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Recent studies indicate that in many situations service times are affected by the experienced queueing
delay of the particular customer. This effect has been detected in different areas, such as health care, call
centers and telecommunication networks. In this paper we present a methodology to analyze a model
having this property. The specific model is an M/M/c queue in which any customer may be tagged at her
arrival time if her queueing time will be above a certain fixed threshold. All tagged customers are then
served at a given rate that may differ from the rate used for the non-tagged customers. We show how it
is possible to model the virtual queueing time of this queueing system by a specific Markov chain. Then,
solving the corresponding balance equations, we give a recursive solution to compute the stationary dis-
tribution, which involves a mixture of exponential terms. Using numerical experiments, we demonstrate

that the differences in service rates can have a crucial impact on queueing time performance.
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1. Introduction

For classical queueing models, service times are typically as-
sumed to be independent of experienced delay. Such indepen-
dence assumptions are often crucial for analytical tractability of
the queueing system’s performance. In practice, however, it has
been recognized that the amount of waiting affects service dura-
tions, and the assumed independence does therefore not hold. Em-
pirical evidence of this dependence relation primarily stems from
the health care domain. The studies (Batt, 0000; Chalfin, Trzeciak,
Likourezos, Baumann, & Dellinger, 2007; Chan, Farias, & Escobar,
2017; Chan, Krumholz, Nichol, Nallamothu, & American Heart As-
sociation National Registry of Cardiopulmonary Resuscitation In-
vestigators, 2008; Renaud et al., 2009; Richardson, 2002; Siegmeth,
Gurusamy, & Parker, 2005; Soltani, Batt, Bavafa, & Patterson, 2019)
indicate that delays in admission have adverse effects on patient
outcomes and consequently increase the patients length of stay;
this is referred to as the slowdown effect in Selen, Adan, Kulkarni,
& van Leeuwaarden (2016).
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At a more conceptual level, the field of behavioral operations
investigates how servers and customers behave in an operational
setting. The recent study (Delasay, Ingolfsson, Kolfal, & Schultz,
2019) indicates that in many situations service times are affected
by the load. The authors develop a framework for the impact
of load on service times, where they distinguish server, network,
and customer mechanisms. For the server mechanism, it is ob-
served (and supported by literature) that there is a clear impact
of workload on the service speed, and this impact may go in dif-
ferent directions. The authors of Delasay et al. (2019) found far
fewer customer mechanisms in the literature, although they ex-
pect them to exist. A psychological view of a customers queueing
experience during its sojourn time is provided in Carmon, Shan-
thikumar, & Carmon (1995). Specifically, the authors assume that
the dissatisfaction level of a customer increases during waiting,
whereas this may be compensated during service. As a conse-
quence, for an acceptable level of dissatisfaction after service, the
service time should be longer for a customer experiencing longer
delays. Moreover, after excessive waiting customers expect valu-
able service (Maister et al., 1984), which may also affect the cor-
responding service time. Similarly, the recent study (Ulkii, Hydock,
& Cui, 2020) in a retail environment found that customers waiting
longer in fact consume more. Thus, from the customer perspec-
tive, it seems conceivable that excessive waits are associated with
longer service times.
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The aim of this paper is to find the steady-state queueing
time distribution in multi-server queues where the service time
is affected by the experienced queueing time. Despite its appar-
ent practical relevance, such queues have hardly been studied in
a service setting with multiple servers. More specifically, we let
the service rate of each server depend on whether the experi-
enced queueing time of the customer in service is above or be-
low a given threshold upon service initiation. We envisage that this
typically corresponds to a customer mechanism, although the ser-
vice rate adaptation might also be the consequence of the server
adapting to congestion. Despite the inherent model complexity, the
steady-state queueing time distribution turns out to be remarkably
tractable in this case and can be expressed in terms of a mix-
ture of exponential terms. From our numerical experiments, we see
that taking the differences in service rates into account results in
crucially different queueing time behavior. As such, ignoring the
dependence between experienced waiting and service time might
be wholly inadequate. An online implementation of the model is
available to further facilitate managerial decision making (D’Auria,
2021a).

Delay thresholds are typically used in empirical health care
studies to distinguish delayed and non-delayed patients; if the ad-
mission delay is above the delay threshold, a patient is consid-
ered to be delayed. For instance, Chalfin et al. (2007), Richardson
(2002) investigated the impact of delayed patients at the emer-
gency department on the inpatient length of stay. Based on the
patient data, the difference in length of stay is in the order of
hours. For cardiac patients, delays are even much more critical;
delays in the order of minutes lead to adverse patient outcomes
(Chan et al., 2008). Less critical cases, such as surgery of hip frac-
tures, have delay thresholds in the order of days (Siegmeth et al.,
2005). For patients with community-acquired pneumonia a sim-
ilar delay threshold is used (Renaud et al., 2009). For both situ-
ations it is shown again that delayed admissions experience ex-
tended length of stay. Another example of the impact of physi-
cian workload at the emergency department (ED) are Batt (0000),
Soltani et al. (2019); amongst others, the authors observe that high
physician workload leads to overtesting and generates extra post-
ED care.

The health care situations described above have recently in-
spired the study of multi-server queues, in which the service time
(i.e. the length of stay) is affected by delay and congestion at the
clinical ward, such as the Intensive Care Unit (Chan et al., 2017;
Dong, Feldman, & Yom-Tov, 2015; Selen et al., 2016). The study of
Chan et al. (2017) is also supported with data verifying the cor-
relation between delay and length of stay. In Chan et al. (2017),
the multi-server queue with delay-dependent service is abbrevi-
ated with M/M(f)/c; the focus from the queueing perspective is on
approximations and bounds for the workload process. The multi-
server variant with abandonments in the quality and efficiency
driven (QED) regime is considered in Dong et al. (2015). Next to
the fact that this involves an asymptotic analysis, the service rate
adaptations are also instantaneous instead of the more intricate
delay effects on individual customers. Such server mechanisms are
referred to as operator slowdown in Selen et al. (2016), as opposed
to customer slowdown. The model in Selen et al. (2016) also in-
volves a multi-server queue, where the service rate depends on
whether a customer has to wait or not. In terms of the current
paper, this means that the waiting threshold is at zero. In addition,
Selen et al. (2016) focuses on the number of customers instead of
queueing times.

There have been some recent studies on multi-server queues
where service times depend on delay. The authors of Wu, Bas-
samboo, & Perry (2019a) consider a general multi-server queue
with abandonments and derive fluid limits as a proxy for expected
queueing times. Moreover, Wu, Bassamboo, & Perry (2019b) con-
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siders a setting with customer abandonments, where the service
time is either endogenously or exogenously determined by the sys-
tem’s dynamics. The focus there is mainly on statistical estima-
tion for both dependency situations. Finally, in Do, Shunko, Lu-
cas, & Novak (2018) the service speed is affected by behavioral
factors, such as server speedup due to increased workload and
social loafing when multiple workers share the workload. How-
ever, the analysis is in terms of queue lengths instead of queueing
times.

From the literature discussed above, we observe that almost all
studies of multi-server queues with delay-dependent service in-
volve some sort of approximation. This is different for the single-
server case, which is much more amenable for analysis. An im-
portant observation for the single-server case is that the queueing
time then corresponds to the workload a customer finds upon ar-
rival; this is no longer the case for the multi-server setting with
delay-dependent service. There is a long tradition of single-server
queues with workload-dependent features; we refer to Dshalalow
(1997) for an early overview containing many references. Among
those early papers are Posner (1973) and Brill & Posner (1981).
Interestingly, in 1973 Posner already noted that the server may
provide more appropriate service to counter the negative effect of
waiting (Posner, 1973); the author then provides a complete anal-
ysis for the M/M/1 case in which the service rate is a step func-
tion of the queueing time. A little later, Brill & Posner (1981) pro-
vides an exact analysis for the M/M/2 queue where non-waiting
customers have a different service rate.

For workload-dependent M/G/1 queues, often the service and/or
arrival rates are assumed to depend on the workload, but not
so often the complete service time. However, generalizations of
such systems are Lévy driven queues in which the Lévy expo-
nent depends on the position of the process. The Lévy exponent
incorporates the Laplace transform of the service time distribu-
tion and, hence, the service time may thus depend on the work-
load found by a customer entering service. Examples of such Lévy
driven queues with state-dependent exponent are Bekker (2009),
Bekker, Boxma, & Resing (2009), Palmowski & Vlasiou (2011). Fi-
nally, Whitt (1990) and Boxma & Vlasiou (2007) consider G/G/1
queues with service and interarrival times that depend linearly on
delays.

Limiting distributions in terms of mixtures of exponentials
are also common in Markov-modulated fluid models. In fact, our
analysis is along similar lines as such fluid models, although
our differential equations differ from the ones found in tradi-
tional fluid queues (Anick, Mitra, & Sondhi, 1982), see Kulkarni
(1997) for an early overview. Some examples of fluid models
with level-dependent features are da Silva Soares & Latouche
(2009), Malhotra, Mandjes, Scheinhardt, & Van Den Berg (2009),
Scheinhardt, Van Foreest, & Mandjes (2005). A crucial difference
with fluid models is the role of the background state. Our state
description, where the service time depends on experienced delay,
is delicate. In our case, the background state should be interpreted
as the server state process; our state description is based on Adan,
Hathaway, & Kulkarni (2019).

The paper is organized as follows. In Section 2, a model and
state description is provided. The single-server case provides in-
sights in both the approach as well as the results, and is discussed
in Section 3. Section 4 presents balance equations that are required
to determine the limiting distribution for the multi-server case.
The limiting distribution is derived in Section 5, including an il-
lustrative example. Section 6 contains some numerical insights and
finally Section 7 draws some conclusions. For readability, most of
the technical proofs are deferred to Appendix A. A python algo-
rithm to compute the queueing time distribution is avaiblabe for
downloading at the public repository D’Auria (2021b); see D’Auria
(2021a) for an online implementation.
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2. Model and state description

We consider a queueing system with c¢ identical servers and an
infinite waiting room. Customers arrive according to a Poisson pro-
cess with rate A. Let W(t) be the virtual queueing time (VQT) at
time t. That is, if a customer arrives at time t, his service will start
at time t + W (t). Clearly, if at least one server is idle at time t,
W(t) = 0. If all servers are busy at time t, W (t) > 0. The service
times of the customers depend on their queueing time through
a critical level k > 0 as follows: if a customer arrives at time ¢,
and W(t) <k, he is classified as a class 1 customer, and his ser-
vice time is exp(it1), otherwise he is classified as class 2 customer
and his service time is exp(u,). In order to describe the dynam-
ics of the VQT process {W (t),t > 0}, we introduce the server state
process S(t) = (S1(t),S,(t)) as follows. We say that S(t) = (i, j) if
i servers are serving class 1 customers and j servers are serving
class 2 customers at time t + W (t), just before the new service
starts at time t + W (t). Clearly, we must have 0 < S;(t) +S,(t) <
c—1 for all t > 0. Furthermore,

W(t) >0= S1(t) +S(t) =c—1.
and
0<51(t)+S(t) <c—1=W()=0.

We discuss the evolution of the {(W (t), S;(t),Sy(t)),t > 0} process
below. We will use the following notation for the aggregate service
rate:

A, j) =iwr + juo. (1)

Suppose the state at time 0 is (0,i, j) with 0 <i+j<c—1.If
the next event is an arrival, the state jumps to (0,i+ 1, j); if it
is a departure of type 1, it jumps to state (0,i—1,j); and if it
is a departure of type 2, it jumps to state (0,1, j — 1). Hence, the
transition rate from state (0,1, j) to state (0,i+ 1, j) is A, to state
(0,i—1,j) is inq and to state (0,i,j—1) is jus.

Next, suppose the state at time 0 is (0,i,c—1—1i) with0<i<
c — 1. Again, if the next event is a departure of type 1, it jumps
to state (0,i—1,c—1-1i); and if it is a departure of type 2,
it jumps to state (0,i,c—1—2). Hence, the transition rate from
state (0,i,c—1—1) to state (0,i—1,c—1—1) is ix; and to state
(0,i,c—i—2) is (c—1—1i)uy. If the next event is an arrival, all
servers become busy, i +1 of them serving type 1 customers and
(c—1—1) of them serving type 2 customers. The next departure
occurs after an exp(A(i+1,c — 1 —1i)) amount of time and the VQT
process jumps to level X ~ exp(A(i+1,c—1—1i)). Also, the next
departure is of type 1 with probability (i+1)u;/AG+1,c—1-
i) and of type 2 with probability (c—1-i)uy/A@{+1,c—1-1).
Combining these observations, we see that the transition rate to
state (x,i,c—1—1) is
AMi+Dpuiexp(=A@G+1,c—1—1i)x)dx,
and to state (x,i+1,c—i—2) is
AMc—=T1—=-Duzexp(=A@{+1,c—1-1)x)dx.

This completes the description of all transitions out of states
(0,i,j) withO<i+j<c-1.

Next, consider states (w,i,c—1—i) withO<w<kand 0<i<
¢ — 1. The state does not change if the next event is a departure.
It can change only if the next event is an arrival. An arrival in this
state is of type 1. By following the same argument as in the case
of state (0,i,c — 1 —1i), we see that the transition rate to state (w +
x,i,c—1—1)is
i+ 1Dpiexp(—A@G+1,c—1—1i)x)dx,
and to state (W+x,i+1,c—i—2) is

(c=1—-Duexp(=A(Gi+1,c—1-1i)x)dx.
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Now consider states (w,i,c—1—1i) withw>kand 0<i<c—
1. An arrival in this state is of type 2. Hence, following the same
argument as above, we see that the transition rate to state (w +
x,i,c—1—1i)is

(c =i paexp(=A(, c —i)x)dx,
and to state (W +x,i—1,c—1i) is
i exp(—=A(, c—i)x)dx.

Finally, if W(t) > 0, the VQT process changes continuously at
rate —1 between arrivals. This completes the description of the
evolution of the process {(W (t),S(t)).t > 0}.

3. The single-server queue

Before studying the general multi-server case (¢ > 1), in this
section we briefly discuss the single-server queue. Since the pro-
cess S(t) is identically equal to the null vector (0,0), the process
{W(t),t > 0} is sufficient for the state description. In fact, this pro-
cess corresponds to an M/M/1 queue in which the jump size de-
pends on the state found upon arrival; see Fig. 1 for an illustra-
tion of its sample path. In this case, the model is a special case
of the M/G/1 variant of Model I in Bekker et al. (2009); see also
e.g. Gaver & Miller (1962) for a classical related model with two
service speeds.

Defining F(t) = lim;_, ., P(0 < W(t) < x) as the stationary work-
load distribution and by applying a level crossing argument, we
obtain the following two integro-differential equations

X
F'(x) = Are % 4+ A / e OIE () dy, O<x<k (2)
0
X
F'(x) = )Jre*“]"-i-)\/ e P VFE () dy
k
k
A / e M EDE () dy, x>k (3)
0
where F/(x) denotes the derivative of F(x) and =

lim;—, oo P(W(t) = 0). The left-hand side gives the downcrossing
probability flow at level x that is only obtained by a continuous
decline of the workload in absence of jumps. The right hand side
gives the corresponding upcrossing probability flow at the same
level x, given by three possible contributions: a jump starting
at the origin (the first addendum), a jump starting from a state
y € (0, k) (the second integral addendum) or a jump starting from
a state y € [k, x) (the eventual third integral addendum).

An alternative and more rigorous deduction of the
Egs. (2) and (3) is obtained in Theorem 1 as a special case of
the Eqs. (11) and (12).

The integro-differential equations can be readily transformed
into ordinary differential equations by taking derivatives, that
gives

F"(x) + (1 — A)F' (x) =0, 0<x<k,

(4)
F'(x) + (2 = MF () = (12 — u)e O OF (), x> k. (5)

Solving these equations, in terms of the density F/(x), we ob-
tain, for 0 < x <k,

F/(x) = Are~(m—2)x
whereas, for x > k, we have

(fy — pp)e— &=k e=(a=M)(x=k)
o —H1—A  Ja— 1 —A

F'(x) = Ane(‘“”k[

|
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Fig. 1. Sample path of the VQT process W (t) for the case c = 1.

with
o (a/h = 1) (pa/k = 1)

(1 /2) (pa/A = 1) = (/g — 1)eGrok”
The VQT density allows for an intuitive interpretation. Specifically,
in the region (0, k) jump sizes are always exp(x), which implies
that F/(x) is proportional to the limiting workload density in an
M/M/1 queue with service rate w; (and finite workload capacity k).
Also, observe that sample paths of W(t) in the region (k, co) are
always initiated by an upcrossing of k with a jump of size exp(u1),
after which all jumps are exp(u,) until a subsequent downcross-
ing of k. This implies that W (t) in (k, co) behaves as the workload
process in an M/M/1 queue with service rate u,, but with an ex-
ceptional first service time in a busy period that has rate wq. This
directly explains the mixture of the two exponentials in (k, o).

4. Multi-server queue: balance equations

In this section, assuming ¢ > 1, we derive the balance equations
for the VQT process (W (t),S(t)) defined in Section 2 that are sat-
isfied by the limiting distribution. It is straightforward to see that
the VQT process is stable if

A
—_— <
M2l
We shall assume stability from now on and focus on the limiting

distribution of (W (t), S(t)).
Now let, for x > 0 and t > 0,

E(t,x) =P(0 <W(t) <x; S(t) = (i,c = 1-1)),
Define F(x) = lim;_, -, F(t, x), and define the row vector function
F(x) =[h(Xx), A(x), ..., ()],

whose first two derivatives are denoted by F’(x) and F”(x). Also,
for the case that no customers are waiting, let

7 (i, j) = im PW(t) =0,5(t) = (i, j)), O<i+j=c-1,

1. (6)

O<i<c-1.

and
Si=[m(,i—j),0<j<i, 0<i<c-1.

Using the transition rates derived above, we see that the 7’s
satisfy the following balance equations:
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A +ipy + jur)m (i, j)
=+ D+ L)+ U+ D@, j+1)
+A gy (i—1,j), O<i+j<c-1. (7)

with 1 denoting the indicator function.

Next we derive the integro-differential equations satisfied by
F(-) for the case there is queueing delay.

We denote by I the identity matrix, whose size will be clear
from the context, and by [ a rectangular matrix obtained from I
by adding a null column on the left, i.e. f=( 0 I ). Throughout
the paper, we will use the convention of denoting by ~ a rectangu-
lar (instead of square) matrix.

Let By be a ¢ x ¢ square matrix with entries given by

Bi(i,i) = (i+1)p1, 0<i<c-—1,
Bi(i,i+1)=(c—i—1puy, 0<i<c-—1,
B1(i, j) = 0 for all other (i, j),
and B, be a ¢ x ¢ square matrix with entries given by
By(i,i) = (c—i)p2, O0<i<c—1,
By(i,i—1) =inq, 1<i<c-1,
B, (i, j) = 0 for all other (i, j).
We finally define the matrices

Aj=diag(jui+ (- juz, 0<j<i), 0<i<c-—-1, (8)
and

AK = MKI+B/;1(AC—1)BKv K e {17 2}, (9)
Oc (%) = exp(—Acx), k e{1,2). (10)

Theorem 1. The limiting distribution vector F satisfies the following
integro-differential equations:

F = 2R 00 -2 “F()B, Gy (x— y)dy + F(0)

—)»857131(1—@_1()())&_1, O0<x<k (11)

F'(x) = AF (x) — )»/kxF(y)Bzéz(X—y)dy+F’(0)
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A8 1By (I — G () AT A fo F(y)B,0y (x — y)dy

~AF(0 | CB1G (=) — By (x—y)dy. x>k (12)

Proof. The proof follows standard probabilistic arguments
and uses an infinitesimal approach, which we defer to the
Appendix A. O

Egs. (11) and (12) are integro-differential equations. These equa-
tions are related to level crossings principles; see Section 3 for the
single-server case providing additional intuitive insight. To find the
limiting distribution, we first convert them to second order linear
non-homogeneous differential equations. They are given in the fol-
lowing theorem. To do so, first define the differential operators £;
and £, as follows:

L,GX)=G"(x) =G X)) = A) + AGX)(Be — A) « e{1,2}).

Theorem 2. The limiting distribution vector F satisfies the following
second order differential equations:

ﬁ]F(X) = U, O<x<k (13)
LoF(X) = a1 +020: (x — k) (A — Ay), x>k (14)
where

oy = F/(0)A; — 8c_1AB; (15)
o = aoﬁ;l Az — )\,F(IC-F)(B]AI] Az —By) (16)
oy = a1 A1 — F/(k+) + AF(k+) (I - B A ). (17)

Proof. This follows from rewriting the

Egs. (11) and (12), see Appendix A. O

integro-differential

The next corollary gives the boundary conditions for F. Here
and later we use the notation g(x+) := lim,_, ,+ g(y) to denote the
one-sided limits of the function g at x.

Corollary 1. The limiting distribution vector F satisfies the following
boundary conditions:

F(0) =0, (18)
F(k—) = F(k+), (19)
F'(k=) = F' (k+), (20)
F'(0) = 8.1 (M + Ac_q1) — 8c oAl (21)

Proof. See Appendix A for details. O

Remark 1. In the single-server case, Eq. (21) would reduce
toF’(0) = A that combined with Egs. (11) and (12) would give
Egs. (2) and (3), respectively. Similary, Eqgs. (13) and (14) respec-
tively reduce to Egs. (4) and (5).

5. Solution of the balance equations

In this section we determine the limiting distribution by de-
veloping the analytical solution of the differential equations in
Theorem 2 and the boundary conditions in Corollary 1. In fact, we
present two different ways to express the limiting distribution of
the VQT process. The first is based on a scalar representation and
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clearly reveals that F(x) can be written as a mixture of exponen-
tials. This representation gives insight in the probabilistic interpre-
tation of the queueing delay and is presented in Section 5.1. The
second concerns a matrix representation and is more compact. This
representation is more amenable for numerical computations and
can be found in Section 5.2. Finally, in Section 5.3 a detailed exam-
ple is explicitly solved.

5.1. Limiting distribution

For the solution of Eq. (13) in Theorem 2, we first need to
solve the homogeneous equation. Hence, we first need to define
several backgrounds quantities. Consider the following quadratic
eigenvalue equation:

o621 —O (M — Ay) +A(By — Ap)]=0. (22)

There are 2c solutions {(6;,¢;), 0 <i<2c— 1} to the above sys-
tem. Since the matrices involved in the above equation are all up-
per triangular, it is easy to see that these 2c solutions are given by
the solutions to the following quadratic equations:

02 =0 = (i+ D = (c—1-D)p2)

—(c=1-)Au; =0, 0<i<c-1. (23)

If both conditions A # cu; and A # c(uq — () are satisfied, all
these eigenvalues are real and distinct, see also Remark 3 for the
other cases. For the rest of the paper we implicitly assume that
these conditions hold. The solutions {6;,0 <i<c— 1} are given

by

6= S0k~ (i + Dptr — (€~ 1~ Dpaa)

VO G D — (e 1 D) + e~ 1~ Dt
(24)

Note that {6;,0 <i<c—2} are negative and 6._; = min{0, A —
ci1}. The solutions {6;,.,0 <i<c— 1} are positive and are given
by

e = 50— (4 Dty — (=1~ Do)

+%\/(A —({+ D —(c—-1-Duz)2+4(c—-1-i)Au,.
(25)

Note that 6,._; = max{0, > — cit1}. The corresponding eigenvectors
{¢i, 0 <i<2c— 1} are easy to compute. In particular, the eigenvec-
tor corresponding to the null eigenvalue is denoted by

é.=10, 0,...,0, 1],

which is a row vector of length c.
Next, we turn to the homogeneous equation based on Eq. (14).
For this, consider the following quadratic eigenvalue equation:

VIB— B — Ay) + A(B, — Ay)] = 0.

There are 2c solutions {(f;, ¥;), 0 <i < 2c—1} to the above sys-
tem. The B;'s for 0 <i <c—1 are given by

(26)

(27)

5 (hmibn = (e~ e[ iy = (¢~ Dpi2)? + i ).
(28)

and the B 's, for 0 <i<c—1 are given by

ive = 5 (=it == ipa +/Oomipa (e~ Dpi2)? + 4 ).
(29)
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Similarly to Eqs. (24), and (25), all these eigenvalues are real and
distinct, assuming that A # c(uy — 1). The eigenvalues {B;,0 <
i<c—1} are negative, 8. =0 and {Bi.,1<i=<c—1} are posi-
tive. The corresponding eigenvectors {;,0 <i < 2c— 1} are easy
to compute. In particular,

Y.=11,0,...,0, 0],

which is a row vector of length c.

(30)

Remark 2. The parameters 6; and B; may be related to the vir-
tual waiting in regular M/M/c queues. For instance, exp(6._1) =
exp(A —cu1) and exp(Bp) = exp(A — ciup) are proportional to the
stationary densities of the VQT in M/M/c queues with only ser-
vice rates g and u,, respectively. Moreover, consider the pro-
cess W(t) € (0,k) and fix the server state process S(t) = (i,c —
1 —i); then the VQT process is decreasing with rate 1 and makes
jumps with rate A of size exp(A(i+1,c—1—1i)). Upon a jump,
the server state process S(t) changes with probability (c—1—
py/A({+1,c—1—1i), which may be interpreted as a type of
clearing (Boxma, Perry, & Stadje, 2001). It may be verified that the
stationary density of such a ‘clearing system’ is a mixture of exp(6;)
and exp(f;,). A similar argument applies to W (t) > k in terms of
ie

As mentioned, to get the solution of the differential equations
of Theorem 2 we first need to find the solution of the homoge-
neous differential equations using the above, and then we look for
a particular solution. However, in order to construct a particular
solution, since both Egs. (13) and (14) admit zero as eigenvalue,
we would need together with the left eigenvectors ¢, and ., re-
spectively defined in Eqs. (26) and (30), the corresponding right
eigenvectors that we denote by ¢, and V.. The following result
shows an important relation between those eigenvectors that will
be used later in the proof of Theorem 3 to show that F(x) does not
have a linear term.

Lemma 1. Let ¢~>* and 1}6 be the right eigenvectors corresponding to
the left eigenvectors ¢, and Y, i.e. satisfing the following relations

(Bi — Ay)é. =0, (31)
(B2 — Ag) e = 0. (32)
It follows that

o Ye=0=0ap- ¢, =0. (33)

Proof. The proof uses linear algebra techniques and is included in
the Appendix A. O

The next result gives the solution of the differential equations
of Theorem 2 in terms of 4c unknowns {ag;, 0 <i<2c—1} and
{b;,0 <i<c}

Theorem 3. For 0 < x < k, the solution is given by

2c-1
F(x) =" ae”¢;+ oMo, 0<x<k, (34)
i=0
with
Mo = (A(By — Ay) + diag(¢,) " (35)
For x > k, the solution is given by
c—1 5 5 5
F(x) =Y bieP Oy +be + oMy + aaQy (x—k) (Aq = Ay)My,
i=0
(36)
with
My = (A(By — Ay) + diag(¥e) ", (37)
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M, = ((cpe1 +A)(cprl — Az) + ABy) 7. (38)

Proof. This follows from solving the systems of second order lin-
ear differential equations below and above level k in Theorem 2,
thereby also utilizing Lemma 1; see Appendix A. O

Remark 3. We note that in the special case that A =cuq, we
have two identical eigenvalues 6._; = 6,._1 = 0. Furthermore, in
case A =c(uq — M), it holds that 6; =0._1 = A —cuq for all i=
0,...,c— 1. In that case, F(x) for 0 < x < k, contains terms of the
form Y axle®=c#0% Similarly, if A =c(uy — py), then the g;
fori=0,...,c—1 are identical to 8y and the mixture of exponen-
tials in F(x) for x > k needs to be replaced.

Remark 4. In case (1 = u, the model reduces to a simple M/M/c
queue. Therefore, in this case the VQT distribution is given by

1
1-p
where C(c, A/uy) =1/(1+ (1 — p)(%) P (C,ﬁ)k) is the Erlang’s
C formula and p = A/(cuy) is the server utilization.

P(W <x)=1-C(c. A/112) exp{—cu2(1 - p)x},

We next use the boundary conditions in Corollary 1 to solve for
the 3c+1 unknown constants {a;,0 <i<2c—1} and {b;, 0 <i <
c}. We also have c(c+1)/2 probabilities 7 (i,j), 0 <i+j<c-1
that need to be determined. The result is given in the next theo-
rem.

Theorem 4. The constants {a;,0 <i<2c—1}, {b;;0<i<c} and
probabilities 7 (i, j), 0 <i+ j < c—1 satisfy the following equations:

2c-1
> aigi + agMo = 0. (39)
i=0
2c-1 c-1 - -
> aie? @i+ oMo = Y b + bee + My + aa (Ay — Ay)My,
i=0 i=0
(40)
2c-1 c—1 B N N
> aibhe™ i = bifivi — aa A (A = Ay)My, (41)
i=0 i=0
2c-1 R
Z ai9i¢i = (Sc—l ()\I + Ac—]) - 8c—2)\'1s (42)
i=0
(A +ipa + ju2)m (i, J)
=@+ Dur(i+1. )+ G+ D (@, j+1)
+Aym(i—1,j), O<i+j<c-1 (43)
and the normalizing equation
i+j=c-1
bl + Ml + > w(ij)=1, (44)
i, jii+j=0

where 1 denotes the all-one vector.

Proof. Eqs. (39)-(42) follow from the boundary conditions in
Eqgs. (18)-(21), respectively. Eq. (43) presents the balance equations
in Eq. (7). Finally, Eq. (44) is the normalizing equation. O

Egs. (39) -(44) from the above theorem yield 4c+c(c—1)/2 +
1=3c+1+c(c+1)/2 linear equations for the 3c+1 unknown
constants {a;,0 <i<2c—1}, {b;,0<i<c} and the c(c+1)/2 un-
known probabilities 7 (i, j), 0 <i+ j < c— 1. Theorem 4 gives nec-
essary conditions for the constants to satisfy, but it does not assure
that Eqs. (39)-(44) characterize them. In the following section we
show, starting from these equations, how we are able to construct
the unique solution.
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5.2. Computing the solution

For the limiting distribution in Theorem 3, we need
Theorem 4 that expresses all constants as a solution of a quite
large system of linear equations. In this section we try to express
the solution in simpler terms that are easier to implement in
a computer language equipped with basic matrix functions. In
addition the contruction of the solution given below shows that
the system in Theorem 4 only admits a unique solution.

First of all, it helps to write the function F(x), given in
Egs. (34) and (36), in matrix form. We start by defining the matri-
ces &~ =[@f], 0 <i<c—1and & =[¢f]', c <i=<2c—1, whose
rows are given by the eigenvectors corresponding to the eigen-
values in Eqs. (24) and (25). We also define the diagonal matri-
ces ® =diag(0;), 0<i<c—1, and ©®F =diag(6;), c<i<2c-1.
Then, the matrices Uf = (%)~ 10*®*, solve the equation

U2 —U (M = Ay) +A(B; —Ap) =0,

with U; having all non-positive (negative) eigenvalues, U} having
all positive (non-negative) eigenvalues if A > ciq (A < citq).

In a similar way we construct the matrices U2i solving the equa-
tion
U? —Uy(M — Ay) + A(B; — Ay) =0
with Uy with all negative eigenvalues and UJ with all non-
negative eigenvalues. This allows us to rewrite the expression in
Egs. (34) and (36) as
F(x) = aeUi* +ateVi* 4+ qgMy, 0 <x <k,
F(x) = b=e%2* + beye + 1My + a2 Qy (x—k) (A1 = Ay)Ma, x>k,
for unknown constant vectors a-, at and b~. We then express
these vectors in terms of the unknown vector F/(0) by using the

continuity conditions given in Corollary 1. This gives the following
easier expressions

F(x) = (F'(0) + aoMoUy ) (U — U;y) 7! (e — et )

+ooMo(I —eU™), 0<x<k, (45)
F(x) = F(k=)e% *™ 4 (bcc + oy My ) (I — €% &)

— (A1 — Ay)Myez *0

+020; (x — k) (A — Ay)My, x> k. (46)

In the theorem below, F’(0) is expressed in terms of §._; and
b.

Theorem 5. The function F, given in Egs. (45) and (46), may be writ-
ten in terms of the constant b. and the vector §._1, since

F'(0) = 8c_1Hig — bccHis, (47)

where Hys and Hqg are defined in Eqs. (A.26) and (A.27), respectively.
In particular it follows that

F(00) = 8¢-1Hao + bccHao,
with Hyg and H,q defined in Eqs. (A.29) and (A.30), respectively.

(48)

Proof. This follows from Corollary 1 and some tedious rewriting,
see Appendix A. O

Having expressed the function F(x) for x > 0, in terms of §._1,
it is only left to find the probability of the discrete states, together
with the constant b. that can be found by using the normalizing
equation. This is the result of following theorem.

Theorem 6. The discrete probabilities can be computed as follows
Si=bycH, 0<i<c—1, (49)
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where the matrices H; are defined in Eq. (A.35) and with the constant
be computed as

b = e <H19 +H iHyo+ Y I:In) 1,

0<n=c-1

(50)

where Hyg and Hyo are given in Egs. (A.29) and (A.30) in the
Appendix A.

Proof. The linear system of equations may be rewritten to recur-
sively express &._1 in terms of b., whereas b, follows from normal-
ization; see Appendix A. O

5.3. Numerical example for ¢ =2

As an illustration of the balance equations and the limiting dis-
tribution, we consider the 2-server case in this section. A visual
representation of the transition diagram of (W (t), S;(t), S,(t)) can
be found in Fig. 2. To avoid excessive expressions, we focus on a
numerical example with specific parameters. We fix k =0.45, A =
2, w1 =0.75 and @y = 1.12. The second order differential equa-
tions of Theorem 2 then looks as follows: for 0 <x < 0.45, we
have

Ey (x)1.13F; (x)2.24F (x) = 1.87F;(0)1.57 (0, 1),
F/(x)0.55F} (x)0.5F] (x)1.13F, (x) = 0.55F;(0)1.5F, (0)
—2.247(0,1)3.07 (1,0),

whereas, in the region x > 0.45, we obtain
Fy (%) + 2.24F; (x) — 2.25F] (x) + 2.0F (x) =

+2.24F}(0) — 0.25F/(0) — 1.8 (0, 1)

+2.68F)(0.45+) + 1.5F, (0.45+)

0.09e~"87X(F} (0) — F}(0.45+))

0.07¢ %% (0, 1)

0.11e "¥7*F,(0.45+),
F/(x) — 0.13F/ (x) — 1.5F, (x) =

+1.87F/(0) — 3.747 (1,0) — 1.5F (0.45+)

+(—0.29¢"¥* — 0.2e71%*) (F} (0) — F;(0.45+))

0.13e"*(F/(0) — F/(0.45+))

0.24e'8* 7 (0,1) — 0.26e" "7 (1, 0)

+(0.35e187% _ 0.39¢!%)F, (0.45+).

The boundary conditions in Corollary 1 are rather straightforward.
By Theorem 5, the solution of the above system of differential
equations is unique depending on a constant b. and the compo-
nents 7 (1,0) and 7 (0, 1). That is the quantities Fj(0) and F/(0)
are determined given those values as follows

F§(0) = 1.427 (0, 1)2.347 (1, 0)0.18286b,

F/(0) = 0.957 (0, 1)1.097 (1, 0)0.16026b,.

It follows that the remaining unknowns 7 (0, 0), 7 (1,0), 7 (0,1)
and b, can be determined by imposing the following constraints

F§(0) = 3.12m (0, 1),
F/(0) = 2.757(1,0) — 27 (0, 0),
0= -2m(0,0) +0.757(1,0) + 1.127 (0, 1),
1=m(0,0)+m(1,0) +7(0,1) + F(c0) + F (c0),
yielding
m(0,0) = 3.12, b, = 0.827051,
7(0,1) = 1.08889, 7 (1,0) = 4.35035.

The expressions for Fy(x) and F (x), in the interval 0 < x < 0.45,
are
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(w,0,1)

(w,1,0)
/@\ A+ 1prexp(—A(i+1,¢ — 1 —i)z)dz — next exit of type 1
.
/‘.\, Ae—1—=d)pexp(—A(i + 1, — 1 — i)z)dz — next exit of type 2
Fig. 2. Sketch of the transition diagram for the case ¢ = 2.
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Fig. 3. Stationary VQT cumulative distribution function for A =2, p; = 0.75, up = 1.12 and k = 0.45."
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Fig. 4. Cdf of the stationary VQT for k=5, c=3, A =2, 41 = 0.8, and u, € {0.7,0.8,0.9}.!

Fy(x) = 0.0214e""°%31¥ _ 0.0686e14331* — 00211,
Fi(x) = 0.0258¢"" ¥ + 0.2303¢"*> 4 0.0085¢"***™* — 0.18910,
whereas, in the interval x > 0.45, they are given by
Fy(x) = —0: 9616 024*-045) 4 9 2126~ 11615(x-045)
+0.8271 +0.9281¢™ 12049
F(x) = —0.0996¢~ 116154045 | 0 0961 — 0.5847¢ 1> *-045)

Note that 6; = |A —cuq| =+0.5 and By = A —cup = —0.24. The
distribution of the virtual queueing time is visualized in Fig. 3,
along with the cases of 3 and 4 servers.
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6. Numerical insights

In this section we focus on numerical insights. Specifically, we
consider W, the stationary distribution of the queueing time or
VQT. Note that the results in Section 5 contain more informa-
tion, as they also provide the server state. To obtain VQT, ob-
serve that PW =0) = 37, .oy j<c—1 7 (0, j) and P(W < x) = P(W =
0) + F(x)1. From F(x), we may also directly derive the mean sta-
tionary VQT, which we give here in matrix representation.’

T The python algorithm to generate Figs. 3-7 is avaiblabe for downloading at the
public repository (D’Auria, 2021b); see D’Auria (2021a) for an online implementa-
tion.
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X
Fig. 5. Stationary VQT density for k=5, c=3, A =2, u, = 0.8, and p; € {0.3,0.6,0.67,0.74,0.8}.!
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Fig. 6. Cdf of the stationary VQT for k =5, u; = 0.8, uy = 0.7, (¢, A) € {(2,4/3), (3,2), (4,8/3)}.!
10t
EW]
10
10—1
10—2
o1 02 a3 a4

a5
M(qh)

06 Q7 08 09

Fig. 7. Expected VQT for k=5, u; = 0.8, c =3 and u; € {0.3,0.6,0.9}.!

Lemma 2. The mean stationary VQT is computed as follows

E[W] = (F'(0) + aoMoU; ) (U — U7 )'1(0, k; U1
— ((F'(0) + aoMoUy ) (U — Uy) ™ + atgMo)I(0, k; U7 ) 1
+ (F(k)—=bcre—aiMy —oa (A — Ay)My) (Uy) 1 —kI) 1
—ar (AT + kD (Ay = Ay)M,1, (51)

where I(a, b; D) is defined as in Eq. (A.38).

Proof. The results follow from the density F’(x) and integration by
parts, see Appendix A. O
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First, we consider the impact of having different @, and .
In case wi = Wy, the system corresponds to the classical M/M/c
queue, whereas there is a slowdown (speedup) effect when u, <
M1 (g > (q). As a basic example, we take k=5, c=3, A =2,
and puq = 0.8, whereas u; € {0.7,0.8,0.9}. The cumulative distri-
bution function (cdf) of W is visualized in Fig. 4. Clearly, in case
of a slowdown (u, = 0.7), the queueing time strongly deteriorates
compared to the standard situation where @, = 1 = 0.8. In fact, if
4o < 2/3 the system would even become unstable. For the current
example, the impact of a speedup (u, =0.9) is relatively small
compared to the standard situation, as the basic service rate of 0.8
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is already sufficient to provide reasonable queueing times. Hence,
taking differences in service rates into account is crucial to provide
reliable queueing times, especially in case of slowdowns.

Second, the shape of the VQT density may also be strongly
affected by speedups (or slowdowns), i.e., differences in w; and
M. The VQT density is strictly decreasing for the standard M/M/c
queue, which will also hold in case @, < 1 (slowdown). However,
this is no longer necessarily the case for speedups, see Fig. 5 for
k=5¢c=3,1=2, up; =038, and pu; € {0.3,0.6,0.67,0.74,0.8}. In
particular, for more extreme variants of a speedup effect, the peak
in the VQT density may be around or above level k.

Third, we consider the impact of the number of servers, i.e.,
scale of the system. Let k=5, i1 = 0.8, i, = 0.7 (slowdown), and
consider systems with 2, 3, and 4 servers. We let A be 4/3, 2, and
8/3, respectively, such that the loads A/(cu;), for i =1, 2 are iden-
tical. The cdf of the stationary VQT is presented in Fig. 6. Clearly,
as the number of servers increases the queueing time improves,
which is in line with economies of scale for regular M/M/c queues.
We like to note that the relative ordering of cdf's below k may
change in case A > cuuq (which we did not visualize here).

Finally, we consider the expected VQT. It is well known that
E[W] is convex and increasing in A for regular M/M/c queues with
¢ and p fixed. This property is not necessarily preserved in the
current model, see Fig. 7. Specifically, in case w4 is relatively small
(1 =0.3 in Fig. 7), a large fraction of the customers will experi-
ence a VQT of around k, assuming the system to be stable. This
destroys the convexity of E[W] as a function of A. Moreover, the
impact of w4 is also considerable for more heavily loaded systems.
For instance, comparing E[W] for different u; € {0.3,0.6, 0.9} with
fixed A/(cup) =0.9, we see that the mean VQT is much smaller
when a lot of customers can be served with rate @ (i.e., for
M1 =0.9). To conclude this section, we note that neglecting the
differences in service rate leads to rather inadequate performance
characteristics.

7. Conclusions, implications, and future research

In this paper we analyze the queueing delay in M/M/c types
of queues in which the service time is affected by the experienced
queueing delay. Such a mechanism may be typical from a customer
perspective in which excessive waiting is associated with longer
service times. Specifically, the service rate is wq () if the queue-
ing time of the customer in service is below (above) a threshold.
We show how it is possible to derive the virtual queueing time,
using a specific Markov chain. The resulting queueing time can be
found in closed form and consists of a mixture of exponentials.

Our key observation is that it is wholy inadequate to ignore
differences in service times in the model when they do exist in
practice. In case of a slowdown (5 < 1), the performance may
strongly deteriorate compared to the standard situation with equal
service rates. In case of speedup (3 > 1), situations may arise
where the queueing time remains acceptable, but many customers
have to wait. In fact, some queueing properties remain valid, such
as the economies of scale, whereas some properties are not, such
as a decreasing density of the queueing time and the convexity of
the expected queueing time as a function of the arrival rate. As-
sessing the precise queueing time behavior without an appropriate
model is difficult, and management should be supported with an
online implementation (see e.g. D’Auria, 2021a).

Finally, we mention some topics for further research. First, in-
cluding abandonments is an interesting topic for further research.
Such abandonments can be incorporated in the state description
of our specific Markov chain similar to Adan et al. (2019). Second,
extending the service times to phase-type distributions provides
insight in the impact of the variability in service times. Includ-
ing the phase of each server in the state description then leads
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to a higher dimensional state description, see e.g. Ramaswami &
Lucantoni (1985) for an algorithmic approach in case of the G/PH/c
queue. Third, a challenge is to extend the current model to allow
for multiple thresholds.

Appendix A. Proofs

In this appendix, we present the technical proofs of the results
presented throughout the paper.

Proof of Theorem 1: Let 0 <x <k, and 0 <i<c—1 be fixed.
Define P,(W(t) € A) = P(W(t) € A,S(t) = (i,c—1—1i)), withACR.
Conditioning on the jump size being exactly equal to x —y, we
get

X . .
F(t.x) = / PW(t —h) <y +h)Ah( + 1) pge 01 1-DE gy
0

b [ RAWVE ) <y + ARG - ety

+(10—)»h)Pl-(h<W(t—h) <x+h)+o(h). (A1)
Define

Qe (%) = exp(— (el + Ac_1)x), & €{1.2},

let t — oo, divide by h, and rearrange terms to get

RO — R+ ) = ARG+ ) — (1— )3 (R(h) —0)

c—1

3" Qi (x ~y)B1 (k. ))dy

k=0

-1 .x
+AZ/O (m(G.c—1—j) +F(y+h))
j=0

+o(h)/h.

Letting h — 0 and multiplying both sides by —1, and noting that
F(0) =0, we get Eq. (11), after noticing that Q;B; = B,Q;.

For x >k, again with P(W(t) e A) =P(W(t) € A,S(t) = (i,c—
1-1i)) for A C R, we have

F(t.x)= /OkPi(W(f —h) <y +h)Ah(i + D pqe- 211Dy gy
+ /Ok P_i(W(t —h) <y +h)Ah(c — i) ppe 20D gy
. /’XP,-(W(t —h) < K)AR(+ 1) e AGHLeT-DED gy
‘
+ /k "B Wt — h) < k)Ah(c — i) ppe- S0 DDy
+ /kxPi(k <W(t —h) <y+ h)Ah(c — i) e 2EDENdy

+/k Py(k<W({t—-h)<y+h)

Ah(i + 1) e A0 1-D0 gy

+(1=Ah)B(h <W(t —h) <x+h) +o(h). (A2)

Following the same steps as above, we get

—F'(x) = —AF(x) — F'(0)
+2 Ok(‘sc—l +F(¥))Qi (X —y)Bidy + A(5c1 +F (k)

/ " (x—y)Bydy
+A /kx((SM +F(¥)Qa(x — y)Body — A(8c_1 + F(k))

/k Q2 (x — y)Bady.

Substituting QB¢ = B, Qy, k € {1,2}, yields Eq. (12). O
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Proof of Theorem 2: First consider Eq. (11). Note that
Q.(x) = -Qc A, k=12

Since By is invertible, we can use Eq. (11) to get, for 0 <x <k,

A /OX F(y)B1Q1(x —y)dy = —F'(x) + F'(0) + AF (x)
—A8e_1B1(I— Q1 (x) AT (A3)

Taking the derivative with respect to x on both sides of Eq. (11),
we get

F//(X) = )LF/(X) — AF(x)B;
+A/OXF@>Bld1<x—y)A1dy—mc_w@ x).

Substituting Eq. (A.3) in the above equation we get Eq. (13) with

o = F/(0)Ay — 8._1ABy,

= [8cct M+ Acq) — 8c_aMA; — 8. 1ABy. (A4)

Here we have used Eq. (21) to eliminate F’(0). This is a second
order linear differential equation with constant coefficients and a
constant driving function on the right hand side.

Next we consider Eq. (12). First, note that, for x > k, we get, by
applying Eq. (A.3), that

k - k N -
A / F(y)B1Gs (x — y)dy = [x / F@)B&l(k—y)dy}al(x—k)
0 0

= [—F'(k) + F'(0) + AF (k)
—A8e_1B1 (I-Q1 (k) AT1Q; (x—k).

(A.5)
We also have, for x > k,
/ BeGe (X — y)dy = Be (I — G (x— k)AL, 1 =1,2. (A6)
k
Substituting in the RHS of Eq. (12) we get, for x > k,
X
F0) = 20 =1 [ FO)BaGa(x—y)dy
+o1 AT — Q5 (x — k) — AF(k)B Qo (x — k)ASY, (A7)
where
a1 A1 = F/(0) — AF (k) (B1AT! — BoAS1) — §._1AB1 AT,
oy = AF(k)(I - ByAT") — (F'(k) — F'(0)) — 8.1 AB1 AT
Differentiating both sides of Eq. (A.7), we get
X ~
F"(x) = AF'(x) — AF(x)B; + A/ F(y)B2Qa(x —y) Aady
k
0201 (x — k) Ay + AF (k)B2 Q5 (x — k). (A.8)

Using (A.7) we have

| “F 0BGy (x - )y = — /() +AF (1) +001 A5 20 (x—K)
—AF(k)B,Qx(x — k) A1

Substituting Eq. (A.9) in the RHS of Eq. (A.8) we get Eq. (14). This
completes the proof. O

Proof of Corollary 1: Eq. (18) follows from the definition of
F. Eq. (19) follows by taking the left and right limits at k in
Egs. (A1) and (A.2), respectively. Eq. (20) follows by taking the left
and right limits at k in Egs. (11) and (12), respectively.

The balance equation for state (0,i,c — 1 —1i) yields

(A.9)
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A+in+(c=1=-Dpu)mw@,c—1-1i)
=F0)+Ar(i-1,c-1-i), 0<i<c-1

In matrix form this can be written as

F'(0) =81 (M + Ac_q) — 8c_oAd,

which is Eq. (21). O

Lemma 3. Let M be a c x ¢ matrix with entries given by
M(@,c—1) = cuy,
M(1,c-1) = w4,
L)
C—1[2
M(i, j) = 0 for all other (i, j).

M@Gi,i—-1) = , O0<i<c—-1,

It is non-singular and satisfies the following equation

M(By — 1l — Ag) = (B — ol — Ag). (A.10)

Proof. For 0 <i, j <c—1, we write

Bi(i,j) = {i, G+ D +{i+ 1, jHc—i—Dpa,

By(i, j) = {i, j}c = Dpa +{i = 1, jlipa,

Ao(i, j) = {i. jH(ip1 + (c =i =1 u2),

M@, j) ={i+c—1,jlcpua +{i+c—1,j+ 1}ip,
—{i, j+ g1/ ((c = D) pa),

where {i, j} is the Kronecker delta function, that is

(i) = {1 ifi=j,

All
otherwise. ( )

0
Let Yy = By — il — Ag, k € {1, 2}. It follows that

i, ) = ({i+1,j} = {i. jhc—i-Dpua,
V2@, j) = ({i— 1, j} = {i. jDipa.

Then by matrix multiplication we have
(MY1) (. j)

c-1
= 3 MG, k)Y (k, j)
k=0
c—1
-y ({i+c— Lkicua+{i+c—1,k+ 1}iu1>Yl(k,j)

k=0

c—i

c—1
- {i.k+1)
k=0

. . i o
= <{l, O}cpa + {i, 1}m)Y1 c-1.)-——Hlyi-1j
C—1[Mp

M1 .
—Y; (k,
0 1(k, j)

=~ = 1) = (= 1) = {i i =Yo(0 ).

O

Proof of Lemma 1: Let us assume that the left equation in
Eq. (33) holds, that is a1 - ¥ = 0. Then using the definition of «q,
given in Eq. (16), we have that

agAT Age — AF(k+)(B1AT Ay — By =0
and we are going to show that

(B1 — A)ATT Ay =0, (A12)

so that the column vector A;1Ayv is parallel to @,, because it is
a right eigenvector of the matrix (B; — A;) corresponding to the
null eigenvalue, whose multiplicity is one.

If Eq. (A.12) holds, we have that
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(B — ADATT Ay = (BiATTA; — Ar)
= (BiA'A; — By =0, (A13)

where in the last equality we used the relation A, = By, given
by Eq. (32).

Eq. (A.13), together with Eq. (A.12), implies that ag AT Ay 9 =
0 and therefore it also implies the result.

To prove Eq. (A.12), we continue from Eq. (A.13) by rewriting it
in the following way
(BiATTA; = By)Ye

(B1A7'B, — By) Ve

= (B1A]" = DBy

= (1l + Ac1)7'By = DBy

= (U1l + A1) "By — il = Ac_1)Bae

= (il + A1) "MIM(By — 11— Ac_1)Ba e

= (il + A1) "M (By — pal — Ac_1)Ba e

= (1l + A1) 'M71B; 1 (By — Ay = 0.
In ~the first equality we used Eq. (32), in the third one that
BlA;l = (U1l + A1) 1By, given by the definition in Eq. (9), in
the sixth one we used the result of Lemma 3, where the matrix
M is defined. Finally in the last two equalities we use again the
definition in Eq. (9) and the hypothesis in Eq. (32). O

Proof of Theorem 3: We consider the two regions of x sepa-

rately. First assume that 0 < x < k. Eq. (13) is a non-homogeneous

linear system of ordinary second order differential equations.
Hence, we first try a homogeneous solution of the type

Fi(x) = e”¢,
where ¢ is a row vector of length c. Substituting in £1F,(x) =0
and cancelling e?*, we get Eq. (22), with 2c solutions {(6;, ¢;),0 <
i < 2c— 1}. The eigenvalues 6;’s are given in Egs. (24) and (25). The
homogeneous solution to Eq. (13) is then given by
2c-1
F(x) =) ae®¢, 0<x<k
i=0
where the 2c¢ constants {a;, 0 <i < 2c — 1} are to be determined.
For the particular solution we should look for a function of the
following type
FEXx)=nx+¢, (A15)

because 6._1; =0 is an eigenvalue for the homogeneous solution.
By substitution in Eq. (13) we get that the following equation has
to be satisfied

(A — Ay) + nxA(By — Aq) + LA(By — Ay) = ap, (A.16)

where the vector ¢ can be chosen such that ¢ - ¢, = 0, because for
alla e R,

(¢ +a¢)A(By — Ay) = A (B — Ay).
In addition, in order to have Eq. (A.16) satisfied for any x, the coef-
ficient of the linear term should be null implying that n = a ¢,.
Taking the scalar product of both sides of Eq. (A.16) by the right
eigenvector ¢, satisfying Eq. (31), we get that
_a¢*()"1_ A1) . (5* =0 - (5*7
implying that
w0
¢*()"I_ A]) '¢*
Note that the linear term is missing if g - ¢y = 0.
To derive the value of { we rewrite the equation ¢ - ¢,

0 in matrix form as ¢ diag(¢,) = 0. By adding this equation to
Eq. (A.16) we get

—nOI = A1) + ¢ (A (B — Ay) + diag(¢.)) = ao

(A14)

(A17)
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and since (A(B; — A1) + diag(¢,)) is not singular, we have that
¢ = agMo + ag, (M — Ap)My,

where My is as given in Eq. (35).
Finally, we have that the particular solution is equal to

Fy(x) = a g, (xI + (M — Ay )Mo) + aoMo, 0 <x <k, (A.18)

where a is defined as in Eq. (A.17). Below we show that «g - @, = 0,
implying that a = 0 and thereby Eq. (34).

Next consider the region x > k, where F satisfies Eq. (14). It is
also a non-homogeneous linear system of ordinary second order
differential equations. As before we try a homogeneous solution of
the type

Fy(x) = Py,

where ¥ is a row vector of length c. Substituting in £,F,(x) =0
and cancelling ef* we get Eq. (27), which has 2c solu-
tions (B;, ¥;), 0 <i<2c—1. The eigenvalues f’s are given in
Egs. (28) and (29). The homogeneous solution to Eq. (14) is then
given by

2c-1
F(x) =Y bief Ry x>k

i=0

(A19)

Since the solution has to be bounded we immediately get that
b; =0 for c <i<2c-1, since the corresponding f;'s are strictly
positive. Moreover, we have B. =0 and . is as given in Eq. (30).
It follows that the homogeneous solution to Eq. (14) can be written
as

c-1
Fu(x) = > bieP Oy + by, x>k,

i=0

(A.20)

where the ¢+ 1 constants {b;,0 <i < c} are to be determined.

Next we determine the particular solution. Similarly to what
we have done before for the interval [0, k], the particular solu-
tion associated with the constant term ¢/ in the right hand side of
Eq. (14) would be of the form Eq. (A.15), since the associated ho-
mogeneous equation £;F,(x) =0 admits the constant function as
solution. However, in this case, the boundary condition, requiring
limy_ - F(x) to be bounded, implies that the vector 7 is zero and
therefore that o ~1ﬁc = 0. By applying Lemma 1, this also implies
that the linear term in Eq. (A.18) is missing.

Eventually it follows that the particular solution in the region
x > k is given by
Fy(x) = ouMy + Q1 (x — k) (A — Ay)My, x>k,
as can be verified by direct substitution, where M; and M, are as
given in Egs. (37) and (38). The general solution is then as given in
Eq. (36). This completes the proof. O

Proof of Theorem 5: According to the results of Corollary 1, we

write F(k) to mean F(k—) = F(k+) and similarly for the derivative
in k. By defining

Hy = (Uf =Up) (e — ek,
Hy = Mo(I— €Y% + Uy Hy),

H3 = Hy + AHa,

Hy = —ABiHs,

(A21)

we can rewrite Eq. (45) evaluated in k as
F(k) = F'(0)Hs; + 8._1Hj.

By defining

Hs = (U —U;) " (UreUTk —uyelih),
He = Mo(Uy e’ ¥ — Uy Hs),

(A.22)
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H; = Hs — AHs,
Hg = AB1Hs,

we can rewrite the derivative of Eq. (45) evaluated in k as

F'(k) = F'(0)H7 + 8,_1Hs. (A.23)
By defining

Ho = (A1 — Ap)MyUy + Ay (A1 — Ay)Ms,

we can rewrite the derivative of Eq. (46) evaluated in k as

F'(k) = F()U; — bey Uy — a1MU; — arzHo. (A.24)

Then substituting the expression of o, in Eq. (17), by employing
also Eqs. (16) and (15), and defining

Hip = Uy — A(I - By A;")Hy,
Hy = M]U{ + A£1Hg,
Hiz = Hio + A(B1AT'A; — By)Hyy,

His = AyHy.

His = AB1AT'AyHy,

we get

F'(k)(I = Hg) = F(k)H1z — beyUy — F'(0)Hy3 + 8c_1Hua.  (A.25)
By equating Eqs. (A.23) and (A.25) and defining

His = Uy (H; — H;Hg — H3Hyz + Hi3) ™', (A.26)
Hig = (Hi4 + HaHyz — Hg + HsHo) (Uy ) "' His, (A.27)
we get the first result in Eq. (47).

F'(0) = 8c_1H1s — bercHis (A.28)
Taking the limit in Eq. (46) and defining

Hy; = AMy — AH3(B1AT'A; — By)My,

Hig = ABiAT'AMy + AHy (B AT A — By)My,

Hyg = I - HisHyz, (A.29)
Hy = HigH17 — His, (A.30)

we get the second result in Eq. (48). O

Proof of Theorem 6: We would need the definition of the fol-
lowing rectangular matrices, for 0 <n <c-1:

Bu(i.i)= (n—i+1)up, 0<i=<n,
Bu(i,i—1) =iy, 1<i<n+1,

Bu(i.j) = 0 for all other (i,j), 0<j<n.

Using Eq. (21) together with the balance Eq. (7) and the nor-
malization equation, we finally get

A8 = 8n.1Bo, n=0, (A.31)
Sa(M+ Ap) = 8q 1Al +8431Bn, O0<n<c—1, (A.32)
Su(M + Ap) = 8,1 AT+ F'(0), n=c-1, (A.33)
1=F(o)l+ Y &l (A34)

O0<n=<c-1

where F’(0) and F(oo) are given in Eqgs. (47) and (48), respectively.
This system has 1+ (c + 1)c/2 equations and an equal number of
unknowns.

Writing 8, = 8,,1C:, we have, by Eq. (A.31), Gy =By/A and
by Eq. (A32), Gi=B.(A(d-CoiD)+Ap)-", 0<n<c—1. By
Eq. (A33) we have 8.y =bcyCy with Coq=—Hjs(A(I—
Ceoal) + Acy —Hyg) 1.
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By defining

I:IC,1 = CAC,L I:In = I:In+1CAn, O<n<c-1, (A35)

and using the normalization constraint Eq. (A.34) we get the
result. O

Proof of Lemma 2: By taking derivatives of Egs. (45) and
(46) we can compute the VQT density function as follows

F'(x) = (F/(0) + aoMoUy ) (Uf — Uy) " (U; V> — Uy eli™)

—apMoUye*, 0 <x <k, (A.36)

F'(x) = (F(k) — beyec — 1My — a2 (A — Ay)My)U; %2 ¢0
— a2 AQ1(x — k) (A1 — Ap)M,, x> k. (A37)

We define the following matrix function
b
I(a,b: D) = / Dx ePdx = (be® — qePe) — D=1 (Pt — ). (A 38)
a

that is well defined on the set of non-singular matrices and that
can be defined on the set of singular matrices by continuity. That
is, if det(D) = 0, we set I(a, b; D) = lim;_,gI(a, b; D + tI).

Integrating the expressions in Eqs. (A.36) and (A.37) in their
corresponding domains multiplied by x, we obtain the result in
Eq. (51) after summing up all components. O

References

Adan, 1., Hathaway, B., & Kulkarni, V. G. (2019). On first-come, first-served queues
with two classes of impatient customers. Queueing Systems, 91(1), 113-142.
Anick, D., Mitra, D., & Sondhi, M. M. (1982). Stochastic theory of a data-handling
system with multiple sources. Bell System Technical Journal, 61(8), 1871-1894.
Batt, R. J., & Terwiesch, C. (2012) Doctors under load: An empirical study of state-
dependent service times in emergency care (pp. 1-32) Wharton School of Busi-
ness. https://faculty.wharton.upenn.edu/wp-content/uploads/2012/11/DULnew_

v6.pdf.

Bekker, R. (2009). Queues with Lévy input and hysteretic control. Queueing Systems,
63(1-4), 281-299.

Bekker, R., Boxma, O. J., & Resing, J. A. C. (2009). Lévy processes with adaptable
exponent. Advances in Applied Probability, 41(1), 177-205.

Boxma, O. ], Perry, D., & Stadje, W. (2001). Clearing models for M/G/1 queues.
Queueing Systems, 38(3), 287-306.

Boxma, O. J., & Vlasiou, M. (2007). On queues with service and interarrival times
depending on waiting times. Queueing Systems, 56(3-4), 121-132.

Brill, P., & Posner, M. (1981). A two server queue with nonwaiting customers receiv-
ing specialized service. Management Science, 27(8), 914-925.

Carmon, Z., Shanthikumar, J. G., & Carmon, T. F. (1995). A psychological perspective
on service segmentation models: The significance of accounting for consumers
perceptions of waiting and service. Management Science, 41(11), 1806-1815.

Chalfin, D. B., Trzeciak, S., Likourezos, A., Baumann, B. M., & Dellinger, R. P. (2007).
Impact of delayed transfer of critically ill patients from the emergency depart-
ment to the intensive care unit. Critical Care Medicine, 35(6), 1477-1483.

Chan, C. W, Farias, V. F, & Escobar, G. ]. (2017). The impact of delays on service
times in the intensive care unit. Management Science, 63(7), 2049-2072.

Chan, P. S., Krumholz, H. M., Nichol, G., Nallamothu, B. K., & American Heart Asso-
ciation National Registry of Cardiopulmonary Resuscitation Investigators (2008).
Delayed time to defibrillation after in-hospital cardiac arrest. New England Jour-
nal of Medicine, 358(1), 9-17.

D’Auria, B. (2021a). App for plots of virtual queueing time. https://brdauria.github.
io/VQTPlot/.

D’Auria, B. (2021b). Repository for plots of virtual queueing time. https://github.
com/brdauria/VQTPlot.git.

Delasay, M., Ingolfsson, A., Kolfal, B., & Schultz, K. (2019). Load effect on service
times. European Journal of Operational Research, 279(3), 673-686.

Do, H. T,, Shunko, M., Lucas, M. T.,, & Novak, D. C. (2018). Impact of behavioral fac-
tors on performance of multi-server queueing systems. Production and Opera-
tions Management, 27(8), 1553-1573.

Dong, ]., Feldman, P, & Yom-Tov, G. B. (2015). Service systems with slowdowns:
Potential failures and proposed solutions. Operations Research, 63(2), 305-324.

Dshalalow, J. H. (1997). Queueing systems with state dependent parameters. Fron-
tiers in Queueing: Models and Applications in Science and Engineering, 61-116.

Gaver, D., Miller, R., et al. (1962). Limiting distributions for some storage problems.
In K. Arrow, et al. (Eds.), Studies in applied probability and management science
(pp. 110-126). Stanford Univ. Press.

Kulkarni, V. G. (1997). Fluid models for single buffer systems. In J. Dshalalow
(Ed.), Frontiers in queueing: models and applications in science and engineering
(pp. 321-338). CRC Press.

Maister, D. H., et al. (1984). The psychology of waiting lines. Citeseer.


http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0002
https://faculty.wharton.upenn.edu/wp-content/uploads/2012/11/DULnew_v6.pdf
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0004
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0004
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0007
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0007
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0007
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0007
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0010
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0010
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0010
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0010
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0010
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0010
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0010
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0011
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0011
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0011
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0011
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0011
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0012
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0012
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0012
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0012
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0012
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0012
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0012
https://brdauria.github.io/VQTPlot/
https://github.com/brdauria/VQTPlot.git
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0018
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0018
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0019
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0019
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0019
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0019
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0020
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0020
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0021
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0021
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0021

B. D'Auria, 1].B.F. Adan, R. Bekker et al.

Malhotra, R., Mandjes, M., Scheinhardt, W. R., & Van Den Berg, J. (2009). A feedback
fluid queue with two congestion control thresholds. Mathematical Methods of
Operations Research, 70(1), 149-169.

Palmowski, Z., & Vlasiou, M. (2011). A Lévy input model with additional state-de-
pendent services. Stochastic Processes and their Applications, 121(7), 1546-1564.

Posner, M. (1973). Single-server queues with service time dependent on waiting
time. Operations Research, 21(2), 610-616.

Ramaswami, V., & Lucantoni, D. M. (1985). Algorithms for the multi-server queue
with phase type service. Stochastic Models, 1(3), 393-417.

Renaud, B., Santin, A., Coma, E., Camus, N., Van Pelt, D., Hayon, J., ... Fine, M. J.,
et al. (2009). Association between timing of intensive care unit admission and
outcomes for emergency department patients with community-acquired pneu-
monia. Critical Care Medicine, 37(11), 2867-2874.

Richardson, D. B. (2002). The access-block effect: Relationship between delay to
reaching an inpatient bed and inpatient length of stay. Medical Journal of Aus-
tralia, 177(9), 492-495.

Scheinhardt, W., Van Foreest, N., & Mandjes, M. (2005). Continuous feedback fluid
queues. Operations Research Letters, 33(6), 551-559.

579

European Journal of Operational Research 299 (2022) 566-579

Selen, J., Adan, I. J., Kulkarni, V. G., & van Leeuwaarden, J. S. (2016). The snowball
effect of customer slowdown in critical many-server systems. Stochastic Models,
32(3), 366-391.

Siegmeth, A., Gurusamy, K., & Parker, M. (2005). Delay to surgery prolongs hospital
stay in patients with fractures of the proximal femur. The Journal of Bone and
Joint Surgery, British volume, 87(8), 1123-1126.

da Silva Soares, A., & Latouche, G. (2009). Fluid queues with level dependent evolu-
tion. European Journal of Operational Research, 196(3), 1041-1048.

Soltani, M., Batt, R., Bavafa, H., & Patterson, B. (2019). Does what happens in the ED
stay in the ED? The effects of emergency department physician workload on
post-ED care use.

Ulkii, S., Hydock, C., & Cui, S. (2020). Making the wait worthwhile: Experiments on
the effect of queueing on consumption. Management Science, 66(3), 1149-1171.

Whitt, W. (1990). Queues with service times and interarrival times depending lin-
early and randomly upon waiting times. Queueing Systems, 6(1), 335-351.

Wy, C. A, Bassamboo, A., & Perry, 0. (2019a). Service system with dependent service
and patience times. Management Science, 65(3), 1151-1172.

Wu, C. A, Bassamboo, A., & Perry, O. (2019b). When service times depend on cus-
tomers’ delays: A solution to two empirical challenges.


http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0022
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0022
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0022
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0022
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0022
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0022
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0023
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0023
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0023
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0023
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0024
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0024
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0025
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0025
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0025
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0025
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0027
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0027
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0028
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0028
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0028
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0028
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0028
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0029
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0029
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0029
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0029
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0029
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0029
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0031
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0031
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0031
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0031
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0033
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0033
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0033
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0033
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0033
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0034
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0034
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0035
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0035
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0035
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0035
http://refhub.elsevier.com/S0377-2217(21)01063-8/sbref0035

	An  queue with queueing-time dependent service rates
	1 Introduction
	2 Model and state description
	3 The single-server queue
	4 Multi-server queue: balance equations
	5 Solution of the balance equations
	5.1 Limiting distribution
	5.2 Computing the solution
	5.3 Numerical example for 

	6 Numerical insights
	7 Conclusions, implications, and future research
	Appendix A Proofs
	References


