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Abstract: Due to their long domestication time course, many industrial Saccharomyces cerevisiae strains
are adopted in numerous processes mostly for historical reasons instead of scientific and technological
needs. As such, there is still significant room for improvement for industrial yeast strains relying on
yeast biodiversity. This paper strives to regenerate biodiversity with the innovative application of
classic genetic methods to already available yeast strains. Extensive sporulation was indeed applied
to three different yeast strains, specifically selected for their different origins as well as backgrounds,
with the aim of clarifying how new variability was generated. A novel and easy method to obtain
mono-spore colonies was specifically developed, and, to reveal the extent of the generated variability,
no selection after sporulation was introduced. The obtained progenies were then tested for their
growth in defined mediums with high stressor levels. A considerable and strain-specific increase in
both phenotypic and metabolomic variability was assessed, and a few mono-spore colonies were
found to be of great interest for their future exploitation in selected industrial processes.

Keywords: yeast classical genetics; metabolomic fingerprint; sporulation; recombination; stress;
glucose; formic acid; copper; FTIR

1. Introduction

Apart from being a powerful model system to answer hallmark biological questions,
the species Saccharomyces cerevisiae plays a key role in many industrial applications [1,2].
The domestication of S. cerevisiae strains independently occurred in many processes even
before the first microbes were observed [3–5]. After centuries of continuous growth under
favorable conditions, with nutrients readily and abundantly available, many domesticated
S. cerevisiae strains have partly or entirely lost the ability to reproduce sexually [6], gotten
more and more tolerant to specific stressors frequently faced in industrial plants, and
metabolized a few sugars more rapidly than natural strains [7]. This is reminiscent of
the so-called “domestication syndrome,” already described in 1868 by Darwin, where
organisms under domestication tend to drop undesirable and/or unselected traits and
acquire attributes that make them successful in human-shaped environments [8,9].

In the past centuries, brewers, bakers, and, to some extent, even winemakers were
used to perform subsequent fermentations using yeast strains from an old batch [5,10]. The
back-sloping procedure was indeed essential to maintain the stability of the final product,
thus ensuring the economic sustainability of the process of interest. Both refrigeration
and the advent of pure cultures to start the fermentation further enhanced the stability of
the final industrial and/or artisanal products [5,11]. Paradoxically, as soon as bakers and
brewers recognized the pivotal role of S. cerevisiae strains in the fermentation and began to
isolate pure cultures, the yeast genetic diversity severely decreased as pure cultures were
more and more adopted and clonal batches were maintained by refrigeration [12]. As such,
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many yeast strains industrially used today, primarily those adopted in bioethanol, wine,
and beer fermentations, are often utilized mostly for historical reasons rather than scientific
ones [3,13–15]. Furthermore, since the demand of customers as well as industries has turned
and continued to turn, there is still significant scope for improvement of industrial strains
despite their long domestication time course. The non-genetically modified organisms
(non-GMO) approaches, particularly for food and beverage yeast applications, should be
considered the most since they do not suffer from any issues with consumer acceptance
and/or specific legislation [16,17].

There are multiple non-GMO strategies to provide suitable yeast strains for specific
industrial goals (Figure 1), as elegantly reviewed [18]. A very powerful approach is to
look for natural biodiversity by selecting a yeast able to operate best in a specific industrial
process [13,18]. Indeed, recent metagenomic surveys underpin the fact that the natural
yeast biodiversity is immense and largely unexplored, with the existing industrial strains
corresponding to only a small share of the natural biodiversity [19–21]. An alternative route
is to regenerate biodiversity with the innovative application of classic genetic methods
to already available yeast strains [18]. Both the search for natural biodiversity and the
regeneration aim at selecting the best phenotypes.
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This work specifically focused on the latter strategy, choosing S. cerevisiae as a yeast
candidate with a long biotechnological history as well as being a model organism with a
homothallic nature. In contrast to higher eukaryotes, yeast gametes enter a haploid life cycle
that is substantially similar to the diploid mitosis-based cycle. By taking advantage of this
feature, it is possible to produce recombination of important traits by extensive sporulation,
obtaining as many combinations as the spores. As an example, Drosophila was suggested
as a possible niche for sporulation and mating as, different strains of Schizosaccharomyces
japonicus isolated from Drosophila showed variation for pheromone-related genes [22].
Various sporal cultures can be directly tested or induced to undergo homothallic switching
and subsequent diploidization. The output of this route is a collection of diploid cultures
that are homozygous at all loci since they are derived from the conjugation of genetically
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identical cells. These cultures are theoretically very stable, since mutations would rarely
affect the phenotype due to the very low, if any, heterozygosity and would provide the
most extreme effects of quantitative trait loci. Whether the genome renewal [23] could
reintroduce heterozygosity and to what extent is a matter of obvious importance at both
the theoretical and practical levels [24].

This work applied extensive sporulation to three different yeast strains, precisely se-
lected for their different origins as well as backgrounds, with the aim of clarifying how new
variability was generated from sporulation. Three different hypotheses were investigated:
(i) the isolation of diploid homozygous mono-spore colonies (MSCs) allows to verify the
amount of variability produced in the sporulation of each parental genotype, (ii) the quan-
titative traits analyzed show significant differences from the parental strains; and (iii) the
obtained variability strictly depends on the starting parental genotype under sporulation. A
new method for obtaining MSC without the use of a micromanipulator has been specifically
developed, avoiding the introduction of any form of selection to exclusively focus on the
extent of variability generated by recombination under sporification. For this purpose,
mono-spore colonies (MSCs) were indeed randomly chosen and sequentially analyzed
with increasingly informative tests also considering the presence of specific stressors (i.e.,
high levels of glucose or formic acid, or copper sulphate).

2. Materials and Methods
2.1. Yeast Strains and Growth Conditions

Three S. cerevisiae strains with different backgrounds and geographical origins were
specifically selected for this study (Table 1). Strains were maintained in 20% glycerol stocks at
−80 ◦C and usually plated on YPD agar (Yeast extract-10 g L−1, Peptone-20 g L−1, Glucose-
20 g L−1, Agar-15 g L−1) and incubated at 30 ◦C for 48 h. Screening for sporulation was
performed at 30 ◦C for 7–21 days on SM1 (potassium acetate-10 g L−1), McClary’s Acetate
medium (sodium acetate-8.2 g L−1, glucose-1 g L−1, yeast extract-2.5 g L−1, potassium
chloride-1.8 g L−1, Agar-15 g L−1) and modified sporulation medium (MSM) (potassium
acetate-10 g L−1, yeast extract-0.5 g L−1, glucose-1 g L−1, Agar-15 g L−1) [25]. All the media
were sterilized by autoclaving at 121 ◦C for 20 min before plating.

Table 1. Strains used in this study: background, origin and tested stressing agents.

Strain Background Geographical
Location Genotype Reference Stressing Agent Low Stress High Stress

TC1517 Grape marcs Italy 2n, homotallic [26] Glucose
(g L−1) 250 300

YI30 Industrial
distillery South Africa 2n, homotallic [27] Formic acid

(g L−1) 0.3 0.6

YVGC13A
Vineyard,

isolated from
vine bark

Canada 2n, homotallic University of
Perugia

Copper sulfate
(Cu-ppm) 5 7.5

S. cerevisiae TC1517 has been isolated from grape marcs [26] and has shown great
promise in terms of fermenting abilities. S. cerevisiae YI30 was chosen as a strong candidate
for lignocellulosic ethanol because of its high inhibitor and temperature tolerance [27]. The
Canadian strain S. cerevisiae YVGC13A was chosen to evaluate the variability of a strain
directly isolated from vine bark, which is currently considered the main natural reservoir
of S. cerevisiae strains that could participate in alcoholic fermentation [28].

In addition, stressing experiments and metabolomic studies using Fourier-Transform
Infrared Spectroscopy (FTIR), were carried out by inoculating yeast cultures at OD600 = 0.1 in
100 mL of filter sterilized (0.22 µm) synthetic defined (SD) medium containing 6.7 g L−1 of
Yeast Nitrogen Base medium (YNB, Difco Laboratories, Detroit, MI, USA) and 20 g L−1 of
glucose and grown them for 16–18 h at 30 ◦C under shaking at 120 rpm.
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2.2. Spore Production and Sporulation Efficiency

A fresh single colony of each strain was inoculated into 5 mL YPD broth, and mi-
croaerophilic conditions were maintained while shaking at 30 ◦C for 16 h. The suspension
was centrifuged at 3000 rpm for 5 min and the obtained pellet was washed twice with
a sterile 9 g L−1 NaCl solution. Washed yeast cells were resuspended in 0.5 mL saline
solution, and aliquots of 100 µL were plated on MSM. Plates were then incubated at 30 ◦C
for 7–21 days. To avoid moisture loss, plates were sealed with Parafilm® (Bemis Company,
Inc., Neenah, WI, USA). Microscopic observation was performed every week to observe
spore development. The spores were counted after the addition of methylene blue (MB)
to the spore suspension to allow the distinction of the living cells from the dead ones that
were excluded. The number of dyads, triads, and tetrads was counted using a counting
chamber (Thoma, Germany). Sporulation efficiency, a measurement of the amount of cells
that undergo sporulation, was calculated by microscopic observation of the sum of triads
and tetrads divided by the total asci. Sporulation efficiency (SE) [29] was then calculated
as follows:

% Sporulation efficiency =
Number of triads + Number of tetrads

Number of total spores
× 100

2.3. Screening of Temperature Tolerance of PS and Spores

In order to develop a quick method to produce MSCs, the minimum temperature required
to kill vegetative cells of each parental strain (PS) within a population of spores was screened.
Each strain was grown in YPD broth for 16 h at 30 ◦C and centrifuged at 3000 rpm for 5 min.
Cells were suspended in sterile saline to a final density of 1 × 107 cells mL−1, and 0.5 mL of
cell suspension was transferred to a sterile 1.5 mL tube and exposed for 10 min at different
temperatures from 55 to 67 ◦C at 2 ◦C intervals.

Each treated suspension was observed microscopically using the MB viability as-
say [30], and a proper dilution was plated on YPD agar plates in triplicate. The asci of yeast
were broken using zymolyase treatment, as explained in Section 2.4 [31], and the related
spores’ sensitivity was tested at 63, 65, and 67 ◦C. The quantification protocol was the same
as for vegetative cells.

2.4. Production of Mono-Spore Colonies

The ascospore isolation method described by Bahalul et al. [31] was modified to
avoid the use of diethyl ether. Briefly, colonies grown on MSM agar were scraped and
resuspended in sterile, demineralized water. This high-density suspension of asci was
heat-treated at 65 ◦C for 10 min to kill vegetative cells and then processed with zymolyase
treatment (Zymolyase®-100T, ICN; 100 U mL−1 in 1M sorbitol) by extending the incubation
time to 1 h. Sterile glass beads (400–600 µm) were used to apply shear force on ascus walls.
The resultant spore suspension was observed microscopically using MB to check for the
presence of asci or viable vegetative cells. Each suspension was then properly diluted and
plated on YPD agar plates supplemented with 5% (w/v) glucose. Thus, obtained colonies
were referred to as MSCs. Up to 100 MSCs of each PS were stored in 20% glycerol stock
at −80 ◦C. All MSCs were then grown on YPD 5%, transferred to MSM, and incubated at
30 ◦C for 7–21 days to test their sporulation ability. Microscopic observation was used to
check the occurrence of asci and confirm the homothallic phenotype of the parental strains.

2.5. Phenotypic Variation in MSCs

Thirty MSCs were randomly selected from each PS and grown in SD broth at 30 ◦C
for 16 h. These pre-cultures were inoculated in the same broth to obtain a final OD600
of 0.1 in a final volume of 200 µL. The experiment was run in 96-well plates in triplicate
(TECAN Spark® 10M, Salzburg, Austria) at 30 ◦C (flat-bottom cell culture plate with
instrument lid; interval time-5min; shaking-60 s; shaking mode-orbital; amplitude-2.5 mm).
Growth curves were plotted using the Pyphe-growthcurves tool. Growth parameters such
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as maximum growth rate (max_slope), time at max_slope (t_max), and lag phase (Lag)
were obtained with the same tool [32]. The definition of the growth parameters given by
Pyphe-growthcurves are as follows: max_slope-maximum slope of growth curve, t_max-time
at which maximum growth slope of curve is reached, lag-lag phase.

Principal component analysis (PCA) was performed [33] considering these growth
parameters, and the principal component scores and loading vectors were combined in a
biplot used for the selection of specific MSCs for further studies. Additionally, a Student’s
t-test was performed to determine if the observed differences were statistically significant.
Moreover, at least one MSC with growth parameters similar to those of the parents was
also included.

The resulting selected 12 MSCs and their parental strain were then grown under spe-
cific stressungconditions to observe growth parameters and, as reported in Section 2.7,
metabolomic changes at different stressunglevels. The MSCs and PS were pre-inoculated
in SD medium and grown at 30 ◦C for 16 h. Each PS and respective MCS were inoculated
(OD600 = 0.1) in SD medium with no stressing agent and in the presence of low and high con-
centrations of the stressing agent. Each test was performed in triplicate at 30 ◦C in a 96-well
microtiter plate (TECAN Spark® 10M, Austria) with the same protocol described above.

2.6. Metabolomic Fingerprint at the End of Growth

Cell suspensions, prepared as detailed in Section 2.1, were centrifuged (4500× g, 5 min),
washed twice with distilled sterile water, and re-suspended in 5 mL HPLC (High-Performance
Liquid Chromatography) grade water to the final concentration of OD600 = 12. From each
culture, 105 µL volume were sampled for three independent FTIR readings (35 µL each,
according to the technique suggested by Essendoubi and colleagues [34].

2.7. Metabolomic Fingerprint under Stress

The FTIR analysis was also applied to investigate the metabolomic response under the
stress of the selected MSCs cultures compared to their respective parental strains. MSCs
and parental strain cultures were grown under different concentrations of stressing agents,
as detailed in Table 1. However, yeast cultures were pre-inoculated at OD600 = 0.1 in 15 mL
tubes with 7 mL of SD medium and grown at 30 ◦C under shaking at 120 rpm. Cell growth
was stopped after 15 h. Each cell suspension was adjusted to an OD600 = 0.2 in a 2× fresh
SD medium. A total of 100 µL of each standardized cell suspension was seeded in each
selected well of a flat-bottom 96-well microtiter plate and brought to the final volume of
200 µL by adding 100 µL of a 2× solution of the respective stressing agent. Control (0%
stressor concentration) was obtained by re-suspending cells in sterile, distilled water. All
tests were carried out in triplicate. The growth was monitored in the TECAN as described
above. The samples were collected at the end of the log phase of growth and processed for
FTIR analysis [34].

2.8. FTIR Data Analysis

FTIR spectra were recovered from the OPUS software version 6.5 (Bruker Optics
GmbH, Ettlingen, Germany) and transferred to MS Excel. Principal Component Analysis
(PCA) and Significant Wavelengths Analysis (SWA) were performed in an R environment.
SWA was employed to select the FTIR spectral regions with statistically significant dif-
ferences in the comparison between the spectra of parental and MSCs cultures from the
different experimental conditions tested [35]. In addition, pairs of spectra, each with three
replicates, were compared using the Student’s t-test for each wavelength separately. For
each wave number, the calculated p-value was recorded. Significant wavelengths were
selected based on p < 0.01. Hierarchical cluster analysis was performed with MetaboAn-
alyst 5.0 [36]. Data were filtered based on interquartile range, normalized to the sample
median, and scaled by Pareto scaling. Hierarchical cluster analysis (HCA) was employed
to highlight the metabolic differences under stress between MSCs and PS cultures, us-
ing the Euclidean correlation method and the ward.D clustering algorithm. Significant
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wavelengths were selected based on these criteria: t-test (p adjusted < 0.05) and one-way
ANOVA (p-value < 0.05).

3. Results and Discussion
3.1. Efficiency of Sporulation (SE) and Development of an Easy and Effective Protocol for
MSCs Production

The three strains of S. cerevisiae were specifically selected for their different geograph-
ical origins and phenotypic backgrounds (Table 1). To develop a simple yet efficient
protocol for obtaining high numbers of MSCs, the parental strains were first tested for their
sporulation efficiency (SE) once plated on different media [25,37,38]. The highest SE was
obtained on MSM plates, confirming literature data on the role of nutrient deficiency and
non-fermentable carbon sources, such as acetate, in inducing sporulation [39] and on the
involvement of the salt acetate cation in promoting the SE of yeast strains [38]. Sporulation
media was indeed modified by Petersen et al. [40] to increase the SE. The addition of yeast
extract to MSM also improved the SE, as reported by Tremaine et al. [41]. Notably, YI30
showed the highest SE (85.5%), and the other two yeast strains displayed slightly lower
values (S. cerevisiae TC1517 and YVGC13A, at 68.4, and 64.1% SE, respectively).

Dawes and Hardie proved that vapors of diethyl ether in an agar plate or ether in
liquid media kill the vegetative yeast cells, keeping spores alive [42]. This was previously
applied once a protocol combining glusulase treatment, sonication, and separation of
hydrophobic spores using diethyl ether was developed [43]. The diethyl ether protocol was
also adopted after clubbing it with zymolyase and microbead treatment [31].

In the present study, temperature rather than diethyl ether was employed to kill veg-
etative cells [31], thus avoiding the use of an extremely flammable and volatile chemical
solvent. Once exposed to high temperatures, the ascospores displayed greater tolerance than
the respective vegetative cells. Separate experiments showed that vegetative cells tolerated
temperatures up to 63 ± 0.5 ◦C. When the temperature was increased to 65 ± 0.5 ◦C, the
parental strain was unable to grow, but the ascospores were able to produce colonies on YPD
agar medium. These results are in line with those of Rachon et al. [44], who already observed
a significant difference in temperature tolerance for vegetative cells and ascospores at 65 ◦C.

In order to optimize the ascospore separation protocol step, sporulated parental strains
were scraped from MSM agar plates and suspended in sterile demineralized water. The
zymolyase treatment, developed by Bahalul et al. [31], was found to be efficient with the
extension of the zymolyase treatment to one hour. The combination of zymolyase and glass
beads treatment was crucial to separate ascospores from broken asci, followed by heat
treatment at 65 ◦C for 10 min.

Microscopic observation showed that around 60% of the asci were disrupted, releasing
circular and refractive spores in suspension. These suspensions gave rise to individual
colonies, referred to as MSCs, once plated on YPD agar medium.

Around 100 MSCs from each parental strain were thus obtained, and their homothallic
nature was investigated as detailed in the Section 2.4. All parental strains were confirmed
to be phenotypically homothallic, since all MSCs tested were able to produce spores.

3.2. Growth of MSCs from Each Parental Strain in SD Broth

Thirty randomly selected MSCs from each parental strain were first screened for their
growth at 30 ◦C in SD medium with 2% glucose. OD600 was monitored for 24 h at 30 ◦C
using a 96 well plate reader (TECAN Spark® 10M, Austria). The generated growth curves
were processed using the pyphe-growthcurves tool to assess specific parameters such as
max_slope, t_max, and lag used for the PCA analysis of Figure 2.

The first two principal components explained 97% of the variance between all the
MSCs cultures (PC1: 62% and PC2: 35% of the variance). The spatial distribution of the
MSCs cultures indicated a clear signature of the respective parental strains, suggesting
that both ecological origin and geographical background are of great importance for the
phenotypic variation triggered by sporulation. Camarasa et al. [45] observed similar results
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when metabolic traits were considered as differentiating parameters to understand the
origin of S. cerevisiae strains. Interestingly, the growth performances of each parental strain
remained outside the confidence ellipse, indicating higher variation between the growth of
the parental strain and that of the corresponding MSCs. The highest variability was found
within the monosporal progeny of the environmental yeast YVGC13A. Conversely, most
of the MSCs from the YI30 and TC1517 strains formed a compact group, except for a few
MSCs positioned outside the confidence ellipse.
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Figure 2. PCA biplot obtained from the growth parameters of all the 90 MSCs selected for the study.
Input variables: Lag, t_max and max_slope growth parameters obtained using the pyphe-growthcurves
tool from the growth curves of YVGC13A (YV, blue), TC1517 (TC, red), and YI30 (YI, green) cultures
in SD with 2% glucose.

According to PC1, the Lag Phase parameter was the most differentiating between
groups. The other two parameters mainly contributed to the separation of the YVGC13A
cluster from those of YI30 and TC1517 along the PC2.

The same analysis was then carried out separately for each tested progeny (Figure 3).
In all cases, most of the variance is distributed along the PC1, specifically 62.3, 77.3, and
55.9% for the YVGC13A, TC1517, and YI30 strains, respectively.
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of each S. cerevisiae parental strain. Input variables: Lag, t_max and max_slope growth parameters
obtained using the pyphe-growthcurves tool from for 30 MSCs of the parental S. cerevisiae strain
YVGC13A (A), TC1517 (B) and YI30 (C). Parental strains are reported in blue, not selected MSCs
cultures in grey and the twelve MSCs cultures selected for the next step of the analysis in violet (A),
green (B) and light blue (C).

Interestingly, as already underlined in Figure 2, the parental strain was not part of the
distribution of the variance of the relative MSCs cultures. Moreover, the three parameters
differentially shaped the variance within each population, with lag and t_max as the main
drivers for PC1 in the YVGC13A and TC1517 populations, while separately contributing
along both PC1 and PC2 for the YI30 MSCs cultures.

Overall, these data already suggest that sporulation triggered phenotypic differences
during aerobic growth in the presence of glucose. To further assess this evidence, twelve out
of the 30 MSCs tested in each group were selected to undergo FTIR fingerprinting. MSCs
were selected according to their statistically different growth parameters (p-value < 0.01) with
respect to their parental strain (Tables S1–S3). Moreover, at least one MSCs with growth
parameters such as those of the parental strain was included in the shortlist.

3.3. Metabolomic Fingerprinting of Selected MSCs

The selected MSCs were grown in SD broth supplemented with 2% glucose, and the
cells were harvested at the end of the exponential phase to analyze the metabolomic fin-
gerprint of their primary metabolism. The “R” script for Significant Wavelengths Analysis
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(SWA) was then adopted to compare all the statistically relevant differences between the
spectra of PS and each related MSC [35]. Significant wavelengths were selected based on
the Student’s t-test (p < 0.01, and their number was computed within each spectral region
(Figure 4).
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cerevisiae parental strain and the selected 12 MSCs. Spectra were compared using the Student’s t-test
for each wavelength separately. The number of wavelengths with statistically significant difference
(p < 0.01) was calculated for each specific spectral area separately, namely: fatty acids (W1), amides
(W2), mixed region (W3) and carbohydrates (W4) regions. (A–C): MSCs of YVGC13A, TC1517 and
YI30, respectively.

The FTIR fingerprints of monosporal cultures from the parental strain YVGC13A
(Table S4, Figure S1) showed little to no variability, except for the MSC YV_10, which
displayed significant differences in all the spectral regions tested. Notably, the highest
variation was observed in the carbohydrate region of the FTIR spectrum (Figure 4A).
Although the five MSCs YV_29, YV_55, YV_57, YV_65, and YV_94 showed significantly
different growth kinetics from their parental cells (Table S1), these differences did not
induce significant changes in their metabolome.

On the contrary, higher variation of the metabolomic profiles was observed in most
MSCs cultures from S. cerevisiae TC1517 (Table S5, Figure S2) and YI30 (Table S6, Figure S3).
As reported in Figure 4B, within the TC1517 progeny, the greatest variability was focused
on the amide (W2) and fatty acid (W1) regions.

Huge variations were observed in TC_9 in the fatty acid, amide, and carbohydrate
regions (Figure 4B). Statistical analysis of growth parameters showed significant differences
for all the tested MSCs in comparison to the parental strain except TC_9, whose t_max
was the only one significantly different (p < 0.05) from the parental yeast. TC_23, which
displayed a metabolome similar to the parental, was characterized by a t_max statistically
divergent from the parental (p < 0.01).

Considering YI30, MSCs also showed significant differences in W1 and W2 regions
(Figure 4C), with seven out of the twelve selected MSCs carrying metabolomic changes
also in the mixed region (W3). No metabolomic alteration was instead detected for the
carbohydrate metabolism (W4). The MSC YI_30 shared the metabolome of its parental strain
except for a few wavelengths in the W2 region. Of the eleven MSCs exhibiting metabolomic
differences in SWA, only four responded differently to the statistical analysis of growth
parameters, while YI_16, YI_20, YI_44, and YI_53 showed no significant differences (p < 0.01)
compared to the parental strain (Table S3).
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Overall, FTIR fingerprinting of the tested MSCs clearly indicates a specific progeny sig-
nature. The lowest metabolomic changes were detected within the YVGC13A-derived MSC.
Conversely, the sporulation of TC1517 and YI30 parental strains pushed the metabolomic
variability of MSCs into the amides (W2) region, also triggering a response in the W1 and
W3 regions for TC1517 and YI30 MSCs, respectively.

Based on both metabolomic and growth phenotypes, six MSCs for each parental strain
were further selected to be representative of the variability produced by sporulation by
choosing those with lower, higher, and PS-like growth phenotypes as well as similar or
different metabolomic traits.

3.4. Growth and Metabolomic Phenotypes under Stressing Conditions

In order to further assess the phenotypic changes due to the genetic reshuffle mediated
by sporulation, the second set of selected MSCs were tested for growth and metabolomic
changes (Tables S7–S9; Figures S4–S6) once exposed to stressors specific to the parental
strain background (Table 1).

The choice of copper as a stressor for the YVGC13A strain, isolated from vine bark in
Canada, is based on the evidence that copper-based fungicides have been used in vineyards
for more than 100 years and copper sulphate-based fungicides are the only chemicals
allowed under organic standards [46]. High glucose concentrations can damage yeast
cells and hamper their normal growth and metabolism [47]. The effect of high glucose
levels on altering cell metabolism is therefore particularly interesting for a strain such as
TC1517 isolated from grape marc [26]. Finally, since S. cerevisiae YI30 has been described
as a promising candidate for second-generation bioethanol [13,27,48], formic acid was
chosen as one of the most toxic weak acids [26,27] generated during the pre-treatment of
lignocellulose wastes and their conversion to ethanol [13].

Overall, when grown under increasing concentrations of stressing agents, both parental
strains and related MSCs displayed a dose-dependent response (Figures 5–7).

3.4.1. Phenotypes under Copper Sulphate Stress

S. cerevisiae YVGC13A-progeny were tested for the ability to withstand increasing
concentrations of copper sulphate. Growth performances in the benchmark broth SD
(Figure 5A) revealed significant differences in lag and max_slope values (p < 0.05) for all
MSCs tested, except for YV_49 and YV_57. YV_10, YV_64, and, to a lesser extent, YV_94,
showed the most interesting phenotypes for the simultaneous increase in the max_slope
and decrease in the lag phase, significantly improving the growth kinetics of these MSCs.

Additionally, differences with respect to the parental strain were even more intense
once considering the metabolomic reactions (Figures 5D and S4, Table S7). Although with
similar growth kinetics, the YV_57 MSC exhibited a metabolomic pattern more divergent
from the PS, downregulating bands in mixed and carbohydrate regions (W3 and W4)
and up-regulating those in W1. Conversely, YV_72 and YV_94 MSCs, which showed
significantly different lag phases, displayed more similar metabolomic patterns, except for
an increase in W4 and a decrease in W2 band intensities. The other three MSCs, YV_10,
YV_49, and YV_64, had a pattern slightly reversed from that of PS, reducing W4 and
increasing W2.

Once exposed to 5 ppm of copper, most MSCs showed higher sensitivities than S.
cerevisiae YVGC13A, characterized by a longer lag phase and a lower max_slope (Figure 5B).
Only the YV_72 displayed a lag phase shorter than PS and can therefore be considered the
most tolerant MSC at this copper concentration. The heatmap of the significantly altered
FTIR peaks (Figure 5E) highlighted how the increased sensitivity of the MSCs corresponded
to a general decrease in intensity of the whole spectra except for the W4_2 bands in the
YV_10, YV_57, YV_64, and YV_72 MSCs. Among all MSCs, only the YV_49 clustered
together with the PS.
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Carbohydrates (W4_1 from 1200 to 1053 cm−1–W4_2 from 1051 to 902 cm−1).

As the copper concentration increased (7.5 ppm), a quite different scenario was de-
picted (Figures 5C and S4, Table S7). YV_10, YV_57, and YV_94 MSCs seem to increase
their tolerance, by showing the same phenotype as S. cerevisiae YVGC13A. Conversely,
YV_64 and YV_72 MSCs displayed increased sensitivity, attributable to the longer lag and
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the reduction of the max_slope values. Noteworthy, the YV_49 displayed higher values
than the PS for all growth parameters considered. Despite the longer lag phase, this culture
was then able to grow more rapidly during the log phase, giving a higher cell density than
the parental strain YVGC13A.
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Figure 7. Growth and metabolomic phenotypes of YI30 S. cerevisiae parental strain and its derived
MSCs during growth at increasing concentrations of formic acid (0.3 and 0.6 g L−1). Panels (A–C): Lag
time (grey square), max_slope (light blue triangle) and t_max (light red circle) parameters reported
as percentage difference respect to the parental strain. Panels (D–F): Heatmap of the significantly
altered FTIR peaks (distance measure using Euclidean, and clustering algorithm using ward.D). The
coloured boxes indicate the relative intensities of the mean of peaks in the corresponding spectral
region. The colour scale is log2 transformed value and indicates relatively high (yellow) and low (red)
peak intensities. Spectral regions have been divided into sub-regions, namely: Fatty acids (W1_1 from
3200 to 3100 cm−1–W1_2 from 3098 to 2801 cm−1); Amides (W2_1 from 1800 to1649 cm−1–W2_2 from
1647 to 1501 cm−1); Mixed region (W3_1 from 1499 to 1352 cm−1–W3_2 from 1350 to 1202 cm−1);
Carbohydrates (W4_1 from 1200 to 1053 cm−1–W4_2 from 1051 to 902 cm−1).

In reaction to this copper concentration, we observed an increase in the variabil-
ity of metabolomic profiles, resulting in MSC-dependent signatures (Figure 5F). Overall,
the metabolomic patterns of MSCs mirrored those of PS, depicting a general slowing of
metabolism to the exclusion, in a few cases, of carbohydrates in the W4_2 region.
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With respect to its progeny, S. cerevisiae YVGC13A reacted to copper’s supplementation
by inducing genes responsible for carbohydrates metabolism and protein biosynthesis as a
general mechanism of stress response in this species (Figure 5E,F) [45,49]. Conversely, the
higher intensities in fatty acids may be the result of higher reactive oxygen species (ROS)
accumulation, already described as a specific S. cerevisiae response to stress conditions
triggered by copper [50,51].

Generally, the sporulation of YVGC13A has produced a significant amount of variabil-
ity, resulting in some improved phenotypes, both at rest and under stressful conditions.
However, the MSCs that performed better in control broth were not the same ones that
displayed increased tolerance to copper supplementation. These data supported the hypoth-
esis that the extensive sporulation applied in this study increases the amount of available
variability compared to those procedures implying sporulation under selection conditions.

3.4.2. Phenotypes under Glucose Stress

In the case of TC1517-derived progeny, the control in SD broth was useful to confirm
and further investigate the differential behaviors of the selected MSCs both in terms of
growth parameters (Figure 6A) and alteration of cell metabolomes (Figure 6D).

Only the TC_44 displayed growth parameters such as those of the parents. The other
MSCs were able to grow faster than the parental strain, with significantly higher t_max
and max_slope values (Figure 6A). Remarkably, the increase in the growth rate of TC_22
and TC_23 was linked to specific metabolomic changes induced by the up-regulation of
fatty acids and amides bands (W1 and W2_1) coupled with the down-regulation of mixed
and carbohydrates ones (W3_2 and W4) (Table S8, Figure S5). The fingerprints of these
MSCs were reversed with respect to those of S. cerevisiae TC1517 (Figure 6D). The other
four MSCs displayed lower changes and were mainly located in the W1 and W2_1 regions.

At increasing glucose concentrations, significant alterations were evident in both
the growth and metabolomic phenotypes of the selected MSCs. In the presence of 25%
glucose, TC_52 was the only MSC that significantly increased the growth rate (max_slope)
compared to that of the parental, as already revealed in the control condition. No significant
differences were detected for the other MSCs, except for TC_44 and TC_55, both affected
by a significant increase in t-max values and a reduction in max slope values (p < 0.05),
resulting in a reduced growth rate (Figure 6B).

Furthermore, once challenged with 25% glucose, the parental strain expressed metabolomic
changes opposite those observed in the benchmark broth (Figure 6E). The increase in glucose
concentration prompted higher intensities of fatty acid and protein bands (W1 and W2_1)
together with a reduction of those in mixed and carbohydrate regions (W3_2 and W4). The same
response was observed for TC_9 MSC, which, noteworthily, exhibited growth performances
such as those of S. cerevisiae TC1517. On the contrary, TC_23, TC_52, and TC_55 MSCs had an
antithetical regulation in these spectral regions. Additionally, the last two MSCs, sharing similar
metabolomic footprints, showed opposite growth behaviors. Finally, the TC_44 exhibited band
intensities around neutrality for all spectral regions.

The glucose supplementation up to 30% significantly affected the growth parameters
(p < 0.05) and led to a general reduction of all MSCs’ growth (Figure 6C). In TC_9, growth
reduction was accompanied by a substantial alteration of cell metabolism with the down-
regulation of fatty acids (W1) and proteins (W2) and the up-regulation of mixed (W3) and
carbohydrate (W4) regions (Figure 6F). A similar response, though of lesser intensity, was
displayed by TC_23 and TC_52 MSCs. The TC_22 and TC_55 clustered separately because
of the opposite response to that of these three MSCs. At glucose 30%, TC_44 was the only
MSC that displayed the same metabolomic alteration as the parental TC1517.

Overall, the sporulation of TC1517 has triggered a renewed level of variability that has
impacted both the growth and metabolomic phenotypes of the six MSCs selected. In the
absence of glucose stress, the growth phenotypes of most spores improved compared to
the parental strain. Conversely, high glucose levels induced a general worsening of growth
performance by reducing the growth rate of the MSCs. The only exception was the TC_52
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culture, which maintained a growth rate higher than that of the parental cells even under
25% glucose.

Interestingly, TC_22 and TC_23 MSCs, which demonstrated the best performance un-
der control conditions, reacted to glucose addition by significantly shaping their metabolism
in the direction of a reduction of the lag phase, a typical response of strains with increased
tolerance to a specific stressor [52,53].

The metabolomic fingerprint of these strains, despite having a dose-dependent pattern,
showed a peculiarity in the constant clustering of the responses of W1 and W2 in opposition
to those of W3 and W4, both under control and in stressed conditions. This evidence
could be attributed mainly to the opposite regulation of genes involved in protein and
carbohydrate metabolism. The fact that some stressing conditions induce carbohydrate
metabolism genes by down-regulating those involved in protein biosynthesis has already
been observed in S. cerevisiae [54]. It is well documented that S. cerevisiae cells accumulate
some carbohydrates in response to different types of stress [45,49,55]. In the presence of
15 g L−1 of glucose, the production of intracellular glycerol and trehalose was found to be
significantly increased [47]. Furthermore, glucose concentration has been reported to have
a proportional effect on intracellular ROS, which increases intensity in the W1_1 region [56].

3.4.3. Phenotypes under Formic Acid Stress

When grown in control broth, most of the MSCs of S. cerevisiae YI30 were affected by a
significant increase in the lag phase (p < 0.05) with respect to the parental strain (Figure 7A).
The variability induced by sporulation also interested the max slope value in YI_11, which
exhibited the worst phenotype together with YI_22.

Based on the metabolomic alterations (Table S9, Figure S6), MCSs were grouped into
two main clusters (Figure 7D). The first included four MSCs, of which YI_20 and YI_35 are
closest to the PS, whereas YI_22 and YI_39 are in a separate subcluster characterized by a
general downregulation of bands in all spectral regions. The second group consisted of
YI_11 and YI_53 MSC, which were separated from the PS mainly by reduced intensities in
the amide bands and increased signals for carbohydrates.

The phenotypes described for growth in a resting condition significantly changed in
response to formic acid, according to the increase in dose (Figure 7B,C). The presence of
0.3 g L−1 formic acid modified growth phenotypes except for YI_11, which maintained the
same pattern displayed in the control broth (Figure 7B). No significant differences from
the parental strain were detected for YI_22, YI_39, and YI_53, while YI_20 and YI_35 were
faster thanks to the significant reduction in Lag and t_max (p < 0.05).

At the highest tested concentration (0.6 g L−1), formic acid clearly prompted the
growth of all MSCs by reducing the lag parameter with respect to the PS (p < 0.05), with
the only exception of YI_39 MSC (Figure 7C).

The heatmaps of the significantly altered FTIR peaks (Figure 7E,F) showed that the
differential ability to withstand formic acid was mediated by a fine tuning of carbohy-
drates, proteins, and fatty acid pathways. In addition, the improved performance of YI_20
and YI_35 in the presence of 0.3 g L−1 formic acid (Figure 7E), supported by the strong
down-regulation in W1 and up-regulation in W3_2 and W4_2 regions, could be explained
considering that S. cerevisiae, under some stressful conditions, induced genes involved in
carbohydrate metabolism while down-regulating those involved in protein biosynthesis.
In addition, the metabolomic pattern shown by YI_11 at higher concentrations (Figure 7F)
suggests that other mechanisms may be involved in the response to formic acid stress.
ROS, which are potentially responsible for providing tolerance to toxic formic acid, fall
in the fatty acid region (W1_1). The higher intensity in W1_1 bands displayed by YI_11
can possibly be related to the higher accumulation of ROS [56]. This hypothesis is under
investigation using a focused LC/MS approach.

Overall, the sporulation of YI30 resulted in MSCs with differential ability to withstand
increasing concentrations of formic acid and was useful for the selection of a few candidates
with promising phenotypes to be further studied to both shed light on the still poorly
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investigated mechanism of formic acid tolerance in S. cerevisiae and to develop superior
yeast strains with increased resistance to this weak acid [57,58]. Few MSCs, indeed, showed
a lower lag phase, thus reacting much faster than the parental strains thanks to strong and
strain-specific intracellular metabolomic reactions.

4. Conclusions

The main hypothesis of this paper is that the proposed non-GMO approach was
efficient in renewing genetic variability through the extensive sporulation of three S. cere-
visiae strains with different origins and backgrounds. The procedure involved an initial
randomized sampling of the MSCs produced by the extensive sporulation of each strain,
without any preliminary selection. In addition, a series of sequential steps focused on the
analysis of growth performances and metabolomic reactions allowed the analysis to be
restricted to six MSCs for each strain, screened at rest and under specific stress conditions.
Overall, data confirmed that i. the genome renewal reintroduced a quote of variability,
selectable following the approach presented in this study, ii. the extensive sporulation
generates variability in both growth and metabolomic phenotypes; and iii. this variability
depends on the starting parental strain, proving that the geographical location and ecologi-
cal origin of yeast have a major signature on its phenotypic pattern. Although the ongoing
whole genome sequencing of selected MSCs will clarify the nature and stability of this
variability, this novel procedure looks very promising for renewing yeast genetic variability
as a tool to obtain improved organisms with specific phenotypes and industrial fitness.
Further, selected MSCs are indeed of great metabolomic interest towards the identification
of molecules with deep impact on the yeast resistome against specific stressors.
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