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Different pathogens spreading in the same host population often generate complex co-circulation dynamics
because of the many possible interactions between the pathogens and the host immune system, the host life
cycle, and the space structure of the population. Here we focus on the competition between two acute
infections and we address the role of host mobility and cross-immunity in shaping possible dominance/
co-dominance regimes. Host mobility is modelled as a network of traveling flows connecting nodes of a
metapopulation, and the two-pathogen dynamics is simulated with a stochastic mechanistic approach.
Results depict a complex scenario where, according to the relation among the epidemiological parameters of
the two pathogens, mobility can either be non-influential for the competition dynamics or play a critical role
in selecting the dominant pathogen. The characterisation of the parameter space can be explained in terms
of the trade-off between pathogen’s spreading velocity and its ability to diffuse in a sparse environment.
Variations in the cross-immunity level induce a transition between presence and absence of competition.
The present study disentangles the role of the relevant biological and ecological factors in the competition
dynamics, and provides relevant insights into the spatial ecology of infectious diseases.

T
he interaction between multiple infectious agents circulating within the same host population alters pro-
foundly the spreading dynamics of infections and has important biological and public health implications1,2.
Interaction mechanisms can have different nature and origins. Immune mediated interactions may affect

polymorphic strains of a pathogen and represent a source of competition. This is the case of influenza A3 in both
humans4,5 and birds populations6, dengue in humans7, foot and mouth disease in cattle8 and many others. In this
case infection by a strain of the pathogen confers a certain level of immunity to other circulating variants. Immune
mediated cooperation is observed as well. The antibody dependent enhancement in dengue represents a para-
digmatic example, where cross-reactive antibodies following a previous infection increase the virulence of a
subsequently infecting strain7. Other examples include influenza versus Streptococcus pneumoniae9, and
Malaria versus HIV10. Besides immunological mechanisms, ecological aspects can also represent a source of both
competition and cooperation among pathogens. A permanent or a temporary depletion of hosts caused by a
pathogen hampers the spread of another one, as in the case of measles and whooping cough11, for example.
Whereas an infection by Malaria is shown to increase individual’s attractiveness to mosquitos12 which in turn may
increase chance to be infected by other strains.

All these interaction phenomena are at the basis of pathogen evolution1,13. Despite the great interest in the
problem, little is known on the drivers of the interaction dynamics and on the mechanisms ruling pathogens’
ecological communities. A full understanding of the problem is hindered by the multiplicity and complexity of the
mechanisms involved, from the microscopic scale of the interaction between the pathogen and the host immune
system to the global scale of hosts’ behaviour and the environment14.

At the population level, several modeling studies have addressed the problem in the context of pathogens
evolution15–24. These studies focus on multi-pathogen competition with the goal of understanding the evolution-
ary trade-off between transmissibility, infection duration and virulence. Some of them account for space struc-
ture19–24 in relation to the depletion of hosts induced by disease mortality19–21, acquired immunity22,24 and ability
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of the pathogen to persist in the population23. The resulting picture,
incorporating competition and evolution dynamics, is highly com-
plex and often sensitive to the model’s details.

Within this body of work little attention has been paid to the role
of host mobility other than migration and recolonisation22,23, an
ingredient that potentially plays an important role in the case of
rapidly spreading diseases for which depletion-replenishment con-
siderations do not apply. Human population and many animal spe-
cies (notably farmed animals) are characterised by complex mobility
patterns that unfold at temporal timescales much faster than their life
cycle25–29. The network structure of such patterns and the traveling
frequency have been shown to drive the spread of single-pathogen
epidemics30–38. In the context of two-pathogen competition induced
by cross-immunity, an earlier study has shown that travel frequency
determines the outcome of the competition in the case of full cross-
immunity and when the competing pathogens have the same basic
reproductive number, for infections conferring long-lasting immun-
ity and during a single epidemic wave39. Here we build on this
approach to explore systematically the role of epidemiological and
immunological (i.e. reproductive numbers of the two pathogens and
cross-immunity) and ecological parameters (spatial distribution of
the hosts and mobility) in defining the co-circulation dynamics of
competing pathogens. The competition dynamics is reconstructed
through extensive numerical simulations of a stochastic mechanistic
model, and simple analytical considerations are found to explain the
observed dynamics. The introduced modeling framework allows the
characterization of the emerging competition dynamics and to
describe the interplay of the different timescales of the processes
involved. The simplifying assumptions considered here make the
model applicable to a large variety of infectious diseases. Within this
general framework we therefore use pathogen, strain, or variant as
synonymous hereafter.

Results
We consider two pathogens spreading in a spatially structured popu-
lation of hosts modeled as a metapopulation system. The metapopu-
lation modeling framework was originally introduced in population
ecology40,41 and later applied to infectious diseases in order to
account for a sparse distribution of hosts and consequently different
levels of mixing42,43. Several studies have recently coupled this frame-
work with complex network approaches to account for non-trivial
more realistic connectivity patterns among locations44–51. They
assume individuals to mix homogeneously within the local com-
munities (also called subpopulations, patches or nodes of the meta-
population network), whereas at the global level the coupling is
defined by a network of hosts’ mobility fluxes. Here we adopt this
scheme considering two pathogens circulating on the metapopula-
tion network (Figure 1a).

We focus on the case in which the two pathogens confer long
lasting immunity and interact through cross-immunity. To this
end we follow the multi-strain approach introduced by Castillo-
Chavez et al.18 that assumes an individual recovered from one infec-
tion to have a susceptibility to the other circulating pathogen reduced
by a factor s – a schematic representation of the compartmental
model is reported in Figure 1b. The parameter s quantifies the level
of cross-immunity, with s 5 0 corresponding to complete cross-
immunity and s 5 1 corresponding to no interaction. We allow
the two circulating pathogens to have different transmissibility and
recovery rates, indicated respectively with the parameters ba and ma

for each pathogen a. Without loss of generality, we consider one of
the two pathogens to have a slower infection progress, so that we can
label the two pathogens slow and fast and introduce the parameter
t . 1 that quantifies the timescale separation, m{1

s :tm{1
f . With no

interaction the impact of a pathogen in the population is fully deter-
mined by the basic reproductive number Ra

0~ba=ma (with a 5 {s, f}),
denoting the expected number of secondary infections generated by a

single infectious individual in an entirely susceptible population and
defining the condition for the epidemic to spread in a single popu-
lation, i.e. Ra

0w1. We indicate with r the ratio between the two basic

reproductive numbers, Rs
0~rRf

0. In the following we will explore in
detail the role of the level of cross-immunity s, and of the epidemio-
logical differences between the two pathogens encoded in the para-

meters t and r. With this aim, we fix for simplicity Rf
0 and mf to

realistic values for a generic acute infection1, namely Rf
0~1:8 and

mf 5 0.6 with a time unit of one day (corresponding to an infectious
duration of 1.7days). The details of the compartmental classification
are reported in the Methods section. Values explored lies in the range
[0.6, 1.6] and [1, 3.5] for r and t respectively and the whole interval of
definition [0, 1] for s – see Table 1. While some combinations of
parameters may be unrealistic (e.g. antigenically similar strains indu-
cing each other strong cross-protection are unlikely to have very
different epidemiological traits) the goal of the present work is to
provide a theoretical understanding of the dynamical behaviour of
the system that is as general as possible and that can serve as ground
of applied studies of diverse human and animal diseases.

We consider a metapopulation with V 5 104 patches with an
average population per patch �N~104. Demography and mobility
are modelled as follows. To each node i, we assign an initial
number of individuals, Ni, and a degree ki denoting the number
of connections the node has with other subpopulations in terms of
mobility. Nodes’ degrees are distributed according to a Poisson
probability distribution P(k), which leads to a fairly homogenous
topology and represents the simplest not trivial choice able to
account for the small word property typical of empirical sys-
tems52,53. On top of the spatially structured system so defined,
mobility fluxes are modelled by assigning to each individual in
the subpopulation i a probability p per unit time to travel to
another neighbouring subpopulation j. We assume that departing
individuals choose at random one of the available ki links44, so that
the probability of traveling from i to j is given by p/ki. According
to the value of p, different mobility scenarios emerge: high values
of p yield large mobility fluxes resulting in a well mixed metapo-
pulation system where individuals easily move from one patch to
another; on the contrary small probability values correspond to a
dynamically fragmented scenario in which patches are fairly iso-
lated. Different choices of network topology and fluxes distri-
bution are clearly possible. Comparison between homogenous
and heterogenous topologies and fluxes distributions has been
addressed before39, showing no qualitative differences in the
observed dynamical behaviour among the different choices. On
top of these structure, different kinds of mobility behaviour can be
considered as well. For example, markovian displacements (i.e.
movements where the memory of the origin of the traveling indi-
viduals is lost) are found in cattle and farmed animals, whereas
origin-destination trips (thus highly non-markovian) characterize
human travel. The impact of the mobility model on a single-
pathogen epidemic spread has been extensively studied26,46,48,51.
Here we consider the simple case of markovian mobility to keep
this part of the model as parsimonious as possible and better focus
on the biological aspects. A summary of the parameters and their
values is reported in Table 1.

Once the system is initialised with a fully susceptible host popu-
lation seeded with the two strains, the transmission dynamics of the
two strains is reproduced by means of Monte Carlo numerical simu-
lations at the discrete host level. We consider hosts as integer units
and we explicitly simulate both their mobility among different sub-
populations and the infection transmission within each subpopula-
tion as discrete-time stochastic processes. Throughout the analysis
we will mainly consider as an indicator of the outcome of the com-
petition between the two strains the final number of subpopulations
Df
? and Ds

? affected by each strain during the outbreak.
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Signature of space in the two-pathogen competition. We first
consider the case of complete cross-immunity and analyse the
impact of the difference in the epidemiological traits, encoded in
the parameters t and r, on the competition dynamics. In a
homogeneous mixing population the pathogen with the largest
growth rate G 5 m(R0 2 1) dominates. Namely, it reaches more
rapidly the majority of the population that cannot thus be infected
by the other one1. The relation Gs 5 Gf defines then the boundary
between the two regions of the parameter space where either the slow
or the fast strain is dominant. This translates into the linear relation

rR0{1~t R0{1ð Þ: ð1Þ

Space structure and mobility completely alter this picture. Figure 2
shows the ratio Ds

?

�
Df
? for two different values of the traveling

probability p. The light blue portion of the surface indicates
the dominance of the slow strain, defined by the condition
Ds
?

�
Df
?w1, whereas the remaining portion coloured in dark blue

corresponds to the opposite situation. The boundary between the two
regions (white curve in the surface projection on the (t, r)–plane in
the Figure) changes under the different mobility regimes. The region
of slow strain dominance is much larger in the reduced mobility
scenario (p 5 1024) and, notably, the slow strain results to be the

dominant even with a smaller transmission potential (r , 1). This
picture is qualitatively different from the homogenous mixing case
that would divide the space of parameters according to Eq. (1), i.e. the
black curve in the Figure. The scenario with higher p is closer to the
homogenous mixing case, as expected. The fast strain dominates over
the slow one unless the latter does not have a considerable advantage
in terms of basic reproductive number (i.e. r large enough). The
behaviour becomes increasingly closer to the homogenous mixing
in the limit p R 1.

Host mobility thus selects the epidemiological traits that are
favoured in the multi-pathogen competition. A sparse environment
would favour a slow pathogen, while a high overall mixing induced
by large values of p would favour the fast one. This result is analogous
to the findings of previous studies focusing on the evolution of
transmissibility and virulence, where virulence plays a role analogous
to the infection duration in the disease dynamics19,20. In that case
depletion and replenishment of individuals is the mechanism at the
basis of competition. A similar result has also been found in23, where
endemic diseases not conferring long lasting immunity were consid-
ered. In the present case the mechanism underlying the competition
behaviour is the trade-off between the spreading velocity and the
potential for spreading at the spatial level. The first is dictated by
the timescale of the infection. The second quantifies the ability of the
infection to generate a global epidemic by propagating out of the
source through infected traveling hosts. A full understanding of
the competition diagram however requires to consider the invasion
dynamic of the metapopulation system.

Conditions for spatial induced crossover in the competition. In
order to rationalize the role of the metapopulation structure in the
outcome of the two-pathogen competition observed in Figure 2, we
consider the observable R*, an additional predictor introduced to
synthetically describe the conditions for the spatial invasion and
that accounts for all the biological and behavioural mechanisms
involved in the spatial spread (i.e. pathogen traits, host traveling
behavior, structure of the mobility network and demography). The
global invasion parameter R* defines the invasion threshold R* .

139,44,54. Analogously to R0 at the individual level, R* represents the
average number of patches an infected patch is able to infect before
the end of the local outbreak. If this is greater than one a global
outbreak will occur, otherwise the epidemic will be confined
around the initially seeded subpopulation. For the case of a
homogenous mobility network, the analytical expression of the
invasion threshold is quite simple44. This allows us to frame
analytically the trade-off between spreading velocity, upper-
bounded by the exponential growth in the homogenous mixing
case (G), and the spatial invasion potential, encoded in R*. We
assume all nodes to have the same degree �k. For each pathogen a
the functional dependence of Ra

� on the variables of the system is
given by39,44:

Ra
�~

�k{1
� �

1{
1

Ra
0

� �paa �N

ma
�k

0
BB@

1
CCA, ð2Þ

where lij~
paa �N

ma
�k

is the average number of infectious individuals

that travel from an infected patch, i, to a neighbouring one, j,
during the entire duration of the outbreak in i44. This factor
depends on the traveling probability p, on the epidemiological
parameters through the attack rate aa~aa Ra

0

� �
(resulting from the

circulation of the strain a only in the fully susceptible population)
and ma, and on demographic ( �N) and spatial (�k) features. The

expression 1{
1

Ra
0

� �lij

is the probability that an outbreak is seeded

in j by the lij infectious travelers55. The factor (�k{1) represents the

Figure 1 | Schematic representation of the metapopulation model with
two pathogens. (a) Scheme of the metapopulation structure in patches and
links representing mobility. (b) Compartmental model of the two-strain
infection. A detailed description of the infection dynamics is reported in the
Methods section.
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number of connections along which the disease can spread (all
possible connections �k except the one where the infection comes
from).

The pathogen that is more efficient in propagating at the spatial
level is the one with higher Ra

� and infectious period. The effect of the
infectious period is due to the fact that if an infected individual stays
infectious longer has more chance to travel while ill and bring the
disease in new patches, in the simple SIR formulation under study.
This means that the slow strain is favoured, provided that the fast one
does not have a much larger reproductive number. The balance
between these factors becomes critical in the regime of small travel-
ing probabilities. The observable Ra

� is an increasing function of p,
thus for large enough p Ra

�?1 for both strains indicating that they
both spread easily through the system. In this regime the ingredient
determining the competition outcome is the spreading velocity that
favours, for comparable R0, the strain with short infectious duration.
As a consequence of this trade-off, mobility can induce a crossover
between the two regimes of fast and slow strain dominance.

On the basis of the considerations above the condition for the
crossover can be easily recovered. Given that in the limit p R 1 the
exponential growth of the pathogen a is given by Ga, the crossover is
encountered whenever

Gf
wGs and Rs

�wRf
�: ð3Þ

We notice however that when r . 1 the inequality Rs
�wRf

� is always
satisfied and, on the other hand, the condition Gf . Gs is guaranteed

when r , 1. Therefore the condition above can be rewritten explicitly
in the following form:

rw1 Gf
wGs[rRf

0{1vt Rf
0{1

� �
,

rv1 Rs
�wRf

�[tas log Rs
0

� �
waf log Rf

0

� �
:

ð4Þ

Network and demographic parameters factorise in the above expres-
sions. This analytical reasoning is simplified and is based on the
assumption that the two epidemics do not interact, which is strictly
verified only in the limit of infinite network size.

The left side of Figure 3 displays the phase-space of the presence/

absence of crossover for the case Rf
0~1:8 as obtained by Eq. (4). For

all the (r, t) values in the grey region a crossover takes place at a
certain value of p. In reference to the examples reported in Figure 2,
we provide the crossover curves obtained for p 5 1024 (squares) and
p 5 1023 (circles), corresponding to the white curves of the previous
Figure. The right panel of Figure 3 further describes the crossover
behaviour by displaying the average ratio Ds

?

�
Df
? obtained from

simulations as a function of p and for different values of r. In order to
facilitate the comparison with the theoretical results we colour coded
the curves according to the expected competition outcome. Results
show a good agreement between simulations and analytical reason-
ing despite the simplicity of the latter, indicating that the previous
theoretical argument is able to capture the fundamental mechanisms
underlying the competition between the two strains. According to
the relation among the epidemiological traits of the two pathogens,

Table 1 | Model details and variables

Variable Description Values

V number of patches 104

�N average host population size per patch 104

k patch degree, i.e. number of connections to other patches average value �k~5
p travel probability [1025, 1021]
Rf

0
reproductive number for the fast strain 1.8

mf recovery rate for the fast strain 0.6
Rs

0 reproductive number for the slow strain Rs
0~rRf

0

ms recovery rate for the slow strain m{1
s ~tm{1

f

t timescale separation between the two pathogens [1, 3.5]
r ratio of basic reproductive numbers of the two pathogens [0.6, 1.6]
s degree of cross-immunity [0, 1]

s 5 0 full cross-immunity
s 5 1 no interaction

Figure 2 | Competition between the two strains in the phase space r, t for two distinct values of traveling probability p. The quantity in the z-axis is the
logarithm of the ratio Ds

?

�
Df
?. Color code is proportional to the value in the z-axis, and the density plot in the horizontal plane shows the same quantity

for the sake of visualisation. The white curve indicates the parameter region corresponding to the crossover where the two strains co-dominate, that
is identified by log Ds

?

�
Df
?

� �
~0. To highlight the effect the of mobility we report the crossover curve for the homogenous mixing case (black dashed

curve).
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the level of coupling induced by mobility may be either a determinant
factor or a non-influential one for the competition outcome.

Strains inducing strong cross protection each other are likely to be
highly genetically similar and to have small difference in their epi-
demiological traits, i.e. r and t close to one. In this case the unbalance
between spreading velocity and/or potential for spatial spread would
be small and so also the advantage of one strain over the other.
However even under these conditions the system preserves its rich
behaviour. Figure 3a indeed shows that all three competition regimes
are included in the neighbourhood of the point (r, t) 5 (1, 1) of the
space of parameters.

Local interaction and overlap between the epidemic waves. The
outcome of the competition presented in the previous section is the
result of the spreading pattern of the two pathogens and their
interaction. At the local level of a single patch, this is certainly due to
the conditions of arrival of each pathogen seeding the local population.
In this subsection we intend to address the local co-existence between
the two pathogens, given its important epidemiological implications,
for example for pathogen recombination56.

For a given set of parameters r and t the outcome of the competi-
tion within each single patch depends on the time delay between the
seeding of the two epidemics, Dt 5 ts 2 tf, where ta is the time of
seeding of the strain a in the patch. Figure 4a characterises the epi-
demic impact through the observable as 2 af, i.e. the difference
between the attack rates produced by the slow and fast strains when
they are co-circulating. In the case in which the fast strain arrives
first, the slow strain has minimal chance to reach a significant frac-
tion of the population. For positive values of Dt, the quantity as 2 af

rapidly approaches the limit value af obtained in absence of strain s
(dark blue portion of the plot). Referring to the case r 5 1 as an
example, if the population is seeded by the slow strain with more than
10 days delay with respect to the fast strain, the slow strain is pre-
vented from spreading in the population. It can dominate over the
fast one only in the case in which it has a significant advantage in
terms of time of arrival (or seeding). The difference as 2 af saturates
to the limit value of as only if the slow epidemic starts 40 days in
advance with respect to the fast one (light-blue portion) for r 5 1.
The two pathogens co-circulate and interact at the population level
within the patch only if they seed the population with a small delay
one with respect to the other (red portion). This condition defines the
interaction time window, whose length depends on all the para-

meters of the system. The larger the value of r, the faster the two
epidemics spread, thus increasingly reducing the time-window for
possible interactions within a patch.

At the metapopulation level such phenomena occur at the inter-
face of the propagation waves of the two epidemics, i.e. the set of
nodes that are reached by both strains. This interface region can be
limited to few nodes or can be almost as large as the whole network
according to the values of traveling probability and the disease para-
meters. However, for the interaction to occur, the two epidemics
need to be seeded on such interface region with a delay within the
interaction time window, otherwise we observe a complete separa-
tion of the two propagation phenomena (i.e. one strain swiping the
population much after the first strain has already circulated). The
extent of the interface region where interaction occurs increases with
increasing mobility and is strongly affected by r (Figure 4). Large
values of r make local interaction between pathogens more likely as
shown by the red portion of the plot that becomes wider as r
increases. This occurs despite the range of Dt is narrowed by large
values of r and it is due to the fact that larger reproductive numbers in
the slow strain counterbalance the shorter infection period yielding a
similar exponential growth to the fast pathogen. This results in a
larger region of intersection between the two epidemics.

Role of partial cross-immunity. Two interacting pathogens or
strains of the same pathogen are rarely antigenicaly equal, so that
the level of cross-immunity is smaller than 1. An intermediate level of
cross-immunity indicates that individuals recovering from one strain
are partially susceptible to the other57. This can be accounted for in
our compartmental model by considering s . 0.

We address how this ingredient affects the competition dynamics
at the spatial level by first considering the case r 5 1. Figure 5a shows
the ratio Ds

?

�
Df
? for different values of the cross-immunity para-

meter s. Varying s from full cross-immunity (s 5 0) to no cross-
immunity (s 5 1) we observe a sharp transition between two distinct
classes of behaviour. For s below a given threshold, the small level of
susceptibility after the first infection does not impact the competition
dynamics and the curves strictly follow the full cross-immunity case
with a crossover for intermediate mobilities and the dominance of
the fast strain, Ds

?=Df
?, for p R 1. The behaviour changes rapidly

for s above a critical value sc^0:4. All the curves for s . sc display
the same behaviour with the two pathogens co-circulating and reach-

Figure 3 | (a) Regions of presence or absence of crossover in the (r, t)–plane, as obtained by solving the inequalities of Eq. (4) for the case R0 5 1.8 and any
p. Squares (circles) corresponds to the points for which crossover have been recovered in the numerical simulations in correspondence of p 5 1024

(p 5 1023). (b) Simulations of the two-strain spreading for the case t 5 2 (that corresponds to the slice of the left diagram indicated by the black line). The
plot shows the ratio between the number of infected cities Ds

?

�
Df
? for different values of r. The colour code indicates the theoretical prediction: dark (light)

blue curves correspond to the case where according to Eq. (4) the fast (slow) strain dominates for all values of p, while the grey curves are the ones for which
the crossover takes place. The value of r corresponding to each curve is indicated close to the curve itself.

www.nature.com/scientificreports
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ing the same portion of the network (Ds
?

�
Df
?^1) for all values of p

except for a range of small values of p where Ds
?wDf

?. Figure 5b
displays the sharp transition behaviour in s obtained for p 5 1023.

The result can be explained in a simple way in terms of herd
immunity effects induced by the partial cross-immunity1. In a well
mixed population the first strain to reach the population (e.g. strain
a) infects a proportion aa of individuals who have a reduced prob-
ability to be infected by the second strain (strain b) after their recov-
ery from the infection. The spread of strain b is then ruled by the
effective reproductive number that results from the combination of
its transmission potential and the level of susceptibility of the popu-
lation, Ref f ~Ra

0 1{aazs aað Þ. The condition Reff . 1 allows then
the second pathogen to generate an outbreak in the subpopulation
and further spread in the neighbouring patches. If applied to the
scenario discussed above, for large values of p where both pathogens
have the potential to spread at the spatial level and competition is
determined by the spreading velocity, all levels of cross-immunity
such that Reff , 1 are equivalent in suppressing the spread of the
slower pathogen. For s rising above the threshold, this mechanism is
not anymore in place and both strains propagate through the system
reaching the whole network. Even in this case, however, the two
strains do interact, as measured by the reduction of the attack rate
of the slow strain. The mechanism favouring the spread of the slow
strain for small values of p is still present since it is not due to the
interaction between the two pathogens but to the larger invasion
potential Rs

� of the slow strain with respect to the fast one.
If r ? 1, i.e. the two pathogens have different basic reproductive

numbers, the emerging picture is more complicated. For small
mobility rates, variations in the degree of cross-immunity do not
lead to quantitative variations in the competition outcomes (expect
for values s^1), and the ratio r rules the dynamics. For higher values
of p, instead, both cross-immunity and the relative ratio of the repro-
ductive numbers of the two pathogens determine the resulting com-
petition outcome. We report these results in the Supplementary
Figure S1.

It is worth noting that for very high values of the mobility rate,
when competition is ruled exclusively by the epidemic growth rate,
the argument based on the herd immunity effects is able to explain

the observed results1. When Ref f ~rRf
0 1{af zs af
� �

w1 the strain
with smaller exponential growth loses its disadvantage and becomes
able to spread in the metapopulation system. This is shown in the
density plot in Figure 6 where p 5 0.01 is considered. Despite the
complexity of the spatial propagation dynamics recovered in the
stochastic simulations, very simple analytical reasonings are able to
shed light on the mechanisms underlying the spreading.

Conclusion
We studied the role of host mobility in the immune-mediated com-
petition between two pathogens causing acute infections. We pro-
vided an extensive numerical characterisation of the interaction
dynamics by varying the degree of cross-immunity and the difference
in the epidemiological traits of the two pathogens (basic reproductive
numbers and infectious periods). Depending on the relation between
the pathogens’ traits, mobility can play a determinant role or be non-
influential for the outcome of the competition. In the space of epi-
demiological parameters, there exists a region for which lowering the
traveling probability induces a cross over from the fast strain dom-
inance to the slow strain one. This behaviour is determined by the
trade-off between epidemic growth and potential for spread at the
spatial level, the former being an advantage in a well mixed popu-
lation while the second being relevant in a sparse environment with
intermediate or low mobility coupling.

This non trivial result has important implications for disease eco-
logy. The role of hosts’ space structure in the multi-pathogen com-
petition and the impact of changes in hosts’ mixing patterns on the

disease evolution still represent open research questions19,20,22,24. Our
study characterises the epidemiological conditions under which hosts’
traveling behaviour is a determinant ingredient in the competition
dynamics. Reducing the degree of cross-immunity determines a rapid
transition between the picture described above to a situation of no
competition in the spatial propagation. This transition behaviour can
be framed within a herd immunity paradigm, where the more rapid
pathogen acts as a vaccine in the spreading dynamics of the other one.

As a consequence of the sharp transition in s, results described in
Figures 2 and 3, remain substantially unchanged in the more realistic
case of partial cross-immunity, considering a wide range of values of
s (e.g. s *v 0:4, with the parametrisation adopted here) compatible
with epidemiological estimates (see for example58 for influenza). It is
important to note, that a certain level of short-term cross-protection
due to immunological mechanisms other than memory-cell immun-
ity has been observed among antigenically distant strains (e.g. in the
case of dengue7, different types and subtypes of human and avian
influenza5,6, hemorrhagic disease in wildlife59), and it is indicated in
many cases as the source of competition during a time scale of a
single epidemic wave5–7. In this case, a certain degree of heterogeneity
in the transmissibility and/or infectious duration can be reasonably
assumed and in some cases it is also documented. Epidemiological
evidence includes influenza A subtypes in birds60, dengue serotypes7,
and pandemic vs. seasonal subtypes in human influenza61 (possibly
as a consequence of a higher level of immunity in the population to
the seasonal strain). All these multi-strains diseases represent exam-
ples of dynamical systems for the infection propagation whose study
could benefit by the theoretical understanding here provided.

The modelling framework here introduced allows us to account
for important features characterising host mobility patterns in a
realistic way. Despite the complexity of the dynamics simulated by
the mechanistic model, the analytical formulation of the global inva-
sion potential allows for simple analytical considerations able to shed
light on the behaviour observed in numerical simulations. The net-
work formalism is an important ingredient of the model and repre-
sents an element of novelty with respect to previous studies on
disease ecology where the space is introduced by placing individuals
on a regular lattice19,20,22,24 or by assuming a metapopulation with two
levels of mixing21,23 (high mixing within patches and low mixing
between patches). Other studies adopt network approaches62,63 for
studying multi-pathogen competition, however they do not account
for different levels of mixing or for host traveling.

The framework here introduced has the potential to provide an
important understanding of the multi-pathogen dynamics in more
realistic and complex situations. Additional important mechanisms
that were not considered in this study are worth to be mentioned. The
competition was analysed during a single epidemic wave, given that
no demographic turn-over nor waning of immunity were consid-
ered. These factors are crucial for many diseases, e.g. human and
avian influenza and dengue. The two epidemics were assumed to
start at the same time in a fully susceptible population. Emergence
events where a new pathogen or a new variant starts spreading in a
population already affected by other seasonally circulating variants
represent however a source of great concern. Influenza again pro-
vides a paradigmatic example with its frequent zoonotic events yield-
ing new virus subtypes that represent a threat for human population
(e.g. A-H1N1pdm0964, A-H7N965). Given the general nature of the
metapopulation model considered, our approach proposes a theor-
etical and computational framework where these additional ingredi-
ents can be further considered and implemented to deepen our
understanding of pathogens competition.

Methods
Infection dynamics. The infection is modelled through the compartmental scheme
of Figure 1. Individuals are divided in susceptible (S), infected by the slow strain with
no previous infection history (Is), infected by the fast strain with no previous infection
history (If), recovered by the slow strain (Rs), recovered by the fast strain (Rf), infected
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Figure 4 | Focus on local co-circulation of the two strains within a patch. (a) two-strain competition within a single population as indicated by the
difference between the attack rate of the slow and fast strains as 2 af, as a function of the delay in the seeding from the fast to the slow strain, Dt 5 ts 2 tf.
Different value of r are shown. The color code indicates different regimes where the fast strain spreads undisturbed (dark-blue), the slow strain reach the
whole population before the fast epidemic is seeded (light-blue), the two seeding events are close in time in the way that the two pathogens interact (red part
of the curve). The three panels (b), (c) and (d) summarise the situation at the metapopulation level as recovered by simulations. We measured the time of
seeding of the two strains in the subpopulations and we classify the nodes according to their epidemic outcome that can be: (1) the node is reached by the
fast strain only; (2) the node is reached by both strains with the fast one arriving early enough to spread undisturbed in the population; (3) the epidemic is
seeded by both strains with small delay, thus allowing interaction; (4) the epidemic is seeded by both strains with a timing corresponding to the slow strain
dominance; (5) the node is reached by the slow strain only; (6) the node is reached by none of the strains. Three distinct values of r are compared; t 5 2.

Figure 5 | Role of partial cross-immunity. (a) Simulation results of the two-strain spreading for the case t 5 2. The plot shows the ratio Ds
?

�
Df
? as

function of p for different values of s. (b) the plot shows the ratio Ds
?

�
Df
? as a function of s for p 5 1023.
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by the slow strain previously infected by the fast one (I fð Þ
s ), infected by the fast strain

previously infected by the slow one (I sð Þ
f ), permanently recovered and immune to both

strains (R). Susceptible individuals can contract the infection by either the fast or the

slow pathogen with probability bf If zI sð Þ
f

� �.
N and bs IszI fð Þ

s

� �.
N respectively,

with ba~Ra
0

�
ma being the transmission rate of pathogen (a) and N the population of

the patch. Individuals recovered by one pathogen can contract the infection by the
other one with the same probability as above reduced by a factor 0 # s # 1.
Regardless of the infection history, infected individuals recover with the pathogen
specific recovery rate, i.e. ms and mf for the slow and fast pathogen respectively. In the
stochastic mechanistic simulations contagion and recovery are modelled as binomial
and multinomial processes. The step of the simulation dt defines the unitary timescale
of the process and corresponds to one day.

Mobility network and traveling. The mobility network is generated following the
Erdős-Rényi algorithm53, which consists of assigning a link between each pair of
nodes with probability �k

�
V{1ð Þ. This results in a Poisson degree distribution with

fairly homogenous topology. Specifically the network considered in the study has
average degree �k~5, V 5 104 nodes and diameter equal to 8. The traveling of hosts is
implemented by assuming each individual to travel with probability p. This mobility
process yields a population distribution at the equilibrium given by

Ni~ki �N
�

�k, ð5Þ

where �N is the average population size.
In the stochastic mechanistic simulations the traveling is implemented as follows.

For each subpopulation i, the number of traveling individuals are extracted from each
of the eight infectious compartments through a multinomial distribution charac-
terised by ki 1 1 possible outcomes which correspond to traveling to each of the ki

directions, with probability
p
ki

, and to not traveling, with probability 1 2 p. dt is the

same used for the infection dynamics.

Computational modeling of competing pathogens. To simulate the spread of the
two strains on the metapopulation system of susceptible hosts, we initialise the
number of individuals of each subpopulation at the equilibrium value given by Eq. (5).
This guarantees the system to be at the equilibrium of the mobility dynamics in such a
way that the population of each node fluctuates around the initial value for the whole
duration of the simulated outbreak without any significant replenishment/depletion
of individuals. The epidemic is initialised by seeding 50 randomly extracted
subpopulations with the slow (fast) strain and moving 0.1% of the population to the Is

(If) compartment, keeping the rest of the population in the susceptible compartment.
We explicitly required that the two strains are not initialised within the same nodes to
avoid interaction at the beginning of the epidemic. We tested different number of
initially infected subpopulations (i.e. 10 and 25) obtaining the same qualitative
results.

For each set of parameters we simulate 2,000 stochastic realisations of the spatial
epidemic spreading randomly selecting different initial conditions and different
instances of the mobility network. Traveling across patches and infection transmis-
sion within each patch are simulated at every time step until the epidemic gets extinct,

i.e. until the Is, If, I sð Þ
f and I fð Þ

s compartments are empty in all subpopulations. For each

run we record the attack rate within each subpopulation produced by both the fast
and the slow strain, as well as the time of arrival of each strain. In calculating the
number of infected subpopulations by each strain, Df

? and Ds
? , we consider that a

patch is infected by a strain if at least a fraction aT of the population within the patch
has contracted the disease. We set aT equal to 10% and we checked that the results are
not sensitive to the value of this parameter. Quantities displayed in the plots are
averages over all runs.
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29. González, M. C., Hidalgo, C. A. & Barabási, A-L. Understanding individual
human mobility patterns (2008). Nature 453, 779–782.

30. Riley, S. Large-scale transmission models of infectious diseases. Science 316,
1298–1301 (2007).

Figure 6 | Density plot of the ratio Ds
?

�
Df
? in the (r, s)–plane for

travelling probability p 5 0.01. The black curve indicates the condition
Ref f

0 ~rR0 1{a R0ð Þzs a R0ð Þð Þ~1. Simulations are obtained with t 5 2.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7895 | DOI: 10.1038/srep07895 8



31. Green, D. M., Kiss, I. Z. & Kao, R. R. Modeling the initial spread of the foot-and-
mouth disease through animal movements. Proc. R. Soc. B 273, 2729–2735 (2006).

32. Keeling, M. J. Models of foot-and-mouth disease. Proc. R. Soc. B 272 1195–1202
(2005).

33. Balcan, D. et al. Seasonal transmission potential and activity peaks of the new
influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility.
BMC Med. 7, 45 (2009).

34. Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the airline
transportation network in the prediction and predictability of global epidemics.
Proc. Natl. Acad. Sci. USA 103, 2015–2020 (2006).

35. Grais, R. F., Ellis, J. H., Kress, A. & Glass, G. E. Modeling the spread of annual
influenza epidemics in the US: the potential role of air travel. Health Care Manage.
Sci. 7, 127–134 (2004).

36. Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and control of epidemics in a
globalised world. Proc. Natl. Acad. Sci. USA 101, 15124–15129 (2004).

37. Merler, S. & Ajelli, M. The role of population heterogeneity and human mobility in
the spread of pandemic influenza. Proc. R. Soc. B 277, 557–565 (2009).

38. Grenfell, B. T., Bjornstad, O. N. & Kappey, J. Traveling waves and spatial
hierarchies in measles epidemics. Nature 414, 716–723 (2001).

39. Poletto, C., Meloni, S., Colizza, V., Moreno, Y., & Vespignani, A. Host mobility
drives pathogen competition in spatially structured populations. PLoS. Comput.
Biol. 9, e1003169 (2013).

40. Levins, R. Some demographic and genetic consequences of environmental
heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).

41. Hanski, I. & Gaggiotti, O. E. Ecology genetics and evolution of metapopulations.
(Elsevier, Academic Press, Amsterdam, New York 2004).

42. Anderson, R. M. & May, R. M. Spatial, temporal and genetic heterogeneity in host
populations and the design of immunisation programs, IMA J Math Appl Med Biol
1, 233–266 (1984).

43. Lloyd, A. L. & May, R. M. Spatial heterogeneity in epidemic models, J. Theor. Biol.
179, 1–11 (1996).

44. Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with
heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251,
450–467 (2008).

45. Colizza, V., Pastor-Satorras, R. & Vespignani, A. Reaction-diffusion processes and
metapopulation models in heterogeneous networks. Nature Phys. 3, 276–282 (2007).

46. Balcan, D. & Vespignani, A. Phase transitions in contagion processes mediated by
recurrent mobility patterns. Nature Phys 7, 581–586 (2011).

47. Meloni, S. et al. Modeling human mobility responses to the large-scale spreading
of infectious diseases. Sci. Rep. 1, 62 (2011).

48. Poletto, C., Tizzoni, M. & Colizza, V. Human mobility and time spent at
destination: Impact on spatial epidemic spreading. J. Theor. Biol. 338, 41–58
(2013).

49. Liu, S., Baronchelli, A. & Perra, N. Contagion dynamics in time-varying
metapopulations networks. Phys. Rev. E 87, 032805 (2013).

50. Apolloni, A., Poletto, C., Ramasco, J. J., Jensen, P. & Colizza, V. Metapopulation
epidemic models with heterogeneous mixing and travel behavior. TBioMed 11, 3
(2014).

51. Belik, V., Geisel, T. & Brockmann, D. Natural human mobility patterns and spatial
spread of infectious diseases. Phys. Rev. X 1, 011001 (2011).
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