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a b s t r a c t 

Recent studies indicate that in many situations service times are affected by the experienced queueing 

delay of the particular customer. This effect has been detected in different areas, such as health care, call 

centers and telecommunication networks. In this paper we present a methodology to analyze a model 

having this property. The specific model is an M/M/c queue in which any customer may be tagged at her 

arrival time if her queueing time will be above a certain fixed threshold. All tagged customers are then 

served at a given rate that may differ from the rate used for the non-tagged customers. We show how it 

is possible to model the virtual queueing time of this queueing system by a specific Markov chain. Then, 

solving the corresponding balance equations, we give a recursive solution to compute the stationary dis- 

tribution, which involves a mixture of exponential terms. Using numerical experiments, we demonstrate 

that the differences in service rates can have a crucial impact on queueing time performance. 

© 2021 The Author(s). Published by Elsevier B.V. 
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. Introduction 

For classical queueing models, service times are typically as- 

umed to be independent of experienced delay. Such indepen- 

ence assumptions are often crucial for analytical tractability of 

he queueing system’s performance. In practice, however, it has 

een recognized that the amount of waiting affects service dura- 

ions, and the assumed independence does therefore not hold. Em- 

irical evidence of this dependence relation primarily stems from 

he health care domain. The studies ( Batt, 0 0 0 0; Chalfin, Trzeciak,

ikourezos, Baumann, & Dellinger, 2007; Chan, Farias, & Escobar, 

017; Chan, Krumholz, Nichol, Nallamothu, & American Heart As- 

ociation National Registry of Cardiopulmonary Resuscitation In- 

estigators, 2008; Renaud et al., 2009; Richardson, 2002; Siegmeth, 

urusamy, & Parker, 2005; Soltani, Batt, Bavafa, & Patterson, 2019 ) 

ndicate that delays in admission have adverse effects on patient 

utcomes and consequently increase the patients length of stay; 

his is referred to as the slowdown effect in Selen, Adan, Kulkarni, 

 van Leeuwaarden (2016) . 
� The research of the first author was partially supported by Spain’s Ministry of 

cience and Innovation [Grants MTM2017-85618-P via FEDER funds and PID2020- 

16694GB-I00] 
∗ Corresponding author. 
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At a more conceptual level, the field of behavioral operations 

nvestigates how servers and customers behave in an operational 

etting. The recent study ( Delasay, Ingolfsson, Kolfal, & Schultz, 

019 ) indicates that in many situations service times are affected 

y the load. The authors develop a framework for the impact 

f load on service times, where they distinguish server, network, 

nd customer mechanisms. For the server mechanism, it is ob- 

erved (and supported by literature) that there is a clear impact 

f workload on the service speed, and this impact may go in dif- 

erent directions. The authors of Delasay et al. (2019) found far 

ewer customer mechanisms in the literature, although they ex- 

ect them to exist. A psychological view of a customers queueing 

xperience during its sojourn time is provided in Carmon, Shan- 

hikumar, & Carmon (1995) . Specifically, the authors assume that 

he dissatisfaction level of a customer increases during waiting, 

hereas this may be compensated during service. As a conse- 

uence, for an acceptable level of dissatisfaction after service, the 

ervice time should be longer for a customer experiencing longer 

elays. Moreover, after excessive waiting customers expect valu- 

ble service ( Maister et al., 1984 ), which may also affect the cor- 

esponding service time. Similarly, the recent study ( Ülkü, Hydock, 

 Cui, 2020 ) in a retail environment found that customers waiting 

onger in fact consume more. Thus, from the customer perspec- 

ive, it seems conceivable that excessive waits are associated with 

onger service times. 
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https://doi.org/10.1016/j.ejor.2021.12.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.12.023&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:bernardo.dauria@uc3m.es
mailto:i.adan@tue.nl
mailto:r.bekker@vu.nl
mailto:vkulkarn@email.unc.edu
https://doi.org/10.1016/j.ejor.2021.12.023
http://creativecommons.org/licenses/by/4.0/


B. D’Auria, I.J.B.F. Adan, R. Bekker et al. European Journal of Operational Research 299 (2022) 566–579 

t

i

e

a

t

e

l

t

v

a

s

t

t

t

c

d

b

a

2

s

m

e

(

g

p

h

d

(  

t

2

i  

a

t

c  

S

p

E

s

(

c

D

C

r

t

a

a

s

d

t

a

d

r

t

v

w

p

S

q

w

s

w

q

s

t

t

t

c

f

s

e

t

s

v

s

p

t

r

d

q

(

t

I

p

w

y

t

v

c

a

s

s

n

i

t

l

d

B

n

q

d

a

a

o

t

(

w

(

S

w

d

i

a

H

s

s

i

t

T

l

fi

t

r

d

(

The aim of this paper is to find the steady-state queueing 

ime distribution in multi-server queues where the service time 

s affected by the experienced queueing time. Despite its appar- 

nt practical relevance, such queues have hardly been studied in 

 service setting with multiple servers. More specifically, we let 

he service rate of each server depend on whether the experi- 

nced queueing time of the customer in service is above or be- 

ow a given threshold upon service initiation. We envisage that this 

ypically corresponds to a customer mechanism, although the ser- 

ice rate adaptation might also be the consequence of the server 

dapting to congestion. Despite the inherent model complexity, the 

teady-state queueing time distribution turns out to be remarkably 

ractable in this case and can be expressed in terms of a mix- 

ure of exponential terms. From our numerical experiments, we see 

hat taking the differences in service rates into account results in 

rucially different queueing time behavior. As such, ignoring the 

ependence between experienced waiting and service time might 

e wholly inadequate. An online implementation of the model is 

vailable to further facilitate managerial decision making ( D’Auria, 

021a ). 

Delay thresholds are typically used in empirical health care 

tudies to distinguish delayed and non-delayed patients; if the ad- 

ission delay is above the delay threshold, a patient is consid- 

red to be delayed. For instance, Chalfin et al. (2007) , Richardson 

2002) investigated the impact of delayed patients at the emer- 

ency department on the inpatient length of stay. Based on the 

atient data, the difference in length of stay is in the order of 

ours. For cardiac patients, delays are even much more critical; 

elays in the order of minutes lead to adverse patient outcomes 

 Chan et al., 2008 ). Less critical cases, such as surgery of hip frac-

ures, have delay thresholds in the order of days ( Siegmeth et al., 

005 ). For patients with community-acquired pneumonia a sim- 

lar delay threshold is used ( Renaud et al., 2009 ). For both situ-

tions it is shown again that delayed admissions experience ex- 

ended length of stay. Another example of the impact of physi- 

ian workload at the emergency department (ED) are Batt (0 0 0 0) ,

oltani et al. (2019) ; amongst others, the authors observe that high 

hysician workload leads to overtesting and generates extra post- 

D care. 

The health care situations described above have recently in- 

pired the study of multi-server queues, in which the service time 

i.e. the length of stay) is affected by delay and congestion at the 

linical ward, such as the Intensive Care Unit ( Chan et al., 2017; 

ong, Feldman, & Yom-Tov, 2015; Selen et al., 2016 ). The study of 

han et al. (2017) is also supported with data verifying the cor- 

elation between delay and length of stay. In Chan et al. (2017) , 

he multi-server queue with delay-dependent service is abbrevi- 

ted with M/M( f ) /c; the focus from the queueing perspective is on 

pproximations and bounds for the workload process. The multi- 

erver variant with abandonments in the quality and efficiency 

riven (QED) regime is considered in Dong et al. (2015) . Next to 

he fact that this involves an asymptotic analysis, the service rate 

daptations are also instantaneous instead of the more intricate 

elay effects on individual customers. Such server mechanisms are 

eferred to as operator slowdown in Selen et al. (2016) , as opposed 

o customer slowdown. The model in Selen et al. (2016) also in- 

olves a multi-server queue, where the service rate depends on 

hether a customer has to wait or not. In terms of the current 

aper, this means that the waiting threshold is at zero. In addition, 

elen et al. (2016) focuses on the number of customers instead of 

ueueing times. 

There have been some recent studies on multi-server queues 

here service times depend on delay. The authors of Wu, Bas- 

amboo, & Perry (2019a) consider a general multi-server queue 

ith abandonments and derive fluid limits as a proxy for expected 

ueueing times. Moreover, Wu, Bassamboo, & Perry (2019b) con- 
567 
iders a setting with customer abandonments, where the service 

ime is either endogenously or exogenously determined by the sys- 

em’s dynamics. The focus there is mainly on statistical estima- 

ion for both dependency situations. Finally, in Do, Shunko, Lu- 

as, & Novak (2018) the service speed is affected by behavioral 

actors, such as server speedup due to increased workload and 

ocial loafing when multiple workers share the workload. How- 

ver, the analysis is in terms of queue lengths instead of queueing 

imes. 

From the literature discussed above, we observe that almost all 

tudies of multi-server queues with delay-dependent service in- 

olve some sort of approximation. This is different for the single- 

erver case, which is much more amenable for analysis. An im- 

ortant observation for the single-server case is that the queueing 

ime then corresponds to the workload a customer finds upon ar- 

ival; this is no longer the case for the multi-server setting with 

elay-dependent service. There is a long tradition of single-server 

ueues with workload-dependent features; we refer to Dshalalow 

1997) for an early overview containing many references. Among 

hose early papers are Posner (1973) and Brill & Posner (1981) . 

nterestingly, in 1973 Posner already noted that the server may 

rovide more appropriate service to counter the negative effect of 

aiting ( Posner, 1973 ); the author then provides a complete anal- 

sis for the M/M/1 case in which the service rate is a step func- 

ion of the queueing time. A little later, Brill & Posner (1981) pro- 

ides an exact analysis for the M/M/2 queue where non-waiting 

ustomers have a different service rate. 

For workload-dependent M/G/1 queues, often the service and/or 

rrival rates are assumed to depend on the workload, but not 

o often the complete service time. However, generalizations of 

uch systems are Lévy driven queues in which the Lévy expo- 

ent depends on the position of the process. The Lévy exponent 

ncorporates the Laplace transform of the service time distribu- 

ion and, hence, the service time may thus depend on the work- 

oad found by a customer entering service. Examples of such Lévy 

riven queues with state-dependent exponent are Bekker (2009) , 

ekker, Boxma, & Resing (2009) , Palmowski & Vlasiou (2011) . Fi- 

ally, Whitt (1990) and Boxma & Vlasiou (2007) consider G/G/1 

ueues with service and interarrival times that depend linearly on 

elays. 

Limiting distributions in terms of mixtures of exponentials 

re also common in Markov-modulated fluid models. In fact, our 

nalysis is along similar lines as such fluid models, although 

ur differential equations differ from the ones found in tradi- 

ional fluid queues ( Anick, Mitra, & Sondhi, 1982 ), see Kulkarni 

1997) for an early overview. Some examples of fluid models 

ith level-dependent features are da Silva Soares & Latouche 

2009) , Malhotra, Mandjes, Scheinhardt, & Van Den Berg (2009) , 

cheinhardt, Van Foreest, & Mandjes (2005) . A crucial difference 

ith fluid models is the role of the background state. Our state 

escription, where the service time depends on experienced delay, 

s delicate. In our case, the background state should be interpreted 

s the server state process; our state description is based on Adan, 

athaway, & Kulkarni (2019) . 

The paper is organized as follows. In Section 2 , a model and 

tate description is provided. The single-server case provides in- 

ights in both the approach as well as the results, and is discussed 

n Section 3 . Section 4 presents balance equations that are required 

o determine the limiting distribution for the multi-server case. 

he limiting distribution is derived in Section 5 , including an il- 

ustrative example. Section 6 contains some numerical insights and 

nally Section 7 draws some conclusions. For readability, most of 

he technical proofs are deferred to Appendix A . A python algo- 

ithm to compute the queueing time distribution is avaiblabe for 

ownloading at the public repository D’Auria (2021b) ; see D’Auria 

2021a) for an online implementation. 
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. Model and state description 

We consider a queueing system with c identical servers and an 

nfinite waiting room. Customers arrive according to a Poisson pro- 

ess with rate λ. Let W (t) be the virtual queueing time (VQT) at 

ime t . That is, if a customer arrives at time t , his service will start

t time t + W (t) . Clearly, if at least one server is idle at time t ,

 (t) = 0 . If all servers are busy at time t , W (t ) > 0 . The service

imes of the customers depend on their queueing time through 

 critical level k > 0 as follows: if a customer arrives at time t ,

nd W (t) ≤ k , he is classified as a class 1 customer, and his ser-

ice time is exp( μ1 ), otherwise he is classified as class 2 customer 

nd his service time is exp( μ2 ). In order to describe the dynam- 

cs of the VQT process { W (t) , t ≥ 0 } , we introduce the server state

rocess S(t) = (S 1 (t) , S 2 (t)) as follows. We say that S(t) = (i, j) if

 servers are serving class 1 customers and j servers are serving 

lass 2 customers at time t + W (t) , just before the new service

tarts at time t + W (t) . Clearly, we must have 0 ≤ S 1 (t) + S 2 (t) ≤
 − 1 for all t ≥ 0 . Furthermore, 

 (t) > 0 ⇒ S 1 (t) + S 2 (t) = c − 1 . 

nd 

 ≤ S 1 (t) + S 2 (t) < c − 1 ⇒ W (t) = 0 . 

e discuss the evolution of the { (W (t) , S 1 (t) , S 2 (t)) , t ≥ 0 } process

elow. We will use the following notation for the aggregate service 

ate: 

(i, j) = iμ1 + jμ2 . (1) 

Suppose the state at time 0 is (0 , i, j) with 0 ≤ i + j < c − 1 . If

he next event is an arrival, the state jumps to (0 , i + 1 , j) ; if it

s a departure of type 1, it jumps to state (0 , i − 1 , j) ; and if it

s a departure of type 2, it jumps to state (0 , i, j − 1) . Hence, the

ransition rate from state (0 , i, j) to state (0 , i + 1 , j) is λ, to state

0 , i − 1 , j) is iμ1 and to state (0 , i, j − 1) is jμ2 . 

Next, suppose the state at time 0 is (0 , i, c − 1 − i ) with 0 ≤ i ≤
 − 1 . Again, if the next event is a departure of type 1, it jumps

o state (0 , i − 1 , c − 1 − i ) ; and if it is a departure of type 2,

t jumps to state (0 , i, c − 1 − 2) . Hence, the transition rate from

tate (0 , i, c − 1 − i ) to state (0 , i − 1 , c − 1 − i ) is iμ1 and to state

0 , i, c − i − 2) is (c − 1 − i ) μ2 . If the next event is an arrival, all

ervers become busy, i + 1 of them serving type 1 customers and 

c − 1 − i ) of them serving type 2 customers. The next departure 

ccurs after an exp( �(i + 1 , c − 1 − i ) ) amount of time and the VQT

rocess jumps to level X ∼ exp( �(i + 1 , c − 1 − i ) ). Also, the next

eparture is of type 1 with probability (i + 1) μ1 / �(i + 1 , c − 1 −
 ) and of type 2 with probability (c − 1 − i ) μ2 / �(i + 1 , c − 1 − i ) .

ombining these observations, we see that the transition rate to 

tate (x, i, c − 1 − i ) is 

(i + 1) μ1 exp (−�(i + 1 , c − 1 − i ) x ) dx, 

nd to state (x, i + 1 , c − i − 2) is 

(c − 1 − i ) μ2 exp (−�(i + 1 , c − 1 − i ) x ) dx. 

his completes the description of all transitions out of states 

0 , i, j) with 0 ≤ i + j ≤ c − 1 . 

Next, consider states (w, i, c − 1 − i ) with 0 < w ≤ k and 0 ≤ i ≤
 − 1 . The state does not change if the next event is a departure.

t can change only if the next event is an arrival. An arrival in this

tate is of type 1. By following the same argument as in the case 

f state (0 , i, c − 1 − i ) , we see that the transition rate to state (w +
, i, c − 1 − i ) is 

i + 1) μ1 exp (−�(i + 1 , c − 1 − i ) x ) dx, 

nd to state (w + x, i + 1 , c − i − 2) is 

c − 1 − i ) μ2 exp (−�(i + 1 , c − 1 − i ) x ) dx. 
568 
Now consider states (w, i, c − 1 − i ) with w > k and 0 ≤ i ≤ c −
 . An arrival in this state is of type 2. Hence, following the same

rgument as above, we see that the transition rate to state (w + 

, i, c − 1 − i ) is 

c − i ) μ2 exp (−�(i, c − i ) x ) dx, 

nd to state (w + x, i − 1 , c − i ) is 

μ1 exp (−�(i, c − i ) x ) dx. 

Finally, if W (t) > 0 , the VQT process changes continuously at 

ate −1 between arrivals. This completes the description of the 

volution of the process { (W (t) , S(t)) , t ≥ 0 } . 

. The single-server queue 

Before studying the general multi-server case ( c > 1 ), in this 

ection we briefly discuss the single-server queue. Since the pro- 

ess S(t) is identically equal to the null vector (0,0), the process 

 W (t) , t ≥ 0 } is sufficient for the state description. In fact, this pro-

ess corresponds to an M/M/1 queue in which the jump size de- 

ends on the state found upon arrival; see Fig. 1 for an illustra- 

ion of its sample path. In this case, the model is a special case 

f the M/G/1 variant of Model I in Bekker et al. (2009) ; see also

.g. Gaver & Miller (1962) for a classical related model with two 

ervice speeds. 

Defining F (t) = lim t→∞ 

P (0 < W (t) ≤ x ) as the stationary work-

oad distribution and by applying a level crossing argument, we 

btain the following two integro-differential equations 

 

′ (x ) = λπe −μ1 x + λ

∫ x 

0 

e −μ1 (x −y ) F ′ (y ) dy, 0 < x < k, (2) 

 

′ (x ) = λπe −μ1 x + λ

∫ x 

k 

e −μ2 (x −y ) F ′ (y ) dy 

+ λ

∫ k 

0 

e −μ1 (x −y ) F ′ (y ) dy, x > k. (3) 

here F ′ (x ) denotes the derivative of F (x ) and π = 

im t→∞ 

P (W (t) = 0) . The left-hand side gives the downcrossing 

robability flow at level x that is only obtained by a continuous 

ecline of the workload in absence of jumps. The right hand side 

ives the corresponding upcrossing probability flow at the same 

evel x , given by three possible contributions: a jump starting 

t the origin (the first addendum), a jump starting from a state 

 ∈ (0 , k ) (the second integral addendum) or a jump starting from

 state y ∈ [ k, x ) (the eventual third integral addendum). 

An alternative and more rigorous deduction of the 

qs. (2) and (3) is obtained in Theorem 1 as a special case of 

he Eqs. (11) and (12) . 

The integro-differential equations can be readily transformed 

nto ordinary differential equations by taking derivatives, that 

ives 

 

′′ (x ) + (μ1 − λ) F ′ (x ) = 0 , 0 < x < k, (4) 

 

′′ (x ) + (μ2 − λ) F ′ (x ) = (μ2 − μ1 ) e 
−μ1 (x −k ) F ′ (k ) , x > k. (5) 

Solving these equations, in terms of the density F ′ (x ) , we ob-

ain, for 0 < x < k , 

 

′ (x ) = λπe −(μ1 −λ) x 

hereas, for x > k , we have 

 

′ (x ) = λπe −(μ1 −λ) k 

[
(μ2 − μ1 ) e 

−μ1 (x −k ) 

μ2 − μ1 − λ
− λe −(μ2 −λ)(x −k ) 

μ2 − μ1 − λ

]
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Fig. 1. Sample path of the VQT process W (t) for the case c = 1 . 
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= 

(μ1 /λ − 1)(μ2 /λ − 1) 

(μ1 /λ)(μ2 /λ − 1) − (μ2 /μ1 − 1) e (λ−μ1 ) k 
. 

he VQT density allows for an intuitive interpretation. Specifically, 

n the region (0 , k ) jump sizes are always exp( μ1 ), which implies

hat F ′ (x ) is proportional to the limiting workload density in an 

/M/1 queue with service rate μ1 (and finite workload capacity k ). 

lso, observe that sample paths of W (t) in the region (k, ∞ ) are

lways initiated by an upcrossing of k with a jump of size exp( μ1 ),

fter which all jumps are exp( μ2 ) until a subsequent downcross- 

ng of k . This implies that W (t) in (k, ∞ ) behaves as the workload

rocess in an M/M/1 queue with service rate μ2 , but with an ex- 

eptional first service time in a busy period that has rate μ1 . This 

irectly explains the mixture of the two exponentials in (k, ∞ ) . 

. Multi-server queue: balance equations 

In this section, assuming c > 1 , we derive the balance equations 

or the VQT process (W (t) , S(t)) defined in Section 2 that are sat-

sfied by the limiting distribution. It is straightforward to see that 

he VQT process is stable if 

λ

μ2 c 
< 1 . (6) 

e shall assume stability from now on and focus on the limiting 

istribution of (W (t) , S(t)) . 

Now let, for x ≥ 0 and t ≥ 0 , 

 i (t, x ) = P (0 < W (t) ≤ x ; S(t) = (i, c − 1 − i )) , 0 ≤ i ≤ c − 1 . 

efine F i (x ) = lim t→∞ 

F i (t, x ) , and define the row vector function 

 (x ) = [ F 0 (x ) , F 1 (x ) , . . . , F c−1 (x )] , 

hose first two derivatives are denoted by F ′ (x ) and F ′′ (x ) . Also,

or the case that no customers are waiting, let 

(i, j) = lim 

t→∞ 

P (W (t) = 0 , S(t) = (i, j)) , 0 ≤ i + j ≤ c − 1 , 

nd 

i = [ π( j, i − j) , 0 ≤ j ≤ i ] , 0 ≤ i ≤ c − 1 . 

Using the transition rates derived above, we see that the π ’s 

atisfy the following balance equations: 
569 
λ + iμ1 + j μ2 ) π(i, j ) 

= (i + 1) μ1 π(i + 1 , j) + ( j + 1) μ2 π(i, j + 1) 

+ λ1 (i> 0) π(i − 1 , j) , 0 ≤ i + j < c − 1 . (7) 

ith 1 (·) denoting the indicator function. 

Next we derive the integro-differential equations satisfied by 

 (·) for the case there is queueing delay. 

We denote by I the identity matrix, whose size will be clear 

rom the context, and by ˆ I a rectangular matrix obtained from I

y adding a null column on the left, i.e. ˆ I = ( 0 I ) . Throughout 

he paper, we will use the convention of denoting by ̂  · a rectangu- 

ar (instead of square) matrix. 

Let B 1 be a c × c square matrix with entries given by 

B 1 (i, i ) = (i + 1) μ1 , 0 ≤ i ≤ c − 1 , 

 1 (i, i + 1) = (c − i − 1) μ2 , 0 ≤ i < c − 1 , 

B 1 (i, j) = 0 for all other (i, j) , 

nd B 2 be a c × c square matrix with entries given by 

B 2 (i, i ) = (c − i ) μ2 , 0 ≤ i ≤ c − 1 , 

 2 (i, i − 1) = iμ1 , 1 ≤ i ≤ c − 1 , 

B 2 (i, j) = 0 for all other (i, j) . 

We finally define the matrices 

i = diag ( jμ1 + (i − j) μ2 , 0 ≤ j ≤ i ) , 0 ≤ i ≤ c − 1 , (8)

nd 

˜ κ = μκ I + B 

−1 
κ (�c−1 ) B κ , κ ∈ { 1 , 2 } , (9) 

˜ 
 κ (x ) = exp (− ˜ �κx ) , κ ∈ { 1 , 2 } . (10) 

heorem 1. The limiting distribution vector F satisfies the following 

ntegro-differential equations: 

 

′ (x ) = λF (x ) − λ

∫ x 

0 

F (y ) B 1 
˜ Q 1 (x − y ) dy + F ′ (0) 

−λδc−1 B 1 (I − ˜ Q 1 (x )) ̃  �−1 
1 , 0 < x < k (11) 

 

′ (x ) = λF (x ) − λ

∫ x 

F (y ) B 2 
˜ Q 2 (x − y ) dy + F ′ (0) 
k 
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−λδc−1 B 1 (I − ˜ Q 1 (x )) ̃  �−1 
1 − λ

∫ k 

0 

F (y ) B 1 
˜ Q 1 (x − y ) dy 

−λF (k ) 

∫ x 

k 

(B 1 
˜ Q 1 (x − y ) − B 2 

˜ Q 2 (x − y )) dy, x > k. (12) 

roof. The proof follows standard probabilistic arguments 

nd uses an infinitesimal approach, which we defer to the 

ppendix A . �

Eqs. (11) and (12) are integro-differential equations. These equa- 

ions are related to level crossings principles; see Section 3 for the 

ingle-server case providing additional intuitive insight. To find the 

imiting distribution, we first convert them to second order linear 

on-homogeneous differential equations. They are given in the fol- 

owing theorem. To do so, first define the differential operators L 1 

nd L 2 as follows: 

 κG (x ) = G 

′′ (x ) − G 

′ (x )(λI − ˜ �κ ) + λG (x )(B κ − ˜ �κ ) κ ∈ { 1 , 2 } .
heorem 2. The limiting distribution vector F satisfies the following 

econd order differential equations: 

 1 F (x ) = α0 , 0 < x < k (13) 

 2 F (x ) = α1 + α2 
˜ Q 1 (x − k )( ̃  �1 − ˜ �2 ) , x > k (14) 

here 

0 = F ′ (0) ̃  �1 − δc−1 λB 1 (15) 

1 = α0 ̃
 �−1 
1 

˜ �2 − λF (k +)(B 1 ̃
 �−1 
1 

˜ �2 − B 2 ) (16) 

2 = α1 ̃
 �−1 
2 − F ′ (k +) + λF (k +)(I − B 2 ̃

 �−1 
2 ) . (17) 

roof. This follows from rewriting the integro-differential 

qs. (11) and (12) , see Appendix A . �

The next corollary gives the boundary conditions for F . Here 

nd later we use the notation g(x ±) := lim y → x ± g(y ) to denote the

ne-sided limits of the function g at x . 

orollary 1. The limiting distribution vector F satisfies the following 

oundary conditions: 

 (0) = 0 , (18) 

 (k −) = F (k +) , (19) 

 

′ (k −) = F ′ (k +) , (20) 

 

′ (0) = δc−1 (λI + �c−1 ) − δc−2 λˆ I . (21) 

roof. See Appendix A for details. �

emark 1. In the single-server case, Eq. (21) would reduce 

o F ′ (0) = λπ that combined with Eqs. (11) and (12) would give 

qs. (2) and (3) , respectively. Similary, Eqs. (13) and (14) respec- 

ively reduce to Eqs. (4) and (5) . 

. Solution of the balance equations 

In this section we determine the limiting distribution by de- 

eloping the analytical solution of the differential equations in 

heorem 2 and the boundary conditions in Corollary 1 . In fact, we 

resent two different ways to express the limiting distribution of 

he VQT process. The first is based on a scalar representation and 
570 
learly reveals that F (x ) can be written as a mixture of exponen- 

ials. This representation gives insight in the probabilistic interpre- 

ation of the queueing delay and is presented in Section 5.1 . The 

econd concerns a matrix representation and is more compact. This 

epresentation is more amenable for numerical computations and 

an be found in Section 5.2 . Finally, in Section 5.3 a detailed exam- 

le is explicitly solved. 

.1. Limiting distribution 

For the solution of Eq. (13) in Theorem 2 , we first need to 

olve the homogeneous equation. Hence, we first need to define 

everal backgrounds quantities. Consider the following quadratic 

igenvalue equation: 

[ θ2 I − θ (λI − ˜ �1 ) + λ(B 1 − ˜ �1 )] = 0 . (22) 

here are 2 c solutions { (θi , φi ) , 0 ≤ i ≤ 2 c − 1 } to the above sys-

em. Since the matrices involved in the above equation are all up- 

er triangular, it is easy to see that these 2 c solutions are given by 

he solutions to the following quadratic equations: 

2 − θ (λ − (i + 1) μ1 − (c − 1 − i ) μ2 ) 

− (c − 1 − i ) λμ2 = 0 , 0 ≤ i ≤ c − 1 . (23) 

f both conditions λ � = cμ1 and λ � = c(μ1 − μ2 ) are satisfied, all 

hese eigenvalues are real and distinct, see also Remark 3 for the 

ther cases. For the rest of the paper we implicitly assume that 

hese conditions hold. The solutions { θi , 0 ≤ i ≤ c − 1 } are given

y 

i = 

1 

2 

( λ − (i + 1) μ1 − (c − 1 − i ) μ2 ) 

− 1 

2 

√ 

(λ − (i + 1) μ1 − (c − 1 − i ) μ2 ) 2 + 4(c − 1 − i ) λμ2 . 

(24) 

ote that { θi , 0 ≤ i ≤ c − 2 } are negative and θc−1 = min { 0 , λ −
μ1 } . The solutions { θi + c , 0 ≤ i ≤ c − 1 } are positive and are given

y 

i + c = 

1 

2 

( λ − (i + 1) μ1 − (c − 1 − i ) μ2 ) 

+ 

1 

2 

√ 

(λ − (i + 1) μ1 − (c − 1 − i ) μ2 ) 2 + 4(c − 1 − i ) λμ2 . 

(25) 

ote that θ2 c−1 = max { 0 , λ − cμ1 } . The corresponding eigenvectors 

 φi , 0 ≤ i ≤ 2 c − 1 } are easy to compute. In particular, the eigenvec-

or corresponding to the null eigenvalue is denoted by 

∗ = [0 , 0 , . . . , 0 , 1] , (26) 

hich is a row vector of length c. 

Next, we turn to the homogeneous equation based on Eq. (14) . 

or this, consider the following quadratic eigenvalue equation: 

[ β2 I − β(λI − ˜ �2 ) + λ(B 2 − ˜ �2 )] = 0 . (27) 

here are 2 c solutions { (βi , ψ i ) , 0 ≤ i ≤ 2 c − 1 } to the above sys-

em. The βi ’s for 0 ≤ i ≤ c − 1 are given by 

i = 

1 

2 

(
λ−iμ1 −(c − i ) μ2 −

√ 

(λ − iμ1 − (c − i ) μ2 ) 2 + 4 iλμ1 

)
, 

(28) 

nd the βi + c ’s, for 0 ≤ i ≤ c − 1 are given by 

i + c = 

1 

2 

(
λ−iμ1 −(c−i ) μ2 + 

√ 

(λ−iμ1 −(c − i ) μ2 ) 2 + 4 iλμ1 

)
. 

(29) 



B. D’Auria, I.J.B.F. Adan, R. Bekker et al. European Journal of Operational Research 299 (2022) 566–579 

S  

d

i  

t  

t

ψ

w

R

t

e

s

v

c

1  

j  

t

i  

c  

s

a  

β

o

n

a

s

w

s

e

s

b  

h

L

t

(

(

I

α

P

t

o  

{
T

F

w

M

F

F

w

M

M

P

e

t

R

h

c

0  

f

f  

t

R

q

P

w  

C

t

c  

t

r

T  

p

2

2

2

2

(

a

b

w

P

E

i

 

1  

c  

k  

e

t

s

t

imilarly to Eqs. (24) , and (25) , all these eigenvalues are real and

istinct, assuming that λ � = c(μ2 − μ1 ) . The eigenvalues { βi , 0 ≤
 ≤ c − 1 } are negative, βc = 0 and { βi + c , 1 ≤ i ≤ c − 1 } are posi-

ive. The corresponding eigenvectors { ψ i , 0 ≤ i ≤ 2 c − 1 } are easy

o compute. In particular, 

 c = [1 , 0 , . . . , 0 , 0] , (30) 

hich is a row vector of length c. 

emark 2. The parameters θi and βi may be related to the vir- 

ual waiting in regular M/M/ c queues. For instance, exp (θc −1 ) = 

xp (λ − c μ1 ) and exp (β0 ) = exp (λ − c μ2 ) are proportional to the 

tationary densities of the VQT in M/M/ c queues with only ser- 

ice rates μ1 and μ2 , respectively. Moreover, consider the pro- 

ess W (t) ∈ (0 , k ) and fix the server state process S(t) = (i, c −
 − i ) ; then the VQT process is decreasing with rate 1 and makes

umps with rate λ of size exp( �(i + 1 , c − 1 − i ) ). Upon a jump,

he server state process S(t) changes with probability (c − 1 −
 ) μ2 / �(i + 1 , c − 1 − i ) , which may be interpreted as a type of

learing ( Boxma, Perry, & Stadje, 2001 ). It may be verified that the

tationary density of such a ‘clearing system’ is a mixture of exp( θi ) 

nd exp( θi + c ). A similar argument applies to W (t) > k in terms of

i . 

As mentioned, to get the solution of the differential equations 

f Theorem 2 we first need to find the solution of the homoge- 

eous differential equations using the above, and then we look for 

 particular solution. However, in order to construct a particular 

olution, since both Eqs. (13) and (14) admit zero as eigenvalue, 

e would need together with the left eigenvectors φ∗ and ψ c , re- 

pectively defined in Eqs. (26) and (30) , the corresponding right 

igenvectors that we denote by ˜ φ∗ and 

˜ ψ c . The following result 

hows an important relation between those eigenvectors that will 

e used later in the proof of Theorem 3 to show that F (x ) does not

ave a linear term. 

emma 1. Let ˜ φ∗ and ˜ ψ c be the right eigenvectors corresponding to 

he left eigenvectors φ∗ and ψ c , i.e. satisfing the following relations 

B 1 − ˜ �1 ) ̃  φ∗ = 0 , (31) 

B 2 − ˜ �2 ) ˜ ψ c = 0 . (32) 

t follows that 

1 · ˜ ψ c = 0 ⇒ α0 · ˜ φ∗ = 0 . (33) 

roof. The proof uses linear algebra techniques and is included in 

he Appendix A . �

The next result gives the solution of the differential equations 

f Theorem 2 in terms of 4 c unknowns { a i , 0 ≤ i ≤ 2 c − 1 } and

 b i , 0 ≤ i ≤ c} . 
heorem 3. For 0 < x < k , the solution is given by 

 (x ) = 

2 c−1 ∑ 

i =0 

a i e 
θi x φi + α0 M 0 , 0 ≤ x ≤ k, (34) 

ith 

 0 = (λ(B 1 − ˜ �1 ) + diag ( φ∗)) −1 . (35) 

or x > k , the solution is given by 

 (x ) = 

c−1 ∑ 

i =0 

b i e 
βi (x −k ) ψ i +b c ψ c + α1 M 1 + α2 

˜ Q 1 (x −k )( ̃  �1 − ˜ �2 ) M 2 , 

(36) 

ith 

 1 = (λ(B 2 − ˜ �2 ) + diag ( ψ c )) 
−1 , (37) 
571 
 2 = ((cμ1 + λ)(cμ1 I − ˜ �2 ) + λB 2 ) 
−1 . (38) 

roof. This follows from solving the systems of second order lin- 

ar differential equations below and above level k in Theorem 2 , 

hereby also utilizing Lemma 1 ; see Appendix A . �

emark 3. We note that in the special case that λ = cμ1 , we 

ave two identical eigenvalues θc−1 = θ2 c−1 = 0 . Furthermore, in 

ase λ = c(μ1 − μ2 ) , it holds that θi = θc−1 = λ − cμ1 for all i = 

 , . . . , c − 1 . In that case, F (x ) for 0 < x < k , contains terms of the

orm 

∑ c−1 
i =0 a i x 

i e (λ−cμ1 ) x . Similarly, if λ = c(μ2 − μ1 ) , then the βi 

or i = 0 , . . . , c − 1 are identical to β0 and the mixture of exponen-

ials in F (x ) for x > k needs to be replaced. 

emark 4. In case μ1 = μ2 the model reduces to a simple M/M/c 

ueue. Therefore, in this case the VQT distribution is given by 

 (W ≤ x ) = 1 − C(c, λ/μ2 ) 
1 

1 − ρ
exp {−cμ2 (1 − ρ) x } , 

here C(c, λ/μ2 ) = 1 / (1 + (1 − ρ)( c! 
cρc ) 

∑ c−1 
k =0 

(cρ) k 

k ! 
) is the Erlang’s

 formula and ρ = λ/ (cμ2 ) is the server utilization . 

We next use the boundary conditions in Corollary 1 to solve for 

he 3 c + 1 unknown constants { a i , 0 ≤ i ≤ 2 c − 1 } and { b i , 0 ≤ i ≤
} . We also have c(c + 1) / 2 probabilities π(i, j) , 0 ≤ i + j ≤ c − 1

hat need to be determined. The result is given in the next theo- 

em. 

heorem 4. The constants { a i , 0 ≤ i ≤ 2 c − 1 } , { b i , 0 ≤ i ≤ c} and

robabilities π(i, j) , 0 ≤ i + j ≤ c − 1 satisfy the following equations: 

 c−1 ∑ 

i =0 

a i φi + α0 M 0 = 0 , (39) 

 c−1 ∑ 

i =0 

a i e 
θi k φi + α0 M 0 = 

c−1 ∑ 

i =0 

b i ψ i + b c ψ c + α1 M 1 + α2 ( ̃  �1 − ˜ �2 ) M 2 , 

(40) 

 c−1 ∑ 

i =0 

a i θi e 
θi k φi = 

c−1 ∑ 

i =0 

b i βi ψ i − α2 ̃
 �1 ( ̃  �1 − ˜ �2 ) M 2 , (41) 

 c−1 ∑ 

i =0 

a i θi φi = δc−1 (λI + �c−1 ) − δc−2 λˆ I , (42) 

λ + iμ1 + j μ2 ) π(i, j ) 

= (i + 1) μ1 π(i + 1 , j) + ( j + 1) μ2 π(i, j + 1) 

+ λ1 (i> 0) π(i − 1 , j) , 0 ≤ i + j < c − 1 (43) 

nd the normalizing equation 

 c ψ c 1 + α1 M 1 1 + 

i + j= c−1 ∑ 

i, j : i + j =0 

π(i, j) = 1 , (44) 

here 1 denotes the all-one vector. 

roof. Eqs. (39) –(42) follow from the boundary conditions in 

qs. (18) –(21) , respectively. Eq. (43) presents the balance equations 

n Eq. (7) . Finally, Eq. (44) is the normalizing equation. �

Eqs. (39) –(44) from the above theorem yield 4 c + c(c − 1) / 2 +
 = 3 c + 1 + c(c + 1) / 2 linear equations for the 3 c + 1 unknown

onstants { a i , 0 ≤ i ≤ 2 c − 1 } , { b i , 0 ≤ i ≤ c} and the c(c + 1) / 2 un-

nown probabilities π(i, j) , 0 ≤ i + j ≤ c − 1 . Theorem 4 gives nec-

ssary conditions for the constants to satisfy, but it does not assure 

hat Eqs. (39) –(44) characterize them. In the following section we 

how, starting from these equations, how we are able to construct 

he unique solution. 
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.2. Computing the solution 

For the limiting distribution in Theorem 3 , we need 

heorem 4 that expresses all constants as a solution of a quite 

arge system of linear equations. In this section we try to express 

he solution in simpler terms that are easier to implement in 

 computer language equipped with basic matrix functions. In 

ddition the contruction of the solution given below shows that 

he system in Theorem 4 only admits a unique solution. 

First of all, it helps to write the function F (x ) , given in

qs. (34) and (36) , in matrix form. We start by defining the matri-

es − = [ φt 
i 
] t , 0 ≤ i ≤ c − 1 and + = [ φt 

i 
] t , c ≤ i ≤ 2 c − 1 , whose

ows are given by the eigenvectors corresponding to the eigen- 

alues in Eqs. (24) and (25) . We also define the diagonal matri- 

es �− = diag (θi ) , 0 ≤ i ≤ c − 1 , and �+ = diag (θi ) , c ≤ i ≤ 2 c − 1 .

hen, the matrices U 

±
1 

= (±) −1 �±±, solve the equation 

 

2 
1 − U 1 (λI − ˜ �1 ) + λ(B 1 − ˜ �1 ) = 0 , 

ith U 

−
1 

having all non-positive (negative) eigenvalues, U 

+ 
1 

having 

ll positive (non-negative) eigenvalues if λ > cμ1 ( λ < cμ1 ). 

In a similar way we construct the matrices U 

±
2 

solving the equa- 

ion 

 

2 
2 − U 2 (λI − ˜ �2 ) + λ(B 2 − ˜ �2 ) = 0 

ith U 

−
2 

with all negative eigenvalues and U 

+ 
2 

with all non- 

egative eigenvalues. This allows us to rewrite the expression in 

qs. (34) and (36) as 

 (x ) = a −e U 
−
1 

x + a + e U 
+ 
1 

x + α0 M 0 , 0 ≤ x ≤ k, 

 (x ) = b −e U 
−
2 

x + b c ψ c + α1 M 1 + α2 
˜ Q 1 (x −k )( ̃  �1 − ˜ �2 ) M 2 , x ≥ k, 

or unknown constant vectors a −, a + and b −. We then express 

hese vectors in terms of the unknown vector F ′ (0) by using the 

ontinuity conditions given in Corollary 1 . This gives the following 

asier expressions 

 (x ) = (F ′ (0) + α0 M 0 U 

−
1 )(U 

+ 
1 − U 

−
1 ) 

−1 (e U 
+ 
1 

x − e U 
−
1 

x ) 

+ α0 M 0 (I − e U 
−
1 

x ) , 0 ≤ x ≤ k, (45) 

 (x ) = F (k −) e U 
−
2 

(x −k ) + (b c ψ c + α1 M 1 )(I − e U 
−
2 

(x −k ) ) 

−α2 ( ̃  �1 − ˜ �2 ) M 2 e 
U −

2 
(x −k ) 

+ α2 
˜ Q 1 (x − k )( ̃  �1 − ˜ �2 ) M 2 , x ≥ k. (46) 

In the theorem below, F ′ (0) is expressed in terms of δc−1 and 

 c . 

heorem 5. The function F , given in Eqs. (45) and (46) , may be writ-

en in terms of the constant b c and the vector δc−1 , since 

 

′ (0) = δc−1 H 16 − b c ψ c H 15 , (47) 

here H 15 and H 16 are defined in Eqs. (A.26) and (A.27) , respectively. 

In particular it follows that 

 (∞ ) = δc−1 H 20 + b c ψ c H 19 , (48) 

ith H 19 and H 20 defined in Eqs. (A.29) and (A.30) , respectively. 

roof. This follows from Corollary 1 and some tedious rewriting, 

ee Appendix A . �

Having expressed the function F (x ) for x ≥ 0 , in terms of δc−1 ,

t is only left to find the probability of the discrete states, together 

ith the constant b c that can be found by using the normalizing 

quation. This is the result of following theorem. 

heorem 6. The discrete probabilities can be computed as follows 

= b c ψ c ̂  H , 0 ≤ i ≤ c − 1 , (49) 
i i 

572 
here the matrices ˆ H i are defined in Eq. (A.35) and with the constant 

 c computed as 

 

−1 
c = ψ c 

( 

H 19 + 

ˆ H c−1 H 20 + 

∑ 

0 ≤n ≤c−1 

ˆ H n 

) 

1 , (50) 

here H 19 and H 20 are given in Eqs. (A.29) and (A.30) in the 

ppendix A . 

roof. The linear system of equations may be rewritten to recur- 

ively express δc−1 in terms of b c , whereas b c follows from normal- 

zation; see Appendix A . �

.3. Numerical example for c = 2 

As an illustration of the balance equations and the limiting dis- 

ribution, we consider the 2-server case in this section. A visual 

epresentation of the transition diagram of (W (t) , S 1 (t) , S 2 (t)) can

e found in Fig. 2 . To avoid excessive expressions, we focus on a 

umerical example with specific parameters. We fix k = 0 . 45 , λ = 

 , μ1 = 0 . 75 and μ2 = 1 . 12 . The second order differential equa- 

ions of Theorem 2 then looks as follows: for 0 ≤ x < 0 . 45 , we 

ave 

F ′′ 0 (x ) 1 . 13 F ′ 0 (x ) 2 . 24 F 0 (x ) = 1 . 87 F ′ 0 (0) 1 . 5 π(0 , 1) , 

 

′′ 
1 (x ) 0 . 55 F ′ 0 (x ) 0 . 5 F ′ 1 (x ) 1 . 13 F 0 (x ) = 0 . 55 F ′ 0 (0) 1 . 5 F ′ 1 (0) 

−2 . 24 π(0 , 1) 3 . 0 π(1 , 0) , 

hereas, in the region x > 0 . 45 , we obtain 

 

′′ 
0 (x ) + 2 . 24 F ′ 0 (x ) − 2 . 25 F ′ 1 (x ) + 2 . 0 F 1 (x ) = 

+ 2 . 24 F ′ 0 (0) − 0 . 25 F ′ 1 (0) − 1 . 8 π(0 , 1) 

+ 2 . 68 F 0 ( 0 . 45 +) + 1 . 5 F 1 ( 0 . 45 +) 

0 . 09 e −1 . 87 x (F ′ 0 (0) − F ′ 0 ( 0 . 45 +)) 

0 . 07 e −1 . 87 x π(0 , 1) 

0 . 11 e −1 . 87 x F 0 ( 0 . 45 +) , 

 

′′ 
1 (x ) − 0 . 13 F ′ 1 (x ) − 1 . 5 F 1 (x ) = 

+ 1 . 87 F ′ 1 (0) − 3 . 74 π(1 , 0) − 1 . 5 F 1 ( 0 . 45 +) 

+( −0 . 29 e 1 . 87 x − 0 . 2 e −1 . 5 x )(F ′ 0 (0) − F ′ 0 ( 0 . 45 +)) 

0 . 13 e 1 . 5 x (F ′ 1 (0) − F ′ 1 ( 0 . 45 +)) 

0 . 24 e 1 . 87 x π(0 , 1) − 0 . 26 e −1 . 5 x π(1 , 0) 

+( 0 . 35 e −1 . 87 x − 0 . 39 e 1 . 5 x ) F 0 ( 0 . 45 +) . 

he boundary conditions in Corollary 1 are rather straightforward. 

y Theorem 5 , the solution of the above system of differential 

quations is unique depending on a constant b c and the compo- 

ents π(1 , 0) and π(0 , 1) . That is the quantities F ′ 0 (0) and F ′ 1 (0)

re determined given those values as follows 

 

′ 
0 (0) = 1 . 42 π(0 , 1) 2 . 34 π(1 , 0) 0 . 18286 b c , 

 

′ 
1 (0) = 0 . 95 π(0 , 1) 1 . 09 π(1 , 0) 0 . 16026 b c . 

t follows that the remaining unknowns π(0 , 0) , π(1 , 0) , π(0 , 1)

nd b c can be determined by imposing the following constraints 

 

′ 
0 (0) = 3 . 12 π(0 , 1) , 

 

′ 
1 (0) = 2 . 75 π(1 , 0) − 2 π(0 , 0) , 

0 = −2 π(0 , 0) + 0 . 75 π(1 , 0) + 1 . 12 π(0 , 1) , 

1 = π(0 , 0) + π(1 , 0) + π(0 , 1) + F 0 (∞ ) + F 1 (∞ ) , 

ielding 

(0 , 0) = 3 . 12 , b c = 0 . 827051 , 

(0 , 1) = 1 . 08889 , π(1 , 0) = 4 . 35035 . 

he expressions for F 0 (x ) and F 1 (x ) , in the interval 0 ≤ x ≤ 0 . 45 ,

re 
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Fig. 2. Sketch of the transition diagram for the case c = 2 . 

Fig. 3. Stationary VQT cumulative distribution function for λ = 2 , μ1 = 0 . 75 , μ2 = 1 . 12 and k = 0 . 45 . 1 

Fig. 4. Cdf of the stationary VQT for k = 5 , c = 3 , λ = 2 , μ1 = 0 . 8 , and μ2 ∈ { 0 . 7 , 0 . 8 , 0 . 9 } . 1 
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F
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c
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t
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t

1 The python algorithm to generate Figs. 3 –7 is avaiblabe for downloading at the 

public repository ( D’Auria, 2021b ); see D’Auria (2021a) for an online implementa- 

tion. 
 0 (x ) = 0 . 0214 e +1 . 5631 x − 0 . 0686 e −1 . 4331 x − 0 . 0211 , 

 1 (x ) = 0 . 0258 e +1 . 5631 x + 0 . 2303 e +0 . 5 x + 0 . 0085 e 1 . 4331 x − 0 . 18910 ,

hereas, in the interval x > 0 . 45 , they are given by 

 0 (x ) = −0 : 9616 e −0:24(x −0 . 45) + 0 . 2126 e −1 . 1615(x −0 . 45) 

+ 0 . 8271 + 0 . 9281 e −1 . 5(x −0 . 45) 

 1 (x ) = −0 . 0996 e −1 . 1615(x −0 . 45) + 0 . 0961 − 0 . 5847 e −1 . 5(x −0 . 45) 
. 

ote that θ1 = | λ − cμ1 | = +0 . 5 and β0 = λ − cμ2 = −0 . 24 . The

istribution of the virtual queueing time is visualized in Fig. 3 , 

long with the cases of 3 and 4 servers. 
573 
. Numerical insights 

In this section we focus on numerical insights. Specifically, we 

onsider W , the stationary distribution of the queueing time or 

QT. Note that the results in Section 5 contain more informa- 

ion, as they also provide the server state. To obtain VQT, ob- 

erve that P (W = 0) = 

∑ 

i, j :0 ≤i + j ≤c−1 π(i, j) and P (W ≤ x ) = P (W =
) + F (x ) 1 . From F (x ) , we may also directly derive the mean sta-

ionary VQT, which we give here in matrix representation. 1 
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Fig. 5. Stationary VQT density for k = 5 , c = 3 , λ = 2 , μ2 = 0 . 8 , and μ1 ∈ { 0 . 3 , 0 . 6 , 0 . 67 , 0 . 74 , 0 . 8 } . 1 

Fig. 6. Cdf of the stationary VQT for k = 5 , μ1 = 0 . 8 , μ2 = 0 . 7 , (c, λ) ∈ { (2 , 4 / 3) , (3 , 2) , (4 , 8 / 3) } . 1 

Fig. 7. Expected VQT for k = 5 , μ2 = 0 . 8 , c = 3 and μ1 ∈ { 0 . 3 , 0 . 6 , 0 . 9 } . 1 
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emma 2. The mean stationary VQT is computed as follows 

 [ W ] = (F ′ (0) + α0 M 0 U 

−
1 )(U 

+ 
1 − U 

−
1 ) 

−1 I(0 , k ;U 

+ 
1 ) 1 

− ((F ′ (0) + α0 M 0 U 

−
1 )(U 

+ 
1 − U 

−
1 ) 

−1 + α0 M 0 ) I(0 , k ;U 

−
1 ) 1 

+ (F (k ) −b c ψ c −α1 M 1 −α2 ( ̃  �1 − ˜ �2 ) M 2 )((U 

−
2 ) 

−1 −kI) 1 

−α2 ( ̃  �−1 
1 + kI)( ̃  �1 − ˜ �2 ) M 2 1 , (51) 

here I(a, b; D ) is defined as in Eq. (A.38) . 

roof. The results follow from the density F ′ (x ) and integration by 

arts, see Appendix A . �
574 
First, we consider the impact of having different μ1 and μ2 . 

n case μ1 = μ2 , the system corresponds to the classical M/M/c 

ueue, whereas there is a slowdown (speedup) effect when μ2 < 

1 ( μ2 > μ1 ). As a basic example, we take k = 5 , c = 3 , λ = 2 ,

nd μ1 = 0 . 8 , whereas μ2 ∈ { 0 . 7 , 0 . 8 , 0 . 9 } . The cumulative distri-

ution function (cdf) of W is visualized in Fig. 4 . Clearly, in case 

f a slowdown ( μ2 = 0 . 7 ), the queueing time strongly deteriorates 

ompared to the standard situation where μ2 = μ1 = 0 . 8 . In fact, if

2 ≤ 2 / 3 the system would even become unstable. For the current 

xample, the impact of a speedup ( μ2 = 0 . 9 ) is relatively small

ompared to the standard situation, as the basic service rate of 0.8 
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s already sufficient to provide reasonable queueing times. Hence, 

aking differences in service rates into account is crucial to provide 

eliable queueing times, especially in case of slowdowns. 

Second, the shape of the VQT density may also be strongly 

ffected by speedups (or slowdowns), i.e., differences in μ1 and 

2 . The VQT density is strictly decreasing for the standard M/M/c 

ueue, which will also hold in case μ2 < μ1 (slowdown). However, 

his is no longer necessarily the case for speedups, see Fig. 5 for 

 = 5 , c = 3 , λ = 2 , μ2 = 0 . 8 , and μ1 ∈ { 0 . 3 , 0 . 6 , 0 . 67 , 0 . 74 , 0 . 8 } . In

articular, for more extreme variants of a speedup effect, the peak 

n the VQT density may be around or above level k . 

Third, we consider the impact of the number of servers, i.e., 

cale of the system. Let k = 5 , μ1 = 0 . 8 , μ2 = 0 . 7 (slowdown), and

onsider systems with 2, 3, and 4 servers. We let λ be 4/3, 2, and

/3, respectively, such that the loads λ/ (cμi ) , for i = 1 , 2 are iden-

ical. The cdf of the stationary VQT is presented in Fig. 6 . Clearly,

s the number of servers increases the queueing time improves, 

hich is in line with economies of scale for regular M/M/c queues. 

e like to note that the relative ordering of cdf’s below k may 

hange in case λ ≥ cμ1 (which we did not visualize here). 

Finally, we consider the expected VQT. It is well known that 

 [ W ] is convex and increasing in λ for regular M/M/c queues with

and μ fixed. This property is not necessarily preserved in the 

urrent model, see Fig. 7 . Specifically, in case μ1 is relatively small 

 μ1 = 0 . 3 in Fig. 7 ), a large fraction of the customers will experi-

nce a VQT of around k , assuming the system to be stable. This

estroys the convexity of E [ W ] as a function of λ. Moreover, the

mpact of μ1 is also considerable for more heavily loaded systems. 

or instance, comparing E [ W ] for different μ1 ∈ { 0 . 3 , 0 . 6 , 0 . 9 } with

xed λ/ (cμ2 ) = 0 . 9 , we see that the mean VQT is much smaller

hen a lot of customers can be served with rate μ1 (i.e., for 

1 = 0 . 9 ). To conclude this section, we note that neglecting the 

ifferences in service rate leads to rather inadequate performance 

haracteristics. 

. Conclusions, implications, and future research 

In this paper we analyze the queueing delay in M/M/c types 

f queues in which the service time is affected by the experienced 

ueueing delay. Such a mechanism may be typical from a customer 

erspective in which excessive waiting is associated with longer 

ervice times. Specifically, the service rate is μ1 ( μ2 ) if the queue- 

ng time of the customer in service is below (above) a threshold. 

e show how it is possible to derive the virtual queueing time, 

sing a specific Markov chain. The resulting queueing time can be 

ound in closed form and consists of a mixture of exponentials. 

Our key observation is that it is wholy inadequate to ignore 

ifferences in service times in the model when they do exist in 

ractice. In case of a slowdown ( μ2 < μ1 ), the performance may 

trongly deteriorate compared to the standard situation with equal 

ervice rates. In case of speedup ( μ2 > μ1 ), situations may arise 

here the queueing time remains acceptable, but many customers 

ave to wait. In fact, some queueing properties remain valid, such 

s the economies of scale, whereas some properties are not, such 

s a decreasing density of the queueing time and the convexity of 

he expected queueing time as a function of the arrival rate. As- 

essing the precise queueing time behavior without an appropriate 

odel is difficult, and management should be supported with an 

nline implementation (see e.g. D’Auria, 2021a ). 

Finally, we mention some topics for further research. First, in- 

luding abandonments is an interesting topic for further research. 

uch abandonments can be incorporated in the state description 

f our specific Markov chain similar to Adan et al. (2019) . Second, 

xtending the service times to phase-type distributions provides 

nsight in the impact of the variability in service times. Includ- 

ng the phase of each server in the state description then leads 
575 
o a higher dimensional state description, see e.g. Ramaswami & 

ucantoni (1985) for an algorithmic approach in case of the G/PH/c 

ueue. Third, a challenge is to extend the current model to allow 

or multiple thresholds. 

ppendix A. Proofs 

In this appendix, we present the technical proofs of the results 

resented throughout the paper. 

Proof of Theorem 1 : Let 0 ≤ x < k , and 0 ≤ i ≤ c − 1 be fixed.

efine P i (W (t) ∈ A ) = P (W (t) ∈ A, S(t) = (i, c − 1 − i )) , with A ⊂ R .

onditioning on the jump size being exactly equal to x − y , we 

et 

 i (t, x ) = 

∫ x 

0 

P i (W (t − h ) ≤ y + h ) λh (i + 1) μ1 e 
−�(i +1 ,c−1 −i )(x −y ) dy

+ 

∫ x 

0 

P i −1 (W (t − h ) ≤ y + h ) λh (c − i ) μ2 e 
−�(i,c−i )(x −y ) dy

+ (1 − λh ) P i (h < W (t − h ) ≤ x + h ) + o(h ) . (A.1)

Define 

 κ (x ) = exp (−(μκ I + �c−1 ) x ) , κ ∈ { 1 , 2 } , 
et t → ∞ , divide by h , and rearrange terms to get 

1 

h 

(F i (x ) − F i (x + h )) = −λF i (x + h ) − (1 − λh ) 
1 

h 

(F i (h ) − 0) 

+ λ
c−1 ∑ 

j=0 

∫ x 

0 

(π( j, c − 1 − j) + F j (y + h )) 
c−1 ∑ 

k =0 

Q 1 (x − y ) B 1 (k, i ) dy 

+ o(h ) /h. 

etting h → 0 and multiplying both sides by −1 , and noting that 

 (0) = 0 , we get Eq. (11) , after noticing that Q 1 B 1 = B 1 ˜ Q 1 . 

For x > k , again with P i (W (t) ∈ A ) = P (W (t) ∈ A, S(t) = (i, c −
 − i )) for A ⊂ R , we have 

 i (t, x ) = 

∫ k 

0 

P i (W (t − h ) ≤ y + h ) λh (i + 1) μ1 e 
−�(i +1 ,c−1 −i )(x −y ) dy 

+ 

∫ k 

0 

P i −1 (W (t − h ) ≤ y + h ) λh (c − i ) μ2 e 
−�(i,c−i )(x −y ) dy 

+ 

∫ x 

k 

P i (W (t − h ) ≤ k ) λh (i + 1) μ1 e 
−�(i +1 ,c−1 −i )(x −y ) dy 

+ 

∫ x 

k 

P i −1 (W (t − h ) ≤ k ) λh (c − i ) μ2 e 
−�(i,c−i )(x −y ) dy 

+ 

∫ x 

k 

P i (k < W (t − h ) ≤ y + h ) λh (c − i ) μ2 e 
−�(i,c−i )(x −y ) dy

+ 

∫ x 

k 

P i +1 (k < W (t − h ) ≤ y + h ) 

λh (i + 1) μ1 e 
−�(i +1 ,c−1 −i )(x −y ) dy 

+ (1 − λh ) P i (h < W (t − h ) ≤ x + h ) + o(h ) . (A.2)

ollowing the same steps as above, we get 

F ′ (x ) = −λF (x ) − F ′ (0) 

+ λ

∫ k 

0 

(δc−1 + F (y )) Q 1 (x − y ) B 1 dy + λ(δc−1 + F (k )) ∫ x 

k 

Q 1 (x − y ) B 1 dy 

+ λ

∫ x 

k 

(δc−1 + F (y )) Q 2 (x − y ) B 2 dy − λ(δc−1 + F (k )) ∫ x 

k 

Q 2 (x − y ) B 2 dy. 

ubstituting Q κB κ = B κ ˜ Q κ , κ ∈ { 1 , 2 } , yields Eq. (12) . �
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Proof of Theorem 2 : First consider Eq. (11) . Note that 

˜ 
 

′ 
κ (x ) = − ˜ Q κ (x ) ̃  �κ, κ = 1 , 2 . 

ince B 1 is invertible, we can use Eq. (11) to get, for 0 ≤ x ≤ k , ∫ x 

0 

F (y ) B 1 
˜ Q 1 (x − y ) dy = −F ′ (x ) + F ′ (0) + λF (x ) 

−λδc−1 B 1 (I − ˜ Q 1 (x )) ̃  �−1 
1 . (A.3) 

aking the derivative with respect to x on both sides of Eq. (11) ,

e get 

 

′′ (x ) = λF ′ (x ) − λF (x ) B 1 

+ λ

∫ x 

0 

F (y ) B 1 
˜ Q 1 (x − y ) ̃  �1 dy − λδc−1 B 1 

˜ Q 1 (x ) . 

ubstituting Eq. (A.3) in the above equation we get Eq. (13) with 

0 = F ′ (0) ̃  �1 − δc−1 λB 1 , 

= [ δc−1 (λI + �c−1 ) − δc−2 λˆ I ] ̃  �1 − δc−1 λB 1 . (A.4) 

ere we have used Eq. (21) to eliminate F ′ (0) . This is a second

rder linear differential equation with constant coefficients and a 

onstant driving function on the right hand side. 

Next we consider Eq. (12) . First, note that, for x > k , we get, by

pplying Eq. (A.3) , that ∫ k 

0 

F (y ) B 1 
˜ Q 1 (x − y ) dy = 

[
λ

∫ k 

0 

F (y ) B 1 
˜ Q 1 (k − y ) dy 

]
˜ Q 1 (x − k ) 

= [ −F ′ (k ) + F ′ (0) + λF (k ) 

−λδc−1 B 1 (I− ˜ Q 1 (k )) ̃  �−1 
1 ] ̃  Q 1 (x −k ) . 

(A.5) 

e also have, for x > k , 

 x 

k 

B κ ˜ Q κ (x − y ) dy = B κ (I − ˜ Q κ (x − k )) ̃  �−1 
κ , κ = 1 , 2 . (A.6)

ubstituting in the RHS of Eq. (12) we get, for x > k , 

 

′ (x ) = λF (x ) − λ

∫ x 

k 

F (y ) B 2 
˜ Q 2 (x − y ) dy 

+ α1 ̃
 �−1 
2 − α2 

˜ Q 1 (x − k ) − λF (k ) B 2 
˜ Q 2 (x − k ) ̃  �−1 

2 , (A.7) 

here 

1 ̃
 �−1 
2 = F ′ (0) − λF (k )(B 1 ̃

 �−1 
1 − B 2 ̃

 �−1 
2 ) − δc−1 λB 1 ̃

 �−1 
1 , 

α2 = λF (k )(I − B 1 ̃
 �−1 
1 ) − (F ′ (k ) − F ′ (0)) − δc−1 λB 1 ̃

 �−1 
1 . 

ifferentiating both sides of Eq. (A.7) , we get 

 

′′ (x ) = λF ′ (x ) − λF (x ) B 2 + λ

∫ x 

k 

F (y ) B 2 
˜ Q 2 (x − y ) ̃  �2 dy 

α2 
˜ Q 1 (x − k ) ̃  �1 + λF (k ) B 2 

˜ Q 2 (x − k ) . (A.8) 

sing (A.7) we have ∫ x 

k 

F (y ) B 2 
˜ Q 2 (x − y ) dy = − F ′ (x ) + λF (x ) + α1 ̃

 �−1 
2 −α2 

˜ Q 1 (x −k ) 

−λF (k ) B 2 
˜ Q 2 (x − k ) ̃  �−1 

2 . (A.9) 

ubstituting Eq. (A.9) in the RHS of Eq. (A.8) we get Eq. (14) . This

ompletes the proof. �
Proof of Corollary 1 : Eq. (18) follows from the definition of 

 . Eq. (19) follows by taking the left and right limits at k in

qs. (A.1) and (A.2) , respectively. Eq. (20) follows by taking the left 

nd right limits at k in Eqs. (11) and (12) , respectively. 

The balance equation for state (0 , i, c − 1 − i ) yields 
576 
λ + iμ1 + (c − 1 − i ) μ2 ) π(i, c − 1 − i ) 

= F ′ i (0) + λπ(i − 1 , c − 1 − i ) , 0 ≤ i ≤ c − 1 . 

n matrix form this can be written as 

 

′ (0) = δc−1 (λI + �c−1 ) − δc−2 λˆ I , 

hich is Eq. (21) . �

emma 3. Let M be a c × c matrix with entries given by 

(0 , c − 1) = cμ2 , 

(1 , c − 1) = μ1 , 

M(i, i − 1) = 

i 

c − i 

μ1 

μ2 

, 0 < i < c − 1 , 

M(i, j) = 0 for all other (i, j) . 

t is non-singular and satisfies the following equation 

(B 1 − μ1 I − �0 ) = (B 2 − μ2 I − �0 ) . (A.10) 

roof. For 0 ≤ i, j ≤ c − 1 , we write 

B 1 (i, j) = { i, j} (i + 1) μ1 + { i + 1 , j} (c − i − 1) μ2 , 

B 2 (i, j) = { i, j} (c − i ) μ2 + { i − 1 , j} iμ1 , 

0 (i, j) = { i, j} (iμ1 + (c − i − 1) μ2 ) , 

M(i, j) = { i + c − 1 , j} cμ2 + { i + c − 1 , j + 1 } iμ1 

−{ i, j + 1 } iμ1 / ((c − i ) μ2 ) , 

here { i, j} is the Kronecker delta function, that is 

 i, j} = 

{
1 if i = j, 

0 otherwise. 
(A.11) 

et Y κ = B κ − μκ I − �0 , κ ∈ { 1 , 2 } . It follows that 

 1 (i, j) = ({ i + 1 , j} − { i, j} )(c − i − 1) μ2 , 

 2 (i, j) = ({ i − 1 , j} − { i, j} ) iμ1 . 

hen by matrix multiplication we have 

MY 1 )(i, j) 

= 

c−1 ∑ 

k =0 

M(i, k ) Y 1 (k, j) 

= 

c−1 ∑ 

k =0 

(
{ i + c − 1 , k } cμ2 + { i + c − 1 , k + 1 } iμ1 

)
Y 1 (k, j) 

−
c−1 ∑ 

k =0 

{ i, k + 1 } i 

c − i 

μ1 

μ2 

Y 1 (k, j) 

= 

(
{ i, 0 } cμ2 + { i, 1 } μ1 

)
Y 1 (c − 1 , j) − i 

c − i 

μ1 

μ2 

Y 1 (i − 1 , j) 

= − i 

c − i 

μ1 

μ2 

Y 1 (i − 1 , j) = ({ i − 1 , j} − { i, j } ) iμ1 = Y 2 (i, j ) . 

�

Proof of Lemma 1 : Let us assume that the left equation in 

q. (33) holds, that is α1 · ˜ ψ c = 0 . Then using the definition of α1 ,

iven in Eq. (16) , we have that 

0 ̃
 �−1 
1 

˜ �2 
˜ ψ c − λF (k +)(B 1 ̃

 �−1 
1 

˜ �2 − B 2 ) ˜ ψ c = 0 

nd we are going to show that 

B 1 − ˜ �1 ) ̃  �−1 
1 

˜ �2 
˜ ψ c = 0 , (A.12) 

o that the column vector ˜ �−1 
1 

˜ �2 
˜ ψ c is parallel to ˜ φ∗, because it is 

 right eigenvector of the matrix (B 1 − ˜ �1 ) corresponding to the 

ull eigenvalue, whose multiplicity is one. 

If Eq. (A.12) holds, we have that 
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B 1 − ˜ �1 ) ̃  �−1 
1 

˜ �2 
˜ ψ c = (B 1 ̃

 �−1 
1 

˜ �2 − ˜ �2 ) ˜ ψ c 

= (B 1 ̃
 �−1 
1 

˜ �2 − B 2 ) ˜ ψ c = 0 , (A.13) 

here in the last equality we used the relation 

˜ �2 
˜ ψ c = B 2 ˜ ψ c given 

y Eq. (32) . 

Eq. (A.13) , together with Eq. (A.12) , implies that α0 ̃
 �−1 
1 

˜ �2 
˜ ψ c = 

 and therefore it also implies the result. 

To prove Eq. (A.12) , we continue from Eq. (A.13) by rewriting it 

n the following way 

B 1 ̃
 �−1 
1 

˜ �2 − B 2 ) ˜ ψ c = (B 1 ̃
 �−1 
1 B 2 − B 2 ) ˜ ψ c 

= (B 1 ̃
 �−1 
1 − I) B 2 

˜ ψ c 

= ((μ1 I + �c−1 ) 
−1 B 1 − I) B 2 

˜ ψ c 

= (μ1 I + �c−1 ) 
−1 (B 1 − μ1 I − �c−1 ) B 2 

˜ ψ c 

= (μ1 I + �c−1 ) 
−1 M 

−1 M(B 1 −μ1 I−�c−1 ) B 2 
˜ ψ c

= (μ1 I + �c−1 ) 
−1 M 

−1 (B 2 − μ2 I − �c−1 ) B 2 
˜ ψ c 

= (μ1 I + �c−1 ) 
−1 M 

−1 B 

−1 
2 (B 2 − ˜ �2 ) ˜ ψ c = 0 . 

n the first equality we used Eq. (32) , in the third one that

 1 ̃
 �−1 
1 

= (μ1 I + �c−1 ) 
−1 B 1 , given by the definition in Eq. (9) , in

he sixth one we used the result of Lemma 3 , where the matrix

is defined. Finally in the last two equalities we use again the 

efinition in Eq. (9) and the hypothesis in Eq. (32) . �
Proof of Theorem 3 : We consider the two regions of x sepa- 

ately. First assume that 0 < x < k . Eq. (13) is a non-homogeneous

inear system of ordinary second order differential equations. 

ence, we first try a homogeneous solution of the type 

 h (x ) = e θx φ, 

here φ is a row vector of length c. Substituting in L 1 F h (x ) = 0

nd cancelling e θx , we get Eq. (22) , with 2 c solutions { (θi , φi ) , 0 ≤
 ≤ 2 c − 1 } . The eigenvalues θi ’s are given in Eqs. (24) and (25) . The

omogeneous solution to Eq. (13) is then given by 

 h (x ) = 

2 c−1 ∑ 

i =0 

a i e 
θi x φi , 0 ≤ x ≤ k, (A.14) 

here the 2 c constants { a i , 0 ≤ i ≤ 2 c − 1 } are to be determined. 

For the particular solution we should look for a function of the 

ollowing type 

 p (x ) = ηx + ζ , (A.15) 

ecause θc−1 = 0 is an eigenvalue for the homogeneous solution. 

y substitution in Eq. (13) we get that the following equation has 

o be satisfied 

η(λI − ˜ �1 ) + ηxλ(B 1 − ˜ �1 ) + ζλ(B 1 − ˜ �1 ) = α0 , (A.16) 

here the vector ζ can be chosen such that ζ · φ∗ = 0 , because for 

ll a ∈ R , 

ζ + a φ∗) λ(B 1 − ˜ �1 ) = ζλ(B 1 − ˜ �1 ) . 

n addition, in order to have Eq. (A.16) satisfied for any x , the coef-

cient of the linear term should be null implying that η = a φ∗. 

Taking the scalar product of both sides of Eq. (A.16) by the right 

igenvector ˜ φ∗ satisfying Eq. (31) , we get that 

a φ∗(λI − ˜ �1 ) · ˜ φ∗ = α0 · ˜ φ∗, 

mplying that 

 = − α0 · ˜ φ∗
φ∗(λI − ˜ �1 ) · ˜ φ∗

. (A.17) 

ote that the linear term is missing if α0 · ˜ φ∗ = 0 . 

To derive the value of ζ we rewrite the equation ζ · φ∗ = 

 in matrix form as ζ diag ( φ∗) = 0 . By adding this equation to

q. (A.16) we get 

η(λI − ˜ �1 ) + ζ (λ(B 1 − ˜ �1 ) + diag ( φ∗)) = α0 
577 
nd since (λ(B 1 − ˜ �1 ) + diag ( φ∗)) is not singular, we have that 

= α0 M 0 + a φ∗(λI − ˜ �1 ) M 0 , 

here M 0 is as given in Eq. (35) . 

Finally, we have that the particular solution is equal to 

 p (x ) = a φ∗
(
xI + (λI − ˜ �1 ) M 0 

)
+ α0 M 0 , 0 ≤ x ≤ k, (A.18) 

here a is defined as in Eq. (A.17) . Below we show that α0 · ˜ φ∗ = 0 ,

mplying that a = 0 and thereby Eq. (34) . 

Next consider the region x > k , where F satisfies Eq. (14) . It is

lso a non-homogeneous linear system of ordinary second order 

ifferential equations. As before we try a homogeneous solution of 

he type 

 h (x ) = e βx ψ, 

here ψ is a row vector of length c. Substituting in L 2 F h (x ) = 0

nd cancelling e βx we get Eq. (27) , which has 2 c solu- 

ions (βi , ψ i ) , 0 ≤ i ≤ 2 c − 1 . The eigenvalues β ’s are given in

qs. (28) and (29) . The homogeneous solution to Eq. (14) is then 

iven by 

 h (x ) = 

2 c−1 ∑ 

i =0 

b i e 
βi (x −k ) ψ i , x ≥ k. (A.19) 

ince the solution has to be bounded we immediately get that 

 i = 0 for c < i ≤ 2 c − 1 , since the corresponding βi ’s are strictly

ositive. Moreover, we have βc = 0 and ψ c is as given in Eq. (30) .

t follows that the homogeneous solution to Eq. (14) can be written 

s 

 h (x ) = 

c−1 ∑ 

i =0 

b i e 
βi (x −k ) ψ i + b c ψ c , x ≥ k, (A.20) 

here the c + 1 constants { b i , 0 ≤ i ≤ c} are to be determined. 

Next we determine the particular solution. Similarly to what 

e have done before for the interval [0 , k ] , the particular solu-

ion associated with the constant term α1 in the right hand side of 

q. (14) would be of the form Eq. (A.15) , since the associated ho- 

ogeneous equation L 2 F h (x ) = 0 admits the constant function as 

olution. However, in this case, the boundary condition, requiring 

im x →∞ 

F (x ) to be bounded, implies that the vector η is zero and 

herefore that α1 · ˜ ψ c = 0 . By applying Lemma 1 , this also implies 

hat the linear term in Eq. (A.18) is missing. 

Eventually it follows that the particular solution in the region 

 > k is given by 

 p (x ) = α1 M 1 + α2 
˜ Q 1 (x − k )( ̃  �1 − ˜ �2 ) M 2 , x ≥ k, (A.21)

s can be verified by direct substitution, where M 1 and M 2 are as 

iven in Eqs. (37) and (38) . The general solution is then as given in

q. (36) . This completes the proof. �
Proof of Theorem 5 : According to the results of Corollary 1 , we

rite F (k ) to mean F (k −) = F (k +) and similarly for the derivative

n k . By defining 

 1 = (U 

+ 
1 − U 

−
1 ) 

−1 (e U 
+ 
1 

k − e U 
−
1 

k ) , 

 2 = M 0 (I − e U 
−
1 

k + U 

−
1 H 1 ) , 

 3 = H 1 + 

˜ �1 H 2 , 

 4 = −λB 1 H 2 , 

e can rewrite Eq. (45) evaluated in k as 

 (k ) = F ′ (0) H 3 + δc−1 H 4 . (A.22) 

y defining 

 5 = (U 

+ 
1 − U 

−
1 ) 

−1 (U 

+ 
1 e 

U + 
1 

k − U 

−
1 e 

U −
1 

k ) , 

 6 = M 0 (U 

−e U 
−
1 

k − U 

−H 5 ) , 
1 1 
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 7 = H 5 − ˜ �1 H 6 , 

 8 = λB 1 H 6 , 

e can rewrite the derivative of Eq. (45) evaluated in k as 

 

′ (k ) = F ′ (0) H 7 + δc−1 H 8 . (A.23) 

y defining 

 9 = ( ̃  �1 − ˜ �2 ) M 2 U 

−
2 + 

˜ �1 ( ̃  �1 − ˜ �2 ) M 2 , 

e can rewrite the derivative of Eq. (46) evaluated in k as 

 

′ (k ) = F (k ) U 

−
2 − b c ψ c U 

−
2 − α1 M 1 U 

−
2 − α2 H 9 . (A.24) 

hen substituting the expression of α2 in Eq. (17) , by employing 

lso Eqs. (16) and (15) , and defining 

 10 = U 

−
2 − λ(I − B 2 ̃

 �−1 
2 ) H 9 , 

 11 = M 1 U 

−
2 + 

˜ �−1 
2 H 9 , 

 12 = H 10 + λ(B 1 ̃
 �−1 
1 

˜ �2 − B 2 ) H 11 , 

 13 = 

˜ �2 H 11 , 

 14 = λB 1 ̃
 �−1 
1 

˜ �2 H 11 , 

e get 

 

′ (k )(I − H 9 ) = F (k ) H 12 − b c ψ c U 

−
2 − F ′ (0) H 13 + δc−1 H 14 . (A.25) 

y equating Eqs. (A.23) and (A.25) and defining 

 15 = U 

−
2 (H 7 − H 7 H 9 − H 3 H 12 + H 13 ) 

−1 , (A.26) 

 16 = (H 14 + H 4 H 12 − H 8 + H 8 H 9 )(U 

−
2 ) 

−1 H 15 , (A.27) 

e get the first result in Eq. (47) . 

 

′ (0) = δc−1 H 16 − b c ψ c H 15 (A.28) 

aking the limit in Eq. (46) and defining 

 17 = 

˜ �2 M 1 − λH 3 (B 1 ̃
 �−1 
1 

˜ �2 − B 2 ) M 1 , 

 18 = λB 1 ̃
 �−1 
1 

˜ �2 M 1 + λH 4 (B 1 ̃
 �−1 
1 

˜ �2 − B 2 ) M 1 , 

 19 = I − H 15 H 17 , (A.29) 

 20 = H 16 H 17 − H 18 , (A.30) 

e get the second result in Eq. (48) . �
Proof of Theorem 6 : We would need the definition of the fol- 

owing rectangular matrices, for 0 ≤ n ≤ c − 1 : 

ˆ B n (i, i ) = (n − i + 1) μ2 , 0 ≤ i ≤ n, 

ˆ 
 n (i, i − 1) = iμ1 , 1 ≤ i ≤ n + 1 , 

ˆ B n (i, j) = 0 for all other (i, j) , 0 ≤ j ≤ n. 

Using Eq. (21) together with the balance Eq. (7) and the nor- 

alization equation, we finally get 

δn = δn +1 ̂
 B 0 , n = 0 , (A.31) 

n (λI + �n ) = δn −1 λˆ I + δn +1 ̂
 B n , 0 < n < c − 1 , (A.32) 

n (λI + �n ) = δn −1 λˆ I + F ′ (0) , n = c − 1 , (A.33) 

 = F (∞ ) 1 + 

∑ 

0 ≤n ≤c−1 

δn 1 , (A.34) 

here F ′ (0) and F (∞ ) are given in Eqs. (47) and (48) , respectively.

his system has 1 + (c + 1) c/ 2 equations and an equal number of

nknowns. 

Writing δn = δn +1 ̂
 C n , we have, by Eq. (A.31) , ˆ C 0 = 

ˆ B 0 /λ and 

y Eq. (A.32) , ˆ C n = 

ˆ B n (λ(I − ˆ C n −1 ̂
 I ) + �n ) −1 , 0 < n < c − 1 . By

q. (A.33) we have δc−1 = b c ψ c ̂  C c−1 with 

ˆ C c−1 = −H 15 (λ(I −
ˆ 
 c−2 ̂

 I ) + �c−1 − H 16 ) 
−1 . 
578 
By defining 

ˆ 
 c−1 = 

ˆ C c−1 , ˆ H n = 

ˆ H n +1 ̂
 C n , 0 < n < c − 1 , (A.35) 

nd using the normalization constraint Eq. (A.34) we get the 

esult. �
Proof of Lemma 2 : By taking derivatives of Eqs. (45) and 

46) we can compute the VQT density function as follows 

 

′ (x ) = (F ′ (0) + α0 M 0 U 

−
1 )(U 

+ 
1 − U 

−
1 ) 

−1 (U 

+ 
1 e 

U + 
1 

x − U 

−
1 e 

U −
1 

x ) 

−α0 M 0 U 

−
1 e 

U −
1 

x , 0 ≤ x ≤ k, (A.36) 

 

′ (x ) = (F (k ) − b c ψ c − α1 M 1 − α2 ( ̃  �1 − ˜ �2 ) M 2 ) U 

−
2 e 

U −
2 

(x −k ) 

−α2 ̃
 �1 

˜ Q 1 (x − k )( ̃  �1 − ˜ �2 ) M 2 , x ≥ k. (A.37) 

e define the following matrix function 

(a, b; D ) = 

∫ b 

a 

Dx e Dx dx = (be Db − ae Da ) − D 

−1 (e Db − e Da ) , (A.38)

hat is well defined on the set of non-singular matrices and that 

an be defined on the set of singular matrices by continuity. That 

s, if det (D ) = 0 , we set I(a, b; D ) = lim t→ 0 I(a, b; D + tI) . 

Integrating the expressions in Eqs. (A.36) and (A.37) in their 

orresponding domains multiplied by x , we obtain the result in 

q. (51) after summing up all components. �
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