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ABSTRACT The fast solution of three-dimensional eddy current problems is still an open problem,
especially when real-size finite element models with millions of degrees of freedom are considered. In order
to lower the number of degrees of freedom a magnetic scalar potential can be used in the insulating parts
of the model. This may become difficult when the model geometry presents some conductive parts which
are multiply connected. In this work a multigrid-based algoritm is proposed that allows for a calculation in
linear-time of cohomology, which is needed to introduce the scalar potential without cuts. This algorithm
relies on an algebraic multigrid solver for curl-curl field problems, which ensures optimal computational
complexity. Numerical results show that the novel algorithm outperforms state-of-the-art methods for
cohomology generation based on homological algebra. In addition, based on this algoritm, novel a, v-ϕ and
t-ϕ formulations to analyze three-dimensional eddy current problems in multiply connected domains are
proposed. Both formulations, after discretization by the cell method, lead to a complex symmetric system of
linear equations amenable to fast iterative solution by Krylov-subspace solvers. These formulations are able
to provide very accurate numerical results, with a minimum amount of degrees of freedoms to represent the
eddy current model. In this way the computational performance is improved compared to the classicalA,V -A
formulation typically implemented in finite element software for electromagnetic design.

INDEX TERMS Eddy currents, AC problem, finite element method, multiply connected, electromagnetic,
multigrid, cohomology.

I. INTRODUCTION
Most of commercial finite element software for electromag-
netic (EM) analysis at low frequency relies on the so-called
A,V -A and T -� formulations [1], [2]. In particular, the dis-
cretization of the A,V -A formulation by the finite element
method (FEM) with edge-element vector shape functions
leads to a large number of degrees of freedom (DOFs) if
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large-scale engineering problems are to be simulated. In addi-
tion, the final linear system resulting from edge-element dis-
cretization is poorly conditioned and can be hardly treated
by state-of-the-art preconditioned Krylov (sub)space solvers.
Ill-conditioning becomes even more pronounced as the num-
ber of edge DOFs increases, which is typical of FEM models
of practical interest. T -� formulation, originally proposed
in [3], makes it possible to reduce the number of edge
DOFs by introducing in the whole computational domain a
magnetic scalar potential �, approximated by nodal shape
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functions. This formulation poses, however, serious chal-
lenges if field problems with multiply connected domains
are to be simulated because � is then not uniquely defined.
Moreover, the electric vector potential T requires the impo-
sition of homogeneous Dirichlet boundary conditions (BCs)
on the surface of conductors to enforce the electric insulation
constraint. In the case of multiply connected problems, this
may lead to an incorrect enforcement of Ampère’s law and
thus to an erroneous eddy current reconstruction. To make the
potential uniquely defined suitable cutting surfaces (known as
cuts) can be introduced [4], [5]. The determination of cuts is
however cumbersome, especially if knotted parts are present
in the model geometry [6]. To the authors’ knowledge, robust
cut generation algorithms are presently not available; for
instance, self-intersecting surfaces are typically generated
by most of approaches presented in literature. An algorithm
for generating cuts even with domains containing knotted
parts is provided in [7]; however, it implies the preliminary
knowledge of cut orientations to incorporate potential jumps.

A different strategy to make the insulating region
simply-connected is to generate a thick cut, i.e., a layer of
tetrahedrons attached to a cut and where the curl-free condi-
tion for T is strongly imposed [8]. In this case the magnetic
scalar potential becomes uniquely defined and the insulation
constraint can be properly imposed on conductor surfaces.
Algorithms for thick cuts (see, e.g., [9], [10]) require, how-
ever, the preliminary generation of a cut, thus suffering from
the lack of robustness mentioned above.

In [11] it is observed that the definition of cuts in the
insulating region can be avoided if special vector fields,
termed cohomology generators or loop fields, are introduced.
These vector fields form a basis for the space of curl-free
fields that are not gradients of a scalar potential, i.e., the first
de Rham cohomology group, which is crucial to represent
correctly the magnetic field in the insulating region. The
algorithm proposed in [11] for cohomology generation relies
on the concept of constrained spanning tree and requires the
preliminary construction of the first homology group. Clas-
sical techniques for computing cohomology groups rely on
so-called Smith Normal Form (SNF) integer matrix decom-
position, which has the main drawback of hyper-cubical com-
putational complexity [12]. The huge cost of cohomology
computation can be alleviated, for instance, by using mesh
reduction algorithms, which preserve the topological proper-
ties of the original mesh and run with super-linear computa-
tional complexity O(N logN ) [13]. A general homology and
cohomology solver for finite element meshes, based on the
rigorous mathematical framework of homological algebra,
is proposed in [14]. This tool is integrated as a part of the
open source mesh generation software Gmsh [15].
In [16] a novel approach for generating loop fields directly

at the discrete level is presented. Its basic advantage is that
it does not require group algebra computations for finding
cohomology generators, avoiding time consuming integer
matrix decomposition. By this novel algorithm a candidate
curl-free field is generated by using an iterative solver for

rectangular linear systems. Its complement with respect to
the space of gradients is computed by an optimal algebraic
multigrid solver (AGMG) and added, after orthogonalization,
to the set of loop fields. These are finally used for decompos-
ing the magnetic field at the discrete level in the insulating
region. This is further used in the h-ϕ formulation for eddy-
current problems, which makes use of edge DOFs h (i.e.,
magnetomotive forces along mesh edges) in the conductive
parts and nodal DOFs ϕ (i.e., magnetic scalar potentials eval-
uated at mesh nodes) in the insulating region, with minimum
amount of unknowns.

An alternative to the h-ϕ formulation is the a-ϕ formu-
lation, where line integrals of the magnetic vector poten-
tial a are used as working variables, as an alternative of h
variables [17]. In such a way modeling flexibility can be
enhanced. For instance, edge DOFs can be used also in the
insulating region to simplify its topology (e.g., by filling some
holes) and in turn the number of loop fields needed to repre-
sent the magnetic field can be reduced. In addition, in [17]
the computational efficiency of the algorithm for cohomol-
ogy generators is improved by using an iterative multigrid
solver with optimal complexity specifically designed for the
solution of curl-curl field problems (AGMGcc) [18].

In this work the mutigrid algorithm for computing coho-
mology generators is further refined. In particular its robust-
ness is improved by avoiding the use of Dirichlet boundary
conditions. Efficiency is also improved by constructing the
preconditioner of the AGMGcc solver only once, for each
connected component of the interface between the interior
and the exterior region. The resulting algorithm is tested
against the Gmsh algorithm, which relies on state-of-the-
art techniques based on homological algebra, by considering
two different benchmarks with complex topology.O(N ) time
complexity is also illustrated by considering different mesh
refinements of the same discretized benchmark models.

Moreover, by exploiting the new multigrid-based algo-
rithm, two novel formulations are proposed, allowing to sig-
nificantly improve the efficiency of previous formulations
based on the use of magnetic scalar potential. These novel
formulations are inspired by the so-called hybrid formula-
tions, which combine differential and integral discretization
approaches such as the cell method (CM) and the boundary
element method (BEM) [19]. The first approach is the elec-
tric a, v-ϕ formulation, which makes use of additional nodal
DOFs (i.e., electric potentials evaluated at mesh nodes v)
in the interior domain. Numerical experiments show that,
although the number of DOFs is increased, the computational
performance is improved with respect to a-ϕ method already
presented. Moreover, unlike the classical A,V -A method,
the electric scalar potential can be used also (if needed) in
the insulating region. In a similar fashion, a magnetic t-ϕ
formulation is presented as an alternative of the h-ϕ method,
with excellent computational performance. In this case the
use of magnetic scalar potential is extended to the whole
computational domain to allow for the decomposition of h
variables in the conductive region. It has to be noted that the
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main difference with the classical T -� formulation is that
insulating condition is not explicitly imposed on conductors,
while retaining modeling accuracy.

The paper is organized as follows. Electric and mag-
netic formulations for 3-D eddy-current problems are first
presented in the continuous setting in Section II. The novel
algorithm for generating loop fields, based on the AGMGcc
multigrid iterative solver with optimal complexity, is pre-
sented in Section III. The discretization of electric and mag-
netic formulations by the CM is presented in Section IV.
Finally, these formulations are tested against benchmarks
with complex topology in Section V, aiming at showing
computational performance and accuracy level in comparison
with numerical results from a second-order FEM software.

II. EDDY-CURRENT PROBLEM
EM field problems at low frequency can be described by
neglectingwave propagation and taking into account only dif-
fusion inside electric and magnetic media. Maxwell’s equa-
tions obtained by disregarding the displacement current are
expressed in the frequency domain as:

∇×E+ ı ωB = 0, (1)

∇×H = J, (2)

J = σE+ J0, (3)

H = νB, (4)

where ı is the imaginary unit, ω is the angular frequency.
Material parameters are the electric conductivity σ and the
magnetic reluctivity ν. The part of � in which σ > 0 is the
conductive region, denoted as �C . ν is defined throughout
� (in particular, ν0 indicates the air reluctivity). Both mate-
rial parameters are assumed to be piecewise constants and
may be subject to local spatial variations (e.g., presence of
inhomogeneous magnetic and/or conductive materials). The
electric fieldE, the magnetic flux densityB, and the magnetic
field H are defined in the computational domain �. The
current density J is split as a sum of the eddy current density
σE and the source current density J0. The latter represents
current-driven coils in the source region �0, where σ = 0 is
assumed as the skin effect is generally neglected there.

By taking the divergence of (1) and (2), the magnetic and
the electric conservation equations are obtained:

∇·B = 0, (5)

∇· J = 0. (6)

Scalar potential formulations here proposed are derived in
the same spirit of hybrid formulations [19], [20], [21] com-
bining different discretization approaches such as CM and
BEM or FEM and BEM, with the following main features:
i) � is partitioned into interior and exterior field problems,
ii) a vector potential is used as a main unknown in the interior
region, and iii) a scalar potential is used in the exterior region.

In the following electric and magnetic formulations, based
on the magnetic scalar potential, are obtained by coupling
EM formulations of both exterior and interior field problems.

FIGURE 1. Computational domain for defining the electric formulation
based on the magnetic vector potential.

Fig. 1 shows the computational domain � used for defining
the electric formulation: the interior region �i (an open and
bounded subset of �) is modeled by using the magnetic
vector potential, whereas �e is modeled by using the scalar
potential; the source region �0 with current-driven coils is
contained outside�i; the insulating region is bounded by ∂�,
i.e., the computational domain boundary.

A. EXTERIOR PROBLEM
The exterior region is the complement of the interior region
in the computational domain, i.e. �e = � \ �i, where �i
indicates the set closure of �i. In the most general case, with
an arbitrary topological setting, the exterior region may be
multiply connected. It means that there exists a loop in �e
which cannot be shrink to a point while remaining in �e [5].
The most simple way to model the magnetostatic problem

in �e is to consider the electric field diffusion equation (16)
for σ = 0, leading to the so-called A-A formulation [2].
In the similar fashion, starting from diffusion equation (17),
the A,V -A formulation is obtained. Also in this case A is used
in the insulating region. Both these electric formulations are
typically discretized by using edge-element shape functions,
with the main drawback of a huge number of DOFs in engi-
neering problems of practical interest.

The best solution in order to minimize the number of DOFs
in �e is to use a magnetic scalar potential, since by using
nodal shape functions DOFs are related to the mesh nodes
instead of mesh edges unlike previous formulations. If �e
is multiply connected the magnetic scalar potential ϕ is not
uniquely defined in �e due to eddy current flowing in �i.
This is illustrated in Fig. 1 by a simple example: a loop γi,
embracing the torus �C , is intersecting a cut 6i (depicted in
shaded line in Fig. 1). Since 6i makes the insulating region
simply connected, the potential is uniquely defined in�e\6i,
together with its gradient ∇ϕ, and Ampère’s law on γi reads:

Ii =
∫
γi

H · d l =
∫
γi

∇ϕ · d l = [ϕ]6i , (7)
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where Ii is the eddy current flowing in �C and square brack-
ets indicate the potential jump across 6i. Cuts and loops
are dual to each other thanks to Poincaré duality [22]. The
construction of cuts (dubbed as Seifert surfaces in topol-
ogy) is however complex and computationally intensive [5].
An alternative approach, discussed below, avoiding the use of
cuts and potential jumps as (7), will be adopted here.

In order to avoid cuts the use of cohomology generators,
filling the space of curl-free fields that are not gradients,
was first proposed by Henrotte in [11]. By this approach the
magnetic field in �e is split as follows:

H = ∇ϕ +
β1∑
k=1

Ik Hk , (8)

where Ik are currents in independent circuits to be identified
in �i, and Hk , k = 1, . . . , β1, with β1 first-order Betti
number of �i, is the cohomology basis. Ik can be either
induced currents (e.g., as the current flowing in�C , in Fig. 1)
or impressed currents in coils. The main limitation of this
approach is that both independent cuts and a constrained
spanning-tree need to be constructed in �i. In [14] this is
avoided by using tools from homological algebra to compute
cohomology; however, unlike (8), DOFs related to loop fields
are linear combinations with integers coefficients of Ik .

In this work a magnetic field decomposition, which does
not rely on cuts in �i such as (8), is adopted (see, e.g., [5]):

H = H0 +∇ϕ +

β1∑
k=1

ξk Tk , (9)

where ξk are DOFs without physical significance that are
determined when solving the final linear system, after numer-
ical discretization. Vector fields Tk , k = 1, . . . , β1 form
the cohomology basis in �i (which is indicated differently
from (8) since generators are unconstrained). H0 is the
so-called source field, i.e., any field which fulfills Ampère’s
law:

∇×H = J0. (10)

The source field is typically constructed at the pre-processing
stage; thenmagnetic field sources such as current-driven coils
are eliminated from the computational domain.

The algorithms presented, e.g., in [5] or [14] are based,
however, on the SNF decomposition, which involves high
computational complexity [23]. An algorithm computing
directly cohomology, which avoids integer computations
and does not take any mesh manipulation, is presented
in [16]. An improved version of this algorithm, relying
on an algebraic multigrid iterative solver with precondi-
tioner setup, is discussed in Section III. The key idea of the
multigrid-based approach, introduced in [17], is to construct
in linear-time the cohomology group directly at the algebraic
level by solving an equivalent magnetostatic linear systems
with multigrid.

Topological constraints for enforcing ξk , k = 1, . . . , β1,
are derived by applying the virtual work principle in �e as

shown in [19]. By assumingA×n = 0 on the domain bound-
ary ∂� (see Fig. 1), i.e., magnetic wall BCs, the following
condition is obtained:∫

�e

Tk · B d�+
∫
0

A · Tk × n d0 = 0, (11)

with k = 1, . . . , β1 and n is the outward unit normal on the
interface 0 pointing out from �i.

By inserting the magnetic field decomposition (9) in the
magnetic constitutive relationship:

B = µH, (12)

where µ = ν−1 is the magnetic permeability, and by
using (5), one obtains Poisson’s equation which governs the
magnetostatic problem in the exterior domain:

−∇·µ∇ϕ = ∇·µH0 +

β1∑
k=1

ξk∇·µTk . (13)

The exterior problem is eventually solved by assuming homo-
geneous Neumann BCs on the computational domain bound-
ary ∂� and suitable interface conditions on 0.

B. INTERIOR PROBLEM
Two different modeling approaches for modeling the field
problem in the interior region are presented in this section.

In the so-called electric formulation the electric field diffu-
sion in�i is described in terms of a magnetic vector potential
A such that:

E = −ı ωA. (14)

The interior region, in which A is defined, may include also
non-conductive materials, i.e., �C ⊆ �i (see, e.g., Fig. 1).

Since it is assumed also that the source domain is contained
outside �i, it results J0 = 0 in (3). The conservation equa-
tion (5) can be expressed in terms of potential as:

B = ∇×A, (15)

where A is defined up to a gradient of a scalar function.
By letting (14) in (3), with J0 = 0, and (15) in (4), the
magnetic diffusion equation in � can be derived from (2) as:

∇× ν∇×A+ ı ω σ A = 0. (16)

By using the gauge transformation A 7→ A + ∇v, where
v is the primitive (i.e., time integral) of the electric scalar
potential, (16) can be expressed in this equivalent form:

∇× ν∇×A+ ı ω σ (A+∇v) = 0. (17)

The potential v is constrained in �C by imposing the electric
conservation equation (6), together with (3), as:

−ı ω∇· σ (A+∇v) = 0. (18)

The other possibility is to describe magnetic diffusion in
�C by using the magnetic field as working variable, thus
obtaining the so-called magnetic formulation. In this case the
interior domain is restricted to the conductive region, i.e.,
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�i = �C , and cannot include magnetic materials, unlike
the electric formulation. The computational domain of the
magnetic formulation can be depicted similar to Fig. 1.

By taking J0 = 0 following the same argument as above,
the electric constitutive equation (3) becomes:

E = ρ J, (19)

where ρ = σ−1 is the electrical resistivity. By letting (19)
and (12) in (1), and by using (2), one obtains the magnetic
diffusion equation in terms of the magnetic field variable:

∇× ρ∇×H+ ı ωµH = 0, (20)

which, unlike (16), holds only if σ > 0, i.e., inside �C .
By using the gauge transformation H 7→ T + ∇ϕ, with T
electric vector potential, the equivalent form of (20) reads:

∇× ρ∇×T+ ı ωµ (T+∇ϕ) = 0. (21)

Potential ϕ is constrained in the whole domain� by imposing
the conservation equation (5), together with (12), as:

∇·µ (T+∇ϕ) = 0. (22)

III. COHOMOLOGY BY MULTIGRID-BASED ALGORITHM
Interior and exterior field problems in the continuous setting
are discretized by using the CM. Details of this discretization
method, alternative to FEM, are given in [17] or [19] and
are here briefly summarized. The computation domain is
meshed into tetrahedral cells and any subdomain �d , d ∈
{C, i, e, 0}, is discretized by its mesh partition G�d , i.e., the
primal grid, and the corresponding dual grid G̃�d obtained by
joining tetrahedrons of the barycentric dual complex related
to G�d . Any physical field can be approximated by using an
array of DOFs, termed discrete field, whose coefficients are
related to geometric entities of either primal or dual grids
(i.e., potential on nodes, line integrals, and fluxes through
faces). Differential operators are approximated as incidence
matrices. Constitutive relationships are approximated (after a
suitable choice of shape functions) as positive-definite matri-
ces. A linear system is finally assembled and solved.

By integrating (9) along each primal edge of G�e and by
using Stokes’ theorem, the corresponding magnetic discrete
field decomposition is obtained:

h�e = h0,�e +G�e ϕ�e +
β1∑
k=1

ξk tk,�e , (23)

where h�e = (he)e∈G�e is the array of magnetomotive forces
(mmfs) he =

∫
eH · d l, i.e. line integrals of H along any

edge e of G�e , and the other arrays of edge DOFs h�e , h0,�e ,
and tk,�e are defined in a similar fashion. The edge-to-node
incidencematrix of G�e , or discrete gradient,G�e , is made up
by 0,±1 coefficients and it is obtained by applying Stokes’
theorem to the gradient in (9). Finally, ϕ�e is the array of
magnetic scalar potential evaluations on the primal nodes of
G�e , i.e. ϕ�e = (ϕ(n))n∈G�e . It has to be noted that the
number of generators in (23) equals that in (9), due to de

Rham theorem which establishes an isomorphism between
de Rham cohomology (related to physical fields, in the con-
tinuous setting) and singular cohomology (related to discrete
fields, obtained after CM discretization) [24].

In this work an improved version of the algorithm proposed
in [16] is proposed. The original algebraic procedure was
able to avoid the generation of the homology basis (requiring
time-consuming mesh data manipulations) and to compute
the discrete cohomology basis tk,�e by solving rectangular
linear systems with iterative solvers such as LSMR or LSQR.
The main advantage of the new algorithm is to rely on an
algebraicmultigrid iterative solver in order to guarantee (opti-
mal) linear-time complexity in the generation of cohomology,
which had not been obtained before.

The starting point of this algorithm is to observe from (23)
that discrete cohomology generators tk,�e are curl-free, in the
sense that they lie in the kernel of face-to-edge incidence
matrix of G�e , or discrete curl, C�e . In fact, by applying the
curl operator to (23), the discrete source field h0,�e fulfills:

C�eh�e = j0,�e , (24)

and the matrix identity C�eG�e = 0 holds, i.e., the discrete
counterpart of vector identity ∇×∇(·) = 0. (24) is obtained
by integrating (10) on the faces of G�e and by using Stokes’
theorem. j0,�e = (j0,f )f ∈Ge is the array of source currents
j0,f =

∫
f J0 · ds, i.e. fluxes of J0 thorough any face f of G�e .

Therefore, any candidate generator is a vector u�e such that
C�eu�e = 0. As proven in [17], this corresponds to solve the
following (square) equivalent magnetostatic system:

CT
�e
C�eu�e = 0, (25)

where (·)T indicates the matrix transpose. It is shown in
Section V that (25), which is built at negligible computing
cost, can be solved with optimal computational complexity
by using the AGMGcc iterative solver.

AGMGcc solver [18] is intended for the solution of
curl-curl linear systems like (25). The solver is based on
the flexible variant of the conjugate gradient method [25]
used with an auxiliary space preconditioner inspired by [26]
and [27]. The preconditioner combines the successive appli-
cation of the symmetrized Gauss-Seidel iterative schemewith
an approximate solution of some auxiliary linear systems.
The auxiliary systems are obtained by projecting the original
curl-curl linear system into discrete H1 auxiliary spaces, and
are solved using the block variant of AGMG solver [28]. Note
that with AGMGcc solver the setup of the preconditioner and
the linear system solution based on the preconditioner can be
performed separately.

The second step is to observe that tk,�e are curl-free fields
that are not in the range of G�e ; therefore, generators can be
obtained by considering any v�e = u�e − G�eϕ�e which is
orthogonal to the columns ofG�e . It is shown in [16] that this
amounts to solve the square Poisson-like linear system:

GT
�e
Mµ,�eG�e ϕ�e = GT

�e
Mµ,�eu�e , (26)
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where Mµ,�e is the (positive definite) magnetic constitutive
matrix of G�e , built by using piecewise uniform edge basis
functions [29]. Linear system (26) can be solved again very
efficiently in linear-time by an algebraic multigrid iterative
solver (AGMG) for grad-grad discrete problems [28].

Last step of the multigrid-based algorithm is to extract
an orthogonal basis by using a QR decomposition algorithm
with column update. This ensures that cohomology gen-
erators are linearly independent from each other and thus
form a basis. These are stored column-wise in the so-called
cohomology matrix:

T�e =
[
t1,�e , . . . , tβ1,�e

]
. (27)

Basic steps of the multigrid-based algorithm are summa-
rized by Algorithm 1 and discussed point by point in the
following.

Algorithm 1 (Cohomology in Linear Time)
1: Init cohomology matrix T�e = [ ]
2: Init stiffness matrix K = CT

�e
C�e

3: Find connected components G(m)
0 of G0 , m = 1, . . . ,M

4: Init number of generators k = 0
5: Init interface genus g = 0
6: for m = 1, . . . ,M do
7: χm = N (m)

0 − E
(m)
0 + T

(m)
0

8: Init component genus gm = 1− χm/2
9: g = g+ gm
10: Preconditioner setup for (25)
11: if gm > 0 then
12: Init set E (m)

0 of gm edges pick randomly on G(m)
0

13: while k < g do
14: Init perturbation vector δu�e = 0
15: Set δu�e,j to random value for any j ∈ E (m)

0

16: Init f = −K δu�e
17: Solve K û�e = f
18: u�e = û�e + δu�e
19: Compute the orthogonal complement v�I of

. u�e with respect to the range of G�e
20: Compute the orthogonal complement w�e of

. v�e with respect to the range of T�e
21: if ‖w�e‖µ > 0 then
22: k = k + 1
23: tk,�e = w�e/‖w�e‖µ
24: T�e =

[
T�e , tk,�e

]
25: end if
26: end while
27: end if
28: end for

It has to be noted first that the number of cohomology gen-
erators β1 equals the interface genus g. In fact, the number of
homology generators of �e (which is β1, as cohomology) is
equal to that of�i, for the Alexander duality, and the union of
generators forms the homology group of 0, whose dimension
is 2g (see, e.g, [23]). From this observation, cohomology is

here extracted by considering edges lying on the connected
components G(m)

0 of G0 , i.e., the interface primal grid.
At line 1, T�e is initialized to the empty matrix.
At line 2, the stiffness matrix of the linear system (25) is

built.
At line 3 G(m)

0 , m = 1, . . . ,M , are identified on G0 .
At line 8, for any mth component, the genus gm of G(m)

0

is computed from its Euler’s characteristic χm. Cohomology
generators for that component are extracted only if gm > 0,
i.e., in the case of non-trivial surface topology.

At line 10, the AGMGcc preconditioner for the linear
system (25) is built and stored once for each connected com-
ponent of 0. This allows to speed up computations since (25)
has to be solved gm times at least.
At line 12, gm edges are randomly picked from G(m)

0 . For
any edge a random value is assigned at line 15. These values
are the non-zero coefficients of the perturbation vector δu�e .

At line 18, an admissible curl-free field u�e is found by
solving (25) with AGMGcc solver (line 17). In order to obtain
a non-trivial solution the non-trivial RHS is formed from
perturbation vector (line 16). The key idea of the algorithm
is that random DOFs, set on interface edges, force the solver
to search for a non-trivial u�e . It has to be noted that this
solution strategy is different from that used in the former
version of the algorithm [16], which often led to failures
of AGMGcc because of the use of Dirichlet BCs, and it
has been specifically designed to ensure robustness and fast
convergence behavior to AGMGcc solver.

At line 19, the orthogonal complement v�e of u�e with
respect to the range of G�e is found by solving (26) with
AGMG iterative solver.

At line 20, the orthogonal complement w�e of v�e with
respect to the range of T�e is found by using a QR decompo-
sition algorithm with column update.

At line 21, a linear dependency check on orthogonal com-
plement is realized: If its energy norm

‖w�I ‖µ =
√
wT
�e
Mµ,�ew�e , (28)

is non-zero, then w�e is linearly independent with respect
to previous generators and can be added to the cohomology
matrix after normalization (lines 23-24). By noting that any
v�e is orthogonal to the range ofG�e and any tk,�e is a linear
combination of these vectors, it readily follows that:

GT
�e
Mµ,�eT�e = 0, (29)

that is orthogonality holds also for cohomology generators.
Iterations stops at line 26 when k = g, i.e., a number of gm

cohomology generators has been extracted for G(m)
0 .

IV. HYBRID FORMULATIONS
Maxwell’s equations in the frequency domain, described in
Section II, are discretized by using the CM. Because inte-
rior and exterior problems are discretized separately and
then interfaced by continuity constraints, similarly to hybrid
methods combining different numerical techniques, electric
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(a-ϕ and a, v-ϕ) and magnetic formulations (h-ϕ and t-ϕ),
presented in the following, are termed hybrid formulations.
a-ϕ and h-ϕ formulations have already been derived in [17]
and [16], respectively, and are here briefly recalled for the
sake of clarity and completeness. Starting from these bases,
novel a, v-ϕ and t-ϕ formulations, with improved numerical
performances, are obtained in Section IV-C and IV-D.

A. DISCRETE SOURCE FIELD
The discrete source field h0,�e , which represents the field
sources in G�e , can be found by solving the linear system:

CT
�e
C�eh0,�e = CT

�e
j0,�e (30)

which is equivalent to (24), as proven in [17]. This linear
system can be solved efficiently by using AGMGcc solver.
From numerical experiments it can be however observed that
multigrid convergence can be accelerated by considering (30)
on the whole domain, instead of exterior region only. In this
case h0,�e is simply the solution restriction to G�e . It has to
be pointed out that this new approach for finding the source
field can be applied to meshes with millions of elements, with
a limited computational effort (see results in Section V).

B. CM FORMULATION IN EXTERIOR REGION
The magnetostatic problem in the exterior region is dis-
cretized in the sameway for both electric andmagnetic hybrid
formulations. By integrating the magnetic conservation equa-
tion (5) on each cell of G̃�e and by applying the divergence
theorem, one obtains:

D̃�e b̃�e − D̃�e0b̃0 = 0, (31)

where b̃�e = (b̃f )̃f ∈G̃�i
is the array of magnetic fluxes b̃f =∫̃

f B · ds through any face f̃ of G̃�e and b̃0 is the array of
magnetic fluxes through the faces of G̃0 , computed with 0
oriented by a unit normal n, pointing out from�i. The minus
sign in (31) accounts for the opposite orientation of 0 and
∂�e, on which the divergence theorem is applied. D̃�e is
the volume-to-face incidence matrix of G̃�e , or dual discrete
divergence, and D̃�e0 is the surface divergence matrix, i.e.,
the transpose of the selection matrix (made up of 0, 1 coeffi-
cients) which extracts primal nodes of G0 from those of G�e .
Bulk fluxes in (31) can be expressed as a function of mmfs
by means of the magnetic constitutive relationship:

b̃�e =Mµ,�eh�e . (32)

By letting (23) in (32) and by using the topological identity
D̃�e = −G

T
�e
, together with orthogonality condition (29), the

discrete magnetic flux conservation (31) becomes:

GT
�e
Mµ,�eG�eϕ�e+D̃�e0b̃0 =−G

T
�e
Mµ,�eh0,�e . (33)

Topological constraints (11) can be discretized by expanding
fields B and A with face and edge piecewise uniform basis
functions [29]. The following relationship is obtained in [17]:

TT
�e

(̃
b�e − C̃�e0 ã0

)
= 0, (34)

where ã0 = (ãe )̃e∈G̃0 is the array of magnetic vector potential
line integrals ãe =

∫̃
e A × n · d l along the edges of G̃0 .

By letting (23) in (32), (34) can be rewritten as:

TT
�e

(
Mµ,�eT�eξ�e− C̃�e0 ã0

)
=−TT

�e
Mµ,�eh0,�e . (35)

C. ELECTRIC HYBRID FORMULATIONS
By integrating (14) along the edges of G�i , one obtains:

e�i = −ı ω a�i (36)

where e�i is the array of electromotive forces (emfs) and a�i
is the array of line integrals of magnetic vector potential, both
along the edges of G�i . The magnetic conservation equation
in discrete form is obtained by integrating (15) on the faces
of G�i and by applying Stokes’ theorem:

b�i = C�ia�i , (37)

where b�i is the array of magnetic fluxes through faces of G�i
and C�i is the curl-matrix of the interior domain.
Electric and magnetic constitutive equations are obtained,

as detailed in [19], by approximating local relationships (3)
and (4) with piecewise uniform shape functions. Constitutive
relationships at the discrete level become:

j̃�i = Mσ,�ie�i , (38)

h̃�i = Mν,�ib�i , (39)

where j̃�i = (j̃f )̃f ∈G̃�i
is the array of currents j̃f =

∫̃
f J · ds

through faces f̃ of G̃�i and h̃�i = (h̃e )̃e∈G̃�i
is the arrays of

mmfs h̃e =
∫̃
eH·d l along any edge ẽ of G̃�i . The conductance

Mσ,�i and the reluctance Mν,�i positive-definite matrices
are obtained, respectively, by using edge and face piecewise
uniform bases, as discussed in [19]. Coefficients of Mσ,�i

are non-zero only in correspondence of the edges of G�C .
By integrating (2) along faces of G̃�i and by using again
Stokes’ theorem, one obtains the discrete Ampère’s law:

C̃�i h̃�i + C̃�i0h̃0 = j̃�i , (40)

where C̃�i = CT
�i

is the face-to-edge incidence matrix
of G̃�i , or dual discrete curl, and C̃�i0 is the surface curl
matrix, i.e., the transpose of the selection matrix (made up
of 0, 1 coefficients) which extracts edges of G0 from those of
G�i . Coefficients of h̃0 are mmfs computed along the edges
of G̃0 and are useful for coupling interior and exterior field
problems. Coefficients of j̃�i are eddy currents in conductive
parts only, since magnetic field sources are located in �e.
The discrete magnetic diffusion equation is finally

obtained in the same way as the corresponding local rela-
tionship (16). By letting (36) in (38) and (37) in (39), and
by plugging constitutive relationships in (40), one obtains:(

CT
�i
Mν,�iC�i + ı ωMσ,�i

)
a�i + C̃�i0 h̃0 = 0. (41)

To couple interior and exterior field problems the interface
term ã0 in (35), defined on the dual mesh, has to be mapped
to the primal one as:

ã0 = P0 C̃T
�i0

a�i , (42)
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where the projectionmatrixP0 is defined as discussed in [17],
by using edge piecewise uniform basis functions, and C̃T

�i0
is

the selection matrix which extracts edges of G0 from those of
G�i . Similarly, h̃0 in (41), defined on the dual mesh, can be
derived from exterior DOFs as:

h̃0 = −P0 C̃T
�e0

h�e , (43)

where the minus sign accounts for the opposite orientation of
0 and ∂�e. Finally, the interface magnetic fluxes in (31) can
be expressed in terms of potentials as:

b̃0 = C̃0 ã0. (44)

Note that (42) and (43) cannot be introduced in a FEMnumer-
ical scheme, based on a single cell complex only, which seems
to motivate the inconsistencies in FEM numerical results
observed by Kameari in [30].

In the a-ϕ electric formulation working variables are a�i ,
for the interior problem, and ϕ�e , ξ�e , for the exterior prob-
lem. By letting (42) in (35) and (43) in (41), and assembling
together interior and exterior problem equations and topolog-
ical constraints, a final symmetric linear system is obtained:K11 K12 K13

K21 K22 O
K31 O K33

a�i
ϕ�e
ξ�e

 =
f1
f2
f3

 , (45)

where blocks of the upper triangular part are:

K11 = CT
�i
Mν,�iC�i + ı ωMσ,�i ,

K12 = −C̃�i0 P0 C̃
T
�e0

G�e ,

K13 = −C̃�i0 P0 C̃
T
�e0

T�e ,

K22 = −GT
�e
Mµ,�eG�e ,

K33 = −TT
�e
Mµ,�eT�e ,

and K21 = KT
12, K31 = KT

13 are the blocks in the lower
triangular part, O is the null matrix. Vectors at the RHS are:

f1 = C̃�i0 P0 C̃
T
�e0

h0,�e ,

f2 = GT
�e
Mµ,�eh0,�e ,

f3 = TT
�e
Mµ,�eh0,�e .

The final linear system is solved by using the transpose free
quasi-minimal residual (TFQMR) iterative solver with sym-
metric successive over-relaxation (SSOR) preconditioner.
Numerical tests showed that this solver has very good compu-
tational performance, low memory consumption, and smooth
convergence pattern when solving (45).

By using the gauge transformation a�i 7→ a�i + G�iv�i
in (41), where v�i is the array of electric scalar potentials
evaluated at the nodes of G�i , the alternative form of the
magnetic diffusion equation is obtained:(
CT
�i
Mν,�iC�i + ı ωMσ,�i

)
a�i

+ ı ωMσ,�iG�iv�i + C̃�i0 h̃0 = 0 (46)

which corresponds to (17) at the discrete level. Coefficients of
v�i are non-zero only in correspondence of the nodes of G�C .

By integrating (6) on each cell of G̃�i the electric conservation
equation at the discrete level becomes:

D̃�i j̃�i = 0, (47)

where D̃�i = −G
T
�i

is the cell-to-face incidence matrix of
G̃�i and j̃�i is the array of currents through the faces of G̃�i .
By using the gauge transformation in (36), emfs along the
edges of G�i can be expressed as:

e�i = −ı ω
(
a�i +G�iv�i

)
. (48)

By letting (38) in (47) and by using (48), one obtains:

ı ωGT
�i
Mσ,�ia�i + ı ωGT

�i
Mσ,�iG�iv�i = 0, (49)

which corresponds to (18) at the discrete level.
The final matrix of the a, v-ϕ formulation is obtained in

the same way as (45), with the only difference that (41)
is used instead of (46). Moreover, additional constraints for
electric scalar potentials, provided in (49), are required. The
following symmetric linear system is obtained:

K11 K12 K13 K14
K21 K22 O O
K31 O K33 O
K41 O O K44



a�i
v�i
ϕ�e
ξ�e

 =

f1
0
f3
f4

 , (50)

where blocks of the upper triangular part are:

K11 = CT
�i
Mν,�iC�i + ı ωMσ,�i ,

K12 = ı ωMσ,�iG�i ,

K13 = −C̃�i0 P0 C̃
T
�e0

G�e ,

K14 = −C̃�i0 P0 C̃
T
�e0

T�e ,

K22 = ı ωGT
�i
Mσ,�iG�i ,

K33 = −GT
�e
Mµ,�eG�e ,

K44 = −TT
�e
Mµ,�eT�e ,

and K21 = KT
12, K31 = KT

13, K41 = KT
14 are the blocks in

the lower triangular part. Vectors at the RHS are:

f1 = C̃�i0 P0 C̃
T
�e0

h0,�e ,

f3 = GT
�e
Mµ,�eh0,�e ,

f4 = TT
�e
Mµ,�eh0,�e .

The final linear system of the a, v-ϕ formulation is solved by
using the same TFQMR+SSOR iterative solver as above.

D. MAGNETIC HYBRID FORMULATIONS
By integrating (1) on the faces of G̃�i and by applying Stokes’
theorem, the discrete Faraday’s law reads:

C̃�ĩe�i + C̃�i0 ẽ0 = −ı ω b̃�i , (51)

where ẽ�i , ẽ0 are the arrays of emfs along the edges of G̃�i
and G̃0 , respectively, and b̃�i is the array of magnetic fluxes
through the faces of G̃�i . By approximating local relation-
ships (19) and (12) with piecewise uniform bases, the electric
and magnetic constitutive relationships become:

ẽ�i = Mρ,�i j�i , (52)
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b̃�i = Mµ,�i h�i , (53)

where j�i is the array of currents through the faces of G�i
and h�i is the array of mmfs along the edges of G�i . The
resistance Mρ,�i and the inductance matrix Mµ,�i are com-
puted in the same way as Mν,�i and Mσ,�i , respectively.
By integrating (2) on the faces of G�i and by applying Stokes’
theorem, Ampére’s law in the interior region reads:

C�ih�i = j�i . (54)

By letting constitutive relationships (52) and (32) in (51), and
by using (54), the discrete magnetic diffusion equation reads:(

CT
�i
Mµ,�iC�i + ı ωMµ,�i

)
h�i + C̃�i0 ẽ0 = 0. (55)

To couple interior and exterior problems interface terms in
(33) and (35) need to be expressed in terms of emfs ẽ0 by
using these equivalent forms of Faraday’s law:

ã0 = −ı ω−1 ẽ0, (56)

b̃0 = ı ω−1 C̃0 ẽ0, (57)

where C̃0 is the face-to-edge incidence matrix of G̃0 . Emfs
need to be constrained by an additional set of equations,
which fulfill the continuity of mmfs across the interface.
By integrating (9) along the edges of G0 , one obtains:

h0 = h0,0 +G0 ϕ0 +
β1∑
k=1

ξk tk,0, (58)

where coefficients of interface arrays can be extracted from
bulk ones by means of selection matrices as h0 = C̃T

�i0
h�i ,

h0,0 = C̃T
�i0

h0,�i , ϕ0 = D̃T
�i0
ϕ�i , tk,0 = C̃T

�i0
tk,�i .

In the h-ϕ electric formulation working variables are h�i ,
for the interior problem, and ϕ�e , ξ�e , for the exterior prob-
lem. By assembling the magnetic diffusion equation (46), the
magnetostatic equations (33), topological constraints (35),
and the additional constraint for emfs (58), the following
symmetric linear system is obtained:

K11 O O K14
O K22 O K24
O O K33 K34
K41 K42 K43 O



h�i
ϕ�e
ξ�e
ẽ0

 =

0
f2
f3
f4

 , (59)

where blocks of the upper triangular part are:

K11 = CT
�i
Mρ,�iC�i + ı ωMµ,�i ,

K14 = C̃�i0,

K22 = ı ωGT
�e
Mµ,�eG�e ,

K24 = D̃�e0 C̃0,

K33 = ı ωTT
�e
Mµ,�eT�e ,

K34 = −TT
�e
C̃�e0,

and K41 = KT
14, K42 = KT

24, K43 = KT
34 are the blocks in

the lower triangular part. Vectors at the RHS are:

f2 = −ı ωGT
�e
Mµ,�eh0,�e ,

f3 = −ı ωTT
�e
Mµ,�eh0,�e ,

f4 = C̃T
�e0

h0,�e .

The final linear system results to be in a saddle-point form,
which is not suitable for an efficient solution. Therefore, emfs
are eliminated by the numerical strategy proposed in [16].
After reduction, (59) can be solved by using the TFQMR +
SSOR iterative solver adopted above.
By using the gauge transformation h�i 7→ t�i + G�iϕ�i

in (55), where ϕ�i is the array of magnetic scalar potentials
evaluated at the nodes of G�i , the alternative form of the
magnetic diffusion equation is obtained:(
CT
�i
Mρ,�iC�i + ı ωMµ,�i

)
t�i

+ı ωMµ,�iG�iϕ�i + C̃�i0 ẽ0 = 0, (60)

which corresponds to (21) at the discrete level. By integrating
(5) on each cell of G̃�i the magnetic conservation equation in
the interior region is obtained:

D̃�i b̃�i + D̃�i0 b̃0 = 0, (61)

where magnetic fluxes in the bulk domain can be expressed
in terms of mmfs by using the constitutive relationship:

b̃�i =Mµ,�i h�i . (62)

By inserting (62) in (61), with D̃�i = −G
T
�i
, and by using

the gauge transformation, one obtains:

GT
�i
Mµ,�i t�i +GT

�i
Mµ,�iG�iϕ�i−D̃�i0b̃0 = 0. (63)

Potentials in the interior and exterior region can be extracted
from potentials evaluated at the nodes of the whole mesh as:

ϕ�i = Q�iϕ�, (64)

ϕ�e = Q�eϕ�, (65)

whereQ�i andQ�e are selection matrices made of 0, 1 coef-
ficients, which extract potentials related to nodes of G�i and
G�e from those of G�, respectively.
The magnetic flux conservation equation in the whole

computational domain can be obtained by assembling the
corresponding equations of interior and exterior regions. This
assembly can be carried out by left multiplying (33) and (63)
byQT

e andQ
T
i , respectively. By using positions (64) and (65),

one obtains the conservation relationship over G�:

QT
i G

T
�i
Mµ,�i t�i +GT

�Mµ,�G� ϕ�
= −QT

e G
T
�e
Mµ,�eh0,�e , (66)

where G� and Mµ,� are assembled from corresponding
matrices of G�i and G�e . It has to be noted that interface
terms in (33) and (63) cancel out when assembling, due to
the opposite orientation of ∂�i and ∂�e.
The final linear system of the t–ϕ formulation is obtained

by assembling the magnetic diffusion equation (60), the
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global magnetic flux conservation (66), topological con-
straints (35), and the additional constraint for emfs (58). The
following symmetric linear system is obtained:

K11 K12 O K14
K21 K22 O O
O O K33 K34
K41 O K43 O



t�i
ϕ�
ξ�e
ẽ0

 =

0
f2
f3
f4

 , (67)

where blocks of the upper triangular part are:

K11 = CT
�i
Mρ,�iC�i + ı ωMµ,�i ,

K12 = ı ωMµ,�iG�iQ�i ,

K14 = C̃�i0,

K22 = ı ωGT
�Mµ,�G�,

K33 = ı ωTT
�e
Mµ,�eT�e ,

K34 = −TT
�e
C̃�e0,

and K21 = KT
12, K41 = KT

14, K43 = KT
34 are the blocks in

the lower triangular part. Vectors at the RHS are:

f2 = −ı ωQT
�e
GT
�e
Mµ,�eh0,�e ,

f3 = −ı ωTT
�e
Mµ,�eh0,�e ,

f4 = C̃T
�e0

h0,�e .

Emfs are eliminated from (67) in a similar fashion as h-ϕ
formulation to allow for a fast TFQMR+SSOR solution.

V. NUMERICAL RESULTS
The multigrid-based algorithm for finding cohomology, pre-
sented in Section III, and hybrid formulations, presented
in Section IV, were implemented in MATLAB R© software.
Functions for matrix assembly in particular were imple-
mented in a vectorized-language style to run real-size models
of a few millions DOFs at limited cost. All numerical tests
were run on a laptop with an Intel Core i7-6920HQ processor
(8 MB cache, 2.9 GHz frequency), 16 GB RAM.

Hybrid formulations were tested on two benchmarks, i.e.,
the so-called ‘‘Bath plate’’ model (Team problem no. 3) of
the International Compumag Society [31] and the toroidal
transformer model. The first benchmark is a well-know
model for testing numerical methods for multiply connected
eddy-current problems (see, e.g., [32]) and consists in a con-
ductive plate with two holes excited by an AC current-driven
coil. The second benchmark consists in a toroidal solenoid
excited by an AC current loop located along the solenoid
axis. It represents an example of model topology for which
cohomology cannot be computed by Gmsh software in a
reasonable time, due to algebraic computations with large
integer matrices.

The computing performance of the multigrid-based algo-
rithm was compared with that of the Gmsh algorithm, based
on homological algebra, described in [14]. Main steps for
computing cohomology in Gmsh can be summarized as:

1) First, volumes-to-faces, faces-to-edges, and edges-to-
nodes incidence matrices of the mesh are constructed

or, equivalently, the oriented boundary relations of
the mesh elements are enumerated. The computational
complexity of this step is O(N logN ).

2) Second, incidence matrices are reduced so that the
cohomology groups they induce remain equivalent.
This amounts to reducing the original finite element
mesh, removing and combining its elements [13].
Reduction algorithms are usually able to reduce the
mesh to a tiny fraction of the original one, resulting
in incidence matrices of small size as it results in the
case of Bath plate benchmark. However, the toroidal
transformer benchmark is a counter-example where the
reduction algorithms are inefficient. Their computa-
tional complexity ranges from O(N logN ) to O(N 2).
They are applied in succession so that most of the work
is carried out by algorithms with lowest complexity.

3) Finally, the first cohomology group is computed from
the transpose of the faces-to-edges incidence matrix by
using the SNF integer matrix decomposition in three
different group algebraic subproblems, with O(N 3)
computational complexity. Each cohomology genera-
tor computed on the reduced mesh is represented as a
set of edges in the original mesh, each one associated
to an integer coefficient.

A. BATH PLATE BENCHMARK
The Bath Plate problem consists in a conducting plate
(32.78 MS/m conductivity, µr = 1 relative permeability) of
60 × 110 × 6.35 mm size and two symmetric holes of 40 ×
30 mm size (Fig. 2). In such a way the conductive region
is multiply connected, with β1 = 2. The whole model is
embedded into a cube of 2 m side to exclude boundary effects
on field calculations. The origin of the Cartesian reference
frame (x, y, z) is centered on the plate surface; distances
are all expressed in millimeters. The conductor is excited
by a cylindrical coil (20 × 20 mm cross-section, 1240 A
RMS current) centered at (0, 0, 25). Two different current
frequency values are adopted: 50 Hz, 200 Hz. Line in Fig. 2
goes from point A (0,−55, 0.5) to B (0, 55, 0.5) and it is used
for comparing the magnetic flux density. Moreover, global
quantities are evaluated through cuts shown in Fig. 3.

The Bath Plate model was discretized by using different
mesh refinements in order to assess the computing perfor-
mance of AGMGccc solver (used to obtained the source field
in (30)), and that of Algorithm 1, based again on AGMGcc.
All tetrahedral meshes were generated by using a commercial
finite element software and then imported in MATLAB R©

environment for processing with in-house software imple-
menting hybrid formulations.

The source field was first computed as described in
Section IV-A to represent the effect of current-driven coil
on the solution. Table 1 shows the CPU time needed for
solving the curl-curl linear system (30) by AGMGcc solver.
It can be observed that AGMGcc exhibits a constant number
of iterations for different mesh sizes, thus showing O(N )
complexity. Moreover, CPU time turns out to be limited

VOLUME 10, 2022 112425



F. Moro et al.: Fast Solution of 3-D Eddy-Current Problems in Multiply Connected Domains by a, v -ϕ and t -ϕ Formulations

FIGURE 2. Team problem 3: An aluminum plate with two holes (β1 = 2) is
excited by a current driven coil at two different frequencies (50, 200 Hz).
Magnetic flux density is computed 0.5 mm above the plate surface along
line AB.

FIGURE 3. Cuts for computing magnetic flux (61,62) and for computing
eddy current (63,64) of Team 3 benchmark.

TABLE 1. Computational performance of source field generation for
different meshes. (Team 3.)

(i.e., a few tens of seconds) even with meshes comprising a
few million elements.

The computational performance of Algorithm 1 described
in Section III was compared with that of Gmsh software by
considering the same mesh refinements as above. The Bath
Plate model was implemented also in Gmsh and meshes of
comparable sizes were generated to compute cohomology by
Gmsh. It can be observed in Fig. 4 that the multigrid-based

FIGURE 4. Computational time-complexity of multigrid-based algorithm
and Gmsh software: CPU time (s) vs. number of tetrahedrons N . (Team 3.)

TABLE 2. Computational performance of multigrid-based algorithm for
different meshes. (Team 3.)

algorithm has optimal computational complexity, whereas
computing cost is super-linear in the case of Gmsh. In par-
ticular, for a mesh of a few million elements the CPU time of
Gmsh algorithm is about three times than that of multigrid-
based algorithm. Table 2 shows that cohomology is computed
by multigrid-based algorithm in a few tens of seconds even
for curl-curl linear systems of a few million elements. The
cost of AGMGcc solver in Algorithm 1 is predominant with
respect to that of AGMG solver; therefore only the number of
DOFs of AGMGcc is considered in Table 2. For both solvers
the relative tolerance is fixed to 10−10. It can be observed
that the number of AGMGcc iterations needed to compute the
second generator (k = 2) is about 30% less than those needed
to compute the first generator (k = 1). In fact the trial solution
for AGMGcc solver is updated at any while loop with the last
computed solution. Moreover, preconditioner in Algorithm 1
is set up only once to further speed up the solution.

Once source field and cohomology generators have been
computed, the final linear system is obtained. Numerical tests
considered in the following are based on the same discretized
model with 293 051 tetrahedrons (60 832 of which are used
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TABLE 3. Computational performance of hybrid methods for the coarsest
mesh in Table 1. (Team 3, 50 Hz.)

to mesh the conductive domain in order to capture the skin
effect inside the plate at 200 Hz). This corresponds to the
coarsest mesh refinement in previous complexity analyses.
All four different formulations can be solved with the same
numerical strategy based on TFMR solver with SSOR pre-
conditioner since final symmetric systems show the same
algebraic properties, being complex, symmetric, indefinite,
and sparse. It has to be noted that electric hybrid formulations
do not need a preliminary linear system reduction, which is
however carried out at negligible computing cost in magnetic
hybrid formulations by fast matrix-vector multiplications in
MATLAB R©.
The computational performance of different hybrid formu-

lations was compared at 50 and 200 Hz in Table 3 and 4. The
assembly time includes the computation of both source field
and cohomology generators, and that of matrix blocks and
RHS vectors of the final linear systems. It can be observed
that the assembly time is basically the same for all hybrid
formulations. The introduction of electric scalar potential in
the a, v-ϕ formulation and the extension of the magnetic
scalar potential to the whole domain in the t-ϕ formulation
allow for a considerable reduction of TFQMR solver itera-
tions, compared to a-ϕ and h-ϕ formulations proposed in [16]
and [17], respectively. In particular, t-ϕ formulation shows
an outstanding numerical performance with a CPU time for
linear system solution of a few seconds, which is one eight of
solution time of a-ϕ and h-ϕ formulations at 50 Hz. Similar
results can be observed at 200 Hz. The minimum amount of
DOFs for representing the eddy current problem is needed
by the h-ϕ formulation, in which interface edge variables are
eliminated during the solution process.

Fig. 5 and 6 show that all formulations exhibit a smooth
convergence pattern. In particular, the t-ϕ formulation attains
in 127 iterations 10−10 relative tolerance. Fig. 6 shows that
the convergence behavior of t-ϕ formulation is almost inde-
pendent of frequency. Only a small change of the convergence
pattern is observed in Fig. 5 for the a, v-ϕ formulation.
To verify the accuracy of proposed numerical methods, the

z–component of the magnetic flux density (real and imagi-
nary parts) was computed in 401 equally spaced points along
the line AB in Fig. 2. The reference solution was obtained by

TABLE 4. Computational performance of hybrid methods for the coarsest
mesh in Table 1. (Team 3, 200 Hz.)

FIGURE 5. Convergence pattern of TFQMR solver for electric formulations
at 50, 200 Hz frequency. (Team 3.)

FIGURE 6. Convergence pattern of TFQMR solver for magnetic
formulations at 50, 200 Hz frequency. (Team 3.)

using a commercial finite-element software implementing the
classical A,V -A formulation with second-order tetrahedrons.
The FEM linear system (with 1 169 002 DOFs) was solved
by TFQMR with geometric multigrid preconditioner, with
the same tolerance as above. To reduce the amount of DOFs,
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FIGURE 7. Real and imaginary parts of the magnetic flux density (z-axis
component) computed along the line AB in Fig. 2 by using the a, v-ϕ
formulation.

and thus memory requirements, in this case only half-model
was considered by exploiting symmetry. The solver attained
10−10 relative tolerance in 163 s at 50 Hz. In order to sta-
bilize the FEM solver a fake conductance (1 S/m) had to
be adopted in the air region, which may slightly affect the
solution accuracy. This fake conductance is not required by
the proposed methods since they make use of separate dis-
cretization variables for interior and exterior regions. Fig. 7
shows that the real and imaginary parts of the magnetic flux
density z–component of the a, v-ϕ formulation at 50 Hz are
in very good agreement with the corresponding field profiles
obtained by second-order FEM. In this case the maximum
discrepancy is 2.23% for the real part and 4.80% for the imag-
inary part. Comparable levels of accuracy were obtained by
considering the other hybrid formulations and by increasing
the frequency up to 200 Hz. It has to be noted that numerical
results of hybrid formulations are accurate, although much
fewer degrees of freedom than those used in the FEM model.
Solution time of all four formulations is also negligible com-
pared to the FEM one.

The accuracy of the proposed formulations was assessed
also by comparing global quantities such as magnetic fluxes
and eddy current through cuts. In Fig. 3, cuts61 and62, with
dimensions 40× 30 mm, are obtained by cutting holes in the
air region at z = −3 mm. 63 and 64, with dimensions 20 ×
6.35 mm, are the intersections of the plate and the vertical
plane x = 0. Magnetic fluxes 81, 82 computed through
61, 62 by second-order FEM (as a reference) and hybrid
formulations are reported in Table 5 (50 Hz) and 6 (200 Hz).
Due to model symmetry, relationship 81 = 82 theoretically
holds. All formulations show limited discrepancy between
81 and 82. It can be noted that t-ϕ formulation shows the
best agreement with FEM at 50 Hz and electric formulations
provide the same level of accuracy.

The same comparisons as above were carried out by con-
sidering eddy currents I3, I4 through 63, 64. Due to the

TABLE 5. Magnetic flux through (µ T) cuts 61,62 in Fig. 3 computed by
hybrid methods and FEM. (Team 3, 50 Hz.)

TABLE 6. Magnetic flux (µ T) through cuts 61,62 in Fig. 3 computed by
hybrid methods and FEM. (Team 3, 200 Hz.)

TABLE 7. Eddy current (A) through cuts 63,64 in Fig. 3 computed by
hybrid methods and FEM. (Team 3, 50 Hz.)

model symmetry, relationship I3 = −I4 theoretically holds.
Table 7 (at 50 Hz) and Table 8 (at 200 Hz) show that this
condition is well approximated by all hybrid formulations.
The best agreement with second-order FEM is attained by
t-ϕ formulation at 50 Hz and by a-ϕ formulation at 200 Hz.

B. TOROIDAL TRANSFORMER
Themultigrid-based algorithm is tested on amodel with knot-
ted geometry, which cannot be treated efficiently by Gmsh.
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TABLE 8. Eddy current (A) through cuts 63,64 in Fig. 3 computed by
hybrid methods and FEM. (Team 3, 200 Hz.)

FIGURE 8. Toroidal transformer: a solenoid (β1 = 1) is excited by a
current loop centered on the same axis. The magnetic flux density is
computed along the line AB located above the spiral coil at z = 30 mm.

The model shown in Fig. 8 consists of a toroidal conductor
with spiral shape (32.78 MS/m conductivity, µr = 1 rela-
tive permeability, 21 turns), with 20 mm minor radius and
80mmmajor radius, which is excited by anAC current-driven
loop (1 MA/m2 current density, 50 Hz frequency, 80 mm
radius). Both windings of the toroidal transformer have the
same circular cross-section (6 mm radius). The conductive
region is multiply connected since it is homeomorphic to a
donought, with β1 = 1; therefore, Algorithm 1 searches
for only one cohomology generator. The whole model is
embedded into a cube of 1 m side to exclude boundary
effects on the field calculations. The transformer model is
fully three-dimensional since the spiral coil does not exhibit
any kind of symmetry. The origin of the Cartesian reference
frame (x, y, z) is centered on the loop axis; distances are
all expressed in millimeters. The magnetic flux density is
computed along the horizontal line AB, which goes from
point A (−100,0,30) to point B (100,0,30).

Numerical tests similar to the Team 3 problemwere carried
out to assess the complexity of AGMGcc-based solvers for
different mesh refinements. CPU time for computing the
source field by solving the curl-curl linear system (30) is
considered in Table 9. The number of iterations of AGMGcc

TABLE 9. Computational performance of source field generation for
different meshes. (Toroidal transformer.)

TABLE 10. Computational performance of multigrid-based algorithm for
different meshes. (Toroidal transformer.)

solver remains constant up to a few millions DOFs; therefore
computational complexity is again optimal. Despite a much
more complex model geometry compared to that of Team 3
problem, the computational time is comparable.

Computational performance of multigrid-based algorithm
was evaluated for the same mesh refinements. The relative
tolerance for AGMGcc and AGMG solvers was fixed to
10−10 as in the previous benchmark. Table 10 shows that
cohomology is computed by multigrid-based algorithm in a
few tens of seconds even for curl-curl linear systems of a
few millions elements. This could not be computed by using
Gmsh software in a reasonable computing time, being based
on large integer matrix computations. Compared to Team 3
problem the number of AGMGcc iterations and CPU time
are greater. It is interesting to observe that the computational
complexity is again optimal, since the number of AGMGcc
iterations remains almost constant when refining the mesh.
This behavior is clearly proven by Fig. 9, where dashed line
indicates the reference O(N ) complexity. Note that optimal
complexity is attained for completely different models, which
shows the robustness of the proposed multigrid-based algo-
rithm for computing cohomology generators. As mentioned
above, this is achieved in the new version of the algorithm by
avoiding the use of Dirichlet BCs.

Numerical tests considered in the following are based
on the same discretized model with 634 835 tetrahedrons
(59 775 of which are used to mesh the conductive domain
in order to capture the skin effect inside the plate at 50 Hz).
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FIGURE 9. Computational time-complexity of multigrid-based algorithm:
CPU time (s) vs. number of tetrahedrons N ; linear complexity is in dashed
line. (Toroidal transformer.)

TABLE 11. Computational performance of hybrid methods for the
coarsest mesh in Table 9. (Toroidal transformer.)

Table 11 shows a comparison of the computing performance
of different hybrid formulations by considering the CPU time
needed for the final linear system assembly and its solution
by TFQMR+SSOR iterative solver. It can be observed again
that t-ϕ formulation shows the best performance in terms of
CPU time for solution and number of iterations. The final
linear system of this formulation was solved in 7.62 s, which
is less than a half of the solution time experienced by the other
formulations. This value is also comparable to that obtained
with the Team 3 model simulations.

Fig. 10 shows that all formulations exhibit a smooth con-
vergence pattern. In particular, the t-ϕ formulation attains
in 161 iterations 10−10 relative tolerance, which is a value
comparable to that obtained in the Team 3 benchmark.

To verify the accuracy of proposed numerical methods, the
z–component of the magnetic flux density (real and imagi-
nary parts) was computed in 401 equally spaced points along
the line AB in Fig. 8. The reference solution was obtained by
a commercial software implementing the A,V -A formulation
with second-order FEM discretization, as in the previous
benchmark. The FEM linear system (with 4 026 890 DOFs)
was solved by TFQMR with geometric multigrid precon-
ditioner. This solver attained the fixed tolerance of 10−10

FIGURE 10. Convergence pattern of TFQMR solver for hybrid methods.
(Toroidal transformer.)

FIGURE 11. Real and imaginary parts of the magnetic flux density (z-axis
component) computed along the line AB in Fig. 8 by using the a, v-ϕ
formulation.

in 544 s. To stabilize the FEM solver a fake conductance
of 1 S/m had to be adopted in the air region, which may
slightly affect the solution accuracy. This is not requiredwhen
using hybrid formulations. Fig. 11 shows that the real and
imaginary parts of the magnetic flux density z–component
of a, v-ϕ formulation are in very good agreement with the
same profiles obtained by second-order FEM. In this case
the maximum discrepancy is 2.84% for the real part and
5.46% for the imaginary part. Comparable levels of accuracy
were obtained by considering the other hybrid formulations.
It should be noted as in the case of Team 3 benchmark that
hybrid formulations provide accurate results with far less
DOFs than those of the FEM and also their solution time is
negligible compared to that of the FEM.

VI. CONCLUSION
A novel multigrid-based algorithm for finding cohomology
in linear-time has been proposed. The procedure is based on
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an algebraic multigrid solver for curl-curl field problems. Its
main advantage is that costly integer matrix computations
and mesh reduction algorithms can be avoided. Numeri-
cal experiments further demonstrate a remarkable flexibil-
ity of the multigrid-based algorithm, which allows for an
easy treatment of models with complex topology. The fast
computation of cohomology generators has made it possi-
ble to develop efficient hybrid formulations for simulating
eddy current problems with multiply connected insulating
domains. Novel a, v-ϕ and t-ϕ hybrid formulations show
much better numerical performance than a-ϕ and h-ϕ for-
mulations, while attaining the same level of accuracy. These
techniques allow the eddy current model to be represented
with a minimum amount of DOFs, with great savings in terms
of computational cost compared to classical A,V -A formu-
lation typically implemented in FEM commercial software
for EM design. Novel hybrid formulations also overcome
typical drawbacks of the T -� method when facing multiply
connected field problems.
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