuations in the 
drag force may play a role in the mussel displacement. In this case, CdxMEAN provides a 
partial information of the capacity of the flow to dislocate the mussel, and the maximum 
values of the instantaneous drag coefficients would be more suitable for mussel stability 
calculations than mean values. 
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Figure 3-17. Mean drag coefficient, Cdx
MEAN, as a function of a) the bed roughness, d50/H 

(for different values of VR, and h/H = 0.48), b) the exhaling velocity ratio, VR (for different 

values of d50/H, and h/H = 0.48), c) the mussel burrowing level, h/H (for different values of 

VR, and d50/H = 0.062).  

3.3.7 Excurrent Siphon Jet 

Mussels are usually identified as ecosystem engineers due to their filtering activity 
(Vaughn et al., 2004). Water with high concentrations of organic matter and 
phytoplankton enters in the mussel through the inhaling siphon and a jet with low 
concentrations is expelled through the exhaling siphon (Haag, 2012; Monismith et al., 
1990; Vaughn et al., 2004). The distribution and the availability of nutrients in the flow 
are then directly connected with the mixing and dilution of the excurrent jet. 

To evaluate the dynamics of the jet, a concentration C0 is prescribed for the passive 
scalar introduced at the excurrent siphon. Then, an “inverse concentration method” is 
used (Monismith et al., 1990; Wu et al., 2020). C = C0 represents the clean filtered water, 
while C = 0 represents the water with high concentrations of nutrients and 
phytoplankton (Figure 3-18). The jet fluid is defined as the fluid with C > 0.0001C0. In the 
region of excurrent jet, the availability of nutrients is expected to be reduced (i.e., C > 0) 
due to the interaction among the clean water exhaled by the mussel.  

The fluid exhaled from the excurrent siphon is injected vertically in the water column 
as in the case of classical jets in cross flow. However, in the present case the dynamics of 
the jet are more complex. The jet is introduced in the channel at the exhaling siphon on 
the top of the mussel, and hence above the bed. The surrounding flow is modified by the 
emerged body of the mussel shell: for instance, flow is diverted in the frontal part of the 
shell, a recirculation region forms downstream the shell, with the wake characterized by 
tip vortices originating because of the shell, etc. All these factors make the present case 
different form the canonical case of a round vertical jet entering through the bottom of a 
flat-bed channel (Mahesh, 2013). The picture is even more complicated in case of a rough 
bed, especially for higher level of the mussel burial, because the dynamics of the jet can 
be disturbed also by eddies generated by bed particles. The interactions of these eddies 
with the jet lead to enhancing the local mixing and to diluting more rapidly the jet, 
compared to a similar case with a flat bed or with larger values of h/H. 



3.3 Flow over an Isolated Mussel 

114 

 

 

Figure 3-18. Mean concentration of the passive scalar, C/C0 (values lower than 0.01 were 

blanked), for different simulations (a-c) in the y/H = 0 (left), x/H = 1 (center) and x/H = 3 

(right) section planes. 

The mean concentration of the passive scalar, C/C0, is pictured in Figure 3-18 in the 
longitudinal plane y/H = 0 and in in the transversal planes x/H = 1 and x/H = 3, for some 
of the simulations in Table 3-1. 

In all the cases with h/H = 0.48, the jet is observed to be initially directed upward, but, 
as soon as it interacts with the incoming flow, it is deflected downstream, parallel to the 
streamwise direction. The shape of the jet is observed to maintain a roughly ellipsoidal 
shape along the x-axis. The elliptical cross section is a direct influence of the pair of base 
vortices that draws jet fluid away from the bed, as shown in the x/H = 1 section. Here, 
the concentration of the passive scalar is also strongly reduced to a value of 0.2 C0. In the 
x/H = 3 section, still the jet shows a very irregular shape, with an elongated region 
extending downwards from the lower part of the jet. This elongated region in the 
symmetry plane (y/H = 0) is induced by the counter-rotating tip vortices that draw some 
of the jet fluid toward the bed (Figure 3-12b and Figure 3-18). 

The jet is qualitatively similar when a rough bed is considered instead of a smooth 
one (see results for the d50/H = 0.062, VR = 0.61 simulation shown in Figure 3-18b). The 
effect of the gravel bed is relevant especially in the part close to the bottom, where the 
turbulent eddies induced by the rough elements generate additional fluctuations and 
additional mixing of the passive scalar. In the rough bed case, the values of concentration 
are slightly lower, and the region with high concentration levels is smaller. This is 
particularly highlighted at the x/H = 3 section, where the coherence of the tip vortex is 
significantly lower in the rough bed simulation. Instead, in the x/H = 1 section the 
coherence of the vortices forming downstream the mussel is comparable for smooth and 
rough simulations (see also Figure 3-11b and Figure 3-11d). This is confirmed also from 



3 CFD numerical analysis of turbulent flow over mussels on a gravel bed  

115 

 

the RMS fluctuation of concentrations (not reported here for brevity): for the gravel bed 
simulations higher values are located in a layer close to the bed, instead for the smooth 
bed simulations values are generally lower, except for the region immediately 
downstream of the exhaling siphon.  

The effect of increasing the level of mussel burial can be inferred by the scalar 
concentration distribution of Figure 3-18c, which refer to the d50/H = 0.062, VR = 0.61, 
h/H = 0.28 simulation and should be compared with the distribution of Figure 3-18b 
which pictures the results of the corresponding simulations, but with h/H = 0.48. The 
overall trajectory of the excurrent jet is the same in the two cases, but the cross-sectional 
shape in the h/H = 0.28 simulation is more circular, and no clear elongated regions are 
visible. This agrees with the suppression of tip vortices in the h/H = 0.28 simulation 
because of eddies generated by the bed particles (Figure 3-11f). Decreasing the exposed 
height h/H the exhaling siphon, as well as the excurrent jet, approach the gravel bed, and 
they interact more with the near bed flow turbulent structures induced by bed particles. 
For this reason, the levels of the mean concentration are strongly dampened along the x-
direction. This confirms the role of these eddies at enhancing the mixing between the jet 
fluid and the surrounding flow. The closer the excurrent jet is to the bed, the stronger 
these interactions and the concentration dampening are.  

To provide a more quantitative measure of the effects of the investigated parameters, 
the streamwise variation of the maximum passive scalar concentration in cross sections 
perpendicular to the axis of the jet is pictured in Figure 3-19. This measures the jet 
dilution. For the same scope, the variation of the volumetric flux of the jet, Qj, scaled by 
the volumetric flux out of the excurrent siphon, Qj0, is plotted in Figure 3-20. This 
variable summarizes the spreading of the jet in the fluid volume.  

The decay of the peak concentration CMAX/C0 is very similar for the values of 
roughness here analyzed (Figure 3-19a), albeit these simulations are based on a relatively 
low level of mussel burial (h/H = 0.48), with the exhaling jet located relatively far from 
the bottom. Some slight differences in the values of CMAX/C0 are observed only at x/H > 6 
for the simulation with d50/H = 0.062. Non-negligible differences, instead, are observed 
for the volumetric flux of the jet Qj/Q0 (Figure 3-20a) depending on the bed roughness. 
The volumetric flux increases at a higher rate for higher values of the roughness, since 
the interactions with turbulent eddies induced by the gravel bed increase the mixing and 
the volume of the jet. At x/H = 9 values of Qj/Q0 evaluated for the d50/H = 0.062 simulation 
roughly doubles the values obtained for the flat bed simulation. 
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Figure 3-19. Non-dimensional peak scalar concentration, CMAX/C0, inside the excurrent 

jet. a) Effect of d50/H (VR = 0.61, h/H = 0.48); b) effect of VR (d50/H = 0.062, h/H = 0.48); c) 

effect of h/H (d50/H = 0.062, VR = 0.61). 

 

Figure 3-20. Non-dimensional volumetric flux, Qj/Qj0, of the excurrent siphon jet. a) 

Effect of d50/H (VR = 0.61, h/H = 0.48); b) effect of VR (d50/H = 0.062, h/H = 0.48); c) effect 

of h/H (d50/H = 0.062, VR = 0.61). 

The constant values of velocity prescribed at the exhaling siphons varies between 
0.1m/s (VR = 0.61) and 0.2m/s (VR = 1.22). The different values of VR imply different 
dynamics of the jet. For higher values of VR the jet has a larger initial momentum and it 
penetrates up to higher elevations with respect to the location of the excurrent siphon. 
As a consequence, the streamwise distance needed for the jet to align with the 
streamwise direction increases when increasing VR. The overall trajectories of the 
exhaled jet are then different in the simulations with VR = 0.61 and VR = 1.22. Despite 
that, Figure 3-19b shows that the streamwise variation of CMAX/C0 is similar in the two 
cases, considering the simulations with h/H = 0.48 and d50/H = 0.062. In both cases, the 
exhaling siphon is at an elevation such that the region with higher concentrations (i.e., 
the upper part of the jet) remains relatively far from the bed. The rate of increase of the 
volumetric discharge is higher for VR = 0.61 (Figure 3-20b). This again can be explained 
by the jet trajectory, which is closer to the bottom in the simulations with the lower 
filtering discharge. Thus, eddies produced by the gravel particles are more likely to 
interact with the lower part of the jet, which in turn expands. A second reason is related 
to the growth of flow instabilities near the jet boundaries which are driven by the mean 
shear between the velocity inside the core of the jet and the velocity in the surrounding 
flow. This effect is expected to be lower in cases with VR ≃ 1, as the excurrent jet velocity 
is close to the mean velocity of the approaching flow. 
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Increasing the level of mussel burial (i.e., decreasing h/H) the exhaling siphon gets closer 
to the bed. As a consequence, the excurrent jet approaches the gravel bed, and the 
interactions with eddies from the gravel bed are enhanced. These interactions, in turn, 
enhance the mixing of the passive scalar in the entire volume of the jet. The peak of scalar 
concentration is therefore strongly dampened along the x-direction, as confirmed by the 
larger rates of decay for CMAX/C0 when decreasing h/H (see Figure 3-19c, for the 
simulations with d50/H = 0.062 and VR = 0.61). This is particularly clear until x/H = 2, 
while the maximum concentration values become fairly close at x/H = 8. This because, 
once the jet expands enough to touches the bed, the dampening effect of the gravel bed 
on the scalar concentration reduces. The non-dimensional volume of the jet (Figure 3-20), 
instead, is not influenced by h/H (Figure 3-20c). This can be the results of two opposite 
effects. While the cross section of the jet increases with decreasing h/H (Figure 3-18), the 
streamwise flow velocities decrease with decreasing h/H, because the jet is closer to the 
bed where the incoming flow has a lower velocity because of the bed roughness. 

3.4 Fully-developed flow over Clusters of Mussels 

3.4.1 Test cases 

The analysis of fully-developed flow over clusters of mussels refers to the same 
partially-buried Unio Elongatulus mussel described in the previous Section for the 
simulations with an isolated specimen (Figure 3-21a). Main geometrical parameters of 
the mussel model are described in Section 3.2.1, though in this case a single level of 
mussel burial has been analyzed, corresponding to h/H = 0.48. 

The simulations were performed in a rectangular straight open channel. The channel 
was larger than that used for studying the flow over an isolated mussel. As described in 
Section 3.2.3, the gravel bed used for analyzing the flow over musselbeds has been 
generated through symmetry projections in the plane of the original deformed bed. The 
scope was to ensure that its upstream and downstream boundaries, as well as those on 
its left and on its rights, were identical. This was needed to impose periodical conditions 
at these boundaries. The gravel bed used in this Section was 0.5 m (~10 H) wide and 
1.0 m (~20 H) long (Figure 3-21b), such that the bed surface was 0.5 m². The flow rate 
through the channel was Q = 0.0123 m³/s, and the section-averaged, or bulk, velocity was 
U0 = 0.164 m/s, the same as in the simulations presented in Sect. 3.3. The Froude number 
was F = 0.14, the bulk Reynolds number Re = 24’600. 

By imposing periodic boundary conditions at the upstream and downstream 
boundaries of the domain, a 1-m long stretch of an infinitely long channel with periodic 
bathymetry was simulated. Simulations were run until the velocity components became 
statistically steady in the mean (approximatively at t = 42 s = 45.9 D/U0). Results were 
analysed over a subsequent 20 s (~21.9 D/U0) long time interval. The mean flow 
computed in the periodic domain corresponds to a fully-developed flow solution that 
will be reached in a very long open channel at very large distances from the leading edge 
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of the mussel bed. This regime is particularly important, given that mussel beds 
generally extend over very large distances (e.g., O(km)) in rivers. 

The test cases described in the present Section are summarized in Table 3-3, which 
includes also their main characteristics. Most of the simulations were performed over 
the rough-bed which reproduces the water-worked gravel bed sample from the 
laboratory experiment (with d50 = 3.10 mm and d90 = 5.00 mm). Other simulations were 
performed over a flat bed (d50 = 0.00 mm), and over the gravel bed obtained by 
multiplying the vertical coordinate of the original rough bed by a factor of 0.5 
(d50 = 2.46 mm). 

 

 

Figure 3-21. (a) sketch showing two of the shells part of the mussel bed (symbols are 

defined in Figure 3-1), (b) plan view showing the mussel bed with ρM = 500 mussels/m². 

Table 3-3. Matrix of simulations with relevant parameters. N is the number of mussels in 

the computational domain, ρM is the mussel array density, h is the emerged height of the 

mussel, d50 is the median diameter of the channel bed material, VR = Uex/U0 is the filtering 

velocity ratio, U0 is the section-averaged, or bulk, velocity, Uinner is the mean streamwise 

velocity in the region z < h, Fdx
MEAN and Cdx

MEAN are the array-averaged mean drag force and 

the mean drag coefficient in the streamwise direction, respectively, as computed by the 

numerical model (Sect. 3.4.6). 

N ρM d50/h VR Uinner/U0 FdxMEAN/ρU02H2 CdxMEAN 

0 0 0.13 - - - - 
13 26 0.13 0.50 0.587 0.0096 0.138 
50 100 0.13 0.50 0.557 0.0083 0.120 
100 200 0.13 0.50 0.519 0.0074 0.105 
150 300 0.13 0.50 0.426 0.0059 0.084 
200 400 0.13 0.50 0.387 0.0052 0.074 
250 500 0.13 0.50 0.348 0.0044 0.063 
50 100 0.00 0.50 0.627 0.0098 0.149 
100 200 0.10 0.50 0.530 0.0079 0.116 
100 200 0.00 0.50 0.553 0.0082 0.125 
250 500 0.10 0.50 0.372 0.0047 0.069 
250 500 0.00 0.50 0.390 0.0050 0.076 
100 200 0.13 0.00 0.483 0.0077 0.108 
100 200 0.13 1.22 0.501 0.0048 0.068 
250 500 0.13 0.00 0.353 0.0050 0.072 
250 500 0.13 1.22 0.392 0.0032 0.045 
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The simulations were performed considering clusters of different densities, spanning 
from 26 mus/m2 to 500 mus/m2, which correspond to a number of mussels spanning from 
13 to 250. An additional simulation with the rough bed and 0 mus/m2 allows the 
comparison with a fully-developed flow over the gravel bed with no-mussels.  

The study also considers different level of the mussel filtering activity by varying the 
filtering discharges through the two siphons of the mussels. In the simulations, the flux 
rates through the inhaling and the exhaling siphons were equal (Qin = Qex), and the 
desired values have been maintained constant through all the mussels forming the 
cluster and in time. The values used were 3.3·10-8, 1.3·10-6 and 3.1·10-6 m³/s, which are 
among the values expected for this size and species of mussels (Bunt et al., 1993; Kryger 
and Riisgård, 1988; Monismith et al., 1990). The corresponding values of the velocity 
ratio, VR = Uex/U0, were 0, 0.5 and 1.22. The intermediate value corresponds to the normal 
filtering condition, with the excurrent velocity close to that measured by Sansom et al. 
(2018). 

3.4.2 Effects of overflow and bed roughness on the protruding mussels 

As described in Section 3.3, flow over an isolated freshwater mussel can be seen as a 
particular type of flow past a surface-mounted obstacle. As opposed to the canonical 
obstacles investigated in previous studies, the case of a mussel is further complicated by 
the irregular shape of the shell and by the filtering activity of the mollusk.  

In a cluster of mussels, the presence of neighboring shells induces additional 
turbulent structures to form and deviates the incoming velocity, making the flow field 
approaching each shell more complex. Bed roughness also influences the approaching 
flow, because gravel particles composing the irregular bed surface are additional source 
of turbulence, in case of both isolated specimens and cluster of mussels. 

 

Figure 3-22. Mean pressure, P/(ρU0
2), on shells and bed for simulations with 

ρM = 500 mussel/m², VR = 0.50 for (a) a smooth bed (d50/h = 0.00), and (b) a gravel bed 

(d50/h = 0.13). 
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Figure 3-22 shows the mean pressure on the mussel shells and on the bed for 
simulations with smooth and rough bed in case of a dense array of mussels 
(ρM = 500 mussel/m2). At a large scale, the mean pressure on the shells decreases along 
the streamwise direction as a consequence of drag and head losses induced by the 
musselbed on the flow, which is coherent with the rigid lid assumption (see Sect. 3.2.3). 
For both smooth and rough bed cases, on each mussel, highest values of the pressure are 
observed in the frontal part of the shell, immediately below the incurrent siphon. Here, 
flow is decelerated and it is deviated laterally by the mussel shell. Lowest values of the 
pressure, instead, are observed just downstream the excurrent siphon, in the upper part 
of the shell. Although this qualitative trend agrees with what observed for an isolated 
mussel and it is observed for all the shells regardless the mussel density, notable 
variations in the values occur depending on the position inside the array, especially for 
dense clusters (e.g., compare mussels pointed out by the arrows in Figure 3-22a, having 
similar x coordinates). Different factors concur to modify the pressure distribution on 
the shells, among which the relative position in the array is one of the most important. 
Though all the mussels have the same orientation to the incoming flow, neighboring 
shells can both reduce or increase local values of the pressure, depending on the relative 
sheltering. The pressure on mussel shells also depends on the bed roughness, because 
the irregular gravel distribution can substantially contribute in modifying the local flow 
field (e.g., compare mussels pointed by arrows in Figure 3-22a and Figure 3-22b). 

The presence of a high pressure gradient at the front of the mussel induces a 
downflow, which in some cases may induce an horseshoe vortex to form in the frontal 
and lateral part of the mussel. The large-scale coherent structures in the instantaneous 
and mean flow fields (shown in Figure 3-23 for ρM = 500 mussel/m² and d50/h = 0.13), 
reveal no horseshoe vortices form around the upstream base of the mussels, regardless 
of the array density.  

  

Figure 3-23. Coherent structures visualized using the Q criterion for the instantaneous (a) 

and the mean (b) flow in the simulation with ρM = 500 mussel/m², d50/h = 0.13, VR = 1.22. 

Though some small vortex cores are observed in front of the mussels in the rough bed 
simulations, the comparison with the corresponding flat-bed simulations confirmed that 
such structures are induced by the gravels. This agrees with the findings exposed in Sect. 
3.3 (Lazzarin et al., 2023a) for the case of an isolated Unio Elongatulus mussel and 
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opposed to what Wu et al. (2020) found for an isolated Lampsilis Siliquoidea on a smooth 
bed. The different behavior can be explained considering the vertical inclination of the 
main axis and by the relatively streamlined shape of the Unio Elongatulus shell. 

The turbulent structures in Figure 3-23 show that pairs of base (upwashing) vortices 
originate downstream the excurrent siphons in case of active filtering. As observed for 
an isolated mussel, they are not present for VR ≃ 0 and their strength increases with 
increasing VR. No clear effects are observed depending on bed roughness, probably due 
to the relatively low burrowing level considered in the simulations. Despite slight 
unsteadiness at the legs far downstream the siphons, these vortices represent coherent 
structures, as clarified by the mean flow field (Figure 3-23). Their structure remains 
clearly visible also for high mussel densities when jets interfere each other, and it is 
qualitatively similar for all the mussels in the array (Figure 3-23). However, when 
increasing the mussel density, these vortices are generally less extended downstream, 
and their coherence reduces if compared to the case of an isolated mussel because of the 
interactions with other mussels. 

The mussel bed density also influences the distribution of turbulent structures in the 
roughness layer (i.e., the layer directly influenced by the large-scale roughness, e.g., 
mussels and gravels, when present). For an isolated mussel a pair of tip (downwashing) 
vortices forms in the wake (Sect. 1.3.3; Lazzarin et al., 2023a). The coherence of these 
downwashing vortices is reduced in case of active filtering and especially in case of a 
rough bed, because the interactions between the vortices and the gravels break their 
symmetry. This effect is enhanced in the case of mussel arrays, because the mussel-to-
mussel interactions contribute in reducing their symmetry. For denser arrays, the 
formation of these tip vortices downstream the shell is further impeded by the presence 
of other shells, so that they barely form or they rapidly lose coherence. At very high 
mussel density, these tip vortices are basically suppressed for all the mussels in the array 
(i.e., they are not observed for ρM = 500 mussel/m2, see Figure 3-23b). 

In general, energetic eddies generated by the bed particles and by the protruding 
shells are located below the top of the mussels and slightly above them. The trajectories 
of the larger-scale structures are affected by the shells of the downstream mussels. The 
region situated immediately above the bed generally contains only small coherent 
structures in cases with a high mussel density even if the bed is rough. This contrasts 
with the same gravel bed without mussels, in which larger bed particles induce larger 
coherent structures to form above the bed. The reduction of large-scale coherent 
structures at the bed when increasing the mussel density is expected to reduce the 
influence of bed roughness in case of dense clusters, and also to reduce the potential for 
particle entrainment at the bed.  

The interactions of energetic eddies generated by the largest exposed gravels with the 
mussel shells can be seen in the distributions of the instantaneous out-of-plane vorticity 
in the z/D ≤ 2/3 region (Figure 3-24). For a gravel bed without mussels, regions of high 
vorticity are very close to the bed (Figure 3-24a). At larger bed particles (i.e., emerging 
from the average bed elevation) flow detachment is observed, with vorticity sheets 
above the top of these elements and small separated regions downstream. A high-
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vorticity region covers the top of the deformed bed, and eddies rarely extend above 
z/H > 0.5. Arrays of mussels, instead, generate more turbulent eddies and modify the 
flow in the lower part of the water column (Figure 3-24b), such that it is decelerated and 
the vorticity is reduced, especially where mussels are close to each other. Turbulent 
eddies generated by the gravels and by the shells interact to each other and they extend 
up to z/H ~ 1.  

As observed for an isolated mussel, a separated region forms downstream the shells, 
and a sheet of high vorticity is observed at the top of the mussels and of their wakes. 
This is observed also in case of a cluster of mussels (Figure 3-24b), but the main vorticity 
sheet generally has a reduced length compared to the case of an isolated mussel (Sect. 
1.3.2; Lazzarin et al., 2023a). This can be explained both by mussel-to-mussel interactions 
and by the reduction of the velocity within the roughness layer, which becomes relevant 
for denser arrays (see Sect. 3.4.4). 

For high-density clusters a similar vorticity field is observed for both rough (Figure 
3-24b) and smooth beds (Figure 3-24c), confirming that the influence of the gravel 
roughness is significant only when/where mussels are sparse. The effect of the filtering 
activity is observed only in restricted areas above the excurrent siphons due to the jet 
introduced in the water column and interacting with the incoming flow (Figure 3-24d). 

 

Figure 3-24. Instantaneous spanwise vorticity, ωyH/U0, in the y/H = -0.7 plane for 

different simulations (a-d). Black arrows are pointing toward main shear layers on top of the 

mussels. 
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3.4.3 3-D Effects on the Mean Flow  

The emerging particles of the gravel bed, in simulations without mussels, induce 
regions with non-negligible mean vertical velocities (Figure 3-25a). By increasing the 
density of mussels, up- and down-welling flows induced by bed particles are confined 
to the regions with no mussels. For higher mussel densities, such vertical flows are 
almost completely suppressed. However, in this case, strong up- and down-welling 
flows are induced in between the shells (Figure 3-25b) because of mussel-to-mussel 
interactions, and are observed regardless of the bed roughness. Close-to-symmetric 
regions of flow upwelling forms at the side of the isolated shells, and in case of 
neighboring mussels these up-welling regions can merge, enforcing the strength of the 
vertical motions. 

In Section 3.3 (Lazzarin et al., 2023a), a region of strong downwelling flow has been 
observed to form near the symmetry plane downstream of an isolated mussel over a 
smooth bed. Although less strong, this downflow was observed also in case of a filtering 
mussel and in case of a rough bed. For mussels belonging to a cluster, the wake of each 
mussel interacts with the neighboring shells, such that the down-welling region is 
practically suppressed for many of them (Figure 3-25b). 

To quantify the influence of the mussel density, as well as those of the bed roughness 
and of the filtering activity, the vertical, time-averaged, downward volumetric flux QW 
has been evaluated numerically at z/h = 0.5 as: 𝑄𝑊 = ∫ |𝑤| 𝑑𝐴𝑤<−𝑤𝑡  (3-1) 

where w is the time-averaged vertical component of flow velocity and wt = 0.1U0 is the 
threshold value chosen to identify regions of strong downwelling motions.  

 

Figure 3-25. Mean vertical velocity, w/U0, for the simulations with d50/h = 0.13, VR = 0.5 

and with ρM = 0 mussel/m² (a) and ρM = 500 mussel/m² (b), in the horizontal plane with 

z/h = 0.5. 

The results are shown in Figure 3-26, where QW is scaled (left panels) with the average 
flow rate through a vertical plane of height H and width B, (U0HB), and also (right 
panels) with the number of mussels N and the average flow rate through a H×H vertical 
plane, (NU0H²). QW/(U0HB), and hence the three-dimensionality of the flow, increases 
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with the mussel density (Figure 3-26). Figure 3-26a also shows that QW/(NU0H2) 
decreases with ρM for low values of the mussel bed density, and attains an almost 
constant value for ρM > 100 mussel/m². This means that, beyond a given mussel density, 
the intensity of the downwelling flow increases only because of the increasing number 
of mussels, whereas the vertical flow per mussel remains nearly constant inside the 
mussel bed.  

 

Figure 3-26. Non-dimensional, time-averaged downward discharge through the z/h = 0.5 

horizontal plane as a function of (a) mussel density ρM, (b) bed roughness d50/h (for three values 

of mussel density), (c) exhaling velocity ratio VR (for two values of mussel density). 

Both QW/(U0HB) and QW/(NU0H2) decrease with the bed roughness increasing (Figure 
3-26b), at a rate of decreasing that is higher for low mussel density (e.g., 100 mussel/m2). 
This is consistent with results obtained for the case of an isolated mussel in Section 3.3 
(Lazzarin et al., 2023a). Stronger downflows were observed in simulations with a smooth 
bed. Instead, when increasing the bed roughness, turbulence produced by gravel 
particles destroys the symmetry of tip vortices forming downstream the mussel, and the 
regions of downwelling flow break into multiple asymmetrical subregions of weaker 
intensity. In case of denser arrays, the bed-induced turbulence comes to play any 
significant role because the additional turbulence produced by neighboring shells 
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suppresses the tip vortices and impedes the downflow almost independently of bed 
roughness.  

The filtering activity of the mussel has a fairly negligible effect on QW (Figure 3-26c). 
Both QW/(U0HB) and QW/(NU0H2) slightly decrease with increasing VR, and then increase 
for VR > 0.5, with a higher rate for ρM = 500 mussel/m2. Moderate filtering further 
weakens the upwelling and downwelling flow motions, whereas the high velocity 
excurrent jet above the top of the mussels, for higher values of VR, produces stronger 
coherent structures that enhance the vertical exchanges in the roughness layer. 

3.4.4 Streamwise Velocity 

The presence of mussels with protruding shells induces additional drag resistance for 
the flow in the roughness layer, and the total drag increases with the mussel density. 
The results show that, for increasing mussel density, the streamwise flow velocity 
decreases in the inner region and increases in the outer region, following the same trend 
noticed in the flume experiments by Sansom et al. (2020). 

 

Figure 3-27. Mean streamwise velocity, u/U0, in the y/H = -0.7 plane for the simulations with 

d50/h = 0.13, VR = 0.5 and with ρM = 0 mussel/m² (a) and ρM = 500 mussel/m² (b). 

These differences are highlighted in the distributions of the mean streamwise 
velocity, u/U0, shown in Figure 3-27 for simulations without mussels and in case of a 
cluster with ρM = 500 mussel/m2. 

To obtain a quantitative measure of the effects of the different parameters under 
investigation on the distribution of the mean streamwise velocity, a double-averaging 
technique in both the longitudinal and the transversal direction has been used. This is 
justified by the fact that the flow can be considered quasi-uniform along these two 
directions because of the periodic boundary conditions imposed. The double-averaged 
mean velocity 𝑢̿ has been estimated as: 

𝑢̿(𝑧) = 1𝐿′𝐵′∫ [∫ 𝑢(𝑥, 𝑦, 𝑧)𝑑𝑦𝐵′
0 ]𝐿′

0 𝑑𝑥 (3-2) 
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where B’ and L’ denote the width and the length of the region occupied by the fluid, 
respectively (i.e., B’ and L’ do not consider the interior part of the emerging shells). This 
technique allows to summarize the effect of the three-dimensional flow on a single 
vertical profile, and to highlight the differences in the vertical distributions for the 
different simulations.  

Figure 3-28a illustrates the effect of the mussel density on the vertical distribution of 
the double-averaged mean velocity, 𝑢̿. The velocity profile tilts when increasing the 
mussel density because of the region of reduced velocity forming in between the 
protruding shells as a consequence of the additional drag. While the effect of the filtering 
activity has been observed to be modest, and generally restricted to the small region 
above the excurrent siphons, differences in the vertical profiles of 𝑢̿ are observed 
depending on bed roughness. These differences are pronounced especially for cases with 
low mussel density (e.g., see results for ρM = 100 mussel/m2 in Figure 3-28b), because of 
the influence of the gravel particles. When increasing the mussel density, instead, the 
effect of bed roughness wakens progressively (e.g., see results for ρM = 500 mussel/m2 in 
Figure 3-28b), because both the net area of the gravel bed is reduced and the effect of the 
exposed part of the mussel shells prevails on that of the bed particles.  

 

Figure 3-28. Vertical profiles of the double-averaged streamwise velocity, 𝑢̿/U0, as a function 

of: a) the mussel density (with d50/h = 0.13, VR = 0.5), and b) the bed roughness (for two values 

of ρM, and with VR = 0.5) 

3.4.5 Turbulent Kinetic Energy 

The presence of an isolated mussel over a smooth or a gravel bed is known to induce 
amplifications of the turbulent kinetic energy (TKE) behind the shell and in vicinity of 
the excurrent jet for cases with active filtering (Lazzarin et al., 2023a; Wu et al., 2020). 
These amplifications are found also in the present study when considering mussel 
clusters of low density (e.g., ρM ≤ 200 mussel/m²). 

For higher mussel densities (ρM = 500 mussel/m²), Figure 3-29 shows some 
longitudinal profiles of TKE in the z/D ≤ 2/3 region. In the case of the gravel bed with no 
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mussels, amplifications of TKE appear downstream of the largest roughness elements 
(Figure 3-29a), and they are confined in a small region just above the bed surface. This is 
confirmed also by the peak observed above the bed in Figure 3-30a, that pictures the 
vertical profile of the double-averaged TKE, 𝑇𝐾𝐸̿̿ ̿̿ ̿̿ , computed as:  

𝑇𝐾𝐸̿̿ ̿̿ ̿̿ (𝑧) = 1𝐿′𝐵′∫ [∫ 𝑇𝐾𝐸(𝑥, 𝑦, 𝑧)𝑑𝑦𝐵′
0 ]𝐿′

0 𝑑𝑥 (3-3) 

The mussel cluster (Figure 3-29b) reduces both flow velocity and TKE close to the bed. 
Amplifications of TKE, generated by the mussel shells, appear at a higher distance from 
the bed, though generally at z ≤ h. 

The active filtering increases the thickness of the size of the regions of high TKE 
(Figure 3-29c,d). The main regions of high TKE are mainly found near the excurrent 
siphons, downstream of the top of the mussels, and are situated above their top. The few 
regions of high TKE that are observed behind the mussels are generated by the 
interactions of the siphon-driven coherent structures with the mussel shells. The wakes 
generated by the shells are very weak, mainly because of the reduction of streamwise 
velocity inside the roughness layer. Interestingly, the levels of amplification of the TKE 

at the excurrent jets are stronger than that observed for an isolated mussel, and they 
increase with increasing ρM. This can be explained by the turbulent eddies generated by 
the mussel bed and extending to z ~ h, where they interact with the excurrent siphon jets. 𝑇𝐾𝐸̿̿ ̿̿ ̿̿  vertical profiles included in Figure 3-30a show peaks of 𝑇𝐾𝐸̿̿ ̿̿ ̿̿  above the top of the 
mussels, where the jets are injected in the water column, for cases with VR = 0.5. Such 
amplifications above the top of the mussels are observed also in cases with no active 
filtering, which agrees with results of previous studies (Sansom et al., 2020). The 
intensity of these 𝑇𝐾𝐸̿̿ ̿̿ ̿̿  peaks increases at higher mussel density and/or in case of higher 
values of VR. Another effect is that peaks of 𝑇𝐾𝐸̿̿ ̿̿ ̿̿  observed at the top of the bed surface 
for the gravel bed with no mussels weaken when increasing the mussel density. At high 
values of ρM this peak of 𝑇𝐾𝐸̿̿ ̿̿ ̿̿  is almost suppressed, which is consistent with the 
reduction of the streamwise velocity in this region (Sect. 3.4.4), and with experimental 
observations of Sansom et al. (2020). Interestingly, for intermediate values of mussel 
densities (e.g., ρM = 100 mussel/m²), the two peaks present similar values of 𝑇𝐾𝐸̿̿ ̿̿ ̿̿ .  

For sparse clusters of mussels, the bed roughness amplifies the TKE behind the shells 
and increases its variability also away from the bed surface. This effect is reduced as the 
mussel bed density increases. If the mussel bed density is high enough (e.g., 
ρM = 500 mussel/m²), the TKE levels for the rough- and smooth-bed cases are fairly 
comparable (see Figure 3-29c,e and Figure 3-30b).  
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Figure 3-29. Turbulent kinetic energy, TKE/U0
2, at y/H = -0.7 for different simulations (a-e). 

 

Figure 3-30. Vertical profiles of the double-averaged turbulent kinetic energy, 𝑇𝐾𝐸̿̿ ̿̿ ̿/U0
2, as a 

function of: a) the mussel density (with d50/h = 0.13, VR = 0.5), and b) the bed roughness (for 

two values of ρM, and with VR = 0.5) 
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3.4.6 Drag Forces 

The stability of the mussels is connected to the drag forces acting on the emerged part 
of the shells (Dey, 2003; Diedericks et al., 2018; Witman and Suchanek, 1984). In Figure 
3-31 mean drag forces on the streamwise (FdxMEAN, blue symbols) and the spanwise 
(FdyMEAN, red symbols) directions are compared for the different simulations (see also 
Table 3-3). All the values are non-dimensionalized using the water density, ρ, the 
section-averaged flow velocity, U0, and the height of the mussel, H, which are constant 
for all simulations. Besides the mean values (filled symbols), the RMS fluctuations are 
also reported (empty symbols) to characterize temporal variations. All the values 
reported in Figure 3-31 (both mean and RMS fluctuations) are averaged on all the 
mussels in the bed. 

 

Figure 3-31. Mean (filled symbols) and RMS fluctuations (empty symbols) of non-

dimensional mean drag forces (blue symbols refer to the x-direction, left; red symbols to the 

y-direction, right) as a function of a) mussel density ρM, b) bed roughness d50/h (for three 

values of ρM), c) exhaling velocity ratio VR (for two values of ρM). 
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In the case of a low-density cluster of mussels (i.e., ρM ≤ 26 mussel/m²), the mean drag 
force in the streamwise direction, FdxMEAN, is similar to the value obtained for an isolated 
mollusk in Section 3.3 (Lazzarin et al., 2023a). FdxMEAN then decreases with increasing 
mussel density (Figure 3-31a). The average RMS fluctuations are roughly constant with 
the mussel density, and can be as high as 63% of the mean drag force for 
ρM = 500 mussel/m2. In the spanwise direction, both the mean values and the RMS 
fluctuations are almost independent of the mussel density; interestingly, the spanwise 
averaged RMS fluctuations are nearly three times higher than both the mean values in 
the spanwise direction and the RMS fluctuations in the streamwise direction. This is an 
effect of the presence of neighboring shells influencing flow and turbulence in the 
roughness layer.  

For a fixed value of mussel density, the bed roughness influences the drag forces 
slightly (Figure 3-31b). While FdyMEAN values are poorly influenced by bed roughness, 
small decrease of FdxMEAN are observed with increasing roughness. The average RMS 
fluctuations, both in x- and in y-directions, are observed to slightly increase with 
increasing roughness, probably due to the additional turbulence induced by the gravel 
bed. 

When increasing the filtering velocity ratio, VR, the mean streamwise force, FdxMEAN, 

decreases. In particular, the rate of decrease is higher for high values of VR, in agreement 
to what observed for an isolated mussel in Sect. 3.3.6. The spanwise force, FdyMEAN, 
instead, slightly increase when increasing VR. No relevant variation as a function of VR 
are observed for the average RMS fluctuations.  

The mean drag coefficient in the streamwise direction, for a single mussel of the 
cluster, is defined as CdxMEAN,i = 2FdxMEAN,i/(ρU02Axi), where FdxMEAN,i is the mean drag force 
in the streamwise direction for the i-th mussel and Axi is the projected area of the emerged 
part of its shell (when a rough bed is considered, it depends on the topography around 
each single mussel). The value of the mean drag coefficient averaged on the number of 
mussels, CdxMEAN, follows the same trend observed for FdxMEAN, i.e., it strongly decreases 
with increasing ρM and it slightly decreases when increasing d50/h or VR (Figure 3-32, 
filled symbols in left frames). The average RMS fluctuations of the drag coefficient, 
CdxRMS, are basically independent of the parameters here analyzed (Figure 3-32, open 
symbols in left frames).  

Considering that the streamwise velocity in the lower part of the water column is 
generally reduced by the presence of increasingly denser mussel clusters, we computed 
the mean value of the streamwise velocity in the z < h region, Uinner (Table 3-3). Uinner 
decreases with increasing mussel density, whereas it is roughly constant when varying 
d50/h or VR. The streamwise drag coefficient C*dx, has been computed replacing U0 with 
Uinner. This expression for the drag coefficient can be more useful to compare the different 
cases as Uinner represents the real mean velocity approaching the shells. C*dxMEAN still 
decreases with increasing ρM, although at a lower rate if compared to the variation of 
CdxMEAN with mussel density (Figure 3-32a, filled symbols). C*dxRMS, instead, increases with 
increasing mussel density (Figure 3-32a, empty symbols). When changing d50/h or VR, 
C*dxMEAN and C*dxRMS exhibit the same trends as CdxMEAN and CdxRMS (Figure 3-32b,c). 
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Figure 3-32. Mean (filled symbols) and RMS fluctuations (empty symbols) of the drag 

coefficient in the x-direction considering the mean velocity in the entire (Cdx, left) or in the 

inner region (C*dx, right), as a function of a) mussel density ρM, b) bed roughness d50/h (for 

three values of ρM), c) exhaling velocity ratio VR (for two values of ρM). 

The values of forces and of drag coefficients shown in in Figure 3-31 and in Figure 
3-32, respectively, are averaged values for the whole mussel bed. However, strong 
variations of the forces are observed for the various mussels, as a function of their 
position in the array and of their relative sheltering. These variations of the drag forces 
correlate with strong spatial variations of the pressure fields on the mussels (see e.g., 
Figure 3-22). 

Figure 3-33 describes the variability of the time-averaged drag coefficient in the x-
direction, CdxMEAN,i, for four cases. It compares results for smooth (frames a,c) and rough 
(frames b,d) bed cases and results for a sparse (100 mussel/m², frames a,b) and for a 
dense (500 mussel/m², frames c,d) cluster of mussels. The drag coefficients for the 
individual mussels are grouped in bins and results are plotted in the form of a histogram 
showing the distribution of the drag coefficients for the mussels forming the cluster.  
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Figure 3-33. Streamwise (time-averaged) drag coefficients for the individual mussels 

forming the mussel bed for different simulations (a-d) with VR = 0.5. Also shown are the 

mean (cluster averaged) value and RMS fluctuations for the mussels in the cluster (left), the 

histogram of the drag coefficient for the mussels forming the cluster and comparison with 

the normal distribution (right). 
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For dense clusters, the histogram’s shape is close to that of a Gaussian (symmetrical) 
distribution. For sparse clusters, the distribution is more irregular. The standard 
deviation increases with the mussel bed density and slightly decreases in the cases with 
a rough bed compared to the corresponding smooth-bed cases. In the case of dense 
cluster (m = 500 mussel/m²) and smooth bed (Figure 3-33c), CdxMEAN,i ranges from 0.00 to 
0.20. The larger variability observed for denser clusters is due to the increased mussel-
to-mussel interactions, which produce an increased sheltering for some of the mussels 
forming the clusters. Indeed, when increasing the mussel density from 100 mussel/m² to 
500 mussel/m² (see Figure 3-33), the maximum values of the drag coefficients remain 
almost the same, but the distribution shifts to the left, indicating that there is an increased 
number of mussels that experience a reduced drag compared to the sparser cluster. 
Increasing the bed roughness reduces the drag on the most exposed (i.e., less sheltered) 
mussels, thus reducing both the average drag and the standard deviation. 

Though averaged values of the mean drag forces can be used to characterize the 
global effect of the flow on the mussel shells, these values do not offer a full 
characterization of the capacity of the individual mussels to resist dislocation from the 
substrate. Rather, the stability of each mussel in the array is controlled by the (maximum) 
instantaneous forces acting on its shell. DES simulations showed that these forces can be 
much higher than the cluster- and time-averaged values of drag forces because of i) a 
more exposed position within the array (i.e., mean force on the individual shell is 
significantly higher than the average value for the whole array), and ii) instantaneous 
large peaks induced by high RMS fluctuations on top of the mean drag value.  

3.4.7 Bed Shear Stresses and Sediment Entrainment Capacity 

Local scour in the vicinity of the shells is another factor that influences mussel 
stability, since the increased area exposed to the flow induces more severe drag forces 
on the shell that, along with a reduced anchoring within the bed, increases the 
probability of dislocation. The entrainment of bed particles is directly related to the shear 
stress acting on the bottom, which has been recognized to be among the key parameters 
controlling mussels abundance in natural streams (Daraio et al., 2010; French and 
Ackerman, 2014; Layzer and Madison, 1995). 

In the case of gravel beds, particles entrainment is mostly driven by pressure forces 
acting on them. This requires to simulate hyporheic flow and to include more than just 
particles in contact with the overflow (e.g., Fang et al., 2018; Lian et al., 2019; Rosti et al., 
2018), which is beyond the scope of the present study. However, for flat bed cases, one 
can study effect of mussels on entrainment from the bed based on bed shear stress 
distributions in mean and instantaneous flow (Cheng et al., 2018; Cheng and 
Constantinescu, 2022; Koken et al., 2013). 

Figure 3-34 shows the instantaneous and the mean distributions of bed shear stresses 
for different mussel densities in case of a flat bed, scaled by the mean bed shear stress 
acting on the flatbed without mussels, 0. Regions of high bed shear stress are observed 
especially at the side of mussels because of the flow acceleration. A second region of high 
bed shear stresses is observed downstream of the mussels, approximatively at a distance 
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of 2H from the centre of the shell, just after the flow reattaches. For ρM = 100 mussel/m², 
the former region is visible for all the mussels; the latter region, instead, is visible only if 
the downstream neighbouring mussels are sufficiently spaced to let the flow reattach. 
For ρM = 500 mussel/m², both these regions are strongly reduced, and only small regions 
of high shear stresses are observed at the side of mussels. Hence, the mussel density has 
relevant implications on the value of the shear stress on the river bed. 

To obtain an overall picture of the erosive capacity of the flow with varying mussel 
density for the flat bed cases, when the bed shear stress distribution can be easily 
calculated, the (peak) sediment entrainment potential is estimated using the sediment 
entrainment flux given by the empirical pick-up formula of van Rijn (1984):  

𝐸𝜏(𝑡) = 1𝐴′∫ (𝜏 − 𝜏𝐶)1.5𝜌1.5 𝑈03 𝑑𝐴𝐴′  (3-4) 

in which c is the critical shear stress computed in the flat-bed simulations, (-c) is the 
excess of bed shear stress, and A’ is the net bed area (i.e., the portion of the bed without 
considering the mussel shells).  

A rigorous application of such a formulation is limited to relatively large spatial scales 
with average stress values, thus it cannot be applied to the gravel-bed computations. 
Though c is generally estimated with the Shields diagram as a function of the sediment 
size, here one has assumed c = 0.0024ρU02, i.e., slightly higher than 0. 

 

 

Figure 3-34. Instantaneous (left frame) and mean (right frame) bed shear stress, /0, for 

the simulations with d50/h = 0, VR = 0.5 and with ρM = 100 mussel/m² (a) and 

ρM = 500 mussel/m² (b). 
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As shown in Figure 3-35, the volumetric flux of entrained sediment, EτMEAN, obtained 
by averaging in time the instantaneous values of the flux of entrained sediment, 
increases with the mussel bed density from 100 to 200 mussel/m². One should notice that 
EτMEAN is smaller for 500 mussel/m² compared to 200 mussel/m2, so one expects EτMEAN 
will decrease with increasing ρM for very large mussel bed densities. The initial increase 
of EτMEAN with ρM is associated with the larger number of mussels (i.e., each mussel 
generates a region of high bed shear stress on its sides while the stress magnitude 
remains nearly independent of the mussel density). For very high mussel densities, 
EτMEAN decreases mainly because of the decay of the bed shear stresses at the sides of the 
mussels (Figure 3-34). When mussels are very close to each other, regions of high shear 
stress are rarely forming at both sides of each mussel (Figure 3-34), and a number of 
mussels are surrounded by regions with /0 < 1. This explains why high-density clusters 
of mussels have a stabilizing effect for the river bed.  

  

Figure 3-35. Time averaged volumetric flux of entrained sediment per unit bed area, Eτ
MEAN, 

as a function of the mussel density, ρM (with d50/h = 0, VR = 0.5 and c = 0.0024ρU0
2) 

3.4.8 Mixing between the water filtered by the mussels and the overflow  

The transport of nutrients in the water flow is essential for mussel life. Water rich in 
nutrients is acquired from the inhaling siphon located in the upstream part of the mussel 
and depleted by the jet exiting from the excurrent siphon. For an isolated mussel, the 
amount of phytoplankton inside the water column depends on the external water flow 
and on the filtering activity, which in turn depends on the dynamics of the excurrent jet 
and its mixing with the overflow, and on the filtering velocity ratio. In the case of a 
mussel bed, the excurrent jet dynamics and mixing are further complicated because of 
mutual interactions with the other excurrent jets, especially for denser arrays. In a fully 
developed flow, the filtered water ejected by the mussels accumulates along the channel 
to form a boundary layer; this was the focus of previous experimental studies (e.g., 
Butman et al., 1994; O’Riordan et al., 1995). 

The “inverse concentration” approach is here used to study the transport of nutrients 
and the distribution of clean water. This is the standard method used to study 
phytoplankton distribution in both laboratory and numerical investigations of flow over 
mussels (Crimaldi et al., 2007; Monismith et al., 1990; Wu et al., 2020). A concentration 
C0 = 1 is prescribed at the exhaling siphon to represent clean, filtered water. At the 
channel inlet, C is set equal to zero to represent water containing nutrients and 
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phytoplankton. As the distance from the leading edge of the mussel bed increases, in the 
concentration of nutrients decreases and mussels inhale part of water that was already 
filtered by upstream mussels. According to the “inverse concentration” approach, in 
these simulations the passive scalar concentration increases with the x-coordinate and 
the refiltration fraction at the incurrent siphon, which measures the nutrient availability 
for each mussel (O’Riordan et al., 1993), is defined as n = 1 − C.  

As another peculiarity of the present study, the simulations use periodic boundary 
conditions in the streamwise direction. Accordingly, the 1 m long domain represents an 
infinitely long channel in which the velocity field is statistically steady and (on average) 
uniform. However, the scalar concentration within the computational domain increases 
linearly with time because the passive scalar that exits at the downstream boundary re-
enters the domain at the upstream section. This means that the change in time of the 
scalar concentration observed in the simulations represents how the concentration 
increases along a sufficiently long mussel bed. With this caution, the results from the 
numerical simulations can be used to infer qualitative trends in the changes of the scalar 
concentration profiles due to the variation of the different controlling variables (e.g., 
mussel array density, filtering velocity ratio). 

Figure 3-36 shows the instantaneous concentration of the passive scalar, C/C0, for a 
high-density array of mussels (ρM = 500 mussel/m²) in the z/D ≤ 2/3 region. Jets of filtered 
water (C/C0 > 0) are injected vertically in the water column by each excurrent siphon. At 
some distance streamwise, above the top of the mussels, the jets become aligned with 
the incoming flow (Figure 3-36a), similarly to the case of a single mussel in Section 3.3 
(Lazzarin et al., 2023a). In the transversal sections of Figure 3-36b, the jets generated by 
the mussels located upstream of the plane are well visible.  

The bed roughness has minor effect on the concentration fields (Lazzarin et al., 2023a), 
which become negligible for the higher mussel densities because the effect of the 
protruding parts of the shells prevails on that of the gravel particles at the bed. The 
results also show the different dynamics of jets depending on the exhaling velocity ratio, 
VR. As noticed in Section 3.3 (Lazzarin et al., 2023a), when increasing VR, the increased 
momentum of the jet implies a jet penetration to higher elevations and a longer distance 
needed to re-align with the incoming flow  

 
Figure 3-36. Instantaneous concentration of the passive scalar, C/C0, at t∙U0/D = 50.3 in 

the y/H = -0.7 plane (a) and in the x/H = 10 plane (b) for the simulation with d50/h = 0.13, 

VR = 0.5, ρM = 500 mussel/m². 
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The removal efficiency, R, is evaluated as the ratio of phytoplankton concentration at 
the incurrent siphon to that in the incoming flow. For a bed with N mussels with equal 
filtering discharge Qi (= Qin = Qex), and a water discharge Q, it is: 

𝑅 = 𝑄𝑖 ∑ (1 − 𝑛)𝑖𝑁𝑖=1𝑄  (3-5) 

This value should be compared with an ideal removal efficiency, Rideal, which does not 
account for refiltration and is defined as Rideal = NQi/Q. For mussels situated in the 
downstream part of the channel, the water inhaled at their incurrent siphons is less rich 
in nutrient and phytoplankton (i.e., the concentration C is higher). So, the “filtering 
efficiency” of the downstream mussels is less compared to that of the upstream mussels. 
In the present simulations, the temporal decay of R inside the computational domain 
represents the streamwise decay of R(x), computed between the leading edge of the 
mussel bed and the cross-section at the x coordinate. 

The removal efficiency R increases with the mussel array density and with the 
filtering discharge (or equivalently, VR), as shown in Figure 3-37 and in Table 3-4. No 
appreciable differences are noticed when varying the bed roughness. The removal 
efficiency decreases with the distance because an increase in the refiltration, n (Figure 
3-37). Data for the removal efficiency R obtained from the simulations has been 
interpolated using the following equation, which depends on Rideal and on a calibrating 
coefficient pC (see values in Table 3-4):  

𝑅 (𝑡𝑈0𝐷 ) = 𝑅𝑖𝑑𝑒𝑎𝑙 𝑒−𝑝𝐶𝑡𝑈0𝐷  (3-6) 

 

Figure 3-37. Values of the removal efficiency R at different times for different mussel 

densities, ρM (a), and exhaling velocity ratios, VR (b). Dashed lines are obtained using 

interpolating equation (3-6) with values of Rideal and pC given in Table 3-4. Time here is a 

proxy for the x-coordinate in a long channel, even though a precise relationship cannot be 

established because the development of the boundary layer is neglected. 
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Table 3-4. Characterization of the temporal evolution of the removal efficiency. Qi is the 

filtering discharge (which is equal to the discharge through the inhaling siphon Qin and 

through the exhaling siphon Qex), R is the removal efficiency (as a function of the length 

from the leading edge of the mussel bed, represented here through the non-dimensional time 

t⋅U0/D), Rideal is the ideal removal efficiency, pC is the calibration coefficient introduced in 

Eq. (3-6). 

N ρM VR Qi = Qin = Qex 
R 

(t⋅Uo/D=42.1) 

R 

(t⋅Uo/D=47.6) 
R 

(t⋅Uo/D=53.1) 
R 

(t⋅Uo/D=58.6) Rideal pC 

13 26 0.5 1.3E-06 0.13% 0.13% 0.13% 0.13% 0.13% 0.0004 
50 100 0.5 1.3E-06 0.49% 0.49% 0.49% 0.49% 0.52% 0.0013 
100 200 0.5 1.3E-06 0.95% 0.95% 0.94% 0.93% 1.04% 0.0024 
150 300 0.5 1.3E-06 1.34% 1.33% 1.31% 1.29% 1.55% 0.0037 
200 400 0.5 1.3E-06 1.71% 1.68% 1.65% 1.63% 2.07% 0.0048 
250 500 0.5 1.3E-06 2.03% 1.99% 1.94% 1.91% 2.59% 0.0061 
100 200 0 3.3E-08 0.03% 0.03% 0.03% 0.03% 0.03% 0.0001 
100 200 1.22 3.1E-06 2.06% 2.02% 1.98% 1.94% 2.53% 0.0051 
250 500 0 3.3E-08 0.07% 0.07% 0.07% 0.07% 0.07% 0.0002 
250 500 1.22 3.1E-06 3.94% 3.75% 3.59% 3.42% 6.32% 0.0122 

 

For t⋅U0/D = 0, R = Rideal as all mussels inhale water rich in phytoplankton. When 
moving along the channel (i.e., as time passes in the periodic simulations), R decreases 
at a rate that is proportional to the number of mussels and to their filtering discharge. 
Table 3-4 shows that for t⋅U0/D = 42÷58 small differences are observed between R and 
Rideal for low mussel densities and/or low filtering discharge. When increasing ρM or VR, 
differences increase. For example, in the simulation with ρM = 500 mussel/m² and 
VR = 1.22, R is 62÷54% of Rideal in the analyzed interval. 

3.5 Discussion and Conclusions 

The present study used eddy-resolving numerical simulations to investigate the open 
channel flow and the turbulence structures over isolated specimens and arrays of 
freshwater mussels partially-burrowed on smooth and rough beds. 

Mussels were partially buried in a gravel bed to provide a more accurate 
representation of the substrates in which they are typically buried in. This extends the 
study of Wu et al. (2020a) who focused on an isolated freshwater mussel of a different 
species placed on a horizontal, smooth bed. Since mussels are common in sand and 
gravel bed rivers, understanding the influence of varying bed roughness is of particular 
importance to characterize the interactions between the mussels and the flow at the 
organism level.  

As mussels typically form aggregations of different density, understanding how the 
mussel-to-mussel interactions affect the near bed flow, the drag forces, the bed shear 
stress and the mixing of exhaling jet is also of particular importance to provide realistic 
descriptions to be used for preserving mussels in river systems. In this case, the analysis 
focused on the fully developed flow regime observed at large distances from the leading 
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edge of a long mussel bed, way downstream of the location where the internal boundary 
layer induced by the mussels reaches the free surface.  

3.5.1 Isolated mussels 

Results of the simulations with an isolated mussel showed that the bed roughness 
influences the structure of the vortices forming near the shells. In the case of a smooth 
bed a symmetric shedding prevails because of the streamlined shape of the Unio 

Elongatulus mussel and the downflow in the symmetry axis past the shell. When 
increasing bed roughness, the antisymmetric shedding mode gradually becomes 
dominant, because eddies induced by bed particles break the symmetry of vortices 
forming in the wake of the mussels, and reduce their coherence.  

The simulations also showed that for constant filtering ratio and burrowing level, the 
mean streamwise drag coefficient increases with increasing bed roughness. This means 
that the stability of an exposed, isolated mussel decreases in case of a gravel bed. On the 
other hand, the volumetric flux of the excurrent jet increases with increasing bed 
roughness, thus enhancing the mixing of a passive scalar injected in the flow through 
the exhaling siphon. 

The simulations with a flat bed and the comparisons with results of Wu et al. (2020a) 
also showed that the vortices forming at the mussels and their dynamics are strongly 
dependent on the shape of the emerged part of the shell and on its orientation. 
Differently from the case studied by Wu et al. (2020a), the present analysis on a Unio 

Elongatulus mussel showed that an elongated region of very strong downflow forms near 
the symmetry plane, that tip vortices form in the wake and that no horseshoe vortices 
form around the upstream base of the mussel. It can be concluded that the exposed part 
of the mussel shell controls the type and coherence of the streamwise vortices forming 
in the wake, which in turn determines what shedding mode is dominant in the wake. 

The study considered also the effect of the filtering activity of the mussel, considering 
a large range of the velocity ratio between the excurrent siphon velocity and the mean 
velocity in the overflow (0 ≤ VR ≤ 1.22). The present investigation found that the 
streamwise drag force increases with increasing VR when the active filtering is turned 
on (e.g., for 0 < VR < 0.61). However, the predicted values obtained in simulations 
conducted with VR = 1.22, suggest that the effect of increasing VR on CdxMEAN changes 
around VR = 1 and that mussels can reduce the drag force acting on them and the 
probability to be displaced by the overflow by increasing their filtering levels. 

3.5.2 Musselbeds 

Simulations of fully developed flow over musselbeds showed that increasing mussel 
bed density for constant level of mussel burrowing has notable consequences on the flow 
field and turbulence structure.  

Besides the decrease of longitudinal velocity in the mussel region, in dense clusters 
of mussels the downflow observed at the back of the mussel for an isolated specimen is 
strongly reduced. The dynamics of the vortices have been also shown to be influenced 
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by the mussel density. While jets from the excurrent siphons are qualitatively similar to 
those observed for an isolated mussel, tip vortices developed at the back of the shells are 
strongly dampened by the presence of other shells. The effect of bed roughness, which 
has been shown to be significant for isolated specimens and for clusters with sparse 
shells, becomes progressively less important increasing the mussel density as the near-
bed flow is controlled by the roughness associated with the protruding shells rather than 
by the bed particles. In case of the clusters with high densities considered in this study, 
bed roughness marginally affects the flow.  

Increasing mussel density also reduces the average values of the mean drag forces on 
the shells, which is beneficial for the stability of the mussels. In any case, large variations 
of the mean drag force on the individual shells have been observed as a function of the 
mussel position in the array, as some of the shells showed mean forces as high as twice 
the array-averaged values. Simulations with smooth beds also showed that clusters with 
very high mussel density reduce bed shear stress. While in sparse cluster the sediment 
entrainment potential of the flow increases with increasing number of mussels, it decays 
at higher densities when mussels are very close to each other. Both the reduced drag 
forces and the reduced entrainment potential highlight that sufficiently dense cluster of 
mussels can be of help for mussel stability and conservation. The present study, in which 
all mussels were aligned with the incoming flow, showed also that the spanwise drag 
forces and the associated fluctuations can be significant, especially for large mussel bed 
densities where the flow approaching each mussel can be not aligned with the shell 
because of mussel sheltering. For ρM = 500 mussel/m², the mean drag forces have been 
observed to become comparable in the streamwise and spanwise directions, and the 
RMS fluctuations of the drag force larger along the spanwise direction.  

Values of the drag coefficients obtained from the present simulations can be used in 
reduced-order models to characterize the averaged roughness of mussel beds through 
extra drag terms in the momentum equations within the roughness layer, interpreted as 
a porous layer. These simplified approaches, known as momentum forcing approaches, 
are computationally less expensive as they account for the presence of musselbeds 
without the need of explicitly solving the flow around the shells, similarly to what 
proposed for vegetation (e.g., Etminan et al., 2017; Kim and Stoesser, 2011). 

The dynamics of the excurrent jets was found to be relatively similar for different 
mussel densities. However, the availability of nutrients, represented by the passive 
scalar concentration, can be highly reduced by the presence of other mussels in the 
cluster. In particular, the removal efficiency decreases with the streamwise distance at a 
higher rate for higher mussel density or high filtering activity of the mollusks.  

3.5.3 Limitations and future goals 

The present work considered relatively high submergence ratios and impermeable 
substrates, neglecting the hyporheic flow. Further research is needed to understand how 
flow and turbulent structures, as well as drag forces, change when the free surface is 
strongly deformed by the presence of the shells, or when mussels start interacting with 
the free surface. Simulations conducted with a permeable bed can also be of help to 
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assess the role of the hyporheic flow, and to understand to what extent it affects the flow 
approaching the mussels.  

The present work considered only mussel beds composed by specimens all equal each 
other, whereas in natural streams heterogeneous and dynamic conditions are observed 
(i.e., beds with live mussels of different dimensions, orientation, burrowing height, 
filtering activity, etc.). Further research on these topics is need also to investigate more 
complex case to understanding how the flow physics and the drag forces acting on the 
individual shells forming the musselbed change. This should be complemented also by 
experiment measurement, to understand the threshold of mussel dislocation for a given 
shape of the shell and a given material of the substrate. This information is critical to 
predict how flow conditions can affect the stability of the mussels.  
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4 CFD analysis of turbulent flow and bed shear stresses at a 

bridge for different flow regimes 

This Chapter reports the content of a manuscript submitted for possible publication 
in Advances in Water Resources4. It presents the results of the CFD analysis of flow and 
bed shear stresses at a realistic, full-scale bridge with multiple piers over a natural river 
bathymetry. The analysis highlights the dependence on the flow regime (i.e., free-surface 
or pressure flow with deck overtopping) and on the presence of piers.  

Since severe scours around piers and abutments are among the most common causes 
for bridge failures, understanding how the flow and the scouring processes are affected 
by the bridge structures is of great importance to obtain indications for preventing their 
collapse. To this end, simulations with the DES approach, conducted with a deformable 
free surface, are used to simulate the flow and to evaluate the dynamics of the coherent 
structures in a realistic case study based on a bridge over the Po River.  

The comparison of different simulated scenarios allows to indirectly assess how the 
presence of the piers and the transition to a pressure-flow regime with bridge deck 
overtopping increase the potential for erosion of sediments at the bridge site. In addition, 
the predictions obtained by DES and RANS models are compared to each other to 
evaluate the ability of the RANS model in estimating the flow field and the bed shear 
stresses at the bridge site in case of the pressure-flow regime.  

 

  

                                                      
4 Lazzarin, T., Constantinescu, G., Viero, D.P. A numerical investigation of flow field and bed stresses at 

a river bridge: the effects of piers and of pressure-flow with deck overtopping. Submitted for publication in 
Adv. Water Resour.  
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4.1 Introduction 

Understanding how flow in rivers is affected by the presence of bridge structures is 
of great importance to predict the flow behavior in case of floods and to prevent the 
bridge damaging or collapse. The triggering causes of bridge failures are often related to 
bed erosion during flooding events (Montalvo et al., 2020; Wardhana and Hadipriono, 
2003; Zhang et al., 2022). Severe scours around the piers and abutments of bridges are 
among the most common causes for their collapse (Ballio et al., 2018; Cook et al., 2015; 
Deng et al., 2016; Flint et al., 2017). Other factors include the hydrodynamic forces on the 
structure, and the actions induced by transported material (e.g., log jams), especially at 
sites with partial obstruction of the bridge openings (Chen et al., 2009; De Cicco et al., 
2020; Muñoz Diaz et al., 2009).  

Local scour induced by the flow acceleration around in-stream structures, by the 
formation of horseshoe vortices around the upstream face of the piers and by the 
turbulent wakes is generally the main driving factor for sediment erosion around bridge 
piers and abutments (Breusers et al., 1977; Ettema et al., 2017; Melville and Sutherland, 
1988; Wang et al., 2017). A second driving mechanism for bed erosion at bridges is 
contraction scour which is associated with supplementary flow acceleration around an 
in-stream structure due to its vicinity with other structures (Bui and Rodi, 2008; Dey and 
Raikar, 2005; Raikar et al., 2016). Finally, pressure-flow scouring occurs once the flow at 
the bridge site becomes pressurized (Carnacina et al., 2019; Majid and Tripathi, 2021; 
Umbrell et al., 1998). In this case, the flow accelerates in between the bed and the bridge 
deck, with the core of high velocities moving closer to the bed, and separation and 
recirculation regions forming below and downstream of the bridge (Kara et al., 2015b; 
Pregnolato et al., 2022).  

These driving mechanisms of bed scouring are often interlaced with each other in real 
applications, hence assessing the influence of each of them is challenging. While physical 
processes driving local scour around bridge piers and abutments are fairly well 
understood (e.g., Kirkil et al., 2009; Koken & Constantinescu, 2014; Melville & Coleman, 
2000), less attention has been paid to the other scour mechanisms and how changes in 
the flow associated with the transition to a pressure-flow regime and with proximity of 
other piers or abutments affect the velocity and the bed shear stresses in the vicinity of 
the structure being analyzed. The use of computer simulations to investigate flow 
structure around bridge piers and abutments in such cases has the particular advantage 
that it provides the full three-dimensional (3-D) flow fields containing the main vortices 
and the bed shear stress distributions (e.g., Kirkil and Constantinescu, 2010). Such 
information is generally not available from experimental investigations. Given the 
strongly three-dimensionality of the flow and the complex vortical structures generated 
around such in-stream structures, 3-D numerical models are required to obtain reliable 
information (Ettema et al., 2017).  

Most 3-D simulations of flow in natural river reaches with and without hydraulic 
structures are performed using the Reynolds Averaged Navier Stokes (RANS) approach, 
which allows predicting 3-D turbulent flows over large domains and also performing 
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unsteady simulations over long periods of time (e.g., Roulund et al., 2005; Zeng et al., 
2008; Mannini et al., 2010; Horna-Munoz & Constantinescu, 2018, 2020; Wu et al., 2021). 
Such RANS simulations are generally not very accurate in predicting the redistribution 
of momentum inside the regions where the flow accelerates as it passes the structure and 
the coherence of the main vortices forming around in-stream structure. This is mainly 
because of the difficulties of RANS models to predict flows where strong adverse 
pressure gradients and massive flow separations are present and flows where highly 
unsteady coherent structures form (e.g., horseshoe vortices, vortices generated in the 
wake of the pier, abutment or of the submerged bridge deck). These aspects, which are 
of a fundamental importance to understand the physics of the flow at bridge sites under 
different flow regimes and the sediment entrainment potential of the flow around piers 
and abutments supporting the bridge, may be not well captured using steady and 
unsteady RANS simulations (Bressan et al., 2011; Cheng et al., 2018; Ge and Sotiropoulos, 
2005; Paik et al., 2004). Moreover, RANS-based predictions of sediment entrainment are 
generally underpredicted because RANS simulations do not capture the temporal 
variations in the local bed shear stresses associated with unsteadiness of the large-scale 
near-bed coherent structures and the other turbulent eddies present near the bed surface 
(Cheng et al., 2018). Capturing the coherence and the unsteady dynamics of the 
energetically important eddies in the near bed region and being able to accurately 
predict the bed shear stresses require the use of more advanced turbulence models that 
directly resolve the large-scale coherent structures generated by the different in-stream 
structures and at the channel banks (Kang et al., 2011; Keylock et al., 2012; Teruzzi et al., 
2009). Such models are based on the Large Eddy Simulation (LES) approach. LES was 
successfully used to study flow fields and bed shear stress distributions around in-
stream structures in open channels and river reaches (Kang et al., 2011; Kara et al., 2015a; 
Khosronejad et al., 2016; McCoy et al., 2008). Though the use of classical LES at high 
Reynolds number is possible using wall functions, hybrid RANS-LES models (Fröhlich 
and von Terzi, 2008; Heinz, 2020; Menter et al., 2021) using a more sophisticated RANS 
model near the solid surfaces require less computational resources with an accuracy that 
is comparable to LES with wall functions. The most popular model in this category is 
called Detached Eddy Simulations (DES).  

Although numerical simulations based on RANS, LES, and DES were widely used to 
study flow fields around hydraulic structures placed in channels, these studies generally 
focused on isolated structures in open channel free surface flow regimes, typically in 
quite idealized configurations. The most common types of hydraulic structures 
investigated in such numerical studies include surface-mounted emerged cylinders of 
different shapes and bridge piers (Aghaee-Shalmani and Hakimzadeh, 2022; Alemi and 
Maia, 2018; Chang et al., 2013, 2011; Cheng et al., 2018; Khosronejad et al., 2012; Kim et 
al., 2014; Kirkil et al., 2009, 2008; Kirkil and Constantinescu, 2015, 2012, 2010, 2009; 
Roulund et al., 2005; Xiong et al., 2016; Zeng and Constantinescu, 2017), bridge 
abutments and isolated spur dikes (Chrisohoides et al., 2003; Kara et al., 2015a; Koken 
and Constantinescu, 2014, 2011; Teruzzi et al., 2009; Wu et al., 2021) and river groynes 
(McCoy et al., 2008; Pourshahbaz et al., 2022). Other two important classes of numerical 
studies relevant for the present investigation are numerical simulations of flow in curved 
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open channels with natural bathymetry at laboratory and field scale conditions (e.g., 
Constantinescu et al., 2013; Ge & Sotiropoulos, 2005; Kang et al., 2011; Koken et al., 2013) 
and numerical investigations of flow in open channels with a submerged bridge deck 
(e.g., Horna-Munoz & Constantinescu, 2020; Kara, Stoesser, et al., 2015). 

Quite often bridges are situated in meandering or irregular reaches. Even if the angle 
of attack of the piers is generally negligible at low flow conditions, this is not always the 
case at high flow conditions when the interaction between the flow over the floodplains 
and inside the main channel and the curvature effects may induce a fairly significant 
transversal velocity, which results in a non-zero angle of attack for some of the bridge 
piers (Akhlaghi et al., 2020; Larsen et al., 2011). Other factors generally affecting flow 
patterns near the bridge include large-scale deposition and erosion patterns and 
secondary flow induced by channel curvature, bank protrusions and the presence of 
other hydraulic structures like river groynes upstream of the bridge (Constantinescu et 
al., 2013; Kitanidis and Kennedy, 1984; Lazzarin and Viero, 2023; Zeng et al., 2008). The 
proximity of other piers may also affect flow patterns and how the angle of attack 
changes with increasing flow depth at the pier being analyzed (Malik and Setia, 2019; 
Zhou et al., 2020). All these effects, which are neglected or only partially considered in 
laboratory experiments and simulations conducted for idealized conditions, can 
substantially modify the flow approaching a bridge placed in a natural stream, its 
interaction with its piers and, ultimately, its capacity to erode the bed around the bridge 
structure.  

This motivates the present work in which DES simulations are used to investigate 
how different flow conditions and the bridge geometry affect the turbulent flow field 
and the bed shear stresses, which are important to assess the structural stability and the 
hydraulic compatibility of bridges. The simulations are performed with the natural, 
deformed bathymetry of the channel bed and of active floodplains and include the 
bridge structure (i.e., multiple piers of complex shape and bridge deck).  

A first goal of the present study is to characterize the change in the flow structure at 
the bridge site when passing from a free-surface regime to a pressure-flow regime with 
deck overtopping. A second goal is to understand to what extent the erosive capacity of 
the flow changes due to the change in the flow regime. Also, the work aims at 
understanding the interactions and the mutual feedbacks associated with the presence 
of multiple piers and different flow regimes.  

To the best knowledge of the authors this is the first study using DES with a 
deformable free surface to study the flow, the turbulence structures and the erosive 
capacity of the flow at a real bridge with multiple piers on a natural river. The analysis 
also investigates the capability of RANS to accurately predict the mean flow, turbulence 
statistics and bed shear stresses at the bridge site by means of the comparison with 
results of the DES simulations. This is important given that for engineering purposes 
RANS is mostly used to simulate the flow in river reaches with bridge structures.  

The Chapter is organized as follows. Section 4.3 describes the case study, the 
numerical model, and the details of the simulation set-up. The section also discusses the 
methodology used to estimate the sediment flux entrained by the flow which is used to 
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approximatively quantify the erosional capacity of the flow at the bridge site. Section 4.3 
shows the model results and discusses the flow fields and the sediment entrainment 
capacity for the different cases (free-surface vs. pressure-flow regime, with or without 
bridge piers and bridge deck, DES vs. RANS). Section 4.4 summarizes the main findings 
and provides some conclusions.  

4.2 Case study, numerical model and methodology to estimate the entrained 

sediment flux 

4.2.1 Case Study  

The bridge geometry considered in the present numerical study is inspired by a real 
bridge located in the terminal reach of the Po River (Italy), near the town of Occhiobello 
(Figure 4-1a). The Po is the largest river in Italy with a length of about 650 km flowing 
from the western Alps to the Adriatic Sea. The average river discharge is 1,470 m3/s, and 
it can exceed 10,000 m3/s during floods. In the terminal reach, the Po River has a 
meandering pattern. The bridge is located downstream of a series of low-curvature 
bends and just upstream of a larger bend, at a section where the main channel is 320 m 
wide (Figure 4-1b).  

The bridge is part of the A13 highway, which has two lanes in each direction. The 
total length of the bridge is 1.8 km. The bridge is supported by a total of 41 piers. Four 
piers (i.e., P1 to P4) fall within the main channel, and are spaced from each other by 70 m 
(Figure 4-1c-d). The other piers are located on the floodplain and are spaced 56.5 m apart. 
The piers have a rectangular footprint, with round edges; they are 2.8 m wide and 21.3 m 
long in the upper part and 3.6 m wide and 23.3 m long in the lower part, with rounded 
edges at their upstream and downstream ends (Figure 4-1e-f). The foundation of each 
pier is made of a block of reinforced concrete 9.6 m wide, 23.3 m long and 10 m high. 
This block is supported by 8 piles buried into the ground. Each of the two beams 
composing the deck has a −shaped cross section 9.8 m wide and 3.7 m high. At both 
extremities, Jersey barriers 1 m high are used to prevent vehicles falling from the bridge.  

In the simulations, the bridge deck is taken 6.5 m lower than in the real case to assess 
the effects of pressure-flow regime with reasonable values of the flow discharge. Thus, 
the distance between the bottom of the bridge deck and the channel bed varies from 7 m 
to 17 m due to the presence of relatively large scour holes around piers P1 and P2. 
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Figure 4-1. Computational domain and bridge geometry. a) location of the bridge site 

along the Po River; b) and c) 2-D views of the bridge and bathymetry; d) 3-D view of the 

bridge and the scour holes looking from downstream; e) lateral view of the pier P1; f) frontal 

view of the piers P1 and P2. Also shown are the main geometrical dimensions.  

4.2.2 Test Cases 

Table 4-1 summarizes the main flow and geometrical conditions including the flow 
regime at the bridge site for the different test cases (an overview of the main geometric 
features is provided in Figure 4-2). Most of the simulations are performed using DES. 
Case 2 is also computed using RANS (this simulation is denoted 2R in Table 1). Both a 
low discharge (Q = 4,470 m³/s, 1-year return period) and a high discharge 
(Q = 14,485 m³/s, 500-years return period) are considered (Table 4-2). Given that the 
bottom of the bridge deck is situated at an elevation of 10.3 m above the sea level (a.s.l.), 
and the water level at the bridge site is 9.0 m in the low discharge cases (Q = 4,470 m3/s), 
a free surface regime (FS) establishes in the low discharge simulations of Cases 1 and 5 
(see Table 1 and Figure 4-2), with no need of including the bridge deck in the 
computational domain. In the high discharge simulations (Q = 14,485 m3/s for Cases 2 
and 4) the water level at the bridge is 14.6 m a.s.l., which generates a pressurized flow 
beneath the bridge deck (pressure-flow regime, PF). For comparison purposes, the 
bridge deck is not included in Case 3, which thus represents the free-surface counterpart 
of the high discharge PF Case 2. The four piers in the main channel, P1 to P4, are removed 
in Case 4, whereas only pier P1 is included in Case 5. All simulations are performed 
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using the surveyed bathymetry. For the Case 5, which does not include piers P2 to P4, 
the bathymetry is artificially modified by filling the scour holes around these missing 
piers. 

Comparison of Cases 1 and 2 allows investigating the differences associated with 
changes in the flow regime at the bridge site when passing from a low-discharge, FS 
regime, to a thigh-discharge, PF regime. To be able of making a direct comparison, one 
needs to compare cases with same discharge and water stage in the flow approaching 
the bridge site. The difference between simulations of Cases 2 and 3 is a direct 
consequence of the flow becoming pressurized at the bridge and serves as an indirect 
measure of pressure-scour effects.  

Another important question is whether the presence of the pier results in significant 
differences in terms of flow fields and sediment entrainment potential. This is 
investigated by comparing Case 2 where the bridge deck and the piers are part of the 
computational domain with Case 4 where only the bridge deck is present. 

Comparison of the results of simulations when all piers are present (Case 2) and when 
only one pier is present and thus contraction scour effects are absent (Case 5) allows to 
investigate the effect of the presence of neighbouring piers. This comparison allows 
estimating the importance of contraction scour effects for a case where the flow at the 
bridge site is in the FS regime.  

Table 4-1. Matrix of test cases. Q denotes the discharge; FS and PF stand for free-surface 

flow and pressure-flow regime, respectively. 

Case Model Piers Discharge Regime Bed 

1 DES All Piers Low Q FS (free surface) Natural bathimetry 

2 DES All Piers High Q PF (pressure-flow) Natural bathimetry 

2R RANS All Piers High Q PF (pressure-flow) Natural bathimetry 

3 DES All Piers High Q FS (free surface) Natural bathimetry 

4 DES No Piers High Q PF (pressure-flow) Natural bathimetry 

5 DES Pier P1 Low Q FS (free surface) 
Natural bathymetry but with filled 
scour holes for piers P2, P3 and P4 

Table 4-2. Flow conditions for the low and the high discharge simulations.  

 Q [m3/s] 
Water level h 

[m a.s.l.] 

Froude 

number F [-] 

Reynolds 

number Re [-] 

Bridge deck 

elev. [m a.s.l.] 

Return Period 

TR [years] 

Low Q 4’470 9 0.172 14’580’000 10.3-15.0 1 

High Q 14’485 14.6 0.224 39'128’000 10.3-15.0 500 
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Figure 4-2. Overview of the geometrical configuration of the test cases, with the 

bathymetry (light grey surfaces), the bridge structure (dark grey surfaces), and the water free 

surface (light blue).  

4.2.3 Numerical Model  

The viscous flows solver in the commercial code STAR-CCM+ is used to perform both 
DES and RANS simulations. The discretized Navier-Stokes equations are solved on 
unstructured grids using a finite-volume method. In the present work, the SIMPLE 
algorithm was used to solve continuity and momentum equations (Patankar and 
Spalding, 1972). In the predictor step the momentum equations are solved without the 
pressure gradient terms; a pressure correction is then used in the corrector step to modify 
the velocity vectors to exactly satisfy continuity. The Hybrid-BCD scheme, which 
combines an upwind scheme with a bounded central difference scheme, is used to 
discretize the convective terms. The viscous and pressure gradient terms are discretized 
using a second-order, central-difference scheme. The equations are advanced in time 
using an implicit second-order scheme. 

The two-phase Volume of Fluid (VoF) method is used to track the free surface 
deformations (Hirt and Nichols, 1981). The method assumes that the air and water 
phases are immiscible and the computational grid is capable of resolving the interface. 
A standard advection equation is solved for the volume fraction. To maintain a sharp 
interface, a high-resolution interface capturing scheme (HRIC) is employed. In the 
present work, the sharpening factor was set equal to 1. 

In the RANS simulations, the SST k- turbulence model is used (Menter et al., 2003) 
to conduct the RANS simulations. The turbulent kinetic energy, k, and the specific 
dissipation rate, , are estimated by solving two transport equations. Previous studies 
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have confirmed the accuracy of this model to predict water flow and passive-scalar 
transport in natural open channels with complex bathymetry and surface roughness 
(e.g., Wu et al., 2021). The SST RANS model is also used as base model in the DES 
simulations reported in the present analysis. 

The STAR-CCM+ solver has been extensively used and validated to predict steady 
and unsteady flows in natural river channels containing hydraulic structures (e.g., 
Horna-Munoz & Constantinescu, 2018, 2020; Lazzarin et al., 2023; Shinneeb et al., 2021). 
Applications of direct relevance for the present investigation include those of flow past 
arrays of cylinders with flat and naturally deformed bed (e.g., Chang et al., 2017) and of 
flow in open channels containing piers and abutments (e.g., Cheng et al., 2018; Edwards 
et al., 2013; Tulimilli et al., 2011).  

4.2.4 Computational domain, boundary conditions and mesh 

The computational domain represents a 4,300 m long reach of the Po River. The 
bridge is located at about 1,900 m downstream of the inlet section (Figure 4-1b). On its 
lateral sides, the domain is delimited by the main levees which have an elevation of 
about 16.0ؘ m. The domain includes the main river channel and its adjacent floodplains. 
The ground elevation is derived from a LiDAR survey with 1 m resolution. The riverbed 
bathymetry is derived from a 2 m resolution multi-beam survey performed in 2004. 
The values of water levels prescribed at the outlet section, which are kept fixed for each 
simulation, are derived from a set of preliminary simulations performed on a longer 
river stretch with the 2-D depth-averaged ‘2DEF’ model (Defina, 2003, 2000; Lazzarin et 
al., 2023a; Mel et al., 2020; Viero et al., 2019, 2013). At the inlet section, the air velocity is 
set to zero and a logarithmic profile is specified for the streamwise velocity inside the 
water domain. A hydrostatic pressure distribution is imposed at the outlet section. A 
roughness height ks = 0.1 m was specified at the riverbed to account for small dunes and 
ripples not included in the bathymetric survey, thus not explicitly resolved in the present 
simulations. In STAR-CCM+, when the flow is solved up to the viscous sublayer using 
the k- turbulence model, the effect of the roughness is modelled by imposing a specific 
value of the dissipation rate ω on the cells next to the rough wall as ω = 2,500 ν ks-² with 

ν the kinematic viscosity (Wilcox, 1998). The surfaces of the piers and bridge deck are 
assumed to be smooth. At the top (air) boundary of the computational domain, 
atmospheric pressure is assumed, and the air velocity is set to zero. At the beginning of 
each simulation, the water elevation was linearly interpolated along the streamwise 
direction from the inlet to the outlet section. 

The computational mesh is generated using the grid generator in the STAR-CCM+ 
package (Figure 4-3). The unstructured mesh generator allows using nested-like grids 
with cell cutting near boundaries of complex shape. Hexahedral Cartesian-like meshes 
are used, and various controls are used to refine the mesh in critical parts of the domain 
(e.g., near the piers, the bridge deck, and the free-surface). Trimmed cells are added near 
these surfaces to ensure a smooth transition between elements of different size. 

The average cell size in the horizontal directions is of 10.0 m away from the bridge 
site, and 5.0 m in a 200 m long region situated in the vicinity of the bridge. Close to solid 
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surfaces, the cell size progressively decreased to 0.6 m. The same resolution is used for 
the 100 m long and 30 m wide regions surrounding each pier. To set the cell size in the 
vertical direction, an aspect ratio of 1:2.5 was used away from the bridge. The aspect 
ratio was progressively increased to 1:1 closer to the bridge. A vertical resolution of 0.6 m 
was used in the 5.0 m thick region where the free-surface is expected to be situated. The 
vertical resolution was decreased to about 4.0 m in the upper part of the computational 
domain containing air. To resolve the attached boundary layers, the prism layer meshing 
function of STAR-CCM+ was used to refine the mesh close to all solid surfaces. Between 
7 and 9 prism layers were used for the riverbed surface. The first cell at the solid surface 
was 13 mm high in the wall-normal direction. For the deck and the piers, 6 prism layers 
were used to reduce the size of the first cell to 7 mm in the wall-normal direction. 

The computational grids generated according to the above rules and controls 
contained 14 to 19 million cells. The larger number of cells was required for cases where 
the flow was pressurized at the bridge. The time step in the simulations was set to 0.2 s. 
Simulations were performed for a total time of 5,000s (~830 D/U, with D the average 
water depth and U the average flow velocity in the high flow cases). 3,000s (~500 D/U) 
were needed to reach quasi-steady conditions; the mean flow and the associated 
statistics were computed over 2,000 s (~330 D/U). 

 

Figure 4-3. Computational mesh in a transversal (a) and in a longitudinal section (b), with 

detail (c), at the bridge for the simulation of Case 2. 

4.2.5 Bed Shear Stress and Flux of Entrained Sediment 

In this study, the bed shear stress predictions are used to estimate the flux of entrained 
sediment in a region close to the bridge. In turbulent flows, velocity fluctuations and 
large-scale turbulence affect the sediment entrainment capacity of the flow, as the 
entrainment of sediment particles primarily correlates with the instantaneous bed shear 
stress magnitude rather than the mean bed shear stress. The bed shear stress fluctuations 
can be explicitly predicted by DES simulations. By contrast, unsteady RANS simulations 



4 CFD analysis of turbulent flow and bed shear stresses at a bridge for different flow regimes  

157 

 

can only represent very large-scale unsteadiness (see Section 4.3.5 for a comparison). The 
proper representation of velocity fluctuations induced by large-scale turbulence is thus 
a key advantage of DES simulations, particularly when trying to estimate the bed shear 
stresses and the entrainment of bed particles close to geometrical singularities (e.g., 
piers, abutments), which complicate the structure of the turbulent flow field. 

In DES, the flux of entrained sediment can be estimated using both the instantaneous 
and the time-averaged (mean) bed shear stress magnitude. The difference between these 
two values gives an indication on the effect of large-scale turbulence on the sediment 
entrainment capacity of the flow. Typically, as the flow unsteadiness and the coherence 
of turbulent eddies in the near-bed region increase, so does the difference between the 
entrainment flux computed based on the mean and the instantaneous bed shear stresses 
(see e.g., Hofland & Battjes, 2006; Schmeeckle & Nelson, 2003; Chang et al., 2011). For 
turbulent flows, the distribution of the mean bed shear stress, 𝜏̅𝑏 , gives only an 
incomplete picture of the erosive action exerted by the flow on the bed particles (Nelson 
et al., 1995; Schmeeckle and Nelson, 2003; Sterling et al., 2008; Sumer et al., 2003). When 
available, the standard deviation of the bed shear stress, 𝜏𝑏𝑆𝐷, should be used to 
approximatively account for the increase in the sediment entrainment capacity of the 
flow due to the intermittent increase of the instantaneous bed shear stress at a given 
location (Chang et al., 2013, 2011). In the present work, since the mesh is not sufficiently 
refined at the bottom to resolve the viscous sublayer, the bed shear stresses are estimated 
using the law of the wall. 

The approach proposed by Cheng et al. (2018) is used to identify the contribution of 
turbulence and flow unsteadiness to the total flux of entrained sediment. The total 
entrainment flux per unit area (A), E, is estimated as:  

𝐸 = 1𝐴∬ (𝜌𝑆𝑃)𝑑𝐴𝐴  (4-1) 

where ρS is the density of bed particles and P is the sediment pick up formula proposed 
by van Rijn (1984): 

𝑃 = 0.00033(𝜏𝑏 − 𝜏𝑏,𝑐𝜏𝑏,𝑐 )1.5 ∆0.6𝑔0.6𝑑500.8ν0.2  (4-2) 

with Δ = (ρS-ρ)/ρ, where ρ is the density of water, ν is the molecular viscosity of water, 
and d50 is the mean sediment diameter. b and b,c are the (instantaneous) bed shear stress 
magnitude and the critical shear stress, respectively. Equation (4-2) is applied to estimate 
P only at locations where b > b,c, otherwise P = 0.  

Correcting the critical shear stress by accounting for the local bed slope is 
fundamental when studying the potential bed erosion for domains with deformed 
bathymetry. For example, gravitational effects reduce the capacity of the horseshoe 
vortex to entrain particles inside the scour hole forming around the upstream face of 
each pier. To account for the bed slope effects, b,c  in Eq. (4-2) is computed as: 
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𝜏𝑏,𝑐 = sin (𝛾 + 𝜙)sin (𝜙) 𝜏𝑏,𝑐,0 (4-3) 

where b,c,0 is the critical shear stress computed using Shields’ diagram for a given value 
of d50, γ is the angle of the bed relative to the horizontal evaluated along the local flow 
direction, and ϕ is the repose angle of the bed particles (ϕ = 33°).  

Given that Δ, g, d50, ν and ρS are all constant in the present simulations, Eq. (4-1) can 
be rewritten as:  

𝐸 = 𝛽𝐴∬ (𝜏𝑏 − 𝜏𝑏,𝑐𝜏𝑏,𝑐 )1.5 𝑑𝐴𝐴 = 𝛽𝐴∬ T1.5𝑑𝐴𝐴  (4-4) 

where  is a dimensional constant and T is the nondimensional excess bed shear stress. 
The mean flux of sediment entrainment from the bed is then computed as:  

𝐸̅1 = 𝛽𝐴∬ T1.5𝑑𝐴𝐴
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (4-5) 

Given that β and 𝜏𝑏,𝑐 are constant in the present simulations, the entrainment flux can 

be analyzed in terms of its nondimensional value 𝐸̅1′ = 1𝐴∬ T1.5𝑑𝐴𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  

4.3 Results 

4.3.1 Changes in Flow Structure Associated with Transition from the FS to the PF 
Regime 

Figure 4-4 shows the longitudinal free-surface profile along the centerline of the reach 
of the Po River for Case 1 (low flow, FS), Case 2 (high flow, PF), and Case 3 (high flow 
with no deck, FS). The total discharge in Case 2 is 14,485 m³/s, of which 215 m³/s are 
advected over the bridge deck. 

 

Figure 4-4. Longitudinal free-surface profiles for some of the DES simulations. 

The 2-D free surface profiles are very different in the FS and PF regimes (see also 
Figure 4-2). In the FS regime (Cases 1 and 3), the water surface profile remains almost 
flat across the bridge section, with only minor disturbances due to the presence of the 
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bridge piers. In Case 2 (PF regime), the bridge causes a clear backwater effect (~0.5 m 
increase in water level) due to increased resistance induced by the interaction of flow 
with the bridge deck. The water level drops at the bridge section and some small 
undulations form downstream of it, with an amplitude of about 0.02 D (D is the water 
depth). This value is smaller than the amplitude observed by Kara, Stoesser, et al. (2015), 
which was close to 0.1 D, although the Froude numbers are comparable in the two cases. 
This can be explained by the lower water head on the bridge in the present Case 2 
simulation (~0.03 D versus ~0.36 D in the experiment of Kara, Stoesser, et al., 2015). 

 

Figure 4-5. Flow structure in a streamwise vertical section in between piers P1 and P2 

(y = 70 m). Mean streamwise velocity component for Case 2 (a) and for Case 3 (b). For Case 

2, instantaneous streamwise velocity component (c), mean streamwise velocity component 

with 2-D streamlines (d), instantaneous out-of-plane vorticity (e), and TKE (f). 

A main effect of PF conditions at the bridge site is to induce a strong downward 
velocity component that conveys the flow below the deck, where the flow is strongly 
accelerated. Here, the streamwise velocity is roughly two times larger than in an 
equivalent simulation with no bridge deck (Case 3, FS regime) as observed from 
comparing Figure 4-5a and Figure 4-5b. The high-velocity core moves toward the bed in 
Case 2 compared to Case 3. This is expected to have a large effect on the bed shear stress 
and the capacity of the flow to entrain particles at the bed (see Sect. 4.3.2). 

Upstream of the bridge, the effect of the flow being pressurized at the bridge site is 
limited an increase in the water elevation. Downstream of the bridge, the high-velocity 
region extends for a long distance. For an average velocity U = 2.5 m/s and depth 
D = 15 m, the region with streamwise velocity u > 4 m/s (≈1.5U) extends for about 100 m 
in Case 2, which corresponds to 6.7 D (Figure 4-5a).  

The high-velocity core in Case 2 is unsteady in time. The instantaneous flow velocity 
(Figure 4-5c) shows large-scale waviness, especially in the downstream leg of the orifice 
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flow region. Strong fluctuations of the velocity are observed below the deck and in the 
wake of the piers. 

For PF conditions at the bridge site, recirculation regions form below and 
downstream of the deck, as shown by the streamlines in  Figure 4-5d. Below the deck, 
the recirculation region is separated from the high-velocity core by a relatively steady 
shear layer, as shown by the instantaneous out-of-plane vorticity field in Figure 4-5e. 
Downstream of the bridge, the recirculation region extends for about 60 m (~4 D); the 
separated shear layer becomes unstable (see instantaneous vorticity in Figure 4-5e), 
which explains the presence of patches of negative vorticity that are advected 
downstream. Other smaller unsteady flow structures form immediately downstream of 
the deck, close to the free-surface, where the overflow plunges and reenters the main 
current (Figure 4-5c). Inside the recirculation regions, the TKE is also amplified (Figure 
4-5f), which is consistent to what was observed by Kara, Stoesser, et al., (2015) in their 
experiment. TKE values are higher downstream of the bridge, which is consistent with 
the high unsteadiness observed inside these recirculation regions.  

Figure 4-6a shows that in Case 2 (PF regime) the streamwise velocity is nearly uniform 
in the spanwise direction, apart from singularities that are generated close to the piers. 
The asymmetrical behavior of the flow at the sides of piers is a consequence of the 
misalignment of the axes of the piers with respect to the main current.  

 

Figure 4-6. Mean streamwise velocity, u, in the bridge cross-section (x = 0) for Case 2 (a) 

and Case 3 (b). 

 

Figure 4-7. Mean streamwise velocity, u, in a horizontal plane at z = 5 m, with 

streamlines, for Case 2 (a) and for Case 3 (b). 



4 CFD analysis of turbulent flow and bed shear stresses at a bridge for different flow regimes  

161 

 

As illustrated by 2-D streamlines in Figure 4-7, the flow approaches the piers with a 
certain angle of attack, which is of about 17° for the simulations conducted with the 
lower discharge, and 14° for those conducted with the higher discharge. As a result, 
recirculation regions form on the left-hand side of each pier. In Case 3 (FS regime), the 
recirculation regions are confined near the free surface (Figure 4-6b). This differs from 
what was observed by Chang et al. (2011) who considered the flow past a rectangular 
plate with a non-zero angle of attack. They found that the recirculation region on the 
side of the structure extended over the entire depth. However, Chang et al. (2011) 
performed their simulations with a rigid lid treatment of the free surface at lower 
Reynolds numbers and using a flat channel bottom. In case of PF of Figure 4-6a, the 
corresponding low-velocity recirculation regions are weaker due to the flow acceleration 
dictated by the orifice-flow condition. In Case 2 (PF regime), the influence of the piers 
becomes particularly relevant downstream of the bridge, where long unsteady wakes 
form (Figure 4-7). These wakes separate regions of strong flow acceleration. 

Another difference between cases where the flow at the bridge site is in the FS and, 
respectively, in the PF regime regards the large-scale recirculation region that forms 
downstream of the bridge at the right side of the main channel (see the dark blue region 
in Figure 4-7a). This low-velocity region acts as a channel contraction when the PF 

regime is present, which increases the mean velocity downstream of the piers. 

As expected, horseshoe vortices (HVs) form around the upstream side of the piers 
with their legs oriented parallel to the approaching mean flow direction. The size and 
strength (e.g., circulation) of the HVs forming around isolated piers depend on the 
Reynolds number (e.g., Kirkil & Constantinescu, 2015), on the pier shape (e.g., Kirkil & 
Constantinescu, 2009), and on the pier orientation with respect to the incoming velocity 
(e.g., Chang et al., 2011). The size and strength of the HVs typically increase as scour 
develops and the scour hole grows mainly because the longitudinal velocity of the 
incoming flow is reduced and the counter-rotating flow can fully develop if larger scour 
holes are present (Dey and Raikar, 2007; Muzzammil and Gangadhariah, 2003). These 
aspects enforce the need of representing the details of the real geometry at a given bridge 
site (e.g., in terms of deformed bathymetry, geometry of piers) to obtain a reliable and 
precise description of the local flow field. Figure 4-8 shows the HVs for some of the 
simulations. HVs are well-developed only at piers P1 and P2, around which deep scour 
holes are present. No HVs are observed around piers P3 and P4. Figure 4-9 shows the 
out-of-plane vorticity, ω(y), and the 2-D streamlines in the symmetry plane of piers P1 
and P2. The comparison of Case 1 and Case 3 (panels a and c in Figure 4-9) shows that 
the primary HVs have a similar shape in the corresponding low and high discharge 
cases. The circulation of the vortex at pier P1, ΓT,P1, is estimated as the integral of out-of-
plane vorticity in the symmetry plane over the core of the vortex. The circulation of the 
primary HV increases with the discharge (see nondimensional ΓT,P1 values in Table 4-3 
scaled using the mean velocity in the channel for the low discharge condition, U0,LQ), 
mainly due to the higher incoming velocity in Case 3. When nondimensionalizing ΓT,P1 
using the upstream average flow velocity in the channel, U0, the circulation values are 
comparable (Table 4-3), though still slightly higher for the higher discharge simulation.  
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Figure 4-8. Coherent structures visualized from upstream using the Q criterion, for (a) 

Case 1 (low Q, with all piers, FS regime), (b) Case 2 (high Q, with all piers, PF regime), and 

(c) Case 3 (high Q, with all piers, FS regime). The red arrows point to the horseshoe vortices 

(HVs). The pink arrows point to the vortices forming where the pier width changes abruptly 

(PVs). The cyan arrows point to the vortices forming just below free surface at the left/back 

side of piers (FSVs). 

Table 4-3. Main variables for the different simulations: ΓT,P1 is the circulation of the 

horseshoe vortex at pier P1, ds is the scour depth, U0 is the mean velocity in the channel, U0,LQ 

is the mean velocity in the channel for the low Q condition, 𝑬̅𝟏′  is the nondimensional mean 

flux of entrained sediment estimated in a 90,000 m² area around the bridge . 

Case 
Details of the 

simulation 

ΓT,P1 

(dsU0,lQ) 

ΓT,P1 

(dsU0) 
𝑬̅𝟏′  

1 
low Q, with all piers, 

FS regime 
1.057 1.057 0.0034 

2 
high Q, with all piers, 

PF regime 
2.490 1.505 1.7009 

2R 
high Q, with all piers, 

PF regime, RANS 
2.347 1.419 1.7567 

3 
high Q, with all piers, 

FS regime 
1.913 1.156 0.0383 

4 
high Q, w/o piers, PF 

regime 
- - 1.6843 

5 
low Q, with one pier, 

FS regime 
1.022 1.022 - 
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Figure 4-9. Out-of-plane mean vorticity, ω(y), and 2-D streamlines visualizing the 

horseshoe vortex system in a vertical plane cutting through the symmetry plane of pier P1 

(top) and pier P2 (bottom). a) Case 1; b Case 2; c) Case 3. 

Figure 4-9b shows that HVs also form in the simulations where the PF regime is 
present at the bridge site. The strong vertical acceleration imposed by the bridge deck 
limits their vertical development compared to the corresponding FS case (Figure 4-9c). 
At pier P1, the presence of pressurized flow beneath the deck reduces the HV height, but 
increases its circulation (see results for Cases 2 and 3 in Table 4-3). This is expected to 
further enhance the potential for the development of local scour in Case 2. At pier P2, 
the downflow associated to the orifice-flow conditions keeps the streamlines parallel to 
the bottom. No HV is present in the symmetry plane at pier P2 in Case 2. Interestingly, 
a large structure resembling the leg of a HV is present inside the scour hole of pier P2 
(see Case 2 results in Figure 4-8b). This is consistent with the HV observed around pier 
P2 in Case 1 whose right leg is much more coherent than its right leg (see Case 1 results 
in Figure 4-8a). So, the transition to the PF regime may act toward reducing the 
coherence of the HV at some piers and increasing the asymmetry of this vortex with 
respect to the axis of the pier.  

Figure 4-10 shows the coherent structures in the wake of piers P1 and P2 for some of 
the simulations. The turbulent structures visualized in Figure 4-10 correspond to the 
patches of high vorticity magnitude in the cross-sections shown in Figure 4-11. The legs 
of the primary HV are also visible in Figure 4-11. Because of the angle of attack of the 
approaching flow relative to the axis of the pier, free surface vortices (FSVs) develop at 
the left-hand-side of piers, whereas the flow remains attached to the right-hand side of 
piers P1 and P2. The FSV is a low-velocity region extending over the entire length of the 
pier and further downstream, where a significant increase of the TKE is also observed. 
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As the width of this detached region decreases rapidly with increasing distance from the 
free surface, the flow remains almost attached to the lateral face of the pier near the 
channel bottom.  

A second coherent structure forms at the junction between the lower (3.6 m wide) and 
the upper (2.8 m wide) part of the pier. Being strictly connected with the geometrical 
shape of the pier, it is labelled as pier vortex (PV) in Figure 4-10 and Figure 4-11. A third 
coherent structure develops inside the scour hole (scour vortex, SV). The strength of SV 
is higher for pier P1, suggesting a direct dependence of the coherence of this vortical 
structure on the depth of the scour hole which is larger for P1 than for P2. At piers P3 
and P4, where the bathymetry does not show well-developed scour holes, SV vortices 
are not observed, while the FSV and PV vortices are still present (Figure 4-8). FSV are 
not present or very weak in low-discharge simulations where the FS regime is present 
at the bridge site. SV and PV vortices are present, though their coherence is low (see 
results for Case 1 in Figure 4-10b). The SV and PV vortices form at piers P1 and P2 
regardless of the flow regime at the bridge site (see also Figure 4-10), whereas in the PF 
regime the large-scale recirculation regions forming below and downstream the deck 
suppress the formation of the FSV vortex. 

 

Figure 4-10. Coherent structures visualized using the Q criterion for (a) Case 1 (low Q, with 

all piers, FS regime), (b) Case 2 (high Q, with all piers, PF regime), and (c) Case 3 (high Q, 

with all piers, FS regime), view from downstream. Red arrows point to the horseshoe vortices 

(HVs), pink arrows to the vortices forming where the pier width changes abruptly (PVs), 

cyan arrows to the free surface vortices at the back side of the piers, beneath the free surface 

(FSVs), and black arrows to the streamwise-oriented vortices inside the scour hole (SVs). 
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Figure 4-11. Vertical-spanwise planes downstream of piers P1 (upper frames) and P2 (lower 

frames) showing, for Case 3, the mean out-of-plane vorticity, ω(x), and 2-D streamline 

patterns at x = 10 m (left panels) and at x = 20 m (center panels), and the TKE at x = 20 m 

(right panels). The vortices are defined in the caption of Figure 4-10. 

The large-scale vortex structures generated by the piers induce regions of high 
turbulence intensity. Figure 4-12 shows the TKE distribution upstream of pier P1 for 
some of the simulations. All the cases in Figure 4-12 show a large TKE amplification 
inside the HV region. The high TKE values are due to oscillations in the position of the 
vortex core, such that the TKE peaks inside the core of the primary HVs (Figure 4-9), as 
also observed by Kirkil et al. (2008) for isolated piers. Similar to the trends observed for 
the circulation of these vortices, the TKE inside the core of these vortices increases with 
the discharge and for the same discharge the circulation is larger in the PF regime than 
in the FS regime.  

 

Figure 4-12. TKE in a vertical plane cutting through the symmetry plane of pier P1 

showing the amplification of the turbulence inside the horseshoe vortex system. a) Case 1; b 

Case 2; c) Case 3. 
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4.3.2 Changes in the erosive capability of the flow associated with transition from FS 
to PF regime 

A reliable and precise estimation of bed shear stresses at bridge sites is important for 
several reasons. For example, the design of the riprap apron to protect piers against 
erosion requires prediction of the peak bed shear stresses over the riprap region. Figure 
4-13 compares the distributions of the mean bed shear stress magnitude, 𝜏̅𝑏, around the 
bridge for the different simulations where either the FS or the PF regime is present. As a 
result of the deformed bathymetry, the spatial distribution of 𝜏̅𝑏 is generally less regular 
than the typical distributions presented in studies that considered flat-bed conditions 
(e.g., Chang et al., 2013; Kirkil & Constantinescu, 2015). For Case 1 (FS regime), regions 
of high bed shear stress are observed at the sides of piers due to the flow acceleration; 
this effect is particularly clear for piers P3 and P4 where no scour hole forms. It should 
be also noted that the regions of high bed shear stress are not symmetric with respect to 
the main axis of the pier because of the irregular bathymetry and, above all, the pier 
orientation with respect to the approaching flow. Even modest angles of attack have 
been shown to strongly amplify the bed shear stresses and to increase the scour depth 
(Chang et al., 2011; Yu and Zhu, 2020).  

In case of severe flooding, when the flow becomes pressurized at the bridge site, the 
distribution of bed shear stresses is strongly altered. Results for Case 2 (Figure 4-13b) 
show that a large region of high bed shear stresses is present below the deck due to the 
strong acceleration of the flow. Inside this region, high values are observed both inside 
and outside the scour holes at piers P1 and P2. The average magnitude of the bed shear 
stresses strongly decays fast past the bridge location even if regions with relatively high 
bed shear stresses starting in between the piers are present. The decay of the bed shear 
stress inside these regions follows the same trend observed for the mean streamwise 
velocity (see Figure 4-7a). This confirms that in the cases where the PF regime is present, 
the strong increase of the bed shear stresses beneath and downstream of the bridge deck 
is essentially induced by the strong acceleration of the flow passing beneath the deck. In 
the simulations where the FS regime is observed at the bridge site, the distribution of the 
bed shear stresses remains similar as the discharge increases (see Figure 4-13a and Figure 
4-13d). One should also note that for same discharge and water stage in the incoming 
flow, the maximum values of 𝜏̅𝑏 in the simulation where the FS regime is present are less 
than half compared to ones in the corresponding simulation where the PF regime is 
present.  
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Figure 4-13. Mean bed shear stress, 𝝉̅𝒃, over the region where the entrained flux of 

sediment is evaluated. Frames (a) to (f) refer to the different simulations. Note that the color 

scale is different in the frames. 

The distributions of the standard deviation of bed shear stress magnitude, 𝜏𝑏𝑆𝐷, 
provide information on the temporal variability of 𝜏𝑏 (Figure 4-14). In the simulations 
where the FS regime is present at the bridge site, high values of 𝜏𝑏𝑆𝐷 are observed inside 
the scour holes and in the wakes of the piers wakes due to the presence and/or passage 
of large-scale coherent structures close to the bed surface. As expected, 𝜏𝑏𝑆𝐷increases with 
increasing flow discharge (see Figure 4-14a and Figure 4-14d). In the simulation where 
the flow is pressurized at the bridge site, strong fluctuations are observed downstream 
of the bridge and, especially, in the pier wakes (Figure 4-14b). The region below the deck 
is characterized by high values of 𝜏̅𝑏 but fairly low values of 𝜏𝑏𝑆𝐷. This is due the relative 
steadiness of the high-velocity core forming beneath the bridge deck. The largest values 
of 𝜏𝑏𝑆𝐷 are predicted just downstream of the bridge where the thickness of the core of 
high velocities is the smallest. The variation in the thickness of this region is controlled 
by the shear layer and associated recirculation regions generated at the leading edge of 
the bridge deck (e.g., see Figure 4-5c-e). For same discharge and water stage in the 
incoming flow, the average 𝜏𝑏𝑆𝐷 values are larger in the simulation where the PF regime 
is present. For example, peak 𝜏𝑏𝑆𝐷 values are about 3 times larger in Case 2 (Figure 4-14b) 
compared to Case 3 (Figure 4-14d). This further enhances the sediment erosive capacity 
of the flow in cases when the PF regime is present.  
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Figure 4-14. Standard deviation of the bed shear stress, 𝝉𝒃𝑺𝑫, over the region where the 

entrained flux of sediment is evaluated. Frames (a) to (f) refer to the different simulations. 

Note that the color scale is different in the frames. 

The area used for estimating the total flux of entrained sediment in the bridge region 
extends from x = -50 m to x = 250 m, and is limited to the active riverbed (i.e., z < 3 m). 
This surface has an area of about 90,000 m². The critical bed shear stress used in Eq. (5) 
was b,c = 15.21 Pa, which corresponds to a mean sediment diameter d50 = 20 mm based 
on the Shields diagram. In the FS regime, the total flux of entrained sediment increases 
with increasing flow discharge. For example, 𝐸̅1′  increases by a factor of 10 between Case 
1 and Case 3 for which the discharge increases only by a factor of 3 (Table 3). The highest 
values of the bed shear stress are recorded close to the piers and inside the scour holes.  

One of the most critical aspects associated with the change from the FS to the PF 
regime is the increase of the bed shear stresses around the region where the bridge is 
situated, which results in an increased potential of the flow to entrain sediment. The 
increased erosion induced by the flow becoming pressurized at the bridge site is 
associated with pressure scour effects. Severe pressure scour effects are a major risk for 
the structure, especially considering that usually only limited areas around the base of 
piers and abutments are adequately protected against scouring (e.g., with riprap stones 
or using armoring). Comparison of the flux of sediment entrained from the bed in Case 
2 and Case 3 can be used to approximatively estimate the increase in the sediment 
entrainment capacity of the flow associated with a change from the FS regime to the PF 
regime for a given elevation of the bridge deck, water stage and discharge in the 
incoming flow. The estimated flux of entrained sediments for Case 2 (PF regime) is 50 
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times larger than the value estimated for the same flow conditions but assuming FS 
regime at the bridge site. This enforces the need of preventing transition to PF conditions 
at bridges to preserve the bed integrity. 

4.3.3 Effects of pier proximity in the PF regime 

As discussed in Sections 4.3.1 and 4.3.2, once the pressure-flow (PF) regime occurs, 
the erosive capacity of the flow around the bridge section increases significantly. To be 
able to estimate the relative contribution of the piers (which induce local and contraction 
scour) on the sediment entrainment capacity of the flow, an additional simulation (Case 
4) was performed with the same discharge, water stage and bridge deck elevation as in 
Case 2 but with the piers removed. The capacity of the flow to erode the bed in Case 4 is 
due only to the pressurized flow forming beneath the bridge deck. So, the difference 
between the total flux of entrained sediment in Case 2 and Case 4 can be used to estimate 
the contribution of the piers for cases where the PF regime is present at the bridge site.  

The flow field in streamwise-vertical planes in Case 4 (Figure 4-15) is qualitatively 
and quantitatively similar to that observed in Case 2 at sections situated not very close 
to the piers (Figure 4-5). This indicates that the vertical contraction induced by the deck 
is controlling the acceleration of the flow beneath the bridge deck. This is somewhat 
expected given that the piers are relatively thin at the analysed bridge site. The 
recirculation regions originating below and downstream of the deck are also 
qualitatively similar for Case 2 and Case 4. The main difference is the absence of the pier 
wakes and HVs in Case 4.  

The distributions of mean bed shear stresses also reveal very small differences 
between Case 2 (Figure 4-13b) and Case 4 (Figure 4-13e). This is because the high-velocity 
core forming below the deck in the PF regime is the driving factor for sediment erosion. 
The increase of the mean bed shear stress due to local acceleration of the flow around 
the sides of the piers and the HVs is quite small compared to the average values in the 
same regions predicted in the simulation with no piers. The standard deviation of the 
bed shear stress also shows only small variations between the cases with and without 
piers (Figure 4-14b and Figure 4-14e). For PF conditions at the bridge, the shedding of 
vortices in the wake of the piers does not induce large fluctuations in the bed shear 
stresses. This differs from the cases where the flow at the bridge site is in the FS regime 
where vortex shedding in the wake of the piers can induce relatively high values of 𝜏𝑏𝑆𝐷.  

Consistent with the previous comparison of the bed shear stress quantities, the 
volumetric fluxes of entrained sediment, 𝐸̅1′ , for Case 2 and Case 4 (Table 4-3) are close 
to each other. The estimated value is 1% higher for Case 2 which shows that the added 
entrainment due to the acceleration of the flow close to the piers and the formation of 
HVs is negligible for high bridge submergence where the bed shear stress amplification 
near the bridge is driven by pressurized flow effects. 
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Figure 4-15. Flow structure for the Case 4 simulation. In the longitudinal-vertical section 

at y = 70m: a) mean streamwise velocity; b) instantaneous streamwise velocity; c) 

instantaneous out-of-plane vorticity, ω(y); d) TKE. In the transversal section at the bridge 

(x = 0): e) mean streamwise velocity. 

4.3.4 Effects of pier proximity in the FS regime 

Contraction scour is another driving mechanisms for bed erosion at bridges (Ballio et 
al., 2009; Dey and Raikar, 2005; Singh et al., 2020). To approximatively estimate the 
contribution of contraction scour if the FS regime is present at the bridge site, an 
additional simulation (Case 5) was performed. Case 1 and Case 5 conditions are identical 
except that only pier P1 is present in Case 5. The scour holes at the removed piers were 
also eliminated. Assuming an erodible bed, both local scour and contraction scour effects 
are present at pier P1 in Case 1, while only local scour effects are present at pier P1 in 
Case 5. 

The flow around pier P1 is similar in the two cases (Figure 4-16), which indicates that 
the contraction of the flow due to the presence of pier P2 has a small overall effect on the 
flow fields. The coherent structures generated around pier P1 are also similar in Case 1 
and Case 5. In fact, the circulation of the HV in the symmetry plane differs by less than 
3% between the two simulations (Table 3). One should also mention that the contraction 
ratio associated with piers P1 and P2 is only about 4%, which explains the low influence 
of the lateral flow contraction on the flow field at the bridge analyzed in the present 
work.  

The distributions of mean bed shear stress (Figure 4-13f) and of its standard deviation 
(Figure 4-14f), show also negligible variations around pier P1. Though in Case 1 all piers 
are included, sediment entrainment occurs mostly around pier P1 if b,c = 15.21 Pa. The 
total nondimensional sediment entrainment flux in a 4,000 m² area around pier P1 is 
4.56⋅10-3 in Case 1 and 4.05⋅10-3 in Case 5, which means an increase of 12% due to the 
presence of pier P2. This indicates that for the case analyzed the contraction of the flow 
near P1 due to the presence of P2 does not significantly increase the capacity of the flow 
to entrain sediment. 
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Figure 4-16. Comparison of flow structure for simulations of Case 1 (with all the piers, 

left) and Case 5 (with only pier P1, right). Longitudinal-vertical section at pier P1 (y = 105m): 

a,b) mean streamwise velocity; c,d) mean instantaneous out-of-plane vorticity, ω(y). 

Horizontal plane at pier P1 (z = 5 m): e,f) mean streamwise velocity; g,h) mean instantaneous 

out-of-plane vorticity, ω(z). 

4.3.5 RANS vs. DES modelling 

Previous studies have shown that eddy resolving simulations are more accurate than 
RANS simulations in predicting complex turbulent flows with strong adverse pressure 
gradients, including flow past isolated piers of various geometries and in channels with 
naturally-deformed bathymetry (see e.g., Constantinescu et al., 2011; Ettema et al., 2017; 
Kang et al., 2011). This section tries to establish the accuracy of unsteady RANS for a 
more complex case in which the flow at the bridge deck is pressurized and multiple piers 
are present at the bridge site. In principle, this is a tougher test case for RANS models. 
The study is performed for the geometry and conditions of Case 2. The unsteady RANS 
simulation is denoted Case 2R. The mean flow and statistics predicted by DES are used 
as a numerical experiment with respect to which the predictive capabilities of RANS are 
evaluated. As the unsteady RANS simulation was performed using the same mesh as in 
DES, differences between RANS and DES cannot be attributed to under resolution of the 
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flow in RANS (commonly, RANS is performed on quite coarser meshes) but only to the 
turbulence model.  

A first important observation is that the unsteady RANS solution is quasi steady with 
some unsteadiness mainly present in the wake of the piers and inside the separated shear 
layers. Despite the fine mesh, the large eddy viscosity predicted by RANS in critical 
regions where energetic coherent structures are present is too large to allow the 
formation of wake vortices, oscillating HVs or to capture the breakup of the shear layers 
into smaller-scale eddies (e.g. see Figure 4-17). Despite these shortcomings, the mean 
velocity field predicted by RANS is surprisingly close to the mean flow calculated using 
the instantaneous DES flow fields. 

The results confirm that the flow field, either time-averaged or instantaneous, 
predicted by solving the RANS equations is very similar to the time-averaged flow field 
solved by DES (compare Figure 4-18 with Figure 4-5 and Figure 4-6a). In particular 
RANS correctly captures the position and sizes of the recirculation regions forming 
below and downstream of the bridge deck but overpredicts the TKE in the recirculation 
regions forming downstream of the deck. RANS also underpredicts TKE levels in the 
pier wakes which is expected given that it does not generate unsteady eddies in between 
the separated shear layers.  

 

 

Figure 4-17. Comparison of flow structure for simulations of Case 2 (DES, a) and Case 

2R (RANS, b). Instantaneous out-of-plane vorticity, ω(z), in the horizontal plane at z = 5 m. 
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Figure 4-18. Flow structure for simulation of Case 2R. Longitudinal-vertical section 

situated in between piers P1 and P2 (y = 70m): a) mean streamwise velocity, u; b) 

instantaneous streamwise velocity, u; c) instantaneous out-of-plane vorticity, ω(y); d) TKE. 

Transversal section at the bridge (x = 0): e) mean streamwise velocity, u. 

In the case of pier P1, the 2-D streamlines inside the scour hole (see Figure 4-19) show 
that the RANS simulation captures the formation of the HV, but the overall shape of the 
vortex is different from that predicted by DES (Figure 4-9b). Still the circulation of the 
vortex in RANS is within less than 10% of that predicted by DES (Table 3). The TKE 
levels are lower in the RANS simulation, as the unsteady RANS essentially predicts a 
steady HV, which is not the case in DES where the coherence of the vortex changes 
significantly over time. These findings are fairly consistent with that of other studies that 
compared the abilities of RANS and LES/DES to predict mean flow and turbulence 
structure at isolated piers (e.g., Constantinescu et al., 2004).  

 

Figure 4-19. Case 2R, solved with RANS equations: out-of-plane mean vorticity, ω(y), 

and 2-D streamlines visualizing the horseshoe vortex system in the vertical-longitudinal 

symmetry plane at pier P1. 
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The mean bed shear stresses predicted by the RANS simulation (Figure 4-13c) are 
qualitatively similar to those predicted by DES (Figure 4-13b). Still, the bed shear stresses 
are underpredicted by RANS in the region with highest values of 𝜏̅𝑏 (i.e., below the 
deck). Meanwhile, 𝜏̅𝑏 predicted by RANS is more uniform and generally higher 
downstream of the bridge deck. The patterns of the standard deviation of the bed shear 
stress are very different in RANS and DES with much lower levels predicted in RANS 
(see Figure 4-14b and Figure 4-14c). This result is fully expected given the 
aforementioned shortcomings of unsteady RANS to capture the shedding of wakes in 
the piers, the break-up of the separated shear layers and the unsteady dynamics of the 
other large-scale coherent structures in the flow.  

Despite the fact that the unsteady RANS solution does not capture the dynamics of 
the large-scale turbulence, the total entrainment flux predicted by RANS is about 3% 
higher than that predicted by DES. This is different from calculations performed at piers 
for non-pressurized flow conditions where the sediment entrainment flux around the 
pier is generally significantly higher in DES. The explanation is that in the case of PF 
regime the main contributor to the total flux of entrained sediment are the mean bed 
shear stresses induced beneath the core of high streamwise velocity. As already 
discussed, RANS predicts slightly higher bed shear stresses beneath the core of high 
velocity, especially downstream of the bridge deck. 

4.4 Conclusions 

In the present work, DES simulations with a deformable free surface have been used 
to simulate the flow approaching a multi-pier bridge over a complex bed geometry. 
Different flow regimes, including the PF case, and different geometrical configurations 
(with or without piers and/or deck) have been considered. The resulting flow fields have 
been analyzed in terms of coherent structures, and of the distribution of bed shear 
stresses, that have also been used to estimate the capacity of the flow to entrain sediment 
in the vicinity of the bridge site. The present study shows that eddy-resolving techniques 
like DES can be successfully applied to study the flow physics and the erosive potential 
of the flow at complex bridge sites present in natural streams including for cases when 
the flow becomes pressurized due to deck overtopping. Such cases cannot be modeled 
using 2-D depth averaged models. Complex interactions among the natural river flow 
and the bridge structure were explicitly accounted for with a detail level and a richness 
of information that are far beyond the ones available from standard methods used for 
hydrodynamic assessment of real bridges. Moreover, the model can be easily extended 
to include other man-made hydraulic structures that may affect flow pattern and 
sediment entrainment capacity at the bridge site and to investigate a wide range of 
relevant flow scenarios.   

Even for the simpler case when the flow is not pressurized at the bridge site, the angle 
of attack and the deformed bathymetry, typical of natural rivers, as well as the complex 
shape of real piers, have been shown to modify the bed shear stress distributions 
compared to the canonical cases investigated in literature. A FS regime simulation 
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containing only the pier at which local scour is the most severe predicted very similar 
bed shear stresses around that pier compared to the corresponding case where all piers 
were present. The fact that flow contraction effects were negligible at the present bridge 
site was not too surprising given that the piers were thin, and the pier-to-pier distance 
was relatively large which translated in a low flow blocking ratio at the bridge. However, 
that may not be the case at other bridges. 

The transition to the PF regime was accompanied by a super elevation of the free 
surface upstream the bridge section and a high-velocity orifice flow beneath the deck. 
Regions of high velocity were also present downstream of the bridge, and recirculation 
regions formed below and downstream of the deck. Compared to a simulation 
conducted with the same discharge and stage in the incoming flow but without the deck 
(FS regime), the bed shear stress magnitudes were much higher both around and in-
between the piers. So, for sufficiently high submergence of the bridge deck, flow 
acceleration around the piers and contraction of the flow in between the piers have a 
fairly small contribution to the total erosive capacity of the flow around the bridge site. 
This was confirmed by conducting a PF regime simulation where the bridge piers were 
eliminated. The erosive capacity of the flow around the bridge was shown to be very 
close to the one in the corresponding simulation containing the piers. 

Several previous studies investigated the predictive capabilities of 3-D (unsteady) 
RANS with respect to that of eddy resolving techniques at isolated piers and bridge sites 
for the FS regime (e.g., Kirkil & Constantinescu, 2010). However, there is very little 
information about the case when the flow is pressurized at the bridge site. Such 
information is critical as in fact the most severe erosion events at a bridge site occur when 
the flow becomes pressurized and pressure scour effects dominate. A comparison of the 
mean flow fields showed that RANS and DES predictions were qualitatively similar. In 
particular RANS correctly predicted the formation and position of the core of high 
streamwise velocities forming beneath the deck downstream of its leading edge and 
extending past the deck. However, the velocity distribution inside the core showed some 
small differences in the two simulations and RANS overpredicted the length of the core 
downstream of the deck. This explained why, the value of the total sediment flux 
entrained in the bridge region was slightly larger than that predicted by DES. This is 
different of what is observed around piers placed in an open channel where scour is 
driven by the HVs and the eddies shed in the wake. For such cases RANS and unsteady 
RANS severely underpredict the total flux of entrained sediment compared to LES and 
DES (e.g., see Cheng et al., 2018). In fact, this is true also for the present case where the 
unsteady RANS solution predicts a close to steady HV and no shedding in the wake and 
separated shear layer. So, the contribution of the large-scale turbulence to the total flux 
of entrained sediment is also underpredicted for cases when the flow is pressurized at 
the bridge site. However, for sufficient deck submergence this contribution is fairly 
minor compared to that associated with the flow becoming pressurized beneath the 
bridge. Or, this dominant contributor to the total flux of entrained sediment is slightly 
overpredicted by RANS. So, for engineering purposes RANS and unsteady RANS can 
be used to study the sediment entrainment capacity of the flow in the PF regime and/or 
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for design of scour protection measures that require information on the maximum bed 
shear stress in the vicinity of the pier. This is important given that present design 
formulas (e.g., for riprap sizing at piers) are available only for the FS regime. 

The present study only considered cases with a constant inflow discharge and flow 
stage. A direction for future work will be to apply a realistic hydrograph at the inlet. Of 
particular relevance will be to check if the maximum bed shear stresses under varying 
discharge conditions still occur at the time when the peak discharge and water levels are 
reached and how the total flux of entrained sediment compares with that from a 
corresponding steady inflow simulation conducted with the peak discharge and water 
stage. Moreover, the sediment entrainment capacity of the flow is expected to be subject 
to hysteresis effects. Only fixed-bed scenarios were considered in the present study, 
which constitutes a first step in understanding how the flow field affects sediment 
entrainment. Mobile-bed simulations are computationally much more expensive, 
because of the large time-scale needed to obtain an equilibrium bathymetry, especially 
at the real scale. However, such simulations can provide valuable information on the 
evolution of the scouring processes and will be part of future research. In the case the 
flow is pressurized at the bridge site, a good compromise to tackle such very complex 
simulations may be the use of 3-D RANS with a movable bed. 
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5 Conclusions 

The present work dealt with advances in hydrodynamic and morphodynamic 
modelling, which developed along two main directions, namely the enhancement of 2D 
depth-averaged models to account for the effects of curvature-induced secondary 
currents, and the application of eddy resolving CFD schemes to describe turbulent open-
channel flows in presence of macro-roughness and geometrical singularities. 

In the first part of the research, the effects of the curvature-induced secondary 
currents were included in an existing 2D depth-averaged Finite Element hydrodynamic 
model. Different formulations previously proposed in the literature were recast in a 
unique form and implemented in the model by means of dispersive terms that can be 
computed with either a local and a transported approach, i.e., assuming an 
instantaneous or an inertial adaptation of the secondary flow. The present approach also 
included a novel, pure 2D parametrization of the non-linear saturation effect, which 
allows applying the model also to relatively sharp bends. The model for the secondary 
currents has been coupled with modules that solve for the transport of passive tracers 
and of bed particles. The applications to laboratory and real test cases, with both fixed 
and mobile beds, allowed validating the model and assessing the importance of 
considering secondary currents in different context. Results provided by the model also 
allowed to highlight some key factors in modelling river flows in bends using 2D models 
with proper parametrizations of the helical flow. Implementation strategies and 
modelling options have been also discussed with the purpose of providing a set of 
practical guidelines for an effective application of 2D depth-averaged models to river 
flow in bends.  

In the second part of the research, a CFD suite was used to describe turbulent flows 
over large roughness elements and in the presence of in-stream structures. The eddy 
resolving Detached Eddy Simulation (DES) approach was used, given its ability in 
predicting separated turbulent flows generated by complex irregular geometries. A first 
DES application considered freshwater mussels that, living at the sediment-water 
interface, represent large roughness elements whose size largely exceeds that of bed 
particles. Analyzing the interactions between the turbulent flow and freshwater mussels, 
the destabilizing forces, and the mixing of nutrients, can have important implications for 
the survival of these mollusks and the sustainability of fluvial ecosystems. The analysis 
started from the case of an isolated partially-buried mussel, and focused on how the flow 
field changes depending on bed roughness, the burrowing ratio, and the filtering activity 
of the mussel. As mussels typically live in clusters, the analysis was extended to consider 
large arrays of mussels, so as to evaluate the effect of the mussel density. Results showed 
that increasing the bed roughness intensifies the interactions of the eddies induced by 
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the isolated mussel and by bed particles, with consequences on the forces exerted on the 
shell and on the mixing of a passive tracer injected from the excurrent siphon. The effect 
of bed roughness becomes less important when increasing the mussel density, and 
negligible in dense clusters, as the effect of the protruding shells prevails on the bed 
roughness. In dense array of mussels, the bed shear stresses and the hydrodynamic 
forces on the emerging parts of the shells are also reduced, thus favoring the mussel 
stability.  

A second DES application considered the complex flow field generated by the 
presence of a multi-pier bridge located on the Po River (Italy), which is of interest 
because the failure of in-stream structures is often driven by hydraulic reasons, such as 
severe scour processes. The application of the DES approach to a large-scale real-world 
case study was challenging because of the large Reynolds number, the strict constraints 
on the mesh resolution, and the size of the domain. Flow, turbulent structures, and bed 
shear stresses, which are strictly connected with scouring phenomena, were analyzed 
depending on different flow regimes and geometrical configurations of the bridge. It 
was shown that the shift from the free-surface regime to the pressure-flow with deck 
overtopping produces a substantial change in the flow field and a dramatic increase in 
the bed shear stresses at the bridge, with an erosive potential that is far larger than that 
induced by the bridge piers alone. Furthermore, the slight channel contraction was 
shown to produce negligible effects in the analyzed case study. Interestingly, a 
comparison between the DES and the classic RANS approaches confirmed the advantage 
of DES in describing the time-variation of the bed shear stresses; this is an important 
aspect because the strong fluctuations of bed shear stress, generated by unsteady 
energetic eddies, are known to play a key role on the erosion of bed materials and thus 
on scouring processes close to in-stream structures. 


